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Given  a d.f. F(x) with the p roper ty  

xF(dx)--  0, ~ x2F(dx) = 1, ~ etXF(dx) < oo 

for [ t l< to ,  we construct  a sequence X1, X 2 . . . .  of i.i.d.r.v.'s with d.f. F(x) and 
Y1, Y2 . . . .  with s tandard  no rma l  distr ibution in such a way that  the sequences 
S , = X x + . . . + X , ,  T , = Y ~ + . . - + Y , ,  n = 1 , 2  . . . .  satisfy the relation [ S , - T , [ =  
O(log n) a,s. Under  some mild condit ions the best possible normal  app rox ima t ion  
of the process S, will also be given in the case when F has not  a m o m e n t  generat ing 
function. 

1. Introduction 

Given  a d.f. F(x), ~ xF(dx)= O, ~ x2F(dx)= 1, let us consider a sequence X1, X 2 . . . .  
ofi.i.d.r.v.'s with dis tr ibut ion F and a sequence Y1, Y2, .-- ofi.i.d.r.v.'s with s tandard  
n o r m a l  distr ibution.  Set S, =X1 + - - - + X , ,  T,, = Y~ + . . .  + Y,, n = I, 2 . . . .  Our  a im 
is to construct  the sequences 32, and Y, in such a way that  for all n, S, and T, are 
as near  to each other  as possible. This p rob lem was solved under  some special 
condit ions in T h e o r e m  1 in par t  I. Our  first aim is to show that  the regulari ty 
condi t ions (i) or  (ii) in T h e o r e m  1 in par t  I were superfluous and the following 
general izat ion holds true: 

Theorem 1. I f  ~et~f(dx)<oo for It[<=t o, the sequences X1 ,X2 , . . .  and Y1, 
Y2 .. . .  can be constructed in such a way that for all x > 0  and every n 

P ( m a x  IS k -  Tkl > C log n + x) < K e -  ~x, (1.1) 
k < n  

where C, K, 2 depend only on F, and 2 can be taken as large as desired by choosing C 
large enough. Consequently, IS, - T,[ = O (log n) a.s. 

The p roo f  of  T h e o r e m  1 will be based on the following two special cases: 

Theorem 1 A. I f  F satisfies the conditions of Theorem I, and, in addition, 
it has an absolutely continuous component, i.e. F(x) = pFI (x) + (1 - p) F 2 (x) where 
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0<p__< 1, F 1 and F 2 are d.f's, F 1 is absolutely continuous, then the sequences X ,  and 
Y, can be constructed in such a way that (1.1) holds. 

Theorem 1 B. I f  F is concentrated on a finite interval, then an appropriate 
construction of the pairs (X,,  Y,) satisfies (1.1). 

Let us remark that if F has not a finite moment generating function in any 
neighbourhood of the origin, then 

lim sup ISn- T,I 
, ~  logn - o e  a.s. 

for any construction of the sequences X, and Y~. This can be read out from the 
first part of the proof of Theorem 2 in part I. This means that the conditions of 
Theorem 1 are necessary. 

One may also be interested in the case when F has not a moment generating 
function. If F has some finite moments, the following result gives information 
about the closeness of S~ to a normal sequence. 

Theorem 2. Let ~ ]xl~F(dx)<oe for some r>3 .  Then for an appropriate con- 
struction 

I S , -  T,l=o(n 1/~) a.s. 

For r > 4  this theorem is an improvement of Strassen's who proved 

O(nl- (log n) ~ (log log n) ~) 

instead of o(n*/'). 
Now we generalize Theorem 2 in the following way: Let H(x)>0,  x > 0  be a 

monotone increasing, continuous function having the following properties 

H(x) 
(i) x-57 a is monotone increasing for some 5 > 0 and all x > x 0 , 

(ii) 
log H(x) 

is monotone decreasing for x > x o . 

(1.2) 

Theorem 3. Let H(x) satisfy (i) and (ii). Define K,  by the equation H(K,)=n.  
I f  ~ H(]x[)F(dx)< co, then there exists a construction of X1, X2 . . . .  and Y1, Y2, ..., 
and a constant C > 0 such that 

p(limsuplSn-- L<C)=l g 
n - -  

Remarks. One can choose a sequence e, ~ 0  such that K,  can be substituted 
by K'  n, the solution of the equation H(K',)= en-n. Indeed, consider a function 
f (x) tending to oo such that ~ H(I xl) f(L x h) f (dx)  < oe. 

Apply Theorem 3 substituting H(x) by Hl(x )=H(x ) f ( x ) .  Thus Theorem 2 
is a special case of Theorem 3: one has only to choose H ( x ) = x  r, r > 3  and apply 
Theorem 3 and the Remark, to obtain Theorem 2. Taking H(x) = e tx in Theorem 3, 
we get the statement I S , -  T.I = O(log n) in Theorem 1. 
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Theorem 3 can be reformulated in the following more attractive way: If K,  is a 

sequence of positive numbers, ~ is monotone increasing, and is monotone 

decreasing for n > n o , then the condition 

P(IX, l> g , ) <  oo 
n=l 

implies that ] S , - T , I = O ( K , )  a.s. for an appropriate construction. I.e. the dif- 
ference IS,,- T,[ doesn't grow any faster than the individual terms [X,I themselves. 

Theorem 3 is sharp in the following sense: 

If ~ P ( t X ,  I>K',)=oc, then ] S , - S , _ I I > K '  " occurs infinitely often (a.s.); 
n=l  

now K,  > c log n implies that ] T , -  T,_ if 1 ,  9 > 2 K ,  only finitely many times, whence 
we get 

P (lim sup IS" -  T,[> 1] 
x ,~co K', = 4 ] = 1 '  

In case of Theorem 2, K'  can be chosen K',=~(n). n 1/', where e(n)--*0 as slowly 
as one likes if F is chosen appropriately. Thus, the estimation o(n l/r) in Theorem 2 
is the best possible. 

Let x > K,.  One may ask, what is the probability of the event 

sup fSk-  T~l>x 
k<n 

for an appropriate construction. The following theorem gives an answer to this 
question. 

Theorem 4. Let H(x) and F(x) satisfy the conditions of Theorem 3. Then for any 
x , K , < x < C 1 ] / / n l o g n  (more generally x > K , , x 2 / l o g H ( x ) < c l n )  there exist 
two .finite sequences Xa , X2 , ... , X,  and I71, Y2, ..., Y, such that 

n e(sup lSk- x)<<_c2 
H(ax) '  

where C1, C 2 and a are positive constants depending only on F. 
Just as in the remark following Theorem 3, one sees that the numerator n 

in Theorem 4 can be replaced by o(n). 
We remark that Theorem 1B is the only place in the two papers, where the 

fact that )(i ,  X 2 . . . .  are identically distributed is essentially used. Thus, for vari- 
ables ?(1, X a . . . .  whose distributions have continuous components (uniformly 
in a certain sense), our dyadic construction may also be appropriate. 

We also mention that in the paper [1] we discussed some applications of this 
paper, e.g. for the rate of convergence of S , -  T~ in the Prohorov distance. 

2. The Proof  of  Theorem 1 

Theorem 1 differs from Theorem 1 in part I only in that we do not require the 
existence of a smooth density function. Let us remark that this additional as- 



36 J. Koml6s et al. 

sumption was needed only in the proof of Lemma 1, or more precisely in the 
following formula about conditional distributions 

P ( S , -  2Sn/2 > n x[ Sn = n y) 
= [1 -- qS(1/~x)] e x p { O ( n x 3 + n x 2 l y l + x + l y l + l / l / n ) }  

i f 0 < x < e ,  lyl<e. 
We proved this relation by integrating the conditional density function. 

