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Abstract

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G
if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by
all those subgroups of H which are S-quasinormal in G and HsG the intersection of all S-
quasinormal subgroups of G containing H. The symbol |G|p denotes the order of a Sylow
p-subgroup of G. We prove the following

Theorem A. Let G be a finite group and p a prime dividing |G|. Then G is p-
supersoluble if and only if for every cyclic subgroup H of G = G/Op′(G) of prime order or

order 4 (if p = 2), G has a normal subgroup T such that HT = HsG and H ∩T = HsG∩T .

Theorem B. A soluble finite group G is p-supersoluble if and only if for every 2-
maximal subgroup E of G such that Op′(G) 5 E and |G : E| is not a power of p, G has
an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that EsG = ET and
|E ∩ T |p = |EsG ∩ T |p.

Theorem C. A finite group G is p-soluble if for every 2-maximal subgroup E of G
such that Op′(G) 5 E and |G : E| is not a power of p, G has an S-quasinormal subgroup
T such that EsG = ET and |E ∩ T |p = |EsG ∩ T |p.
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1. Introduction

There are a large number of criteria for solubility, p-solubility, nilpotency,
p-nilpotency and supersolubility of finite groups. Moreover people found a
large number of various characterizations of such classes of groups. Never-
theless, the p-supersoluble groups remain little-studied subject of the group
theory. The present paper adds some result to this line of research.

Throughout this paper, all groups are finite, G is a finite group, p denotes
a prime divisor of |G| and |H|p denotes the order of a Sylow p-subgroup of

a group H.
Recall that a subgroup A of G is said to permute with a subgroup B if

AB = BA. If A permutes with all Sylow subgroups of G, then A is called
S-permutable, S-quasinormal or π(G)-permutable [12] in G. Let H be a sub-

group of G, HsG the intersection of all S-permutable subgroups of G contain-
ing H [9] and let HsG be the subgroup of H generated by all those subgroups
of H which are S-permutable in G [17]. Since S-quasinormal subgroups
of G form a sublattice of the lattice of all subgroups of G (O. Kegel [12]),

both subgroups HsG and HsG are S-quasinormal in G. We call HsG the S-
quasinormal core of H in G and call HsG the S-quasinormal closure of H
in G.

Our main goal here is to prove the following theorems.

Theorem A. G is p-supersoluble if and only if for every cyclic subgroup
H of G = G/Op′(G) of prime order or order 4 (if p = 2), G has a normal

subgroup T such that HT = HsG and H ∩ T = HsG ∩ T .

Corollary 1.1. Suppose that for every cyclic subgroup H of G of prime
order or order 4 (if p = 2), G has a normal subgroup T such that HT = HsG

and H ∩ T = HsG ∩ T . Then G is p-supersoluble.

Corollary 1.2 (Buckley [4]). Let G be a group of odd order. If every
minimal subgroup of G is normal in G, then G is supersoluble.

Corollary 1.2 (Gaschütz [11, IV, Theorem 5.7]). If every minimal
subgroup of a group G is normal in G, then the commutator subgroup G′

of G is 2-closed.

Proof. By Theorem A, G is p-supersoluble for all odd primes p. Hence
G/Op′(G) is supersoluble (see below Lemma 2.5). Then, since O2(G) is the
intersection of all such subgroups Op′(G), we see that G′ is 2-closed.

Note that if a subgroup H is S-quasinormal in G, then HsG = H = HsG.
Hence, by Theorem A, we obtain

Corollary 1.3 (Shaalan [15]). If every cyclic subgroup of G of prime
order or order 4 is S-quasinormal in G, then G is supersoluble.
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A subgroupH of a group G is said to be c-normal in G [19] if G has a nor-

mal subgroup T such that HT = G (which implies H(T ∩HG) = HG) and
H ∩ T = HG ∩ T (which implies H ∩ T = HsG ∩ T ). Hence, by Theorem A,
we also have the following

Corollary 1.4 (Wang [19]). If every cyclic subgroup of G of prime
order or order 4 is c-normal in G, then G is supersoluble.

Theorem B. Suppose that G is soluble. Then G is p-supersoluble if
and only if for every 2-maximal subgroup E of G such that Op′(G) 5 E and
|G : E| is not a power of p, G has an S-quasinormal subgroup T with cyclic

Sylow p-subgroups such that EsG = ET and |E ∩ T |p = |EsG ∩ T |p.

Theorem C. G is p-soluble if for every 2-maximal subgroup E of G such
that Op′(G) 5 E and |G : E| is not a power of p, G has an S-quasinormal

subgroup T such that EsG = ET and |E ∩ T |p = |EsG ∩ T |p.

From Theorems B and C, we directly get

Corollary 1.5 (Guo, Skiba [9]). Suppose that for every 2-maximal sub-
group E of G such that |G : E| is not a power prime, G has an S-quasinormal

cyclic subgroup T satisfying EsG = ET and E ∩ T = EsG ∩ T . Then G is su-
persoluble.

Corollary 1.6 (Agrawal [1]). If every 2-maximal subgroup of G is
S-quasinormal in G, then G is supersoluble.

Corollary 1.7 (Huppert [10]). If every 2-maximal subgroup of G is
normal in G, then G is supersoluble.

