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Abstract

Suppose that A is either the Banach algebra L1(G) of a locally compact group G, or
measure algebra M(G), or other algebras

(
usually larger than L1(G) and M(G)

)
such as

the second dual, L1(G)∗∗, of L1(G) with an Arens product, or LUC(G)∗ with an Arens-
type product. The left translation invariant closed convex subsets of A are studied. Finally,
we obtain necessary and sufficient conditions for LUC(G)∗ to have 1-dimensional left ide-
als.

1. Introduction

Let G be a locally compact group, and let λ denote the left invariant
Haar measure on G. Let M(G) be the space of complex Radon measures
on G. We define the convolution of two measures µ, ν ∈M(G) as follows:∫

φ(z) dµ ∗ ν(z) =
∫ ∫

φ(xy) dµ(x) dν(y) =

∫ ∫
φ(xy) dν(y) dµ(x)

where φ ∈ C0(G) (C0(G) is the set of all continuous functions that vanish at
infinity). With the convolution product M(G) becomes a Banach algebra,
and convolution is commutative if and only if G is abelian [16]. The Dirac
measure δe ∈M(G) is the unit of M(G).
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In many respects, the Banach algebra M(G) is too big and complicated
to work with easily, and it is preferable to restrict attention to the space
L1(G), which is a subspace of M(G) if we identify the function f with the
measure f(x) dx. If f, g ∈ L1(G), the convolution of f and g is the function
defined by f ∗ g(x) =

∫
f(y)g(y−1x) dy [8]. We know that L1(G) is a closed

two-sided ideal in the algebra M(G), and δe ∈ L1(G) if and only if G is
discrete [16].

The closed convex subset of Lp(G) (1 5 p <∞) has been studied in a
series of papers recently. Most complete information has been obtained for
the hypergroup case [24]. This paper continues these investigations. In this
paper, we study the closed subspaces I of LUC(G)∗, L∞(G) and Wap (G)
that are invariant under all left translations. We proved that if G is a com-
pact abelian group, then each τc-closed translation invariant subspace X of
L∞(G) is introverted.

2. Notation and preliminary results

Let Cb(G) be the space of continuous, bounded, complex-valued func-
tions on G with the sup norm. Cb(G) is a Banach algebra with point wise
operations. Let LUC(G) denote the closed subspace of bounded left uni-
formly continuous functions on G, i.e., all f ∈ Cb(G) such that the map

x 7→ Lxf from G into Cb(G) is continuous, where Lxf(y) = f
(
x−1y

)
for

y ∈ G [16]. This is the space of bounded functions on G which are uniformly
continuous with respect to the right uniformity on G, that is, for every ε > 0,
there is a neighborhood U of the identity in G such that

∣∣f(x)− f(y)
∣∣ < ε

whenever xy−1 ∈ U . The other algebras which we shall consider are defined
in the following way. Let L∞(G) denote the algebra of essentially bounded
Haar measurable complex-valued functions on G with point wise operations.
It is known that L∞(G) = L1(G)∗. The second dual L1(G)∗∗ of L1(G) is a
Banach algebra with the first Arens product (see [1], [5]). This product is
obtained by letting first

⟨fF , φ⟩ = ⟨F, φ̂ ∗ f⟩ for all F ∈ L1(G)∗∗, f ∈ L∞(G) and φ ∈ L1(G),

where φ̂(x) = ∆
(
x−1

)
φ
(
x−1

)
for x ∈ G. Then, for F and G in L1(G)∗∗,

⟨GF, f⟩ = ⟨G, fF ⟩ for all f ∈ L∞(G).

If E is a Banach space, E∗ will denote the collection of all continuous
linear mapping of E into C. Then LUC(G)∗ with the product inherited
from L1(G)∗∗ (by restriction) is also a Banach algebra (see [1] and Lemma 3
in [19]). Among the elements of LUC(G)∗ are the point masses δx for x ∈ G.
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These do not appear in L1(G)∗∗. Moreover, δe is an identity in LUC(G)∗,
and L1(G)∗∗ has a right identity [1].

