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An Approximation of Partial Sums 
of Independent RV'-s, and the Sample DF. I 

J. Komlds ,  P. Ma jo r  and G. Tusnfidy 

Summary. Let S, = X  x + X  z + . . .  + X, be the sum of i.i.d.r.v.-s, E X  1 =0, EXf  = 1, and let T,= 
Y~ + Y2 + " '  + Y. be the sum of independent standard normal variables. Strassen proved in [14] that 
if X 1 has a finite fourth moment, then there are appropriate versions of S. and T, (which, of course, 
are far from being independent) such that IS . -T. l=O(n"( logn)  ~1 (log logn) § with probability one. 
A theorem of B/trtfai [1] indicates that even if X~ has a finite moment generating function, the best 
possible bound for any version of S,, T. is O(logn). In this paper we introduce a new construction for 
the pair S,, T,, and prove that if X~ has a finite moment generating function, and satisfies condition i) 
or ii) of Theorem 1, then IS, - T,[ = 0 (log n) with probability one for the constructed S,, T.. Our method 
will be applicable for the approximation of sample DF., too, 

1. I n t r o d u c t i o n  

Let S, = X~ + X 2 + . . -  + X, be the sum of i.i.d.r.v.-s, with distr ibution function 
F(x), such that  EX~ = 0, E X  2 = 1, and let W(t) be a Wiener  process. The Skorohod ' s  
embedding  scheme (cf. [13]) provides a sequence of i.i.d.r.v.-s zj such that  

P ( S ~ < x ) = P  W zj < x  , n = l , 2 , . . . ,  
\ \ j = l  i 

E~ 1 = 1, and Ez 2 < oo if E X  4 < oo. Define now S n as W(~ '=~  h), and let T, = W(n), 
then 

IS, ,-  r.l-= W "cj - ~ n  ~, 
J 

because ~ =  1 -cj - n ~ n ~. 
This is the const ruct ion used by Strassen in 1-14] for proving that  

IS .  - T,I -- O (n~(log n)~(log log n) ~) 

with probabi l i ty  one. He  asked whether  this const ruct ion was the best possible 
for approx imat ing  the sums of i.i.d.r.v.-s with normal  ones. 

This quest ion was answered in the negative by Cs6rg6 and R6v6sz, who 
proved in [-5] that  there is a version of S n, T, such that  

I s . -  r . l = o ( n  ++~) 

with probabi l i ty  one if E X  3 =0 ,  E X  s < ~ ,  the Cramer  condi t ion holds for F(x) 
and there exists an interval oo < A < B < oo such that  F(x) is strictly increasing in 
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[A, B]. The proof of their theorem indicates that there is a version ofS., T, such that 
1 

IS , -  T,[ =o(n 27-+~) 

with probability one if the first r moments of X 1 are equal to those of a standard 
normal distribution, and the first 3 r -  1 moments of X 1 are finite. The question, 
however, remained unsolved, what happens if F is nice enough, say 3;1 is bounded, 
but the moments of X 1 are not specialized. 

Another result related to these questions is connected with the so-called 
"stochastic geyser problem". Assume that for some reason only the sample 

S , + r ,  (n= 1,2, ...) 

is available, where r, is an arbitrary sequence of random variables such that 
]r,] < R, with some constant R,. A theorem of B~trtfai [ 1] states that if R, = o (log n) 

r co and X 1 has a finite moment generating function, then the sequence {S,+ ,},=1 
determines the distribution function F(x) with probability one. This indicates 
that the best possible bound for any version of S,, T, is O(logn). In this paper we 
prove the following: 

Theorem 1. Let  F be a distribution function for which 

xF(dx)=O,  ~ x Z F ( d x ) = l ,  
- o o  - a o  

and there is a t o > 0 such that 

R(t)= S e 'XF(dx)<oe,  for I t l<t  o. 
- o o  

Furthermore one of  the following two conditions holds: 
i ) ~ _ ~ l R ( t + i u ) f d u < o o ,  for some p>=l and all t, I t l<t  o where R(z)= 

~-o~ eZX F(dx) for arbitrary complex z with [Re z] < to; 
ii) F is lattice-valued, i.e. there are constants a and b such that F is concentrated 

on the set of  points aj + b, j = O, +_ 1, +_ 2, . . . .  
Then there is a sequence of  functions f , (y  1, Y 2, . .., Y2,) such that if Y1, Y2 . . . . .  Y, . . . .  

are independent standard normal variables, then the random variables 

X, = f,(Yl, Y2,-.-, Y2,), n = 1, 2,. . .  

are independent, and distributed according to the given distribution F. In addition 

P(ls<_ukp ]Sk-- Tk] > C logn+ x ) < K e  -z*,  (1.1) 

S k k where k = ~j= 1 Xj,  T k = ~j= 1 Yj, x and n are arbitrary, and the positive constants 
C, K, 2 depend only on F. 

Corollary. For S k, T k given in Theorem 1 

( 'S"-T"[<C) P lira sup = 

where C is the same constant as in Theorem 1. 
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Note that if i holds with p=  1, then the density function f ( x ) = d F / d x  exists. 
On the other hand if R(t)<oo for ] t l<t  o and f ( x )  is bounded (or it is square 
integrable) then i holds. 

Theorem 2. Let  X1, X 2 . . . .  , X , , . . .  be i.i.d.r.v.-s with a distribution Junction F 
different from the standard normal one, and let Y1, Y2, ..., Y,, ... be independent 
standard normal variables, then there is a positive constant C o such that 

IS . -  T~I > Co) = 1, P .lim,~sup~ logn = (1.2) 

where the constant C O depends only on F. 
Our construction for proving Theorem 1 is a certain diadic approximation. 

It provides a sequence of i.i.d.r.v.-s of distribution F in an arbitrary probability 
space where a sequence of independent standard normal variables is given. There 
is no need for further randomization or any other enlargement of the given 
probability space as is usual when one applies the original Skorohod's embedding 
scheme. The diadic scheme is also applicable for approximation of the sample 
distribution function, so we can improve the bounds in the theorem of Breiman [3] 
and Brillinger [4]. 