All unexplained notations and terminologies in this paper are standard.
The reader is refereed to [2], [8], [6] if necessary.

2. Preliminaries

The following known results about subnormal and S-quasinormal sub-
groups will be used in many places of our proofs.

Lemma 2.1. Let A 5 K 5 G and B 5 G. Then
(1) If A is subnormal in G and A is a π-subgroup of G, then A 5

Oπ(G) [21].
(2) If A is subnormal in G, then A∩B is subnormal in B [6, A, (14.1)].
(3) If A is subnormal in G and B is a Hall π-subgroup of G, then A∩B

is a Hall π-subgroup of A [21].
(4) If A is subnormal in G and A is soluble (nilpotent), then A is con-

tained in some soluble normal (nilpotent) subgroup of G [21].
(5) If A is subnormal in G and B is a minimal normal subgroup of G,

then B 5 NG(A) [6, A, (14.3)].
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Lemma 2.2. Let H 5 K 5 G.
(1) If H is S-quasinormal in G, then H is S-quasinormal in K [12].
(2) Suppose that H is normal in G. Then K/H is S-quasinormal in G

if and only if K is S-quasinormal in G [12].
(3) If H is S-quasinormal in G, then H is subnormal in G [12].
(4) If H and F are S-quasinormal subgroups of G, then H ∩ F and

⟨H,F ⟩ are S-quasinormal in G [12].
(5) If H is S-quasinormal in G, then H/HG is nilpotent [5].
(6) If H is S-quasinormal in G and M 5 G, then H ∩M is S-quasi-

normal in M [5].
(7) If H is S-quasinormal in G and H is a q-group for some prime q,

then Oq(G) 5 NG(H) [14, Lemma A].

Lemma 2.3 [17, Lemma 2.8]. Let H 5 K 5 G. Then:
(1) HsG is an S-quasinormal subgroup of G and HG 5 HsG.
(2) HsG 5 HsK .
(3) If H is normal in G, then (K/H)s(G/H) = KsG/H.

(4) If H is either a Hall subgroup of G or a maximal subgroup of G,
then HsG = HG.

Lemma 2.4 [9, Lemma 2.5]. Let G be a group and H 5 K 5 G. Then:

(1) HsG is an S-quasinormal subgroup of G and HsG 5 HG.

(2) HsK 5 HsG.

(3) If H is normal in G, then (K/H)s(G/H) = KsG/H.
(4) If H is either a Hall subgroup of G or a maximal subgroup of G,

then HsG = HG.

Lemma 2.5. Let p be a prime and G a p-soluble group. Assume that
Op′(G) = 1. Then the following statements are equivalent.

(i) G is p-supersoluble;
(ii) G is supersoluble;
(iii) G/Op(G) is an abelian group of exponent dividing p− 1.

Proof. (i) =⇒ (ii). Since G is p-supersoluble, for every chief p-factor
H/K of G, we have |H/K| = p and so G/CG(H/K) is an abelian group of ex-
ponent dividing p− 1 (see [20, Chapter 1, Theorem 1.4]. Since Op′(G) = 1,
the intersection of the centralizers of all chief factors H/K of |H/K| = p
is Op′,p(G) = Op(G). Hence G is supersoluble by [20, Chapter 1, Theo-
rem 1.9]. By using the same arguments, we also see that (ii) =⇒ (iii) and
(iii) =⇒ (i). �

Let F be any non-empty class of groups. We use GF to denote the in-
tersection of all normal subgroups N of G with G/N ∈ F . A(p− 1) denotes
the formation of all abelian groups of exponent dividing p− 1. The symbol
ZU (G) denotes the largest normal subgroup of a group G such that every
chief factor of G below ZU (G) is cyclic.
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Lemma 2.6 [18, Lemma 2.2]. Let E be a normal p-subgroup of G. If

E 5 ZU (G), then
(
G/CG(E)

)A(p−1) 5 Op

(
G/CG(E)

)
.

The following lemma may be proved based on some results in [13] on f -
hypercentral action (see [16, Chapter II] or [6, Chapter IV, Section 6]). For
reader’s convenience, we give a direct proof.

Lemma 2.7. Let P be a normal p-subgroup of G and D a character-
istic subgroup of P such that every non-trivial p′-automorphism of P in-
duces a non-trivial automorphism of D. Suppose that D 5 ZU (G). Then
P 5 ZU (G).

Proof. Let C = CG(P ) and H/K be an arbitrary chief factor of G be-

low P . Then Op

(
G/CG(H/K)

)
= 1 by [20, Appendix C, Corollary 6.4].

Since D 5 ZU (G), we have
(
G/CG(D)

)A(p−1)
is a p-group by Lemma 2.5.

Hence (G/C)A(p−1) is a p-group. It follows that G/CG(H/K) ∈ A(p−1) and
so |H/K| = p by [20, Chapter 1, Theorem 1.4]. Therefore P 5 ZU (G). �

Let P be a p-group. If P is not a non-abelian 2-group we use Ω(P ) to
denote the subgroup Ω1(P ). Otherwise, Ω(P ) = Ω2(P ).

Lemma 2.8 [3]. Let P be a p-group of class at most 2. Suppose that

exp
(
P/Z(P )

)
divides p.

