Studia Scientiarum Mathematicarum Hungarica 49 (3), 390–405 (2012) DOI: 10.1556/SScMath.49.2012.3.1212

NEW CHARACTERIZATIONS OF *p***-SOLUBLE AND** *p***-SUPERSOLUBLE FINITE GROUPS**

WENBIN GUO¹*[∗]* and ALEXANDER N. SKIBA²*∗∗*

¹ Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China e-mail: wbguo@ustc.edu.cn

> ² Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus e-mail: alexander.skiba49@gmail.com

> > *Communicated by L. M´arki*

(Received November 30, 2010; accepted August 4, 2011)

Abstract

Let G be a finite group and H a subgroup of G . H is said to be S -quasinormal in G if $HP = PH$ for all Sylow subgroups P of G. Let H_{sG} be the subgroup of H generated by all those subgroups of *H* which are *S*-quasinormal in *G* and H^{sG} the intersection of all *S*quasinormal subgroups of *G* containing *H*. The symbol $|G|_p$ denotes the order of a Sylow *p*-subgroup of *G*. We prove the following

THEOREM A. Let *G* be a finite group and *p* a prime dividing $|G|$. Then *G* is *psupersoluble if and only if for every cyclic subgroup H* of $G = G/O_{p'}(G)$ of prime order or *order* 4 *(if* $p = 2$ *)*, \overline{G} *has a normal subgroup* T *such that* $HT = H^{sG}$ *and* $H \cap T = H_{s\overline{G}} \cap T$ *.*

Theorem B. *A soluble finite group G is p-supersoluble if and only if for every* 2 maximal subgroup E of G such that $O_{p'}(G) \leq E$ and $|G : E|$ is not a power of p, G has
an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that $E^{sG} = ET$ and $|E \cap T|_p = |E_{sG} \cap T|_p$.

Theorem C. *A finite group G is p-soluble if for every* 2*-maximal subgroup E of G* such that $O_{p'}(G) \leq E$ and $|G : E|$ is not a power of p, G has an S-quasinormal subgroup
T such that $E^{sG} = ET$ and $|E \cap T|_p = |E_{sG} \cap T|_p$.

0081–6906/\$ 20.00 *⃝*c 2012 *Akad´emiai Kiad´o, Budapest*

²⁰⁰⁰ *Mathematics Subject Classification.* Primary 20D10, 20D15.

Key words and phrases. Finite group, *S*-quasinormal subgroup, *p*-supersoluble group, *p*-soluble group, 2-maximal subgroup.

*[∗]*Research of the first author is supported by a NNSF grant of China (Grant #11071229) and Wu Wen Tsun Key Laboratory of Mathematics of the Chinese Academy of Sciences at USTC.

*^{∗∗}*Research of the second author supported by Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (grant No. 2010T2J12).

1. Introduction

There are a large number of criteria for solubility, *p*-solubility, nilpotency, *p*-nilpotency and supersolubility of finite groups. Moreover people found a large number of various characterizations of such classes of groups. Nevertheless, the *p*-supersoluble groups remain little-studied subject of the group theory. The present paper adds some result to this line of research.

Throughout this paper, all groups are finite, *G* is a finite group, *p* denotes a prime divisor of $|G|$ and $|H|_p$ denotes the order of a Sylow *p*-subgroup of a group *H*.

Recall that a subgroup *A* of *G* is said to permute with a subgroup *B* if $AB = BA$. If *A* permutes with all Sylow subgroups of *G*, then *A* is called *S*-permutable, *S*-quasinormal or $\pi(G)$ -permutable [12] in *G*. Let *H* be a subgroup of G , H^{sG} the intersection of all S -permutable subgroups of G containing *H* [9] and let *HsG* be the subgroup of *H* generated by all those subgroups of *H* which are *S*-permutable in *G* [17]. Since *S*-quasinormal subgroups of *G* form a sublattice of the lattice of all subgroups of *G* (O. Kegel [12]), both subgroups H^{sG} and H_{sG} are *S*-quasinormal in *G*. We call H_{sG} the *Squasinormal core* of *H* in *G* and call *HsG* the *S-quasinormal closure* of *H* in *G*.

Our main goal here is to prove the following theorems.

Theorem A. *G is p-supersoluble if and only if for every cyclic subgroup H* of $\overline{G} = G/O_{p'}(G)$ of prime order or order 4 (if $p = 2$), \overline{G} has a normal *subgroup* T *such that* $HT = H^{s\overline{G}}$ *and* $H \cap T = H_{s\overline{G}} \cap T$ *.*

Corollary 1.1. *Suppose that for every cyclic subgroup H of G of prime order or order* 4 *(if* $p = 2$), *G has a normal subgroup T such that* $HT = H^{sG}$ *and* $H ∩ T = H_{sG} ∩ T$ *. Then G is p-supersoluble.*

Corollary 1.2 (Buckley [4]). *Let G be a group of odd order. If every minimal subgroup of G is normal in G, then G is supersoluble.*

COROLLARY 1.2 (Gaschütz [11, IV, Theorem 5.7]). If every minimal *subgroup of a group G is normal in G, then the commutator subgroup G′ of G is* 2*-closed.*

PROOF. By Theorem A, G is *p*-supersoluble for all odd primes *p*. Hence $G/O_{p'}(G)$ is supersoluble (see below Lemma 2.5). Then, since $O_2(G)$ is the intersection of all such subgroups $O_{p'}(G)$, we see that G' is 2-closed.

Note that if a subgroup *H* is *S*-quasinormal in *G*, then $H^{sG} = H = H_{sG}$. Hence, by Theorem A, we obtain

Corollary 1.3 (Shaalan [15]). *If every cyclic subgroup of G of prime order or order* 4 *is S-quasinormal in G, then G is supersoluble.*

A subgroup *H* of a group *G* is said to be *c*-normal in *G* [19] if *G* has a normal subgroup *T* such that $HT = G$ (which implies $H(T \cap H^G) = H^G$) and $H \cap T = H_G \cap T$ (which implies $H \cap T = H_{sG} \cap T$). Hence, by Theorem A, we also have the following

Corollary 1.4 (Wang [19]). *If every cyclic subgroup of G of prime order or order* 4 *is c-normal in G, then G is supersoluble.*

Theorem B. *Suppose that G is soluble. Then G is p-supersoluble if and only if for every* 2-maximal subgroup E of G such that $O_{p'}(G) \leq E$ and *|G* : *E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p*-subgroups such that $E^{sG} = ET$ and $|E \cap T|_p = |E_{sG} \cap T|_p$.

Theorem C. *G is p-soluble if for every* 2*-maximal subgroup E of G such that* $O_{p'}(G) \leq E$ *and* $|G : E|$ *is not a power of p, G has an S-quasinormal subgroup T such* that $E^{sG} = ET$ *and* $|E \cap T|_p = |E_{sG} \cap T|_p$.