The space L∞(G) may be embedded into B
(
L1(G), L∞(G)

)
by the linear

map T such that T (f)(φ) = φ ∗ f where f ∈ L∞(G) and φ ∈ L1(G). Since

B
(
L1(G), L∞(G)

)
carries naturally the strong operator topology, T allows

us to consider the induced topology on L∞(G), which we denote by τc. In
fact, a net {fα} in L∞(G) converges to f in the τc-topology if and only if
∥φ∗fα−φ∗f∥ → 0 for all φ ∈ L1(G) (for more information, see [3], [4] or [11]
and [12]). For a locally compact group G the τc-topology is not weaker than
the weak∗ topology and not stronger than the norm topology on L∞(G). It
is known that the τc-topology is different from the weak∗ topology whenever
G is infinite [3]. Crombez and Govaerts [4] have proved that the τc-topology
coincides with the norm topology if and only if G is discrete.

Put P 1(G) =
{
φ ∈ L1(G); φ = 0, ∥φ∥1 = 1

}
. If f : G→ C and a ∈ G,

we put af(x) = f(ax), fa(x) = f(xa) where x ∈ G. If f : G→ C and a ∈ G,

we also consider afa(x) = f
(
a−1xa

)
, x ∈ G [22]. As far as possible, we fol-

low [16] in our notation and refer to [26] for basic functional analysis and
to [8] for basic harmonic analysis (see also [16]).

3. Invariant subsets of group algebras

Our starting point of this section is the following lemma whose proof is
straightforward.

Lemma 1. Let G be a locally compact group.

(1) For f ∈ L∞(G) and φ,ψ ∈ L1(G), we have ⟨φ ∗ f, ψ⟩ = ⟨f, φ̂ ∗ ψ⟩.
(2) Let U be the family of all neighborhoods of e, regarded as directed set

in the usual way: U ≽ V if U j V . For each U ∈ U choose a non-
negative function φU ∈ L1(G) such that φU vanishes outside of U and∫
φU (x) dx = 1. If f ∈ L∞(G) and x ∈ G, then {δx ∗ φU ∗ f}U∈U con-

verges to δx ∗ f in the weak∗ topology.

Definition 1. A subset X of L∞(G) is said to be topologically invariant
if φ ∗ f ∈ X for all φ ∈ P 1(G) and f ∈ X . We say that X is left translation
invariant if Lxf ∈ X whenever f ∈ X and x ∈ G.

It is well known that a closed convex subset X of Lp(G), 1 5 p <∞
is left invariant if and only if it is topologically invariant (see Theorem 4.1
in [17]). For p = ∞, Lau [17] proved that if X is a weak∗ closed convex
subset of L∞(G), then X is left invariant if and only if X is topologically
invariant. Our first result is a generalization of this fact to τc-closed convex
subsets of L∞(G).



304 A. GHAFFARI

Theorem 1. Let G be a compact group. Let X be a τc-closed convex
subset of L∞(G). Then X is left translation invariant if and only if it is
topologically invariant.

Proof. Assume that there exist f ∈ X and φ ∈ P 1(G) such that φ ∗ f
/∈ X . By the Hahn–Banach Theorem [26], there exists F ∈

(
L∞(G), τc

)∗
and γ1, γ2 ∈ R such that

Re ⟨F,Lxf⟩ < γ1 < γ2 < ⟨F,φ ∗ f⟩,

where x ∈ G. Since L1(G) is the dual of (L∞(G), τc) (see Corollary 2 in [4]),
so F = ψ for some ψ ∈ L1(G). Hence ⟨F,Lxf⟩ = ⟨ψ,Lxf⟩ = ⟨f, δx−1 ∗ψ⟩ for
all x ∈ G. By Lemma 3.4 in [12],

Re ⟨φ ∗ f, ψ⟩ = Re ⟨f, φ̂ ∗ ψ⟩ = Re

∫
⟨f, δx ∗ ψ⟩dφ̂(x)

5 γ1 < γ2 < Re ⟨φ ∗ f, ψ⟩.

