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Abstract

Suppose X is a locally convex space, Y is a topological vector space and λ(X)βY is
the β-dual of some X valued sequence space λ(X). When λ(X) is c0(X) or l∞(X), we
have found the largest M ⊂ 2λ(X) for which (Aj) ∈ λ(X)βY if and only if

∑∞
j=1 Aj(xj)

converges uniformly with respect to (xj) in any M ∈ M. Also, a remark is given when
λ(X) is lp(X) for 0 < p < +∞.

1. Introduction

If X, Y are Banach spaces, for classical Banach sequence spaces c0(X),
l∞(X) and lp(X) with 0 < p < +∞, R. Li et al. [3] have determined the

largest M ⊂ 2λ(X) for which (Aj) ∈ λ(X)βY if and only if
∑∞

j=1Aj(xj) con-

verges uniformly with respect to (xj) in anyM ∈ M. In this paper, for c0(X)
and l∞(X), we generalize the result to the case when X is a locally convex
space and Y is a topological vector space. For lp(X) with 0 < p < +∞, we
give a remark in the last section.

We adopt the following notation which is the same as in [9, p. 229]. Let
X be a locally convex space generated by the family of semi-norms P and
λ(X) be some X valued sequence space. Define

c0(X) =
{
(xj) ∈ XN : q(xj) → 0 for all q ∈ P

}
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and

l∞(X) =
{
(xj) ∈ XN : sup

j
q(xj) < +∞ for all q ∈ P

}
.

The natural topology on c0(X) or l∞(X) is generated by the semi-norms:

q∞
[
(xj)

]
= sup

j
q(xj), q ∈ P

For 0 < p < +∞, define

lp(X) =

{
(xj) ∈ XN :

∞∑
j=1

q(xj)
p < ∞ for all q ∈ P

}
.

If 1 5 p < +∞, the topology of lp(X) is generated by the semi-norms:

qp
[
(xj)

]
=

( ∞∑
j=1

q(xj)
p

)1/p

, q ∈ P.

If 0 < p < 1, the topology of lp(X) is generated by the paranorms:

qp
[
(xj)

]
=

( ∞∑
j=1

q(xj)
p

)
, q ∈ P.

Let Y be a topological vector space. For a sequence (Aj) of linear op-
erators from X into Y , we say that the series

∑
Aj is λ(X)-evaluation con-

vergent if
∑∞

j=1Aj(xj) converges for all (xj) ∈ λ(X) [10, 6, 2]. The origi-

nal definition for the generalized Köthe–Toeplitz β-dual of λ(X) is due to
I. Maddox [4, p. 19], which is given by

λβ(X) =

{
(Aj) : each Aj ∈ Y X is linear,

∞∑
j=1

Aj(xj) is λ(X)-evaluation convergent

}
,

In this paper, we adopt the notation λ(X)βY as in [8, p. 153], especially, we

drop the linearity restriction forced on the mappings as in [3], and let Y X
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be the family of all Y -valued Mappings on X, then the β-dual of λ(X) is
defined by

λ(X)βY =

{
(Aj) ⊂ Y X :

∞∑
j=1

Aj(xj) converges for all (xj) ∈ λ(X)

}
.

Henceforth, let X be a locally convex space and Y be a topological vector
space if there is no special indication.

2. Uniformly strong gliding hump property

Let χσ denote the characteristic function of σ. For x = (xj) ⊂ X and
σ ⊂ N, χσx will denote the coordinatewise product of χσ and x, that is, if
we let (ul) = χσx, then

ul =

{
xl, if l ∈ σ

0, otherwise.

λ(X) is said to be monotone if χσx ∈ λ(X) for every σ ⊂ N and x ∈ λ(X).
For example, c0(X), lp(X) and l∞(X) are all monotone [9, p. 233]. An in-
terval in N is a subset of the form

[m,n] = {j ∈ N : m 5 j 5 n},

where m,n ∈ N with m 5 n. A sequence of intervals {Ik} is increasing if
max Ik < min Ik+1 for every k. λ(X) is said to have the strong gliding hump

property [7] if for every bounded sequence {xk} ⊂ λ(X) and every increas-
ing sequence of intervals {Ik}, there exists a subsequence {kj} ⊂ {k} such

that
∑∞

j=1 χIkj
xkj ∈ λ(X). In this paper, we do not use the definition of

strong gliding hump property, but introduce a new definition called uni-
formly strong gliding hump property, denoted by USGHP for short.