(1) If p > 2, then exp
(
Ω(P )

)
= p.

(2) If P is a non-abelian 2-group, then exp
(
Ω(P )

)
= 4.

Proof. See page 3 in [3].
Let H be a subgroup of G and p a prime. Then we say that H is Sp-

embedded in G if G has a subgroup T such that HT = HsG and |H ∩ T |p =
|HsG ∩ T |p. �

Lemma 2.9. Let H be a normal subgroup of G and H 5 K 5 G.
(1) If H is p-soluble and K/H is Sp-embedded in G/H, then K is Sp-

embedded in G.
(2) If K is Sp-embedded in G, then K/H is Sp-embedded in G/H.
(3) If L is an Sp-embedded subgroup of G and L 5 K, then L is Sp-

embedded in K.
(4) The subgroup HE/H is Sp-embedded in G/H, for every Sp-embedded

in G subgroup E satisfying
(
|H|, |E|

)
= 1.

Proof. (1) We prove that K is Sp-embedded in G by induction on |G|.
Let L be a minimal normal subgroup of G such that L 5 H. Then, obvi-
ously, (K/L)/(H/L) is Sp-embedded in (G/L)/(H/L). If L ̸= H, then by
induction, K/L is Sp-embedded in G/L. We may, therefore, assume that
H is a minimal normal subgroup of G. Let T/H be an S-quasinormal
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subgroup of G/H such that KT/H = (K/H)(T/H) = (K/H)s(G/H) and∣∣(T/H) ∩ (K/H)
∣∣
p
= |(T/H) ∩ (K/H)s(G/H)|p. By Lemma 2.2(2), T is

S-quasinormal in G. By Lemma 2.4(3), (K/H)s(G/H) = KsG/H. Hence

KsG = KT . Since H is p-soluble, H is either a p-group or a p′-group. Then,
since

∣∣(T/H) ∩ (K/H)
∣∣
p
= |(T/H) ∩ (K/H)s(G/H)|p, we obtain |T ∩K|p =

|T ∩KsG|p. Hence K is Sp-embedded in G.

(2) Assume that KT = KsG and |T ∩K|p = |T ∩KsG|p, for some S-

quasinormal subgroup T of G. Then HT/H is an S-quasinormal in G/H

and (HT/H)(K/H) = KT/H = KsG/H = (K/H)sG by Lemma 2.4(3). Be-
sides, clearly, H 5 KsG. Hence H ∩ T ∩K = H ∩ T = H ∩ T ∩KsG. This

implies that
∣∣(TH/H)∩ (K/H)

∣∣
p
=

∣∣H(T ∩K)/H
∣∣
p
=

∣∣H(T ∩KsG)/H
∣∣
p
=

|(TH/H) ∩ (K/H)s(G/H)|p. Thus K/H is Sp-embedded in G/H.

(3) Let T be an S-quasinormal subgroup of G such that LT = LsG

and |T ∩ L|p = |T ∩ LsG|p. Let T0 = T ∩ LsK . Then T0 = K ∩ T ∩ LsK and

T0 ∩ LsK = T ∩ LsK . By Lemma 2.2(6), K ∩ T is S-quasinormal in K and
so by Lemma 2.2(4), T0 is S-quasinormal in K. Besides, by Lemma 2.4(2),

LsK 5 LsG and so LsK = LsK ∩ LsG = LsK ∩ LT = L
(
LsK ∩ T

)
= LT0. Fi-

nally, we show that |T0 ∩ L|p = |T0 ∩ LsK |p. In fact, we only need to prove

that |P1| 5 |P2|, for some Sylow p-subgroups P1 of T0 ∩ L and some Sy-
low p-subgroup P2 of T0 ∩ LsK . Since H ∩ T0 5 L ∩ T , we have P1 5 P3,
for some Sylow p-subgroup P3 of L ∩ T . On the other hand, by Lemma
2.3(2), LsG 5 LsK . Hence T ∩ LsG 5 T ∩ LsK = T0 ∩ LsK . It follows that
|P1| 5 |P3| = |T ∩ L|p = |T ∩ LsG|p 5 |P2|. Hence L is Sp-embedded in K.

(4) By (2), we only need to prove that HE is Sp-embedded in G. Assume
that E is Sp-embedded in G and let T be an S-quasinormal subgroup of G

such that ET = EsG and |T ∩ E|p = |T ∩ EsG|p. Let T0 = HT . Then, obvi-

ously, To is an S-quasinormal subgroup of G and HET0 = HEsG = (HE)sG.

Next we show that |T0 ∩HE|p =
∣∣T0 ∩ (HE)sG

∣∣
p
.

Since
(
|E|, |H|

)
= 1, E is a Hall π-subgroup of EH and H is a Hall

π′-subgroup of EH, for some set π of primes. If p divides |H|, then

E is p′-group. Hence |T0 ∩HE|p = |H| = |T0 ∩HEsG|p =
∣∣T0 ∩ (HE)sG

∣∣
p
.

