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Abstract

We introduce the concept of nil-McCoy rings to study the structure of the set of
nilpotent elements in McCoy rings. This notion extends the concepts of McCoy rings and
nil-Armendariz rings. It is proved that every semicommutative ring is nil-McCoy. We
shall give an example to show that nil-McCoy rings need not be semicommutative. More-
over, we show that nil-McCoy rings need not be right linearly McCoy. More examples of
nil-McCoy rings are given by various extensions. On the other hand, the properties of α-
McCoy rings by considering the polynomials in the skew polynomial ring R[x;α] in place
of the ring R[x] are also investigated. For a monomorphism α of a ring R, it is shown that
if R is weak α-rigid and α-reversible then R is α-McCoy.

1. Introduction

Throughout this paper, all rings are associative with identity. Given a
ring R, we denote by nil (R) the set of all nilpotent elements of R. In [9],
Nielsen introduced the notion of a McCoy ring. A ring R is said to be
right McCoy (resp., left McCoy) if for each pair of nonzero polynomials
f(x), g(x) ∈ R[x] with f(x)g(x) = 0, then there exists a nonzero element
r ∈ R with f(x)r = 0 (resp., rg(x) = 0). A ring R is McCoy if it is both
left and right McCoy. The name of the ring was given due to N. H. McCoy
who proved in [8] that every commutative ring satisfies this condition. Ac-
cording to [3], a ring R is called right (resp., left) linearly McCoy if for
each pair of nonzero polynomials f(x) = a0+a1x and g(x) = b0 + b1x ∈ R[x]
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with f(x)g(x) = 0, there exists a nonzero element r ∈ R such that f(x)r = 0
(resp., rg(x) = 0). A ring R is linearly McCoy if it is both left and right lin-
early McCoy.

Recently, the reversible property of a ring was extended to a ring en-
domorphism in [2] as follows: an endomorphism α of a ring R is called
right (resp., left) reversible if whenever ab = 0 for a, b ∈ R, bα(a) = 0 (resp.,
α(b)a = 0). A ring R is called right (resp., left) α-reversible if there exists
a right (resp., left) reversible endomorphism α of R. R is α-reversible if
it is both right and left α-reversible. The notion of an α-reversible ring is
a generalization of α-rigid rings as well as an extension of reversible rings.
Rege and Chhawchharia [11] introduced the notion of an Armendariz ring.
They defined a ring R to be an Armendariz ring if whenever polynomi-
als f(x) = a0+ a1x+ · · ·+ amxm, g(x) = b0+ b1x+ · · ·+ bnx

n ∈ R[x] satisfy
f(x)g(x) = 0, then aibj = 0 for each i, j. Armendariz rings are McCoy, but
there exists a McCoy ring which is not Armendariz by [12, Lemma 2.1] and
[5, Example 3]. In [1], the nilpotent elements of Armendariz rings were in-
vestigated. We shall consider the analogous questions by considering the
nilpotent elements in McCoy rings. We first note that every reduced ring
(i.e., rings without nonzero nilpotent elements) is McCoy (see [9]). This
further motivates the study of the nilpotent elements in McCoy rings.

The aim of this note is to study the structure of the set of nilpotent el-
ements in McCoy rings. In the present paper, we introduce the concept of
nil-McCoy rings to study McCoy rings in a general setting. It was shown in
[9] that there is a semicommutative ring which is not McCoy. But we shall
prove that semicommutative rings are nil-McCoy rings, and we shall give an
example to show that nil-McCoy rings need not be semicommutative. Vari-
ous extensions on nil-McCoy rings are given for constructing more examples
of nil-McCoy rings. In particular, among other results, we prove that nil-
McCoy rings need not be right linearly McCoy. Moreover, we obtain some
characterizations of α-McCoy rings by considering the polynomials in the
skew polynomial ring R[x;α] in place of the ring R[x]. For a monomorphism
α of a ring R, we prove that if R is weak α-rigid and α-reversible then R is
α-McCoy.

