Studia Scientiarum Mathematicarum Hungarica 49 (3), 390–405 (2012) DOI: 10.1556/SScMath.49.2012.3.1212

NEW CHARACTERIZATIONS OF p-SOLUBLE AND p-SUPERSOLUBLE FINITE GROUPS

WENBIN GUO^{1*} and ALEXANDER N. SKIBA^{2**}

¹ Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China e-mail: wbguo@ustc.edu.cn

> ² Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus e-mail: alexander.skiba49@gmail.com

Communicated by L. Márki

(Received November 30, 2010; accepted August 4, 2011)

Abstract

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let H_{sG} be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G and H^{sG} the intersection of all S-quasinormal subgroups of G containing H. The symbol $|G|_p$ denotes the order of a Sylow p-subgroup of G. We prove the following

THEOREM A. Let G be a finite group and p a prime dividing |G|. Then G is psupersoluble if and only if for every cyclic subgroup H of $\overline{G} = G/O_{p'}(G)$ of prime order or order 4 (if p = 2), \overline{G} has a normal subgroup T such that $HT = H^{s\overline{G}}$ and $H \cap T = H_{s\overline{G}} \cap T$.

THEOREM B. A soluble finite group G is p-supersoluble if and only if for every 2maximal subgroup E of G such that $O_{p'}(G) \leq E$ and |G:E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that $E^{sG} = ET$ and $|E \cap T|_p = |E_{sG} \cap T|_p$.

THEOREM C. A finite group G is p-soluble if for every 2-maximal subgroup E of G such that $O_{p'}(G) \leq E$ and |G:E| is not a power of p, G has an S-quasinormal subgroup T such that $E^{sG} = ET$ and $|E \cap T|_p = |E_{sG} \cap T|_p$.

0081-6906/\$ 20.00 © 2012 Akadémiai Kiadó, Budapest

²⁰⁰⁰ Mathematics Subject Classification. Primary 20D10, 20D15.

Key words and phrases. Finite group, S-quasinormal subgroup, p-supersoluble group, p-soluble group, 2-maximal subgroup.

^{*}Research of the first author is supported by a NNSF grant of China (Grant #11071229) and Wu Wen Tsun Key Laboratory of Mathematics of the Chinese Academy of Sciences at USTC.

^{**}Research of the second author supported by Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (grant No. 2010T2J12).

1. Introduction

There are a large number of criteria for solubility, *p*-solubility, nilpotency, *p*-nilpotency and supersolubility of finite groups. Moreover people found a large number of various characterizations of such classes of groups. Nevertheless, the *p*-supersoluble groups remain little-studied subject of the group theory. The present paper adds some result to this line of research.

Throughout this paper, all groups are finite, G is a finite group, p denotes a prime divisor of |G| and $|H|_p$ denotes the order of a Sylow p-subgroup of a group H.

Recall that a subgroup A of G is said to permute with a subgroup B if AB = BA. If A permutes with all Sylow subgroups of G, then A is called S-permutable, S-quasinormal or $\pi(G)$ -permutable [12] in G. Let H be a subgroup of G, H^{sG} the intersection of all S-permutable subgroups of G containing H [9] and let H_{sG} be the subgroup of H generated by all those subgroups of H which are S-permutable in G [17]. Since S-quasinormal subgroups of G form a sublattice of the lattice of all subgroups of G (O. Kegel [12]), both subgroups H^{sG} and H_{sG} are S-quasinormal in G. We call H_{sG} the S-quasinormal core of H in G and call H^{sG} the S-quasinormal closure of H in G.

Our main goal here is to prove the following theorems.

THEOREM A. G is p-supersoluble if and only if for every cyclic subgroup H of $\overline{G} = G/O_{p'}(G)$ of prime order or order 4 (if p = 2), \overline{G} has a normal subgroup T such that $HT = H^{s\overline{G}}$ and $H \cap T = H_{s\overline{C}} \cap T$.

COROLLARY 1.1. Suppose that for every cyclic subgroup H of G of prime order or order 4 (if p = 2), G has a normal subgroup T such that $HT = H^{sG}$ and $H \cap T = H_{sG} \cap T$. Then G is p-supersoluble.

COROLLARY 1.2 (Buckley [4]). Let G be a group of odd order. If every minimal subgroup of G is normal in G, then G is supersoluble.

COROLLARY 1.2 (Gaschütz [11, IV, Theorem 5.7]). If every minimal subgroup of a group G is normal in G, then the commutator subgroup G' of G is 2-closed.

PROOF. By Theorem A, G is p-supersoluble for all odd primes p. Hence $G/O_{p'}(G)$ is supersoluble (see below Lemma 2.5). Then, since $O_2(G)$ is the intersection of all such subgroups $O_{p'}(G)$, we see that G' is 2-closed.

Note that if a subgroup H is S-quasinormal in G, then $H^{sG} = H = H_{sG}$. Hence, by Theorem A, we obtain

COROLLARY 1.3 (Shaalan [15]). If every cyclic subgroup of G of prime order or order 4 is S-quasinormal in G, then G is supersoluble.

A subgroup H of a group G is said to be c-normal in G [19] if G has a normal subgroup T such that HT = G (which implies $H(T \cap H^G) = H^G$) and $H \cap T = H_G \cap T$ (which implies $H \cap T = H_{sG} \cap T$). Hence, by Theorem A, we also have the following

COROLLARY 1.4 (Wang [19]). If every cyclic subgroup of G of prime order or order 4 is c-normal in G, then G is supersoluble.

THEOREM B. Suppose that G is soluble. Then G is p-supersoluble if and only if for every 2-maximal subgroup E of G such that $O_{p'}(G) \leq E$ and |G:E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that $E^{sG} = ET$ and $|E \cap T|_p = |E_{sG} \cap T|_p$.

THEOREM C. G is p-soluble if for every 2-maximal subgroup E of G such that $O_{p'}(G) \leq E$ and |G:E| is not a power of p, G has an S-quasinormal subgroup T such that $E^{sG} = ET$ and $|E \cap T|_p = |E_{sG} \cap T|_p$.

