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Abstract

Characterizations of the Amoroso distribution based on a simple relationship between
two truncated moments are presented. A remark regarding the characterization of certain
special cases of the Amoroso distribution based on hazard function is given. We will also
point out that a sub-family of the Amoroso family is a member of the generalized Pearson
system.

1. Introduction

As we have mentioned in our previous characterization works, the prob-
lem of characterizing a distribution is an important problem which has re-
cently attracted the attention of many researchers. Thus various characteri-
zations have been established in many different directions. The present work
deals with the characterization of the Amoroso distribution, the natural uni-
fication of the gamma and extreme value distributions, based on a simple
relationship between two truncated moments.

It is pointed out by Crooks [1] that the Amoroso distribution, a four
parameter, continuous, univariate, unimodel pdf (probability density func-
tion), with semi infinite range, was originally developed to model lifetimes
(see [1] for more details). Moreover, many well-known and important dis-
tributions are special cases or limiting forms of the Amoroso distribution.
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Table 1 below is taken (with permission from G. E. Crooks for which we are
grateful to him) from [1], which shows 35 special and 4 limiting cases of the
Amoroso distribution.

The pdf of the Amoroso distribution is given by

(1.1) f(x; a, α, τ, k) =
1

Γ(k)

∣∣∣ τ
α

∣∣∣ (x− a

α

)τk−1

exp

{
−
(
x− a

α

)τ}
,

for x, a, α, τ in R, k > 0, support x = a if α > 0, x 5 a if α < 0.
For further details about the distributions listed in Table 1 and their

applications, we refer the reader to Crooks [1].
We give below a table (Table 2) displaying four cases based on the signs

of α and τ for the random variable X ∼ Amoroso (a, α, τ, k). Without loss
of generality we assume a = 0 throughout this work.

For α > 0 and τ > 0, Amoroso (0, α, τ, k) = GG(α, τ, k), generalized
gamma distribution, which has been characterized based on a simple rela-
tionship between two truncated moments in Hamedani [11] (subsection 2.5).
Some special cases of X ∼ GG(α, τ, k) based on hazard function have been
characterized in Hamedani and Ahsanullah [13] (subsection 2.10). These
characterizations are valid for the distributions of −X (when α < 0, τ > 0),
1
X (when α > 0, τ < 0) and − 1

X (when α < 0, τ < 0). Table 2 shows that

for α < 0 a simple change of parameters α′ = −α will produce the cases on
the second row of the table. So, we investigate here the characterization of
the distribution of X when α > 0 and τ < 0. Letting γ = −τ > 0, we shall
now express the pdf of the Amoroso random variable X as

(1.2) f(x;α, γ, k) =
γ

αΓ(k)

(x
α

)−(γk+1)
exp

{
−
(x
α

)−γ
}
, x = 0,

where all three parameters α, γ and k are positive.
The cdf (cumulative distribution function), F , corresponding to (1.2) is

F (x) = 1− 1

Γ(k)

( x
α
)
−γ∫

0

uk−1e−u du, x = 0.
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Table 1. The Amoroso family of distributions
m, n positive integers

Amoroso a α k τ
Stacy 0 · · ·
gen. Fisher–Tippet · · n ·
Fisher–Tippet · · 1 ·
Fréchet · · 1 < 0
generalized Fréchet · · n < 0
scaled inverse chi 0 · m

2 −2
inverse chi 0 1√

2
m
2 −2

inverse Rayleigh 0 · 1 −2
Pearson type V · · · −1
inverse gamma 0 · · −1
scaled inverse chi-square 0 · m

2 −1
inverse chi-square 0 1

2
m
2 −1

Lévy · · 1
2 −1

inverse exponential 0 · 1 −1
Pearson type III · · · 1
gamma 0 · · 1
Erlang 0 > 0 n 1
standard gamma 0 1 · 1
scaled chi-square 0 · m

2 1
chi-square 0 2 m

2 1
shifted exponential · · 1 1
exponential 0 · 1 1
standard exponential 0 1 1 1
Wien 0 · 4 1
Nakagami · · · 2
scaled chi 0 · m

2 2

chi 0
√
2 m

2 2
half-normal 0 · 1

2 2
Rayleigh 0 · 1 2
Maxwell 0 · 3

2 2
Wilson–Hilferty 0 · · 3
generalized Weibull · · n > 0
Weibull · · 1 > 0
pseudo-Weibull · · 1 + 1