We would come to a contradiction. Therefore φ ∗ f ∈ X for all f ∈ X and
φ ∈ P 1(G).

To prove the converse, let f ∈ X and x ∈ G. Let {eα} be an approximate
identity in L1(G) such that each eα belongs to P 1(G) [8]. Let

V :=
{
h ∈ L∞(G); ∥φi ∗ Lxf − φi ∗ h∥ < ε, 1 5 i 5 n

}
be a τc-neighborhood of Lxf . There exists α such that

∥φi ∗ eα ∗ Lxf − φi ∗ Lxf∥ = ∥φi ∗ eα ∗ δx ∗ f − φi ∗ δx ∗ f∥ < ε

for all 1 5 i 5 n. By assumption eα ∗ δx ∗ f ∈ X . It follows that Lxf is in the

closure of X in the τc-topology. On the other hand, X = X , and so Lxf ∈ X .
This completes our proof. �

Theorem 2. If G is a compact abelian group, let X be a τc-closed sub-
space of L∞(G) that is left translation invariant. Then X is introverted,
that is, fF ∈ X whenever F ∈ L∞(G)∗ and f ∈ X .

Proof. Let F ∈ L∞(G)∗ and f ∈ X . As L1(G) is weak∗ dense in L∞(G)∗

by Goldstine’s Theorem [26], there exist a bounded net {φα}α∈I bounded

by ∥F∥ in L1(G) such that {φα}α∈I converges to F in the weak∗ topology.
It is easy to see that {φ̂α ∗ f}α∈I converges to fF in the weak∗ topology. We
first show that {φ̂α ∗ f}α∈I converges to fF in the τc-topology. To see this,
let

V :=
{
h ∈ L∞(G); ∥φi ∗ fF − φi ∗ h∥ < ε, 1 5 i 5 n

}
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be the τc-neighborhood of fF determined by φ1, . . . , φn in L1(G) and ε > 0.
Since the mapping x 7→ Lxφ̂i (1 5 i 5 n) is continuous [16], for every x ∈ G,
there exists an open neighborhood Ux of x such that

∥Lxφ̂i − Lyφ̂i∥1 <
ε

4∥F∥ ∥f∥+ 1

whenever y ∈ Ux and 1 5 i 5 n. Since G is compact, we can choose a finite

subset {x1, . . . , xk} in G such that G j
∪k

j=1 Uxj and ∥Lxj φ̂i − Lyφ̂i∥1 <
ε

4∥F∥ ∥f∥+1 whenever y ∈ Uxj , 1 5 j 5 k and 1 5 i 5 n. Since {h ∈ L∞(G);∣∣⟨h− fF , Lxj φ̂i⟩
∣∣ < ε

4 for all i, j} is a weak∗ neighborhood of fF , there ex-

ists α0 ∈ I such that
∣∣⟨φ̂α ∗ f − fF , Lxj φ̂i⟩

∣∣ < ε
4 for 1 5 i 5 n, 1 5 j 5 k and

α ∈ I with α ≽ α0. Let x ∈ G and α ≽ α0. Let xj be chosen such that
x ∈ Uxj . For every 1 5 i 5 n,∣∣⟨φ̂α ∗ f − fF , Lxφ̂i⟩

∣∣ 5 ∣∣⟨φ̂α ∗ f − fF , Lxφ̂i − Lxj φ̂i⟩
∣∣

+
∣∣⟨φ̂α ∗ f − fF , Lxj φ̂i⟩

∣∣ < ε

2
.

