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Abstract

Suppose X is a locally convex space, Y is a topological vector space and A(X )B Y is
the S-dual of some X valued sequence space A(X). When A\(X) is co(X) or loo(X), we
have found the largest M C 2*) for which (4;) € A(X)?Y if and only if > goq Aj(y)
converges uniformly with respect to (z;) in any M € M. Also, a remark is given when
A(X) is I,(X) for 0 < p < +o0.

1. Introduction

If X, Y are Banach spaces, for classical Banach sequence spaces co(X),
l(X) and [,(X) with 0 < p < 400, R. Li et al. [3] have determined the
largest M C 22X) for which (4;) € A(X)PY if and only if > 721 Aj(x5) con-
verges uniformly with respect to (x;) in any M € M. In this paper, for co(X)
and I (X), we generalize the result to the case when X is a locally convex
space and Y is a topological vector space. For [,(X) with 0 < p < 400, we
give a remark in the last section.

We adopt the following notation which is the same as in [9, p. 229]. Let
X be a locally convex space generated by the family of semi-norms P and
A(X) be some X valued sequence space. Define

co(X) ={(zj) € XN g(xj) —» 0 forall g € P}
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and

loo(X) = {(:nj) e xV. sup ¢(z;) < +oo for all g € 73}.
J
The natural topology on co(X) or lo(X) is generated by the semi-norms:

oo [ (z)] =supq(z;), g€ P

For 0 < p < 400, define
Ih(X) = {(xj) e XV Zq(:cj)p < oo forall g € P}.
j=1

If 1 £ p < 400, the topology of [,(X) is generated by the semi-norms:

wl(@)] = (zzq(xj)p) " ep

If 0 < p < 1, the topology of {,,(X) is generated by the paranorms:

o0

ap[ (7)) = <Zq(xj)”>, q€P.

j=1

Let Y be a topological vector space. For a sequence (A;) of linear op-
erators from X into Y, we say that the series ) A; is A(X)-evaluation con-
vergent if >522, Aj(x;) converges for all (z;) € A(X) [10, 6, 2]. The origi-
nal definition for the generalized Kéthe-Toeplitz S-dual of A(X) is due to
I. Maddox [4, p. 19], which is given by

M(X) = {(Aj) : each A; € Y is linear,

o0

Z Aj(xj) is A(X)-evaluation convergent},
j=1

In this paper, we adopt the notation )\(X)ﬁy as in [8, p. 153], especially, we
drop the linearity restriction forced on the mappings as in [3], and let Y
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be the family of all Y-valued Mappings on X, then the S-dual of A\(X) is
defined by

AX)PY = {(Aj) cYX: ZAj(xj) converges for all (z;) € )\(X)}.
j=1

Henceforth, let X be a locally convex space and Y be a topological vector
space if there is no special indication.

2. Uniformly strong gliding hump property

Let x, denote the characteristic function of 0. For x = (z;) C X and
o C N, x,x will denote the coordinatewise product of x, and z, that is, if
we let (u;) = xox, then

x, if leo
u; = )
0, otherwise.

A(X) is said to be monotone if x,z € A(X) for every o C N and = € A\(X).
For example, ¢o(X), [,(X) and I (X) are all monotone [9, p. 233]. An in-
terval in N is a subset of the form

[m,n] ={j €N: m=j<n},

where m,n € N with m < n. A sequence of intervals {Ij} is increasing if
max [, < min I for every k. A\(X) is said to have the strong gliding hump

property [7] if for every bounded sequence {z¥} C A(X) and every increas-
ing sequence of intervals {I;}, there exists a subsequence {k;} C {k} such

that 227, X1y, 2 € \(X). In this paper, we do not use the definition of

strong gliding hump property, but introduce a new definition called uni-
formly strong gliding hump property, denoted by USGHP for short.

DEFINITION 2.1. For M C A(X), we say M has the USGHP, if for every
sequence {z¥} C M and every increasing sequence of intervals {I}, there
exists a subsequence {k;} C {k} such that 322, X1, zki e A\(X).

Throughout this paper, we will use the following statement:
(T1) M C A(X) has the USGHP;

(T2) For every topological vector space Y and (4;) € AX)PY > i1 Aj(xy)
converges uniformly for (z;) € M.
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THEOREM 2.2. (T1) implies (T2).

