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Abstract

The smallest monoid containing a 2-testable semigroup is defined to be a 2-testable
monoid. The well-known Brandt monoid B1

2 of order six is an example of a 2-testable
monoid. The finite basis problem for 2-testable monoids was recently addressed and solved.
The present article continues with the investigation by describing all monoid varieties gen-
erated by 2-testable monoids. It is shown that there are 28 such varieties, all of which are
finitely generated and precisely 19 of which are finitely based. As a comparison, the sub-
variety lattice of the monoid variety generated by the monoid B1

2 is examined. This lattice
has infinite width, satisfies neither the ascending chain condition nor the descending chain
condition, and contains non-finitely generated varieties.

1. Introduction

A class of algebras is a variety if it is closed under the formation of ho-
momorphic images, subalgebras, and arbitrary direct products. An algebra
is finitely based if the identities it satisfies are finitely axiomatizable. The
algebras considered in the present article are semigroups and monoids. For
any class C of semigroups or monoids, let VS C denote the semigroup vari-
ety generated by C. For any class C of monoids, let VM C denote the monoid
variety generated by C. Refer to the surveys of Shevrin and Volkov [20] and
Volkov [28] for a wealth of information on varieties, identities, and the finite
basis problem for semigroups and monoids.
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A semigroup is 2-testable if it satisfies any identity formed by a pair of
words that begin with the same letter, end with the same letter, and share
the same set of factors of length two. Trahtman proved that the class of all
2-testable semigroups coincides with the variety A2 = VS {A2} generated by
the 0-simple semigroup

A2 =
⟨
a, b | a2 = aba = a, b2 = 0, bab = b

⟩
of order five [26], and that the identities

(1.1) x3 ≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx

constitute a finite basis for the variety A2 [25]. It follows that any semigroup
that satisfies the identities (1.1) is 2-testable. In particular, the Brandt semi-
group

B2 =
⟨
a, b | a2 = b2 = 0, aba = a, bab = b

⟩
of order five is 2-testable; this semigroup was also shown by Trahtman to be
finitely based [22].

For any semigroup S, let S1 denote the smallest monoid containing S.
Since the variety A2 coincides with the class of 2-testable semigroups [26], it
is convenient to refer to a monoid of the form S1, where S is any semigroup
from A2, as a 2-testable monoid. The 2-testable monoids A1

2 [23] and B1
2 [17]

are non-finitely based. In fact, a well-known result of M. V. Sapir [19] im-
plies that the monoids A1

2 and B1
2 are inherently non-finitely based, that is,

they are not contained in any finitely based locally finite variety. It follows
that any 2-testable monoid S1 is non-finitely based whenever B2 ∈ VS{S}.
Recently, the finite basis property of all 2-testable monoids S1 for which
B2 /∈ VS{S} was established [14]. These results led to a solution of the finite
basis problem for all 2-testable monoids.

Theorem 1.1. For any semigroup S ∈ A2, the monoid S1 is finitely
based if and only if B2 /∈ VS {S}.

The present article continues with the investigation of 2-testable monoids
by describing the monoid varieties they generate. Since the variety A2 is the
largest variety generated by 2-testable semigroups [26], it follows that the
lattice L(A2) of subvarieties of A2 coincides with the lattice of all varieties
of 2-testable semigroups. This lattice is countably infinite [10] and contains
an isomorphic copy of any finite lattice [27]. In contrast, there are only 28
monoid varieties generated by 2-testable monoids; these varieties constitute
the join-semilattice in Figure 1.

In Section 3, finite 2-testable semigroups are presented to show that the
varieties in Figure 1 are all finitely generated by 2-testable monoids. Other
information on these varieties that are required in later sections are also
given. In particular, it is noted that the monoid variety A1

0 ∨ L1
2 ∨ R1

2 coin-
cides with the largest finitely based variety generated by 2-testable monoids.
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Fig. 1. The join-semilattice of varieties generated by 2-testable monoids

All subvarieties of A1
0∨L1

2∨R1
2 are then identified in Section 4. These subva-

rieties coincide with the 19 finitely based varieties in Figure 1 and constitute
a sublattice of the lattice of monoid varieties.

In Section 5, non-finitely based varieties generated by 2-testable monoids
are examined. It is easily seen from Theorem 1.1 that these varieties belong
to the interval

[
B1
2,A1

2

]
, where A1

2 = VM
{
A1

2

}
and B1

2 = VM
{
B1

2

}
. Since

all varieties in the interval
[
B1
2,A1

2

]
are non-finitely based, none of them has

a sufficiently well-described identity basis. It is thus extremely difficult, if
not impossible, to identify all varieties in the interval

[
B1
2,A1

2

]
. Fortunately,

based on recent results regarding subvarieties of A2 [13], the varieties in

the interval
[
B1
2,A1

2

]
generated by 2-testable monoids are shown to coincide

with the nine non-finitely based varieties in Figure 1. These nine varieties
constitute a join-semilattice, but unlike the 19 finitely based varieties in Sec-
tion 4, it is unknown if this join-semilattice is a lattice. Nevertheless, the
join-semilattice in Figure 1 is verified by results established in Sections 3–5.
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Now regardless of whether or not the join-semilattice in Figure 1 is a
lattice, the varieties it contains are far from all subvarieties of A1

2. This
is demonstrated in Section 6, where results of Jackson [5], Jackson and
O. Sapir [7], and M. V. Sapir [18, 19] are used to establish extreme properties
of the lattice of subvarieties of the smaller variety B1

2. Specifically, this lat-
tice has infinite width, satisfies neither the ascending chain condition nor the
descending chain condition, and contains non-finitely generated varieties.

The article ends with Section 7.0, where several open questions regarding
the join-semilattice in Figure 1 and subvarieties of A1

2 are posed.