Theorem 3. For a f ixed  n let XI  , X 2 . . . .  , X ,  be i.i.d.r.v.-s with 

i if t < 0  
P ( X I < t ) =  if 0_<t_<l 

if t > l ,  
(1.3) 

let F,(t) be the empirical distribution function based on the sample X1, X 2 . . . .  , X , ;  
and let B,(t) be a Browninan bridge. There is a version of  F,(t) and B,(t) such that 

P(o ~ P l  I n(F"(t) - t) - n~ B,(t) l > C l o g  n + x )  < K e - ~ (1.4) 

for all x, where C, K, 2 are positive absolute constants. 
Corollary. Let  B,,  F, be the same as in Theorem 3, and let ~ be a functional 

defined on the space D(O, 1) of piece-wise continuous function, satisfying a Lipschitz 
condition 

[~p(u) - tp(v)l < L sup [u(x)- v(x)]. 
O_<x_<l 

Assume further that the distribution of  the random variable O(Bn) has a bounded 
density. Then 

sup lP(~(n-~(F"( t ) - t ) )<x) -  ( l~ ) " (1.5) 

It is known, that the Skorohod representation cannot be used to prove rates 
of convergence better than O(n ~), at least if the functional ~ depends essentially 
8 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32 
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on a single time, e.g. 0 is the Kolmogorov statistic. The rate O ( ~ ) w a s  
achieved first by Sawyer [12], who investigated functionals of type 0(u)= 
S~ h(u(x), x) dx, where h(s, x) and its partial derivatives of order one are of slow 
growth in x. Note that there is no evidence of the necessity of the term logn in (1.5), 
so we do not know whether our Corollary is best possible. 

The diadic sceme can be extended to the twodimensional case, hence we can 
give a simultaneous representation of F,, B, for n =  1, 2, . . . - a s  was proposed by 
Kiefer [7]. Our following theorem is an improvement of Kiefer's result, we think 
however, that a logn factor in (1.6) is still superfluous. 

Theorem 4. Let Xa, X2, ... be a sequence of i.i.d.r.v.-s with the same distribution 
as in Theorem 3, let F,(t) be the empirical distribution function based on the sample 
Xa,X2,  . . . ,X , ;  and let Bl(t) ,Bz(t), . . .  be a sequence of independent Brownian 
bridges. There is a version of the sequences F,(t), B,(t) such that 

for all x and n, where C, K, 2 are positive absolute constants. 

2. The Quantile Transformation and the Diadic Scheme 
The construction of Csbrg6 and R6v~sz [5] is based on a transformation 

which will be called quantile transformation. Assume that the distribution 
functions F(x), G(x) are continuous, we are given a random variable Y of distribu- 
tion G and should like to construct an X of distribution F such that the difference 
I X -  YI be as small as possible. The random variables F(X), G(Y) are both uni- 
formly distributed, hence it is a natural suggestion to define X by the equation 

F(X) = G(Y), 

i.e. to define X by F-I(G(Y)). (Note that if F is continuous and strictly monotone 
the definition of the inverse F-1 is straightforward, otherwise one has to be a little 
careful.) This transformation was proposed by Bhrtfai [-2], who proved that for 
any pairs )~, I? with given marginal distributions F, G 

E(X - 17) 2 _-> E(X - y)2, 

where X, Y are the above constructed variables. 
If the distributions F and G are near to each other then the difference ]X- YI 

is small, namely if F is the distribution of the sum of n independent random 
variables having 0 expectation and a finite moment generating function, and G 
is the distribution of an appropriately normalized normal one, then-as it will be 
proved in the last section-there are positive constants CI, C2, e such that 

X 2 
IX- Y]__<CI ~ +  C 2 if ]X[<en. 

This means that IX-YI is practically bounded, the error of the approximation 
of X by Y does not increase with the number of components in X. Especially, 
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when the first r + 2 moments of the components in X are equal to the moments 
of a standard normal distribution then the difference I X -  YI tends to 0 on the 

r 
order n 2. Hence if someone wants to approximate the partial sums 

S , = X I + X 2 + . . . + X  . by T , = Y ~ + Y 2 + . . . + Y  .,  

then he may divide the components into blocks, approximate first the total sum 

X ni  + l -[- X n ,  + 2 ~t- . . . ..t- Xn i  + l 

within a block as a quantile transformation of the sum 

Y n , + l  --~- gn, + 2 -~  9 .  9 -}- gn ,+ ,  , 

define somehow the elements of these blocks taking into account that their sums 
are given, and then fit the different blocks together. He will then be producing 
two kinds of error: on the one hand, the sum of the errors of the quantile transfor- 
mations, and on the other hand, the maximum of the maxima of the partial sums 
in the individual blocks. This was the way followed by Bfirtfai and then by Cs6rg6 
and R6v6sz: the equality of moments assured that the error of "first type" was 
rather small, hence they could choose short blocks in order to have a small error 
of "second type". 

The basic idea of our construction is to extend the quantile transformation 
into the individual blocks. Assume that we are already given the sum Of 2 n elements 

u2,=xm+l 
as the quantile transformation of the sum 

V 2 n =  rm+l.- t -  Y m + 2 - t - . . . - ] -  Ym+ 2n,  

where the Y;s are given standard normal variables, but the summands XFs are 
not defined yet. Motivated by the elementary observation that V2, is the sum of 

L=Y,,+~+...+Ym+,, and R=Y,,+,+I+'"+Ym+2,, 

hence V 2. is independent of the difference 

one can expect that Uz, is "almost independent" of the random variable 

Or2, = +1 + . . - +  + . . .  + 2 , ) .  

Thus it seems reasonable to define (72, first (in such a way that the difference 
192,-172, I be as small as possible) because it is not much effected by the given 
value of U2,. The simple quantile transformation of 17"2, gives us a random variable 
C/2, with the desired distribution, but this (/2, is unfortunately strictly independent 
of U2,, therefore the joint distribution of the pair U2,, C/2, is not equal to the 
desired joint distribution. 