Definition 2.1. For M ⊂ λ(X), we say M has the USGHP, if for every

sequence {xk} ⊂ M and every increasing sequence of intervals {Ik}, there
exists a subsequence {kj} ⊂ {k} such that

∑∞
j=1 χIkj

xkj ∈ λ(X).

Throughout this paper, we will use the following statement:

(T1) M ⊂ λ(X) has the USGHP;

(T2) For every topological vector space Y and (Aj) ∈ λ(X)βY ,
∑∞

j=1Aj(xj)

converges uniformly for (xj) ∈ M .
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Theorem 2.2. (T1) implies (T2).

Proof. Assume that M has the USGHP but (T2) fails to hold, and

hence there exists a topological vector space Y and (Aj) ∈ λ(X)βY such
that the convergence of

∑∞
j=1Aj(xj) is not uniform for (xj) ∈ M . Then

there exists a neighborhood W ⊂ Y of 0, such that for each m0 ∈ N, we
have an m > m0 and xm0 ∈ M for which

∑∞
j=mAj

(
xm0
j

)
/∈ W . Since Y is

a topological vector space, for W , there exists a neighborhood V ⊂ Y of 0,
such that V + V ⊂ W .

For m0 = 1, we have m1 > 1 and x1 ∈ M such that
∑∞

j=m1
Aj

(
x1j

)
/∈ W .

Since (Aj) ∈ λ(X)βY ,
∑∞

j=1Aj

(
x1j

)
converges. For V , there exists n1 > m1

such that
∑∞

j=n1+1Aj

(
x1j

)
∈ V . We have

∑n1
j=m1

Aj

(
x1j

)
/∈ V . Otherwise,

∞∑
j=m1

Aj

(
x1j

)
=

n1∑
j=m1

Aj

(
x1j

)
+

∞∑
j=n1+1

Aj

(
x1j

)
∈ V + V ⊂ W

which gives a contradiction.
For m0 = n1, choose m2 > n1 and x2 ∈ M such that

∑∞
j=m2

Aj

(
x2j

)
/∈

W . Then choose n2 > m2 such that

∞∑
j=n2+1

Aj

(
x2j

)
∈ V and hence

n2∑
j=m2

Aj

(
x2j

)
/∈ V.

Consequently, we obtain {xk} ⊂ M and an increasing sequence of intervals
{Ik} = [mk, nk] such that

(♯)
∑
l∈Ik

Al(x
k
l ) /∈ V, for all k ∈ N.

By (T1), for {xk} ⊂ M and {Ik}, there exists a subsequence {kj}
such that (ul) =

∑∞
j=1 χIkj

xkj ∈ λ(X), so
∑∞

l=1Al(ul) converges and hence∑
l∈Ikj

Al(ul) =
∑

l∈Ikj
Al(x

kj
l ) converges to 0. But, this contradicts (♯). �

Corollary 2.3. Let X, Y be locally convex spaces and λ(X) be mono-

tone, then for {fj} ⊂
{
f ∈ Y X : f(0) = 0

}
, the following (C1) and (C2) are

equivalent:

(C1) For every (xj) ∈ λ(X),
∑∞

j=1 fj(xj) converges weakly;

(C2) For every M ⊂ λ(X) satisfying the USGHP,
∑∞

j=1 fj(xj) converges

uniformly for (xj) ∈ M .
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Proof. For every (xj) ∈ λ(X) and integers j1 < j2 < · · · let

uj =

{
xjk , if j = jk, k = 1, 2, 3, . . .

0, otherwise.