Hence for all α ∈ I with α ≽ α0, x ∈ G and 1 5 i 5 n,
∣∣⟨φ̂α ∗ f − fF ,

δx ∗ φ̂i⟩
∣∣ < ε

2 . For every ψ ∈ CC(G), by Lemma 3.4 in [12] we have∣∣⟨φi ∗ φ̂α ∗ f − φi ∗ fF , ψ⟩
∣∣ = ∣∣⟨φ̂α ∗ f − fF , φ̂i ∗ ψ⟩

∣∣
5

∫ ∣∣⟨φ̂α ∗ f − fF , δx ∗ φ̂i⟩
∣∣ d|ψ|(x)

5 ε

2
∥ψ∥1

whenever α ≽ α0 and i ∈ {1, . . . , n}. Therefore ∥φi ∗ φ̂α ∗ f − φi ∗ fF ∥ < ε
for each α ≽ α0 and i ∈ {1, . . . , n}. This shows that {φ̂α ∗ f}α∈I converges
to fF in the τc-topology. Since X is left translation invariant, by Theorem 1,
X is topologically invariant. Hence φ̂α ∗ f ∈ X for every α ∈ I. Thus fF ∈
X = X . �

Note that the preceding two Theorems give the nice result that a τc-
closed subspace of L∞(G) is left translation invariant if and only if it is
introverted.

Remark 1. It will be interesting to consider the analogue of Theorem 2
for the group von Neumann algebra V N(G) of a locally compact group (see
Section 7 of [20]). Note that in this case G is abelian, V N(G) is isometrically

isomorphic to L∞(Ĝ).
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Definition 2. A bounded linear operator T from L∞(G) to L∞(G) is
called a left multiplier if LxT (f) = T (Lxf), for all f ∈ L∞(G) and x ∈ G.

The set of the left multipliers will be denoted by M
(
L∞(G), L∞(G)

)
.

For more on multipliers, the reader is referred to [17] and [24]. The affine
mappings which commute with translations have been studied by Lau [17].
He proved that an affine continuous mapping T from Lp(G) (1 5 p <∞)
into Lq(G) commutes with left translation if and only if T (φ ∗ f) = φ ∗ T (f)
for each φ ∈ P 1(G) and f ∈ Lp(G).

Theorem 3. Let G be a compact abelian group. Let T be a bounded lin-
ear operator on L∞(G), that is τc-τc continuous. Then T is in M

(
L∞(G),

L∞(G)
)
if and only if T (fF ) = T (f)F for all f ∈ L∞(G), F ∈ L∞(G)∗.

Proof. See Theorem 2 and its proof. �
Recall that Lx, x ∈ G, is the translation operator in L1(G), that is, for

f ∈ L1(G), Lxf(y) = f
(
x−1y

)
. It is a well-known phenomenon that a closed

subspace in L1(G) is an ideal if and only if it is invariant under each Lx,
x ∈ G. Moreover, if G is not discrete, there exists a closed subspace ofM(G)
which is invariant under translation and which is not an ideal in M(G) [16].

Theorem 4 (Civin [2]). Let G be a locally compact abelian group. There
exists a closed subspace of L1(G)∗∗ which is invariant under L∗∗

x for all x ∈ G
and which is neither a left nor a right ideal.

The following theorem is to discuss the similarities and differences in this
type of behavior where one considers translations in LUC(G)∗.

Theorem 5. Let G be a locally compact group. A weak∗ closed subspace
I of LUC(G)∗ is a left ideal if and only if it is invariant under L∗∗

x , x ∈ G.