One would hope that upon finding another proof, one might get rid of the con- 
dition requiring the existence of a density function. This would mean that the 
proof of Theorem 1 in part I applies to our new theorem without any modification. 
This hope however proves illusory. The next example shows that the above- 
mentioned expansion does not hold if we assume only the existence of the moment 
generating function. 

Example. Let the r.v. X have a distribution concentrated on a sequence Xo, 
x l , . . ,  with the following properties 

a) n < [ x , [ < n + l ,  n = 0 , 1  . . . .  ; 

b) x o, xl . . . .  are linearly independent i.e. for any finite linear combination 
~ k i x  i with rational coefficients, ~ k i x i = O  iff ki--O for all i. 

Let p, = P(X  = x,) satisfy c. exp ( -  n) < p, < exp ( -  n), and assume that E X  = 0 
and E X  2 = 1. Consider a sequence 3;1, X~, ... of i.i.d.r.v.'s having the same dis- 
tribution as X. 

A little consideration shows that on a set A, of positive probability the follow- 
ing relations hold with appropriate constants C and p (C and p do not depend on n): 

(i) IS,_ 1 l< Cl fn  (n-,) 
(ii) ~ Xk(i)<Clfln fo ra t l ea s t  p n/2  

i=1  

subsets {k(1), ..., k(n/2)} of the set {1, 2, . . . ,  n -  1}. 
Let e be a sufficiently large constant, m = [ e C l f n ] ,  and let a=S,_l (co  ) for 

an arbitrary co ~ A,. Then 

P(S - 2S,/2 > C(o~-4) ]fnl S , = a  + x,,)> p/2 

instead of q~(e-4).  (1 + O (1 / I f  n)). 
That is why we slightly modify the original construction, and the original 

proof applies for the new construction with some alterations. A natural idea is 
to smooth the random variables by adding small normal variables. By this 
smoothing we want to ensure that the density functions of the new variables 
satisfy the central limit theorem. On the other hand the smoothing r.v.'s must be 
negligible. We show that both requirements can be satisfied if F has an absolute 
continuous component. This is the idea of the proof of Theorem 1 A. 

In the proof of Theorem 1B we use a somewhat different method. Knowing 
the values X~, X z . . . . .  X ,  we rearrange them in such a way that their joint distri- 
bution be the prescribed one, and S,/2 be near T,/2. This rearrangement will be 
done by using Lemma3 which is of independent interest. 
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Before proving Theorems 1A and 1B we show how these two part icular  
cases (the " smooth  case" and the "bounded  case") imply Theorem 1. For  this 
we need the following 

Lemma 1. Given the distribution functions F 1 , F 2 and G1, G2, let S~ i), S(~),... 
resp. Tl(1), T(2 i), ... be the partial sums of  i.i.d.r.v.'s with d f  F i resp. Gi, i=  1, 2. For 
any 0=<p=<l there are two sequences S 1 , S 2 . . . .  and T 1 , T2, ... which are the partial 
sums of  i.i.d.r.v.'s with d f  pF 1 + ( 1 - p ) F  2 resp. pGa + ( 1 - p )  G2, and satisfy the 
inequality 

P (sup IS k - Tkl > a + b) < P (sup [S(k 1' - Tk(l' I > a) + P (sup o kc(2) _ Tk(2, ] > b) 
k<n k<-_n k=n 

for  all a > O, b > 0 and any n. 

Proo f  We may suppose that the sequences S~*),S(~),... T~ (1), T.~ 1), . . .are 
independent  of the sequences S~ 2~, S(2), ... Tt(2) , Tz (2). Let et, e 2 . . . .  be a sequence 
of i.i.d.r.v.'s independent  of all S (~ and T (~ with the following distr ibution 

P ( e k = 0 ) =  I - - P ( ~ k = l ) = p .  

Define 

~,, ~ ' - - K  *(1) d -  r(n)= ~k, ~ , , -  ~ v ( , ) -  S,_(2)~(,), 
k=I 

and V, = r(1).,(,, -~- T(2_)(,,. 
Then  the S,-s and T,-s have the prescribed distr ibution and satisfy the lemma, 

because 

IS k -  Tkl < s u p  IS} ~ ' -  TS*' r -/-sup S} 2)- Tj(2't, 
j < n  j < n  

for all k < n. 

Proof  of  Theorem 1. Write F in the form F = p F  1 +(1 - P )  P2, where F1, F 2 are 
d.f.-s, p > 0 ,  and F~ is concentrated on a finite interval. Applying Theorem 1B 
one can construct  two sequences ~1~'(1), o2q'(1), . . . . . .  and TI~ T~ 1), with the following 
propert ies  

a) S~ z), S(~ ) . . . .  are the partial  sums of i.i.d.r.v.'s with d.f. F 1 , T1 (~, ~ )  . . . .  are 
the partial  sums of i.i.d.r.v.'s with normal  distribution with expectation m =  
j" x F  1 (dx) and variance a 2 = ~ x i  F 1 (dx) - m 2. 

b) P (sup IS ~ - Tk (*) ] > C log n + x) < K e-a~. 
k<n 

Applying Lemma 1 one gets two sequences S, ,  S 2 . . . .  and U~, U 2 . . . .  which 
are partial sums of i.i.d.r.v.'s with d.f. F, resp. p r  2 and satisfy 
relation b). This new distr ibution has an absolute cont inuous component  already, 
therefore by Theorem 1A one can construct  two sequences Ui, U2, ... and T 1, 
T 2 . . . .  which are partial sums of i.i.d.v.'s with d.f. p~b(m, r  2 resp. with 
s tandard  normal  distribution, and satisfy relation b). It can be shown by standard 
measure theoretical  arguments  that U~, U2,. . .  and U~, ~s  can be chosen 
the same sequence. This last remark completes the proof. 
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3. The Proof of  Theorem 1 A 

We need the following lemma: 

Lemma 2. Let Xa, X2, ... be a sequence of i.i.d.r.v.'s, E X  1 =0, EX~ = 1, 

R ( t )=E exp (tX1) < c~ 

.for ] t l<t  o. Let F, the distribution function of X i, have an absolute continuous 
component. Let ill, 112, ... be a sequence of i.i.d.r.v.'s with standard normal distribution, 
and let a, be a sequence satisfying 1In 2 2 q, > a, > with an appropriate 0 < q < 1 
(q may depend on F). Let the tfs be independent of the X's. Introducing the notations 

S ,= ~ X i + a  . ~ t h, F , (x)=P(S,<x) ,  f , (x)=d/dxF,(x) ,  
i= l  i = 1  

one has the following formulas 

(a) 1-F, (nx)=[1-q~( t / -nx)]  exp [nx32(x)+O(x+n-  89 for O<-x<th 

(a') F . ( - n x ) = 4 ( - l f n x ) e x p [ - n x 3 2 ( - x ) + O ( x + n - ~ ) ]  for O<x<tl ,  

(b) f~ (nx )=n-~o( l /~x )exp[nx32(x )+O( lxh+n-~) ]  for ]x[<q, 

R'(t) (c) s  if ]xl_-<t/, xy>O, =x,  
R(t) 

where C is an appropriate constant, 4)(x) is the standard normal distribution function, 
qo(x) the standard normal density function, ).(x) is analytic in Ix[<tl and depends 
only on F, t I is an appropriately fixed number and O(t) is uniform in the interval 
]tl<t/. 

