Studia Scientiarum Mathematicarum Hungarica 49 (3), 315–325 (2012) DOI: 10.1556/SScMath.49.2012.3.1203

THE LARGEST FAMILY OF SUBSETS SATISFYING SEQUENTIAL-EVALUATION CONVERGENCE

AIHONG CHEN and RONGLU LI

Department of Mathematics, Harbin Institute of Technology, 150001, Harbin, China e-mail: mohured@yahoo.cn

Communicated by I. Juh´asz

(Received September 1, 2010; accepted August 3, 2011)

Abstract

Suppose *X* is a locally convex space, *Y* is a topological vector space and $\lambda(X)^{\beta Y}$ is the *β*-dual of some *X* valued sequence space $\lambda(X)$. When $\lambda(X)$ is $c_0(X)$ or $l_{\infty}(X)$, we have found the largest $\mathcal{M} \subset 2^{\lambda(\bar{X})}$ for which $(A_j) \in \lambda(X)^{\beta Y}$ if and only if $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly with respect to (x_j) in any $M \in \mathcal{M}$. Also, a remark is given when $\lambda(X)$ is $l_p(X)$ for $0 < p < +\infty$.

1. Introduction

If *X*, *Y* are Banach spaces, for classical Banach sequence spaces $c_0(X)$, $l_{\infty}(X)$ and $l_p(X)$ with $0 < p < +\infty$, R. Li et al. [3] have determined the largest $\mathcal{M} \subset 2^{\lambda(X)}$ for which $(A_j) \in \lambda(X)^{\beta Y}$ if and only if $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly with respect to (x_i) in any $M \in \mathcal{M}$. In this paper, for $c_0(X)$ and $l_{\infty}(X)$, we generalize the result to the case when X is a locally convex space and *Y* is a topological vector space. For $l_p(X)$ with $0 < p < +\infty$, we give a remark in the last section.

We adopt the following notation which is the same as in [9, p. 229]. Let *X* be a locally convex space generated by the family of semi-norms \overline{P} and $\lambda(X)$ be some X valued sequence space. Define

$$
c_0(X) = \left\{ (x_j) \in X^{\mathbb{N}} : q(x_j) \to 0 \text{ for all } q \in \mathcal{P} \right\}
$$

²⁰⁰⁰ *Mathematics Subject Classification.* Primary 46E40; Secondary 46E99.

Key words and phrases. Uniformly strong gliding hump property, *β*-dual, sequentialevaluation convergence.

^{0081–6906/\$ 20.00} *⃝*c 2012 *Akad´emiai Kiad´o, Budapest*

316 A. CHEN and R. LI

and

$$
l_{\infty}(X) = \Big\{(x_j) \in X^{\mathbb{N}} : \sup_j q(x_j) < +\infty \text{ for all } q \in \mathcal{P}\Big\}.
$$

The natural topology on $c_0(X)$ or $l_{\infty}(X)$ is generated by the semi-norms:

$$
q_{\infty}[(x_j)] = \sup_j q(x_j), \ q \in \mathcal{P}
$$

For $0 < p < +\infty$, define

$$
l_p(X) = \left\{ (x_j) \in X^{\mathbb{N}} : \sum_{j=1}^{\infty} q(x_j)^p < \infty \text{ for all } q \in \mathcal{P} \right\}.
$$

If $1 \leq p < +\infty$, the topology of $l_p(X)$ is generated by the semi-norms:

$$
q_p[(x_j)] = \left(\sum_{j=1}^{\infty} q(x_j)^p\right)^{1/p}, \quad q \in \mathcal{P}.
$$

If $0 < p < 1$, the topology of $l_p(X)$ is generated by the paranorms:

$$
q_p[(x_j)] = \left(\sum_{j=1}^{\infty} q(x_j)^p\right), \quad q \in \mathcal{P}.
$$

Let *Y* be a topological vector space. For a sequence (A_j) of linear operators from *X* into *Y*, we say that the series $\sum A_j$ is $\lambda(X)$ -evaluation convergent if $\sum_{j=1}^{\infty} A_j(x_j)$ converges for all $(x_j) \in \lambda(X)$ [10, 6, 2]. The original definition for the generalized Köthe–Toeplitz β -dual of $\lambda(X)$ is due to I. Maddox [4, p. 19], which is given by

$$
\lambda^{\beta}(X) = \left\{ (A_j) : \text{each } A_j \in Y^X \text{ is linear,} \right\}
$$

$$
\sum_{j=1}^{\infty} A_j(x_j) \text{ is } \lambda(X)\text{-evaluation convergent} \right\},
$$