From Theorems B and C, we directly get

COROLLARY 1.5 (Guo, Skiba [9]). Suppose that for every 2-maximal subgroup E of G such that |G:E| is not a power prime, G has an S-quasinormal cyclic subgroup T satisfying $E^{sG} = ET$ and $E \cap T = E_{sG} \cap T$. Then G is supersoluble.

COROLLARY 1.6 (Agrawal [1]). If every 2-maximal subgroup of G is S-quasinormal in G, then G is supersoluble.

COROLLARY 1.7 (Huppert [10]). If every 2-maximal subgroup of G is normal in G, then G is supersoluble.

All unexplained notations and terminologies in this paper are standard. The reader is referred to [2], [8], [6] if necessary.

2. Preliminaries

The following known results about subnormal and S-quasinormal subgroups will be used in many places of our proofs.

LEMMA 2.1. Let $A \leq K \leq G$ and $B \leq G$. Then (1) If A is subnormal in G and A is a π -subgroup of G, then $A \leq$ $O_{\pi}(G)$ [21].

(2) If A is subnormal in G, then $A \cap B$ is subnormal in B [6, A, (14.1)].

(3) If A is subnormal in G and B is a Hall π -subgroup of G, then $A \cap B$ is a Hall π -subgroup of A [21].

(4) If A is subnormal in G and A is soluble (nilpotent), then A is contained in some soluble normal (nilpotent) subgroup of G [21].

(5) If A is subnormal in G and B is a minimal normal subgroup of G, then $B \leq N_G(A)$ [6, A, (14.3)].

LEMMA 2.2. Let $H \leq K \leq G$.

(1) If H is S-quasinormal in G, then H is S-quasinormal in K [12].

(2) Suppose that H is normal in G. Then K/H is S-quasinormal in G if and only if K is S-quasinormal in G [12].

(3) If H is S-quasinormal in G, then H is subnormal in G [12].

(4) If H and F are S-quasinormal subgroups of G, then $H \cap F$ and $\langle H, F \rangle$ are S-quasinormal in G [12].

(5) If H is S-quasinormal in G, then H/H_G is nilpotent [5].

(6) If H is S-quasinormal in G and $M \leq G$, then $H \cap M$ is S-quasinormal in M [5].

(7) If H is S-quasinormal in G and H is a q-group for some prime q, then $O^q(G) \leq N_G(H)$ [14, Lemma A].

LEMMA 2.3 [17, Lemma 2.8]. Let $H \leq K \leq G$. Then: (1) H_{sG} is an S-quasinormal subgroup of \overline{G} and $H_G \leq H_{sG}$.

(2) $H_{sG} \leq H_{sK}$. (3) If H is normal in G, then $(K/H)_{s(G/H)} = K_{sG}/H$.

(4) If H is either a Hall subgroup of G or a maximal subgroup of G, then $H_{sG} = H_G$.

LEMMA 2.4 [9, Lemma 2.5]. Let G be a group and $H \leq K \leq G$. Then: (1) H^{sG} is an S-quasinormal subgroup of G and $H^{sG} \leq H^{\overline{G}}$. (2) $H^{sK} \leq H^{sG}$.

(3) If H is normal in G, then $(K/H)^{s(G/H)} = K^{sG}/H$.

(4) If H is either a Hall subgroup of G or a maximal subgroup of G, then $H^{sG} = H^G$.

LEMMA 2.5. Let p be a prime and G a p-soluble group. Assume that $O_{n'}(G) = 1$. Then the following statements are equivalent.

(i) G is p-supersoluble;

(ii) G is supersoluble:

(iii) $G/O_p(G)$ is an abelian group of exponent dividing p-1.

PROOF. (i) \implies (ii). Since G is p-supersoluble, for every chief p-factor H/K of G, we have |H/K| = p and so $G/C_G(H/K)$ is an abelian group of exponent dividing p-1 (see [20, Chapter 1, Theorem 1.4]. Since $O_{p'}(G) = 1$, the intersection of the centralizers of all chief factors H/K of |H/K| = pis $O_{p',p}(G) = O_p(G)$. Hence G is supersoluble by [20, Chapter 1, Theorem 1.9]. By using the same arguments, we also see that (ii) \implies (iii) and $(iii) \Longrightarrow (i).$ \square

Let \mathcal{F} be any non-empty class of groups. We use $G^{\mathcal{F}}$ to denote the intersection of all normal subgroups N of G with $G/N \in \mathcal{F}$. $\mathcal{A}(p-1)$ denotes the formation of all abelian groups of exponent dividing p-1. The symbol $Z_{\mathcal{U}}(G)$ denotes the largest normal subgroup of a group G such that every chief factor of G below $Z_{\mathcal{U}}(G)$ is cyclic.

W. GUO and A. N. SKIBA

LEMMA 2.6 [18, Lemma 2.2]. Let E be a normal p-subgroup of G. If $E \leq Z_{\mathcal{U}}(G)$, then $\left(G/C_G(E)\right)^{\mathcal{A}(p-1)} \leq O_p\left(G/C_G(E)\right)$.

The following lemma may be proved based on some results in [13] on fhypercentral action (see [16, Chapter II] or [6, Chapter IV, Section 6]). For reader's convenience, we give a direct proof.

LEMMA 2.7. Let P be a normal p-subgroup of G and D a characteristic subgroup of P such that every non-trivial p'-automorphism of P induces a non-trivial automorphism of D. Suppose that $D \leq Z_{\mathcal{U}}(G)$. Then $P \leq Z_{\mathcal{U}}(G).$

PROOF. Let $C = C_G(P)$ and H/K be an arbitrary chief factor of G below P. Then $O_p(G/C_G(H/K)) = 1$ by [20, Appendix C, Corollary 6.4]. Since $D \leq Z_{\mathcal{U}}(G)$, we have $(G/C_G(D))^{\mathcal{A}(p-1)}$ is a *p*-group by Lemma 2.5. Hence $(G/C)^{\mathcal{A}(p-1)}$ is a *p*-group. It follows that $G/C_G(H/K) \in \mathcal{A}(p-1)$ and so |H/K| = p by [20, Chapter 1, Theorem 1.4]. Therefore $P \leq Z_{\mathcal{U}}(G)$.