2. Nil-McCoy rings and examples

Our focus in this section is to introduce the concept of a nil-McCoy ring
and consider its properties. Some examples needed in the process are also
given. We begin with the following definition.

Definition 2.1. A ring R is said to be right nil-McCoy if f(x)g(x) ∈
nil (R)[x], where f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x]\{0}, implies

that there exists s ∈ R\{0} such that ais ∈ nil (R) for all 0 5 i 5 m. Left



328 L. ZHAO, X. ZHU and Q. GU

nil-McCoy rings are defined analogously. A ring is nil-McCoy if it is both
left and right nil-McCoy.

It is clear that every Armedariz ring, hence every nil-Armendariz ring is
nil-McCoy. Therefore, nil-McCoy rings stand as a generalization of McCoy
rings and nil-Armendariz rings. We remark that in general the property of
being nil-McCoy does not pass to subrings as shown by the following exam-
ple.

Example 2.2. Let R be a nil-Armendariz ring and let

R = F2⟨a, b, c, d, e⟩/I,

where I is the ideal generated by the relations: ac = 0, ad+ bc = 0, bd = 0,
ea = eb = ec = ed = ee = de = ce = be = ae = 0. Let S be the subrings gen-
erated by elements not involving e. Let f(x) = a+ bx and g(x) = c+ dx,
then f(x)g(x) = 0. It is straightforward to see that the element as is not
nilpotent for any nonzero s ∈ S. However, R is nil-McCoy as f(x)e, eg(x) ∈
nil (R)[x] for any polynomials f(x), g(x) ∈ R[x].

The next example shows that there exists a nil-McCoy ring which is not
McCoy.

Example 2.3. Let R be a reduced ring and let

Tn(R) =



a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann


∣∣∣∣∣ aij ∈ R

 .

For any ring R, the ring of n×n upper triangular matrices Tn(R) over R
is not McCoy by [12, Theorem 2.1]. Note that

nil
(
Tn(R)

)
=


nil (R) R · · · R

0 nil (R) · · · R

0 0
. . . R

0 0 · · · nil (R)

 .

Since R is a reduced ring and every reduced ring is Armendariz, it follows
that Tn(R) is nil-McCoy.

Based on Example 2.3, one may suspect that if R is nil-McCoy then
Mn(R) is nil-McCoy for n = 2. But the following example eliminates the
possibility.
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Example 2.4. Let R be a reduced ring, then R is nil-McCoy. Let
S = M2(R) and let

f(x) =

(
0 1
0 0

)
+

(
1 0
0 0

)
x,

g(x) =

(
1 1
0 0

)
+

(
0 0
−1 −1

)
x

be polynomials in S[x] with f(x)g(x) ∈ nil (S)[x], then it is straightforward
to check that S is not nil-McCoy.

Recall that by [9] reduced rings are McCoy rings. We can prove a similar
condition in the case that the set of nilpotent elements forms an ideal.

Proposition 2.5. Let R be a ring such that nil (R) is an ideal of R. If
f(x)g(x) ∈ nil (R)[x], then there exists s ∈ R\{0} such that ais ∈ nil (R) for
all 0 5 i 5 m, where f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x]\{0}.

Proof. It is easy to see that R/ nil (R) is reduced and hence McCoy.
Let f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x]\{0} such that f(x)g(x) ∈

nil (R)[x]. If we denote by f̄(x), ḡ(x) their corresponding polynomials in
R/ nil (R)[x], then we have f̄(x)ḡ(x) = 0̄. Since R/ nil (R) is McCoy, there
exists s ∈ R\{0} such that āis̄ = 0 for all 0 5 i 5 m. Hence ais ∈ nil (R) for
all ai, 0 5 i 5 m. �

Note that if nil (R) is an ideal of R, then R is right nil-McCoy by Propo-
sition 2.5. More generally, we obtain the following proposition.