2. Preliminaries

Most of the notation and background material of this article are given
in this section. Refer to the monograph of Burris and Sankappanavar [2] for
more information on universal algebra.

2.1. Letters and words

Let X be a fixed countably infinite alphabet throughout. Denote by
X+ and X ∗ the free semigroup and the free monoid over X respectively.
Elements of X and X ∗ are referred to as letters and words respectively.

Let x be any letter and w be any word. Then

• the content of w, denoted by con (w), is the set of letters occurring
in w;

• the head of w, denoted by h(w), is the first letter occurring in w;

• the tail of w, denoted by t(w), is the last letter occurring in w;

• the initial part of w, denoted by ini (w), is the word obtained from w
by retaining the first occurrence of each letter;

• the final part of w, denoted by fin (w), is the word obtained from w
by retaining the last occurrence of each letter;

• the number of times x occurs in w is denoted by occ (x,w);

• x is simple in w if occ (x,w) = 1;

• w is simple if occ (y,w) 5 1 for any y ∈ X ;

• w is quadratic if occ (y,w) 5 2 for any y ∈ X .

Let w be any quadratic word. Ifw = axbxc for some x ∈ X and a,b,c ∈
X ∗ such that x /∈ con (abc), then the distance between the two occurrences
of x in w is the length of b. If x1, . . . , xr are all the distinct non-simple



370 E. W. H. LEE

letters of w, then the separation degree of w is the sum d1 + · · ·+ dr where
di is the distance between the two occurrences of xi in w.

2.2. Identities and varieties

An identity is written in the form w ≈ w′ where w,w′ ∈ X+. An iden-
tity w ≈ w′ is nontrivial if w ̸= w′. A semigroup S satisfies an identity
w ≈ w′ if, for any substitution φ from X into S, the elements wφ and w′φ
coincide in S. A class C of semigroups satisfies an identity w ≈ w′ if every
semigroup in C satisfies w ≈ w′; this is indicated by C � w ≈ w′.

Let Σ be any set of identities. The deducibility of an identity w ≈ w′

from Σ is indicated by w
Σ≈ w′. The monoid variety defined by Σ, denoted

by [Σ], is the class of all monoids that satisfy all identities in Σ; in this case,
Σ is said to be a basis for the variety. A variety is finitely based if it possesses
a finite basis.

For any variety V and any subvariety V′ of V, the interval [V′,V] is the
set of all subvarieties of V containing V′. Let L(V) denote the lattice of
subvarieties of V. Equivalently, L(V) = [0,V] where 0 is the trivial variety.

Lemma 2.1 (Almeida [1, Lemma 7.1.1]). Let S be any semigroup and V
be any monoid variety such that S ∈ VSV. Then S1 ∈ V.

3. Some 2-testable monoids

The present section introduces 2-testable monoids that generate the va-
rieties in Figure 1. Some identities and identity bases that are required in
later sections are also given.

3.1. Monoids generating varieties in Figure 1

It is routinely checked that the following semigroups satisfy the identities
(1.1) and so are 2-testable:

A0 =
⟨
a, b | a2 = a, b2 = b, ba = 0

⟩
,

B0 =
⟨
a, b, c | a2 = a, b2 = b, ab = ba = 0, ac = cb = c

⟩
,

I =
⟨
a, b | ab = a, ba = 0, b2 = b

⟩
,

J =
⟨
a, b | ba = a, ab = 0, b2 = b

⟩
,

K =
⟨
a, b | a2 = b2 = ba = 0

⟩
,
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L2 =
⟨
a, b | a2 = ab = a, b2 = ba = b

⟩
,

N2 =
⟨
a | a2 = 0

⟩
,

R2 =
⟨
a, b | a2 = ba = a, b2 = ab = b

⟩
.

In fact, the semigroups A0, I, J , L2, N2, and R2 are isomorphic to subsemi-
groups of A2, and the semigroup B0 is isomorphic to a subsemigroup of B2.
Note that L2 is a left-zero semigroup, N2 is a null semigroup, and R2 is a
right-zero semigroup. Let Y be the variety of semilattice monoids and let

A1
0 = VM

{
A1

0

}
, B1

0 = VM
{
B1

0

}
, I1 = VM

{
I1
}
, J1 = VM

{
J1

}
,

K1 = VM
{
K1

}
, L1

2 = VM
{
L1
2

}
, N1

2 = VM
{
N1

2

}
, R1

2 = VM
{
R1

2

}
.

The join of two varieties V and V′, denoted by V ∨V′, is the smallest
variety containing V and V′. If S and T are 2-testable semigroups, then
the direct product S × T is a 2-testable semigroup such that VM

{
S1

}
∨

VM
{
T 1

}
= VM

{
(S × T )1

}
. It follows that the varieties in Figure 1 are

finitely generated by 2-testable monoids.

Lemma 3.1. The variety A1
0 ∨L1

2 ∨R1
2 is the largest finitely based variety

generated by 2-testable monoids.

Proof. The variety A2 contains a subvariety that is largest with re-
spect to not containing the semigroup B2 [8, Theorem 3.6]; this subvariety
of A2 is generated by a certain 2-testable semigroup C0 of order six [15,

Theorem 4.2(iii)]. By Theorem 1.1, the variety VM
{
C1
0

}
coincides with the

largest finitely based variety generated by 2-testable monoids. The present
lemma then follows since the varieties VM

{
C1
0

}
and VM

{
A1

0 × L1
2 ×R1

2

}
coincide [14, Lemma 3.2]. �

3.2. Bases and identities

Lemma 3.2. Let w ≈ w′ be any identity. Then

(i) L1
2 � w ≈ w′ if and only if ini (w) = ini (w′);

(ii) R1
2 � w ≈ w′ if and only if fin (w) = fin (w′).

