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Summary: This paper contains sharp estimates about the distribution of mul-
tiple random integrals of functions of several variables with respect to a nor-
malized empirical measure, about the distribution of U -statistics and multi-
ple Wiener–Itô integrals with respect to a white noise. It also contains good
estimates about the supremum of appropriate classes of such integrals or U -
statistics. The proof of most results is omitted, I have concentrated on ex-
plaining their content together with the picture behind them. I also tried to
explain the reason for the investigation of such questions. My goal was to
present such an explanation which also a non-expert can understand, and not
only on a formal level.

1. Formulation of the main problems discussed in this paper

To formulate the main problems discussed in this paper first I introduce some nota-
tions. Let us have a sequence of independent and identically distributed random vari-
ables ξ1, . . . , ξn on a measurable space (X,X ) with distribution µ, and introduce their
empirical distribution

µn(A) =
1

n
#{j : ξj ∈ A, 1 ≤ j ≤ n}, A ∈ X . (1.1)

Given a measurable function f(x1, . . . , xk) on the product space (Xk,X k) let us consider
the integral of this function with respect to the k-fold direct product of the normalized
version

√
n(µn − µ) of the empirical measure µn, i.e. take the integral

Jn,k(f) =
nk/2

k!

∫ ′
f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dxk)),

where the prime in
∫ ′

means that the diagonals xj = xl, 1 ≤ j < l ≤ k,

are omitted from the domain of integration. (1.2)

I am interested in the following two problems:

Problem a). Let us give a good estimate on the probabilities P (Jn,k(f) > u) under
some appropriate not too restrictive conditions on the function f .

It seems to be natural to omit the diagonals xj = xl, j 6= l, from the domain
of integration in the definition of the random integrals Jn,k(f) given in (1.2). In the
applications I met the estimation of such a version of the integrals was needed.

I shall also discuss the following more general problem.

1



Problem b). Let us have a nice class of functions f ∈ F on the space (Xk,X k). Let

us give a good estimate on the probabilities P

(

sup
f∈F

Jn,k(f) > u

)

, where Jn,k(f)

denotes again the random integral of a function f defined in (1.2).

I met the problems formulated above when I tried to adapt the method of inves-
tigation about the limit behaviour of maximum likelihood estimates to more difficult
problems, to so-called non-parametric maximum likelihood estimates. An important
step in the investigation of maximum likelihood estimates consists of a good approxi-
mation of the maximum-likelihood function whose root we are looking for. We get such
an approximation by means of a Taylor expansion of this function if we drop the higher
order terms in this expansion. In an adaptation of this method to more complicated
situations the solution of the above mentioned problems a) and b) appear in a natural
way. They play a role similar to the estimation of the coefficients of the Taylor expansion
in the study of maximum likelihood estimates. Here I do not discuss the details of this
approach to non-parametric maximum-likelihood problems. The interested reader may
find some further information about it in papers [15] and [16], where such a question is
investigated in detail in a special case.

In the above mentioned papers the so-called Kaplan–Meyer method is investigated
for the estimation of a distribution function by means of censored data. The solution
of problem a) is needed to bound the error of the Kaplan–Meyer estimate for a single
argument of the distribution function, and the solution of problem b) helps to bound
the difference of this estimate and the real distribution function in the supremum norm.
Let me remark that the approach in papers [15] and [16] seems to be applicable under
much more general circumstances, but this requires the solution of some hard problems.

I do not know of other authors who dealt directly with the study of random inte-
grals similar to that defined in (1.2). On the other hand, several authors investigated
the behaviour of U -statistics, and discussed the next two problems. I shall describe
them under the name problem a′) and problem b′). They are natural counterparts of
problems a) and b).

To formulate them first I recall the notion of U -statistics.

If a sequence of independent and identically distributed random variables ξ1, . . . , ξn

is given on a measurable space (X,X ) together with a function f(x1, . . . , xk) on the space
(Xk,X k), n ≥ k, then we call the expression

In,k(f) =
1

k!

∑

1≤js≤n, s=1,...,k
js 6=js′ if s6=s′

f (ξj1 , . . . , ξjk
) . (1.3)

a U -statistic of order k with kernel function f . Now I formulate the following two
problems.

Problem a′). Let us give a good estimate on the probabilities P (n−k/2In,k(f) > u)
under some appropriate not too restrictive conditions on the function f .
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Problem b′). Let us have a nice class of functions f ∈ F on the space (Xk,X k).