Proposition 2.6. Let R be a ring and I a nil ideal of R. Then R is
nil-McCoy if and only if R/I is nil-McCoy.

Proof. Let R̄ = R/I, then we have nil (R̄) = nil (R) since I is nil. It
follows that f(x)g(x) ∈ nil (R)[x] if and only if f̄(x)ḡ(x) ∈ nil (R̄)[x]. This
implies that if there exists s ∈ R\{0}, then ais ∈ nil (R) if and only if
āis̄ ∈ nil (R̄) for all ai, 0 5 i 5 m. Therefore, R is nil-McCoy if and only
if R̄ is nil-McCoy. �

Recall that a ring R is semicommutative if ab = 0 implies aRb = 0. To
study the semicommutative condition in McCoy rings, we need the following
lemma which was proved in [7, Proposition 3.3]. For any f(x) ∈ R[x], we
denote by Cf the set of all coefficients of f .

Lemma 2.7. Let R be a semicommutative ring and f1(x), f2(x), . . . , fn(x)
be in R[x]. If Cf1f2···fn j nil (R), then Cf1Cf2 · · ·Cfn j nil (R).

By the main result of [9], there exists a semicommutative ring, which
is not right McCoy. But we have the following result which shows that all
semicommutative rings are nil-McCoy. We shall give an example to show
that in general the inverse of the next proposition is not true.
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Proposition 2.8. Semicommutative rings are nil-McCoy rings.

Proof. Let

f(x) =

m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x]\{0}

with f(x)g(x) ∈ nil (R)[x], then we have Cfg ∈ nil (R). It follows that
CfCg ∈ nil (R) by Lemma 2.7. Hence there exists s = bj for some 0 5 j 5 n
such that ais ∈ nil (R) with 0 5 i 5 m. This implies that R is a right nil-
McCoy ring. Similarly, we can show that R is left nil-McCoy. Therefore, R
is a nil-McCoy ring. �

We now have the following description of the rings which shows one way
to give more nil-McCoy rings from old ones.

Proposition 2.9. Let Λ be an index set and
{
Rα|α∈Λ

}
a family of

rings. If R = Πα∈ΛRα, then R is right nil-McCoy if and only if every Rα is
right nil-McCoy for each α ∈ Λ.

Proof. It is straightforward to verify that if R is right nil-McCoy,
then every Rα is right nil-McCoy for each α. Conversely, if f(x)g(x) ∈
nil (R)[x] for f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j in R[x]\{0}, where

ai = (aiα)α∈Λ, bj = (bjα)α∈Λ ∈ R. For each α ∈ Λ, let fα(x) =
∑m

i=0 aiαx
i,

gα(x) =
∑n

j=0 bjαx
j ∈ Rα[x], then fαgα ∈ nil (Rα)[x]. Since g(x) ̸= 0, there

exists some index β ∈ Λ with gβ(x) ̸= 0. In particular, there exists some
nonzero rβ ∈ Rβ with aiβrβ ∈ nil (Rβ) for all 0 5 i 5 m by the nil-McCoy
property of Rβ . Fix rβ ∈ Rβ\{0}, and take r to be the sequence with rβ in
the βth coordinate and zero elsewhere. Clearly air ∈ nil (R) and r ̸= 0. �

Corollary 2.10. A finite direct product of right nil-McCoy rings is
right nil-McCoy.

Let R be a ring and △ be a multiplicative monoid in R consisting of cen-
tral regular elements, and let △−1R = {u−1a | u ∈ △, a ∈ R}, then △−1R is
a ring. We have the following result concerning nil-McCoy properties.

Proposition 2.11. A ring R is right nil-McCoy if and only if △−1R is
right nil-McCoy.