Proof. The proof is similar to the classical proof of large deviation theorems. 
We shall prove only relations (b) and (c), (a) can be proved similarly. 

Define the following conjugated distributions 

F(dx) 
V (i)(dx)=e 'x R(t) ' 

V(x)= v(*)(x), V(2)(x), 

Then we have 

V(2'(dx)=etX ~) (dx)  e-t2a2/2 7. 
V.(x) = V(x)*". 

_ t x _ n t  202 
F.(dx)=e 2 Rn(t) V~(dx). 

Denote 

tp(t)=logR(t), v(x)= d V(x), 

A little calculation shows that 

M = ~ x V(dx) = O'(t) + t ~.,  
=~, (t)+~n. D a = ~ x a V ( d x ) _ M  2 ,, 2 

v . ( x ) = ~ ( x ) .  

(3.1) 
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We need an estimation similar to the Berry-Essen inequality for v,(x). Therefore 
we apply the following Lemma A (see [4]). 

Lemma A. Let Y1, Y 2 ,  " "  be independent r.v.'s, E Yi= O, satisfying the conditions 

(i) EV>__ng, 2 El ii3<=nG. 
i=1 i=1 

(ii) The characteristic functions f s(s ) = E exp (is Yj) satisfy the relation 

[I Ifj(s)l ds = O(lln), n ~ oo, 
Isl>~ j=l 

for a fixed e, 0 < e < g/24 G. Then for every sufficiently large n there is a continuous 
density function q(x) of the r.v.'s 

E Yj and suplq(x)-qo(x)l<~.  
Lj 1 .a j = l  X ]/n 

Let us remark that Lemma A holds for triangular arrays, too. We want to apply 
this lemma for i.i.d.r.v.'s Y1,--., Y, with distribution function V(x-M).  Con- 
dition (i) holds obviously, we have to check only condition (ii). 

We have 
0-282 

l fs(s) l=lSe~SxdV(x-m)l-- iSe ~"xv~(dx)le z 

It is sufficient to prove that 

ISeis~Vl(dx)l<77<l, if Jsl>e and I t l<t  o. (3.2) 

Indeed, one gets then 

] /~ < q , ,  [. [I[ f j (s) lds<~" ~ exp(-na2s212)ds<Cs" /~a,1/-  n 
Isl>ei=l Isl>~ 

where q '<  1, ifq is chosen in such a way that q>g/. (3.2) means that 

I S e'X +isxf(dx)l <FIR(t). 
f(x) can be decomposed into the form pF1(x)+(1-p)F2(x), where F1,F 2 are 
distribution functions, p > 0 and F~ (x) is absolutely continuous. Therefore 

IS e ~  +'xF1 (dx) l < e S etXF1 (dx) 
with some c~ < 1 if It[ < t o and Is[ > e, and this implies relation (3.2). 

To see this last inequality one has only to remark that 

~iln ~e~+/~Fa(dx)~O uniformly if [tl<=to, 

and 

IS eis* +' ~F1 (dx) l < Set ~F1 (dx) 
Thus using Lemma A one gets 

(x-nM  C 

if s=b0. 
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and formula (3.1) can be rewritten as 

f.(nx)_._R.(t)e_,x~l [qo in ~,@(t) t 1 
Choosing t as the solution of the equation x=0 ' ( t )one  obtains (b) in the usual way. 

Considering an arbitrary y, x y >0, and choosing t again as the solution of 
the equation x--0 '( t) ,  one also gets relation (c). Now we turn to the 

Proof of Theorem 1A. Let us consider a sequence X1, X2, . . .  of i.i.d.r.v.'s 
with d.f. F, and a sequence t/i, t/2, ... of i.i.d.r.v.'s with standard normal distribu- 
tion. Let the t/-s be independent of the X-s. Define 

1 X',=Xn+~ftln, if 2 ~ < n < 2  j+l, 

and 
n 

S ;=  2 X ; ,  n = l , 2  . . . .  

We shall approximate S', by normal T, in the same way as in Theorem 1 of part I. 
The only difference is that since the Xi-s in different blocks have different dis- 
tributions, we have to change slightly the quantile transformation. 

To describe this alteration, let us define the r.v.'s U~, (Jr, Vj, ~., Ujk, (-J,k, Vjk, f/,k 
the same way as in Theorem 1 of part I, only substituting S t by S) everywhere. 
Now we can define the functions 

Fj(x)=-P((Yj<x), Fj~(xly)=P(Ojk<xlUjk=y), 
Gj(t)=sup{x:Fj(x)<--_t}, Gjk(tly)=sup{x:F~k(x[y)<t }. 

We remark again that originally only the r.v.'s Y~-s, T~-s and V~-s are given, but 
the functions F-s and G-s are known. Now the construction of the U-s is the same 
as in part I with the following modifications: 

Uo = Go(O(Vo)), 

Uj = Gj(qS(2 -j/2 ~)), 
(]Sk = Gjk(O( 2-j/2 ~k)l Ujk), 

where the G-s are the functions we have just defined. Now we claim that writing 
S', instead of S,, relation (1.1) holds true for this construction. The same proof 
applies as in Theorem 1 of part I. One has only to check Lemma 1 of part I. Since 
the proof uses the formulas proved in Lemma 1, one can prove that in our case 

]~fj-gjl<C1.2-J~f?-I-C2, if [ U j i < e . 2  j, 

I(Jjk--~kI<C1.2-J(~Z+u~2)+C2, if IU~ki<e'2 J, 1 0 ~ l < e ' 2  j 

and k < 2 ~ 2J with some c~ > 0. We need this new condition because it guarantees 
that the variance of the smoothing r.v.'s is in the range prescribed by the conditions 
of Lemma 2. This new condition, however, causes no trouble, since it holds for 
those pairs (j, k) for which we have to apply the above formula in the proof. 
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The r.v.'s X', can, by definition, be decomposed  into the form X', = X~ + % r/,, 
where X1, X 2 . . . .  is a sequence of i.i.d.r.v.'s with d.f. F, t/i, r/z, ... are independent  
N(0, 1) r.v.'s G = 4 - 2  if 22< n <22+1, and the X-s and t/-s are independent .  Putt ing 

S, = ~, X~ the following r emark  completes  the proof :  
i=1 

P( sup JS~-S'ml>X)=P sup airh >x  < e x p ( - x ) .  
l<-ra<-2N \l--<m-<2 N i 

4. Proof of Theorem 1 B 

Before proving this theorem we formulate  an auxiliary statement.  
We are given 2 N  real numbers  x 1 . . . .  , x2u satisfying 

m a x l x i l < K  and 02=2(xi-x)2>cN, 2 = ~ - ~ Z X  i . (4.1) 

Consider  a r a n d o m  pe rmuta t ion  zc of the indices i, where each pe rmuta t ion  of the 
1 

numbers  (1, 2 . . . .  , 2N)  is chosen with the same probabi l i ty  (2N)! ' 

We are concerned with the r a n d o m  sum 

= (x~ ~1~ +  9  9  9 + x~ (N~) - (X~(N + 1~ + " "  + X~(2 m) = $1 - $2 = 2 S 1 , 

where 
N 2N 

S1 = 2(x=(ij-x), $2= 2 (x~(i)-x). 
i=1 i = N + I  

We prove  the following central  limit theorem:  

L e m m a  3. Under the assumption (4.1) we have 

a) P S I < - ~ ] / N  = P ( U < - x ] / N ) = r  - a / ] ~  expO \ ~ - ]  

x x (x3+1 t 

Jot all O<_x<el/N, with 0( ' )  unijbrm Jot these values of x; e and the constant 
involved in 0( . )  depend on K and c (and not on N and xi). 

