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Abstract

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G
if HP = PH for all Sylow subgroups P of G. Let Hsg be the subgroup of H generated by
all those subgroups of H which are S-quasinormal in G and H*¢ the intersection of all S-
quasinormal subgroups of G containing H. The symbol |G \p denotes the order of a Sylow
p-subgroup of G. We prove the following

THEOREM A. Let G be a finite group and p a prime dividing |G|. Then G is p-
supersoluble if and only if for every cyclic subgroup H of G = G/O,(G) of prime order or
order 4 (if p=2), G has a normal subgroup T such that HT = HC and HNT = H-NT.

THEOREM B. A soluble finite group G is p-supersoluble if and only if for every 2-
mazimal subgroup E of G such that O, (G) £ E and |G : E| is not a power of p, G has

an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that E°¢ = ET and
|ENT|, =|EscNT],.

THEOREM C. A finite group G is p-soluble if for every 2-mazimal subgroup E of G
such that Oy (G) S E and |G : E| is not a power of p, G has an S-quasinormal subgroup
T such that E°® = ET and |ENT|, = |Esc NT|,.

2000 Mathematics Subject Classification. Primary 20D10, 20D15.
Key words and phrases. Finite group, S-quasinormal subgroup, p-supersoluble group,
p-soluble group, 2-maximal subgroup.

*Research of the first author is supported by a NNSF grant of China (Grant #11071229)
and Wu Wen Tsun Key Laboratory of Mathematics of the Chinese Academy of Sciences
at USTC.

**Research of the second author supported by Chinese Academy of Sciences Visiting
Professorship for Senior International Scientists (grant No. 2010T2J12).

0081-6906/$ 20.00 © 2012 Akadémiai Kiadd, Budapest



p-SOLUBLE AND p-SUPERSOLUBLE FINITE GROUPS 391

1. Introduction

There are a large number of criteria for solubility, p-solubility, nilpotency,
p-nilpotency and supersolubility of finite groups. Moreover people found a
large number of various characterizations of such classes of groups. Never-
theless, the p-supersoluble groups remain little-studied subject of the group
theory. The present paper adds some result to this line of research.

Throughout this paper, all groups are finite, G is a finite group, p denotes
a prime divisor of |G| and |H|, denotes the order of a Sylow p-subgroup of
a group H.

Recall that a subgroup A of G is said to permute with a subgroup B if
AB = BA. If A permutes with all Sylow subgroups of GG, then A is called
S-permutable, S-quasinormal or 7(G)-permutable [12] in G. Let H be a sub-
group of G, H*Y the intersection of all S-permutable subgroups of G contain-
ing H [9] and let Hsg be the subgroup of H generated by all those subgroups
of H which are S-permutable in G [17]. Since S-quasinormal subgroups
of G form a sublattice of the lattice of all subgroups of G (O. Kegel [12]),
both subgroups H*¢ and H,q are S-quasinormal in G. We call Hyg the S-
quasinormal core of H in G and call H%¢ the S-quasinormal closure of H
in G.

Our main goal here is to prove the following theorems.

THEOREM A. G is p-supersoluble if and only if for every cyclic subgroup
H of G =G/Oy(G) of prime order or order 4 (if p=2), G has a normal

subgroup T such that HT = HC and HN'T = HesNT.

COROLLARY 1.1. Suppose that for every cyclic subgroup H of G of prime
order or order 4 (if p=2), G has a normal subgroup T such that HT = HCG
and HNT = Hsg NT. Then G is p-supersoluble.

COROLLARY 1.2 (Buckley [4]). Let G be a group of odd order. If every
minimal subgroup of G is normal in G, then G is supersoluble.

COROLLARY 1.2 (Gaschiitz [11, IV, Theorem 5.7]). If every minimal
subgroup of a group G is normal in G, then the commutator subgroup G’

of G is 2-closed.

PrOOF. By Theorem A, G is p-supersoluble for all odd primes p. Hence
G/Oy (G) is supersoluble (see below Lemma 2.5). Then, since Oz(G) is the
intersection of all such subgroups O, (G), we see that G’ is 2-closed.

Note that if a subgroup H is S-quasinormal in G, then H*¢ = H = H,q.
Hence, by Theorem A, we obtain

COROLLARY 1.3 (Shaalan [15]). If every cyclic subgroup of G of prime
order or order 4 is S-quasinormal in G, then G is supersoluble.
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A subgroup H of a group G is said to be c-normal in G [19] if G has a nor-
mal subgroup T such that HT = G (which implies H(T N H%) = H%) and
HNT=HgNT (which implies HNT = Hsg NT). Hence, by Theorem A,
we also have the following

COROLLARY 1.4 (Wang [19]). If every cyclic subgroup of G of prime
order or order 4 is c-normal in G, then G is supersoluble.

THEOREM B. Suppose that G is soluble. Then G is p-supersoluble if
and only if for every 2-mazimal subgroup E of G such that Oy (G) < E and
|G : E| is not a power of p, G has an S-quasinormal subgroup T with cyclic

Sylow p-subgroups such that B¢ = ET and |E N T]p = |Esg N T\p.