Further, if the words w and w′ are quadratic, then

(iii) N1
2 � w ≈ w′ if and only if occ (x,w) = occ (x,w′) for all x ∈ X .

Proof. These results are well known and easily verified. �
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Lemma 3.3.

(i) L1
2 = [xyx ≈ xy].

(ii) R1
2 = [xyx ≈ yx].

(iii) L1
2 ∨ R1

2 =
[
x2 ≈ x, xyxzx ≈ xyzx

]
.

(iv) N1
2 ∨ L1

2 =
[
x3 ≈ x2, xyx ≈ x2y

]
.

(v) N1
2 ∨ R1

2 =
[
x3 ≈ x2, xyx ≈ yx2

]
.

Proof. Parts (i)–(iii) are well known and can be found in Almeida [1,
Section 5.5]. The arguments of Edmunds [3, proof of Proposition 3.1(c)] can
be repeated to establish part (iv). Part (v) is symmetrical to part (iv). �

The following identities are required in the bases for some varieties con-
taining the monoids A1

0 and B1
0 :

xyxzx ≈ xyzx,(⋆)

xyxy ≈ x2y2,(�)

xyxy ≈ xy2x,(I)

xyxy ≈ yx2y.(J)

Lemma 3.4.

(i) A1
0 ∨ L1

2 ∨ R1
2 =

[
(⋆)

]
.

(ii) A1
0 ∨ L1

2 =
[
(⋆), (I)

]
.

(iii) A1
0 ∨ R1

2 =
[
(⋆), (J)

]
.

(iv) A1
0 =

[
(⋆), (I), (J)

]
.

(v) B1
0 ∨ L1

2 ∨ R1
2 =

[
(⋆), (�)

]
.

(vi) B1
0 ∨ L1

2 =
[
(⋆), (�), (I)

]
.

(vii) B1
0 ∨ R1

2 =
[
(⋆), (�), (J)

]
.

(viii) B1
0 =

[
(⋆), (�), (I), (J)

]
.

Proof. Parts (i)–(iv) follow from Lee [14, Proposition 2.3], part (viii)
follows from Edmunds [3, Proposition 3.1(i)], and part (v) is established at
the end of this subsection.

It follows from Edmunds [3, Proposition 3.1(i)] that the identities
{
(⋆),

(�), (I)
}

constitute a basis for a certain monoid of order five. The proof of
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this result can easily be repeated to show the same identities also constitute a
basis for the variety B1

0 ∨L1
2. Hence part (vi) holds. By symmetry, part (vii)

also holds. �
Remark 3.5. Note that if a letter x occurs three or more times in a

word w, then all except the first and last occurrences of x in w can be elimi-
nated by the identity (⋆) and its consequences x2yx ≈ xyx ≈ xyx2. There-
fore any word can be converted by the identity (⋆) into a unique quadratic
word.

Let x be any letter in a quadratic word w such that w = axbxc for
some a,b, c ∈ X ∗. Then x is said to be tight in w if h(b) /∈ con (a) and
t(b) /∈ con (c). Note that x is vacuously tight in w if b = ∅. A quadratic
word is tight if all its non-simple letters are tight in it.

Lemma 3.6. Let w be any word. Then there exists a tight quadratic word
ŵ such that the identity w ≈ ŵ is a consequence of the identities

{
(⋆), (�)

}
.

Proof. By Remark 3.5, the word w can be chosen to be quadratic.
Suppose that w = axbxc for some a,b, c ∈ X ∗ and x is not tight in w. If
h(b) = h ∈ con (a), say a = a′ha′′ and b = hb′ for some a′,a′′,b′ ∈ X ∗, then

the identities
{
(⋆), (�)

}
can be applied to interchange the first x with the

first letter of b:

w = a′ha′′xhb′xc
(⋆)
≈ a′ha′′hxhxb′xc

(�)
≈ a′ha′′h2x2b′xc

(⋆)
≈ ahxb′xc.

Similarly, if t(b) ∈ con (c), then the identities
{
(⋆), (�)

}
can be applied to

interchange the second x with the last letter of b. These interchanges can be
repeated until the letter x is tight. In other words, the identities

{
(⋆), (�)

}
tightened the letter x. Observe that in the process of tightening a non-simple
letter x, each time an identity from

{
(⋆), (�)

}
is applied to interchange x

with another non-simple letter y,

• the distance between the two occurrences of x decreases,

• the distance between the two occurrences of y decreases, and

• the distance between the two occurrences of any other non-simple let-
ter remains unchanged.

It follows that whenever the identities
{
(⋆), (�)

}
tighten a non-tight let-

ter x, the separation degree of the word decreases. Since the separation
degree of any word is nonnegative, only finitely many applications of the
identities

{
(⋆), (�)

}
are required to tighten every non-simple letter of w. �

Proof of Lemma 3.4(v). Luo and Zhang have shown that the identi-
ties

x8y ≈ x2y, xy8 ≈ xy2, x7yx ≈ xyx, x2yx ≈ xyx2, xyxzx ≈ x2yzx,
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and (�) constitute a basis for the variety S3 generated by all semigroups of
order three [16, Corollary 4.6]. The monoid B1

0 can then be shown to belong
to the variety S3. It follows that results of Luo and Zhang [16] will be useful
in the present proof.