The following l emma  is a par t icular  case of Petrov 's  central limit theorem 
for non-ident ical ly  dis tr ibuted r.v.'s (actually one needs to modify  the p roof  a 
little) [3]: 

L e m m a  B . / f  41 . . . . .  ~u are random variables, 

Eli=O , l~i]~Ki a.s. ( i = I , . . . , N ) ,  

1 B~N-N: 1 2E~2>Cl" = Y  K3<c2 , 
x N 
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then 

P(SN < - X I/~N) = (a(-- x) exp O \ 1 ~ - - ] ,  

(x3+1t 
P(S N > x l /~u) = (1 - q5 (x)) exp O \ ~ - ]  

for all O<_x<_el l /~ ,  with 0(.) uniform for these values of x," ~1 and the constant 
involved in 0(.) depend on c~ and c 2 (and not on N and Ki). 

Proof of Lemma 3. We prove only b), the proof of part a) is similar. 
We may assume ~x~=0 .  
Let q, ..., r N be i.i.d.r.v.'s taking the values __ 1 with probability 1/2 and let the 

r~-s be independent of re. Consider the random variable 

N 

i=1 

It is clear that U has the same distribution as (L Thus, we have to estimate the 
probability P( /_7>xl /N ). For given u = (r~(1) . . . .  , u(2N)) we can apply Lemma B 
for the variables ~ = (x,( 0 - x=( s + ~)) r i if only 

N 

2 __ E (Xr~(i)--X',':(N+i) )2 >C1 N .  (3, x - -  
i=1  

C Put cj =~.  For such a 7z, thus, 

x ( x 3 + l ]  
P([7 > xl /N]rc)- - - (1-  qb ( ~ / ~ ) ) e x p O  k ~ -  ] 

for all 0 <_ x-< 51 lfN, where O(.) is uniform for these values of x and all those re. 
Now 

p ( d >  xl/~)__Ep(tT> x l /~ ln)  = 1 

+ >c,N 

[x~+l] 0 < x < e ,  1/N. (4.2)  9 e x p  O \ - ~ - ] ,  - - 

S i n c e  

N 
2 l ~i~=l(Xr:(1)__Xu(N+f))2~.ff 2 2N eo. 

it is natural to expect that the above dis t r ibut ion-being near the mixture of 
normal distributions of variance a~/N-  is near a normal distribution of variance 
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o2/N. Thus,  we will est imate the ratio 

p(Cr>xt/N) 

We will show that  

1 ~ p ( ~ > x ] ~ l ~ )  < 1 ~, l=O(e-~N), (4.3) 
(2N)! ~:~__<c,N - (2N)! ~:o~_-<clN 

a n d t h u s ,  if z < el is small enough ( w h e n c e l _ q ~ ( ~ )  --~u l / N )  > e  2 , 0 < x ~ z  
we will have 

1 
(2N)! 

0__< 

Since the terms O(-) on the r ight-hand side of (4.2) are uniform for those r~, for 
which 0-2 > cl N, to establish the est imation 

x (X3+ 1] P(tJ>X l~) / (1-~ (a~) ) =expO \ ~ -  ] 
it remains to show that  

1 = e x p 0  \--~-] O<x<_el/~. A = (2N)! Y" x 
1 

We actually prove the s tronger est imation 

A = e x p O  - -  , 0 _ < x < e ] ~ .  (4.4) 

We use the inequali ty 

exp{~(Y-t)+A2(y-02} <l-~b(t) { ~  } = 1 - qS(y) < exp (y - t) + A 1 (y - 02 

(4.5) 
for all non-negative t and y, where 0 < A1 < A  2 are universal constants. 

(72 0-2 O-2 
Since c < ~r- < 2K2 and N < 4K2' in case c 1 < -  ~ (4.5) implies 

N 

x 

x exp L g  x (O-2 ~ r 2 ~  ( ( x 2 + l ) \ ~ ] ] j ,  

 46, 
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where 
~o (u)  u 3 g(u) = 

2(1 - ~b (u))" 

The right-hand side of (4.6) is dominated by 

exp(c' x 2) G exp(c' g2 N), 

and 
1 

(2N)! y" 1 ~2 <=clN 

thus choosing e so small that c' e 2 <~, we see that our task (in addition to prove 
(4.3)) is to establish the relation 

{1 ( ~ N ) 2 * /  2 ( x ~ l ) }  { x 4 + l ~  I = E e x p  ~ g  ~ - + t /  0 - -  = e x p O \ - - ~ - ] ,  (4.7) 

where 
N 

Xrc(i) X n ( N  +i) 2 0.2 0. ~z - -  i= 1 

One expects that the variable ~/is approximately normal, and thus 

E e t '  < e ct2 (4.8) 

and E e u"2 < e cu. Taking 

'=x 
x 2 + l  

and u = ~  these inequalities imply that 

(x~ + l ~ 12 < E exp {2 t t/}  9 E exp {2 C u t/2} = exp 0 \ ~ - - !  

1 > E exp { + t r / -  C u r/2} > E 2 exp {t ~} [E exp {t ~/+ C u  r/2}] -1 

2 - .  ( x 4 + l ~ ,  > E  2 exp {t t/}  9 [E exp {2 t t/} E exp {2 C u t l  }] ~ =exp 0 \ - ~ - - !  

that is (4.7). The inequality (4.8), however can be expected to hold only for 
0~ 

I tl > ~ ,  since 

~ x  } c 1 
Et /=  2 ] ~ ( 2 N -  1) > 2  I /N"  
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In fact, we show that 

1 1 
for - - <  t < - -  ] / ~ = 1  I= 16K2 l ~  

E e t~ < e Ct2 

and 
e e url2 ~ e Cu 

45 

(4.9) 

for O < u < u o ,  (4.10) 
1 

where u o depends on C and K only. For 0 _< t -< ~ - ,  i.e. 0 < x < L we have 

-<E 14 cr~ 
- N x 2~ ~ + ~  - ~ - - ) )  

()), 
since by (4.10) 

1 UO 2 1 CU0 Erl2<=--Ee " < - - e  <0o. 
110 U o 

This estimation and (4.10) imply (4.7) again. Thus, we have to establish (4.9), 
(4.10) and (4.3). 

First we estimate the conditional expectation 

E(d"[~(1) . . . . .  rt(N)). 

Write b I . . . . .  b N for x~(l~ , ..., x~(N) , and (yl . . . .  ,YN) for a random permutation 
of the set 

D = {x l , . . . ,  x2u}/{b 1 . . . . .  bN}. 