From Theorems B and C, we directly get

Corollary 1.5 (Guo, Skiba [9]). *Suppose that for every* 2*-maximal subgroup E of G such that |G* : *E| is not a power prime, G has an S-quasinormal* \mathcal{L} *cyclic subgroup* T *satisfying* $E^{sG} = ET$ *and* $E \cap T = E_{sG} \cap T$ *. Then* G *is supersoluble.*

Corollary 1.6 (Agrawal [1]). *If every* 2*-maximal subgroup of G is S-quasinormal in G, then G is supersoluble.*

Corollary 1.7 (Huppert [10]). *If every* 2*-maximal subgroup of G is normal in G, then G is supersoluble.*

All unexplained notations and terminologies in this paper are standard. The reader is refereed to [2], [8], [6] if necessary.

2. Preliminaries

The following known results about subnormal and *S*-quasinormal subgroups will be used in many places of our proofs.

LEMMA 2.1. Let $A \leq K \leq G$ and $B \leq G$. Then

(1) If *A* is subnormal in *G* and *A* is a π -subgroup of *G*, then $A \leq$ $O_{\pi}(G)$ [21]*.*

(2) If \overline{A} *is subnormal in* G *, then* $A \cap B$ *is subnormal in* B [6, A, (14.1)]*.*

(3) If *A* is subnormal in *G* and *B* is a Hall π -subgroup of *G*, then $A \cap B$ *is a Hall* π -*subgroup of* A [21]*.*

(4) *If A is subnormal in G and A is soluble (nilpotent), then A is contained in some soluble normal (nilpotent) subgroup of G* [21]*.*

(5) *If A is subnormal in G and B is a minimal normal subgroup of G, then* $B \le N_G(A)$ [6, A, (14.3)].

LEMMA 2.2. Let $H \leq K \leq G$.

(1) *If H is S-quasinormal in G, then H is S-quasinormal in K* [12]*.*

(2) *Suppose that H is normal in G. Then K/H is S-quasinormal in G if and only if K is S-quasinormal in G* [12]*.*

(3) If H is S -quasinormal in G , then H is subnormal in G [12].

(4) *If H and F are S-quasinormal subgroups of G, then H ∩ F and* $\langle H, F \rangle$ *are S-quasinormal in G* [12]*.*

(5) If *H* is *S*-quasinormal in \dot{G} , then H/H_G is nilpotent [5].

(6) If *H* is *S*-quasinormal in *G* and $M \leq G$, then $H \cap M$ is *S*-quasi*normal in M* [5]*.*

(7) *If H is S-quasinormal in G and H is a q-group for some prime q,* $then$ $Oq(G) \leq N_G(H)$ [14, Lemma A]*.*

LEMMA 2.3 [17, Lemma 2.8]. Let $H \leq K \leq G$. Then:

(1) H_{sG} *is an S-quasinormal subgroup of G and* $H_G \leq H_{sG}$.

 (2) $H_{sG} \leq H_{sK}$.

(3) If *H* is normal in *G*, then $(K/H)_{s(G/H)} = K_{sG}/H$.

(4) *If H is either a Hall subgroup of G or a maximal subgroup of G,* $then$ $H_{sG} = H_G$.

LEMMA 2.4 [9, Lemma 2.5]. Let *G* be a group and $H \le K \le G$. Then: (1) H^{sG} *is an S-quasinormal subgroup of G and* $H^{sG} \leq H^G$. (2) $H^{sK} \leq H^{sG}$.

(3) If *H* is normal in *G*, then $(K/H)^{s(G/H)} = K^{sG}/H$.

 (4) *If H is either a Hall subgroup of G or a maximal subgroup of G, then* $H^{sG} = H^G$ *.*

Lemma 2.5. *Let p be a prime and G a p-soluble group. Assume that* $O_{p'}(G) = 1$ *. Then the following statements are equivalent.*

(i) *G is p-supersoluble;*

(ii) *G is supersoluble;*

(iii) $G/O_p(G)$ *is an abelian group of exponent dividing* $p-1$ *.*

PROOF. (i) \implies (ii). Since *G* is *p*-supersoluble, for every chief *p*-factor H/K of *G*, we have $|H/K| = p$ and so $G/C_G(H/K)$ is an abelian group of exponent dividing $p-1$ (see [20, Chapter 1, Theorem 1.4]. Since $O_{p'}(G) = 1$, the intersection of the centralizers of all chief factors H/K of $|H/K| = p$ is $O_{p',p}(G) = O_p(G)$. Hence *G* is supersoluble by [20, Chapter 1, Theorem 1.9]. By using the same arguments, we also see that (ii) \implies (iii) and (iii) \implies (i). (iii) \implies (i).

Let F be any non-empty class of groups. We use $G^{\mathcal{F}}$ to denote the intersection of all normal subgroups *N* of *G* with $G/N \in \mathcal{F}$. $\mathcal{A}(p-1)$ denotes the formation of all abelian groups of exponent dividing $p - \tilde{1}$. The symbol $Z_{\mathcal{U}}(G)$ denotes the largest normal subgroup of a group *G* such that every chief factor of *G* below $Z_{\mathcal{U}}(G)$ is cyclic.

Lemma 2.6 [18, Lemma 2.2]. *Let E be a normal p-subgroup of G. If* $E \leq Z_{\mathcal{U}}(G)$ *, then* $(G/C_G(E))^{A(p-1)} \leq O_p(G/C_G(E))$ *.*

The following lemma may be proved based on some results in [13] on *f*hypercentral action (see [16, Chapter II] or [6, Chapter IV, Section 6]). For reader's convenience, we give a direct proof.

Lemma 2.7. *Let P be a normal p-subgroup of G and D a characteristic subgroup of P such that every non-trivial p'-automorphism of P induces a non-trivial automorphism of D. Suppose that* $D \leq Z_{\mathcal{U}}(G)$ *. Then* $P \leq Z_{\mathcal{U}}(G)$.

PROOF. Let $C = C_G(P)$ and H/K be an arbitrary chief factor of G below *P*. Then $O_p(G/C_G(H/K)) = 1$ by [20, Appendix C, Corollary 6.4]. Since $D \leq Z_{\mathcal{U}}(G)$, we have $(G/C_G(D))^{A(p-1)}$ is a *p*-group by Lemma 2.5. Hence $(G/C)^{\mathcal{A}(p-1)}$ is a *p*-group. It follows that $G/C_G(H/K) \in \mathcal{A}(p-1)$ and so $|H/K| = p$ by [20, Chapter 1, Theorem 1.4]. Therefore $P \leq Z_{\mathcal{U}}(G)$. \Box

Let *P* be a *p*-group. If *P* is not a non-abelian 2-group we use $\Omega(P)$ to denote the subgroup $\Omega_1(P)$. Otherwise, $\Omega(P) = \Omega_2(P)$.