Let P be a p-group. If P is not a non-abelian 2-group we use $\Omega(P)$ to denote the subgroup $\Omega_1(P)$. Otherwise, $\Omega(P) = \Omega_2(P)$.

LEMMA 2.8 [3]. Let P be a p-group of class at most 2. Suppose that $\exp\left(P/Z(P)\right)$ divides p.

(1) If p > 2, then $\exp(\Omega(P)) = p$.

(2) If P is a non-abelian 2-group, then $\exp(\Omega(P)) = 4$.

PROOF. See page 3 in [3].

Let H be a subgroup of G and p a prime. Then we say that H is S_p embedded in G if G has a subgroup T such that $HT = H^{sG}$ and $|H \cap T|_p =$ $|H_{sG} \cap T|_p$.

LEMMA 2.9. Let H be a normal subgroup of G and $H \leq K \leq G$.

(1) If H is p-soluble and K/H is S_p -embedded in G/H, then K is S_p embedded in G.

(2) If K is S_p -embedded in G, then K/H is S_p -embedded in G/H. (3) If L is an S_p -embedded subgroup of G and $L \leq K$, then L is S_p embedded in K.

(4) The subgroup HE/H is S_p -embedded in G/H, for every S_p -embedded in G subgroup E satisfying (|H|, |E|) = 1.

PROOF. (1) We prove that K is S_p -embedded in G by induction on |G|. Let L be a minimal normal subgroup of G such that $L \leq H$. Then, obviously, (K/L)/(H/L) is S_p -embedded in (G/L)/(H/L). If $L \neq H$, then by induction, K/L is S_p -embedded in G/L. We may, therefore, assume that H is a minimal normal subgroup of G. Let T/H be an S-quasinormal

subgroup of G/H such that $KT/H = (K/H)(T/H) = (K/H)^{s(G/H)}$ and $|(T/H) \cap (K/H)|_p = |(T/H) \cap (K/H)_{s(G/H)}|_p$. By Lemma 2.2(2), T is S-quasinormal in G. By Lemma 2.4(3), $(K/H)^{s(G/H)} = K^{sG}/H$. Hence $K^{sG} = KT$. Since H is p-soluble, H is either a p-group or a p'-group. Then, since $|(T/H) \cap (K/H)|_p = |(T/H) \cap (K/H)_{s(G/H)}|_p$, we obtain $|T \cap K|_p = |T \cap K_{sG}|_p$. Hence K is S_p -embedded in G.

(2) Assume that $KT = K^{sG}$ and $|T \cap K|_p = |T \cap K_{sG}|_p$, for some *S*-quasinormal subgroup *T* of *G*. Then HT/H is an *S*-quasinormal in G/H and $(HT/H)(K/H) = KT/H = K^{sG}/H = (K/H)^{sG}$ by Lemma 2.4(3). Besides, clearly, $H \leq K_{sG}$. Hence $H \cap T \cap K = H \cap T = H \cap T \cap K_{sG}$. This implies that $|(TH/H) \cap (K/H)|_p = |H(T \cap K)/H|_p = |H(T \cap K_{sG})/H|_p = |(TH/H) \cap (K/H)_{s(G/H)}|_p$. Thus K/H is S_p -embedded in G/H.

(3) Let T be an S-quasinormal subgroup of G such that $LT = L^{sG}$ and $|T \cap L|_p = |T \cap L_{sG}|_p$. Let $T_0 = T \cap L^{sK}$. Then $T_0 = K \cap T \cap L^{sK}$ and $T_0 \cap L_{sK} = T \cap L_{sK}$. By Lemma 2.2(6), $K \cap T$ is S-quasinormal in K and so by Lemma 2.2(4), T_0 is S-quasinormal in K. Besides, by Lemma 2.4(2), $L^{sK} \leq L^{sG}$ and so $L^{sK} = L^{sK} \cap L^{sG} = L^{sK} \cap LT = L(L^{sK} \cap T) = LT_0$. Finally, we show that $|T_0 \cap L|_p = |T_0 \cap L_{sK}|_p$. In fact, we only need to prove that $|P_1| \leq |P_2|$, for some Sylow p-subgroups P_1 of $T_0 \cap L$ and some Sylow p-subgroup P_2 of $T_0 \cap L_{sK}$. Since $H \cap T_0 \leq L \cap T$, we have $P_1 \leq P_3$, for some Sylow p-subgroup P_3 of $L \cap T$. On the other hand, by Lemma $2.3(2), L_{sG} \leq L_{sK}$. Hence $T \cap L_{sG} \leq T \cap L_{sK} = T_0 \cap L_{sK}$. It follows that $|P_1| \leq |P_3| = |T \cap L|_p = |T \cap L_{sG}|_p \leq |P_2|$. Hence L is S_p -embedded in K.

(4) By (2), we only need to prove that HE is S_p -embedded in G. Assume that E is S_p -embedded in G and let T be an S-quasinormal subgroup of G such that $ET = E^{sG}$ and $|T \cap E|_p = |T \cap E_{sG}|_p$. Let $T_0 = HT$. Then, obviously, T_o is an S-quasinormal subgroup of G and $HET_0 = HE^{sG} = (HE)^{sG}$. Next we show that $|T_0 \cap HE|_p = |T_0 \cap (HE)_{sG}|_p$.

Since (|E|, |H|) = 1, E is a Hall π -subgroup of EH and H is a Hall π' -subgroup of EH, for some set π of primes. If p divides |H|, then E is p'-group. Hence $|T_0 \cap HE|_p = |H| = |T_0 \cap HE_{sG}|_p = |T_0 \cap (HE)_{sG}|_p$. Now we assume that p divide |E|. In this case, H is a p'-group. Let $D = T \cap HE$. By Lemmas 2.1(2) and 2.2(3), D is subnormal in HE and so $D = (D \cap H)(D \cap E) \leq H(T \cap E)$. It follows that $T_0 \cap HE = H(T \cap HE) = HD \leq H(T \cap E)$ and so

$$|T_0 \cap HE|_p = |T \cap E|_p = |T \cap E_{sG}|_p \leq |HT \cap (HE)_{sG}|_p \leq |T_0 \cap HE|_p$$

Therefore $|T_0 \cap HE|_p = |T_0 \cap (HE)_{sG}|_p$. This shows that HE is S_p -embedded in G.