= 1 (b 1 + . "  + bN), and a i = l) - b i. Put b 

Then, 

1 N ( ~ b i ) ( ~ y l )  1 = ( ~ i ) 2  1 
'?= ] ~ / ~ l b i Y l -  Nk + ~ a i Y i  - - + ~ a l y  

Thus, 
t (51bt) 2 t lgaiy i 

E(e'"]~(1) . . . . .  re(N))-- e g Ee r , 

where in the expectation on the right-hand side the numbers az are given, ~ az = 0, 
max la i ]<2K , and the N-tuple (y~, "",YN) runs over all the N! permutations 
of the elements of D and M = N  an. We apply the following 
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Lemma 4. I f  a 1 . . . . .  a s are real numbers, ~ ai=O, and the N-tuple (Yl . . . .  , YN) 
runs through all permutations o f  the numbers (dl , ..., dN), then for any real t 

Eetr, aiy ~ l. E tEqtyi ta(maxa~2)Ed 2 ~ - -  e ~-~e 
N ! (Yl . . . . .  Y ~ q ) = p e r m ( d l  . . . . .  tiN) 

and consequently 
u (Za i  y j 2  

Ee o~ < eCo, 

for 0 <-- u <-- u o <  88 where D n = (max a 2) ~ d 2, and the constant C O depends only on u o . 

By Lemma  4 
t y~a~y ~ 2 

EeV~ <e~(  . . . .  ,~)~rL< eSr4t2. 

Hence, again with M = N a/z 
C o l t l ~  ~ 8K4t2+2K2Co tJ~N ~ 

Ee t" <__ eS K4 t2 Ee ~ (~b,)~ = eS K4 t~ Ee4-~ - ~ <= e s ~4,~ e u ~ t  <= e 

for Itl < I ~ y 2 ] / - N  If, in addition, I t [ > ~ ,  then we get (4.9). 
= 16K ' 

For  (4.10) it is sufficient to show that Ee"~ 0% which follows immediately 
from (4.9) and the fact t] 2 _~K4N. 

N o w  we prove (4.3), i.e. the relat ion 

P(a 2 < q N)  = O(e-~N). 

2 C a,~ < c 1 N -- ~ N implies 

2~x~( i l x~(N+o=~N,  i.e. i / < -  . 

Thus, (4.9) implies (4.3). (Note that in the proof  of (4.9) we have not  used (4.3).) 
For  the proof  of Lemma  4 we use the following 

Lemma  5. Let  a = ( a l , . . . , a N )  be an N-dimensional vector with ~ a i = 0 ,  
max l ail = K. Then a is a f ini te  linear combination 

a=~0~kRk, ek>0, ~k=K, 
where each vector R k has half the coordinates 1 and half ( -  1) if N is even, and 

N - 1  l 's, N 2 1  ~ ( -  l)'s and one 0 i f  N is odd. 

Lemma 5 is a consequence of the fact that in the convex set {a: ~ a~= 0, 
max  ta~l = 1} the above ment ioned vectors R are the extreme points. 

We prove Lemma  4 first in the case a = R ,  i.e.when ]a i [= l  for all i except for 
at most  one (if N is odd). Since we can disregard this coordinate,  we may assume 
(in the case a =  R) that  N is even, N ~  2M. The same way as above we consider 
the r andom variable S 2 = ~ (y~- YM +) r~ instead of the variable Sx = ~ (y~- Y~t + ~), 
where rt . . . . .  r M are i.i.d.r.v.'s taking the values + 1 with probabil i ty  89 and are 
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independent of the random permutation. S 2 and S~ have the same distribution. 
Thus (if zc denotes the random permutation) 

Ee ts~ = Ee ts~ = EE(etS~ l rc) = E ~I E(e t(rl- yM +,)~i] re) 
i 

= E [ I  ch [(Yi - YM + i) t] < E ]-I et2 (y~ + r~+ 0 = Ee t2 zy? = e t2 z~l?. 
i i 

To prove the lemma in the case of a general a, we apply Lemma 5 and the 
following HSlder-type inequality 

IIff*...fdk[ <(j" [f~ I)P'... (S ffkl) ~', p,>O, E p , - - 1 .  
Hence, 

ak 
Eet(,, y)= Ee~t (R~,  yT <= ]-I (Eet(Z~o (R~, y))~ 

k k 
o: k 

H ( et2 (-r~iV:Cd?) ~-~/= et2max aD Ed? 
k 

Thus Lemma 4, and hence Lemma 3 is proved. 
Now we turn to the 

Proof  of  Theorem 1 B. Let X[, ..., X), N = 2" be i.i.d.r.v.'s with distribution 
function F(x). Let X*, ..., X~ be their order statistics, and 

N N 
sN=Ex;=Ex:. 

i=1 i=l  

Let T N be a normally distributed random variable with expectation 0 and variance 
N, such that 

s~ c I S I v - T N ] < = C I - - ~  - +  2 i f  ] S N I < e N  , 

where C1, C 2 and e depend only on F (and not on N). The existence of such a T~v 
is guaranteed by formula (2.6) of Lemma I in part I (note that in the proof of 
formula (2.6) of Lemma 1 in part I we used only the conditions 

~ x r ( d x ) = O ,  S x 2 F ( d x ) = l ,  ~e tXF(dx)<oo,  I t[<to ' 

and did not use the smoothness conditions (i) or ( i i)- they were needed onlyfor  
proving (2.7), i.e. for handling the conditional distributions). 

Let 17,,, k(m = 1, 2, ..., n; k = 0, 1 . . . .  ; (k + 1) 2" < N) be independent normally 
distributed random variables, independent of {X'a, ..., X~v , Tu} , for which 

We denote T N also by V,, o, and define the random variables Y1,-.., YN by the 
formulae 

J 
To=0 , Tj = ~ Y~, j = l  . . . .  ,N,  

i=1 

Vj, k=T(k+I)zJ--Tk.zj, j - -0,  1 . . . .  , n ; k = 0 ,  1 . . . .  ; ( k + l ) 2 J < N ,  

Vm, k=Vm_l,2k--Vm_l,2k+l, r e = l , 2  . . . .  , n ; k = 0 ,  l . . . .  ; (k+ 1)2m<N. 
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It is easy to see (since the variables (/m,k and V,, o are given) that the  variables 
Y~ . . . . .  YN are uniquely defined by these formulae, and form a sequence of i.i.d. 
standard normal random variables. 

Our aim is to define the variables X 1 . . . .  , X N in such a way that X* . . . .  , X~ 
be the order statistics of X1, ..., X N (hence Sz~ = X 1 +- . .  + XN), and 

P(sup [S k -  Tkl > C logN + x ) < K e  -~x (4.11) 
kNN 

for all x > 0. (Putting independent blocks of length 2 2" together, one easily gets 
the infinite analogue of (4.11), i.e. Theorem 1 B.) 

Taking 
J 

So=0,  S j = ~ X i ,  j = I , . . . , N  
i=1  

Uj, k=U(k+I)2J--Uk.2J, j=O, 1, . . . ,n;k=O, 1 .... ; (k+ 1)2i_<_N 

(7m, k=Um_i,2k--Um_l,Ek+l, r e = l ,  2 . . . .  , n ; k = 0 , 1  . . . .  ; ( k + l )  2m=<N, 

we proceed the same "dyadic" way as in part I, i.e. given SN=U,,o we define 
first the variable 

CTn0 
i=1  i=N/2 

which (together with Ss) determines U~_ 1, 0(= SN/2) and U._ 1,1 (= SN - SN/2), and 
then keep going on the same way down to the individual terms. 