Proof. We only prove that I is invariant under L∗∗
x . Let I be a left ideal

in LUC(G)∗ and F ∈ I, x ∈ G. Then U , the collection of all symmetric com-
pact neighborhoods of e, ordered by inclusion (i.e., for U1, U2 ∈ U , we write
U2 ≽ U1 if and only if U2 j U1) form a directed set. For each U ∈ U , let
ψU be a function such that suppψU is compact and contained in U , ψU = 0,

ψU

(
t−1

)
= ψU (t), and

∫
ψU (t) dt = 1. For f ∈ LUC(G) and x ∈ G, we have

∣∣δx−1 ∗ ψU ∗ f(t)− δx−1 ∗ f(t)
∣∣ = ∣∣∣∣∫ f

(
y−1t

)
δx−1 ∗ ψU (y) dy − f(xt)

∣∣∣∣
=

∣∣∣∣∫ f
(
y−1t

)
ψU (xy)− f(xt)ψU (y) dy

∣∣∣∣
=

∣∣∣∣∫ (f
(
y−1xt

)
− f(xt))ψU (y) dy

∣∣∣∣
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=

∣∣∣∣∫ (
y−1f(xt)− f(xt)

)
ψU (y) dy

∣∣∣∣
5

∫
∥y−1f − f∥ψU (y) dy.

This shows that {δx−1 ∗ ψU ∗ f} converges to δx−1 ∗ f in the norm topol-

ogy. Hence ⟨ ̂δx−1 ∗ ψUF, f⟩ = ⟨F, δx−1 ∗ ψU ∗ f⟩ converges to ⟨F, δx−1 ∗ f⟩ =⟨
L∗∗
x (F ), f

⟩
. Consequently, { ̂δx−1 ∗ ψUF} converges to L∗∗

x F in the weak∗

topology. On the other hand, ̂δx−1 ∗ ψUF ∈ I. Since I is closed, thus
L∗∗
x F ∈ I. This shows that I is invariant under L∗∗

x . �
It is known that (see [18]) for any locally compact group G,

LUC(G)∗ =M(G)⊕ C0(G)
⊥.

Suppose that G is a compact group. Then M(G) = Cb(G)
∗ = LUC(G)∗.

So L1(G) is a two-sided ideal in LUC(G)∗. If L1(G) is a right (or left)
ideal in LUC(G)∗ then it is a right (resp. left) ideal in L1(G)∗∗. Then G
will be a compact group [15]. Let G be a non compact group. L1(G) is
clearly invariant under translations and it is neither a left nor a right ideal
in LUC(G)∗. Now, we may suppose that G is a non discrete compact group.
Then { ∞∑

k=1

αkδxk
; xk ∈ G, αk ∈ C,

∞∑
k=1

|αk| <∞
}

is a closed subalgebra of M(G) invariant under translations. This set is
neither a right nor a left ideal in LUC(G)∗.

Definition 3. A function f ∈ Cb(G) is said to be weakly almost periodic
if {Lxf ; x ∈ G} is relatively weakly compact in Cb(G). The set of all weakly
almost periodic functions on G is denoted by Wap (G) [11].

Theorem 6. Let G be a locally compact group. A closed convex subset
I of Wap (G) is left translation invariant if and only if it is topologically
invariant.

Proof. Let I be a closed convex subset in Wap (G). Let f be in I and φ
in P 1(G). By assumption and by the Krein–Smulian Theorem, the relative
weak compactness of {Lxf ; x ∈ G} implies the relative weak compactness
of co {Lxf ; x ∈ G}. We know that co {Lxf ; x ∈ G} inherits two topologies:
one weak topology and the other weak∗ topology from L∞(G)∗. It is easy
to see that these two topologies coincide on co {Lxf ; x ∈ G} (or see [27]).
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If φ ∗ f /∈ co {Lxf ; x ∈ G}, then Theorem 3.4 in [26] implies that there is a
ψ in L1(G), an α in R, and an ε > 0 such that

Re ⟨Lxf, ψ⟩ 5 α < α+ ε 5 Re ⟨φ ∗ f, ψ⟩

for all x in G. On the other hand,

Re ⟨φ ∗ f, ψ⟩ = Re

∫
φ ∗ f(t)ψ(t) dt

= Re

∫ ∫
Lxf(t)φ(x)ψ(t) dx dt

= Re

∫ ∫
Lxf(t)ψ(t)φ(x) dt dx

= Re

∫
⟨Lxf, ψ⟩φ(x) dx < α+ ε.