τ > 0
stretched exponential 0 · 1 > 0
log-gamma · · · · limτ→∞
power law · · 1−p

τ · limτ→0

log-normal · · 1
(τσ)2

· limτ→0

normal · · · 1 limk→∞
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Table 2

τ > 0 τ < 0
α > 0 X ∼ GG(α, τ, k) 1

X ∼ GG( 1
α ,−τ, k)

α < 0 −X ∼ GG(−α, τ, k) − 1
X ∼ GG(− 1

α ,−τ, k)

2. Characterization results

2.1. Characterizations based on two truncated moments

In this subsection we present characterizations of the Amoroso distribu-
tion with pdf (1.2) in terms of a simple relationship between two truncated
moments. We like to mention here the work of Galambos and Kotz [2],
Kotz and Shanbhag [15], Glänzel [3]–[5], Glänzel et al. [7]–[8], Glänzel and
Hamedani [6] and Hamedani [9]–[11] in this direction. Our characterization
results presented here will employ an interesting result due to Glänzel [4],
which is stated here (Theorem G below) for the sake of completeness.

Theorem G. Let (Ω,F ,P) be a given probability space and let H = [a, b]
be an interval for some a < b (a = −∞, b = ∞ might as well be allowed).
Let X : Ω → H be a continuous random variable with the distribution func-
tion F and let g and h be two real functions defined on H such that

E
[
g(X) | X = x

]
= E

[
h(X) | X = x

]
λ(x), x ∈ H,

defined with some real function λ. Assume that g, h ∈ C1(H), λ ∈ C2(H)
and F is twice continuously differentiable and strictly monotone function on
the set H. Finally, assume that the equation hλ = g has no real solution
in the interior of H. Then F is uniquely determined by the functions g, h
and λ, particularly

F (x) =

x∫
a

C

∣∣∣∣ λ′(u)

λ(u)h(u)− g(u)

∣∣∣∣ exp ( − s(u)
)
du,

where the function s is a solution of the differential equation s′ = λ′h
λh−g and

C is a constant to make
∫
H dF = 1.

Remarks 2.1.1. (a) In Theorem G, the interval H need not be closed.
(b) The goal is to have the function λ as simple as possible. For a detailed
discussion on the choice of λ, we refer the reader to Glänzel and Hamedani [6]
and Hamedani [9]–[11].

We shall consider two cases:



342 G. G. HAMEDANI

Case (i). γk + 1 = γ. Then pdf of Amoroso distribution (1.2), in this
case, is

(2.1.1) f(x;α, γ, k) =
γ

αΓ(k)

(x
α

)−γ
e−(

x
α
)
−γ

, x > 0,

where all three parameters α, γ and k are positive subject to γk + 1 = γ.

Proposition 2.1.2. Let X : Ω → [0,∞) be a continuous random vari-

able and let h(x) = γ
α [(

x
α)

−1 − ( x
α)

−γ−1
] for x ∈ (0,∞). The pdf of X is

(2.1.1) if and only if there exist functions g and λ defined in Theorem G
satisfying the differential equation

(2.1.2)
λ′(x)

λ(x)h(x)− g(x)
= 1, x > 0.

Proof. Let X have pdf (2.1.1) and let

g(x) =
1

γ

(x
α

)γ−2
−

(x
α

)−2
, x > 0

and

λ(x) =
α

γ

(x
α

)γ−1
, x > 0.

Then, after some computations we arrive at

(
1− F (x)

)
E
[
h(X) | X = x

]
=

γ

αΓ(k)

(x
α

)−γ
e−(

x
α
)
−γ

, x > 0,

(
1− F (x)

)
E
[
g(X) | X = x

]
=

1

Γ(k)

(x
α

)−1
e−(

x
α
)
−γ

, x > 0,

and

λ(x)h(x)− g(x) =

(
γ − 1

γ

)(x
α

)γ−2
> 0 for x > 0, since γ = γk+1 > 1.