Proof. (1) ⇒ (2). Let S = △−1R. If f(x) =
∑m

i=0 αix
i and g(x) =∑n

j=0 βjx
j are in S[x]\{0}, then we can assume that αi = aiu

−1 and

βj = bjv
−1 for some ai, bj ∈ R, u, v ∈ ∆ for all i, j. Now suppose that

f(x)g(x) ∈ nil (S)[x], then we have

f(x)g(x) =
∑
i,j

αiβjx
i+j =

∑
i,j

aiu
−1bjv

−1xi+j =
∑
i,j

aibj(vu)
−1xi+j .
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On the other hand, let f1(x) =
∑m

i=0 aix
i and g1(x) =

∑n
j=0 bjx

j , then we

obtain f1(x)g1(x) =
∑

i,j aibjx
i+j ∈ nil (R)[x] since (vu)−1 ∈ ∆. By the hy-

pothesis, there exists t ∈ R\{0} such that ait ∈ nil (R) for all 0 5 i 5 m. Set
s = tv−1, then s ∈ S. Now it is easy to see that αis = aiu

−1tv−1 is also a
nilpotent element of S for all 0 5 i 5 m. This shows that S is a right nil-
McCoy ring.

(2) ⇒ (1). Let f(x) =
∑m

i=0 αix
i and g(x) =

∑n
j=0 βjx

j be in R[x]\{0}
such that f(x)g(x) ∈ nil (R)[x]. Then there exists a nonzero element α ∈ S
such that aiα ∈ nil (R) since S is right McCoy. We can assume α = au−1 for
some a ∈ R\{0} and central regular element u. Then aia ∈ nil (R) since u is
a central regular element. Therefore, R is right nil-McCoy. �

The ring of Laurent polynomials in x, with coefficients in a ring R,
consists of all formal sum

∑n
i=k mix

i with obvious addition and multipli-
cation, where mi ∈ R and k, n are (possibly negative) integers. Denote it

by R
[
x;x−1

]
. As an immediate consequence of this proposition, we have

the following result.

Corollary 2.12. Let R be a ring. If R[x] is a right nil-McCoy ring,

then R
[
x;x−1

]
is right nil-McCoy.

Proof. Let △ = {1, x, x2, . . .}, then clearly △ is a multipicatively closed

subset of R[x]. Since R
[
x;x−1

] ∼= △−1R[x], it follows directly from Propo-

sition 2.11 that R
[
x;x−1

]
is right nil-McCoy. �

Corollary 2.13. Let R be a commutative ring. If R is right nil-McCoy,
then so is the total quotient ring of R.

Proof. Let △ be the set of all regular elements of R. Then △ satisfies
the condition of Proposition 2.11 and △−1R is the total quotient ring of R.
Thus the total quotient ring of R is right nil-McCoy. �

Now we consider the case of direct limits of direct systems of right nil-
McCoy rings.

Proposition 2.14. The direct limit of a direct system of right nil-McCoy
rings is also right nil-McCoy.

Proof. Let D = {Ri, ϕij} be a direct system of right nil-McCoy rings Ri

for i ∈ I and ring homomorphisms ϕij : Ri → Rj for each i 5 j satisfying
ϕij(1) = 1, where I is a direct partially ordered set. Let R = lim−→Ri be the

direct limit of D with ιi : Ri → R and ιjϕij = ιi. We shall prove that R is
a right nil-McCoy ring. Take x, y ∈ R. It follows that x = ιi(xi), y = ιj(yj)
for some i, j ∈ I and there is k ∈ I such that i 5 k, j 5 k. Now define

x+ y = ιk
(
ϕik(xi) + ϕjk(yj)

)
and xy = ιk

(
ϕik(xi)ϕjk(yj)

)
, where ϕik(xi)

and ϕjk(yj) are in Rk. It is easy to see that R forms a ring with 0 = ιi(0)
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and 1 = ιi(1). Let f(x)g(x) ∈ nil (R)[x] with f(x) =
∑m

s=0 asx
s and g(x) =∑n

t=0 btx
t in R[x]. Then there are is, jt, k ∈ I such that as = ιis(ais),

bt = ιjt(bjt), is 5 k, jt 5 k. So we have asbt = ιk
(
ϕisk(ais)ϕjtk(bjt)

)
, and

from f(x)g(x) ∈ nil (R)[x] we have

f(x)g(x) =

( m∑
s=0

ιk
(
ϕisk(ais)

)
xs
)( n∑

t=0

ιk
(
ϕjtk(bjt)

)
xt
)

∈ nil (Rk)[x].