THEOREM C. G is p-soluble if for every 2-mazimal subgroup E of G such
that Oy (G) = E and |G : E| is not a power of p, G has an S-quasinormal

subgroup T such that B¢ = ET and |E N T\p = |Esg N T|p.

From Theorems B and C, we directly get

COROLLARY 1.5 (Guo, Skiba [9]). Suppose that for every 2-mazimal sub-
group E of G such that |G : E| is not a power prime, G has an S-quasinormal

cyclic subgroup T satisfying B¢ = ET and ENT = E,g NT. Then G is su-
persoluble.

COROLLARY 1.6 (Agrawal [1]). If every 2-maximal subgroup of G is
S-quasinormal in G, then G is supersoluble.

COROLLARY 1.7 (Huppert [10]). If every 2-maximal subgroup of G is
normal in G, then G is supersoluble.

All unexplained notations and terminologies in this paper are standard.
The reader is refereed to [2], [8], [6] if necessary.

2. Preliminaries

The following known results about subnormal and S-quasinormal sub-
groups will be used in many places of our proofs.

LEMMA 2.1. Let AS K <G and B < G. Then

(1) If A is subnormal in G and A is a w-subgroup of G, then A <
O (G) [21].

(2) If A is subnormal in G, then AN B is subnormal in B [6, A, (14.1)].

(3) If A is subnormal in G and B is a Hall w-subgroup of G, then AN B
is a Hall w-subgroup of A [21].

(4) If A is subnormal in G and A is soluble (nilpotent), then A is con-
tained in some soluble normal (nilpotent) subgroup of G [21].

(5) If A is subnormal in G and B is a minimal normal subgroup of G,
then B < Ng(A) [6, A, (14.3)].



p-SOLUBLE AND p-SUPERSOLUBLE FINITE GROUPS 393

LEMMA 2.2. Let H £ K £ G.

(1) If H is S-quasinormal in G, then H is S-quasinormal in K [12].

(2) Suppose that H is normal in G. Then K/H is S-quasinormal in G
if and only if K is S-quasinormal in G [12].

(3) If H is S-quasinormal in G, then H is subnormal in G [12].

(4) If H and F are S-quasinormal subgroups of G, then HNF and
(H,F) are S-quasinormal in G [12].
(5) If H is S-quasinormal in G, then H/H¢ is nilpotent [5].
(6) If H is S-quasinormal in G and M < G, then H N M 1is S-quasi-
normal in M [5].

(7) If H is S-quasinormal in G and H is a q-group for some prime q,
then O4(G) £ Ng(H) [14, Lemma A)].

LEMMA 2.3 [17, Lemma 2.8]. Let H £ K < G. Then:

(1) Hsg is an S-quasinormal subgroup of G and Hg < Hgg.

(2) Hge § Hgp.

(3) If H is normal in G, then (K/H) /) = Ksa/H.

(4) If H 1is either a Hall subgroup of G or a mazximal subgroup of G,
then Hy = Hg.

LEMMA 2.4 [9, Lemma 2.5]. Let G be a group and H £ K < G. Then:

(1) H%C is an S-quasinormal subgroup of G and H*¢ < HC.

(2) HsK § HSG

(3) If H is normal in G, then (K/H)*¢/" = KsG/H.

(4) If H is either a Hall subgroup of G or a mazimal subgroup of G,
then H’¢ = HC.

LEMMA 2.5. Let p be a prime and G a p-soluble group. Assume that
Oy (G) = 1. Then the following statements are equivalent.

(i) G is p-supersoluble;

(ii) G is supersoluble;

(ili) G/Op(G) is an abelian group of exponent dividing p — 1.

PROOF. (i) = (ii). Since G is p-supersoluble, for every chief p-factor
H/K of G, we have |H/K| = p and so G/Cq(H/K) is an abelian group of ex-
ponent dividing p — 1 (see [20, Chapter 1, Theorem 1.4]. Since Oy (G) =1,
the intersection of the centralizers of all chief factors H/K of |H/K|=p
is Op p(G) = Op(G). Hence G is supersoluble by [20, Chapter 1, Theo-
rem 1.9]. By using the same arguments, we also see that (ii) = (iii) and
(i) = ().

Let F be any non-empty class of groups. We use G to denote the in-
tersection of all normal subgroups N of G with G/N € F. A(p — 1) denotes
the formation of all abelian groups of exponent dividing p — 1. The symbol
Z14(G) denotes the largest normal subgroup of a group G such that every
chief factor of G below Zy(G) is cyclic.
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LEMMA 2.6 [18, Lemma 2.2]. Let E be a normal p-subgroup of G. If
E < Zy(G), then (G/Ca(E))"™Y < 0,(G/Cu(E)).

The following lemma may be proved based on some results in [13] on f-
hypercentral action (see [16, Chapter II| or [6, Chapter IV, Section 6]). For
reader’s convenience, we give a direct proof.