In this paper, we adopt the notation $\lambda(X)^{\beta Y}$ as in [8, p. 153], especially, we drop the linearity restriction forced on the mappings as in [3], and let *Y X*

be the family of all *Y*-valued Mappings on *X*, then the *β*-dual of λ (*X*) is defined by

$$
\lambda(X)^{\beta Y} = \left\{ (A_j) \subset Y^X : \sum_{j=1}^{\infty} A_j(x_j) \text{ converges for all } (x_j) \in \lambda(X) \right\}.
$$

Henceforth, let *X* be a locally convex space and *Y* be a topological vector space if there is no special indication.

2. Uniformly strong gliding hump property

Let χ_{σ} denote the characteristic function of σ . For $x = (x_i) \subset X$ and $\sigma \subset \mathbb{N}$, $\chi_{\sigma}x$ will denote the coordinatewise product of χ_{σ} and *x*, that is, if we let $(u_l) = \chi_{\sigma} x$, then

$$
u_l = \begin{cases} x_l, & \text{if } l \in \sigma \\ 0, & \text{otherwise.} \end{cases}
$$

λ(*X*) is said to be monotone if $χ_{σ}x ∈ λ(X)$ for every $σ ⊂ ℕ$ and $x ∈ λ(X)$. For example, $c_0(X)$, $l_p(X)$ and $l_\infty(X)$ are all monotone [9, p. 233]. An interval in N is a subset of the form

$$
[m, n] = \{ j \in \mathbb{N} : m \leq j \leq n \},
$$

where $m, n \in \mathbb{N}$ with $m \leq n$. A sequence of intervals $\{I_k\}$ is increasing if $\max I_k < \min I_{k+1}$ for every *k*. $\lambda(X)$ is said to have the strong gliding hump property [7] if for every bounded sequence $\{x^k\} \subset \lambda(X)$ and every increasing sequence of intervals $\{I_k\}$, there exists a subsequence $\{k_j\} \subset \{k\}$ such that $\sum_{j=1}^{\infty} \chi_{I_{k_j}} x^{k_j} \in \lambda(X)$. In this paper, we do not use the definition of strong gliding hump property, but introduce a new definition called uniformly strong gliding hump property, denoted by USGHP for short.

DEFINITION 2.1. For $M \subset \lambda(X)$, we say M has the USGHP, if for every sequence ${x^k} \subset M$ and every increasing sequence of intervals ${I_k}$, there exists a subsequence $\{k_j\} \subset \{k\}$ such that $\sum_{j=1}^{\infty} \chi_{I_{k_j}} x^{k_j} \in \lambda(X)$.

Throughout this paper, we will use the following statement: (T1) $M \subset \lambda(X)$ has the USGHP;

(T2) For every topological vector space *Y* and $(A_j) \in \lambda(X)^{\beta Y}$, $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly for $(x_i) \in M$.

318 A. CHEN and R. LI

Theorem 2.2. (T1) *implies* (T2).

PROOF. Assume that *M* has the USGHP but (T2) fails to hold, and hence there exists a topological vector space *Y* and $(A_j) \in \lambda(X)^{\beta Y}$ such that the convergence of $\sum_{j=1}^{\infty} A_j(x_j)$ is not uniform for $(x_j) \in M$. Then there exists a neighborhood $W \subset Y$ of 0, such that for each $m_0 \in \mathbb{N}$, we have an $m > m_0$ and $x^{m_0} \in M$ for which $\sum_{j=m}^{\infty} A_j(x_j^{m_0}) \notin W$. Since *Y* is a topological vector space, for *W*, there exists a neighborhood $V \subset Y$ of 0, such that $V + V \subset W$.