We will obtain the estimation 

I gJ,.,k-- f/,.,kl < C(2-" gYa.,,k + 2-"  U2,k + 2-"  W2k + l), (4.12) 

if only 

It?m, k l<e .2" ,  IUm, k l < e . 2  m and ]W,,,,kl<e.2 m, (4.13) 

where 
( k + l ) 2  m 

w~,~= ~ (X~-l). 
i=k.2m+l 

(4.12) is analogous to (2.7) of Lemma 1 in part I. The only modification in the 
dyadic construction here is that now given S s--  U,, o and X~ .....  X~v (i.e. the set of 
the values {X1, ..., Xs}, but not their particular order), we want to define 

CIo, o = S~/2 - ( S ~ -  SN/2) 

and the set of values {X 1 . . . . .  XN/2} (but not yet their order), and so on at each step. 
Since the N-tuple (X 1 . . . . .  XN) is defined if we specify a permutation r~ = (~1 . . . . .  ~N), 
by taking 

X~=X*,  i=1  . . . . .  N, 

what we do is to define ~ by assigning first the two halves 

H I ,  1 ----" {re1, " " ,  7"CN/2}, H1, 2 = {~N/2 + 1 '  " " '  ~N}  
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and then keep going on halving them until we get the whole permutation. If we 
want to ensure that the obtained variables Xi, ..., X N are independent and 
distributed according to F, all we have to check is that for the random permutation 
~(~) 

1 
n(7: = (p~ . . . .  , PN)) = N~. (4.14) 

for any permutation (Pl '  " ' "  PN) of the first N integers. 
Now we define the halving (//1,1, HI, e) as follows: 
To every subset H =  {hi, ... , hN/2} of {1 . . . .  , N} with N / 2  elements we assign 

the number 

c:.= E xF- E x: 
i~H ir 

Thus we get A = ( N ~ ) n u m b e r s  and we order them in increasing order of 
magnitude, 2 

UH~ < " "  < 0B~ (if tWO sums are equal, we order them arbitrarily). 

Let 

I 1 = ( - -  00, al) ,  I2=[al ,a2)  . . . . .  IA_I=[aA_ 2, aA-1), 

be the disjoint intervals, for which 

e -'~-/2 dt  1 
- k = l ,  . . ,A 

rk ] / ~  A ' " " 

Given co we define 

ul,~ =u~ (and U~,:= {a .... ,N}/Uk) 

if ~,,o~Ik. In other words, (~,,o is defined as a conditional quantile transform 
of V,,0: 

U,, o = G,(  d?( 2 - ' / 2  9,, o)l X L ..., x% ), 

where we define G k ( t l y ~ , . . . , y 2 k )  as follows: Let ~ . . . .  ,~2k be i.i.d.r.v.'s with 
d.f. F, and ~ . . . .  , ~k be the order statistics. 

Put 
/2~-1 2 k 

Fk(XlyI . . . . .  Y2k)= P ( ~1 ~i- -  ~ . . . ,  X~k,!  
i i=2 k -1 +1 

and let G k be the inverse of Fk: 

Gk(t[y t . . . . .  yah) = sup {x:  F k(x]y I . . . .  , Y2~) ~ t}. 

Having (//1,1,//1, 2) we define the halving (//2,1,//2, 2) of HI, 1 the same way using 
I),_~, 0 instead of I?,, o, and the halving (//2,3, H:,4) ofH~, 2 using P,_~,~, etc. 
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Thus, each Urn, k is actually defined as a conditional quantile transform of 9,,, k, 
e.g. 

n--1 
 9 X *  0,-1, o = G,_,(0(2- -T- 17 _Lo)IX~,I ' .., , 1,N/2), 

where X~, t<_. . .<X*u/2  are the ordered N/2-tuple formed from the set 

) {X*:ieHt,1}. Since Hl, l=Hl, t (co)  takes all possible "values" N/2  subsets 

with equal probability and this holds at each step for the constructed random 
halving, further these halvings were independent due to the independence of the 
variables 17"m, k and that of 19,,, k and X*, the obtained random permutation obeys 
(4.14). 

Now we prove (4.12). As a consequence of (4.13), condition (4.1) holds, and 
thus we may apply Lemma 3. Using inequality (4.5) and condition (4.1) we may 
rewrite part b) of Lemma 3 as follows: 

1 - Fm(xlxl , . . . ,  x2m ) 
{ ~ o-2"2-m-1 

= (1 - qS(x)) x exp -1 ) 2 

q-O((X 2 q- 1)(0 -2" 2 - m -  1) 2) q-0((X 3 q- 1)2-m/ i )} ,  

O< X<g. 2 m/2. 

Writing 
identity 

2 m / 2 m \2 
c r 2 . 2 - m - l = 2 - ~ 2 ( x } - l ) - ~ 2 - " ~ x i )  , 

i=1 i=1 
we get for 6: 

3m 
i6" 2m/2]<x(2 -"/2 [~(x 2 -  1)1+2 2 (~xi )2)  

3m 
+C~(x+ l ) (2  2 (~,(x2_1))2+2 

Using the inequalities 

I ~ x i l < K - 2  m, [~ , (xZ-1 ) l< (K2+l )2  m, 

1-F , , ( x l x  1 . . . . .  x2m)=l-qS(x+6),  applying (4.5) again and using the 

7m 
(2 x?)) + c (x + 1). 

we get 
[ ! 2 , - , 2 (  2'- ) 2 1 ]  . 

]6.2m/2]'~C x2-ar t2-m/2i~=lXi)~- 2-m/21~=l(X2--I ) -t- 

The same inequality can be proved on the negative semi-axis, i.e. for 

F , . ( - x l x l  . . . . .  

and thus we have proved (4.12) for k=0.  
Since the joint distributions of {(Jm, k, V,,,,k, U,,,k, W,,,,k} are the same for 

k=0,  1 . . . . .  (4.12) is proved for all m, k. 
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To show that (4.12) implies (4.11), we may proceed the same way as in part I 
(at the very end of the proof of Theorem l). The only change is that in estimating 
A 4 we have to replace the sum 

2-J(Uj2o+Uj2o+I ) by ~, 2-J(~;Z,o+Ug, o+Wj2,o§ ) 
j = M + I  j ~ M + I  

and introduce the variable IYj= Wj+I, o -2W~,o. Then the same estimation can be 
carried out for Wj, o and ~ as for Uj and Uj, namely 

2 2- J Wj2o < 2-M j=M ( _1)2 WM, o+ Z 2- j  2 
j=M 

whence we boil down to the same estimation 

2n-M.p  2C 3 ~:j+NC2> ~- <74e ~4N-r 
j = l  

where 
, {~-JlYj 2 ifll~Cj]<e'2J 

z~ = otherwise, 

the z)-s are independent, and E e t~) < oo for 0 < t < 8, since the variables ( X { -  1) 
have expectation 0 and are bounded. 

5. The Proof of Theorem 3 

The line of the proof of Theorem 3 is the same as that of Theorem 1. Theorem 1 B 
and the argument of proving Theorem 1 show that it is sufficient to prove Theo- 
rem 3 with the additional assumption that F has an absolute continuous compo- 
nent. Therefore we assume this in the sequel, and we try to apply the construction 
of Theorem 1 A. The main problem constitutes in finding good asymptotics for 
the appearing conditional and unconditional distributions. To this end we select 
the following method: we truncate the r.v.'s X i in such a way that the outer part 
has negligible influence on the difference S , -  T~. We approximate these truncated 
random variables by normal r.v.'s. They have bounded moment generating 
functions, therefore one can apply the technique of conjugated distributions. 
But the range where the moment generating function behaves nicely, depends on 
the level of the truncation, and hence also on the index of the truncated random 
variables. The length of this range tends to 0 as n tends to infinity. That is why we 
get weaker approximations if the moment generating function does not exist. 