PROOF. Assume that M has the USGHP but (T2) fails to hold, and

hence there exists a topological vector space Y and (A4;) € A(X )?Y" such
that the convergence of 322, Aj(z;) is not uniform for (z;) € M. Then

there exists a neighborhood W C Y of 0, such that for each mg € N, we
have an m > mg and 2™° € M for which 22 Aj(x;no) ¢ W. Since Y is

a topological vector space, for W, there exists a neighborhood V C Y of 0,
such that V +V Cc W.

For mg = 1, we have m; > 1 and z! € M such that Z;’;ml Aj(mjl) ¢ W.
Since (4;) € A(X)PY, P Aj(le-) converges. For V, there exists ny > m;

such that 372 ) Aj(x}) € V. We have >t Aj(x}) ¢ V. Otherwise,

i A](x]l) = i A](.I]l) + i AJ({L'jl) ceV4+VcCcw

j=m1 j=m1 j=n1+1

which gives a contradiction.
For mg = n1, choose mg > n; and z? € M such that Z?imQ Aj(m?) ¢
W. Then choose ny > ms such that

00 no
Z Aj(a:?) €V and hence Z Aj(ac?) ¢ V.
j=na+1 Jj=ma2

Consequently, we obtain {z*} € M and an increasing sequence of intervals
{Ix} = [mg,nk] such that

(%) > Axf) ¢V, forall keN.

lely,

By (T1), for {z¥} € M and {I;}, there exists a subsequence {k;}
such that (u) = > 22, X1, 7% € A(X), s0 12, Ai(u;) converges and hence
J

Zlelkj A(wy) = Zlelkj Al(xfj) converges to 0. But, this contradicts (). O

COROLLARY 2.3. Let X, Y be locally convex spaces and \(X) be mono-
tone, then for {f;} C {f € Y* : f(0) =0}, the following (C1) and (C2) are

equivalent:
(C1) For every (z;) € M(X), X272, fj(x;) converges weakly;

(C2) For every M C N(X) satisfying the USGHP, 3772, fj(z;) converges
uniformly for (xz;) € M.
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PROOF. For every (z;) € A(X) and integers j; < jo < --- let

e zj,, if j=gr, k=1,2,3,...
’ 0, otherwise.

Since A(X) is monotone, (u;) € A(X) and hence » 2%, fj(u;) converges
weakly by (C1). Since f;(0) = 0 for all j, it follows from

Jn

D L) = filwy)
k=1 j=1

that >, fj.(xj,) is weakly convergent. By the Orlicz—Pettis theorem [5],
>_521 [j(zj) converges in Y. Hence, (C1) implies that {f;} € MX)PY and
(C2) holds by Theorem 2.2. O

By the monotone property of co(X), loo(X) and [,(X), Corollary 2.3
holds for these spaces.

3. ¢p(X)-evaluation convergence

THEOREM 3.1. (T1) is equivalent to (T2) when A(X) is co(X).

Proor. (T1) implies (T2) is obvious by Theorem 2.2. Conversely,
assume that (T2) holds but M C ¢o(X) doesn’t have the USGHP. Then

there exist {z¥} C M and an increasing sequence of intervals {I;} such that
(1) = 332y X, 2" ¢ co(X), then

o, if jely, k=1,2,3,...
Uj =

0, otherwise.
Hence there exists a g € P such that go(u;) - 0 as j — oo, and then there

exists a § > 0, a subsequence {k,} and some j, € Ij, such that qo(a:j::) >4
for every n € N. Define A,, : X — ¢o(X) by

Am(z) = (0,--- ,0,(??)70’...)
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For (z,) € co(X), it is obvious that

Goo {(xm) - Zn: Am(xm)} = sup g(wm) =0 as n— oo,
m=1

m2n+1

for every ¢ € P and hence > °_ | Ap(Tm) = (xm) € co(X). Thus, (4,) €
co (X)) However,

q000< Z Al(xf")> > qo(a:?:) >0, forevery ne€N.
lely,

This means that the convergence of » 32, A;(x;) is not uniform for (z;) € M,
which contradicts (T2). O

Let Mo = { M C ¢o(X) : M has the USGHP}. Theorem 3.1 shows that

M, is the largest family of subsets for which (A4;) € co(X )?Y if and only if
> 521 Aj(z) converges uniformly with respect to (z;) in any M € M.