Since Rk is right nil-McCoy, there exists sk ∈ Rk\{0} such that

ιk
(
ϕisk(ais)

)
sk ∈ nil (Rk) for all 0 5 i 5 m.

Let s = ιk(sk), then we have ass ∈ nil (R) and R is right nil-McCoy. �
We have seen that if I is a nil ideal and R/I is nil-McCoy, then R is nil-

McCoy. Hence, if R is a nil-McCoy ring, then S = R[x]/(xn) is nil-McCoy
since xS is a nil ideal and S/xS ≃ R.

Proposition 2.15. If R is a nil-McCoy ring and n = 1, then S =
R[x]/(xn) is nil-McCoy.

Let S be a ring and define

Rn =




a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 0 a


∣∣∣∣∣ a, aij ∈ S

 ,

where n = 2 is a positive integer. We denote by eij the usual matrix unit
with 1 in the (i, j) coordinate and zero elsewhere for each i, j. Then we have
the following

Proposition 2.16. Let S be a ring and Rn (n = 2) be the ring defined
as above. Then S is a right linearly McCoy ring if and only if Rn is a right
linearly McCoy ring.

Proof. Let

F (x) =


a0 a12 a13 · · · a1n
0 a0 a23 · · · a2n
0 0 a0 · · · a3n

· · · · · · · · · . . .
...

0 0 0 0 a0

+


a1 a′12 a′13 · · · a′1n
0 a1 a′23 · · · a′2n
0 0 a1 · · · a′3n

· · · · · · · · · . . .
...

0 0 0 0 a1

x,
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G(x) =


b0 b12 b13 · · · b1n
0 b0 b23 · · · b2n
0 0 b0 · · · b3n

· · · · · · · · · . . .
...

0 0 0 0 b0

+


b1 b′12 b′13 · · · ′

1n
0 b1 b′23 · · · b′2n
0 0 b1 · · · b′3n

· · · · · · · · · . . .
...

0 0 0 0 b1

x

be two nonzero polynomials in Rn(x) with F (x)G(x) = 0. Let f(x) =
a0 + a1x, fij(x) = aij + a′ijx, g(x) = b0 + b1x, gij(x) = bij + b′ijx for i =

1, 2, . . . , n, j = 2, 3, . . . , n and i < j. We proceed with the following three
cases.

Case 1. Suppose f(x) ̸= 0, g(x) ̸= 0. In this case, we obtain that
f(x)g(x) = 0 since F (x)G(x) = 0. Then there exists r ∈ R\{0} such that
f(x)r = 0. Take R = e1nr, then F (x)R = 0.

Case 2. Suppose f(x) ̸= 0, g(x) = 0. Since G(x) ̸= 0, there exists
gi,j(x) ̸= 0 such that gi+k,j(x) = 0, 1 5 k 5 n− i. Then f(x)gi,j(x) = 0 and
so there exists r ∈ R\{0} such that f(x)r = 0 since S is a right linearly Mc-
Coy ring. Put R = e1nr, then F (x)R = 0. If f(x) = 0, g(x) ̸= 0, we can also
prove the result.

Case 3. Suppose f(x) = 0, g(x) = 0. For any 0 ̸= r ∈ R, let R = e1nr,
then F (x)R = 0.