It is routinely verified that the monoids B1
0 , L

1
2, and R1

2 satisfy the iden-

tities
{
(⋆), (�)

}
. Therefore, to complete the proof, it suffices to show that

any identity w ≈ w′ satisfied by the variety B1
0 ∨ L1

2 ∨ R1
2 is deducible from

the identities
{
(⋆), (�)

}
. By Remark 3.5 and Lemma 3.6, the words w and

w′ can be chosen to be quadratic and tight. Then the wordsw and w′ satisfy
conditions (CF1)–(CF4) in Luo and Zhang [16, Section 4] and so are said to
be in canonical form. Now the monoid N1

2 is isomorphic to a submonoid of

B1
0 and so satisfies the identityw ≈ w′; since the monoids L1

2 and R1
2 also sat-

isfy the identity w ≈ w′, the conditions ini (w) = ini (w′), fin (w) = fin (w′),
and occ (x,w) = occ (x,w′) for all x ∈ X hold by Lemma 3.2. It then fol-
lows from Luo and Zhang [16, Lemma 4.5] that the words w and w′ are
identical. Consequently, the identity w ≈ w′ is deducible from the identities{
(⋆), (�)

}
. �

3.3. Other required identities

Lemma 3.7. Let V be any subvariety of A1
2.

(i) If A1
0 /∈ V, then V satisfies the identity

(3.1)
(
x2y2

)2 ≈ x2y2.

(ii) If A1
2 /∈ V, then V satisfies the identity

(3.2) (
(
x2y

)2(
yx2

)2)2 ≈ (
x2yx2

)2
.

(iii) If R1
2 /∈ V, then V satisfies the identity

(3.3)
(
x2y

)2
x2 ≈

(
x2y

)2
.

(iv) If L1
2 /∈ V, then V satisfies the identity

(3.4) x2
(
yx2

)2 ≈ (
yx2

)2
.

(v) If B1
0 /∈ V, then V satisfies one of the identities

x2 ≈ x,(3.5)
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x2yx2 ≈ x2y,(3.6)

x2yx2 ≈ yx2.(3.7)

Proof. Part (v) follows from Almeida [1, Proposition 11.10.2]. Since
parts (iii) and (iv) are dual results, it suffices to verify parts (i)–(iii). Let
S ∈ {A0, A2, R2}. Suppose that S1 /∈ V. Then S /∈ VSV by Lemma 2.1.

(i) If S = A0, then VSV � (3.1) by Torlopova [21].

(ii) If S = A2, then VSV � (3.2) by Lee [9].

(iii) If S = R2, then VSV � (3.3) by Almeida [1, Proposition 10.10.2(c)]. �

4. Finitely based varieties generated by 2-testable monoids

Proposition 4.1.

(i) The lattice in Figure 2 coincides with L
(
A1
0 ∨ L1

2 ∨ R1
2

)
.

(ii) The varieties in Figure 2 are precisely all finitely based varieties gen-
erated by 2-testable monoids.
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Fig. 2. The lattice of finitely based varieties generated by 2-testable monoids
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In Lemma 4.2, the subvarieties of A1
0 ∨ L1

2 ∨R1
2 are partitioned into four

disjoint intervals. The varieties in these intervals are then described in
Lemma 4.3. Based on these results, the proof of Proposition 4.1 is given
at the end of the section.

Lemma 4.2. The lattice L
(
A1
0 ∨ L1

2 ∨ R1
2

)
is the disjoint union of the

intervals

I1 =
[
L1
2 ∨ R1

2,A1
0 ∨ L1

2 ∨ R1
2

]
,

I2 =
[
L1
2,A1

0 ∨ L1
2

]
,

I3 =
[
R1
2,A1

0 ∨ R1
2

]
,

I4 = L
(
A1
0

)
.

Proof. Let V ∈ L
(
A1
0 ∨ L1

2 ∨ R1
2

)
. Then by Lemma 3.4(i), the variety

V satisfies the identity (⋆). There are four cases.
Case 1. L1

2, R
1
2 ∈ V. Then V ∈ I1.

Case 2. L1
2 ∈ V and R1

2 /∈ V. Then by Lemma 3.7(iii), the variety V satisfies
the identity (3.3). Since

xyxy
(⋆)
≈ xy

(
x2y

)2 (3.3)
≈ xy

(
x2y

)2
x2

(⋆)
≈ xy2x,

the variety V also satisfies the identity (I). Hence V ∈ I2 by Lemma 3.4(ii).
Case 3. L1

2 /∈ V and R1
2 ∈ V. By an argument that is symmetrical to Case 2,

the variety V satisfies the identity (J) so that V ∈ I3 by Lemma 3.4(iii).
Case 4. L1

2, R
1
2 /∈ V. By Cases 2 and 3, the variety V satisfies the identities

(I) and (J). Therefore V ∈ I4 by Lemma 3.4(iv). �
Lemma 4.3.

(i) The varieties in the interval I1 constitute the chain

L1
2 ∨ R1

2 ⊂ B1
0 ∨ L1

2 ∨ R1
2 ⊂ A1

0 ∨ L1
2 ∨ R1

2.

(ii) The varieties in the interval I2 constitute the chain

L1
2 ⊂ N1

2 ∨ L1
2 ⊂ B1

0 ∨ L1
2 ⊂ A1

0 ∨ L1
2.

(iii) The varieties in the interval I3 constitute the chain

R1
2 ⊂ N1

2 ∨ R1
2 ⊂ B1

0 ∨ R1
2 ⊂ A1

0 ∨ R1
2.

(iv) The eight subvarieties of A1
0 in Figure 2 constitute the interval I4.
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Proof. (i) Let V ∈ I1 so that V satisfies the identity (⋆) by Lemma
3.4(i). Suppose that V ̸= A1

0 ∨ L1
2 ∨ R1

2. Then A1
0 /∈ V because L1

2, R
1
2 ∈ V

by assumption. By Lemma 3.7(i), the variety V satisfies the identity (3.1).
Since

xyxy
(⋆)
≈ x2y2x2y2

(3.1)
≈ x2y2,

the variety V satisfies the identity (�) so that V j B1
0 ∨ L1

2 ∨ R1
2 by Lemma

3.4(v).
Suppose that V ̸= B1

0 ∨ L1
2 ∨ R1

2. Then B1
0 /∈ V because L1

2, R
1
2 ∈ V by

assumption. By Lemmas 3.2 and 3.7(v), the variety V satisfies the identity
(3.5). It then follows from Lemma 3.3(iii) that V = L1

2 ∨ R1
2.