DEFINITION 3.2. M C ¢o(X) is said to be uniformly vanishing if for each
q € P lim; g(z;) = 0 uniformly for (x;) € M.

If X is a Banach space, [3] concludes that M is uniformly vanishing if
and only if (T2) holds. The next theorem shows that this conclusion holds
for the case when X is a locally convex space.

THEOREM 3.3. M C ¢o(X) has the USGHP if and only if M is uni-
formly vanishing.

PROOF. Suppose that M C ¢o(X) has the USGHP but is not uniformly
vanishing, then there exists a gy € P such that lim; go(x;) = 0 not uniformly
for (x;) € M. For some & > 0, there exist {z*} C M and a subsequence {7}
such that qo(:rfk) > ¢§. Thus {:Ufk} ., have no subsequence in co(X), this
contradicts the USGHP of M.

Conversely, suppose that M C ¢y(X) is uniformly vanishing but doesn’t
have the USGHP, then there exist {z¥} C M and an increasing intervals

{I;} such that (uj) = Y22, x17,2" ¢ co(X). Then there exists a gy € P such
that go(u;) - 0 as j — co. Hence for some ¢§ > 0, for each n € N, there ex-
ists a j, > n such that go(u;,) > J, namely, there exists some k,, such that

uj, = xf:, it follows that QO(ﬂij) > ¢, which contradicts the uniformly van-
ishing property of M. g
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4. | (X)-evaluation convergence

THEOREM 4.1. (T1) is equivalent to (T2) when A(X) is loo(X).

Proor. (T1) implies (T2) is obvious by Theorem 2.2. Conversely,
assume that (T2) holds but M C l(X) doesn’t have the USGHP. Then

there exists ¥ € M and an increasing sequence of intervals {I;} such that
S x5, 2" ¢ loo(X). Hence there exists go € P such that

k
sup go(a%) = +oc,
j€I, kEN

namely, there exists a subsequence {k,} and some j, € I, such that
QO(ij) > n? for every n € N. Define A,, : X — co(X) by

(m)
1
Ap(z) = <O,--',0,nQa:,0,~~>, it m e I, for some n e N

0, otherwise.

For (zp,) € loo(X), let

1 .
—5Tm, if m e I, for somen e N
n

U =
0, otherwise.

then (um,) € co(X) by the boundness of (z,,). It is obvious that

oo <(um) - mi Am(:vm)> = sup q(um) =0 as n — oo.

1 mzn+1
for every ¢ € P and hence > °_ | Am(Tm) = (um) € co(X). Thus, (4,) €
loo (X)PX)  However,

1
q0w<l§ Al(xf")> > ﬁq()(x?:) >1, forevery neN.
kn

This means that the convergence of 322, A;(x;) is not uniform for (z;) € M,
which contradicts (T2). O
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Let Moo = { M Clx(X): M has the USGHP}. Theorem 4.1 shows
that My is the largest family of subsets for which (A4;) € lo(X )oY i
and only if 322, A;(x;) converges uniformly with respect to (z;) in any
M € M.

DEFINITION 4.2. M C I (X) is said to be essentially bounded if for each
q € P, there exists a jo € N such that sup(, yenr, j>j, 9(25) < +o0.

If X is a Banach space, [3] concludes that M is essentially bounded if
and only if (T2) holds. The next theorem shows that this conclusion holds
for the case when X is a locally convex space.

THEOREM 4.3. M C lo(X) has the USGHP if and only if M is essen-
tially bounded.

PROOF. Suppose that M C l(X) has the USGHP but is not essen-
tially bounded, then there exists a gy € P such that for each n € N we have
SUD(z;)eM, j=n 40 (zj) = +00. Then we can find {z¥} C M and a subsequence

{Jjr} such that qo(ac?k) is increasing and qo(xfk) > k. Therefore {acfk } , has

no subsequence in /o (X), which contradicts the USGHP of M.
Conversely, suppose that M C [, (X) is essentially bounded but doesn’t

have the USGHP, then there exist {z¥} C M and an increasing intervals
{Ix} such that (u;) = > 22, X1, 2% ¢ loo(X). Then there exists a go € P such
that sup; go(uj) = +o0. Thus for each n € N, there exists a j, > n such that
qo(uj,) > n, namely, there exists some £k, such that qo(:cf:) = qo(uj,) >n,
which contradicts the essentially bounded property of M. O

5. A remark on [,(X)-evaluation convergence

DEFINITION 5.1. M C [,(X) is said to be uniformly exhaustive if for

each g € P lim, 3 72, q(x;)" = 0 uniformly for (z;) € M.

