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Abstract

We compute the fundamental group of various spaces of Desargues configurations in
complex projective spaces: planar and non-planar configurations, with a fixed center and
also with an arbitrary center.

1. Introduction

Let M be a manifold and Fj (M) be its ordered configuration space of k-
tuples { (z1,...,21) € M* | z; # x;, i # j}. The k' pure braid group of M
is the fundamental group of Fj(M). The pure braid group of the plane,
denoted by PB,, has the presentation [4]

m1(Fa(C)) =PB, = (e, 1<i<j<n|(YB3),,(YB4),)
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where generators o;; are represented in the figure and the Yang-Baxter re-
lations
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(YB3), and (YB4), are, forany 1 Si<j<k=n,
(YB 3)71 . ozijozikajk = aikajkaij = OéjkaZ'jOéik

and, forany 1 i< j<k<lZ<mn,
(YB4), : [ogr, ] = [ajhaj_kloéikajk] = [, aji] = [, amaugeg;'] = 1.
The pure braid group of S? ~ CP! has the presentation (see [5] and [4]):

71 (Fer (82) 2 (a1 S i< j < k| (YB3),, (YB4),, D} = 1),
where Dy, = ai2(a13a23) ... (g . .. ag—1 ) (in By, the Artin braid group, Dy,
is the square of the Garside element Ay, see [6] and [2]). In [2] we started
to study the topology of configuration spaces under simple geometrical re-

strictions. Using the geometry of the projective space we can stratify the
configuration space Fi(CP™) with complex submanifolds:

Fe(CcPmy =TT 7,
=1

where .7-";’” is the ordered configuration space of all k-tuples in CP" gen-
erating a subspace of dimension ¢. Their fundamental groups are given by
(see [2]):

THEOREM 1.1. The spaces ]-",i’n are simply connected with the following
exceptions

(1) for k22,
Wl(]:liil)

(2) fork =23 andn = 2,

I

(ovj, 120 <j<k|(YB3),,(YB4),, Di=1);

12

m (Fely) = (g, 120 <j k| (YB3),, (YBA),, Dy =1).
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In this paper we compute the fundamental groups of various configura-
tion spaces related to projective Desargues configurations. We do not use
special notations for the dual projective space: if Py, P», P are three points

and di, do, d3 are three lines in CP2, (P, Py, P3) € }";’2 is equivalent with
the collinearity of these points and (dy,ds, ds) € .7-"; 2 is equivalent with the

concurrency of these lines. We define D?", the space of planar Desargues
configurations in CP™ (n = 2), by

D*" = { (A1, By, Ay, Bo, A3, B3) € Fo™ | (dy,dg, d3) € F3?,

(here I=diNdyN dg).

B3 d3

As
! A D2y,
Al Bl dl

We consider also D?’n, the space of planar Desargues configuration with a
fized intersection point I € CP™, defined by

D}™ = { (A1, B1, Ay, By, A3, B3) € D*™ | dyNdy Nd3 =T}

THEOREM 1.2. The fundamental group of D?’" s given by

o (DP) = Z2OZOT if n=2,
d YACY/ if n=3.

The first group is generated by [«], [5], and [o], and the second group
is generated by [a] and [3]. Precise formulae for o, § and o are given in
Section 2; here is a diagram representing these generators (there is a similar
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picture for j3):

BY 0
@ L 10 oA B
/"
4 | &
dg 0 —
By o I Al B

a: By is moving on the line df \ {I°, AY} o : the lines d; and dy are moving

THEOREM 1.3. The fundamental group of D*™ is given by:

YASY/ =2
™ (D) = @ Z.f n=s
Z if n23.

The first group is generated by [« and [3] and the second group is gen-
erated by [«] (or by [3]); we will use the same notations for [a], 5], [¢] and

their images through different natural maps: D}k’* — D", D?* — D;’*H,
D** — DL

We define D3™, the space of non-planar Desargues configurations in CP™
(n23):

D31 = { (A1, By, A2, B, A3, B3) € o™ | dindaNds = I, Ay, B; € d; \ {I}}

and D?’”, the associated space of non-planar Desargues configurations with
a fixed intersection point I € CP™.