Lemma 2.8 [3]. *Let P be a p-group of class at most* 2*. Suppose that* $\exp(P/Z(P))$ divides p.

(1) If $p > 2$, then $\exp(\Omega(P)) = p$.

(2) If *P* is a non-abelian 2-group, then $\exp(\Omega(P)) = 4$.

PROOF. See page 3 in [3].

Let *H* be a subgroup of *G* and *p* a prime. Then we say that *H* is S_p *embedded in G* if *G* has a subgroup *T* such that $HT = H^{sG}$ and $|H \cap T|_p =$ $|H_{sG} ∩ T|$ _{*p*} . <u>Подата с подата с подата с подата с по</u>дата с постава с постава с постава с постава с постава с постава с по
В 1990 година с постава с пос

LEMMA 2.9. Let H be a normal subgroup of G and $H \le K \le G$.

(1) If *H* is p-soluble and K/H is S_p -embedded in G/H , then K is S_p *embedded in G.*

(2) If *K* is S_p -embedded in *G*, then K/H is S_p -embedded in G/H .

(3) If *L* is an S_p -embedded subgroup of *G* and $L \le K$, then *L* is S_p *embedded in K.*

(4) *The subgroup* HE/H *is* S_p -embedded *in* G/H *, for every* S_p -embedded $in G$ *subgroup* E *satisfying* $(|H|, |E|) = 1$ *.*

PROOF. (1) We prove that *K* is S_p -embedded in *G* by induction on $|G|$. Let *L* be a minimal normal subgroup of *G* such that $L \leq H$. Then, obviously, $(K/L)/(H/L)$ is S_p -embedded in $(G/L)/(H/L)$. If $L \neq H$, then by induction, *K/L* is *Sp*-embedded in *G/L*. We may, therefore, assume that *H* is a minimal normal subgroup of *G*. Let *T /H* be an *S*-quasinormal

subgroup of G/H such that $KT/H = (K/H)(T/H) = (K/H)^{s(G/H)}$ and $|(T/H) \cap (K/H)|_p = |(T/H) \cap (K/H)_{s(G/H)}|_p$. By Lemma 2.2(2), *T* is *S*-quasinormal in *G*. By Lemma 2.4(3), $(K/H)^{s(G/H)} = K^{sG}/H$. Hence $K^{sG} = KT$. Since *H* is *p*-soluble, *H* is either a *p*-group or a *p*'-group. Then, $\left| (T/H) \cap (K/H) \right|_p^{\prime} = \left| (T/H) \cap (K/H)_{s(G/H)} \right|_p^{\prime}$, we obtain $|T \cap K|_p =$ $|T \cap K_{sG}|_p$. Hence *K* is *S*_{*p*}-embedded in *G*.

(2) Assume that $KT = K^{sG}$ and $|T \cap K|_p = |T \cap K_{sG}|_p$, for some *S*quasinormal subgroup *T* of *G*. Then *HT /H* is an *S*-quasinormal in *G/H* and $(HT/H)(K/H) = KT/H = K^{sG}/H = (K/H)^{sG}$ by Lemma 2.4(3). Besides, clearly, $H \leq K_{sG}$. Hence $H \cap T \cap K = H \cap T = H \cap T \cap K_{sG}$. This $\left| \int_{a}^{b} \left| \int_{a}^{b} \left| \int_{a}^{b} \left| \int_{a}^{b} \right| f \left| \left| \mathcal{L}_{a}^{b} \right| \right| \right|_{p} \right| = \left| \int_{a}^{b} \left| \mathcal{L}_{a}^{b} \left| \mathcal{L}_{a} \right| \right| \right|_{p} = \left| \int_{a}^{b} \left| \mathcal{L}_{a}^{b} \left| \mathcal{L}_{a} \right| \right| \right|_{p}$ $|(TH/H) ∩ (K/H)_{s(G/H)}|_p$. Thus K/H is *S*_{*p*}-embedded in *G*/*H*.

(3) Let *T* be an *S*-quasinormal subgroup of *G* such that $LT = L^{sG}$ and $|T \cap L|_p = |T \cap L_{sG}|_p$. Let $T_0 = T \cap L^{sK}$. Then $T_0 = K \cap T \cap L^{sK}$ and $T_0 \cap L_{sK} = T \cap L_{sK}$. By Lemma 2.2(6), $K \cap T$ is *S*-quasinormal in *K* and so by Lemma 2.2(4), T_0 is *S*-quasinormal in *K*. Besides, by Lemma 2.4(2), $L^{sK} \leq L^{sG}$ and so $L^{sK} = L^{sK} \cap L^{sG} = L^{sK} \cap LT = L(L^{sK} \cap T) = LT_0$. Finally, we show that $|T_0 \cap L|_p = |T_0 \cap L_{sK}|_p$. In fact, we only need to prove that $|P_1| \leq |P_2|$, for some Sylow *p*-subgroups P_1 of $T_0 \cap L$ and some Sylow *p*-subgroup P_2 of $T_0 \cap L_{sK}$. Since $H \cap T_0 \leq L \cap T$, we have $P_1 \leq P_3$, for some Sylow *p*-subgroup P_3 of $L \cap T$. On the other hand, by Lemma $2.3(2), L_{sG} \leq L_{sK}$. Hence $T \cap L_{sG} \leq T \cap L_{sK} = T_0 \cap L_{sK}$. It follows that $|P_1| \leq |P_3| = |T \cap L|_p = |T \cap L_{sG}|_p \leq |P_2|$. Hence L is S_p -embedded in K.

(4) By (2), we only need to prove that HE is S_p -embedded in G . Assume that E is S_p -embedded in G and let T be an S -quasinormal subgroup of G such that $ET = E^{sG}$ and $|T \cap E|_p = |T \cap E_{sG}|_p$. Let $T_0 = HT$. Then, obviously, T_o is an *S*-quasinormal subgroup of *G* and $HET_0 = HE^{sG} = (HE)^{sG}$. Next we show that $|T_0 \cap HE|_p = |T_0 \cap (HE)_{sG}|_p$.

Since $(|E|, |H|) = 1$, *E* is a Hall *π*-subgroup of *EH* and *H* is a Hall *π*^{τ}-subgroup of *EH*, for some set *π* of primes. If *p* divides *|H|*, then E is p'-group. Hence $|T_0 \cap HE|_p = |H| = |T_0 \cap HE_{sG}|_p = |T_0 \cap (HE)_{sG}|_p$. Now we assume that p divide $|E|$. In this case, H is a p' -group. Let $D = T \cap HE$. By Lemmas 2.1(2) and 2.2(3), *D* is subnormal in *HE* and so $D = (D \cap H)(D \cap E) \leq H(T \cap E)$. It follows that $T_0 \cap HE = H(T \cap HE)$ $HD \leq H(T \cap E)$ and so

$$
\left|T_0\cap HE\right|_p=\left|T\cap E\right|_p=\left|T\cap E_{sG}\right|_p\leqq \left|HT\cap \left(HE\right)_{sG}\right|_p\leqq \left|T_0\cap HE\right|_p.
$$

Therefore $|T_0 \cap HE|_p = |T_0 \cap (HE)_{sG}|_p$. This shows that HE is S_p -embedded in G .