Now we assume that p divide |E|. In this case, H is a p′-group. Let
D = T ∩HE. By Lemmas 2.1(2) and 2.2(3), D is subnormal in HE and so
D = (D ∩H)(D ∩E) 5 H(T ∩E). It follows that T0∩HE = H(T ∩HE) =
HD 5 H(T ∩E) and so

|T0 ∩HE|p = |T ∩ E|p = |T ∩ EsG|p 5
∣∣HT ∩ (HE)sG

∣∣
p
5 |T0 ∩HE|p.
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Therefore |T0 ∩HE|p =
∣∣T0 ∩ (HE)sG

∣∣
p
. This shows that HE is Sp-embed-

ded in G. �
Lemma 2.10. Suppose that every maximal subgroup E of G with(

|G : E|, p
)
= 1 is normal in G. Let P be a Sylow p-subgroup of G. Then

G is p-closed and G/P is nilpotent.

Proof. Suppose that this lemma is false and let G be a counterexample
of minimal order. Obviously, the hypothesis is true for any factor group
of G. Hence G has a unique minimal normal subgroup, L say, and G/L is
p-closed with nilpotent factor (G/L)/(PL/L). If L is a p-group, then G is p-
closed with nilpotent factor G/P , which contradicts the choice of G. Hence
L is not a p-group. It is well known that the class of all p-closed groups
G with nilpotent G/P is a saturated formation. Hence L " Φ(G). Let M
be a maximal subgroup of G such that ML = G. Suppose that p divides
|G : M |. Then p divides |L| and by Fratinni argument, for some maximal
subgroup E of G we have EL = G and p does not divide |G : E|. Hence E
is normal in G by hypothesis, which implies |E| = 1. Consequently, G = L.
This contradiction completes the proof. �

Lemma 2.11 [20, Chapter 4, Theorem 1.6]. Let p be an odd prime num-
ber and F field of characteristic p. Let G be a completely reducible soluble
linear group of degree n over F. Suppose that a Sylow p-subgroup of G has

order pλ(n). Then λ(n) 5 n− 1 with equality only if n = 1 or n = 2 and
p = 3.

3. Proof of Theorem A

Let H be a subgroup of G. Then we say, following [9], that H is N -

embedded in G if G has a normal subgroup T such that HT = HsG and
H ∩ T = HsG ∩ T .

Proof of Theorem A. First suppose that every cyclic subgroup H
of G = G/Op′(G) of prime order or order 4 is N -embedded in G. We shall
show that G is p-supersoluble. Suppose that this is false and let G be a
counterexample of minimal order. Let Z = ZU (G).

(1) Op′(G) = 1.

Since Op′
(
G/Op′(G)

)
= 1, the hypothesis is true for G/Op′(G). Hence,

if Op′(G) ̸= 1, then G/Op′(G) is p-supersoluble by the choice of G. It follows
that G is p-supersoluble, a contradiction. Hence (1) holds.

(2) Op′(L) = 1 for any subnormal subgroup L of G.

Indeed, Op′(L) 5 Op′(G) = 1 by Lemma 2.1(1).
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(3) Every proper normal subgroup L of G is supersoluble.

The hypothesis holds for L by Lemma 2.7(2) in [9]. Hence L is p-
supersoluble by the choice of G and therefore L is supersoluble by (2) and
Lemma 2.5.

(4) If N is a normal subgroup of G and N 5 Op(G), then N 5 Z.

We will prove this assertion by induction on |N |. Suppose that N � Z.

Then

(a) G has a normal subgroup R 5 N such that N/R is a non-cyclic chief
factor of G, R 5 Z and V 5 R for any normal subgroup V ̸= N of G con-
tained in N .

Let N/R be a chief factor of G. Then the hypothesis holds for (G,R).
Therefore R 5 Z by induction and so N/R is not cyclic. Now let V ̸= N be

any normal subgroup of G contained in N . Then V 5 Z. If V � R, then

from the G-isomorphism N/R = V R/R ≃ V/V ∩R, we obtain that N 5 Z,
a contradiction. Hence V 5 R.

(b) Let D be a Thompson critical subgroup of N (see [7, p. 186]). Then
Ω(N) = N = D.

Indeed, suppose that Ω(N) < N . Then, in view of (a), Ω(N) 5 Z. Hence
N 5 Z by Lemmas 2.7 and Theorem 5.12 in [11, Chapter IV], a contradic-
tion. Hence Ω(N) = N . In view of Theorem 3.11 in [7, Chapter 5] we obtain
similarly that N = D.

The final contradiction for (4).

Let H/R be any minimal subgroup of N/R ∩ Z(Gp/R), where Gp is a
Sylow p-subgroup of G. Let x ∈ H \R and L = ⟨x⟩. Then H/R = LR/R
and |L| is either a prime or 4 by Lemma 2.8. Hence L is N -embedded in G

by the hypothesis. Hence G has a normal subgroup T such that LT = LsG

and L ∩ T = LsG ∩ T . It is clear that LsG 5 N . Thus T 5 N . Suppose that

T 5 R. Then H/R = LT/R = LR/R = LsGR/R is S-quasinormal subgroup
of G/R by Lemmas 2.2 and 2.4(1). Therefore H/R is normal in G/R by
Lemma 2.2(7) and consequently H/R = N/R, which contradicts (a). Thus
(4) holds.