THEOREM 1.4. The fundamental group of D?’" s given by:

Z if n=3,
1 i n=4.

12

m(Dp")

THEOREM 1.5. The fundamental group of D™ is given by:

Z ' =3
w1 (D31 g{ 4 Z.f n =3,
1 if n=4.

In the last two theorems, in the non-simply connected cases, the funda-
mental groups are generated by [a].
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2. Desargues configurations in the projective plane

In order to find the fundamental groups of the spaces D = D?*? and
Dr = D?’Z we use two fibrations and their homotopy exact sequences.

LEMMA 2.1. The projection
p: D— CP?,  (A1,B1,As, By, A3, B3) = I =diNdaNds

s a locally trivial fibration with fiber Dy.

PROOF. Fix a point 1Y € CP? and choose a line | C CP?\ {1} and
the neighborhood U; = CP2\ I of I°. For a point I in this neighborhood
and a Desargues configuration (A?,B?,Ag,Bg,Ag,Bg) on three lines dY,
dg, dg containing 1% construct lines d;, do, d3 containing I and the config-
uration (Aj, By, ..., As, Bs) as follows: consider the points D; = 1N d? and
Q =1N1°7 and define d; = ID;, A; =d;N QA? and in the same way B;
(1 =1,2,3). We describe this construction using coordinates to show that
the map

(-[7 (A?)B?7A87387A07Bg)) — (AlaBlaA2uBQ)A37B3)

has a continuous extension on the singular locus (df UdJ U d3 \ 1). Choose
a projective frame such that I =1[0:0:1],1: Xo =0. If [ =[s:¢: 1] and
A? =[n;:—m;: a, BZQ = [n; : —m; : by (a;, b; are distinct and non zero and
also nym; # m;n; for distinct 4, j = 1,2, 3), then we define A; = [n; + sa; :
—m; +ta; : a;] and B; = [n; + sb; : —m; +tb; : b;], (i = 1,2,3), and these for-
mulae agree with the geometrical construction given for nondegenerate po-
sitions of I € CP?\ (d Ud) U djUl). The trivialization over U is given by

U x Do =y~ (Uy),
o(I,(AY, BY, A, BY, A3, BY)) = (A1, B1, Ag, By, A3, Bs). O
LEMMA 2.2. The projection
A:Dr— Fg(CPl), (Al,Bl,Az,BQ,Ag,Bg) — (dl,dg,dg)

is a locally trivial fibration with fiber F2(C) x Fa(C) x Fo(C).
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PROOF. Fix a point d? = (d(l], d9, dg) in .7-"3((CP1) and choose a point )
in CP?\ (d}uUdjuUd}) and the neighborhood Ug = {(dl, da,d3) € F3(CP!) |
Q¢ dUdyU dg}. The trivialization over Ug is given by

U Ug x Fa(di \{I}) x Fa(dy\{I}) x Fa(d3\{I}) = A" (Ug)
¢((d1’d2’d3)’ (A(l)’B(l)) ’ (AgaB(Q)) ’ (Ag’Bg)) = (A]-?B].ﬂAQaBQvA3aB3)7

where A; = d; N QAY and similarly for B; (i = 1,2, 3). Obviously, 4;, B; and
I are three distinct points on d;. Il

In Djo_[g.0.1) We choose the base point DY = (A?,B?,Ag,Bg,Ag,Bg)
where, for k=1,2, A)=[-1:k:1], B)=[-1:k:2], A3=[0:1:1],
By =1[0:1:2]. The corresponding lines are given by the equations dJ :
kXo+ X1 =0, dg : Xo = 0 and we identify the affine line C with dg as fol-
lows: for k=1,2, z '—>(£—1 tk:z], and for k=3, z+— [0:1: z] (therefore
the intersection point I° = [0:0: 1] is the point at infinity of these lines).