Lemma 2.10. *Suppose that every maximal subgroup E of G with* $(|G: E|, p) = 1$ *is normal in G. Let* \overrightarrow{P} *be a Sylow p-subgroup of G. Then G is p-closed and G/P is nilpotent.*

PROOF. Suppose that this lemma is false and let *G* be a counterexample of minimal order. Obviously, the hypothesis is true for any factor group of *G*. Hence *G* has a unique minimal normal subgroup, *L* say, and *G/L* is *p*-closed with nilpotent factor $(G/L)/(PL/L)$. If *L* is a *p*-group, then *G* is *p*closed with nilpotent factor G/P , which contradicts the choice of G . Hence *L* is not a *p*-group. It is well known that the class of all *p*-closed groups *G* with nilpotent G/P is a saturated formation. Hence $L \nsubseteq \Phi(G)$. Let M be a maximal subgroup of *G* such that $ML = G$. Suppose that *p* divides $|G : M|$. Then *p* divides $|L|$ and by Fratinni argument, for some maximal subgroup *E* of *G* we have $EL = G$ and *p* does not divide $|G : E|$. Hence *E* is normal in *G* by hypothesis, which implies $|E| = 1$. Consequently, $G = L$.
This contradiction completes the proof. This contradiction completes the proof.

Lemma 2.11 [20, Chapter 4, Theorem 1.6]. *Let p be an odd prime number and* **F** *field of characteristic p. Let G be a completely reducible soluble linear group of degree n over* **F***. Suppose that a Sylow p-subgroup of G has order* $p^{\lambda(n)}$. Then $\lambda(n) \leq n-1$ *with equality only if* $n = 1$ *or* $n = 2$ *and p* = 3*.*

3. Proof of Theorem A

Let *H* be a subgroup of *G*. Then we say, following [9], that *H* is *N*embedded in *G* if *G* has a normal subgroup *T* such that $HT = H^{sG}$ and $H \cap T = H_{sG} \cap T$.

PROOF OF THEOREM A. First suppose that every cyclic subgroup *H* of $G = G/O_{p'}(G)$ of prime order or order 4 is *N*-embedded in *G*. We shall show that *G* is *p*-supersoluble. Suppose that this is false and let *G* be a counterexample of minimal order. Let $Z = Z_{\mathcal{U}}(G)$.

 (1) $O_{p'}(G) = 1.$

Since $O_{p'}(G/O_{p'}(G)) = 1$, the hypothesis is true for $G/O_{p'}(G)$. Hence, if $O_{p'}(G) \neq 1$, then $G/O_{p'}(G)$ is *p*-supersoluble by the choice of *G*. It follows that G is p -supersoluble, a contradiction. Hence (1) holds.

(2) $O_{p'}(L) = 1$ *for any subnormal subgroup L of G.*

Indeed, $O_{p'}(L) \leq O_{p'}(G) = 1$ by Lemma 2.1(1).

(3) *Every proper normal subgroup L of G is supersoluble.*

The hypothesis holds for *L* by Lemma 2.7(2) in [9]. Hence *L* is *p*supersoluble by the choice of *G* and therefore *L* is supersoluble by (2) and Lemma 2.5.

(4) If *N* is a normal subgroup of *G* and $N \leq O_p(G)$, then $N \leq Z$.

We will prove this assertion by induction on $|N|$. Suppose that $N \nleq Z$. Then

(a) *G* has a normal subgroup $R \leq N$ such that N/R is a non-cyclic chief *factor of G*, $R \leq Z$ *and* $V \leq R$ *for any normal subgroup* $V \neq N$ *of G contained in N.*

Let N/R be a chief factor of *G*. Then the hypothesis holds for (G, R) . Therefore $R \leq Z$ by induction and so N/R is not cyclic. Now let $V \neq N$ be any normal subgroup of *G* contained in *N*. Then $V \leq Z$. If $V \nleq R$, then from the *G*-isomorphism $N/R = VR/R \simeq V/V \cap R$, we obtain that $N \leq Z$, a contradiction. Hence $V \leq R$.

(b) *Let D be a Thompson critical subgroup of N (see* [7, p. 186]*). Then* $\Omega(N) = N = D.$

Indeed, suppose that $\Omega(N) < N$. Then, in view of (a), $\Omega(N) \leq Z$. Hence $N \leq Z$ by Lemmas 2.7 and Theorem 5.12 in [11, Chapter IV], a contradiction. Hence $\Omega(N) = N$. In view of Theorem 3.11 in [7, Chapter 5] we obtain similarly that $N = D$.

The final contradiction for (4).

Let H/R be any minimal subgroup of $N/R \cap Z(G_p/R)$, where G_p is a Sylow *p*-subgroup of *G*. Let $x \in H \setminus R$ and $L = \langle x \rangle$. Then $H/R = LR/R$ and *|L|* is either a prime or 4 by Lemma 2.8. Hence *L* is *N*-embedded in *G* by the hypothesis. Hence *G* has a normal subgroup *T* such that $LT = L^{sG}$ and $L \cap T = L_{sG} \cap T$. It is clear that $L_{sG} \leq N$. Thus $T \leq N$. Suppose that $T \leq R$. Then $H/R = LT/R = LR/R = L^{sG}R/R$ is *S*-quasinormal subgroup of $\overline{G/R}$ by Lemmas 2.2 and 2.4(1). Therefore H/R is normal in G/R by Lemma 2.2(7) and consequently $H/R = N/R$, which contradicts (a). Thus (4) holds.

(5) *G is p-soluble.*

Suppose that this is false. Then:

(a) *G is non-simple.*

Suppose that *G* is a simple non-abelian group. Let *H* be any subgroup of *G* of order *p*, *T* a normal subgroup of *G* such that $HT = H^{sG}$ and $\overline{T} \cap \overline{H} =$ $T \cap H_{sG}$. By Lemmas 2.2(3) and 2.4(1), H^{sG} is subnormal in *G*. Hence

 $H^{sG} = G$ and either $T = 1$ or $T = G$. In the both cases, we have $H = G$ and thereby $G = H = H_{sG}$ is cyclic. This contradiction shows that (a) holds.