(ii) Let V ∈ I2 so that V satisfies the identities
{
(⋆), (I)

}
by Lemma

3.4(ii). Suppose that V ̸= A1
0 ∨ L1

2. Then A1
0 /∈ V since L1

2 ∈ V by assump-
tion. By the same argument in part (i), the variety V satisfies the identity
(�) so that V j B1

0 ∨ L1
2 by Lemma 3.4(vi).

Suppose that V ̸= B1
0 ∨L1

2. Then B1
0 /∈ V because L1

2 ∈ V by assumption.
By Lemmas 3.2(i) and 3.7(v), the variety V satisfies either the identity (3.5)
or the identity (3.6). But since

xyx
(3.5)
≈ x2y2x2

(I)
≈ x2yx2y

(3.5)
≈ x2y and xyx

(⋆)
≈ x2yx2

(3.6)
≈ x2y,

the variety V satisfies the identity xyx ≈ x2y in either case so that V j
N1
2 ∨ L1

2 by Lemma 3.3(iv).

Suppose that V ̸= N1
2∨L1

2. Then N1
2 /∈ V because L1

2 ∈ V by assumption.

By Lemma 3.2(iii), the variety satisfies the identity x2 ≈ x so that V = L1
2

by Lemma 3.3(i).
(iii) This is symmetrical to part (ii).
(iv) This was established by Lee [11, Section 5]. �

Proof of Proposition 4.1. (i) This follows from Lemmas 4.2 and 4.3.
(ii) Let V be any finitely based variety generated by 2-testable monoids.

Then V j A1
0 ∨ L1

2 ∨ R1
2 by Lemma 3.1. By part (i), the variety V is one of

the varieties in Figure 2. �

5. Non-finitely based varieties generated by 2-testable monoids

Proposition 5.1. The non-finitely based varieties generated by 2-test-
able monoids constitute the join-semilattice in Figure 3.
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cA1
2

cA1
0 ∨ B1

2 ∨ L1
2 ∨ R1

2

cB1
2 ∨ L1

2 ∨ R1
2cA1

0 ∨ B1
2 ∨ L1

2

cB1
2 ∨ L1

2

cA1
0 ∨ B1

2 ∨ R1
2

cB1
2 ∨ R1

2
cA1

0 ∨ B1
2

c
B1
2

��������

HHHHHHHH

HHHHHHHH

����������������

HHHHHHHH

HHHHHHHH

��������

Fig. 3. The join-semilattice of non-finitely based varieties generated by 2-testable
monoids

Let P and Q be semigroups with the following multiplication tables:

P 0 a b c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 b
b 0 0 0 0 b b
c 0 a b c 0 0
d 0 0 0 0 d d
e 0 0 0 0 e e

Q 0 a b c d
0 0 0 0 0 0
a 0 0 0 a a
b 0 a b a 0
c 0 0 0 c c
d 0 0 0 d d

The present section requires the semigroup varieties

A0 = VS{A0}, B2 = VS{B2}, L2 = VS{L2},

P = VS{P}, Q = VS{Q}, R2 = VS{R2},

and the monoid varieties

P1 = VM
{
P 1

}
, Q1 = VM

{
Q1

}
.

For any variety V, the dual variety of V is

Vδ = {V | V is anti-isomorphic to some member of V}.

For example,
(
L1
2

)
δ
= R1

2 and I1δ = J1. The varieties A1
0, A1

2, B1
0, B1

2, K1, N1,
and Y are self-dual in the sense that they satisfy the equation Vδ = V.

Some results regarding the varieties P1 and Q1 are established in Sub-
section 5.1. The proof of Proposition 5.1 is then given in Subsection 5.2.
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5.1. The varieties P1 and Q1

Lemma 5.2 (Lee [12, Proposition 3.3]).

(i) A1
0 ∨ L1

2 = Q1.

(ii) A1
0 ∨ R1

2 = Q1
δ.

Any words w1, . . . ,wn are said to be disjoint if the sets con (w1), . . . ,
con (wn) are pairwise disjoint. A word of length at least two is connected
if it cannot be written as a product of two disjoint nonempty words. Any
word w can be uniquely written in natural form, that is,

w =

n∏
i=1

(siwi)

where each si is a simple word with s1 possibly being empty, each wi is a
product of disjoint connected words with wn possibly being empty, and the
words s1,w1, . . . , sn,wn are disjoint.

Lemma 5.3 (Lee and Volkov [15, Proposition 3.2(ii)]). Let w =∏n
i=1(siwi) and w′ =

∏n′

i=1(s
′
iw

′
i) be any words written in natural form.

Then B2 � w ≈ w′ if and only if n = n′, si = s′i, and B2 � wi ≈ w′
i for all i.

Lemma 5.4 (Lee [13, Corollary 5.6(iii) and Lemma 6.2(i)]). Let w ≈ w′

be any identity satisfied by the semigroup B2. Suppose that the words w =∏n
i=1(siwi) and w′ =

∏n
i=1(siw

′
i) are in natural form. Then P � w ≈ w′ if

and only if h(wi) = h(w′
i) for all i.

Lemma 5.5.

(i) B1
2 ∨ L1

2 = B1
2 ∨ P1.

(ii) B1
2 ∨ R1

2 = B1
2 ∨ P1

δ.