We identify the set of three distinct lines through I° with the configura-
tion space fg(CPl); in this space the base point is d? = (d(l),dg,dg). In

the configuration spaces }'Q(d? \ {IO}) we choose the base points (Ag, B?) )
1 =1,2,3. The homotopy exact sequence from Lemma 2.2 and the triviality
of my (.7-"3((CP1)) (see [3]) give the short exact sequence

1 — 7T1(]:2(C)) X 7'('1(]:2(@)) X 7T1(]:2((C))
j—*> 7r1('D10) i) 7T1(.7:3(CP1)) — 1.

PROOF OF THEOREM 1.2 (the case n = 2). The first group, isomorphic

to Z3, is generated by the pure braids a, b, ¢, hence their images in 7, (D Io)
are given by the

A B Ay BY A BY
[/ [/ r

a f dy\ {1} b f d\{I"} ¢ f dg \ {1°}

A B A BY A B
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homotopy classes of the maps «, 5,7 : (Sl, 1) — ('Dp), DO)

a(z) = (A a(Z) BQ,AO,B:;), B?(z) =[-1:1:1+2],
B(Z)Z(A By, AS, B AO,B ), Bg(z):[—1:2:1+z],
(=) = (A3, BY, A3, B, A3, B]®), B} =(0:1:1+2].

The third group, Wl(fg(CPl) & 7o, is generated by the homotopy class of
the map

st (84,1) = (F3(CPY),dy),
2o (477 2Xo + X1 = 0,d57) 1 22X0 + X1 = 0,d8),

because this corresponds to the braid ais in CP'. We lift the map s to the
map

o (S41) = (DY, DY), =z (A]W,BP, 43%) BS™) A3, BY),

where A7 o(z) = =[-1:kz:1], BG(Z) [-1:kz:2], k=1,2.
The group m (D 0, D ) is generated by the homotopy classes of a, 3, v
and o; the defining relations are commutation relations between [«], [5] and

[v] from 771(.7:2((:)3) and the four relations, to be proved in the next two
lemmas:

a) [o][dlo] ™" = [o],
8) [ol(8]l0]~" = [8],
7) [o1[e] ™ = Bl
o) 012 = [a] '8

The generator [y] can be eliminated, [¢] commutes with [o] and [3], and the
third relation, ), is a consequence of the previous commutation relations.

LEMMA 2.3. In 771(23[07 DO) the next relation holds:

o) R e 1 R 7
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ProOF. The map
Az (D%8Y) = (F3(CPY),d? = (. d3,d3)), =+ (a1, a5, d5"),

where dg(z) s (kz—r)Xo+ Z+Ekr)X; =0, (k=1,2), and dé\(z) c 2 Xy +
rX1 =0 (the notation r =1 — |z| will be used in this proof and the next
ones), shows that s2 ~ constantgy. We lift this homotopy to

R:D* 5D, A(z) = (AN RO 400 gl 42 phe)y

where AN — [z —kr i kz—r: 2], BeY = [z —krihz—r:z41], (k=

1,2), and Ag\(z) =[-r:z:z|, B;\(Z) = [—r:z:z+1]; the map

Algi: S' = Dp, 2~ (A}, Bi, A3, B3, AY, Bj)

(with A7 = [ —1:kz*:1],Bf =[—1:kz®:1+2],k=1,2,and B = [0:
" =

1:1+7%]) has a trivial homotopy class, therefore we have the relation [0
[J x0 % (A|g1) 71].