LEMMA 2.10. Suppose that every maximal subgroup E of G with (|G:E|, p) = 1 is normal in G. Let P be a Sylow p-subgroup of G. Then G is p-closed and G/P is nilpotent.

PROOF. Suppose that this lemma is false and let G be a counterexample of minimal order. Obviously, the hypothesis is true for any factor group of G. Hence G has a unique minimal normal subgroup, L say, and G/L is p-closed with nilpotent factor (G/L)/(PL/L). If L is a p-group, then G is pclosed with nilpotent factor G/P, which contradicts the choice of G. Hence L is not a p-group. It is well known that the class of all p-closed groups G with nilpotent G/P is a saturated formation. Hence $L \nsubseteq \Phi(G)$. Let Mbe a maximal subgroup of G such that ML = G. Suppose that p divides |G:M|. Then p divides |L| and by Fratinni argument, for some maximal subgroup E of G we have EL = G and p does not divide |G:E|. Hence Eis normal in G by hypothesis, which implies |E| = 1. Consequently, G = L. This contradiction completes the proof.

LEMMA 2.11 [20, Chapter 4, Theorem 1.6]. Let p be an odd prime number and \mathbf{F} field of characteristic p. Let G be a completely reducible soluble linear group of degree n over \mathbf{F} . Suppose that a Sylow p-subgroup of G has order $p^{\lambda(n)}$. Then $\lambda(n) \leq n-1$ with equality only if n = 1 or n = 2 and p = 3.

3. Proof of Theorem A

Let H be a subgroup of G. Then we say, following [9], that H is N-embedded in G if G has a normal subgroup T such that $HT = H^{sG}$ and $H \cap T = H_{sG} \cap T$.

PROOF OF THEOREM A. First suppose that every cyclic subgroup H of $G = G/O_{p'}(G)$ of prime order or order 4 is N-embedded in G. We shall show that G is p-supersoluble. Suppose that this is false and let G be a counterexample of minimal order. Let $Z = Z_{\mathcal{U}}(G)$.

(1) $O_{p'}(G) = 1.$

Since $O_{p'}(G/O_{p'}(G)) = 1$, the hypothesis is true for $G/O_{p'}(G)$. Hence, if $O_{p'}(G) \neq 1$, then $G/O_{p'}(G)$ is *p*-supersoluble by the choice of *G*. It follows that *G* is *p*-supersoluble, a contradiction. Hence (1) holds.

(2) $O_{p'}(L) = 1$ for any subnormal subgroup L of G.

Indeed, $O_{p'}(L) \leq O_{p'}(G) = 1$ by Lemma 2.1(1).

(3) Every proper normal subgroup L of G is supersoluble.

The hypothesis holds for L by Lemma 2.7(2) in [9]. Hence L is p-supersoluble by the choice of G and therefore L is supersoluble by (2) and Lemma 2.5.

(4) If N is a normal subgroup of G and $N \leq O_p(G)$, then $N \leq Z$.

We will prove this assertion by induction on |N|. Suppose that $N \nleq Z$. Then

(a) G has a normal subgroup $R \leq N$ such that N/R is a non-cyclic chief factor of G, $R \leq Z$ and $V \leq R$ for any normal subgroup $V \neq N$ of G contained in N.

Let N/R be a chief factor of G. Then the hypothesis holds for (G, R). Therefore $R \leq Z$ by induction and so N/R is not cyclic. Now let $V \neq N$ be any normal subgroup of G contained in N. Then $V \leq Z$. If $V \leq R$, then from the G-isomorphism $N/R = VR/R \simeq V/V \cap R$, we obtain that $N \leq Z$, a contradiction. Hence $V \leq R$.

(b) Let D be a Thompson critical subgroup of N (see [7, p. 186]). Then $\Omega(N) = N = D$.

Indeed, suppose that $\Omega(N) < N$. Then, in view of (a), $\Omega(N) \leq Z$. Hence $N \leq Z$ by Lemmas 2.7 and Theorem 5.12 in [11, Chapter IV], a contradiction. Hence $\Omega(N) = N$. In view of Theorem 3.11 in [7, Chapter 5] we obtain similarly that N = D.

The final contradiction for (4).

Let H/R be any minimal subgroup of $N/R \cap Z(G_p/R)$, where G_p is a Sylow *p*-subgroup of *G*. Let $x \in H \setminus R$ and $L = \langle x \rangle$. Then H/R = LR/Rand |L| is either a prime or 4 by Lemma 2.8. Hence *L* is *N*-embedded in *G* by the hypothesis. Hence *G* has a normal subgroup *T* such that $LT = L^{sG}$ and $L \cap T = L_{sG} \cap T$. It is clear that $L_{sG} \leq N$. Thus $T \leq N$. Suppose that $T \leq R$. Then $H/R = LT/R = LR/R = L^{sG}R/R$ is *S*-quasinormal subgroup of G/R by Lemmas 2.2 and 2.4(1). Therefore H/R is normal in G/R by Lemma 2.2(7) and consequently H/R = N/R, which contradicts (a). Thus (4) holds.

(5) G is p-soluble.

Suppose that this is false. Then:

(a) G is non-simple.

Suppose that G is a simple non-abelian group. Let H be any subgroup of G of order p, T a normal subgroup of G such that $HT = H^{sG}$ and $T \cap H = T \cap H_{sG}$. By Lemmas 2.2(3) and 2.4(1), H^{sG} is subnormal in G. Hence

 $H^{sG} = G$ and either T = 1 or T = G. In the both cases, we have H = G and thereby $G = H = H_{sG}$ is cyclic. This contradiction shows that (a) holds.

(b) G has a non-identity supersoluble normal subgroup R such that G/R is a simple non-abelian group, p divides |G/R| and every proper normal subgroup of G is contained in R.