For $m_0 = 1$, we have $m_1 > 1$ and $x^1 \in M$ such that $\sum_{j=m_1}^{\infty} A_j(x_j^1) \notin W$. Since $(A_j) \in \lambda(X)^{\beta Y}, \sum_{j=1}^{\infty} A_j(x_j)$ converges. For *V*, there exists $n_1 > m_1$ such that $\sum_{j=n_1+1}^{\infty} A_j(x_j^1) \in V$. We have $\sum_{j=m_1}^{n_1} A_j(x_j^1) \notin V$. Otherwise,

$$
\sum_{j=m_1}^{\infty} A_j(x_j^1) = \sum_{j=m_1}^{n_1} A_j(x_j^1) + \sum_{j=n_1+1}^{\infty} A_j(x_j^1) \in V + V \subset W
$$

which gives a contradiction.

For $m_0 = n_1$, choose $m_2 > n_1$ and $x^2 \in M$ such that $\sum_{j=m_2}^{\infty} A_j(x_j^2) \notin$ *W*. Then choose $n_2 > m_2$ such that

$$
\sum_{j=n_2+1}^{\infty} A_j(x_j^2) \in V \quad \text{and hence} \quad \sum_{j=m_2}^{n_2} A_j(x_j^2) \notin V.
$$

Consequently, we obtain $\{x^k\} \subset M$ and an increasing sequence of intervals ${I_k} = [m_k, n_k]$ such that

$$
\text{(ii)} \qquad \qquad \sum_{l \in I_k} A_l(x_l^k) \notin V, \quad \text{for all} \quad k \in \mathbb{N}.
$$

By (T1), for $\{x^k\} \subset M$ and $\{I_k\}$, there exists a subsequence $\{k_j\}$ such that $(u_l) = \sum_{j=1}^{\infty} \chi_{I_{k_j}} x^{k_j} \in \lambda(X)$, so $\sum_{l=1}^{\infty} A_l(u_l)$ converges and hence $\sum_{l \in I_{k_j}} A_l(u_l) = \sum_{l \in I_{k_j}} A_l(x_l^{k_j})$ $\binom{k_j}{l}$ converges to 0. But, this contradicts (\sharp). \Box COROLLARY 2.3. Let X , Y be locally convex spaces and $\lambda(X)$ be mono-

tone, then for $\{f_j\} \subset \{f \in Y^X : f(0) = 0\}$, *the following* (C1) *and* (C2) *are equivalent:*

- (C1) *For every* $(x_j) \in \lambda(X)$, $\sum_{j=1}^{\infty} f_j(x_j)$ *converges weakly*;
- (C2) *For every* $M \subset \lambda(X)$ *satisfying the USGHP*, $\sum_{j=1}^{\infty} f_j(x_j)$ *converges uniformly for* $(x_i) \in M$ *.*

PROOF. For every $(x_j) \in \lambda(X)$ and integers $j_1 < j_2 < \cdots$ let

$$
u_j = \begin{cases} x_{j_k}, & \text{if } j = j_k, \ k = 1, 2, 3, \dots \\ 0, & \text{otherwise.} \end{cases}
$$

Since $\lambda(X)$ is monotone, $(u_j) \in \lambda(X)$ and hence $\sum_{j=1}^{\infty} f_j(u_j)$ converges weakly by (C1). Since $f_i(0) = 0$ for all *j*, it follows from

$$
\sum_{k=1}^{n} f_{j_k}(x_{j_k}) = \sum_{j=1}^{j_n} f_j(u_j)
$$

that $\sum_{k=1}^{\infty} f_{j_k}(x_{j_k})$ is weakly convergent. By the Orlicz–Pettis theorem [5], $\sum_{j=1}^{\infty} f_j(x_j)$ converges in *Y*. Hence, (C1) implies that $\{f_j\} \in \lambda(X)^{\beta Y}$ and $(C2)$ holds by Theorem 2.2.

By the monotone property of $c_0(X)$, $l_\infty(X)$ and $l_p(X)$, Corollary 2.3 holds for these spaces.

3. $c_0(X)$ -evaluation convergence

THEOREM 3.1. (T1) *is equivalent to* (T2) *when* $\lambda(X)$ *is* $c_0(X)$ *.*

PROOF. (T1) implies (T2) is obvious by Theorem 2.2. Conversely, assume that (T2) holds but $M \subset c_0(X)$ doesn't have the USGHP. Then there exist $\{x^k\} \subset M$ and an increasing sequence of intervals $\{I_k\}$ such that $(u_j) = \sum_{k=1}^{\infty} \chi_{I_k} x^k \notin c_0(X)$, then

$$
u_j = \begin{cases} x_j^k, & \text{if } j \in I_k, \ k = 1, 2, 3, \dots \\ 0, & \text{otherwise.} \end{cases}
$$