Proof. By symmetry, it suffices to verify part (i). Let w ≈ w′ be any
identity satisfied by the variety B1

2 ∨ L1
2. By Lemma 5.3,

w =
n∏

i=1

(siwi) and w′ =
n∏

i=1

(siw
′
i)

when w and w′ are written in natural form. Since the words s1,w1, . . . , sn,
wn are disjoint, the words s1,w

′
1, . . . , sn,w

′
n are disjoint, and that ini (w) =

ini (w′) by Lemma 3.2(i), it follows that h(wi) = h(w′
i) for all i. Hence by

Lemma 5.4, the semigroup P satisfies the identityw ≈ w′. Since the identity
w ≈ w′ was arbitrarily chosen, P ∈ VS

(
B1
2 ∨ L1

2

)
. Therefore P 1 ∈ B1

2 ∨ L1
2
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by Lemma 2.1. Consequently, the inclusion B1
2 ∨ P1 j B1

2 ∨ L1
2 holds. The

inclusion B1
2 ∨ L1

2 j B1
2 ∨ P1 holds since the monoid L1

2 is isomorphic to the

submonoid {d, e, 1} of P 1. �

5.2. Proof of Proposition 5.1

As observed in Subsection 3.1, the nine varieties in Figure 3 are all gen-
erated by 2-testable monoids, and it is evident from the generating monoids
that the varieties form a join-semilattice. Further, these varieties contain
the inherently non-finitely based monoid B1

2 and so are non-finitely based.
Lemma 3.7 can be used to distinguish these varieties. For instance, the iden-
tity (3.2) is satisfied by the monoids A1

0, B
1
2 , L

1
2, and R1

2, but not by the

monoid A1
2. Hence A1

2 ̸= A1
0 ∨ B1

2 ∨ L1
2 ∨ R1

2.

It remains to show that if S1 is any non-finitely based 2-testable monoid,
then it generates one of the varieties in Figure 3. Let S = VS{S} and

S1 = VM
{
S1

}
. By Theorem 1.1, the variety S belongs to the interval

[B2,A2]. The structure of the interval [B2,A2], shown in Figure 4, fol-
lows from results of Lee [13, Section 5].
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Fig. 4. The interval [B2,A2]
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Remark 5.6.

(i) In Figure 4, only varieties in the interval [B2,A2] that are required in
the present section are labeled. Refer to Lee [13] for more information
on the unlabeled varieties and other subvarieties of A2.

(ii) The interval [A0 ∨B2,B2 ∨Q ∨Qδ] is isomorphic to the direct prod-
uct of two ω+3 chains, while the interval [B2,B2 ∨P ∨Pδ] is isomor-
phic to the direct product of two ω + 2 chains.

It is clear that if S ∈ {A2,B2,A0 ∨B2}, then S1 ∈
{
A1
2,B1

2,A1
0 ∨ B1

2

}
.

Therefore it suffices to consider the case when the variety S belongs to one
of the following subintervals of [B2,A2]:

J1 = [A0 ∨B2 ∨ L2 ∨R2,B2 ∨Q ∨Qδ],

J2 = [A0 ∨B2 ∨ L2,B2 ∨Q],

J3 = [A0 ∨B2 ∨R2,B2 ∨Qδ],

J4 = [B2 ∨ L2 ∨R2,B2 ∨P ∨Pδ],

J5 = [B2 ∨ L2,B2 ∨P],

J6 = [B2 ∨R2,B2 ∨Pδ].

The following result then verifies that the variety S1 coincides with one of
the varieties in Figure 3.

Lemma 5.7.

(i) If S ∈ J1, then S1 = A1
0 ∨ B1

2 ∨ L1
2 ∨ R1

2.

(ii) If S ∈ J2, then S1 = A1
0 ∨ B1

2 ∨ L1
2.

(iii) If S ∈ J3, then S1 = A1
0 ∨ B1

2 ∨ R1
2.

(iv) If S ∈ J4, then S1 = B1
2 ∨ L1

2 ∨ R1
2.

(v) If S ∈ J5, then S1 = B1
2 ∨ L1

2.

(vi) If S ∈ J6, then S1 = B1
2 ∨ R1

2.

Proof. Part (i) holds because if S ∈ J1, then

A1
0 ∨ B1

2 ∨ L1
2 ∨ R1

2 j S1 j B1
2 ∨Q1 ∨Q1

δ = A1
0 ∨ B1

2 ∨ L1
2 ∨ R1

2

by Lemma 5.2. Parts (ii) and (iii) hold similarly. Part (iv) holds because if
S ∈ J4, then

B1
2 ∨ L1

2 ∨ R1
2 j S1 j B1

2 ∨ P1 ∨ P1
δ = B1

2 ∨ L1
2 ∨ R1

2
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by Lemma 5.5. Parts (v) and (vi) hold similarly. �

6. The lattice L
(
B1
2

)
Subsection 6.2 presents a chain in the lattice L

(
B1
2

)
that is isomorphic to

the integers; this lattice thus violates both the ascending chain and descend-
ing chain conditions. Subsection 6.3 demonstrates that the lattice L

(
B1
2

)
contains finite anti-chains of arbitrary order and so has infinite width. The
lattice L

(
B1
2

)
is also shown in Subsection 6.4 to contain non-finitely gener-

ated varieties.
For any word w, let S(w) denote the Rees quotient monoid of X ∗ over

the ideal of all words that are not factors of w. Equivalently, S(w) can be
treated as the monoid that consists of every factor of the word w, together
with a zero element 0, with binary operation · given by

a · b =

{
ab, if ab is a factor of w;

0, otherwise.

The empty factor, more conveniently written as 1, is the identity element
of the monoid S(w). Note that 0 and 1 are the only idempotents of the
monoid S(w).

6.1. Isoterms and Zimin words

A word w is an isoterm for a semigroup S if S does not satisfy any
nontrivial identity of the form w ≈ w′.

Lemma 6.1 (Jackson [5, Lemma 3.3]). Let w be any word and let M be
any monoid. Then w is an isoterm for M if and only if S(w) ∈ VM{M}.

The Zimin words [29] are defined by z1 = x1 and zn+1 = znxn+1zn for
all n = 1. For each n = 1, define the monoid variety

Zn = VM
{
S(zn)

}
.