This can be avoided by using the conditional quantile transformation, i.e. to 
transform the uniformly distributed random variable ~b((2n) -~ V2, ) by the inverse 
8* 
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(relative to x) of the conditional distribution function 

F(xly)= P(U2. < xlU2.= y). 

In such a way we can define the sums 

x ~ + l + . . .  +xm+,; xm+.+~ +. . .  +xm+~. 

as  89 [72,) and  89 ) respectively, and follow the construction down 
to the individual Xj - s - i f  n is a power of 2. Our construction consists of two 
parts: in the "forward part" we define the sums of the blocks using the quantile 
transformation and then, in the "backward part" we use the conditional quantile 
transformation to define step by step the two halves of the blocks we have just 
defined down to the individual terms Xj. 

Conditions i) and ii) of Theorem i assure that with local theorems we can 
handle the conditional distributions. One can get rid of these conditions, and 
we will return to this question in the second part of our paper. In the second part 
we shall also investigate the case when the moment generating function of X a 
does not exist. 

3. Proof of Theorem 1 
Introduce the following notations: S O = T o = 0, 

Uj•S2j• 

~ =  V2~, 
g = ~ + , - b ,  

Fj(x)= P(Uj < x), 

" Uj, k=S(k+l )2J - -Sk .2J ,  

~Jn,k-~- On_l ,2k - -  U ,_ l ,2k  + l ,  

vj,k= ~+1) 2J- ~.~, 
~.,~=v._~,2~-v._~,~+,, 

V.(x]y)= P((J.,o < xl U..o= Y), 
6j(t) = sup {x" ~(x)___ t}, 

G,(t ly) = sup {x: F~(xly) ~ t}, 
( j=0, 1,2, . . . ;  k=0,  1,2, . . . ;  n = l , 2  . . . .  ). 

Note that at the present level of the construction neither the Xj-s, nor the S,-s 
are yet defined, we are given only the Yj-s and T,-s. We know, however, the distribu- 
tions Fj(x), f,(xly), and the above notations served only the aim of making their 
meaning clear. The random variables Xj-s will be defined through these distribu- 
tions. 

Define first U 0 by 
Co = ~o(~(Vo)), 

where 4~(x) is the unit normal distribution function, and define ~ by 

_ J  
~ = Gj((b(2 2. ~)), j=O, 1,2 . . . . .  
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Then the distribution function of U o is Fo(x ) = F(x), and that  of ~ is Fj(x). In fact, 

P(U o < x) = P( Go(,I)( Vo) ) < x) = P(~(Vo) < F(x)) = F(x),  

and the same argument  works for ~ .  T h e  random variables Vo, Vo, V1,... are 
independent,  hence the constructed U o, U o, U 1 . . . .  are also independent.  

Starting with 
0j, j = l , 2  . . . .  

for any j >  1, k >  1, for which Uj, k is already defined, define ~,k by 
_Z 

~ , k =  Gj(~b(2 2  9 ~,k)[ Uj, k), 

and then define U~_l,Zk, Uj_l,zk+l by 

g j  1 2k+1 1 

A little algebra shows that  in such a way all the variables Uj, k are defined for 
j = 0, 1, 2, ... ; k = 2, 3, . . . ,  hence the variables X k = U0,_k -1 are defined for k = 3, 4 , . . . .  
Note  that  X 1 and X 2 are already defined as U 0 and U o. 

Now we prove that  the just defined X ; s  are independent,  and their distribution 
function is the given F(x). Let j > 0  be a fixed integer. The random variables 
{Xk; 2 j -x  <k=<2~} are defined as a function of the r andom variables {Yk; 2J -1<  
k < 2J}, hence the blocks Bj = {Xk; 2 j-1 < k < 2 j} are independent  for different j-s. 
We have already seen that  the distr ibution of X 1 and X 2 is F, so we may assume 
that  j > 2 .  We have already shown that  the distribution of U j_ I , I=  Uj-I  is the 
desired Fj_l(x). N o w  we prove step by step for decreasing i < j - 1  that  the U~,k-S 
are independent  and their distribution is Fi(x ) for 2 j - i - 1  -<_k< 2 j- i ,  i.e. for all k-s 
for which U~, k is the sum of some elements of the block Bj. The r andom variables 
U/, 2k, U/, 2k + 1 are defined as functions of U i + 1, k and ~ +1, k, while 0~ + 1, k is a function 
of Ui+l, k and ~+l ,k '  

Our  construct ion is based on the elementary fact that  the differences 1Vm, . 
are independent,  and I ? ,  is independent  of any VM, N if 

N . 2 U < n  . 2 m < ( n +  1 ) ' 2m_-<(N+l ) ' 2  u. 

Hence ~+l ,k  is independent  of the differences ~+1,~ for m:#k, and the ~+a,k-S 
are independent  of the U~ + 1, ,,-s- Thus the pair U~, 2k, U~, 2k+1 is independent  of the 
other  U~,~-s. Finally we prove that  the joint  distribution of the pair U~, ak, U~, 2k+1 
is the prescribed one, consequently Ui, 2k and Ui, 2k+1 are independent  and their 
distr ibution is the desired F~(x). Indeed, 

i + l  
P ( ~ + I  k < x  Ui+l,k=Y)=P(Gi+l(cI)( 2 2 . ~ i + l , k ) l y ) < x ) = f i + l ( x l y ) ,  

since ~+l ,k  and Ui+l, k are independent.  
Note  that  the partial  sums of the constructed X~, X 2, ... variables have a 

direct expression with the constructed 0r, ~ ,  k- Let  m = (2 k + 1)-2 j, then 

2Sin = Sk- 2-/+1 "-~ S(k+l)" 2J +1 -~- Uj+ l ,  k" 
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This recursion implies that for 2"< m < 2" +1 

s~=~m+ ~ c(i)~,~,~, 
i = j + l  

where the process Sm is obtained by linear interpolation' 

(2.1) 