(b) *G has a non-identity supersoluble normal subgroup R such that G/R is a simple non-abelian group, p divides |G/R| and every proper normal subgroup of G is contained in R.*

Let *R* be a normal subgroup of *G* such that G/R is simple. Then in view of (a), $R \neq 1$. By (3), R is supersoluble. Hence G/R is a simple non-abelian group and p divides $|G/R|$. Now let L be any proper normal subgroup of *G*. Suppose that $L \nleq R$. Then $G = RL$ is the product of two supersoluble groups. Consequently, *G* is soluble, a contradiction.

(c) $R = Z_\infty(G) \leq O_p(G)$.

In view of (2), p divides $|R|$. Let P be a Sylow p -subgroup of R . By (2), $O_{p'}(R) = 1$. Hence, by (3) and Lemma 2.5, $P = F(R)$. Since $F(R)$ is a characteristic subgroup of \hat{R} , P is normal in G . Hence $P \leq Z_{\mathcal{U}}(R)$ by (4). Then, by (b), we see that $C_G(H/K) = G$ for any chief factor H/K of G below *P*. Hence $P \leq Z_{\infty}(G)$ and so *R* is nilpotent since $R/P = R/F(R)$ is abelian. It follows from (2) that $R = P = Z_\infty(G) \leq O_p(G)$.

The final contradiction for (5).

Since *G/R* is not *p*-nilpotent, it has a *p*-closed Schmidt subgroup *H/R* (see [11, Chapter IV, Theorem 5.4]). Since $R \leq Z_\infty(G)$, we have $R \leq Z_\infty(H)$. Hence $H = H_p \setminus H_q$ is a Schmidt subgroup of *G*. Let $\Phi = \Phi(H_p)$. Then by [16, VI, Theorem 25.4], H_p/Φ is a non-central chief factor of *H* and H_p is a group of exponent *p* or exponent 4 (if $p = 2$ and H_p is non-abelian). Moreover, if H_p is abelian, then $\Phi = 1$. Hence $|H_p/\Phi| > p$ (otherwise $|H_p| = p$, which is impossible).

Let X/Φ be a minimal subgroup of H_p/Φ , $x \in X \setminus \Phi$ and $L = \langle x \rangle$. Then $|L| = p$ or $|L| = 4$. Hence *L* is *N*-embedded in *G* and so *L* is *N*-embedded in *H* by Lemma 2.7(2) in [9]. Let *T* be a normal subgroup of *H* such that $LT = L^{sG}$ and $L \cap T \leq L_{sG}$. Note that if *V* is an *S*-quasinormal subgroup of *H* such that $V \leq H_p$ and $V \nleq \Phi$, then $V = H_p$ (otherwise, $H_q\Phi \leq V H_q\Phi \leq H$, a contradiction). Hence $L \neq L_{sG}$ and so $T \neq H_p$. But then $T \leq \Phi$, which implies that $H_p = L$. This contradiction completes the proof of (5) .

The final contradiction for the sufficiency. Let $P = O_p(G)$. Then $P \leq$ $Z_{\mathcal{U}}(G)$ by (4). On the other hand, in view of (1) and (4) we have $P = C_{G}(P)$ by [7, Chapter 6, Theorem 3.2]. But by Lemma 2.6, $G/C_G(P)^{\mathcal{A}(p-1)} \leq$ $O_p(G/C_G(P)) = 1$. Hence *G* is supersoluble by [20, Chapter 1, Theorem 1.9]. This contradiction completes the proof of the fact that *G* is *p*supersoluble.

Conversely, suppose that *G* is *p*-supersoluble, we show that every cyclic subgroup of $G = G/O_{p'}(G)$ of prime order or order 4 is *N*-embedded in *G*.

Without loss of generality, we may assume that $O_{p'}(G) = 1$. Let *P* be a Sylow *p*-subgroup of *G*. Then by Lemma 2.5, *P* is normal in *G* and *p* is the largest prime dividing $|G|$. Hence, we only need to consider the case that $p > 2$. Let *L* be any subgroup of *G* of order *p* and $L \le N$ where *N* is a normal subgroup of *G* contained in *P*. We shall show by induction on *|N|* that there are normal subgroups *A* and *B* of *G* such that $LA = B \le N$ and $L \cap A = 1$. Let *V* be a normal subgroup of *G* such that *V* is a maximal subgroup of *N*. If $VL = N$, then $V \cap L = 1$. We may, therefore, assume that $L \leq V$. Then the required is true by induction. Thus, *L* is *N*-embedded in *C*. This completes the proof in *G*. This completes the proof.

4. Proof of Theorem B

We shall prove Theorem B in the following more general form.

Theorem 4.1. *A soluble group G is p-supersoluble if and only if every* 2-maximal subgroup E of G with $O_{p'}(G) \leq E$ and $|G : E|$ is not a power *of p, both has a supplement in EsG with cyclic Sylow p-subgroups and is Sp-embedded in G.*

PROOF. First suppose that *G* is *p*-supersoluble and let *E* be any 2maximal subgroup of *G* such that $O_{p'}(G) \leq E$ and $|G : E|$ is not a power of *p*. We show that *E* has a supplement *T* in E^{sG} with cyclic Sylow *p*subgroups and *E* is S_p -embedded in *G*. If $E = E^{sG}$, then it is evident. We may, therefore, assume that $E \neq E^{sG}$. Suppose that $O_{p'}(G) \neq 1$. Then, by induction, $E/O_{p'}(G)$ is S_p -embedded in $G/O_{p'}(G)$ and $E/O_{p'}(G)$ has a supplement $T/O_{p'}(G)$ in $(E/O_{p'}(G))$ ^{*s*($G/O_{p'}(G)$} with cyclic Sylow *p*-subgroups. By Lemma 2.9(1), E is is S_p -embedded in G . On the other hand, since $(E/O_{p'}(G))^{s(G/O_{p'}(G))} = E^{sG}/O_{p'}(G)$ by Lemma 2.4(3), *T* is a supplement of E in E^{sG} and clearly the Sylow *p*-subgroups of T is cyclic.

Now suppose that $O_{p'}(G) = 1$. Then by Lemma 2.5, *G* is supersoluble, $P = O_p(G) = F(G)$ is a Sylow *p*-subgroup of *G* and G/P is abelian. Let *M* be a maximal subgroup of *G* such that *E* is maximal in *M*. Since *G* is *p*supersoluble and $|G : E|$ is not a power of p, one of $|M : E|$ and $|G : M|$ is a *p*^{\prime}-number (see [8, Theorem 1.9.4]. Hence $|G : E| = pn$, where $(p, n) = 1$. It follows that $P \cap E$ is a maximal subgroup of P with $|P : P \cap E| = p$ and so $\Phi(P) \leq E$. Since $\Phi(P)$ is a characteristic subgroup of *P*, it is normal in *G*. Hence $\Phi(P) \leq E_{sG}$. If $\Phi(P) \neq 1$, then as above we can show that *E* is S_p -embedded in *G*. Besides, *PE* is normal in *G* by Lemma 2.5(iii) and $|PE : E| = |P : E \cap P| = p$. Since $E \subseteq E^{sG} \subseteq PE$, $E^{sG} = PE$. Hence *E* has a cyclic supplement $\langle x \rangle$ in E^{sG} , where $x \in PE$ and $x \notin E$.