The differential equation (2.1.2) clearly holds.
Conversely, if g and λ satisfy the differential equation (2.1.2), then

s′(x) =
λ′(x)h(x)

λ(x)h(x)− g(x)
=

γ

α

[(x
α

)−1
−

(x
α

)−γ−1
]
, x > 0,
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and hence

s(x) = ln(xγ) +
(x
α

)−γ
, x > 0.

Now from Theorem G, X has pdf (2.1.1). �
Corollary 2.1.3. Let X : Ω → [0,∞) be a continuous random vari-

able and let h(x) = 1
γ (

x
α)

γ−2 − ( x
α)

−2
and g(x) = γ

α [(
x
α)

−1 − ( x
α)

−γ−1
] for

x ∈ (0,∞). The pdf of X is (2.1.1) if and only if the function λ has the
form

λ(x) =
γ

α

(x
α

)1−γ
, x > 0.

Case (ii). γk + 1 ̸= γ. Then pdf of Amoroso distribution is (1.2), which
we renumber it here as

(2.1.3) f(x;α, γ, k) =
γ

αΓ(k)

(x
α

)−γk−1
e−(

x
α
)
−γ

, x > 0,

where all three parameters α, γ and k are positive.

Proposition 2.1.4. Let X : Ω → [0,∞) be a continuous random vari-

able and let h(x) = (1 + γk)x−1 − γ
α(

x
α)

−γ−1
for x ∈ (0,∞). The pdf of X

is (2.1.3) if and only if there exist functions g and λ defined in Theorem G
satisfying the differential equation

(2.1.4)
λ′(x)

λ(x)h(x)− g(x)
= 1, x > 0.

Proof. Let X have pdf (2.1.3) and let

g(x) =
(x
α

)γ(k−1)
(
1−

(x
α

)−γ
)
, x > 0

and

λ(x) =
α

γ

(x
α

)γ(k−1)+1
, x > 0.

Then, after some computations we arrive at

(
1− F (x)

)
E
[
h(X) | X = x

]
=

γ

αΓ(k)

(x
α

)−(1+γk)
e−(

x
α
)
−γ

, x > 0,

(
1− F (x)

)
E
[
g(X) | X = x

]
=

1

Γ(k)

(x
α

)−γ
e−(

x
α
)
−γ

, x > 0,
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and

λ(x)h(x)− g(x) =

(
1 + γk − γ

γ

)(x
α

)γ(k−1)
̸= 0 for x > 0,

since γ ̸= γk + 1. The differential equation (2.1.4) clearly holds.
Conversely, if g and λ satisfy differential equation (2.1.4), then

s′(x) =
λ′(x)h(x)

λ(x)h(x)− g(x)
=

1 + γk

α

(x
α

)−1
− γ

α

(x
α

)−γ−1
, x > 0,

and hence

s(x) = (1 + γk) ln
(x
α

)
+

(x
α

)−γ
, x > 0.

Now from Theorem G, X has pdf (2.1.3). �

Corollary 2.1.5. Let X : Ω → [0,∞) be a continuous random variable

and let h(x) = ( x
α)

γ(k−1)
(1− ( x

α)
−γ
) and g(x) = (1 + γk)x−1 − γ

α(
x
α)

−γ−1

for x ∈ (0,∞). The pdf of X is (2.1.3) if and only if the function λ has the
form

λ(x) =
γ

α

(x
α

)−γ(k−1)−1
, x > 0.

Remarks 2.1.6. (a) It is clear that Corollaries 2.1.3 and 2.1.5 are
straightforward. The referee suggested the following statement for which
we are grateful: “In general, if g and h are interchanged (e.g., g∗ = h and
h∗ = g) the triplet g∗, h∗ and λ∗ = 1/λ provides a Theorem G characteriza-
tion of the distribution in question, provided λ ̸= 0 on the int (H). This is a

direct consequence of E
[
g(X) | X = x

]
= E

[
h(X) | X = x

]
· λ(x).”

(b) The general solutions of the differential equations (2.1.2) and (2.1.4)
are, respectively

λ(x) =
(x
α

)γ
e(

x
α
)
−γ

[
−
∫ (x

α

)−γ
e−(

x
α
)
−γ

g(x) dx+D1

]
, x > 0,

and

λ(x) =
(x
α

)1+γk
e(

x
α
)
−γ

[
−
∫ (x

α

)−1−γk
e−(

x
α
)
−γ

g(x) dx+D2

]
, x > 0,

where D1 and D2 are constants. One set of appropriate functions is given in
each of the Propositions 2.1.2 and 2.1.3 for D1 = D2 = 0.
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Remark 2.1.7. The above Propositions characterize the distribution
of the Amoroso random variable X for the case α > 0 and τ < 0 directly,
which is not part of Table 2.