Since we may have different truncations for different n, the truncation has an 
influence on the form of the asymptotic formulas. We must however check that 
the O(-) in the appearing formulas are uniform not only in x but also in n. The 
numbers C, C1, ... will denote appropriate constants in the sequel. The same 
letter may denote different constants in different formulas. 

Lemma 6 helps to find the appropriate level of truncation. 
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Lemma 6. Given a monotone increasing function satisfying (i) in formula (1.2) 
consider a sequenee X1, X 2 .... of i.i.d.r.v.' s such that E X a = O, E X  2 = 1, EH (I X 1 [)<oo. 
Define the number K, by the equation H(K,)=n, and the r.v.'s )(1,X2 .... in the 
following way 

Xm={ Xm otherwise.if [Xml<K2,(if  only2"<m<2 "+1) 

ii 

Let Xk-- ~*k-E2k~ , and put 5 .= ~, X k, S ,= ~, L .  Then we have the following 
n 

DXk k=l k=l 
statements: 

a) Xk(C0)=2u(O ) if k>ko(o9 ) 

b) S , - S ,  +0 a.s. 
K, 

Proof. a) Z P(Xm + 2 0  <= m) < o0. 

b) We prove the following somewhat stronger result ~ Xm - X,, is convergent, 
K,, 

where/gin = Kz,, if only 2"< m < 2 "+1. This is, indeed, a stronger statement, since 
K m ~ Kzm ~ 2 Km by virtue of (i) in (1.2). It is sufficient to check that the series 

y, E(2m-J~m) and E D Z ( X m f  Xm) 

are convergent. Since E(X m - 2Z,,) = EXm, 
D z ( 2 = - ) ( ~ )  = (1 - OXm) 2 <= 1 - D 2 2 m 

we have to prove that 

 22~ 
2" K2- 

is convergent and 

Z 2" 1-EXzZ. 
K22 <oo. 

Now 
oo Z 2" 1 - E X 2 ,  

,=1 K~. 

~ ,  m 2 n 
= ~ ~ 5 x2F(dx) 

n=l  j = n  2n{2J<H(]x[ )<2 j+l} 

2" oo 
<= ~W-  ~ K~,+*P(21~H(IX1[) <2i+*) 

n=l *~2 ~ j = n  

2 J 2" 
= ~ P(2J<H([X*I)<2J+*)K2'+',~= 1 K~." 

j = l  = 

This sum is finite since 

2 a" 2" 
K2J+, E - f f ~ - <  C"  U 

= K2,~ 
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which, in turn, follows from the following estimation: by the monotonici ty  of 
H(x) x -3-a  one gets for n<=j 

9 j  -t- 1 2" 
K3+a = Ka+g, 2 J + 1  2 n 

thus (_~a~)K2j+~ 2 ~ 2(J+l-n) 3"+a2 

The other sum can be estimated similarly. 
Lemma 7 is the analogue of Lemma 2. 

Lem m a7 .  Let X 1 . . . .  , X ,  be i.i.d.r.v.'s, E X t = 0  , Dzxt<oO,  EH([Xll)<c~ , 
where H(x) is a monotone increasing, positive, continuous function satisfying (1.2). 
Let the distribution function of XI have an absolute continuous component. Let us be 

1 
given a sequence ill . . . .  , G of i.i.d.r.v.'s with normal distribution, E t  h =0,  E t / } - -  
and let the rl-S be independent of the X-s. - n2 , 

log n 
Define the number K ,  by the equation H(K,)=n,  the number u, by u,=c'-  - ,  

and the random variables K ,  

_ {x, /f [x,f<K, 
Xi= 0 otherwise, 

Xi - 21 - Ef(i 
, . . . ~  D 2  i i= 1, n, 

and 
k 

Sk = Z ()(i + rli), k = 1,...,  n. 
i = 1  

Put 
(.~ d (,) 

F(k')(x)=P(Sk<X) and f~ ( x ) = ~ - x F  ~ (x). 

Then we have the following relations for C o log n < k < n: 

a) 1 - F~ ") (k x) = [ 1 - r (k ~- x)] exp [k x 32, (x) + 0 (x + k -  ~)] 

a') F ~ ' ) ( - k x ) = c ) ( - k ~ x ) e x p [ - k x 3  2 , ( - x ) + O ( x  +k-~)] 

b) f~")(k x) = ~0 (k } x) exp [k x 32, (x) + O (r x l + k -  ~*)] 

in the interval 1Xl < c G  and 0( . )  is uniform in n, k, and X. Further, one has 

fk(")(k y) < C, fk(')(k x) e -tk(v- x) 

R'  
if IX[ <-u,, x y > O, and t is the solution of the equation R'~(t)= x, where 

- -  R , ( t )  
R~(t)=Eexp(tX1). 

O<_x<_cu. 

O<-x<-cu. 
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Proof  The p roof  if similar to that  of L e m m a  2. The only difference is that  we 
have to consider the conjugated  distr ibut ions 

F(dx) V(dx) = e t~ 
E exp(tX1) '  

, log n , 
(F(x) is the distr ibution function of X1) only in the range ] t l < to = c - - .  c depends 
only on n and we get the expansion for K ,  

IX1 <-R"(t~ =c  log n 
- R , ( t o )  K .  

Kn 

The.restr ic t ion of the range of t guarantees  that  ~ Lxl 3 et~F(dx)<EH(IX11)< o% 
- K ~  

and thus the condit ions of L e m m a  A are satisfied. 
log n 

A little calculat ion shows that  12,(x) I < c 1, if Ix] < c -  Thus  relation (a) of  
n L e m m a  7 can be rewrit ten as 

1 - F~ ") (k x) = [ 1 - 4 (k ~ x)] exp O (k x 3 + x + k -  ~) 

log n 
if O<_x<_c - ~ - e  o l o g n < k < n .  (5.1) 

A similar expansion for condi t ional  distr ibutions will be proved in L e m m a  8. 

L e m m a  8. Let $1, ..., S, be the same as in the previous lemma. Let  m be an 
even integer C log n < m < n and define 

F(m")(xly)= P(2Sm/2 - Sm < x lS , ,=  y). 

The following asymptotic expansion is valid: 

1 - F~")(mxLm y ) =  [1 - 4(m~ x)] exp O(mx 3 + m x  2 lyl + lyl + m-~), 

F~"~(-m x[m y) = 4 ( - m + x )  exp O(m x 3 +rex  2 lYl + ly[ + m-@) 

in the range 
log n log n 0<_x<c U . '  tyl< 

0(') is uniform in x, y, m and n. 

, log n 
Proof. Put u, = c - - .  Then  the es t imat ion 

K ,  
Un 

11 = F~")(mu, lm y ) -  Fff)(mx[m y)= ~ m f~")(mtlm y) dt 
x 

= ( 1 - 4 ( m  8 9  2 ] y l+ ly l+m -a~) O<_x<_u,, ]y[<=u~ 

can be proved  similarly to the es t imat ion of 11 in L e m m a  1 of par t  I 
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One must, however, be a little cautious at the following step: 

fff~(mxlmy) =rn -~ ~o(m~x) exp [m #.(x, y) + O(IxJ + ]yJ + m- ~)] 

= m -~ cp(m~x) exp O(m Ix] 3 + m x  2 lyl + lyl + m-~) 
where 

~,(~, y) =  89 + y)~ ,~.(x + y) +  89 x) ~ ,L(y- x ) -  y~ ,~.(y) 

if ]xl<u. ,  [y]<u.. 
Here applying the Taylor expansion of 2 . (y+x)  around the point y up to two 
terms, one has to show that the O(.) of the above formula can be chosen inde- 
pendently of n. 