Now we construct a homotopy between o % o * (K‘sl) ! and ol
B x

L:S'XI—=Dp, (zt)m (A{FY, BIED 4750 BIED A9 BLEDY,
where (k =1,2):

Aﬁ(z’t) =[-1: ELY(z,t) : 1], B,f(z’t) =[-1: kLY(z,t) : Li(z,t)]

pLGb _ 0:1:2] 0Zargz<m
3 [0:1:1—|—22] 7T§argz§277,
and
24 0<argz <tm

LY(z,t) = { exp (4tmi) tr <argz < (2—t)w
z* (2—t)m < argz < 2,
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(2 0§argz§t+i71ﬂ
|+ exp 4(2—k)t7r—argzi
5 1+t
Ly(z,t) = tk—1__ 1+ (5-2k)
7r < T
k 8F="T3 %
1 5—2k)t
2 +; ’ >7r§argz£27r
L _

It is easy to check that L(—,0) = (a!'%87') xv and L(—,1) = (0 *0) *
(Als1) O

LEMMA 2.4. In Wl(DIo, DO) the next relations hold:

a) [o][e][o] " = [al;
B) [o][Bl[e] ™" = [8];
) le]le] ™ =[]

PROOF. The loop o * a* o~! in Djo is given by z — (A‘?(Z), Bf(z),Ag(z),
Bg(z), AY, Bg), where the points Ag(z) (k=1,2), Bla(z) and Bg(z)

are given
by:
Ak:[—l:k‘z?’:l} Blz[—1:23:2]
By = [—1 223 2} arg z € [0,2;]
Ay = A) Bi=[-1:1:1+2"]
By = BY argz € [W,AL;}
Ak:[—l:kz3:1] Blz[—1:§3:2]

Bgz[—l:2§3:2} argze[ll;,Qﬂ]
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We define two maps

2t 2(3
e:8t x 1 — 85 e(z,t) = ¢ exp (2tmi) 37 Sargz < g 7

2(3 —
z3 8 t)ﬂ' < argz < 2m,
( 3
2 arg z € [0, 2;] U [4;,277]
n:St = C\{1},  n(z) =
14+ 2% argze r Am
373

and a new homotopy
Ko(z,t): St x I — Do,
Ko(z,t) = (Ai(z,t), Bi(2,1), As(z,t), Ba(2, 1), A3, BY)

where Ay (z,t) = [ —1: ke(z,t) : 1], By(z,t) = [ —1: ke(z,t) : 2], (k=1,2),

Bi(z,t) = [ —1:e(z,t):n(z)]. One can check that K,|,_,~« and

_ -1
Kol =0xaxo .

Kgl,_,=ocxfxc L

[O:l:n(z)])

Similarly we have a homotopy Kz between 3 and
Next homotopy (we also use the notation Bs(z,t) =

K (z,t): S* x I — Djo,
(2,t) = (Ai(z,t), Bi(z,t), As(2,t), Ba(z,1), A, Bs(z,1)),

gives the last relation: K j;—o ~ 7, K,jj=1 = 0 * 7 * oL U

PrROOF OF THEOREM 1.3 (the case n = 2). Lemma 2.1 gives the exact
sequence

. —m(CP?) 2726267 — m(D) — 1
where the first group is cyclic generated by the homotopy class of the map

D (DQ,SI) — ((CP2,IO), z—[0:7: 2]
We choose the lift

&: (D% SY) = (D,Dp), =2+ (A‘f(z),Bf’(z),Af(z),Bf(z),Ag’(“,Bf('z)),
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APG) [ 1 (k4 D)+ K (264 1)z + k(- 2)]
BY® = [ =11 (2k+2)r + k7 ¢ (2k +2)z + k(r — 2)],
AZO [ iz aridz—3(r+1)],
B = [ —r iz 45r:52-3(r+1)],

hence Im §, is generated by the homotopy class of the map

) ) )

@Sl RN Do, 215 (Af(z)jBib(z)’A;b(z) B;b(z) Af(z),Bf(Z))
with (k = 1,2)

AP [ —1:kz: (2k+1)2—2k], BY¥ =[—1:kz:(2k+2)z— 2k],
Ag’(z):[():fzélz—?)], B:,?(Z):[O:E:5z—3].