400 W. GUO and A. N. SKIBA

Finally, assume that $\Phi(P) = 1$. Then *P* is an elementary abelian *p*-group and $P = P_1 \times P_2 \times \cdots \times P_t$, where P_i is a minimal normal subgroup of *G*, for all $i = 1, 2, \ldots, t$. It is clear that for some $i, P_i \nleq E \cap P$. Hence $P_i(E \cap P) =$ *P*. Since *G* is *p*-supersoluble, $|P_i| = p$. It follows that $P_i \cap E \cap P = 1$ and $EP_i = E$. Since $E \neq E^{sG}$, *E* is not *S*-quasinormal in *G*. But since *PE* is normal in *G*, by Lemma 2.5(iii), $PE = E^{sG} = P_i(E \cap P)E = P_iE$. Since $P_i \cap E \leq E$, $P_i \cap E \subseteq E_{sG}$. Hence $|P_i \cap E|_p = |P_i \cap E_{sG}|_p$. This implies that *E* has a supplement P_i in E^{sG} , which is a cyclic Sylow *p*-subgroup and *E* is *Sp*-embedded in *G*.

Conversely, assume that *G* is soluble and every 2-maximal subgroup *E* of *G* with $O_{p'}(G) \leq E$ and $|G : E|$ is not a power of *p* has a supplement in E^{sG} with cyclic Sylow *p*-subgroups and E is S_p -embedded in G . We show that G is p -supersoluble. Assume that this is false and let G be a counterexample of minimal order. Then

(1) *G has a unique minimal normal subgroup L, G/L is p-supersoluble, p divides* $|L|$ *and* $L \nleq \Phi(G)$ *.*

Let *L* be a minimal normal subgroup of *G* and *E/L* a 2-maximal subgroup of G/L such that $O_{p'}(G/L) \leq E/L$ and $|G/L : E/L|$ is not a power of *p*. Since $O_{p'}(G)L/L \leq O_{p'}(G/L), O_{p'}(G) \leq E$. Besides, $|G : E|$ is not a power of *p*. Hence by hypothesis, *E* is *Sp*-embedded in *G* and there is a subgroup *T* such that $ET = E^{sG}$ and a Sylow *p*-subgroup of *T* is cyclic. Obviously, $(EL)^{sG} = E^{sG}L$. Hence $(E/L)(TL/L) = E^{sG}L/L = (E/L)^{s(G/L)}$ by Lemma 2.4(3) and clearly *T L/L* has a cyclic Sylow *p*-subgroup. Besides, E/L is S_p -embedded in G/L by Lemma 2.9(2). This shows that the hypothesis still holds for G/L . The minimal choice of *G* implies that G/L is *p*-supersoluble. It is well known that the class of all *p*-supersoluble groups is a saturated formation. Hence we see that (1) holds.

(2) $G = [L]M$ *for some maximal subgroup M of* G *,* $L = C_G(L)$ $F(G) = O_p(G)$ *and* $p \neq |L|$ *.*

By (1), there exists a maximal subgroup *M* of *G* such that $G = LM$. Since *G* is soluble, *L* is either a p' -group or a *p*-group. In the former case, *G* is clearly *p*-supersoluble, a contradiction. Hence *L* is a abelian *p*-group. It follows that $L = C_G(L) = F(G) = O_p(G)$ and $|L| > p$ since *G* is not *p*supersoluble.

(3) *L is not a Sylow p-subgroup of G.*

Assume that *L* is a Sylow *p*-subgroup of *G* and let *E* be a maximal subgroup of *M*. Then $|G : E| = |L| |M : E| \neq p^a$ and $O_p(G) = 1 \leq E$. Hence by hypothesis *E* is S_p -embedded in *G* and *E* has a supplement *X* in E^{sG} with cyclic Sylow *p*-subgroups. Suppose that $E = 1$ and let *V* be a maximal subgroup of *L*. Then by hypothesis, *V* is S_p -embedded in *G*. Let *T* be a *S*-

quasinormal subgroup of *G* such that $V^{sG} = VT$ and $|T \cap V|_p = |T \cap V_{sG}|_p$. Since *L* is a Sylow *p*-subgroup of *G*, the subgroups V_{sG} , V^{sG} and *T* are normal in *G* by Lemma 2.2(7). This implies that $T = L$ and $V = 1$. But then $|L| = p$, which contradicts (2). Therefore $E \neq 1$. Let *q* be prime dividing $|M: E|$ and Q be a Sylow *q*-subgroup of M . Clearly, Q is a Sylow *q*-subgroup of *G* and $A = E^{sG}Q = QE^{sG}$ is a subgroup of *G*. Since *E* is maximal in *M* and $Q \nsubseteq E$, we have $\langle E, Q \rangle = M$. Hence $M \leq A$ and so $LA = G$. Since *L* is a minimal normal subgroup of *G*, either $L \cap A = L$ or $L \cap A = 1$. In the former case, $G = A = E^{sG} \tilde{Q}$ and so *L* is a Sylow *p*subgroup of any supplement of E in E^{sG} . Therefore L is cyclic and hence $|L| = p$, which contradicts (2). Thus $L \cap A = 1$. Obviously, $E^{sG} \leq M$. Since $M_G = 1$, $(E^{sG})_G = 1$. Hence E^{sG} is nilpotent by Lemma 2.2(5). Then by Lemma 2.2(3) and Lemma 2.1(4), $E^{sG} \leq L$, a contradiction. This shows that *L* is not a Sylow *p*-subgroup of *G*.

(4) *M* has a non-normal maximal subgroup E such that $(|M : E|, p) = 1$.

Suppose that every maximal subgroup *E* of *M* with $(|M : E|, p) = 1$ is normal in *M*. Then by Lemma 2.10, *M* is *p*-closed. Besides, by (3) , *p* divides |*M*|. But by (2), we have $O_p(G/L) = O_p(G/C_G(L)) = 1$ (see [8, Lemma 1.7.11). Hence \tilde{L} is a Sylow *p*-subgroup of \tilde{G} , which contradicts (3). Hence, (6) holds.

 (5) $E^{sG} = G$.

Indeed, suppose that $D = E^{sG} \neq G$. Since *D* is subnormal in *G* by Lemma 2.2(3) and Lemma 2.4(1), $M \nsubseteq D$. Hence $E = D \cap M$ is a subnormal subgroup of *M* by Lemmas 2.2(3) and 2.1(2). But since *E* is maximal in M , E is normal in M , which contradicts (4) .