This is a contradiction. This clearly implies{
φ ∗ f ; φ ∈ P 1(G)

}
j co {Lxf ; x ∈ G}.

If I is a left translation invariant closed convex subset of Wap (G), then I is
topologically invariant.

Conversely, Let I be a topologically invariant closed convex subset in
Wap (G). Let U denote the family of symmetric compact neighborhoods
of e and regard U as a directed set in the usual way: U ≽ V if U j V . For
each U ∈ U , choose a function φU ∈ L1(G) such that

∫
φU (t)dt = 1, φU = 0,

φU (x) = φU

(
x−1

)
and ∥φU∥1 = 1. Let f be in I and x in G. For every

U ∈ U and ψ ∈ L1(G),∥∥ ̂(δx ∗ φU ) ∗ ψ − xψ
∥∥
1
=

∫ ∣∣ ̂(δx ∗ φU ) ∗ ψ(t)− xψ(t)
∣∣ dt

=

∫ ∣∣∣∣∫ ψ
(
y−1t

)
φU

(
x−1y−1

)
∆
(
y−1

)
dy − xψ(t)

∣∣∣∣ dt
=

∫ ∣∣∣∣∫ ψ
(
y−1t

)
φU (yx)∆

(
y−1

)
− xψ(t)φU (y) dy

∣∣∣∣ dt
5

∫
φU (y)

∫
|ψ

(
xy−1t

)
∆
(
y−1

)
− xψ(t)| dt dy

=

∫
φU (y)∥xy−1ψ∆

(
y−1

)
− xψ∥1

dy.
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As ψ ∈ L1(G), the mapping x 7→ xψ is continuous (see theorem 20.4 in [16]).
Let ε > 0 be given. There exists an open neighborhood U of e in G such
that for all y ∈ U ,

∥xy−1ψ∆
(
y−1

)
− xψ∥1

< ε.

This shows that
{ ̂(δx ∗ φU )∗ψ

}
U∈U converges to {xψ} in the norm topology.

On the other hand, ⟨δx ∗ φU ∗ f, ψ⟩ =
⟨
f, ̂(δx ∗ φU ) ∗ ψ

⟩
for all ψ ∈ L1(G)

and U . So {δx ∗ φU ∗ f}U∈U converges to {Lxf} in the weak∗ topology.
Clearly {δx ∗ φU ∗ f}U∈U converges to {Lxf} in the weak topology. Since I
is a closed convex topologically invariant subset of Wap (G), so I is a closed
left invariant subset of Wap (G). �

Recall that for φ,ψ ∈ L1(G), φ ∗ψ(x) =
∫
ψ
(
y−1x

)
φ(y)dy. Also L1(G),

equipped with the convolution product, is a Banach subalgebra of M(G),
called the group algebra of G. It is known that a closed subspace I of L1(G)
is a left ideal if and only if xφ ∈ I for every φ ∈ I and x ∈ G. Following Li
and Pier [21], we define

φ~ ψ(x) =

∫
ψ(y−1xy)φ(y)∆(y)

1
p dy

for φ ∈ L1(G), ψ ∈ Lp(G) and x ∈ G, where 1 5 p <∞. With this product
L1(G) becomes a Banach algebra.

Theorem 7. Let G be a locally compact group. A closed linear subspace
I of L1(G) is a left ideal of L1(G) if and only if φ ∈ I and x ∈ G imply
that xφx ∈ I.