The maps Ao 5‘ g1 and s~1 coincide, therefore the product [(f} Sl] - [o] be-

longs to ker A\, = Imj,. We show that [<T>|Sl] “lo] =[a] - [B] - [v] and this
implies the claim of the theorem. We define the homotopy:

H:S'%xI— D,

H(z, H(z, H(z, H(z, H(z, H(z,
(211) o (ATGO pHED gHGD) pHED 4HGD pHEDY

where (k = 1,2)
AkH(z,t) — [ —1: H]%(Z,t) : H]%(Z,t)]
Bf(z,t) = [ —1: Hi(2,t) : H}(2,) + H{(2,1)]
AFEY =021 1z 0)] By *Y =[0:1: HY(2,t) + HY(2,1)]
and

kz2 0<argz <trm
Hl(z,t) = { kexp (=2tmi) tr <argz < (2—t)m
k22 (2—t)r S argz < 2m,
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Hi(z,t) =

H3(z,t) =

Hi(z,t) =

Hy(z,t) =

H®(z,t) =

1+(k+1Dt(z2-1) 0Zargz<n
m < argz < 2,

1+t(42*-322—-1) 0Zargz<7
1 < argz < 27,

( 4 1+¢
exp ( fj_gtzi) 0<argz < %w
1+1¢
1 %ﬂgargzg%r,
( 1—-t¢
1 Ogargngw
2 —(1-t 1—-1¢
exp (2 argzl+(t )ﬂz> 5 mlargz S
1 < argz S 2w
1 0Sargz<(1-t)m
exp [4(argz —(1—t)m) z] (I1-t)yrSargz< (2—t)w
1 (2—t)m Sargz S 27

359

These computations give Imd, = Z{2[a] + 2[8] + [0]), therefore we can
choose [a] and [f] as generators of the fundamental group of D.

3. Planar Desargues configuration in CP”

g

First we reduce the computations of wl(D?’n) and of 7r1(D2’”) to the

case n = 3.

LEMMA 3.1. The following projections are locally trivial fibrations:

D}? s D" — Grl(CP™ ),
(A1, B1, Ag, By, A3, Bs) +— line (dy, da, d3);

D*? < D> — Gr*(CP"),
(A17B17A27B27A37B3) = 2_p1ane (d17d27d3)'
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PROOF. a) Fix a 2-plane P, through I and choose a hyperplane H C CP"
such that I ¢ H and an (n — 3) dimensional subspace @) C H such that
QNly =10, where ly = PyN H. Take as a neighborhood of Py the set {P
a 2-plane in CP™ | I € P, PN Q = ()} and associate to a Desargues configu-
ration in Dj(Py) the projection from @, an element in D;(P): CY = d? N,
Il=PNH,C; = (Q\/CZO) NLQ;=QnN (CZCZO),dZ =1C;, A; :QiA?ﬁdi,
B; = QZ-B? Nd; (for i =1,2,3). Using projective coordinates one can show
that this trivialization is well defined on the singular locus P = Fy: if

I=[0:...:0:1], Bh: Xo=...=X,,_3=0, AV = [0:"':612—2,1:@2—1,1':
agﬂ.] ,BY=1[0:...: bg—li : b?L—l,i : b%i] , and P is defined by the equations

Xy =1 Xn—2+pp2Xn-1+pr3Xn (k=0,...,n—3), then

A; = [po,oan—z,z‘ +P01An—14: - Pn-3,00n—2,i + Pn-3,10n1 :

0 0 0]7

Ap—24i " Ap_14* An;

B; = [po,0bn—2,i +P0,1bn—1,i : - - Pn—3,0bn—2,i + Pn—3,1bn-1 :
0 .30 .0
B gyt b0y 00].

n—2,1 n—1,

b) Fix a 2-plane Py and choose as center of projection a disjoint n — 3
dimensional subspace (). Take as a neighborhood of Py the set of 2-planes
disjoint from ). The projection from () associate to a Desargues config-
uration in D?(Fy) a Desargues configuration in D*(P): PN (QVI°) =1,
PN(QVd)) =di, din(QVAY) =A;,din(QVBY) =B, O