LEMMA 2.7. Let P be a normal p-subgroup of G and D a character-
istic subgroup of P such that every mon-trivial p'-automorphism of P in-
duces a non-trivial automorphism of D. Suppose that D < Zy(G). Then
P < Zy(G).

PROOF. Let C' = Cg(P) and H/K be an arbitrary chief factor of G be-
low P. Then O,(G/Cq(H/K)) =1 by [20, Appendix C, Corollary 6.4].

Since D < Zy(G), we have (G/Cq(D)) AP=Y 44 p-group by Lemma 2.5.

Hence (G/C)A?~Y is a p-group. It follows that G/Cq(H/K) € A(p—1) and
so |H/K| = p by [20, Chapter 1, Theorem 1.4]. Therefore P < Z;,(G). O

Let P be a p-group. If P is not a non-abelian 2-group we use Q(P) to
denote the subgroup 21 (P). Otherwise, Q(P) = Qa(P).

LEMMA 2.8 [3]. Let P be a p-group of class at most 2. Suppose that
exp (P/Z(P)) divides p.

(1) If p> 2, then exp (Q(P)) =p.

(2) If P is a non-abelian 2-group, then exp (Q(P)) = 4.

PROOF. See page 3 in [3].
Let H be a subgroup of G and p a prime. Then we say that H is Sp-

embedded in G if G has a subgroup T such that HT = H*“ and |H N T, =
’HSG N T‘p. O

LEMMA 2.9. Let H be a normal subgroup of G and H < K < G.

(1) If H is p-soluble and K/H is Sp-embedded in G/H, then K is Sy-
embedded in G.

(2) If K is Sp-embedded in G, then K/H is S,-embedded in G/H.

(3) If L is an Sp-embedded subgroup of G and L £ K, then L is Sp-
embedded in K.

(4) The subgroup HE/H is Sy-embedded in G/H, for every Sy,-embedded

in G subgroup E satisfying (|H|,|E|) = 1.

PROOF. (1) We prove that K is Sy-embedded in G by induction on |G|.
Let L be a minimal normal subgroup of G such that L < H. Then, obvi-
ously, (K/L)/(H/L) is Sp,-embedded in (G/L)/(H/L). If L # H, then by
induction, K/L is Sp-embedded in G/L. We may, therefore, assume that
H is a minimal normal subgroup of G. Let T/H be an S-quasinormal
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subgroup of G/H such that KT/H = (K/H)(T/H) = (K/H)*“/") and
|(T/H) N (K/H)|, = = |(T/H)N (K/H), G/H)] . By Lemma 2.2(2), T is

S-quasinormal in G. By Lemma 2.4(3), (K/H)® s(G/H) = K*¢/H. Hence
K¢ = KT. Since H i 1s p-soluble, H is either a p-group or a p’-group. Then,
since | (T/H) N (K/H = | (T/H)N (K/H)S(G/H)|p, we obtain [T'N K|, =
T N Ksgl, Hence K is S -embedded in G.

(2) Assume that KT = K*¢ and TN K|, =[TNKsl,, for some S-
quasinormal subgroup 7' of G. Then HT/H is an S-quasinormal in G/H
and (HT/H)(K/H) = KT/H = K*C/H = (K/H)*® by Lemma 2.4(3). Be-
sides, clearly, H < Kyg. Hence HNTNK =HNT = HNT N Kyg. This
implies that | (TH/H)N(K/H) \ = |H(TNK) /H\ |H(TmKsG)/H}p =
((TH/H) N (K/H)q /H)\ Thus K/H is S,-embedded in G/H.

(3) Let T be an S-quasinormal subgroup of G such that LT = L°¢
and [T N L[, = |T N Ll Let Ty =TnN LK. Then Ty = KNT N LY and
ToN Lgg =T N Lgg. By Lemma 2.2(6), K NT is S-quasinormal in K and
so by Lemma 2.2(4), Tp is S-quasinormal in K. Besides, by Lemma 2.4(2),
L < L3¢ and so LK = LK N ¢ = L5 N LT = L(LSK NT) = LTy. Fi-
nally, we show that |To N L|, = |To N Lsk |, In fact, we only need to prove
that |Pi| < Py, for some Sylow p-subgroups P; of Tp N L and some Sy-
low p—subgroup Py of TyN Lgg. Since HNTy < LNT, we have P < Ps,
for some Sylow p-subgroup Ps of LNT. On the other hand, by Lemma
2.3(2), Lsg £ Lsg. Hence TN Ly ST N Lsg =Ty N Lsg. Tt follows that
|P1| = |Ps| = |T'NL[,=[TNLsl, < || Hence L is Sy-embedded in K.

(4) By (2), we only need to prove that HE is Sy-embedded in G. Assume
that E is Sp-embedded in G' and let T" be an S-quasinormal subgroup of G
such that ET = E*“ and |T' N E|, = |T N Esgl,. Let Ty = HT. Then, obvi-
ously, T, is an S-quasinormal subgroup of G and HET, = HE*® = (H E)SG.
Next we show that |To N HE|, = | To N (HE)SG‘p.