Lemma 6.2 (M. V. Sapir [19, Proposition 7 and Lemma 3.7]).

(i) A finite semigroup S is inherently non-finitely based if and only if every
Zimin word is an isoterm for S.

(ii) Every Zimin word is an isoterm for the monoid B1
2 . Consequently, the

monoid B1
2 is inherently non-finitely based and Zn j B1

2 for all n = 1.
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6.2. An infinite chain in L
(
B1
2

)
Lemma 6.3. For any n = 1, the inclusions Zn ⊂ Zn+1 ⊂ B1

2 are proper.

Proof. The word zn is clearly an isoterm for the monoid S(zn+1). Hence
the inclusions Zn j Zn+1 j B1

2 hold by Lemmas 6.1 and 6.2(ii). It is rou-
tinely shown that the identity zn+1 ≈ x1zn+1 is satisfied by the monoid S(zn)
but not by the monoid S(zn+1). Therefore Zn ̸= Zn+1. Since all Zimin words
are square-free, the monoid S(zn+1) satisfies the identity x2y ≈ yx2. But the
substitution (x, y) 7→ (ab, a) shows that the monoid B1

2 does not satisfy the

identity x2y ≈ yx2. Hence Zn+1 ̸= B1
2. �

Lemma 6.4. The words xyzxy and xyzyx are isoterms for the monoid
S(z3).

Proof. Suppose that some word from {xyzxy, xyzyx} is not an isoterm
for the monoid S(z3) so that this monoid satisfies some nontrivial identity
xyzxy ≈ w or some nontrivial identity xyzyx ≈ w. Performing the substi-
tution y 7→ yx on the former identity and the substitution z 7→ xzx on the
latter identity, a nontrivial identity of the form xyxzxyx ≈ w′ is obtained
in either case. Hence the word xyxzxyx is not an isoterm for the monoid
S(z3). But this is impossible since the words xyxzxyx and z3 are the same
up to a permutation on the letters in X . �

Proposition 6.5. The lattice L
(
B1
2

)
contains a chain that is isomorphic

to the integers.

Proof. In the presence of Lemma 6.3, it suffices to show that the lattice
L(Z3) contains an infinite decreasing chain. It follows from Lemmas 6.1

and 6.4 that the varieties W = VM
{
S(xyzxy)

}
and W′ = VM

{
S(xyzyx)

}
are contained in Z3. Jackson and O. Sapir [7, Section 5] proved that the
varietiesW andW∨W′ are non-finitely based and finitely based respectively.
Consequently, the subinterval [W,W ∨W′] of L(Z3) contains the required
infinite decreasing chain. �

6.3. Finite anti-chains in L
(
B1
2

)
of arbitrary order

Lemma 6.6. Let w0, . . . ,wn ∈ {y1y2, y2y1} with n = 1. Then the word

w = w0

n∏
i=1

(hiwi)

is an isoterm for the monoid S(zm+2) for any m such that 2m > n.
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Proof. Without loss of generality, assume that w0 = y1y2. By defini-
tion, the word z2 = x1x2x1 is a factor of the word zm+2. More specifically,
it is routinely shown by induction on m that

zm+2 = z2

2m−1∏
i=1

(tiz2)

for some t1, . . . , t2m−1 ∈ {x3, . . . , xm+2}. Let φ denote the substitution given
by y1φ = x1, y2φ = x2, and for each i ∈ {1, . . . , n},

hiφ =


ti, if wi−1 = y2y1 and wi = y1y2;

x1ti, if wi−1 = y1y2 and wi = y1y2;

tix1, if wi−1 = y2y1 and wi = y2y1;

x1tix1, if wi−1 = y1y2 and wi = y2y1.

Then wφ is a prefix of the word zm+2. (For example, consider the word

w = y1y2 h1 y1y2 h2 y2y1 h3 y2y1 h4 y1y2 h5 y2y1

with n = 5. Since 23 > 5, it suffice to choose m = 3. Then

wφ = x1x2 · h1φ · x1x2 · h2φ · x2x1 · h3φ · x2x1 · h4φ · x1x2 · h5φ · x2x1

= x1x2 · x1t1 · x1x2 · x1t2x1 · x2x1 · t3x1 · x2x1 · t4 · x1x2 · x1t5x1 · x2x1

is a prefix of the word z5.) Let s ∈ X ∗ be such that zm+2 = (wφ)s.
Working toward a contradiction, suppose that the word w is not an

isoterm for the monoid S(zm+2) so that this monoid satisfies a nontrivial
identity of the form w ≈ w′. Since every simple word is an isoterm for the
monoid S(zm+2), it follows that w

′ = w′
0

∏n
i=1(hiw

′
i) for some w′

0, . . . ,w
′
n ∈

{y1, y2}∗. It is then easily shown that wφ ̸= w′φ. Now the monoid S(zm+2)
satisfies the nontrivial identity (wφ)s ≈ (w′φ)s where (wφ)s = zm+2, and
this is impossible. �

Proposition 6.7. For each m = 0, the lattice L(Zm+2) has width at

least 2m. Consequently, the lattice L
(
B1
2

)
contains an anti-chain of each

finite order.

Proof. The result clearly holds if m = 0. Since the subvarieties W
and W′ of Z3 in the proof of Proposition 6.5 are incomparable, the lattice
L(Z3) has width at least two. Therefore it suffices to assume that m = 2.
Let 2m = n+ 1 (so that n = 3) and let y = y1y2

∏n
i=1(hiy1y2). For each
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j ∈ {1, . . . , n+ 1}, replace the jth factor y1y2 in the word y by y2y1, and
denote the resulting word by yj , that is,

y1 = y2y1 · h1y1y2 · h2y1y2 · · ·hn−1y1y2 · hny1y2,

y2 = y1y2 · h1y2y1 · h2y1y2 · · ·hn−1y1y2 · hny1y2,
...

yn+1 = y1y2 · h1y1y2 · h2y1y2 · · ·hn−1y1y2 · hny2y1.