2.2. Remark on characterization of Amoroso distribution based
on hazard function

For the sake of completeness, we state the following definition.

Definition 2.2.1. Let F be an absolutely continuous distribution with
the corresponding pdf f . The hazard function corresponding to F is denoted
by ηF and is defined by

(2.2.1) ηF (x) =
f(x)

1− F (x)
, x ∈ SuppF,

where SuppF is the support of F .

It is obvious that the hazard function of twice differentiable function
satisfies the first order differential equation

η′F (x)

ηF (x)
− ηF (x) = q(x),

where q(x) is an appropriate integrable function. Although this differential
equation has an obvious form since

(2.2.2)
f ′(x)

f(x)
=

η′F (x)

ηF (x)
− ηF (x),

for many univariate continuous distributions (2.2.2) seems to be the only
differential equation in terms of the hazard function. The goal of the char-
acterizations based on hazard function is to establish a differential equation
in terms of hazard function, which has as simple form as possible and is not
of the trivial form (2.2.2). For some general families of distributions this
may not be possible. For the Amoroso distribution with pdf (1.1) a nontriv-
ial differential equation in terms of the hazard function is not possible, but
for the case of (1.1) with α > 0 and τ > 0, generalized gamma, it is possible
only for certain special cases (see, Hamedani and Ahsanullah [13], subsec-

tion 2.10). For these special distributions, the distributions of −X, 1
X and

− 1
X will also have characterizations based on the hazard function. These

random variables, however, were not mentioned in [13], when the character-
ization results based on hazard function for the case α > 0 and τ > 0 were
first reported.
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3. The Amoroso sub-family and generalized Pearson system

Various systems of distributions have been constructed to provide ap-
proximations to wide variety of distributions (see, e.g., [14]). These systems
are designed with the requirements of ease of computation and feasibility
of algebraic manipulation. To meet the requirements, there must be as few
parameters as possible in defining a member of the system. One of these sys-
tems is Pearson system. A continuous distribution belongs to this system if
its pdf f satisfies a differential equation of the form

(3.1)
1

f(x)

df(x)

dx
= − x+ a

bx2 + cx+ d
,

where a, b, c and d are real parameters such that f is a pdf . The shape of
the pdf depends on the values of these parameters. Pearson, [16], classified
the different shapes into a number of Types I–VII. Many well-known distri-
butions are special cases of Pearson Type distributions. The Pearson family
is characterized via Theorem G in [6] (subsection 3.21).

Recently, some researchers have considered a generalization of (3.1),
given by

(3.2)
1

f(x)

df(x)

dx
=

∑m
j=0 ajx

j∑n
j=0 bjx

j
,

where m,n ∈ N \ {0} and the coefficients aj ’s, bj ’s are real parameters. The
system of continuous univariate pdf ’s generated by (3.2) is called generalized
Pearson system, which includes a vast majority of continuous pdf ’s. We
make the observation that the pdf f of a sub-family of the Amoroso family
satisfies the generalized Pearson differential equation (3.2) with, of course,
appropriate boundary condition.

For a = 0, α > 0 (or α < 0), τ = −γ, γ ∈ N \ {0}, k > 0, the pdf f
given by (1.1) satisfies (3.2) with a0 = γαγ , aj = 0, j = 1, 2, . . . , γ − 1,
aγ = −(γk + 1); bj = 0, j = 0, 1, . . . , γ, bγ+1 = 1, i.e.

1

f(x)

df(x)

dx
=

γαγ − (γk + 1)xγ

xγ+1
.

For a = 0, α > 0 (or α < 0), τ = γ, γ ∈ N \ {0}, k > 0, the pdf f given by
(1.1) satisfies (3.2) with a0 = γk − 1, aj = 0, j = 1,2, . . . , γ−1, aγ = −γα−γ ;
b0 = 0, b1 = 1, i.e.

1

f(x)

df(x)

dx
=

(γk − 1)− γα−γxγ

x
.
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