Sm-- 2" + 1 -- r n 2 ,  S2n-l -~S2n+12 (2" < m < 2"+1)' (2.2) 

the coefficients c(i) and indices k(i) depend on m, 0 < c(i)_-< 1, and k(i) is defined by 

k(i). 2~<m<(k(i)+ 1). 2 ~. (2.3) 

A similar representation is valid for Tin: 

where 
i = j + l  

2 n + l  - - m  m - - 2  n 
T"-  2" T 2 " + ~  Tz"+~ (2"<m<2"+1)'  (2.4) 

and c(i), k(i) are the same as in (2.1). Thus 

i = j + l  
(2.5) 

Now we pass to the estimation of the differences IS m-  T,,]. We shall use the 
following 

Lemma 1. I f  F satisfies the conditions given in Theorem 1, then there are positive 
constants C1, C2,~ such that 

I ~ -  ~1 < c1- 2-J. ~2 + c2, /f I~1 < e- 2i, (2.6) 

I~,k--~,kl<C1.2-J.(~.~k+Ug0+C 2, if I~,kl<e'2J, Igj,~l<~'2 j, (2.7) 
where the U-s, V-s are defined above. 

This lemma will be proved in the last section. Now we prove that there are 
positive constants e, fl, 7 such that 

P(1 <sup IS m- Tml > x) < 7 e"N-px  (2.8) 

2 c~ 
for arbitrary N and x. Since (2.8) implies (1.1) with 2=fl,  K=7 ,  and C . . . .  
this completes the proof. Fix N and x and define M by log 2 fl ' 

X X 
8~- < 2M < 4~ '  (2.9) 
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and take M 0 = inf(M, N). Introduce the following notations" 

A = sup IS, , -  rml, 
I.<_m<_2 N 

A 1 = sup sup ]S,.2Mo+k--aj.2Mo[, 
O < j < 2 N - M o  l < k < 2 M o  d 

A 2 = s u p  sup IT... 2M0+ k - -  Tj.  2M01 , 
O<~j<2N-Mo l~k~<2Mo J 

A 3 = s u p  I S 2 J -  Tvl, 
M o < j < N  

A4= sup ISj. 2Mo- rj. 2,~ol, 
0 < j <  2r'r-Mo 

where S~. = S , . -  Sin, T.~ = T m-  T,., and S,,,, T m are defined by (2.2) and (2.4). With 
these notations 

A<AI  + A 2 + A 3 + A  4. 

Let A denote the event 

A={IUMo, kl<e .2 M, k=0 ,  1, ..., 2N-M~ 1}, 
then 

P(A>x)<=P(AI> 2M)+P(A2>g.2M)+P\  3 >~- ,  , (2.10) 

where the comma indicates the union of the events. Here the terms on the right- 
hand side can be estimated by Tie ~'u-a'x with appropriate cq, 17~, Yi (i = 1, 2, 3, 4). 

P(A l>e .2M)<2  N-M~ M~ sup (P(Sk>e'2M)+p(sk<--e '2M)) .  
l__<k=<2Mo 

Here 
P(S k > e- 2 M) = V(t 1 (Sk - e. 2 M) > 0) < E exp {tl (S k - e. 2M)} 

= ( e  (t 1))k e -,,1-2 ~ __< (R (q) e -~tl)2 M = (p (0)2 M, 

where P(0 is the Chernoff-function, and q is the corresponding argument: 

p(e) = inf R(t) e-t" = R(tO e -~". 
t 

(We will see in the proof of Lemma 1 that ~ < t o.) A similar estimation holds for 
P ( S k < - - e .  2 M) with p(-e) ,  and for P (A2>e .  2 M) with the Chernoff function of 
the normal distribution, hence 

where fll = - sup(log p(e), log p ( -  ~)), f12 = 89 ez. 
We assume in the sequel M__<N, otherwise A 3 =A~=0.  For estimating the 

third term in (2.10) we use the following truncated variables" 

2 -~" ~ I~ l<e  "~ = q2 if  9 2 j 

0 otherwise. 
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The moment generating functions of these variables are bounded: 
e 2. 2J e 2- 2J m 

EeUJ= S etydP(zj<Y) =1+ ~ tetrp(r~>-=y)dy<=l+2~ tetre-ardy=q(t), 0 0 0 
if t < 3, because if 0 =< y = e 2. 2 j, then 

1 ! 
n(zj >= y) <= p(~2 > y.  2 j) = n ( ~  __ (y. 2j)g) + p ( ~  < _ (y. 2J)2) 

1 j_ 1 j_ 
< p(y~. 22)2J + p( _ yr. 22)2J _-__ 2 (1 - by. 2-J)<= 2 e-~ 

where 3 is an appropriate constant for which 
p(u)<=l-fu 2 for lul<e. 

Now we estimate A 3 using Lemma 1: 
N X N X 

P (  A 3 > 4 ' A )  N~P(j~=M I~Jj- ~rjl >Y 'A )  N~P(j~M(CI'2-j~j2-~-C2)> 4_ , A )  

(j~tN _xl (e { ( ,~  t 4 ) }  ) <P (C15+Cz)>xI=P xp t (C15+Cz)- >1 

<=Eexp{t(j~=x(Ctzj+C2)-4)}<=exp{Nl~ 
6 which is again of the form y3e ~3N-/~3x for t = - -  2C1 

Estimating the fourth term we use (2.5) and (27), so we have to investigate the 
sums of type N 

am= Y 2 ~(0?k~j~+ q%,) 
j=M+I 

where k(]) is defined in (2.3) and m is a multiple of 2 M. All these sums have the same 
distribution because the joint distributions of the random variables { ~,  k(j), Uj, kO); 
j = M + 1, ..., N} are the same for different m. 