(5) G is p-soluble.

Suppose that this is false. Then:

(a) G is non-simple.

Suppose that G is a simple non-abelian group. Let H be any subgroup of
G of order p, T a normal subgroup of G such that HT = HsG and T ∩H =
T ∩HsG. By Lemmas 2.2(3) and 2.4(1), HsG is subnormal in G. Hence
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HsG = G and either T = 1 or T = G. In the both cases, we have H = G and
thereby G = H = HsG is cyclic. This contradiction shows that (a) holds.

(b) G has a non-identity supersoluble normal subgroup R such that G/R
is a simple non-abelian group, p divides |G/R| and every proper normal sub-
group of G is contained in R.

Let R be a normal subgroup of G such that G/R is simple. Then in
view of (a), R ̸= 1. By (3), R is supersoluble. Hence G/R is a simple
non-abelian group and p divides |G/R|. Now let L be any proper normal

subgroup of G. Suppose that L � R. Then G = RL is the product of two

supersoluble groups. Consequently, G is soluble, a contradiction.

(c) R = Z∞(G) 5 Op(G).

In view of (2), p divides |R|. Let P be a Sylow p-subgroup of R. By
(2), Op′(R) = 1. Hence, by (3) and Lemma 2.5, P = F (R). Since F (R) is a
characteristic subgroup of R, P is normal in G. Hence P 5 ZU (R) by (4).
Then, by (b), we see that CG(H/K) = G for any chief factor H/K of G
below P . Hence P 5 Z∞(G) and so R is nilpotent since R/P = R/F (R) is
abelian. It follows from (2) that R = P = Z∞(G) 5 Op(G).

The final contradiction for (5).

Since G/R is not p-nilpotent, it has a p-closed Schmidt subgroup H/R
(see [11, Chapter IV, Theorem 5.4]). SinceR 5 Z∞(G), we have R 5 Z∞(H).
Hence H = Hp hHq is a Schmidt subgroup of G. Let Φ = Φ(Hp). Then by
[16, VI, Theorem 25.4], Hp/Φ is a non-central chief factor of H and Hp is a
group of exponent p or exponent 4 (if p = 2 and Hp is non-abelian). More-
over, if Hp is abelian, then Φ = 1. Hence |Hp/Φ| > p (otherwise |Hp| = p,
which is impossible).

Let X/Φ be a minimal subgroup of Hp/Φ, x ∈ X�Φ and L = ⟨x⟩. Then
|L| = p or |L| = 4. Hence L is N -embedded in G and so L is N -embedded
in H by Lemma 2.7(2) in [9]. Let T be a normal subgroup of H such

that LT = LsG and L ∩ T 5 LsG. Note that if V is an S-quasinormal

subgroup of H such that V 5 Hp and V � Φ, then V = Hp (otherwise,

HqΦ < VHqΦ < H, a contradiction). Hence L ̸= LsG and so T ̸= Hp. But
then T 5 Φ, which implies that Hp = L. This contradiction completes the
proof of (5).

The final contradiction for the sufficiency. Let P = Op(G). Then P 5
ZU (G) by (4). On the other hand, in view of (1) and (4) we have P = CG(P )

by [7, Chapter 6, Theorem 3.2]. But by Lemma 2.6, G/CG(P )A(p−1) 5
Op

(
G/CG(P )

)
= 1. Hence G is supersoluble by [20, Chapter 1, Theo-

rem 1.9]. This contradiction completes the proof of the fact that G is p-
supersoluble.

Conversely, suppose that G is p-supersoluble, we show that every cyclic
subgroup of G = G/Op′(G) of prime order or order 4 is N -embedded in G.
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Without loss of generality, we may assume that Op′(G) = 1. Let P be a
Sylow p-subgroup of G. Then by Lemma 2.5, P is normal in G and p is the
largest prime dividing |G|. Hence, we only need to consider the case that
p > 2. Let L be any subgroup of G of order p and L 5 N where N is a
normal subgroup of G contained in P . We shall show by induction on |N |
that there are normal subgroups A and B of G such that LA = B 5 N and
L ∩A = 1. Let V be a normal subgroup of G such that V is a maximal
subgroup of N . If V L = N , then V ∩ L = 1. We may, therefore, assume
that L 5 V . Then the required is true by induction. Thus, L is N -embedded
in G. This completes the proof. �

4. Proof of Theorem B

We shall prove Theorem B in the following more general form.

Theorem 4.1. A soluble group G is p-supersoluble if and only if every
2-maximal subgroup E of G with Op′(G) 5 E and |G : E| is not a power

of p, both has a supplement in EsG with cyclic Sylow p-subgroups and is
Sp-embedded in G.

Proof. First suppose that G is p-supersoluble and let E be any 2-
maximal subgroup of G such that Op′(G) 5 E and |G : E| is not a power

of p. We show that E has a supplement T in EsG with cyclic Sylow p-
subgroups and E is Sp-embedded in G. If E = EsG, then it is evident. We

may, therefore, assume that E ̸= EsG. Suppose that Op′(G) ̸= 1. Then, by
induction, E/Op′(G) is Sp-embedded in G/Op′(G) and E/Op′(G) has a sup-

plement T/Op′(G) in
(
E/Op′(G)

) s(G/Op′ (G)
with cyclic Sylow p-subgroups.