Hence there exists a $q_0 \in \mathcal{P}$ such that $q_0(u_j) \to 0$ as $j \to \infty$, and then there exists a $\delta > 0$, a subsequence $\{k_n\}$ and some $j_n \in I_{k_n}$ such that $q_0(x_{j_n}^{k_n})$ $\binom{k_n}{j_n} > \delta$ for every $n \in \mathbb{N}$. Define $A_m : X \to c_0(X)$ by

$$
A_m(x) = \left(0, \cdots, 0, \stackrel{(m)}{x}, 0, \cdots\right)
$$

For $(x_m) \in c_0(X)$, it is obvious that

$$
q_{\infty}\left[(x_m) - \sum_{m=1}^n A_m(x_m) \right] = \sup_{m \ge n+1} q(x_m) \to 0 \quad \text{as} \quad n \to \infty.
$$

for every $q \in \mathcal{P}$ and hence $\sum_{m=1}^{\infty} A_m(x_m) = (x_m) \in c_0(X)$. Thus, $(A_m) \in$ $c_0(X)^{\beta c_0(X)}$. However,

$$
q_{0\infty}\bigg(\sum_{l\in I_{k_n}}A_l(x_l^{k_n})\bigg) \geq q_0(x_{j_n}^{k_n}) > \delta, \quad \text{for every} \quad n \in \mathbb{N}.
$$

This means that the convergence of $\sum_{j=1}^{\infty} A_j(x_j)$ is not uniform for $(x_j) \in M$, which contradicts $(T2)$.

Let $\mathcal{M}_0 = \{ M \subset c_0(X) : M \text{ has the USGHP} \}$. Theorem 3.1 shows that \mathcal{M}_0 is the largest family of subsets for which $(A_j) \in c_0(X)^{\beta Y}$ ∑ if and only if $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly with respect to (x_j) in any *M* ∈ *M*₀.

DEFINITION 3.2. $M \subset c_0(X)$ is said to be uniformly vanishing if for each $q \in \mathcal{P}$ lim_{*j*} $q(x_j) = 0$ uniformly for $(x_j) \in M$.

If *X* is a Banach space, [3] concludes that *M* is uniformly vanishing if and only if $(T2)$ holds. The next theorem shows that this conclusion holds for the case when *X* is a locally convex space.

THEOREM 3.3. $M \subset c_0(X)$ has the USGHP if and only if M is uni*formly vanishing.*

PROOF. Suppose that $M \subset c_0(X)$ has the USGHP but is not uniformly vanishing, then there exists a $q_0 \in \mathcal{P}$ such that $\lim_{i} q_0(x_i) = 0$ not uniformly for $(x_j) \in M$. For some $\delta > 0$, there exist $\{x^k\} \subset M$ and a subsequence $\{j_k\}$ such that $q_0(x_{j_k}^k) > \delta$. Thus $\{x_{j_k}^k\}_k$ have no subsequence in $c_0(X)$, this contradicts the USGHP of *M*.

Conversely, suppose that $M \subset c_0(X)$ is uniformly vanishing but doesn't have the USGHP, then there exist $\{x^k\} \subset M$ and an increasing intervals ${I_k}$ such that $(u_j) = \sum_{k=1}^{\infty} \chi_{I_k} x^k \notin c_0(X)$. Then there exists a $q_0 \in \mathcal{P}$ such that $q_0(u_j) \to 0$ as $j \to \infty$. Hence for some $\delta > 0$, for each $n \in \mathbb{N}$, there exists a $j_n > n$ such that $q_0(u_{j_n}) > \delta$, namely, there exists some k_n such that $u_{j_n} = x_{j_n}^{k_n}$ $\binom{k_n}{j_n}$, it follows that $q_0(x_{j_n}^{k_n})$ $\binom{k_n}{j_n}$ > δ , which contradicts the uniformly vanishing property of M .