Let R be a normal subgroup of G such that G/R is simple. Then in view of (a), $R \neq 1$. By (3), R is supersoluble. Hence G/R is a simple non-abelian group and p divides |G/R|. Now let L be any proper normal subgroup of G. Suppose that $L \nleq R$. Then G = RL is the product of two supersoluble groups. Consequently, G is soluble, a contradiction.

(c) $R = Z_{\infty}(G) \leq O_p(G)$.

In view of (2), p divides |R|. Let P be a Sylow p-subgroup of R. By (2), $O_{p'}(R) = 1$. Hence, by (3) and Lemma 2.5, P = F(R). Since F(R) is a characteristic subgroup of R, P is normal in G. Hence $P \leq Z_{\mathcal{U}}(R)$ by (4). Then, by (b), we see that $C_G(H/K) = G$ for any chief factor H/K of Gbelow P. Hence $P \leq Z_{\infty}(G)$ and so R is nilpotent since R/P = R/F(R) is abelian. It follows from (2) that $R = P = Z_{\infty}(G) \leq O_p(G)$.

The final contradiction for (5).

Since G/R is not *p*-nilpotent, it has a *p*-closed Schmidt subgroup H/R(see [11, Chapter IV, Theorem 5.4]). Since $R \leq Z_{\infty}(G)$, we have $R \leq Z_{\infty}(H)$. Hence $H = H_p \\bar{>} H_q$ is a Schmidt subgroup of G. Let $\Phi = \Phi(H_p)$. Then by [16, VI, Theorem 25.4], H_p/Φ is a non-central chief factor of H and H_p is a group of exponent p or exponent 4 (if p = 2 and H_p is non-abelian). Moreover, if H_p is abelian, then $\Phi = 1$. Hence $|H_p/\Phi| > p$ (otherwise $|H_p| = p$, which is impossible).

Let X/Φ be a minimal subgroup of H_p/Φ , $x \in X \setminus \Phi$ and $L = \langle x \rangle$. Then |L| = p or |L| = 4. Hence L is N-embedded in G and so L is N-embedded in H by Lemma 2.7(2) in [9]. Let T be a normal subgroup of H such that $LT = L^{sG}$ and $L \cap T \leq L_{sG}$. Note that if V is an S-quasinormal subgroup of H such that $V \leq H_p$ and $V \nleq \Phi$, then $V = H_p$ (otherwise, $H_q \Phi < VH_q \Phi < H$, a contradiction). Hence $L \neq L_{sG}$ and so $T \neq H_p$. But then $T \leq \Phi$, which implies that $H_p = L$. This contradiction completes the proof of (5).

The final contradiction for the sufficiency. Let $P = O_p(G)$. Then $P \leq Z_{\mathcal{U}}(G)$ by (4). On the other hand, in view of (1) and (4) we have $P = C_G(P)$ by [7, Chapter 6, Theorem 3.2]. But by Lemma 2.6, $G/C_G(P)^{\mathcal{A}(p-1)} \leq O_p(G/C_G(P)) = 1$. Hence G is supersoluble by [20, Chapter 1, Theorem 1.9]. This contradiction completes the proof of the fact that G is p-supersoluble.

Conversely, suppose that G is p-supersoluble, we show that every cyclic subgroup of $\overline{G} = G/O_{p'}(G)$ of prime order or order 4 is N-embedded in \overline{G} .

Without loss of generality, we may assume that $O_{p'}(G) = 1$. Let P be a Sylow p-subgroup of G. Then by Lemma 2.5, P is normal in G and p is the largest prime dividing |G|. Hence, we only need to consider the case that p > 2. Let L be any subgroup of G of order p and $L \leq N$ where N is a normal subgroup of G contained in P. We shall show by induction on |N| that there are normal subgroups A and B of G such that $LA = B \leq N$ and $L \cap A = 1$. Let V be a normal subgroup of G such that V is a maximal subgroup of N. If VL = N, then $V \cap L = 1$. We may, therefore, assume that $L \leq V$. Then the required is true by induction. Thus, L is N-embedded in G. This completes the proof.

4. Proof of Theorem B

We shall prove Theorem B in the following more general form.

THEOREM 4.1. A soluble group G is p-supersoluble if and only if every 2-maximal subgroup E of G with $O_{p'}(G) \leq E$ and |G:E| is not a power of p, both has a supplement in E^{sG} with cyclic Sylow p-subgroups and is S_p -embedded in G.

PROOF. First suppose that G is p-supersoluble and let E be any 2maximal subgroup of G such that $O_{p'}(G) \leq E$ and |G:E| is not a power of p. We show that E has a supplement T in E^{sG} with cyclic Sylow psubgroups and E is S_p -embedded in G. If $E = E^{sG}$, then it is evident. We may, therefore, assume that $E \neq E^{sG}$. Suppose that $O_{p'}(G) \neq 1$. Then, by induction, $E/O_{p'}(G)$ is S_p -embedded in $G/O_{p'}(G)$ and $E/O_{p'}(G)$ has a supplement $T/O_{p'}(G)$ in $(E/O_{p'}(G))^{s(G/O_{p'}(G))}$ with cyclic Sylow p-subgroups. By Lemma 2.9(1), E is is S_p -embedded in G. On the other hand, since $(E/O_{p'}(G))^{s(G/O_{p'}(G))} = E^{sG}/O_{p'}(G)$ by Lemma 2.4(3), T is a supplement of E in E^{sG} and clearly the Sylow p-subgroups of T is cyclic.