By Lemma 2.9(1), E is is Sp-embedded in G. On the other hand, since(
E/Op′(G)

) s(G/Op′ (G)
= EsG/Op′(G) by Lemma 2.4(3), T is a supplement

of E in EsG and clearly the Sylow p-subgroups of T is cyclic.
Now suppose that Op′(G) = 1. Then by Lemma 2.5, G is supersoluble,

P = Op(G) = F (G) is a Sylow p-subgroup of G and G/P is abelian. Let M
be a maximal subgroup of G such that E is maximal in M . Since G is p-
supersoluble and |G : E| is not a power of p, one of |M : E| and |G : M | is
a p′-number (see [8, Theorem 1.9.4]. Hence |G : E| = pn, where (p, n) = 1.
It follows that P ∩E is a maximal subgroup of P with |P : P ∩ E| = p and
so Φ(P ) 5 E. Since Φ(P ) is a characteristic subgroup of P , it is normal
in G. Hence Φ(P ) 5 EsG. If Φ(P ) ̸= 1, then as above we can show that
E is Sp-embedded in G. Besides, PE is normal in G by Lemma 2.5(iii)

and |PE : E| = |P : E ∩ P | = p. Since E j EsG j PE, EsG = PE. Hence

E has a cyclic supplement ⟨x⟩ in EsG, where x ∈ PE and x /∈ E.
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Finally, assume that Φ(P ) = 1. Then P is an elementary abelian p-group
and P = P1×P2× · · ·×Pt, where Pi is a minimal normal subgroup of G, for

all i = 1, 2, . . . , t. It is clear that for some i, Pi � E ∩ P . Hence Pi(E ∩ P ) =

P . Since G is p-supersoluble, |Pi| = p. It follows that Pi ∩ E ∩ P = 1 and

EPi = E. Since E ̸= EsG, E is not S-quasinormal in G. But since PE
is normal in G, by Lemma 2.5(iii), PE = EsG = Pi(E ∩ P )E = PiE. Since
Pi ∩ E E E, Pi ∩E j EsG. Hence |Pi ∩ E|p = |Pi ∩EsG|p. This implies that

E has a supplement Pi in EsG, which is a cyclic Sylow p-subgroup and E is
Sp-embedded in G.

Conversely, assume that G is soluble and every 2-maximal subgroup E
ofG with Op′(G) 5 E and |G : E| is not a power of p has a supplement in EsG

with cyclic Sylow p-subgroups and E is Sp-embedded in G. We show that G
is p-supersoluble. Assume that this is false and let G be a counterexample
of minimal order. Then

(1) G has a unique minimal normal subgroup L, G/L is p-supersoluble,

p divides |L| and L � Φ(G).

Let L be a minimal normal subgroup of G and E/L a 2-maximal sub-
group of G/L such that Op′(G/L) 5 E/L and |G/L : E/L| is not a power
of p. Since Op′(G)L/L 5 Op′(G/L), Op′(G) 5 E. Besides, |G : E| is not a
power of p. Hence by hypothesis, E is Sp-embedded in G and there is a sub-

group T such that ET = EsG and a Sylow p-subgroup of T is cyclic. Obvi-

ously, (EL)sG = EsGL. Hence (E/L)(TL/L) = EsGL/L = (E/L)s(G/L) by
Lemma 2.4(3) and clearly TL/L has a cyclic Sylow p-subgroup. Besides,
E/L is Sp-embedded in G/L by Lemma 2.9(2). This shows that the hy-
pothesis still holds for G/L. The minimal choice of G implies that G/L is
p-supersoluble. It is well known that the class of all p-supersoluble groups
is a saturated formation. Hence we see that (1) holds.

(2) G = [L]M for some maximal subgroup M of G, L = CG(L) =
F (G) = Op(G) and p ̸= |L|.

By (1), there exists a maximal subgroup M of G such that G = LM .
Since G is soluble, L is either a p′-group or a p-group. In the former case,
G is clearly p-supersoluble, a contradiction. Hence L is a abelian p-group.
It follows that L = CG(L) = F (G) = Op(G) and |L| > p since G is not p-
supersoluble.

(3) L is not a Sylow p-subgroup of G.

Assume that L is a Sylow p-subgroup of G and let E be a maximal sub-
group of M . Then |G : E| = |L| |M : E| ̸= pa and Op(G) = 1 5 E. Hence

by hypothesis E is Sp-embedded in G and E has a supplement X in EsG

with cyclic Sylow p-subgroups. Suppose that E = 1 and let V be a maximal
subgroup of L. Then by hypothesis, V is Sp-embedded in G. Let T be a S-
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quasinormal subgroup of G such that V sG = V T and |T ∩ V |p = |T ∩ VsG|p.
Since L is a Sylow p-subgroup of G, the subgroups VsG, V sG and T are
normal in G by Lemma 2.2(7). This implies that T = L and V = 1. But
then |L| = p, which contradicts (2). Therefore E ̸= 1. Let q be prime di-
viding |M : E| and Q be a Sylow q-subgroup of M . Clearly, Q is a Sylow

q-subgroup of G and A = EsGQ = QEsG is a subgroup of G. Since E is
maximal in M and Q " E, we have ⟨E,Q⟩ = M . Hence M 5 A and so
LA = G. Since L is a minimal normal subgroup of G, either L ∩A = L
or L ∩A = 1. In the former case, G = A = EsGQ and so L is a Sylow p-
subgroup of any supplement of E in EsG. Therefore L is cyclic and hence
|L| = p, which contradicts (2). Thus L∩A = 1. Obviously, EsG 5 M . Since

MG = 1, (EsG)G = 1. Hence EsG is nilpotent by Lemma 2.2(5). Then by

Lemma 2.2(3) and Lemma 2.1(4), EsG 5 L, a contradiction. This shows
that L is not a Sylow p-subgroup of G.