4. $l_{\infty}(X)$ -evaluation convergence

THEOREM 4.1. (T1) *is equivalent to* (T2) *when* $\lambda(X)$ *is* $l_{\infty}(X)$ *.*

PROOF. (T1) implies (T2) is obvious by Theorem 2.2. Conversely, assume that (T2) holds but $M \subset l_{\infty}(X)$ doesn't have the USGHP. Then there exists $x^k \in M$ and an increasing sequence of intervals $\{I_k\}$ such that $\sum_{k=1}^{\infty} \chi_{I_k} x^k \notin l_{\infty}(X)$. Hence there exists $q_0 \in \mathcal{P}$ such that

$$
\sup_{j\in I_k, k\in \mathbb{N}} q_0(x_j^k) = +\infty,
$$

namely, there exists a subsequence $\{k_n\}$ and some $j_n \in I_{k_n}$ such that $q_0(x)$ ^{*k_n*}*n* $f_{j_n}^{k_n}$) > *n*² for every *n* \in N. Define A_m : $X \to c_0(X)$ by

$$
A_m(x) = \begin{cases} \left(0, \dots, 0, \frac{1}{n^2}x, 0, \dots\right), & \text{if } m \in I_{k_n} \text{ for some } n \in \mathbb{N} \\ 0, & \text{otherwise.} \end{cases}
$$

For $(x_m) \in l_\infty(X)$, let

$$
u_m = \begin{cases} \frac{1}{n^2} x_m, & \text{if } m \in I_{k_n} \text{ for some } n \in \mathbb{N} \\ 0, & \text{otherwise.} \end{cases}
$$

then $(u_m) \in c_0(X)$ by the boundness of (x_m) . It is obvious that

$$
q_{\infty}\left((u_m) - \sum_{m=1}^{n} A_m(x_m)\right) = \sup_{m \ge n+1} q(u_m) \to 0 \quad \text{as} \quad n \to \infty.
$$

for every $q \in \mathcal{P}$ and hence $\sum_{m=1}^{\infty} A_m(x_m) = (u_m) \in c_0(X)$. Thus, $(A_m) \in$ $l_{\infty}(X)^{\beta c_0(X)}$. However,

$$
q_{0\infty}\bigg(\sum_{l\in I_{k_n}} A_l(x_l^{k_n})\bigg) \ge \frac{1}{n^2} q_0(x_{j_n}^{k_n}) > 1, \text{ for every } n \in \mathbb{N}.
$$

This means that the convergence of $\sum_{j=1}^{\infty} A_j(x_j)$ is not uniform for $(x_j) \in M$, which contradicts (T2). \Box

322 A. CHEN and R. LI

Let $M_{\infty} = \{ M \subset l_{\infty}(X) : M \text{ has the USGHP} \}.$ Theorem 4.1 shows that \mathcal{M}_{∞} is the largest family of subsets for which $(A_j) \in l_{\infty}(X)^{\beta Y}$ if and only if $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly with respect to (x_j) in any $M \in \mathcal{M}_{\infty}$.

DEFINITION 4.2. $M \subset l_{\infty}(X)$ is said to be essentially bounded if for each $q \in \mathcal{P}$, there exists a $j_0 \in \mathbb{N}$ such that $\sup_{(x_j) \in M, j \geq j_0} q(x_j) < +\infty$.

If *X* is a Banach space, [3] concludes that *M* is essentially bounded if and only if (T2) holds. The next theorem shows that this conclusion holds for the case when *X* is a locally convex space.

THEOREM 4.3. $M \subset l_{\infty}(X)$ has the USGHP if and only if M is essen*tially bounded.*

PROOF. Suppose that $M \subset l_{\infty}(X)$ has the USGHP but is not essentially bounded, then there exists a $q_0 \in \mathcal{P}$ such that for each $n \in \mathbb{N}$ we have $\sup_{(x_j)\in M, j\geq n} q_0(x_j) = +\infty$. Then we can find $\{x^k\} \subset M$ and a subsequence $\{j_k\}$ such that $q_0(x_{j_k}^k)$ is increasing and $q_0(x_{j_k}^k) > k$. Therefore $\{x_{j_k}^k\}_k$ has no subsequence in $l_{\infty}(X)$, which contradicts the USGHP of *M*.

Conversely, suppose that $M \subset l_{\infty}(X)$ is essentially bounded but doesn't have the USGHP, then there exist $\{x^k\} \subset M$ and an increasing intervals ${I_k}$ such that $(u_j) = \sum_{j=1}^{\infty} \chi_{I_k} x^k \notin I_\infty(X)$. Then there exists a $q_0 \in \mathcal{P}$ such that $\sup_j q_0(u_j) = +\infty$. Thus for each $n \in \mathbb{N}$, there exists a $j_n > n$ such that $q_0(u_{j_n}) > n$, namely, there exists some k_n such that $q_0(x_{j_n}^{k_n})$ $f_{j_n}^{k_n}$) = $q_0(u_{j_n}) > n$, which contradicts the essentially bounded property of *M*.