Since (|E|,|H|) =1, E is a Hall 7-subgroup of EH and H is a Hall
n’-subgroup of EH, for some set 7 of primes. If p divides |H|, then
E is p'-group. Hence [Ty N HE|, = |H| = |To N HEql, = | To N (HE)sG\p.

Now we assume that p divide |E|. In this case, H is a p/-group. Let
D =TnNHE. By Lemmas 2.1(2) and 2.2(3), D is subnormal in HE and so
D=(DNH)DNE)SH(TNE). It follows that TyNHE = H(TNHE) =
HD £ H(TNE) and so

ToNHE|,=|TNE|,=|TNEx|, <|HTN (HE)sG\p <|ToNHE|,.
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Therefore [To N HE|, = | ToN (HE)SG‘p. This shows that HE is Sp-embed-
ded in G. UJ

LEMMA 2.10. Suppose that every mazimal subgroup E of G with
(]G : E|,p) =1 is normal in G. Let P be a Sylow p-subgroup of G. Then

G is p-closed and G/ P is nilpotent.

PROOF. Suppose that this lemma is false and let G be a counterexample
of minimal order. Obviously, the hypothesis is true for any factor group
of G. Hence G has a unique minimal normal subgroup, L say, and G/L is
p-closed with nilpotent factor (G/L)/(PL/L). If L is a p-group, then G is p-
closed with nilpotent factor G/P, which contradicts the choice of G. Hence
L is not a p-group. It is well known that the class of all p-closed groups
G with nilpotent G/P is a saturated formation. Hence L € ®(G). Let M
be a maximal subgroup of G such that ML = G. Suppose that p divides
|G : M|. Then p divides |L| and by Fratinni argument, for some maximal
subgroup E of G we have FL = G and p does not divide |G : E|. Hence E
is normal in G' by hypothesis, which implies |F| = 1. Consequently, G = L.
This contradiction completes the proof. O

LEMMA 2.11 [20, Chapter 4, Theorem 1.6]. Let p be an odd prime num-
ber and F field of characteristic p. Let G be a completely reducible soluble
linear group of degree n over F. Suppose that a Sylow p-subgroup of G has

order pM™ . Then \(n) < n —1 with equality only if n=1 or n=2 and
p=3.

3. Proof of Theorem A

Let H be a subgroup of G. Then we say, following [9], that H is N-
embedded in G if G has a normal subgroup T such that HT = H°¢ and
HNT=HyNT.

PrROOF OF THEOREM A. First suppose that every cyclic subgroup H
of G = G/Oy(G) of prime order or order 4 is N-embedded in G. We shall
show that G is p-supersoluble. Suppose that this is false and let G be a
counterexample of minimal order. Let Z = Zy(G).

(1) 0p(G) = 1.

Since O, (G/O,(G)) = 1, the hypothesis is true for G/O,/(G). Hence,
if Oy (G) # 1, then G/Op (G) is p-supersoluble by the choice of G. It follows
that G is p-supersoluble, a contradiction. Hence (1) holds.

(2) Op (L) =1 for any subnormal subgroup L of G.
Indeed, Oy (L) = Oy (G) =1 by Lemma 2.1(1).
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(3) Every proper normal subgroup L of G is supersoluble.

The hypothesis holds for L by Lemma 2.7(2) in [9]. Hence L is p-
supersoluble by the choice of G and therefore L is supersoluble by (2) and
Lemma 2.5.

(4) If N is a normal subgroup of G and N < Op(G), then N < Z.

We will prove this assertion by induction on |N|. Suppose that N i Z.
Then

(a) G has a normal subgroup R < N such that N/R is a non-cyclic chief
factor of G, R< Z and V < R for any normal subgroup V # N of G con-
tained in N.

Let N/R be a chief factor of G. Then the hypothesis holds for (G, R).
Therefore R < Z by induction and so N/R is not cyclic. Now let V' # N be
any normal subgroup of G contained in N. Then V< Z. If V i R, then

from the G-isomorphism N/R =V R/R ~V/V N R, we obtain that N < Z,
a contradiction. Hence V < R.

(b) Let D be a Thompson critical subgroup of N (see [7, p. 186]). Then
Q(N)=N = D.

Indeed, suppose that Q(N) < N. Then, in view of (a), Q(N) < Z. Hence
N = Z by Lemmas 2.7 and Theorem 5.12 in [11, Chapter IV], a contradic-
tion. Hence Q(N) = N. In view of Theorem 3.11 in [7, Chapter 5] we obtain
similarly that N = D.

The final contradiction for (4).

Let H/R be any minimal subgroup of N/RN Z(Gp/R), where G, is a
Sylow p-subgroup of G. Let z € H\ R and L = (z). Then H/R=LR/R
and |L| is either a prime or 4 by Lemma 2.8. Hence L is N-embedded in G
by the hypothesis. Hence G has a normal subgroup 7T such that LT = L5¢
and LNT = Ly NT. It is clear that Ly £ N. Thus T'< N. Suppose that
T < R. Then H/R=LT/R=LR/R = L*“R/R is S-quasinormal subgroup
of G/R by Lemmas 2.2 and 2.4(1). Therefore H/R is normal in G/R by
Lemma 2.2(7) and consequently H/R = N/R, which contradicts (a). Thus
(4) holds.