(4)M has a non-normal maximal subgroup E such that
(
|M : E|, p

)
= 1.

Suppose that every maximal subgroup E of M with
(
|M : E|, p

)
= 1 is

normal in M . Then by Lemma 2.10, M is p-closed. Besides, by (3), p di-
vides |M |. But by (2), we have Op(G/L) = Op(G/CG(L) = 1 (see [8, Lemma
1.7.11]). Hence L is a Sylow p-subgroup of G, which contradicts (3). Hence,
(6) holds.

(5) EsG = G.

Indeed, suppose that D = EsG ̸= G. Since D is subnormal in G by
Lemma 2.2(3) and Lemma 2.4(1), M " D. Hence E = D ∩M is a subnor-
mal subgroup of M by Lemmas 2.2(3) and 2.1(2). But since E is maximal
in M , E is normal in M , which contradicts (4).

(6) If T is a supplement of E in G, then Op′(T ) = 1.

Since G = ET = MT , M = M ∩ ET = E(M ∩ T ) and |L| = |G : M | =
|T : M ∩ T |. It follows that Op′(T ) 5 M . Hence (Op′(T ))

G
= Op′(T )

TM =

Op′(T )
M 5 MG = 1. Consequently, Op′(T ) = 1.

(7) p = 3 and |L| = 9.

Let T be a supplement of E in EsG = G with cyclic Sylow p-subgroups.
Then G = ET = MT . Let Tp be a Sylow p-subgroup of T . Suppose that
p = 2. Then by [11, IV, Theorem 2.8], T is 2-nilpotent. But by (6), T2′ = 1
and so T is a 2-group. It follows that 2 divides |M : E|, which contradicts (4).
Therefore p must be an odd number. Suppose that either p ̸= 3 or p = 3 and
|L| > 32. Let |L| = pa and pb be the order of a Sylow p-subgroup of M . Then
by Lemma 2.11, b < a− 1. Since Tp is cyclic, |Tp ∩ L| 5 p. It follows from

G = MT = [L]M that |L| 5 |Tp|. Hence pa+b < p2a−1 5 |LTp| 5 pa+b. This
contradiction shows that p = 3 and a = 2.
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(8) The order of a Sylow 2-subgroup P of T is 2.

Let T be a supplement of E in G. Since T is 3-soluble and its Sylow
3-subgroups are cyclic, T is 3-supersoluble. But by (6), O3′(T ) = 1. Hence
T is supersoluble by Lemma 2.5. Then, for a Sylow 3-subgroup P of T , we
have P = F (T ). Thus CT (P ) 5 P by [8, Theorem 1.8.18]. It follows from
[7, Chapter 5, Lemma 4.1(iii)] that |T/P | = 2. Therefore, (8) holds.

Final contradiction.

In view of (7), M is isomorphic with some subgroup of GL(2, 3). Hence
|M | 5 48. It follows that |M : E| = 2m for some m > 1 (since E is not nor-
mal in M). But since G = ET , we see that |M : E| | |P | = 2, which is im-
possible. The final contradiction completes the proof. �

5. Proof of Theorem C

First we shall prove the following Theorem.

Theorem 5.1. Suppose that G is not a p-group. Then the following are
equivalent.

(1) G is p-soluble.
(2) Every maximal subgroup of G is Sp-embedded in G.
(3) G has two maximal p-soluble Sp-embedded subgroups M1 and M2,

whose indices |G : M1| and |G : M2| are coprime.
(4) For every maximal subgroup M of G, either |G : M | is a power of p

or M is Sp-embedded in G.

Proof. (1) ⇒ (2). Let M be a maximal subgroup of G and H/K a
chief factor of G such that HM = G and K 5 M . If MG ̸= 1, M/MG is
Sp-embedded in G/MG by induction and consequently M is Sp-embedded
in G by Lemma 2.9(1). Suppose that MG = 1. Then K = 1. If H is a p′-
group, then |H ∩M |p = 1 = |H ∩MsG|p. Hence M is Sp-embedded in G. If

H is an abelian p-group, then H ∩M = H ∩MsG = K = 1. Then M is also
Sp-embedded in G.