5. A remark on *lp*(*X*)**-evaluation convergence**

DEFINITION 5.1. $M \subset l_p(X)$ is said to be uniformly exhaustive if for each $q \in \mathcal{P}$ lim_n $\sum_{j=n}^{\infty} q(x_j)^{p'} = 0$ uniformly for $(x_j) \in M$.

Let $\mathcal{M}_p = \{ M \subset l_p(X) : M \text{ is uniformly exhaustive} \}.$ If *X* is a Banach space, [3] concludes that \mathcal{M}_p is the largest family of subsets for which $(A_j) \in l_p(X)^{\beta Y}$ if and only if $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly with respect to (x_i) in any $M \in \mathcal{M}_p$. However, this conclusion dose not hold for the case when X is a locally convex space.

THEOREM 5.2. If $M \subset l_p(X)$ satisfies (T2), then M is uniformly ex*haustive.*

PROOF. Define A_j from X to $l_p(X)$ by

$$
A_j(x) = \left(0, \cdots, 0, \stackrel{(j)}{x}, 0, \cdots\right)
$$

then $(A_j) \in l_p(X)^{\beta l_p(X)}$, and hence $\sum_{j=1}^{\infty} A_j(x_j)$ converges uniformly for $(x_i) \in M$, which means *M* is uniformly exhaustive.

The next example shows that the inverse of Theorem 5.2 is not true.

EXAMPLE 5.3. Let \mathbb{R}^I be the set of all real functions on [0, 1], and c_0 be the set of all real sequences converging to zero. For $t \in [0, 1]$, let

$$
t(f) = |f(t)|
$$
, for each $f \in \mathbb{R}^I$,

then *t* is a semi-norm on \mathbb{R}^I . It is well known that \mathbb{R}^I is a complete locally convex space endowed with the family of semi-norms $\{t : t \in [0,1]\}$ [1, Example II.1].

As we know, the cardinality of $[0, 1]$ and c_0 is equal. Thus there exists a bijective map which maps $t \in [0,1]$ to $(\alpha_1, \alpha_2, \dots, \alpha_k, \dots) \in c_0$. Define $f_k(t) = \alpha_k$, then $f_k \in \mathbb{R}^I$. Let

$$
\xi^k = (0, \cdots, 0, f_k, 0, \cdots) \in l^p(\mathbb{R}^I)
$$

and

$$
M = \{ \xi^k : k \in \mathbb{N} \}.
$$

First, $M \subset l_p(\mathbb{R}^I)$ defined above is uniformly exhaustive. For each $t \in [0, 1]$, there exists an unique $(\alpha_k) \in c_0$ mapping to *t*, for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that if $n > N$, then $|f_n(t)| = |\alpha_n| < \varepsilon$. If $m > N$,

$$
\sum_{j=m}^{\infty} |t(\xi_j^k)|^p = \begin{cases} 0, & \text{if } k < m, \\ |t(f_k)|^p = |f_k(t)|^p < \varepsilon^p, & \text{if } k \ge m. \end{cases}
$$

Therefore, $\lim_{n \to \infty} \left| t(\xi_j^k) \right|^p = 0$ uniformly for $\xi^k \in M$, which means that *M* is uniformly exhaustive.

Next, $(T2)$ dose not hold for $M \subset l_p(\mathbb{R}^I)$. Define A_j from \mathbb{R}^I to $l_p(\mathbb{R}^I)$ by

$$
A_j(f) = \begin{cases} \left(0, \cdots, 0, \stackrel{(j)}{f}, 0, \cdots\right), & \text{if } f \neq f_j \text{ for every } j \in \mathbb{N} \\ \left(0, \cdots, 0, \stackrel{(j)}{1f}, 0, \cdots\right), & \text{otherwise.} \end{cases}
$$

where $1_I \in \mathbb{R}^I$ by defining $1_I(t) \equiv 1$ for $t \in [0,1]$. Then for every subsequence $\{j_k\}$, choose *t* mapping to $(\alpha_n) \in c_0$ where