Since λ(X) is monotone, (uj) ∈ λ(X) and hence
∑∞

j=1 fj(uj) converges

weakly by (C1). Since fj(0) = 0 for all j, it follows from

n∑
k=1

fjk(xjk) =

jn∑
j=1

fj(uj)

that
∑∞

k=1 fjk(xjk) is weakly convergent. By the Orlicz–Pettis theorem [5],∑∞
j=1 fj(xj) converges in Y . Hence, (C1) implies that {fj} ∈ λ(X)βY and

(C2) holds by Theorem 2.2. �

By the monotone property of c0(X), l∞(X) and lp(X), Corollary 2.3
holds for these spaces.

3. c0(X)-evaluation convergence

Theorem 3.1. (T1) is equivalent to (T2) when λ(X) is c0(X).

Proof. (T1) implies (T2) is obvious by Theorem 2.2. Conversely,
assume that (T2) holds but M ⊂ c0(X) doesn’t have the USGHP. Then

there exist {xk} ⊂ M and an increasing sequence of intervals {Ik} such that

(uj) =
∑∞

k=1 χIkx
k /∈ c0(X), then

uj =

{
xkj , if j ∈ Ik, k = 1, 2, 3, . . .

0, otherwise.

Hence there exists a q0 ∈ P such that q0(uj) 9 0 as j → ∞, and then there

exists a δ > 0, a subsequence {kn} and some jn ∈ Ikn such that q0
(
xknjn

)
> δ

for every n ∈ N. Define Am : X → c0(X) by

Am(x) =
(
0, · · · , 0,

(m)
x , 0, · · ·

)



320 A. CHEN and R. LI

For (xm) ∈ c0(X), it is obvious that

q∞

[
(xm)−

n∑
m=1

Am(xm)

]
= sup

m=n+1
q(xm) → 0 as n → ∞.

for every q ∈ P and hence
∑∞

m=1Am(xm) = (xm) ∈ c0(X). Thus, (Am) ∈
c0(X)βc0(X). However,

q0∞

( ∑
l∈Ikn

Al(x
kn
l )

)
= q0(x

kn
jn
) > δ, for every n ∈ N.

This means that the convergence of
∑∞

j=1Aj(xj) is not uniform for (xj) ∈ M ,

which contradicts (T2). �

Let M0 =
{
M ⊂ c0(X) : M has the USGHP

}
. Theorem 3.1 shows that

M0 is the largest family of subsets for which (Aj) ∈ c0(X)βY if and only if∑∞
j=1Aj(xj) converges uniformly with respect to (xj) in any M ∈ M0.

Definition 3.2. M ⊂ c0(X) is said to be uniformly vanishing if for each
q ∈ P limj q(xj) = 0 uniformly for (xj) ∈ M .

If X is a Banach space, [3] concludes that M is uniformly vanishing if
and only if (T2) holds. The next theorem shows that this conclusion holds
for the case when X is a locally convex space.

Theorem 3.3. M ⊂ c0(X) has the USGHP if and only if M is uni-
formly vanishing.

Proof. Suppose that M ⊂ c0(X) has the USGHP but is not uniformly
vanishing, then there exists a q0 ∈ P such that limj q0(xj) = 0 not uniformly

for (xj) ∈ M . For some δ > 0, there exist {xk} ⊂ M and a subsequence {jk}
such that q0

(
xkjk

)
> δ. Thus

{
xkjk

}
k
have no subsequence in c0(X), this

contradicts the USGHP of M .
Conversely, suppose that M ⊂ c0(X) is uniformly vanishing but doesn’t

have the USGHP, then there exist {xk} ⊂ M and an increasing intervals

{Ik} such that (uj) =
∑∞

k=1 χIkx
k /∈ c0(X). Then there exists a q0 ∈ P such

that q0(uj) 9 0 as j → ∞. Hence for some δ > 0, for each n ∈ N, there ex-
ists a jn > n such that q0(ujn) > δ, namely, there exists some kn such that

ujn = xknjn , it follows that q0
(
xknjn

)
> δ, which contradicts the uniformly van-

ishing property of M . �
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4. l∞(X)-evaluation convergence

Theorem 4.1. (T1) is equivalent to (T2) when λ(X) is l∞(X).