Now suppose that $O_{p'}(G) = 1$. Then by Lemma 2.5, G is supersoluble, $P = O_p(G) = F(G)$ is a Sylow p-subgroup of G and G/P is abelian. Let Mbe a maximal subgroup of G such that E is maximal in M. Since G is psupersoluble and |G:E| is not a power of p, one of |M:E| and |G:M| is a p'-number (see [8, Theorem 1.9.4]. Hence |G:E| = pn, where (p, n) = 1. It follows that $P \cap E$ is a maximal subgroup of P with $|P:P \cap E| = p$ and so $\Phi(P) \leq E$. Since $\Phi(P)$ is a characteristic subgroup of P, it is normal in G. Hence $\Phi(P) \leq E_{sG}$. If $\Phi(P) \neq 1$, then as above we can show that E is S_p -embedded in G. Besides, PE is normal in G by Lemma 2.5(iii) and $|PE:E| = |P:E \cap P| = p$. Since $E \subseteq E^{sG} \subseteq PE$, $E^{sG} = PE$. Hence E has a cyclic supplement $\langle x \rangle$ in E^{sG} , where $x \in PE$ and $x \notin E$. W. GUO and A. N. SKIBA

Finally, assume that $\Phi(P) = 1$. Then P is an elementary abelian p-group and $P = P_1 \times P_2 \times \cdots \times P_t$, where P_i is a minimal normal subgroup of G, for all $i = 1, 2, \ldots, t$. It is clear that for some $i, P_i \nleq E \cap P$. Hence $P_i(E \cap P) =$ P. Since G is p-supersoluble, $|P_i| = p$. It follows that $P_i \cap E \cap P = 1$ and $EP_i = E$. Since $E \neq E^{sG}$, E is not S-quasinormal in G. But since PEis normal in G, by Lemma 2.5(iii), $PE = E^{sG} = P_i(E \cap P)E = P_iE$. Since $P_i \cap E \trianglelefteq E, P_i \cap E \subseteq E_{sG}$. Hence $|P_i \cap E|_p = |P_i \cap E_{sG}|_p$. This implies that E has a supplement P_i in E^{sG} , which is a cyclic Sylow p-subgroup and E is S_p -embedded in G.

Conversely, assume that G is soluble and every 2-maximal subgroup E of G with $O_{p'}(G) \leq E$ and |G:E| is not a power of p has a supplement in E^{sG} with cyclic Sylow p-subgroups and E is S_p -embedded in G. We show that G is p-supersoluble. Assume that this is false and let G be a counterexample of minimal order. Then

(1) G has a unique minimal normal subgroup L, G/L is p-supersoluble, p divides |L| and $L \nleq \Phi(G)$.

Let L be a minimal normal subgroup of G and E/L a 2-maximal subgroup of G/L such that $O_{p'}(G/L) \leq E/L$ and |G/L : E/L| is not a power of p. Since $O_{p'}(G)L/L \leq O_{p'}(G/L)$, $O_{p'}(G) \leq E$. Besides, |G : E| is not a power of p. Hence by hypothesis, E is S_p -embedded in G and there is a subgroup T such that $ET = E^{sG}$ and a Sylow p-subgroup of T is cyclic. Obviously, $(EL)^{sG} = E^{sG}L$. Hence $(E/L)(TL/L) = E^{sG}L/L = (E/L)^{s(G/L)}$ by Lemma 2.4(3) and clearly TL/L has a cyclic Sylow p-subgroup. Besides, E/L is S_p -embedded in G/L by Lemma 2.9(2). This shows that the hypothesis still holds for G/L. The minimal choice of G implies that G/L is p-supersoluble. It is well known that the class of all p-supersoluble groups is a saturated formation. Hence we see that (1) holds.

(2) G = [L]M for some maximal subgroup M of G, $L = C_G(L) = F(G) = O_p(G)$ and $p \neq |L|$.

By (1), there exists a maximal subgroup M of G such that G = LM. Since G is soluble, L is either a p'-group or a p-group. In the former case, G is clearly p-supersoluble, a contradiction. Hence L is a abelian p-group. It follows that $L = C_G(L) = F(G) = O_p(G)$ and |L| > p since G is not psupersoluble.

(3) L is not a Sylow p-subgroup of G.

Assume that L is a Sylow p-subgroup of G and let E be a maximal subgroup of M. Then $|G:E| = |L| |M:E| \neq p^a$ and $O_p(G) = 1 \leq E$. Hence by hypothesis E is S_p -embedded in G and E has a supplement X in E^{sG} with cyclic Sylow p-subgroups. Suppose that E = 1 and let V be a maximal subgroup of L. Then by hypothesis, V is S_p -embedded in G. Let T be a S-

quasinormal subgroup of G such that $V^{sG} = VT$ and $|T \cap V|_p = |T \cap V_{sG}|_p$. Since L is a Sylow p-subgroup of G, the subgroups V_{sG} , V^{sG} and T are normal in G by Lemma 2.2(7). This implies that T = L and V = 1. But then |L| = p, which contradicts (2). Therefore $E \neq 1$. Let q be prime dividing |M : E| and Q be a Sylow q-subgroup of M. Clearly, Q is a Sylow q-subgroup of G and $A = E^{sG}Q = QE^{sG}$ is a subgroup of G. Since E is maximal in M and $Q \nsubseteq E$, we have $\langle E, Q \rangle = M$. Hence $M \leqq A$ and so LA = G. Since L is a minimal normal subgroup of G, either $L \cap A = L$ or $L \cap A = 1$. In the former case, $G = A = E^{sG}Q$ and so L is a Sylow psubgroup of any supplement of E in E^{sG} . Therefore L is cyclic and hence |L| = p, which contradicts (2). Thus $L \cap A = 1$. Obviously, $E^{sG} \leqq M$. Since $M_G = 1$, $(E^{sG})_G = 1$. Hence E^{sG} is nilpotent by Lemma 2.2(5). Then by Lemma 2.2(3) and Lemma 2.1(4), $E^{sG} \leqq L$, a contradiction. This shows that L is not a Sylow p-subgroup of G.

(4) M has a non-normal maximal subgroup E such that (|M:E|,p) = 1.

Suppose that every maximal subgroup E of M with (|M : E|, p) = 1 is normal in M. Then by Lemma 2.10, M is p-closed. Besides, by (3), p divides |M|. But by (2), we have $O_p(G/L) = O_p(G/C_G(L) = 1$ (see [8, Lemma 1.7.11]). Hence L is a Sylow p-subgroup of G, which contradicts (3). Hence, (6) holds.

(5) $E^{sG} = G$.

Indeed, suppose that $D = E^{sG} \neq G$. Since D is subnormal in G by Lemma 2.2(3) and Lemma 2.4(1), $M \nsubseteq D$. Hence $E = D \cap M$ is a subnormal subgroup of M by Lemmas 2.2(3) and 2.1(2). But since E is maximal in M, E is normal in M, which contradicts (4).