COROLLARY 3.2. For n 2 3 we have
0 m(D3) = m (D27),

b) 71 (D?3) = my (DAY

PrOOF. This is a consequence of the stability of the second homotopy
group of the complex Grassmannians:

my(Gr! (CP?)) ——m (D)) —>m(D}*) —=1
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and also

wg(Grz(CP?’)) HWI(DQQ) 4)771(1)2,3) o

| =]

WQ(GI"Q( P”)) —>7T1(D2’2) —>W1(D2’”) —1. O

Il

Q

Using the fibration of Lemma 3.1a) for n = 3 we have the exact sequence
.= m(CP?) 25y (DF?) 5 1 (D) - 1.

We choose the base point in D?’g’ the image of the base point in Dy through
the embedding [z¢ : 21 : z2] — [z : 21 : 22 : 0] and we denote the composi-

tions o, B : ST — D?’Z — D?’S with the same letters.

PRrROPOSITION 3.3. In the exact sequence of the fibration D?"g — CP? we
have:

a) Imé, = Z([a] + [6] + [0]) ;
b) 771(19?’3) =7 @ 7Z is generated by (o] and [5].

PROOF. a) The base point in Gr' (CP?) ~ CP? is the line X3 = 0 (in the
dual space of lines through I° =[0:0:1:0]) and we choose the generator
of o ((CPQ) the homotopy class of the map

II: (D% 8') = Gr'(CP?), 2z~ (1—|2]) X1 +2X;3=0.

The lift II: D? — D23 » s (AllT(z)7 BF(Z),AE(Z), Bg(z)’ Ag[(z)’Bg(z)> is

JO >
given by (k =1,2)
AE(Z) = [2rz| = 1:kz:1: —kr], Agn(z): 0:z:z:—r],
BII;[(Z) = [2r]z| = 1:kz:2: —kr], Bg(z): 0:z:2z4+1:—r],
where the corresponding lines are
4 kX +2X, —rX3 =0, rXi + 2X3 =0,

d: xy =0, rX1+2X3=0.
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The homotopy

M: 8" xI— D%,

(Z, t) — (Aiw(zvt)7 Biw(z’t)’ Aéw(zvt)7 Béw(zvt)’ Ag7 By('z’t)),
where AQ/[(Z’t) =[—=1:km(z1):1], B,i\/[(z’t) =[—1:km(z1):2], and
Bé\/l(z’t) = [0:1:14mgy(zt)] are defined by:

s (28) = exp <2;r§§i> O0fargz< (2—t)m
1 (2—t)m < argz < 2m,
1 0<argz < tr
ma(zt) = exp <2t772_a1;gzi> tr < argz < 2,

1

shows that the restriction ﬁ] g1 and the loop o x ™" are homotopic. Using

Fh]is a?d] the relation [y] = [o] + [B] + 2[o] we find 6, ([II]) = [ﬁ]sl] =—[a] —
Bl — lo].

b) The second part is a consequence of part a). O

PROPOSITION 3.4. The fundamental group of D*3 is isomorphic to Z
and it is generated by [a] (or by [5]).

PRroOF. This is a consequence of Proposition 3.3 and the computations
in Section 2:

82 2.2 2,2
m2(CP?) = Z([®]) —=m (D7) = Z([o], 8], [0]) —=m1(D*?) —=1
o o J{l* il*

g
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4. Non planar Desargues Configurations

First we analyze the fundamental group of two three-dimensional con-
figuration spaces D3 = D‘(;’?’ and D? = D33,

LEMMA 4.1. The following projections are locally trivial fibrations:

a) Fo(C) x Fo(C) x Fo(C) = D} — Fo2,
(A1, By, Ag, By, Az, B3) — (dy,da, d3)

b) D} — D3 — CP3,
(A1,B1,As, By, A3, B3) — I = dy Nda N ds.