(3) ⇒ (1). Assume that this is false and let G be a counterexample of
minimal order. Let N be a minimal normal subgroup of G. If N 5 M1 ∩M2,
then M1/N and M2/N are p-soluble maximal subgroups of G/N whose in-
dices |G/N : M1/N | = |G : M1| and |G/N : M2/N | = |G : M2| are coprime
and M1/N and M2/N are Sp-embedded in G by Lemma 2.9(2). This shows
that the hypothesis holds for G/N . Therefore G/N is p-soluble by the
choice of G. On the other hand, if N " M1 ∩M2, for example N " M1,
then G/N ≃ M1/M1 ∩N is p-soluble. Therefore, N is the only minimal
normal subgroup N of G, N ̸= Φ(G) and N is a non-abelian group with p
divides |N |. Then, clearly, G = NM1 = NM2 and (M1)G = 1 = (M2)G.
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Let Np be a Sylow p-subgroup of N and P a Sylow p-subgroup of G
contained Np. Since |G : M1| and |G : M2| are coprime. Without loss of
generality, we may assume that P is contained in at least one of the sub-
groups M1 and M2, for example, P 5 M1. Since M1 is Sp-embedded in G,

M sG = MT and |M ∩ T |p = |T ∩MsG|p, for some S-quasinormal subgroup

T of G. By Lemma 2.2(3), M sG, T and MsG are subnormal in G. Then since

(M1)G = 1 and by Lemma 2.3(4), we have that (M1)sG = 1 and (M1)
sG = G.

This shows that T is a complement of M1 in G. Since P 5 M1, p does not
divide |T |. Let N = N1×N2×· · ·×Nt, where N1,N2, . . . ,Nt are isomorphic
simple non-abelian groups. Let L be a minimal subnormal subgroup of G
contained in T . Since, obviously, CG(N) = 1, L � CG(N) and so L 5 N by
Lemma 2.1(5). Hence L = Ni, for some i. It follows that p divides |L| and
therefore p divides |T |, a contradiction.

(1) ⇒ (3). Since G is p-soluble and G is not a p-group, then there
are two maximal subgroups M1 and M2 of G such that |G : M1| = pa for
some a ∈ N and p does not divide |G : M2| by [8, Theorem 1.7.13]. Then(
|G : M1|, |G : M2|

)
= 1. By (2), we see that M1 and M2 are Sp-embedded

in G. Thus (3) holds.
(4) ⇒ (1). Let L be a minimal normal subgroup of G. Clearly, the hy-

pothesis is true for G/L. By induction, G/L is p-soluble. We may, therefore,
assume that L is non-abelian, p divides |L| and L is the only minimal nor-
mal subroup of G. Thus CG(L) = 1. By the Frattini argument, for any
Sylow p-subgroup P of L, there is a maximal subgroup M of G such that
LM = G and NG(P ) 5 M . It is clear that MG = 1 and p does not divides
|G : M |. By hypothesis, G has an S-quasinormal subgroup T such that

M sG = MG = G = MT and |T ∩M |p = |T ∩MsG|p. But by Lemma 2.3(4),

MsG = MG = 1. This implies that T ∩M is a p′-group. Let X be a mini-
mal subnormal subgroup of G contained in T . Since CG(L) = 1, X 5 L by
Lemma 2.1(5) and so p divides |X|. It follows that p divides |T |. Since T is
subnormal in G, by Lemma 2.1(3), |T ∩M |p ̸= 1. This contradiction shows

that G is p-soluble. The theorem is proved. �
Corollary 5.2 (Wang [19]). A group G is soluble if and only if every

maximal subgroup of G is c-normal in G.

Proof of Theorem C. Assume that this theorem is is false and let G
be a counterexample of minimal order. Then p divides |G|. We proceed the
proof via the following steps.

(1) G is not simple.

Suppose that G is a simple non-abelian group. Then Op′(G) = 1. Let
M be a maximal subgroup of G containing a Sylow p-subgroup P of G and
E any maximal subgroup of M . Then |G : E| is not a power of p. Hence by
hypothesis, E is Sp-embedded in G. Let T be an S-quasinormal subgroup of
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G such that TE = EsG and |T ∩ E|p = |T ∩ EsG|p. By Lemma 2.2(3), EsG,

EsG and T are all subnormal subgroups of G. Since G is a simple group,
we have that T = G and EsG = 1. It follows from |T ∩ E|p = |T ∩ EsG|p =
1 that |E|p = 1. If M = P , then |M | = p and so G is soluble by [11, IV,

Theorem 7.4]. Otherwise, we may assume that P 5 E, which implies P = 1.
This contradiction shows that (1) holds.

(2) G has a unique minimal normal subgroup L, G/L is p-soluble, p di-

vides |L| and L � Φ(G).

Let L be a minimal normal subgroup of G. Then by Lemma 2.9(2),
the hypothesis still holds for G/L. The minimal choice implies that G/L is
p-soluble by the choice of G. Hence (2) holds.

(3) G is p-soluble.

By (1), L ̸= G. Let M be any maximal subgroup of G containing L.
Suppose that |G : M | = pa. Then for every maximal subgroup E of M with
|M : E| is not a power of p, we have that |G : E| is also not a power of p.
Hence E is Sp-embedded in G by (2) and hypothesis. It follows from Lemma
2.9(3) that E is Sp-embedded inM . HenceM is p-soluble by Theorem 5.1(4).
Consequently, L is p-soluble and thereby G is p-soluble. The contradiction
completes the proof. �
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