Proof. Let I be a closed left ideal in L1(G) and let φ be in I and x ∈ G.
Let ε be any positive number, and choose a compact neighborhood U of the
identity in G such that∥∥

y(xφx)y − xφx

∥∥
1
∆(y) <

ε

2
,

∣∣∆(y)− 1
∣∣ < ε

2
(
∥xφx∥1 + 1

)
for any y ∈ U (see Theorem 20.4 in [16]). Put ξU = χU

λ(U) and ϕ = xφx. For

every ψ ∈ CC(G), we have

∣∣⟨ψ, ξU ~ ϕ− ϕ⟩
∣∣ = ∣∣∣∣∫ ψ(z)ξU ~ ϕ(z) dz −

∫
ψ(z)ϕ(z) dz

∣∣∣∣
=

∣∣∣∣∫ ∫
ψ(z)ξU (y)ϕ(y

−1zy)∆(y) dy dz −
∫
ψ(z)ϕ(z) dz

∣∣∣∣
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5 1

λ(U)

∫ ∣∣ψ(z)∣∣ ∫
U

|ϕ
(
y−1zy

)
∆(y)− ϕ(z)| dy dz

5 1

λ(U)

∫
U

∫
G

|ϕ
(
y−1zy

)
∆(y)− ϕ(z)|

∣∣ψ(z)∣∣ dz dy
5 1

λ(U)

∫
U

∥∥
yϕy∆(y)− ϕ∆(y)

∥∥
1
∥ψ∥∞ dy

+
1

λ(U)

∫
U

∥∥ϕ∆(y)− ϕ
∥∥
1
∥ψ∥∞ dy.

It follows that ∥ξU ~ xφx − xφx∥1 < ε (see Theorem 14.5 in [16]). On the
other hand,

ξUx−1 ~ φ(y) =
1

λ(U)

∫
φ(z−1yz)χU

(
zx−1

)
∆(z) dz

=
∆(x)2

λ(U)

∫
U

φ
(
x−1z−1yzx

)
∆(z) dz

=
∆(x)2

λ(U)

∫
U

xφx

(
z−1yz

)
∆(z) dz = ∆(x)2ξU ~ xφx(y).

Therefore ∥∆
(
x−1

)2
ξUx−1 ~ φ− xφx∥1

< ε. By assumption,

∆
(
x−1

)2
ξUx−1 ~ φ ∈ I.

It follows that xφx ∈ I.
Suppose conversely that φ ∈ I and x ∈ G imply xφx ∈ I. Let φ be

in I and ψ in L1(G). If every bounded linear functional Λ on L∞(G) for
which Λ(I) = 0 also satisfies Λ(ψ ~ φ) = 0, then by the Hahn–Banach The-
orem [26], ψ ~ φ also belongs to I. Let Λ be as above. There is a function
f ∈ L∞(G) such that

Λ(ϕ) =

∫
G

ϕ(x)f(x) dx for ϕ ∈ L1(G).
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We then have

Λ(ψ ~ φ) =

∫
f(x)ψ ~ φ(x) dx =

∫ ∫
φ
(
z−1xz

)
ψ(z)∆(z)f(x) dz dx

=

∫
∆(z)ψ(z)

∫
f(x)φ(z−1xz) dx dz =

∫
ψ(z)∆(z)Λ(zφz) dz = 0,

since zφz ∈ I for z ∈ G and Λ(I) = 0. �
Completely analogously to Theorem 5 and Theorem 6, we also have

Theorem 8. Let G be a locally compact group.

(1) If X is a closed subspace of Lp(G), 1 5 p <∞, then X is conjugate
invariant, that is, xfx ∈ X for every f ∈ X and x ∈ G if and only if
f ∈ X and φ ∈ P 1(G) imply that φ~ f ∈ X .

(2) If X is a weak∗ closed subspace of L∞(G), then X is conjugate invari-
ant if and only if f ∈ X and φ ∈ P 1(G) imply that φ~ f ∈ X .

Theorem 9. Let G be any locally compact group. If f ∈ L∞(G) such
that {xfx; x ∈ G} is relatively compact in the norm topology (weak topology)
of L∞(G), then the map h 7→ h~ f from L1(G) into L∞(G) is a compact
(weakly compact) linear operator.