(6) If T is a supplement of E in G, then $O_{p'}(T) = 1$.

Since $G = ET = MT$, $M = M \cap ET = E(M \cap T)$ and $|L| = |G : M|$ $|T : M \cap T|$. It follows that $O_{p'}(T) \leq M$. Hence $(O_{p'}(T))$ ^{*G*} = $O_{p'}(T)^{TM}$ = $O_{p'}(T)^M \leq M_G = 1$. Consequently, $O_{p'}(T) = 1$.

 (7) $p = 3$ and $|L| = 9$.

Let *T* be a supplement of *E* in $E^{sG} = G$ with cyclic Sylow *p*-subgroups. Then $G = ET = MT$. Let T_p be a Sylow *p*-subgroup of *T*. Suppose that $p = 2$. Then by [11, IV, Theorem 2.8], *T* is 2-nilpotent. But by (6), $T_{2'} = 1$ and so *T* is a 2-group. It follows that 2 divides $|M: E|$, which contradicts (4). Therefore *p* must be an odd number. Suppose that either $p \neq 3$ or $p = 3$ and $|L| > 3^2$. Let $|L| = p^a$ and p^b be the order of a Sylow *p*-subgroup of *M*. Then by Lemma 2.11, $b < a - 1$. Since T_p is cyclic, $|T_p \cap L| \leq p$. It follows from $G = MT = [L]M$ that $|L| \leq |T_p|$. Hence $p^{a+b} < p^{2a-1} \leq |LT_p| \leq p^{a+b}$. This contradiction shows that $p = 3$ and $a = 2$.

402 W. GUO and A. N. SKIBA

(8) *The order of a Sylow* 2*-subgroup P of T is* 2.

Let *T* be a supplement of *E* in *G*. Since *T* is 3-soluble and its Sylow 3-subgroups are cyclic, *T* is 3-supersoluble. But by (6) , $O_{3'}(T) = 1$. Hence *T* is supersoluble by Lemma 2.5. Then, for a Sylow 3-subgroup *P* of *T*, we have $P = F(T)$. Thus $C_T(P) \leq P$ by [8, Theorem 1.8.18]. It follows from [7, Chapter 5, Lemma 4.1(iii)] that $|\tilde{T}/P| = 2$. Therefore, (8) holds.

Final contradiction.

In view of (7) , *M* is isomorphic with some subgroup of $GL(2,3)$. Hence $|M| \leq 48$. It follows that $|M: E| = 2^m$ for some $m > 1$ (since *E* is not normal in *M*). But since $G = ET$, we see that $|M : E| | |P| = 2$, which is impossible. The final contradiction completes the proof.

5. Proof of Theorem C

First we shall prove the following Theorem.

Theorem 5.1. *Suppose that G is not a p-group. Then the following are equivalent.*

 (1) *G is p*-*soluble*.

(2) *Every maximal subgroup of* G *is* S_p -embedded in G *.*

(3) *G* has two maximal *p*-soluble S_p -embedded subgroups M_1 and M_2 , *whose indices* $|G : M_1|$ *and* $|G : M_2|$ *are coprime.*

(4) For every maximal subgroup M of G , either $|G : M|$ is a power of p or M *is* S_p *-embedded in G.*

PROOF. (1) \Rightarrow (2). Let *M* be a maximal subgroup of *G* and *H/K* a chief factor of *G* such that $HM = G$ and $K \leq M$. If $M_G \neq 1$, M/M_G is S_p -embedded in G/M_G by induction and consequently *M* is S_p -embedded in *G* by Lemma 2.9(1). Suppose that $M_G = 1$. Then $K = 1$. If *H* is a p' group, then $|H \cap M|_p = 1 = |H \cap M_{sG}|_p$. Hence *M* is *S_p*-embedded in *G*. If *H* is an abelian *p*-group, then $H \cap M = H \cap M_{sG} = K = 1$. Then *M* is also *Sp*-embedded in *G*.

 $(3) \Rightarrow (1)$. Assume that this is false and let *G* be a counterexample of minimal order. Let *N* be a minimal normal subgroup of *G*. If $N \le M_1 \cap M_2$, then M_1/N and M_2/N are *p*-soluble maximal subgroups of G/N whose indices $|G/N : M_1/N| = |G : M_1|$ and $|G/N : M_2/N| = |G : M_2|$ are coprime and M_1/N and M_2/N are S_p -embedded in *G* by Lemma 2.9(2). This shows that the hypothesis holds for G/N . Therefore G/N is *p*-soluble by the choice of *G*. On the other hand, if $N \nsubseteq M_1 \cap M_2$, for example $N \nsubseteq M_1$, then $G/N \simeq M_1/M_1 \cap N$ is *p*-soluble. Therefore, *N* is the only minimal normal subgroup *N* of *G*, $N \neq \Phi(G)$ and *N* is a non-abelian group with *p* divides |N|. Then, clearly, $G = NM_1 = NM_2$ and $(M_1)_{G} = 1 = (M_2)_{G}$.

Let N_p be a Sylow *p*-subgroup of N and P a Sylow *p*-subgroup of G contained N_p . Since $|G: M_1|$ and $|G: M_2|$ are coprime. Without loss of generality, we may assume that *P* is contained in at least one of the subgroups M_1 and M_2 , for example, $P \leq M_1$. Since M_1 is S_p -embedded in G , $M^{sG} = MT$ and $|M \cap T|_p = |T \cap M_{sG}|_p$, for some *S*-quasinormal subgroup *T* of *G*. By Lemma 2.2(3), M^{sG} , *T* and M_{sG} are subnormal in *G*. Then since $(M_1)_{G} = 1$ and by Lemma 2.3(4), we have that $(M_1)_{sG} = 1$ and $(M_1)^{sG} = G$. This shows that *T* is a complement of M_1 in \hat{G} . Since $P \leq M_1$, *p* does not divide $|T|$. Let $N = N_1 \times N_2 \times \cdots \times N_t$, where N_1, N_2, \ldots, N_t are isomorphic simple non-abelian groups. Let *L* be a minimal subnormal subgroup of *G* contained in *T*. Since, obviously, $C_G(N) = 1$, $L \nleq C_G(N)$ and so $L \leq N$ by Lemma 2.1(5). Hence $L = N_i$, for some *i*. It follows that *p* divides $|L|$ and therefore p divides $|T|$, a contradiction.

 $(1) \Rightarrow (3)$. Since *G* is *p*-soluble and *G* is not a *p*-group, then there are two maximal subgroups M_1 and M_2 of *G* such that $|G: M_1| = p^a$ for some $a \in \mathbb{N}$ and p does not divide $|G : M_2|$ by [8, Theorem 1.7.13]. Then $(|G : M_1|, |G : M_2|) = 1$. By (2), we see that M_1 and M_2 are S_p -embedded in *G*. Thus (3) holds.