Conversely, let f(x) = a0 + a1(x), g(x) = b0 + b1(x) ∈ S[x]\{0} with
f(x)g(x) = 0. Let F (x) = f(x)In, G(x) = g(x)In, then F (x), G(x) ∈
Rn[x]\{0} with F (x)G(x) = 0. Since Rn is a right linearly McCoy ring,
there exists A ∈ Rn\{0} such that F (x)A = 0. Now it is easy to check that
there exists r ∈ R\{0} such that f(x)r = 0. This shows that S is a right lin-
early McCoy ring. �

The next example shows that there exists a nil-McCoy ring which is not
right linearly McCoy.

Example 2.17. Let R be a reduced ring and let S = Tn(R). Let f(x) =
−e12 + e11x and g(x) = e12 + e22x ∈ T2(R), then f(x), g(x) ∈ S[x]\{0} with
f(x)g(x) = 0. It is straightforward to check that S is not right linearly Mc-
Coy. But S is a nil-McCoy ring by Example 2.3.

Note 2.18. From Example 2.17, we know that if R is right linearly Mc-
Coy, then every n-by-n upper triangular matrix ring Tn(R) need not be right
linearly McCoy. It was proved in [3, Proposition 5.3] that all semicommu-
tative rings are right linearly McCoy rings. Hence Example 2.17 also shows
that there exists a nil-McCoy ring which is not semicommutative. This im-
plies that the inverse of Proposition 2.8 need not hold.
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3. α-McCoy rings

Recall that for a ring R with a ring endomorphism α : R → R, a skew
polynomial ring (also called an Ore extension of endomorphism type) R[x;α]
of R is the ring obtained by giving the polynomial ring over R with the new
multiplication xr = α(r)x for all r ∈ R. By analogy with the case of a nil-
McCoy ring, we give the following definition.

Definition 3.1. A ring R is said to be right α-McCoy if for each pair
of nonzero skew polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x;α]

with f(x)g(x) = 0, then there exists a nonzero element s ∈ R such that
ais ∈ nil (R) for all 0 5 i 5 m. Left α-McCoy rings are defined analogously.
A ring is α-McCoy if it is both left and right α-McCoy.

Following [6], an endomorphism α of a ring R is said to be rigid if
aα(a) = 0 implies a = 0 for all a ∈ R. A ring R is said to be α-rigid if there
exists a rigid endomorphism α of R. Note that any rigid endomorphism of
a ring is a monomorphism and α-rigid rings are reduced.

According to [4], a ring R is said to be α-compatible if for each a, b ∈ R,
ab = 0 ⇔ aα(b) = 0, where α is an endomorphism of R. The notion of the α-
compatible ring is a generalization of α-rigid rings to the more general case
where R is not assumed to be reduced.

In the following we give an example of a right α-reversible ring which is
α-compatible.

Example 3.2. Let Z4 be the ring of integers modulo 4. Let

R =

{(
a b
0 a

) ∣∣∣∣ a, b ∈ Z4

}
.

Suppose that α : R → R is an endomorphism defined by

α

((
a b
0 a

))
=

(
a −b
0 a

)
.

It is straightforward to verify that R is right α-reversible and α-compat-
ible. Note that α is an automorphism of R and R is not α-rigid.

Proposition 3.3. Let R be right α-reversible and α-compatible, where
α is a monomorphism. If {a0, a1, . . . , an} j nil (R) for f(x) = a0 + a1x+
· · ·+ anx

n ∈ R[x;α], then f(x) is a nilpotent element of R[x;α].

Proof. Note that R is semicommutative since R is right α-reversible
and α is a monomorphism by [2]. Suppose that ami

i = 0, i = 0, 1, . . . , n. Let
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k = m0 +m1 + · · ·+mn + 1. Then we have

(
f(x)

)k
=

kn∑
s=0

( ∑
i1+i2+···+ik=s

ai1α
i1(ai2)α

i1+i2(ai3) · · ·αi1+i2+···+ik−1(aik)

)
xs,

where ai1 , ai2 , . . . , aik ∈ {a0, a1, . . . , an}. Consider

(∗) ai1α
i1(ai2)α

i1+i2(ai3) · · ·αi1+i2+···+ik−1(aik).