(5) G is p-soluble.
Suppose that this is false. Then:
(a) G is non-simple.

Suppose that G is a simple non-abelian group. Let H be any subgroup of
G of order p, T a normal subgroup of G such that HT = H*¢ and TN H =
TN H,. By Lemmas 2.2(3) and 2.4(1), H*¢ is subnormal in G. Hence
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H*%Y = G and either T =1 or T = G. In the both cases, we have H = G and
thereby G = H = H,q is cyclic. This contradiction shows that (a) holds.

(b) G has a non-identity supersoluble normal subgroup R such that G/R
is a simple non-abelian group, p divides |G/R| and every proper normal sub-
group of G is contained in R.

Let R be a normal subgroup of G such that G/R is simple. Then in
view of (a), R# 1. By (3), R is supersoluble. Hence G/R is a simple
non-abelian group and p divides |G/R|. Now let L be any proper normal

subgroup of GG. Suppose that L % R. Then G = RL is the product of two
supersoluble groups. Consequently, G is soluble, a contradiction.

(¢) B = Zo(G) = Op(G).

In view of (2), p divides |R|. Let P be a Sylow p-subgroup of R. By
(2), Oy (R) = 1. Hence, by (3) and Lemma 2.5, P = F(R). Since F(R) is a
characteristic subgroup of R, P is normal in G. Hence P < Zy(R) by (4).
Then, by (b), we see that Cq(H/K) = G for any chief factor H/K of G
below P. Hence P < Z.(G) and so R is nilpotent since R/P = R/F(R) is
abelian. It follows from (2) that R = P = Z(G) = Op(G).

The final contradiction for (5).

Since G/R is not p-nilpotent, it has a p-closed Schmidt subgroup H/R
(see [11, Chapter IV, Theorem 5.4]). Since R < Zy(G), we have R < Z(H).
Hence H = H, X\ H, is a Schmidt subgroup of G. Let ® = ®(H),). Then by
[16, VI, Theorem 25.4], H,/® is a non-central chief factor of H and H), is a
group of exponent p or exponent 4 (if p = 2 and H,, is non-abelian). More-
over, if Hy, is abelian, then ® = 1. Hence |H,/®| > p (otherwise |H,| = p,
which is impossible).

Let X/® be a minimal subgroup of H,/®, z € X\ ® and L = (z). Then
|L| = p or |L| =4. Hence L is N-embedded in G and so L is N-embedded
in H by Lemma 2.7(2) in [9]. Let T' be a normal subgroup of H such
that LT = L°¢ and LNT < Ly;. Note that if V is an S-quasinormal
subgroup of H such that V < H, and V % ®, then V = H, (otherwise,

H,® < VH,® < H, a contradiction). Hence L # Ly; and so T' # H,. But
then T' < @, which implies that H, = L. This contradiction completes the
proof of (5).

The final contradiction for the sufficiency. Let P = Op(G). Then P <
Zy(G) by (4). On the other hand, in view of (1) and (4) we have P = Cg(P)
by [7, Chapter 6, Theorem 3.2]. But by Lemma 2.6, G/Cq(P)*®~Y <
Op(G/Cg(P)) =1. Hence G is supersoluble by [20, Chapter 1, Theo-
rem 1.9]. This contradiction completes the proof of the fact that G is p-
supersoluble.

Conversely, suppose that G is p-supersoluble, we show that every cyclic
subgroup of G' = G/O,(G) of prime order or order 4 is N-embedded in G.
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Without loss of generality, we may assume that O, (G) =1. Let P be a
Sylow p-subgroup of G. Then by Lemma 2.5, P is normal in G and p is the
largest prime dividing |G|. Hence, we only need to consider the case that
p > 2. Let L be any subgroup of G of order p and L £ N where N is a
normal subgroup of G contained in P. We shall show by induction on ||
that there are normal subgroups A and B of G such that LA = B < N and
LNA=1. Let V be a normal subgroup of G such that V is a maximal
subgroup of N. If VL = N, then VN L =1. We may, therefore, assume
that L < V. Then the required is true by induction. Thus, L is N-embedded
in G. This completes the proof. O

4. Proof of Theorem B

We shall prove Theorem B in the following more general form.

THEOREM 4.1. A soluble group G is p-supersoluble if and only if every
2-mazimal subgroup E of G with Oy(G) < E and |G : E| is not a power
of p, both has a supplement in E°C with cyclic Sylow p-subgroups and is
Sp-embedded in G.