(6) If T is a supplement of E in G, then $O_{p'}(T) = 1$.

Since G = ET = MT, $M = M \cap ET = E(M \cap T)$ and $|L| = |G:M| = |T: M \cap T|$. It follows that $O_{p'}(T) \leq M$. Hence $(O_{p'}(T))^G = O_{p'}(T)^{TM} = O_{p'}(T)^M \leq M_G = 1$. Consequently, $O_{p'}(T) = 1$.

(7) p = 3 and |L| = 9.

Let T be a supplement of E in $E^{sG} = G$ with cyclic Sylow p-subgroups. Then G = ET = MT. Let T_p be a Sylow p-subgroup of T. Suppose that p = 2. Then by [11, IV, Theorem 2.8], T is 2-nilpotent. But by (6), $T_{2'} = 1$ and so T is a 2-group. It follows that 2 divides |M : E|, which contradicts (4). Therefore p must be an odd number. Suppose that either $p \neq 3$ or p = 3 and $|L| > 3^2$. Let $|L| = p^a$ and p^b be the order of a Sylow p-subgroup of M. Then by Lemma 2.11, b < a - 1. Since T_p is cyclic, $|T_p \cap L| \leq p$. It follows from G = MT = [L]M that $|L| \leq |T_p|$. Hence $p^{a+b} < p^{2a-1} \leq |LT_p| \leq p^{a+b}$. This contradiction shows that p = 3 and a = 2.

W. GUO and A. N. SKIBA

(8) The order of a Sylow 2-subgroup P of T is 2.

Let T be a supplement of E in G. Since T is 3-soluble and its Sylow 3-subgroups are cyclic, T is 3-supersoluble. But by (6), $O_{3'}(T) = 1$. Hence T is supersoluble by Lemma 2.5. Then, for a Sylow 3-subgroup P of T, we have P = F(T). Thus $C_T(P) \leq P$ by [8, Theorem 1.8.18]. It follows from [7, Chapter 5, Lemma 4.1(iii)] that |T/P| = 2. Therefore, (8) holds.

Final contradiction.

In view of (7), M is isomorphic with some subgroup of GL(2,3). Hence $|M| \leq 48$. It follows that $|M:E| = 2^m$ for some m > 1 (since E is not normal in M). But since G = ET, we see that |M:E| ||P| = 2, which is impossible. The final contradiction completes the proof.

5. Proof of Theorem C

First we shall prove the following Theorem.

THEOREM 5.1. Suppose that G is not a p-group. Then the following are equivalent.

(1) G is p-soluble.

(2) Every maximal subgroup of G is S_p -embedded in G.

(3) G has two maximal p-soluble S_p -embedded subgroups M_1 and M_2 , whose indices $|G: M_1|$ and $|G: M_2|$ are coprime.

(4) For every maximal subgroup M of G, either |G:M| is a power of p or M is S_p -embedded in G.

PROOF. (1) \Rightarrow (2). Let M be a maximal subgroup of G and H/K a chief factor of G such that HM = G and $K \leq M$. If $M_G \neq 1$, M/M_G is S_p -embedded in G/M_G by induction and consequently M is S_p -embedded in G by Lemma 2.9(1). Suppose that $M_G = 1$. Then K = 1. If H is a p'-group, then $|H \cap M|_p = 1 = |H \cap M_{sG}|_p$. Hence M is S_p -embedded in G. If H is an abelian p-group, then $H \cap M = H \cap M_{sG} = K = 1$. Then M is also S_p -embedded in G.

 $(3) \Rightarrow (1)$. Assume that this is false and let G be a counterexample of minimal order. Let N be a minimal normal subgroup of G. If $N \leq M_1 \cap M_2$, then M_1/N and M_2/N are p-soluble maximal subgroups of G/N whose indices $|G/N:M_1/N| = |G:M_1|$ and $|G/N:M_2/N| = |G:M_2|$ are coprime and M_1/N and M_2/N are S_p -embedded in G by Lemma 2.9(2). This shows that the hypothesis holds for G/N. Therefore G/N is p-soluble by the choice of G. On the other hand, if $N \not\subseteq M_1 \cap M_2$, for example $N \not\subseteq M_1$, then $G/N \simeq M_1/M_1 \cap N$ is p-soluble. Therefore, N is the only minimal normal subgroup N of G, $N \neq \Phi(G)$ and N is a non-abelian group with p divides |N|. Then, clearly, $G = NM_1 = NM_2$ and $(M_1)_G = 1 = (M_2)_G$.

Let N_p be a Sylow *p*-subgroup of N and P a Sylow *p*-subgroup of G contained N_p . Since $|G:M_1|$ and $|G:M_2|$ are coprime. Without loss of generality, we may assume that P is contained in at least one of the subgroups M_1 and M_2 , for example, $P \leq M_1$. Since M_1 is S_p -embedded in G, $M^{sG} = MT$ and $|M \cap T|_p = |T \cap M_{sG}|_p$, for some S-quasinormal subgroup T of G. By Lemma 2.2(3), M^{sG} , T and M_{sG} are subnormal in G. Then since $(M_1)_G = 1$ and by Lemma 2.3(4), we have that $(M_1)_{sG} = 1$ and $(M_1)^{sG} = G$. This shows that T is a complement of M_1 in G. Since $P \leq M_1$, p does not divide |T|. Let $N = N_1 \times N_2 \times \cdots \times N_t$, where N_1, N_2, \ldots, N_t are isomorphic simple non-abelian groups. Let L be a minimal subnormal subgroup of G contained in T. Since, obviously, $C_G(N) = 1$, $L \leq C_G(N)$ and so $L \leq N$ by Lemma 2.1(5). Hence $L = N_i$, for some i. It follows that p divides |L| and therefore p divides |T|, a contradiction.