$$
\alpha_i = \begin{cases} \frac{1}{k^{1/p}}, & \text{if } i = j_k \text{ for some } k\\ 0, & \text{otherwise.} \end{cases}
$$

then $\sum_{k=1}^{\infty} |f_{j_k}(t)|^p = \infty$, which implies $(f_{j_k}) \notin l^p(\mathbb{R}^I)$. Thus for each $x = (x_j) \in l^p(\mathbb{R}^I)$, $\{x_j : j \in \mathbb{N}\}\)$ contains at most finite elements in $\{f_j : j \in \mathbb{N}\}\$ $j \in \mathbb{N}$ }. Thus, $(A_j) \in l^p(\mathbb{R}^I)$. For each *t*, $A_j(\xi_j^j)$ $\binom{J}{j} = A_j(f_j) = 1_I(t) = 1,$ which contradicts $(T2)$.

Above all, $M \subset l_p(\mathbb{R}^I)$ defined above is uniformly exhaustive but dose not satisfy (T2).

By Theorem 2.2 and Theorem 5.2, if $M \subset l_p(X)$ has the USGHP, then *M* is uniformly exhaustive. Also, Example 5.3 shows that the inverse is not true. Now, a natural question to ask is whether the inverse of Theorem 2.2 for $l_p(X)$ holds. For a special case when X is a Banach space, the answer is yes.

THEOREM 5.4. If *X* is a Banach space and $M \subset l_p(X)$ is uniformly *exhaustive, then* (T1) *holds.*

PROOF. Suppose not, there exist ${x^k} \subset M$ and an increasing sequence of intervals $\{I_k\}$ such that $\sum_{j=1}^{\infty} \chi_{I_{k_j}} x^{k_j} \notin l_p(X)$ for every subsequence $\{k_j\}$, namely, $\sum_{j=1}^{\infty} \sum_{l \in I_{k_j}}$ $\|x_l^{k_j}$ $\sum_{l}^{k_j}$ ||^{*p*} = +*∞*. Then we have $\sum_{l \in I_k}$ $||x_l^k||^p \nrightarrow 0$ as $k \to \infty$, namely, there exists a $\delta > 0$ such that $\sum_{l \in I_{k_j}}$ $\|x_l^{k_j}$ $\left\| \frac{k_j}{l} \right\|^p > \delta$ for some subsequence $\{k_j\}$, which contradicts the fact that $\lim_{n} \sum_{j=n}^{\infty} ||x_j||^p = 0$ uniformly for $(x_i) \in M$.

REFERENCES

- [1] Khaleelulla, S. M., *Counterexamples in Topological Vector Spaces,* Springer-Verlag (Berlin, Heidelberg, 1982). *MR* 0665588 (**84a**:46002)
- [2] Li, R., Cui, C. and Cho, M. H., Improverments of Thorp–Rolewicz Theorems on operator series, *Bull. Korean Math. Soc.,* **35(1)** (1998), 75–82. *MR* 1608986 (**98m**:47001)
- [3] Li, R., Wang, F. and Zhong, S., The strongest intrinsic meaning of sequentialevaluation convergence, *Topology Appl.,* **154** (2007), 1195–1205. *MR* 2298634 (**2008c**:46013)

- [4] Maddox, I. J., *Infinite Matrices of Operators,* Springer (Berlin, 1980). *MR* 0568707 (**82c**:40012)
- [5] McArthur, C. W., On a theorem of Orlicz–Pettis, *Pacific J. Math.,* **22** (1967), 297–302.
- [6] Rolewicz, S., On unconditional convergence of linear operators, *Demostratio Math.,* **21** (1988), no. 3, 835–842. *MR* 0994316 (**90c**:47030)
- [7] Swartz, C., The gliding hump property in vector sequence spaces, *Monatsh. Math.,* **116** (1993), no. 2, 147–158. *MR* 1245861 (**94i**:46013)
- [8] Swartz, C., *Infinite Matrices and the Gliding Hump,* World Scientific (Singapore, 1996). *MR* 1423136 (**98b**:46002)
- [9] Swartz, C., *Multiplier Convergent Series,* World Scientific (2009). *MR* 2483438 (**2010b**:46002)
- [10] Thorp, B. L. D., Sequential-evaluation convergence, *J. London Math. Soc.,* **44** (1969), 201–209. *MR* 0236675 (**38**#4970)