Proof. If {xfx; x ∈ G} is relatively compact in the weak topology
of L∞(G), then the set K = co {xfx; x ∈ G} is weakly compact subset
of L∞(G). It is easy to see that

cow
∗{xfx; x ∈ G} =

{
φ~ f ; φ ∈ P 1(G)

}w∗

.

Since the weak∗ topology is Hausdorff on K, it follows that the weak∗ and

weak topologies agree on K [27]. Consequently K =
{
φ~ f ; φ ∈ P 1(G)

}
is a weakly compact subset of L∞(G) and also K1 = {λk; k ∈ K, 0 5 λ 5 1}
is weakly compact. Now if h ∈ L1(G) and ∥h∥1 5 1, then h = (h1 − h2) +
i(h3 − h4) where each hi is positive, and ∥hi∥1 5 1. It follows that h~ f ∈
(K1 −K1) + i(K1 −K1). Hence the map h 7→ h~ f is compact.

The proof for the norm compact case is similar. �
Definition 4. The group G is said to be amenable if there exists a

positive functional M on LUC(G) with norm one such that ⟨M,φ ∗ f⟩ =
⟨M,f⟩ for each f ∈ LUC(G) and φ ∈ P 1(G) (see [23], [25], [9] and [10]).

Let UC(G) be the space of bounded, uniformly continuous, complex-
valued functions on G. Filali proved that finite-dimensional right ideals exist
in U(G)∗ if and only if G is compact (see Theorem 3 in [7]). We proved that

if there exists a measure µ ∈ soc
(
M(G)

)
such that µ(G) ̸= 0, then G is
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compact [13]. In [6], Filali proved that finite dimensional left ideals exist in
LUC(G)∗ if and only if G is amenable. In the following Theorem, a simple
proof of the above result is given.

Theorem 10. Let G be a locally compact group. Then

(1) 1-dimensional left ideals exist in LUC(G)∗ if and only if G amenable

(2) 1-dimensional left ideals exist in L1(G)∗∗ if and only if G amenable.

Proof. Let LUC(G)∗F be a left ideal of LUC(G)∗ of dimension 1.
Then the mapping TF : E 7→ EF , is a rank one operator and hence com-
pact. Since every compact right multiplier on LUC(G)∗ can be described
as a linear combination of four compact positive right multipliers [14], it is
easy to see that G is amenable (or see Theorem 2.1 in [14]).

To prove the converse, let M be a topologically left invariant mean on
LUC(G)∗. Then M(φ ∗ f) =M(f) for all f ∈ LUC(G) and φ ∈ P 1(G).
Since L1(G) is weak∗ dense in LUC(G)∗, so that for any F we can find
a bounded net {φα}α∈I in L1(G) with weak∗ limit φα = F . For any

α ∈ I, there exist φα1, φα2, φα3, φα4 ∈ P 1(G) and λα1, λα2, λα3, λα4 ∈ R such
that φ̂α = λα1φα1 − λα2φα2 + i(λα3φα3 − λα4φα4). Since {φ̂α} is a bounded
subset in L1(G), passing to a subnet if necessary, we may assume that

{φ̂α} converges to some F̂ in LUC(G)∗ in the weak∗ topology. Clearly

λα1 − λα2 + i(λα3 − λα4) = 1(φ̂α) = 1M (φ̂α) converges to F̂ (1). It follows
that

⟨FM, f⟩ = lim
α
⟨φα, fM ⟩ = lim

α
⟨M, φ̂α ∗ f⟩ = F̂ (1)⟨M,f⟩

for any f ∈ LUC(G). Hence FM = F̂ (1)M . This shows that LUC(G)∗M
is 1-dimensional.

Similar arguments apply in L∞(G)∗. This completes the proof. �
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