PRrROOF. The proofs are similar to those of Lemmas 2.1 and 2.2. O

PROOF OF THEOREM 1.4 (the case n = 3). We modify a little the pre-
vious notations: the base point in these solid Desargues configurations are
related to the center I° = [0:0:1: 0] and to the points:

Al =100:0:0:1, BY=[0:0:1:1], d}:Xo=X;=0,
AJ=1[0:1:0:0], BY=1[0:1:1:0], dJ:Xo=X3=0,
Using the fibrations of Lemma 4.1 we find
5. N
o (F3?) 25 m (Fa(C)) = 2P — m (D) — 1,

where the first group is isomorphic with (.7:2( (CP2)) =~ 72 = Z([F), [B])
(use the fibration * ~ CP?\ CP! — ]-"32 — F2(CP?)); the homotopy classes

[F] and [B] correspond to the free generators of the second homotopy groups
of the fiber and of the basis respectively, in the fibration (see [3]) CP! ~

(CP?\ {x}) — F»(CP?) — CP*
F: (D%SY) = (Fa%dY), zw (d3,d5@,d5 ),
where dg(z) 1 zXo—rX1 =0= X3 and dg(z) : rXo+2zX1 =0 = X3, and also

B: (D%SY) = (F22 %), 2z (a7, d3,dy),
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where d?(z) :z2Xg—1rX3=0= X4, ng(z) : rXo+zX3 = 0= X;. Choosing
the lifts F, B : (D2, S') — (D, Fa(d}) x Fo(d) x Fo(d3)):

F(z) = (A%, B, A5 BI®) AT pIe))

with
Af(z):[r:Z:O:O], Bf(z):[r:z:lz()],
Ag(z):[z:—r:O:O], Bg(z):[fz—rzl:()],
respectively
B(Z) - (Al( )7Bl ( )7A07B37A3( )7B3( )>
with
Af(z):[r:O:O:z]7 Bf(z):[r:O:lzz]
AgB(z):[z:O:O:—T], Bf(z):[fz():l:—r],

we obtain the equalities &, ([F]) = —[b] + [c], 6. ([B]) = —[a] + [c]. Therefore
we proved that

COROLLARY 4.2. The fundamental group of the space D? is infinite cyclic
generated by [a].

Using the second fibration of Lemma 4.1, we find the exact sequence
3y 9« 3 3
— m(CP?) =5 m (D)) — m(D%) =1

where the generator W : (Dz,Sl) — ((CP3,IO) , 2+ [r:0:z:0] has the lift

U: (D%SY) - D%, 2 (AY, By, 43, By, AyY, BYD),

with
BEI(Z):[T:():Z:l], ng(z):[r:lzz:O],
Ag(z):[Z:O:—r:O], Bg}(z):[r—l—E:O:z—r:O].

Therefore 6, ([¥]) = [@]51} = o] + [B] + 2[y] = 4[], and we proved:
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COROLLARY 4.3. The fundamental group of the space D3 is cyclic of
order four and it is generated by [o].

PROPOSITION 4.4.
m (DY) 2w (D) (nz 4);
m (D) 2m (D3’") (n=4).

Proor. This is like in 3.2. O

PrROOF OF THEOREM 1.4 AND OF THEOREM 1.5. We show that
7T1(D?74) = 1; this implies that 7r1(D3’4) = 1. Choose as a generator for

the fundamental group of the space of 3-planes in CP* containing the fixed
point 7 =[0:0:1:0:0] the class of the map

¥ (D% 8Y) = (Gr*(CP?), X4=0), z+—7rX;—2X4=0.
The lift

S (D% SY) = (DY, DY), 2 (A0, B0 AT BEG) 400 ooy,

where A =[0:0:0:1:0],...,B =[1:0:1:0:0] are fixed points and

Ag(z):[O:Z:O:OZT], BE(Z):[O:z:LO:T],

shows that 9, : 7T2(Gr2((CP3)) — T (D%?’) is an isomorphism. O
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