 $(1) \Rightarrow (3)$. Since G is p-soluble and G is not a p-group, then there are two maximal subgroups M_1 and M_2 of G such that $|G:M_1| = p^a$ for some $a \in \mathbb{N}$ and p does not divide $|G:M_2|$ by [8, Theorem 1.7.13]. Then $(|G:M_1|, |G:M_2|) = 1$. By (2), we see that M_1 and M_2 are S_p -embedded in G. Thus (3) holds.

 $(4) \Rightarrow (1)$. Let L be a minimal normal subgroup of G. Clearly, the hypothesis is true for G/L. By induction, G/L is p-soluble. We may, therefore, assume that L is non-abelian, p divides |L| and L is the only minimal normal subroup of G. Thus $C_G(L) = 1$. By the Frattini argument, for any Sylow p-subgroup P of L, there is a maximal subgroup M of G such that LM = G and $N_G(P) \leq M$. It is clear that $M_G = 1$ and p does not divides |G:M|. By hypothesis, G has an S-quasinormal subgroup T such that $M^{sG} = M^G = G = MT$ and $|T \cap M|_p = |T \cap M_{sG}|_p$. But by Lemma 2.3(4), $M_{sG} = M_G = 1$. This implies that $T \cap M$ is a p'-group. Let X be a minimal subnormal subgroup of G contained in T. Since $C_G(L) = 1$, $X \leq L$ by Lemma 2.1(5) and so p divides |X|. It follows that p divides |T|. Since T is subnormal in G, by Lemma 2.1(3), $|T \cap M|_p \neq 1$. This contradiction shows that G is p-soluble. The theorem is proved.

COROLLARY 5.2 (Wang [19]). A group G is soluble if and only if every maximal subgroup of G is c-normal in G.

PROOF OF THEOREM C. Assume that this theorem is is false and let G be a counterexample of minimal order. Then p divides |G|. We proceed the proof via the following steps.

(1) G is not simple.

Suppose that G is a simple non-abelian group. Then $O_{p'}(G) = 1$. Let M be a maximal subgroup of G containing a Sylow p-subgroup P of G and E any maximal subgroup of M. Then |G:E| is not a power of p. Hence by hypothesis, E is S_p -embedded in G. Let T be an S-quasinormal subgroup of *G* such that $TE = E^{sG}$ and $|T \cap E|_p = |T \cap E_{sG}|_p$. By Lemma 2.2(3), E^{sG} , E_{sG} and *T* are all subnormal subgroups of *G*. Since *G* is a simple group, we have that T = G and $E_{sG} = 1$. It follows from $|T \cap E|_p = |T \cap E_{sG}|_p = 1$ that $|E|_p = 1$. If M = P, then |M| = p and so *G* is soluble by [11, IV, Theorem 7.4]. Otherwise, we may assume that $P \leq E$, which implies P = 1. This contradiction shows that (1) holds.

(2) G has a unique minimal normal subgroup L, G/L is p-soluble, p divides |L| and $L \nleq \Phi(G)$.

Let L be a minimal normal subgroup of G. Then by Lemma 2.9(2), the hypothesis still holds for G/L. The minimal choice implies that G/L is p-soluble by the choice of G. Hence (2) holds.

(3) G is p-soluble.

By (1), $L \neq G$. Let M be any maximal subgroup of G containing L. Suppose that $|G:M| = p^a$. Then for every maximal subgroup E of M with |M:E| is not a power of p, we have that |G:E| is also not a power of p. Hence E is S_p -embedded in G by (2) and hypothesis. It follows from Lemma 2.9(3) that E is S_p -embedded in M. Hence M is p-soluble by Theorem 5.1(4). Consequently, L is p-soluble and thereby G is p-soluble. The contradiction completes the proof.

REFERENCES

- AGRAWAL, R. K., Generalized center and hypercenter of a finite group, Proc. Amer. Math. Soc., 54 (1976), 13–21.
- [2] BALLESTER-BOLINCHES, A. and EZQUERRO, L. M., *Classes of Finite groups*, Springer, Dordrecht, 2006.
- [3] BERCOVICH, YAKOV and KAZARIN, LEV, Indices of elements and normal structure of finite groups, J. Algebra., 283(1) (2005), 564–583.
- BUCKLEY, J., Finite groups whose minimal subgroups are normal, Math. Z., 15 (1970), 15–17.
- [5] DESKINS, W. E., On quasinormal subgroups of finite groups, Math. Z., (1963) 82, 125–132.
- [6] DOERK, K. and HAWKES, T., *Finite Soluble Groups*, Walter de Gruyter, Berlin–New York, 1992.
- [7] GORENSTEIN, D., Finite Groups, Harper & Row Publishers, New York-Evanston-London, 1968.
- [8] GUO, WENBIN, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [9] GUO, WENBIN and SKIBA, ALEXANDER N., Finite groups with given s-embedded and n-embedded subgroups, J. Algebra., 321(10) (2009), 2843–2860.
- [10] HUPPERT, B., Normalteiler and maximal Untergruppen endlicher gruppen, Math. Z., (60) (1954), 409–434.

- [11] HUPPERT, B., Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967.
- [12] KEGEL, O., Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205–221.
- [13] LAUE, R., Dualization for saturation for locally defined formations, J. Algebra, 52 (1978), 347–353.
- [14] SCHMID, P., Subgroups permutable with all Sylow subgroups, J. Algebra, 82 (1998), 285–293.
- [15] SHAALAN, A., The influence of π -quasinormality of some subgroups on the structure of a finite group, *Acta Math. Hungar.*, **56** (1990), 287–293.
- [16] SHEMETKOV, L. A., Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.
- [17] SKIBA, ALEXANDER N., On weakly s-permutable subgroups of finite groups, J. Algebra., 315(1) (2007), 192–209.
- [18] SKIBA, ALEXANDER N., On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory, (2010)/DOI 10.1515/JGT.2010.
- [19] WANG, Y., c-normality of groups and its properties, J. Algebra, 180 (1996), 954–965.
- [20] WEINSTEIN, M. (ed.), etc., Between Nilpotent and Solvable, Polygonal Publishing House, Passaic N. J., 1982.
- [21] WIELANDT, H., Subnormal subgroups and permutation groups, Lectures given at the Ohio State University, Columbus, Ohio, 1971.