The first sum is: 
N N 
Z 2-'/(Uj,2o+Uj,Zo)=2 Z 2-J(UJ2-1+Uj2-1), 

j=M+I j=M+I 

here the second term is what we have just investigated when estimating A3, and 
the first term is dominated by the second: 

N-~ 2 ( N-2 ) 
Z 2 - ~ <  . 2 - ~ . v ~ +  Z 2-~. ~ 

j=M = ( l /~ -  1) ~ j=M 

when we apply the relation 
q~+M = (uM + Cry+ t?~+~ + ... + O ~ + j _ y  

<=(q-JU2+q-J+t(J2+...+(J2+~_1).~qJ with q = 2  -~. 
j=O 
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Hence 

" ( A 4 > ~ - , A ) < 2 N - M ' ' (  ~ (Cl"2-'(~2,o+U~2o'+C2)>-~-,A) 
~ j = M + I  

=<2 N-M.P C 3 2-Mu2+ ~ ,2 -ag  2 +NC2>~- ,A 
j = M  

N x =<2 N-M. p 2 C 3 ~ 5 +  C 2 > ~ -  
j = l  

=< exp N log q (2 C a t) + C 2 N t - ~ -  , 

a 
which is of the form y4e =4N-a4x for t =  a4C--" 

4. Proof of Theorem 2 
Assume firstly that the moment generating function of X, does not exist at 

some t > 0. Then 
P(etX'>j) = ~ p(etX~>j)=oo, 

j=l j=l 
hence 

On the other hand 

hence 

P ( l imsup  Xj _>-1)=1.  
\ j+~o logj 

P/lim [Yj] =0~=1,  
\ j~o logj ] 

P (lim ~ p  IS , -  T,[> 1 
logn = 2 t )  = 1 '  

1 1 
that is (1.2) holds with C O = 2~-" Similarly (1.2) holds with C O - 2 t if the moment 

generating function of X 1 does not exist at some t<0.  Namely, (1.2) holds with 
arbitrary large C o if there is no proper interval around the origin where the moment 
generating function of X1 would exist. 

If the moment generating function of X 1 is finite for - oo __< a 1 < t < a 2 __< oo, 
denote the interior of the range of the function R'(t)/R(t) by D: 

The Chernoff function 

R'(t) } 
D= x: x = ~ ,  al <t<a 2 . 

p(x)= inf e-tXR(t) 
al <t<a2 

is an analitic function in D. Denote the function - l o g  p(x) by =(x): 

~(x)=-logp(x). 
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A theorem of Erdgs and R6nyi [6] states that for any xED, x> EXI, 
 9 + [ l o g  n ]  

 (lim sup ) Z X k = x = l "  
\n~oo l<j<n logn k=j 

Especially, for the variables Y;, this theorem says that for all y > 0 
. _  1-21ogn 1 

J ~  L~A 

P lim sup ~ Yk=y =1 .  
\,4oo 1<'<, 21ogn =J= k = j  

It is trivial that in case EX 1 + O, (1.2) holds with arbitrarily large C o . If EX 1 = O, 
the theorem of Erdfs  and Ranyi implies 

 9 + Flog n l  

P( l iminf l s~P l ~ - g  n k=~l (Xk-- Yk) x 2 ~ 

for all x ~D, x > 0. For  x e D, x < 0 a similar statement holds but with "inf" instead 
of "sup".  Hence (1.2) holds with 

t(2~(x))~- x[ l(2(tr'(t)-r(t))~-r'(OI 
Co=sU p - sup 2(tr'(t)-r(t)) ' x ~  2 r t (x )  o~ < ,<o~ 

where r(t)= log R(t). Since different distributions have different Chernoff functions, 
this C o is positive for arbitrary distribution different from the standard normal 
one. 

Remarks. 1. Let F be a distribution function obeying the conditions of Theorem 
1, and let X,, S,, T,, C be the same as in Theorem 1. Then for arbitrary positive 
integer 

P l imsup < C  =1 .  
\ . ~  logn = 

Hence for the random variables 
1 ng 

X . = ~  2 + X j  
] /k j=(n-k)  l 

the best possible bound C O in (1.2) is less than or equal to k -~ C. This means that 
if we characterize the distance between an arbitrary distribution F and the standard 
normal one by the largest possible constant C o in (1.2) (assuming X 1 has the 
distribution F), then for arbitrary e > 0 there is a distribution with a characteristic 
constant less than e. 

2. For empirical distribution functions a similar statement is valid. Let F,(t) 
be the empirical distribution function defined in Theorem 4, and let B1 (t), BE(t ) . . . .  
be a sequence of independent Brownian bridges. Then Theorem 2 implies 

( n(F,(t)-t)-~Bj(t)j=~ 
P \ l imsuP0 sup 1 , ~  _<t'_< log n > v/~] = 1. 
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In the same way as Theorem 2 was proved, one can prove 

n t ) -  t -- Bj(t) 
lira P sup = 1. 
. ~  ~o_<t_<l logn 

(We remark that the constant given here is not the best possible one.) That is, the 
construction of Theorem 3 has nearly the smallest possible error, since its error 
is about C log n but perhaps this C is not the smallest possible. The construction 
of Theorem 4 is, however, far from being best possible because it is very likely that 

< ) P ( l i m s u p  sup n(F"(t)-t)-J=a C =1 
\ , ~  o_<t_<l logn = 

is available. 

5. Proof  of  Theorem 3 and 4 

The proofs of Theorems 3 and 4 are essentially the same as that of Theorem 1. 
That is why we will only sketch them out here and try to use the same notations. 
First we start with the proof of Theorem 3. Here the first difference is the lack of 
the "forward par t"  of the construction, because now we are given a fixed n and 
we have to construct only the first n elements of the sample X1, X 2 . . . . .  X,. Assume 
that we are given a Brownian bridge Bn(t ) on the interval (0, 1). Then the random 
variables 

Vj, k = B , ( ( k + l ) . 2 - J ) - B , ( k . 2 - J )  (k=0,  1, . . . , 2 J - i ;  j = l , 2  . . . .  ) (5.1) 

are normally distributed with expectation 0 and variance ( 1 - 2 - J )   9 2 -j. The 
random variables 

~,k=Vj+l,2k--Vj+l,Ek+~ (k=0,  1, . . . , 2 J - 1 ;  j = 0 , 1  . . . .  ) (5.2) 

are also normal with expectation 0 and variance 2-~, especially 17o, 0 is a standard 
normal variable, moreover the ~,k-s are mutually independent. (Note that the 
index j has a different role here than in the first proof, which accounts for the 
difference in the definition of ~,k.) 