PrOOF. First suppose that G is p-supersoluble and let E be any 2-
maximal subgroup of G such that O, (G) = E and |G : E| is not a power

of p. We show that E has a supplement 7 in E*¢ with cyclic Sylow p-
subgroups and E is Sp-embedded in G. If £ = E5CG | then it is evident. We

may, therefore, assume that E # E°¢. Suppose that Oy (G) # 1. Then, by
induction, F/Oy (G) is Sp-embedded in G/O,y(G) and E/O (G) has a sup-

plement T/O, (G) in (E/Oy(G)) S(G0p (D) itn cyclic Sylow p-subgroups.
By Lemma 2.9(1), E is is Sp-embedded in G. On the other hand, since

(E/Op(Q)) (G0 (G) E*%/0,(G) by Lemma 2.4(3), T is a supplement

of E in E*Y and clearly the Sylow p-subgroups of T is cyclic.

Now suppose that O, (G) = 1. Then by Lemma 2.5, G is supersoluble,
P = 0,(G) = F(Q) is a Sylow p-subgroup of G and G/P is abelian. Let M
be a maximal subgroup of G such that E is maximal in M. Since G is p-
supersoluble and |G : E| is not a power of p, one of |M : E| and |G : M| is
a p/-number (see [8, Theorem 1.9.4]. Hence |G : E| = pn, where (p,n) = 1.
It follows that P N E is a maximal subgroup of P with |P: PN E| = p and
so ®(P) < E. Since ®(P) is a characteristic subgroup of P, it is normal
in G. Hence ®(P) < Eyg. If ®(P) # 1, then as above we can show that
E is Sp-embedded in G. Besides, PE is normal in G by Lemma 2.5(iii)

and |PE: E|=|P: ENP|=p. Since EC E*¢ C PE, £*¢ = PE. Hence
F has a cyclic supplement (z) in E5¢, where « € PE and z ¢ E.
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Finally, assume that ®(P) = 1. Then P is an elementary abelian p-group
and P = P; X P, X --- X P, where P; is a minimal normal subgroup of G, for

alli =1,2,...,t. It is clear that for some ¢, P i ENP. Hence P,(ENP) =
P. Since G is p-supersoluble, |P;| = p. It follows that P,N EN P =1 and
EP;=E. Since E # E*¢, E is not S-quasinormal in G. But since PE
is normal in G, by Lemma 2.5(iii), PE = E*¢ = P,(EN P)E = P,E. Since
PNESQE,PNEC Ey. Hence |[P,NE|,=|P;N Esg|p. This implies that

E has a supplement P; in E*¢, which is a cyclic Sylow p-subgroup and F is
Sp-embedded in G.

Conversely, assume that G is soluble and every 2-maximal subgroup F
of G with O, (G) £ E and |G : E| is not a power of p has a supplement in £¢
with cyclic Sylow p-subgroups and E is Sp-embedded in G. We show that G
is p-supersoluble. Assume that this is false and let G be a counterexample
of minimal order. Then

(1) G has a unique minimal normal subgroup L, G/L is p-supersoluble,
p divides |L| and L ;E o(G).

Let L be a minimal normal subgroup of G and E/L a 2-maximal sub-
group of G//L such that Oy (G/L) < E/L and |G/L : E/L| is not a power
of p. Since Oy (G)L/L £ Oy (G/L), Oy (G) < E. Besides, |G : E| is not a
power of p. Hence by hypothesis, F is Sp-embedded in G and there is a sub-
group T such that ET = E°Y and a Sylow p-subgroup of T is cyclic. Obvi-
ously, (EL)*“ = E*CL. Hence (E/L)(TL/L) = ESCL/L = (E/L)*“/") by
Lemma 2.4(3) and clearly T'L/L has a cyclic Sylow p-subgroup. Besides,
E/L is Sp-embedded in G/L by Lemma 2.9(2). This shows that the hy-
pothesis still holds for G/L. The minimal choice of G implies that G/L is
p-supersoluble. It is well known that the class of all p-supersoluble groups
is a saturated formation. Hence we see that (1) holds.

(2) G=[LIM for some mazimal subgroup M of G, L=Cq(L)=
F(G) = 0,(G) and'p # |L.

By (1), there exists a maximal subgroup M of G such that G = LM.
Since G is soluble, L is either a p’-group or a p-group. In the former case,
G is clearly p-supersoluble, a contradiction. Hence L is a abelian p-group.
It follows that L = Cg(L) = F(G) = Oy(G) and |L| > p since G is not p-
supersoluble.

(3) L is not a Sylow p-subgroup of G.

Assume that L is a Sylow p-subgroup of G and let E be a maximal sub-
group of M. Then |G : E|=|L||M : E| # p® and O,(G) =1 =< E. Hence
by hypothesis E is S)-embedded in G and E has a supplement X in EsG

with cyclic Sylow p-subgroups. Suppose that £ = 1 and let V be a maximal
subgroup of L. Then by hypothesis, V is S,-embedded in G. Let T" be a S-
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quasinormal subgroup of G such that V*¢ = VT and |T' N V], =1TNVsal,