To this aim it is sufficient to prove that 

]2"(t)]< Cz' ]2"(t)]< Ca logn'  [2"'(t)[<Ca \ logn!  

in the interval It] < 2u.. Expressing 2.(0, 2'n(t) and 2~,'(t) by R.(t) and its derivatives, 
this statement reduces to the following (R(. ~ denotes the i-th derivative of R.) 

[R(.~ i=1 ,2 ,  3, 

K. [RV(t)l<C2 ( K.  ]2 
I R~"~t) [ < C2 log n' \log n/ 

To check these inequalities note that 

, log n [x]31ogH(rxl)et*<H(]x[) if ]t]<c K~ ' 

and 
K~ 

- K n  

if [ t I<2u n. 

Ixl <K.  

K~ txJ 
x ~ etXF(dx) = ~ IxP logU(Ixl) e~XF(dx) 

-K. log H(Ixl) 
< Kn Kn 
=IogH(K.)  "[ It(IxJ)F(dx)<_ C Kn 

- K~ - l o g  n" 

The other inequalities can be proved similarly. On the other hand 
co 

12 = 1 -F(~")(mun]my)= ~ f~")(ms]rny)ds, 
un 

fff~(rns]m y) < C e x p ( -  dm t o s), 

where t o is defined by 

R'(to) c' log n 
R(to) 2 K n 

Thus choosing the appearing constants appropriately, 12 becomes negligible, 
compared to 1-F(~n~(mx]my). 
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The Proof  of Theorem 3. Using Theorem 1 B and the reasoning in proving 
Theorem 1, one may suppose that F has an absolutely continuous component. 
~ Give_n a_ sequence X1, Xz,. . .  of i.i.d.r.v.'s with d.f. F define the sequences 

X,,  S,, 2(,, S, as in Lemma 6. Let us remark that it is sufficient to prove formula 
(1.3) substituting S, by S,. Indeed, because of Lemma 6 

S , -  S,  ->0 a.s., 
K ,  

and defining the S;s  in such a way that their truncations be the above defined S,, 
we have I S,(~o) - S,(co)l < K(co). 

Let ~1, ~/2 . . . .  be a sequence of i.i.d.r.v.'s with standard normal distribution. 
Let the t/-s be independent of the )E~-s, too. 

Define 
! - 

X , = X ,  +4-~ t/n if U < n < 2  j+l, 
and 

n 

S',= ZX~, n =  1,2, ... 
i=1  

Now it is sufficient to construct the variables S', and T, in such a way that (1.3) 
hold. 

Given the sequence T1, T 2 . . . .  we construct the sequence S' 1 , S 2 . . . .  the same 
way as in Theorem 1A. Naturally the definition of the F-s will be substituted by 
the distribution and conditional distribution functions of the just defined S',-s. 

Even the proof of Theorem 1A applies with slight modifications. 
The following rerations imply the desired result: 

(i) lim sup iS2"- T2"l~ C. 
g2 .  

(ii) There exist appropriate constants ~>0, f i>0  such that for any n, m, k 
satisfying the relations k = 2 ~, 

2 12,  
K~"<k<=c~ , 2 " < m < m + k < 2  "+l, 

C~ 

2 n n 

the following inequalities hold 

P( sup I S ) - S ' [ > 2 f l K 2 , ) < e x p ( - n ) ,  
m<=j<m+k 

P( sup I r ~ - T m l > 2 f i K 2 , ) < e x p ( - n ) .  
m~j<m+k  

(iii) Putting 

7"~ - 2" + l - J Tz" + J--2~2~" Tz"+ l 

2 .+a - j  ~, j - 2 "  S, <2,+1, S J -  2" 52" + ~ ; -  a . . . .  2"_<j 
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we have 

P(Z~ > ft. K2. ) < exp ( -  n) 

if s, 2"_<s<2 "+1, is of the form s=2"+ak,  a is integer, and k is the same as in (ii). 
(i) guarantees that the S2.-s and Tz~ (iii) guarantees that the S2.+~k-s and 

T2, +~k-s and finally (ii) guarantees that all S, and T, are sufficiently near each other. 
In the proof of (i), (ii) and (iii) we use the notations of Theorem 1A and of 

Theorem 1 in part I. 
Proof of (i). 
Define 

S(1)_ f S'2.- $2.-1 

n 
where y. = c K2-2-' and 

s~# = (SIN-- Si--1)-- ~(" ~ 2  n  9 

Using formula 3.1 one can prove that 

P(S(2ad #:O) < exp ( -  2" c y~) < q" 

if 1S2.-$2. 11<y," 2" 
otherwise 

with some q < 1, and 

ISq22 -~T., 2- - T2n-1)l < C1 ~ - } -  C2 

(this is the analogue of Lemma 1 in part I). Further, ~,2-c(11 has a moment-generating 
function for T~I <to. These relations imply (i). 

Proof of (ii). 

P(,~_<j<m+ksup IS ) -S~ ,>[3K2~)<2P( lSk+, , -Sml>~g2n)<exp( -n  ) 

by (3.1) if ~,/3 are chosen appropriately. 
The other relation can be proved similarly. 
Proof of (iii). 
Similarly to the proof of Theorem 1 and Lemma 1 in part I one obtains 

i = r + l  

and 

r~, , -  ~,,I < c, .  2<(~2,)+ c2 
if 

i>r, I g / t l < c - 2  i n I g / l l < c - 2  i n ~  
' K 2 "  ' , K 2 " "  

At the proof of the last step one needs Lemma 8. 
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The estimations 

P Ig~l__>c.2~ < e x p ( - n ) ,  P I~  tl >c" < e x p ( - n )  

hold true because of (5.1) if e and thus r is chosen large enough. 
The remaining part reduces, just as in Theorem 1 of part I, to the estimation 

P ( ~  "cj>cKn)<exp(-n), 
, =  3 r 

where {: ~J= 2n+2~-Si.+2j_l) 2 if ISI.+2J-S~,+2J 11<c-2 J n 
K2. 

otherwise 

This estimation is valid since the -c-s have a finite moment-generating function, 
and thus the proof is finished. 

Let us remark that Theorem 2 holds true also in the case when EIXllr<ov 
for 2<  r < 3, but the proof is different (though easier). We turn to this question 
in a subsequent paper. 

The Proof of Theorem 4. The construction and the proof of Theorem 4 is 
similar to that of Theorem 3. The only difference is that now we truncate the 
r.v.'s X 1 . . . .  , X, at the level a x. Thus Lemma 7 and 8 hold in the range 

log H(ax) Ixl<c 
aN 

New problems do not arise, however, since we have to investigate S k- Sj only for 
a x  2 

k - j  > c log H(a x)" This construction approximates the Xk-S by normal variables, 

with expectation m= S~ tF(dt)and variance a2=  ~" t2F(dt)-m 2. 
- - a ~ c  - - a x  

A little calculation shows that 

m = O  , a 2 = l - O  

and therefore the N(m, a) variables are near enough to their standardization. 
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