Proof. (T1) implies (T2) is obvious by Theorem 2.2. Conversely,
assume that (T2) holds but M ⊂ l∞(X) doesn’t have the USGHP. Then

there exists xk ∈ M and an increasing sequence of intervals {Ik} such that∑∞
k=1 χIkx

k /∈ l∞(X). Hence there exists q0 ∈ P such that

sup
j∈Ik, k∈N

q0
(
xkj

)
= +∞,

namely, there exists a subsequence {kn} and some jn ∈ Ikn such that

q0
(
xknjn

)
> n2 for every n ∈ N. Define Am : X → c0(X) by

Am(x) =


(
0, · · · , 0,

(m)

1

n2
x, 0, · · ·

)
, if m ∈ Ikn for some n ∈ N

0, otherwise.

For (xm) ∈ l∞(X), let

um =


1

n2
xm, if m ∈ Ikn for some n ∈ N

0, otherwise.

then (um) ∈ c0(X) by the boundness of (xm). It is obvious that

q∞

(
(um)−

n∑
m=1

Am(xm)

)
= sup

m=n+1
q(um) → 0 as n → ∞.

for every q ∈ P and hence
∑∞

m=1Am(xm) = (um) ∈ c0(X). Thus, (Am) ∈
l∞(X)βc0(X). However,

q0∞

( ∑
l∈Ikn

Al(x
kn
l )

)
= 1

n2
q0(x

kn
jn
) > 1, for every n ∈ N.

This means that the convergence of
∑∞

j=1Aj(xj) is not uniform for (xj) ∈ M ,

which contradicts (T2). �
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Let M∞ =
{
M ⊂ l∞(X) : M has the USGHP

}
. Theorem 4.1 shows

that M∞ is the largest family of subsets for which (Aj) ∈ l∞(X)βY if
and only if

∑∞
j=1Aj(xj) converges uniformly with respect to (xj) in any

M ∈ M∞.

Definition 4.2. M ⊂ l∞(X) is said to be essentially bounded if for each
q ∈ P, there exists a j0 ∈ N such that sup(xj)∈M, j=j0 q(xj) < +∞.

If X is a Banach space, [3] concludes that M is essentially bounded if
and only if (T2) holds. The next theorem shows that this conclusion holds
for the case when X is a locally convex space.

Theorem 4.3. M ⊂ l∞(X) has the USGHP if and only if M is essen-
tially bounded.

Proof. Suppose that M ⊂ l∞(X) has the USGHP but is not essen-
tially bounded, then there exists a q0 ∈ P such that for each n ∈ N we have
sup(xj)∈M, j=n q0(xj) = +∞. Then we can find {xk} ⊂ M and a subsequence

{jk} such that q0
(
xkjk

)
is increasing and q0

(
xkjk

)
> k. Therefore

{
xkjk

}
k
has

no subsequence in l∞(X), which contradicts the USGHP of M .
Conversely, suppose that M ⊂ l∞(X) is essentially bounded but doesn’t

have the USGHP, then there exist {xk} ⊂ M and an increasing intervals

{Ik} such that (uj) =
∑∞

j=1 χIkx
k /∈ l∞(X). Then there exists a q0 ∈ P such

that supj q0(uj) = +∞. Thus for each n ∈ N, there exists a jn > n such that

q0(ujn) > n, namely, there exists some kn such that q0(x
kn
jn
) = q0(ujn) > n,

which contradicts the essentially bounded property of M . �

5. A remark on lp(X)-evaluation convergence

Definition 5.1. M ⊂ lp(X) is said to be uniformly exhaustive if for
each q ∈ P limn

∑∞
j=n q(xj)

p = 0 uniformly for (xj) ∈ M .

Let Mp =
{
M ⊂ lp(X) : M is uniformly exhaustive

}
. If X is a Ba-

nach space, [3] concludes that Mp is the largest family of subsets for which

(Aj) ∈ lp(X)βY if and only if
∑∞

j=1Aj(xj) converges uniformly with respect

to (xj) in any M ∈ Mp. However, this conclusion dose not hold for the case
when X is a locally convex space.