Since L is a Sylow p-subgroup of G, the subgroups Vig, V¢ and T are
normal in G by Lemma 2.2(7). This implies that T =L and V =1. But
then |L| = p, which contradicts (2). Therefore E # 1. Let ¢ be prime di-
viding |M : E| and @ be a Sylow g¢-subgroup of M. Clearly, @ is a Sylow
g-subgroup of G and A = E*9Q = QFE* is a subgroup of G. Since E is
maximal in M and Q g E, we have (E,Q)= M. Hence M £ A and so
LA =G. Since L is a minimal normal subgroup of G, either LN A =L
or LN A=1. In the former case, G = A = E°*“Q and so L is a Sylow p-
subgroup of any supplement of E in E*¢. Therefore L is cyclic and hence
|L| = p, which contradicts (2). Thus LN A = 1. Obviously, F*¢ < M. Since
Mg =1, (ESG)G = 1. Hence E*® is nilpotent by Lemma 2.2(5). Then by
Lemma 2.2(3) and Lemma 2.1(4), E*¢ < L, a contradiction. This shows
that L is not a Sylow p-subgroup of G.

(4) M has a non-normal mazimal subgroup E such that (|M : E|,p) = 1.

Suppose that every maximal subgroup E of M with (\M - B, p) =1is
normal in M. Then by Lemma 2.10, M is p-closed. Besides, by (3), p di-
vides |M|. But by (2), we have O,(G/L) = Op(G/Cq(L) =1 (see [8, Lemma
1.7.11]). Hence L is a Sylow p-subgroup of G, which contradicts (3). Hence,
(6) holds.

(5) B¢ = G.

Indeed, suppose that D = E*¢ £ G. Since D is subnormal in G by
Lemma 2.2(3) and Lemma 2.4(1), M € D. Hence E = DN M is a subnor-
mal subgroup of M by Lemmas 2.2(3) and 2.1(2). But since E' is maximal
in M, E is normal in M, which contradicts (4).

(6) If T is a supplement of E in G, then Oy (T) = 1.

Since G=ET =MT, M=MNET=EMNT) and |L| =|G: M| =
|T: M NT|. It follows that Oy (T) < M. Hence (Op/ (T))G =0y (7)™ =
Oy (T)™ < Mg = 1. Consequently, Oy (T) = 1.

(T)p=3and |L| =9.

Let T be a supplement of E in E*¢ = G with cyclic Sylow p-subgroups.
Then G = ET = MT. Let T, be a Sylow p-subgroup of T". Suppose that
p = 2. Then by [11, IV, Theorem 2.8], T" is 2-nilpotent. But by (6), To» =1
and so T is a 2-group. It follows that 2 divides |M : E|, which contradicts (4).
Therefore p must be an odd number. Suppose that either p # 3 or p = 3 and

|L| > 32. Let |L| = p® and p” be the order of a Sylow p-subgroup of M. Then
by Lemma 2.11, b < a — 1. Since T, is cyclic, [T, N L| < p. It follows from

G = MT = [L]M that |L| < |T},|. Hence p®*® < p?@~1 < |LT,| < p**P. This
contradiction shows that p = 3 and a = 2.
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(8) The order of a Sylow 2-subgroup P of T is 2.

Let T be a supplement of F in G. Since T is 3-soluble and its Sylow
3-subgroups are cyclic, T' is 3-supersoluble. But by (6), Os(7") = 1. Hence
T is supersoluble by Lemma 2.5. Then, for a Sylow 3-subgroup P of T', we
have P = F(T). Thus Cp(P) = P by [8, Theorem 1.8.18]. It follows from
[7, Chapter 5, Lemma 4.1(iii)] that |7'/P| = 2. Therefore, (8) holds.

Final contradiction.

In view of (7), M is isomorphic with some subgroup of GL(2,3). Hence
|M| < 48. It follows that |M : E| = 2™ for some m > 1 (since E is not nor-
mal in M). But since G = ET, we see that |M : E| | |P| = 2, which is im-
possible. The final contradiction completes the proof. O

5. Proof of Theorem C

First we shall prove the following Theorem.

THEOREM 5.1. Suppose that G is not a p-group. Then the following are
equivalent.

(1) G is p-soluble.

(2) Bvery mazimal subgroup of G is Sp-embedded in G.
(3) G has two mazimal p-soluble Sy-embedded subgroups My and Ms,
whose indices |G : My| and |G : Ma| are coprime.

(4) For every mazimal subgroup M of G, either |G : M| is a power of p
or M is Sp-embedded in G.

PROOF. (1) = (2). Let M be a maximal subgroup of G and H/K a
chief factor of G such that HM =G and K = M. If Mg # 1, M/M¢ is
Sp-embedded in G /Mg by induction and consequently M is Sp-embedded
in G by Lemma 2.9(1). Suppose that Mg =1. Then K =1. If H is a p/-
group, then [H N M|, =1=|H N M|, Hence M is Sp-embedded in G. If

H is an abelian p-group, then H "M = HN My = K = 1. Then M is also
Sp-embedded in G.