By Lemmas 6.1 and 6.6, the varieties VM
{
S(y1)

}
, . . . ,VM

{
S(yn+1)

}
are

contained in the variety Zm+2; these n+1 subvarieties of Zm+2 are pairwise
incomparable since it is routinely checked that S(yj) � yk ≈ y if and only if
j ̸= k. �

6.4. Non-finitely generated varieties in L
(
B1
2

)
Lemma 6.8 (M. V. Sapir [18, Theorem 2]). A finite aperiodic monoid

M is inherently non-finitely based if and only if B1
2 ∈ VM{M}.

Recall from Lemma 6.3 that Z1 ⊂ Z2 ⊂ · · · ⊂ B1
2. Since the identity

x2y ≈ yx2 is satisfied by any monoid S(zn) but not by the monoid B1
2 , the

complete join

Z∞ = Z1 ∨ Z2 ∨ · · ·

is a proper subvariety of the variety B1
2.

Proposition 6.9. Let V be any aperiodic monoid variety such that
Z∞ j V and B1

2 /∈ V. Then the variety V is non-finitely generated. Con-

sequently, every proper subvariety of B1
2 that contains Z∞ is non-finitely

generated.

Proof. Suppose that V = VM{M} for some finite monoid M . Since
Z∞ j V, it follows from Lemma 6.1 that every Zimin word is an isoterm for
the monoid M . By Lemma 6.2(i), the monoid M is inherently non-finitely
based. The contradiction B1

2 ∈ V then follows from Lemma 6.8. �
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7. Open questions

7.1. Varieties in Figure 1

Let X denote the join-semilattice in Figure 1. Let X = F ∪N where F
consists of finitely based varieties in X, and N consists of non-finitely based
varieties in X. Recall from Propositions 4.1 and 5.1 that F coincides with
the lattice L

(
A1
0 ∨ L1

2 ∨ R1
2

)
and that N is a join-semilattice.

Question 7.1. Is the join-semilattice N a lattice?

Let V,V′ ∈ X. By Proposition 4.1 and the 2-testable monoids given
in Subsection 3.1 that generate the varieties in X, it is easily verified that
V ∨ V′ ∈ X. Since F = L

(
A1
0 ∨L1

2 ∨R1
2

)
, either V ∈ F or V′ ∈ F implies that

V∩V′ ∈ F ⊂ X. It follows that an affirmative answer to Question 7.1 implies
that the join-semilattice X is a lattice.

7.2. The interval
[
B1
2,A1

2

]
As commented in Section 1, the task of identifying all varieties in the

interval
[
B1
2,A1

2

]
is hindered by the presence of non-finitely based varieties

within it. But the complete description of the interval [B2,A2] (see Figure 4)
inspires the conjecture of bases of some varieties within the variety A1

2.

Question 7.2. Which of the following equations hold?

B1
2 = A1

2 ∩
[
x2y2 ≈ y2x2

]
,(7.1)

B1
2 ∨ L1

2 = A1
2 ∩

[
x2y2x2 ≈ x2y2

]
,(7.2)

B1
2 ∨ R1

2 = A1
2 ∩

[
x2y2x2 ≈ y2x2

]
,(7.3)

B1
2 ∨ L1

2 ∨ R1
2 = A1

2 ∩
[
x2y2x2y2 ≈ x2y2

]
,(7.4)

A1
0 ∨ B1

2 = A1
2 ∩

[
x2y2x2 ≈ y2x2y2

]
,(7.5)

A1
0 ∨ B1

2 ∨ L1
2 = A1

2 ∩
[
x2y2x2y2 ≈ x2y2x2

]
,(7.6)

A1
0 ∨ B1

2 ∨ R1
2 = A1

2 ∩
[
x2y2x2y2 ≈ y2x2y2

]
,(7.7)

A1
0 ∨ B1

2 ∨ L1
2 ∨ R1

2 = A1
2 ∩

[
x2y2x2z2x2 ≈ x2y2z2x2

]
.(7.8)

It is routinely shown that if (7.1)–(7.7) hold, then the answer to Ques-
tion 7.1 is affirmative.
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Question 7.3. Is every variety in the interval
[
B1
2,A1

2

]
of the form

A1
2 ∩ [Σ] for some finite set Σ of identities?

7.3. Number of subvarieties

Trahtman [24] proved that the semigroup variety A1
2 = VS

{
A1

2

}
con-

tains continuum many subvarieties while Jackson [4] later proved that the

smaller variety B1
2 = VS

{
B1

2

}
also has the same property. However, the

only monoids that belong to these subvarieties are semilattices. Therefore
no conclusion on the number of subvarieties of the monoid varieties A1

2 and

B1
2 can be drawn from the aforementioned results of Jackson and Trahtman.

Question 7.4. Does any of the monoid varieties A1
2 and B1

2 contain
continuum many subvarieties?

Jackson and McKenzie [6] presented a monoid of order 56 that generates
a monoid variety with continuum many subvarieties. An affirmative answer
to Question 7.4 thus provides a significantly smaller example.

7.4. Non-finitely generated varieties

It follows from Proposition 6.9 that every variety in the interval [Z∞,A1
2∩[

x2y ≈ yx2
]
] is non-finitely generated.

Question 7.5. Which of the inclusions Z∞ j B1
2 ∩

[
x2y ≈ yx2

]
j A1

2 ∩[
x2y ≈ yx2

]
is proper?

Note that if (7.1) holds, then B1
2 ∩

[
x2y ≈ yx2

]
= A1

2 ∩
[
x2y ≈ yx2

]
.
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