Theorem 5.2. If M ⊂ lp(X) satisfies (T2), then M is uniformly ex-
haustive.
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Proof. Define Aj from X to lp(X) by

Aj(x) =
(
0, · · · , 0,

(j)
x , 0, · · ·

)
then (Aj) ∈ lp(X)βlp(X), and hence

∑∞
j=1Aj(xj) converges uniformly for

(xj) ∈ M , which means M is uniformly exhaustive. �
The next example shows that the inverse of Theorem 5.2 is not true.

Example 5.3. Let RI be the set of all real functions on [0, 1], and c0 be
the set of all real sequences converging to zero. For t ∈ [0, 1], let

t(f) =
∣∣f(t)∣∣ , for each f ∈ RI ,

then t is a semi-norm on RI . It is well known that RI is a complete lo-
cally convex space endowed with the family of semi-norms

{
t : t ∈ [0, 1]

}
[1, Example II.1].

As we know, the cardinality of [0, 1] and c0 is equal. Thus there exists
a bijective map which maps t ∈ [0, 1] to (α1, α2, · · · , αk, · · · ) ∈ c0. Define

fk(t) = αk, then fk ∈ RI . Let

ξk = (0, · · · , 0, fk, 0, · · · ) ∈ lp
(
RI

)
and

M = {ξk : k ∈ N}.

First, M ⊂ lp
(
RI

)
defined above is uniformly exhaustive. For each

t ∈ [0, 1], there exists an unique (αk) ∈ c0 mapping to t, for every ε > 0,

there exists N ∈ N such that if n > N , then
∣∣fn(t)∣∣ = |αn| < ε. If m > N ,

∞∑
j=m

∣∣ t(ξkj )∣∣p =
{
0, if k < m,∣∣ t(fk)∣∣p = ∣∣fk(t)∣∣p < εp, if k = m.

Therefore, limn
∑∞

j=n

∣∣ t(ξkj )∣∣p = 0 uniformly for ξk ∈ M , which means that

M is uniformly exhaustive.
Next, (T2) dose not hold for M ⊂ lp

(
RI

)
. Define Aj from RI to lp

(
RI

)
by

Aj(f) =


(
0, · · · , 0,

(j)

f , 0, · · ·
)
, if f ̸= fj for every j ∈ N(

0, · · · , 0,
(j)

1I , 0, · · ·
)
, otherwise.
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where 1I ∈ RI by defining 1I(t) ≡ 1 for t ∈ [0, 1]. Then for every subse-
quence {jk}, choose t mapping to (αn) ∈ c0 where

αi =


1

k1/p
, if i = jk for some k

0, otherwise.

then
∑∞

k=1

∣∣fjk(t)∣∣p = ∞, which implies (fjk) /∈ lp
(
RI

)
. Thus for each

x = (xj) ∈ lp
(
RI

)
, {xj : j ∈ N} contains at most finite elements in {fj :

j ∈ N}. Thus, (Aj) ∈ lp
(
RI

)
. For each t, Aj(ξ

j
j ) = Aj(fj) = 1I(t) = 1,

which contradicts (T2).

Above all, M ⊂ lp
(
RI

)
defined above is uniformly exhaustive but dose

not satisfy (T2).

By Theorem 2.2 and Theorem 5.2, if M ⊂ lp(X) has the USGHP, then
M is uniformly exhaustive. Also, Example 5.3 shows that the inverse is not
true. Now, a natural question to ask is whether the inverse of Theorem 2.2
for lp(X) holds. For a special case when X is a Banach space, the answer is
yes.

Theorem 5.4. If X is a Banach space and M ⊂ lp(X) is uniformly
exhaustive, then (T1) holds.

Proof. Suppose not, there exist {xk} ⊂ M and an increasing sequence of

intervals {Ik} such that
∑∞

j=1 χIkj
xkj /∈ lp(X) for every subsequence {kj},

namely,
∑∞

j=1

∑
l∈Ikj

∥∥xkjl ∥∥p
= +∞. Then we have

∑
l∈Ik

∥∥xkl ∥∥p 9 0 as

k → ∞, namely, there exists a δ > 0 such that
∑

l∈Ikj

∥∥xkjl ∥∥p
> δ for some

subsequence {kj}, which contradicts the fact that limn
∑∞

j=n ∥xj∥
p = 0 uni-

formly for (xj) ∈ M . �
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