The first step of the construction is the definition of some U 1,o which is a random 
variable of binomial distribution with parameters n and  89 as a quantile transform 
of 1~o, o ~ Let the function H(t] n) be defined by 

(5.3) 

then U1, o is defined by 

Note that in the present situation it is more natural to define the variables Uj, k 
directly rather than via the variables ~,  k" Starting with U~, o which we have just 
defined and 



124 J. Koml6s et al. 

we define step by step the variables Uj, 2k by 
j - 1  

Uj,2k=H(~( 2 2 ~_Lk)]Uj_~,k ) (k=0,  1 . . . . .  2~-J), 

and Uj, zg + I by 
Uj, 2k+I=Uj_I,k--Uj,  zg (k=0,  1 . . . .  , 2 J - ~ - 1 )  

for j =  2, 3, ..., and finally ~, k is defined by 

~,k=Uj+, ,2k--Uj+, ,ak+,  (k=O, 1 . . . . .  2 J - l ;  j=O,  1, ...). 

In this construction sup Uj k tends to 1 with probability 1. The sequence of 
0_<k_<2J ' 

intervals (k. 2 - J , (k+  1)  9 2 -j) for pairs j , k  with Uj, k>0 defines n points in (0, 1): 
let these points be the ordered sample X* X* * l ,  2 . . . . .  X n and define X1,X 2 . . . . .  X, 
by a random permutation ~: 

X i = X*(0 (i = 1, 2, ..., n). 

Then for the empirical distribution F,(x) 

F,(k  9 Z-J) = 1 ~  Uj, i (k= 1,2, ..., 2'; j = l , 2  . . . .  ) 
ni=o 

holds true. It is easy to see that the constructed Xr are i.i.d.r.v.-s with distribution 
given in Theorem 3. To estimate the errors of this construction we shall use the 
following 

Lemma 2. There are positive absolute constants C~ , C2,  g such that 

IUj, k--Fl 89 ~rj, kl < C 1  9 2'. n-~(~2,k +(Uj, k--n  9 2-a)2) + C 2, 
g 

(5.4) 

[ ~ , k [ < e . n . 2  -j, [Uj, k - n . 2 - J [ < e . n . 2  -j. 

The details of the estimation will be omitted because they are just the same as 
in the first proof. The only difference is that the variables Uj, 1 (]= 1, 2, ...) are not 
strictly independent. The effect of their dependence is however negligible as is 
easily shown by the standard representation of the empirical distribution function 
as a conditional Poisson process. 

The construction of Theorem 4 is the following. Let B 1 (t), Bz( t  ) . . . .  be a sequence 
of independent Brownian bridges. In the "forward part"  of the construction the 
elements of this sequence will be divided into blocks of 2n elements (n = 0, 1, 2 . . . .  ), 
and the sums 2k+1 

Z Bj(t) 
j = 2 k + l  

will be transformed one by one into empirical distributions in the same way as 
in the proof of Theorem 3. The order of the elements of a block 

{ X 2 k + l ,  X z k + 2 , . . . , X 2 k + l }  

is, however, defined in this step only provisionally. These elements will be re- 
ordered step by step in the "backward part"  of the construction. Here we are 
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faced with the problem of dividing a given sample into two parts in such a way 
that the differences of the empirical distributions given by these parts be near to 
a given Brownian bridge. This construction is formulated in the following 

Theorem 5. For n=2m let E. be the n-dimensional space, C the space of all 
continuous functions on (0, 1) with the usual a-algebra, and let 17. be the set of per- 
mutations of the first n integers. There is a measurable mapping O.from E. x C x fI .  
to El. having the following properties: Let X1, X 2 . . . .  , X.  be i.i.d.r.v.-s of distribution 
(1.3), B.(t) a Brownian bridge, p. a random element of H. and let the Xi-s B., p, be 
mutually independent. Let the permutation 

O.(Xl , X 2 . . . . .  X. ,  B.(t), p.) 

be denoted by ~, and let F.(L)(t), F.(R)(t) be the empirical distribution functions defined 
by the samples 

S (L)= {X~(1) , . . . ,  X~(m)}, S (R) = {Xg(m+l) . . . .  , X~(n) }. (5.5) 

Then rc is a random element of Fl. i.e. all the elements of I1. have the same probability 
in the distribution generated by ~.,  and there are positive absolute constants C, K, )~ 
such that 

P(oS<=Ut~ltn(F,(L)(t)- F,(m(t))-n~B,(t)[> Clog n+ x ) < K e  -zx. (5.6) 
for all x. 

In the "backward part" of construction of Theorem 4 the Brownian bridges 
used in the subsequent reordering of the blocks of Xcs will be the process 

(2k+l)2J - l  (2k+2)23 1 
~,k(t) = E Bi( t ) -  E Bi(t) 

i=2k.2J-l  +l i~(2k+1)2J-l +l 

(they are independent). Using an estimation similar to (2.5) one can prove the 
statement (1.6) simply by summing up the inequalities (5.6) for appropriate n-s. 
Hence in proving Theorem 5 the proof of Theorem 4 will be completed. 

The proof of Theorem 5 is as follows. Let Vzk, ~,~ be again defined by (5.1) 
and (5.2), let F.(t) be the empirical distribution function defined by the sample 
X1, ..., X., and let Wj, k be defined by 

Wj,k=n[F,( (k+l) .2-J)-F,(k .2-J)]  (k=0, 1 .... , 2 J - 1 ; j = l , 2  .... ). 