(3) = (1). Assume that this is false and let G be a counterexample of
minimal order. Let N be a minimal normal subgroup of G. If N < M7 N My,
then M;/N and My/N are p-soluble maximal subgroups of G/N whose in-
dices |G/N : My /N|= |G : My| and |G/N : My/N|= |G : Ms| are coprime
and M; /N and My/N are Sp-embedded in G by Lemma 2.9(2). This shows
that the hypothesis holds for G/N. Therefore G/N is p-soluble by the
choice of G. On the other hand, if N % My N Ms, for example N % My,
then G/N ~ M;/M; N N is p-soluble. Therefore, N is the only minimal
normal subgroup N of G, N # ®(G) and N is a non-abelian group with p
divides |N|. Then, clearly, G = NM; = NM, and (M), =1 = (Ma)-
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Let N, be a Sylow p-subgroup of N and P a Sylow p-subgroup of G
contained N,. Since |G : Mi| and |G : Ms| are coprime. Without loss of
generality, we may assume that P is contained in at least one of the sub-
groups M; and Mp, for example, P < M;. Since M is Sp-embedded in G,
M?*¢ = MT and |M N T, = |T N Mg, for some S-quasinormal subgroup
T of G. By Lemma 2.2(3), M*“, T and Mg are subnormal in G. Then since

(M1) = 1 and by Lemma 2.3(4), we have that (M), = 1 and (My)*C = G.
This shows that T is a complement of M7 in G. Since P < My, p does not
divide |T|. Let N = Ny x Ny x -+ - x Ny, where Ny, Na, ..., Ny are isomorphic
simple non-abelian groups. Let L be a minimal subnormal subgroup of G
contained in T'. Since, obviously, C¢(N) =1, L « C(N) and so L < N by
Lemma 2.1(5). Hence L = Nj;, for some 7. It follows that p divides |L| and
therefore p divides |T'|, a contradiction.

(1) = (3). Since G is p-soluble and G is not a p-group, then there
are two maximal subgroups M; and My of G such that |G : M| = p® for
some a € N and p does not divide |G : Ms| by [8, Theorem 1.7.13]. Then
(|G s My, |G - M2|) = 1. By (2), we see that M; and M, are Sp-embedded
in G. Thus (3) holds.

(4) = (1). Let L be a minimal normal subgroup of G. Clearly, the hy-
pothesis is true for G/L. By induction, G/L is p-soluble. We may, therefore,
assume that L is non-abelian, p divides |L| and L is the only minimal nor-
mal subroup of G. Thus Cg(L) =1. By the Frattini argument, for any
Sylow p-subgroup P of L, there is a maximal subgroup M of G such that
LM = G and Ng(P) < M. Tt is clear that Mgz =1 and p does not divides
|G : M|. By hypothesis, G has an S-quasinormal subgroup 7' such that
M®*¢ = MY =G = MT and [T N M|, = |T N Mg/, But by Lemma 2.3(4),
My = Mg = 1. This implies that TN M is a p’-group. Let X be a mini-
mal subnormal subgroup of G contained in T'. Since Cg(L) =1, X < L by
Lemma 2.1(5) and so p divides |X|. It follows that p divides |T'|. Since T is
subnormal in G, by Lemma 2.1(3), |T'N M|, # 1. This contradiction shows
that G is p-soluble. The theorem is proved. Il

COROLLARY 5.2 (Wang [19]). A group G is soluble if and only if every
mazximal subgroup of G is c-normal in G.

PROOF OF THEOREM C. Assume that this theorem is is false and let G
be a counterexample of minimal order. Then p divides |G|. We proceed the
proof via the following steps.

(1) G is not simple.

Suppose that G is a simple non-abelian group. Then Oy (G) =1. Let
M be a maximal subgroup of G containing a Sylow p-subgroup P of G and
E any maximal subgroup of M. Then |G : E| is not a power of p. Hence by
hypothesis, I is Sp-embedded in G. Let T" be an S-quasinormal subgroup of
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G such that TE = E*“ and |T N E|, = [T'N Eyc|,- By Lemma 2.2(3), B¢,

FEsq and T are all subnormal subgroups of G. Since G is a simple group,
we have that 7= G and Eyg = 1. It follows from |T'N E[, = [T N Esc|, =

1 that |[E[,=1. If M = P, then [M|=p and so G is soluble by [11, IV,

Theorem 7.4]. Otherwise, we may assume that P < F, which implies P = 1.
This contradiction shows that (1) holds.

(2) G has a unique minimal normal subgroup L, G/L is p-soluble, p di-
vides |L| and L % o(G).

Let L be a minimal normal subgroup of G. Then by Lemma 2.9(2),
the hypothesis still holds for G/L. The minimal choice implies that G/L is
p-soluble by the choice of G. Hence (2) holds.

(3) G is p-soluble.

By (1), L # G. Let M be any maximal subgroup of G containing L.
Suppose that |G : M| = p®. Then for every maximal subgroup E of M with
|M : E| is not a power of p, we have that |G : E| is also not a power of p.
Hence F is Sp-embedded in G by (2) and hypothesis. It follows from Lemma
2.9(3) that E is Sp-embedded in M. Hence M is p-soluble by Theorem 5.1(4).
Consequently, L is p-soluble and thereby G is p-soluble. The contradiction
completes the proof. O
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