 $(4) \Rightarrow (1)$. Let L be a minimal normal subgroup of G. Clearly, the hypothesis is true for G/L . By induction, G/L is *p*-soluble. We may, therefore, assume that L is non-abelian, p divides $|L|$ and L is the only minimal normal subroup of *G*. Thus $C_G(L) = 1$. By the Frattini argument, for any Sylow *p*-subgroup *P* of *L*, there is a maximal subgroup *M* of *G* such that $LM = G$ and $N_G(P) \leq M$. It is clear that $M_G = 1$ and *p* does not divides $|G : M|$. By hypothesis, *G* has an *S*-quasinormal subgroup *T* such that $M^{sG} = M^G = G = MT$ and $|T \cap M|_p = |T \cap M_{sG}|_p$. But by Lemma 2.3(4), $M_{sG} = M_G = 1$. This implies that $T \cap M$ is a *p*'-group. Let *X* be a minimal subnormal subgroup of *G* contained in *T*. Since $C_G(L) = 1, X \leq L$ by Lemma 2.1(5) and so *p* divides $|X|$. It follows that *p* divides $|T|$. Since *T* is subnormal in *G*, by Lemma 2.1(3), $|T \cap M|_p \neq 1$. This contradiction shows that *G* is *p*-soluble. The theorem is proved.

Corollary 5.2 (Wang [19]). *A group G is soluble if and only if every maximal subgroup of G is c-normal in G.*

PROOF OF THEOREM C. Assume that this theorem is is false and let G be a counterexample of minimal order. Then p divides $|G|$. We proceed the proof via the following steps.

(1) *G is not simple.*

Suppose that *G* is a simple non-abelian group. Then $O_{p'}(G) = 1$. Let *M* be a maximal subgroup of *G* containing a Sylow *p*-subgroup *P* of *G* and *E* any maximal subgroup of *M*. Then $|G : E|$ is not a power of *p*. Hence by hypothesis, *E* is *Sp*-embedded in *G*. Let *T* be an *S*-quasinormal subgroup of

G such that $TE = E^{sG}$ and $|T \cap E|_p = |T \cap E_{sG}|_p$. By Lemma 2.2(3), E^{sG} , E_{sG} and *T* are all subnormal subgroups of *G*. Since *G* is a simple group, we have that $T = G$ and $E_{sG} = 1$. It follows from $|T \cap E|_p = |T \cap E_{sG}|_p =$ 1 that $|E|_p = 1$. If $M = P$, then $|M| = p$ and so *G* is soluble by [11, IV, Theorem 7.4. Otherwise, we may assume that $P \leq E$, which implies $P = 1$. This contradiction shows that (1) holds.

(2) *G has a unique minimal normal subgroup L, G/L is p-soluble, p divides* $|L|$ *and* $L \nleq \Phi(G)$ *.*

Let L be a minimal normal subgroup of G . Then by Lemma 2.9(2), the hypothesis still holds for G/L . The minimal choice implies that G/L is *p*-soluble by the choice of *G*. Hence (2) holds.

(3) *G is p-soluble.*

By (1), $L \neq G$. Let *M* be any maximal subgroup of *G* containing *L*. Suppose that $|G : M| = p^a$. Then for every maximal subgroup *E* of *M* with $|M: E|$ is not a power of *p*, we have that $|G: E|$ is also not a power of *p*. Hence E is S_p -embedded in G by (2) and hypothesis. It follows from Lemma 2.9(3) that E is S_p -embedded in M . Hence M is *p*-soluble by Theorem 5.1(4). Consequently, *L* is *p*-soluble and thereby *G* is *p*-soluble. The contradiction completes the proof.

REFERENCES

- [1] Agrawal, R. K., Generalized center and hypercenter of a finite group, *Proc. Amer. Math. Soc.,* **54** (1976), 13–21.
- [2] Ballester-Bolinches, A. and Ezquerro, L. M., *Classes of Finite groups,* Springer, Dordrecht, 2006.
- [3] Bercovich, Yakov and Kazarin, Lev, Indices of elements and normal structure of finite groups, *J. Algebra.,* **283**(1) (2005), 564–583.
- [4] Buckley, J., Finite groups whose minimal subgroups are normal, *Math. Z.,* **15** (1970), 15–17.
- [5] Deskins, W. E., On quasinormal subgroups of finite groups, *Math. Z.,* (1963) **82**, 125–132.
- [6] Doerk, K. and Hawkes, T., *Finite Soluble Groups,* Walter de Gruyter, Berlin–New York, 1992.
- [7] Gorenstein, D., *Finite Groups,* Harper & Row Publishers, New York–Evanston– London, 1968.
- [8] Guo, Wenbin, *The Theory of Classes of Groups,* Science Press-Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000.
- [9] Guo, Wenbin and Skiba, Alexander N., Finite groups with given *s*-embedded and *n*-embedded subgroups, *J. Algebra.,* **321**(10) (2009), 2843–2860.
- [10] Huppert, B., Normalteiler and maximal Untergruppen endlicher gruppen, *Math. Z.,* **(60)** (1954), 409–434.

- [11] Huppert, B., *Endliche Gruppen I,* Springer-Verlag, Berlin–Heidelberg–New York, 1967.
- [12] Kegel, O., Sylow-Gruppen and Subnormalteiler endlicher Gruppen, *Math. Z.,* **78** (1962), 205–221.
- [13] Laue, R., Dualization for saturation for locally defined formations, *J. Algebra,* **52** (1978), 347–353.
- [14] SCHMID, P., Subgroups permutable with all Sylow subgroups, *J. Algebra*, **82** (1998), 285–293.
- [15] Shaalan, A., The influence of *π*-quasinormality of some subgroups on the structure of a finite group, *Acta Math. Hungar.,* **56** (1990), 287–293.
- [16] Shemetkov, L. A., *Formations of finite groups,* Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.
- [17] Skiba, Alexander N., On weakly *s*-permutable subgroups of finite groups, *J. Algebra.,* **315**(1) (2007), 192–209.
- [18] SKIBA, ALEXANDER N., On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, *J. Group Theory,* (2010)/DOI 10.1515/JGT.2010.
- [19] Wang, Y., *c*-normality of groups and its properties, *J. Algebra,* **180** (1996), 954–965.
- [20] Weinstein, M. (ed.), etc., *Between Nilpotent and Solvable,* Polygonal Publishing House, Passaic N. J., 1982.
- [21] WIELANDT, H., *Subnormal subgroups and permutation groups*, Lectures given at the Ohio State University, Columbus, Ohio, 1971.