Actually there is no need to give the complete permutation n, what is used in (5.6) 
are the two samples S (L), S (R) given in (5.5). (The letters L and R stand for left and 
right.) We use the permutations only to make the formulation easier (especially 
in the proof of Theorem 4). That is why we divide the number of points Wj, k step 
by step into two parts, denoting each by Uj (L) and U),~ ). We shall use a pure random 
halving, generated by the random variables'~.,k. Let us first define U~(,L~ 0 : the number 
of the sample S (L) in the interval (0,  89 By giving U~Lo ), we have also defined u~(Ro ), 
U~ (L) UI(R), because 1,1~ 

u + w, U{L  + (R) i, 1,0 1 , 0 -  1 ,0 '  , 1,1 ~ , (5.7) 
U(Lo ) "Iv U (L) - -  m '  U(R) .a- U(R) , 1 , 1 -  ~ 1 , o -  1,1 ~ m ,  
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If W~ o, W1 i are given, the desired random variable U (L) is distributed according , , 1 ,O  
a hypergeometric distribution. For  any integers A + B =  C + D = N  let the t o  

function H(tlA; B; C; D) be defined by ] 
then U (L) is defined by the appropriate quantile transformation: 1 , 0  

U~(L)-H(r o)lW1 o 'W11;m;m).  1 , 0  - -  , , ' , 

The other three variables U~ (m U, (L) U, (R) are given by (5.7). Starting with these 1 , 0 '  1 , 1 '  1 , 1  
variables we define step by step the variables U)~ k by 

j - 1  

U),~k=H(tb(2 2 ~ _ l , k ) l % , 2 k ;  Wj,  2k+l  ; gj(L_),k ; Uj(R_}I,k) ' 

and U),~)k, U),~k + 1' Uj(,~'k +1 by 

v,% + v),~'~ = w,,~, o,%+1+ v),~'~+~= N,~+~, 
q %  + q % + 1 :  q'~_'~,k, ~',~'k+ g%+1= q'_%, 

for k = 0, 1 . . . .  ,2 j-1 _ 1 ; j = 2, 3, .... Finally define ~,k by 

~,~ = (~,~+,~, ~ -  v)~, ~ + ~)- (v)+"L ~ -  ~+"~,~k +1) 
The proof will be completed by the following 

Lemma 3. There are positive absolute constants C 1, C 2, e such that 

IOj, k - - n ~ g , k l < C l ' 2 J . n  l[-(Wj,=k-- n  9 2-J)2 
2-J~2-t-Eu(L) _ 2-J)Z+(u)R-)I,k--n 2-J) 2 ] + C  2 (5.9) + ( I / V L z g + I - - n "  ' ~ j - l , k  n .  

if 
IWj, z k - n . 2 - J l < g . n . 2  - j ,  II/Vj, z k + l - - n . 2 - q < g . n . 2 - J  , 

IU )L ) l , k - -n .2 -q<e .n .2 -J  , IU)R_)l,k--n.2-al<e.n.2-a. 

6. Proof  of  the Lemmas 
The proof of the lemmas is based on the theorem of large deviations, or rather 

on the central limit theorem with an effectiv error term. We use the following 
theorems of Petrov [-9, 10]. 

Theorem A. Let X l, X 2 . . . .  be i.i.d.r.v.-s for which 

EXI=O, E X ~ = I ,  R ( t ) = E e x p { t X 1 } < ~  for [ t [<t  0. (6.1) 

Then there is a positive rl such that for all n 

P( S, < - n x)= ~( - n~ x) exp { - n x3 2 ( -  x) + O(x + n-+) } , 

P(S, > nx) = Q(n~x) exp {nx 32(x) + O(x + n-~)}, 
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where n 
s .  = ~ x j ,  Q(x) = 1 - ~(x) ,  

j=l 

the function 2(x) is analytic and the function O(x) is uniform on the interval 0 <-x <_ ~1. 
Theorem B. Let X~, X 2 . . . .  be i.i.d.r.v.-s for which (6.1) holds, and for some p > 1 

~ l e ( t + i u ) f  d u < ~  for It l<to,  

where R(z)= E exp {zX1} for arbitrary complex z with ]Rez[ < t o. 
d 

Set S .=Z~=IXj ,  F.(x)=P(S.<x)  and f . ( x ) = ~ x  F.(x ). There is a positive q 
such that for all n 

f ,(nx) = n -~ q~(n~x) exp{nx 3 2(x) + O(Ix[ + n-~)} 

where the function 2(x) is analytic and the function O(x) is uniform on the interval 
- r l < x < t  1. 

Theorem C. Let X1, X2, ... be i.i.d.r.v.-s for which (6.1) holds, and X 1 is lattice- 
valued, i.e. there are constants a > 0 and b such that 

~ P ( X ~ = a j + b ) = l .  
j =  -Go 

Assume that a is the largest such value. Then there is a positive ~ such that for all n 

P ( S  n = n x )  = n -  89  (p(n -~ x )  exp {nx 3/~(x) -}- O(Ixl + n-~)} 

1 
if x is of the form x = - - ( a j  + b), where the function 2(x) is analytic and O(x) is 

n 
uniform on the interval - tl <= x < tl. 

Theorem A is given in [10], Theorems B and C are given in [9]. (Theorems B 
and C go back to Richter [10].) In fact Petrov stated these theorems for x ~ 0  
as n--, o% and for Ixl _-< rt his error term is a multiple of t/. His proof is however also 
applicable for proving the above theorems. 

Now we turn to the proof of formula (2.6) using Theorem A. We use the 
notation n = 2 J in the sequel. 

One has 
~(~)__< ~(n-~ ~)__< ~(S j  + o). 