Let My, = {M C 1,(X): M is uniformly exhaustive}. If X is a Ba-
nach space, [3] concludes that M, is the largest family of subsets for which
(Aj) € l,(X )#Y if and only if > 521 Aj(z;) converges uniformly with respect
to (z;) in any M € M,,. However, this conclusion dose not hold for the case
when X is a locally convex space.

THEOREM 5.2. If M C l,(X) satisfies (T2), then M is uniformly ex-
haustive.
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PROOF. Define A; from X to [,(X) by

then (4;) € lp(X)BlP(X), and hence » 22, Aj(x;) converges uniformly for
(xzj) € M, which means M is uniformly exhaustive. U

The next example shows that the inverse of Theorem 5.2 is not true.

EXAMPLE 5.3. Let R! be the set of all real functions on [0, 1], and cg be
the set of all real sequences converging to zero. For ¢ € [0,1], let

t(f) = |f(t)|, for each feR!,

then ¢ is a semi-norm on R’. It is well known that R! is a complete lo-
cally convex space endowed with the family of semi-norms {t :te|o, 1]}
[1, Example II.1].

As we know, the cardinality of [
a bijective map which maps t € [0,
fk(t) = oy, then fk S R’. Let

1] and ¢g is equal. Thus there exists

0,
1] to (a1, a9, -+ ,ak, ) € ¢g. Define

fk:(07 707fk>0>"') GZP(RI)

and
M ={¢": keN}.

First, M C lp(RI ) defined above is uniformly exhaustive. For each
t €[0,1], there exists an unique (o) € ¢9 mapping to ¢, for every € > 0,
there exists N € N such that if n > N, then | f,(¢)| = |an| <e. If m > N,

- NI A if k<m,
jz;n’t(éj)’ _{‘t(fk)|p:‘fk(t)’p<<€p, it k=>m.

Therefore, lim,, Z]Oin ’t(ff)’p = 0 uniformly for €¥ € M, which means that

M is uniformly exhaustive.
Next, (T2) dose not hold for M C ,(R’). Define A; from R’ to ,,(R')
by

()
(07"'707f>07"'>7 iff;éfjforeverijN
Al = ()
(()7... ,0’11,07--->, otherwise.
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where 17 € R! by defining 17(t) =1 for ¢t € [0,1]. Then for every subse-
quence {ji}, choose t mapping to () € ¢y where

1

wip’ if i = j for some k

oy =
0, otherwise.

then Y77, | f5, ()| = oo, which implies (f;,) ¢ /(R?). Thus for each
z = (z;) € ’(R"), {z;: j € N} contains at most finite elements in {f; :
j €N}, Thus, (4;) € P(Rl). For each t, Aj(ﬁg) =A;(f;) =11(t) =1,
which contradicts (T2).

Above all, M C lp(RI ) defined above is uniformly exhaustive but dose
not satisfy (T2).

By Theorem 2.2 and Theorem 5.2, if M C [,(X) has the USGHP, then
M is uniformly exhaustive. Also, Example 5.3 shows that the inverse is not
true. Now, a natural question to ask is whether the inverse of Theorem 2.2
for 1,(X) holds. For a special case when X is a Banach space, the answer is
yes.

THEOREM 5.4. If X is a Banach space and M C 1,(X) is uniformly
exhaustive, then (T1) holds.

PROOF. Suppose not, there exist {*} C M and an increasing sequence of
intervals {I);} such that >°22, x I, x%i ¢ 1,(X) for every subsequence {k;},

namely, Z;’il Zlelkj foij = +o0. Then we have foHp - 0 as

k — oo, namely, there exists a ¢ > 0 such that Zlelk. H xfj Hp > ¢ for some
J

subsequence {k;}, which contradicts the fact that lim, 372 ||lz;||” = 0 uni-
formly for (z;) € M. O
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