There exists at ∈ {a0, a1, . . . , an} such that the numbers of at are more
than mt in (∗). We may assume that at appears s > mt times in (∗). Rewrite
(∗) as

(⋆) b0α
j1(at)b1α

j1+j2(at) . . . bs−1α
j1+j2+···+js(at)bs,

where bi ∈ R, j1, j2, . . . , js ∈ N . Since ast = 0, R is semicommutative and α-
compatible, we can obtain (⋆) = 0, hence Equation (∗) = 0. It follows that∑

i1+i2+···+ik=s

ai1α
i1(ai2)α

i1+i2(ai3) . . . α
i1+i2+···+ik−1(aik) = 0,

which implies that f(x) is a nilpotent element of R[x;α]. �
Corollary 3.4. Let R be α-rigid,

f(x) = a0 + a1x+ · · ·+ anx
n ∈ R[x;α].

If {a0, a1, . . . , an} j nil (R), then f(x) is a nilpotent element of R[x;α].

The next example shows that there exists an α-compatible ring R such
that R is not α-reversible. This shows that the assumption in Proposition 3.3
is not superfluous.

Example 3.5. Let R be an α-rigid ring. Let

S =

{(
a b c
0 a d
0 0 a

) ∣∣∣∣∣ a, b, c, d ∈ R

}
.

The endomorphism α of R is extended to the endomorphism α : S → S de-
fined by α

(
(aij)

)
=
(
α(aij)

)
. Then S is not ᾱ-reversible by [2, Example

2.20], but S is ᾱ-compatible by [4, Example 1.2].

In [10], Ouyang introduced weak α-rigid rings as a generalization of α-
rigid rings. A ring R is weak α-rigid if aα(a) ∈ nil (R) ⇔ a ∈ nil (R) for
a ∈ R. Note that Example 3.5 gives a ring which is weak α-rigid but not
α-reversible by [10, Example 2.1].
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Proposition 3.6. Let α be a monomorphism of a ring R. If R is weak
α-rigid and α-reversible, then R is an α-McCoy ring.

Proof. Let f(x) =
∑m

i=0 aix
i and g(x) =

∑n
j=0 bjx

j in R[x;α]. Then

f(x)g(x) =
∑m+n

k=0 (
∑

i+j=k aiα
i(bj))xk, and so

∑
i+j=k aiα

i(bj) = 0 for any

0 5 k 5 m+ n. In the following we claim that aibj ∈ nil (R) by induction
on i+ j. Then we obtain a0b0 = 0. This is true for i+ j = 0. Now suppose
that our claim holds for i+ j < k, where 1 5 k 5 m+ n. Note that

(∗)
∑

i+j=k

aiα
i(bj) = 0

By the induction hypothesis, we have aib0 ∈ nil (R) for all 0 5 i < k,
and so b0ai ∈ nil (R) for all 0 5 i < k. Note that R is semicommutative
since R is α-reversible and α is a monomorphism by [2]. If we multiply

equation (∗) on the left side by b0, then we have b0akα
k(b0) ∈ nil (R) since

nil (R) is an ideal of R by [7, Lemma 3.1], and hence b0akb0 ∈ nil (R) by
[10, Proposition 2.3]. This implies that b0ak ∈ nil (R), akb0 ∈ nil (R). Thus

akα
k(b0) ∈ nil (R) again by [10, Proposition 2.3]. Continuing this process,

we can prove aibj ∈ nil (R) for i+ j = k. Therefore, we obtain aibj ∈ nil (R)
for all i, j by induction. This shows that R is α-McCoy. �

Corollary 3.7. Let α be an endomorphism of a ring R. If R is an
α-rigid ring, then R is α-McCoy.
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