Denoting ~ = nx (2.6) reduces to proving 

- c ,  n x ~ - c ~  __< n x - -  ~ ,~ - ' ( ~ ( n  x + 0))  

<nx-lfn~b-'(Fj(nx))<-_C, nx2+C2  if Ix l<~.  
Let us consider the case x > 0. The previous inequality can be rewritten as 

1 - ~ ( v ~ x -  u) __> 1 -  Fj(n xt _-> 1 - F~(n x + 0/ 
> 1-~(~x+u) ,  
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t ~ 
where u= Cll fnx  2 +~nn' or by Theorem A 

log t_~(V~x)  >nx3 2(x)+O x+ 

1 - ~ ( V n x + u  ) __ log 
1 -  r 

But 
log  1 - ~ b ( ] f n x -  u) q~(~) 

1_ ~p(lf~X ) 1-~(~1 
>nx3)~(x)+O x+ , 

where l /~x > ~> l f n x - u .  
The other side of the inequality and the case x < 0 can be proved the same way. 
To prove (2.7) we need the following relation 

Fj(n (6.2) 

with 0(.) uniform for Ixl<e, lyl<8. 
Instead of (2.7) we prove the following somewhat stronger statement 

I~,k--~,kl<C [~f- -~  27 - t - ~ + I j  if IUzkl<~. 2J, I~,kl<e.2 j. 

Denoting ~,k = nx, UZk = ny this statement reduces to the following one: 

,l~(]/~x + u) > Fj(nx + 0 [ny)> Fj(nxlny) 
>~( l f n x -u )  if Ixl<~, [Yl<e, 

2 1 

Taking logarithm and using formula (6.2) one proves this statement similarly 
)to (2.6). (We may suppose that e is small enough thus in the relation 

1 - ~ ( ~  - u )  q , (~ )  

1 - ~ ( x )  r 
is sufficiently near x.) 

We shall prove (6.2) by integrating the conditional density function. In the 
following estimations K will always mean a sufficiently large constant, not 
necessarily the same in different formulas. 
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d 
Denoting T x  Fj(x l Y) by f~(x l Y) and Fj(x) by fj(x) one obtains 

f j(nxln y) 2fj(ny) 

If Ixl <7/, [y[ <q, then using Theorem B and the Taylor expansion of 2(y_+x) at 
the point y, one gets 

fy(nx[ny) =n -~ ~o(n~x) exp[n/l(x, y)+ O([x] + lY[ + n-~)] 
= n -~ q)(n~x) exp[O(n Ixl a + nx 2 lYl + lyl + n-+)],  

where #(x, y) =  89 + x) 3 2(y + x) +  89 x) 3 2(y-  x ) -  y3 ,~(y). 
We shall only prove the first relation of (6.2), a proof of the second being the 

same as the first. 
For appropriate A > 0 

A 

11 =Fj(nAIny)-Fj(nxlny)= ~nfj(ntlny) dt 
x 

,4 n K _<_ !1 /~  (~ +~,.,+~t ex. ( -~-,1"'~ - ~ , - ~  '"'1 "~ 
/ l  2 / l  t 2 

On substituting 2 = ~ - ( 1 - K t - K  lYl) we get 

Ku K lYl) ~o(u)du 

( 5)  1 
= l + g l y l +  (1 - ~Qfn~) )  + g ~0(1 /~ )   9 1 /~  

< ( l + K ly[+ K~t+~n) (1-~(tfngt)), 

where ~2 = x2(1 _ K x -  K [yl). 
Now 

log 1 - ~ ( l~u)  = l /~ (x-Q ) q)(~) ]/n~ < ~ < l ~ X ,  
1 -  ~(lfnx ) 1 -  q ~ ( r  

which gives 
1 - q~(l/n~) < exp[O(nx 3 + nx; lyl +1/~x lyl + 1/~x2)]. 
1-~b( l fnx)-  

These results imply that 

Ii<=[l-~(]/nx)]exp[K(nx3+nxZlyl+ly[+~n)]. 
Similarly 

l t>=[1 -~ ( t / nx ) ]exp[ -K(nx3+nx2 ly [+]y[+~n) ] .  

Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32 



130 J. Komlds et al. 

We still must prove that the quantity 

I z = 1 -- Fj(nAln y) 
is negligible. 

The proof of Theorem B implies that there is a positive constant K such that 

f~ - l (2x )<=Kf i - , (2Y) ' exp ( -2 t ( x -Y ) ) ,  

R'(t) 
where t is defined by the equation ~ - =  y. 

A R%) 
Thus fixing a number Yo, 0 < Yo < ~-  and defining t o by the equation R ~ o  ) = Yo 

we get for x > A, y < ~ the estimation 

f~(nxlny)< fj(ny) ' 
and taking into account the inequality 

f j - I (2(x+Y')=f j - I (2(Yo+X-yo+Y')  

<Kfj - l (2Yo)  exp[-2to(X+y-Yo)] 
we finally obtain 

fj(nxlny)<exp [ - 4  toX ] 
which ensures that 12 is small enough. 

If F fulfills condition i) of Theorem 1, the proof is based on Theorem C and 
it is just the same as the above proof. 

In the case of Lemma 2 a binomial distribution of random parameter is 
approximated by the normal distribution. Let us denote the number of heads 
in m independent coin tossings by Z,, and let Y be a standard normal variable. 
It is a consequence of Lemma 1 that the quantile transformation provides a 
version of Z m and Y such that 

( m) 1  89 __(  m) 2 + C  2 for Zm- 2 <em. Zm--2 --2 - m- Y < Clm Zm--2 - 

In the case when the number m is itself a random variable with expectation M, 

and we have to approximate Z , . -  m with 7M ~ Y, then the following estimation 

is applicable: 

( 2 )  1 M~Y (Mm)~ ( m) 1 m~ Y - T  z -T - T  

+(U_I. 
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where 

( ~ - ) ~ - - 1 .  Zm-~m2 =<(m-M)e+  I~(Zm-2)e'2M 2m 
That is we can correct the effect of the random parameter by a linear transfor- 
mation. 

In the case of Lemma 3 the situation is the same: we approximate a hyper- 
geometric distribution of random parameters by the normal distribution. In this 
case even the expectation differs from the theoretical value 0, the effect of the 
difference in the expectation and variance is however estimable by the terms 
given on the right hand side of (5.9). As for the approximation of a hypergeometric 
distribution with deterministic parameters through a normal distribution, 
Lemma 1 is not in fact applicable, however a direct application of Stirling's 
formula provides the desired estimation. 
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