Let us give a good estimate on the probabilities P

(

sup
f∈F

n−k/2In,k(f) > u

)

, where

In,k(f) denotes again the U -statistic with kernel function f defined in (1.3).

Problems a) and b) are closely related to problems a′) and b′), but the detailed
description of their relation demands some hard work. The main difference between
these two pairs of problems is that integration with respect to a power of the measure
µn − µ in formula (1.2) means some kind of normalization, while the definition of the
U -statistics in (1.3) contains no normalization. Moreover, there is no simple way to
introduce some good normalization in U -statistics. This has the consequence that in
problems a) and b) we can get a good estimate for a much larger class of functions than
in problems a′) and b′). Hence the original pair of problems seems to be more useful in
several possible applications.

Both the integrals Jn,k(f) defined in (1.2) and the U -statistics In,k(f) defined in
(1.3) are non-linear functionals of independent random variables. The main difficulty
arises in the study of the above problems, because there is no general method for the
study of such non-linear functionals. On the other hand, the normalized empirical
measure

√
n(µn − µ) is close to a Gaussian field for a large sample size n. Moreover, as

we shall see, U -statistics with a large sample size behave similarly to multiple Gaussian
integrals. This suggests that the study of multiple Gaussian integrals may help a lot in
the solution of our problems. To investigate them first I recall the definition of white
noise that we shall need later.

Definition of a white noise with some reference measure. Let us have a σ-finite
measure µ on a measurable space (X,X ). We call a Gaussian field µW , i.e. a set of
jointly Gaussian random variables µW (A) defined for all A ∈ X such that µ(A) < ∞ a
white noise with reference measure µ if EµW (A) = 0 for all A ∈ X such that µ(A) < ∞,
and EµW (A)µW (B) = µ(A ∩ B) for all A,B ∈ X such that µ(A) < ∞ and µ(B) < ∞.

Remark: In the definition of a white noise one also mentions the property µW (A∪B) =
µW (A) + µW (B) with probability 1 if A∩B = ∅, and µ(A) < ∞, µ(B) < ∞. I omitted
this property in the definition of the white noise, because it follows from its remaining
properties. Indeed, simple calculation shows that E(µW (A∪B)−µW (A)−µW (B))2 = 0
if A ∩ B = ∅, hence µW (A ∪ B) − µW (A) − µW (B) = 0 with probability 1 in this case.
We also can observe that if some sets A1, . . . , Ak ∈ X , µ(Aj) < ∞, 1 ≤ j ≤ k, are
disjoint, then the random variables µW (Aj), 1 ≤ j ≤ k, are independent because of the
uncorrelatedness of these jointly Gaussian random variables.

It is not difficult to see that for an arbitrary reference measure µ on a space (X,X )
a white noise µW with this reference measure really exists. This follows simply from
Kolmogorov’s fundamental theorem, by which if we describe the finite dimensional dis-
tributions of a random field in a consistent way, then there exists a random field with
these finite dimensional distributions.

Given a white noise µW with a σ-finite reference measure µ on some measurable
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space (X,X ) together with a function f(x1, . . . , xk) on (Xk,X k) such that

σ2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞ (1.4)

the multiple Wiener–Itô integral of the function f with respect to a white noise µW

with reference measure µ can be defined, (see e.g. [7] or [9]). We shall denote it by

Zµ,k(f) =

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk). (1.5)

Here we shall not need a detailed discussion of Wiener–Itô integrals, it will be enough
to recall the idea of their definition.

Let us have a measurable space (X,X ) together with a non-atomic σ-finite measure
µ on it. (We shall define Wiener–Itô integrals only with respect to a white noise µW

with a non-atomic reference measure µ.) We call a function f on (Xk,X k) elementary
if there exists a finite partition A1, . . . , AM , 1 ≤ M < ∞, of the set X (i.e. Aj ∩Aj′ = ∅
if j 6= j′ and

M
⋃

j=1

Aj = X) such that µ(Aj) < ∞ for all 1 ≤ j ≤ M (with the possible

exception of the set AM , but we demand in the next formula (1.6) that c(j1, . . . , jk) = 0
if one of the arguments js, 1 ≤ s ≤ k equals M , and µ(AM ) = ∞), and the function f
satisfies the properties

f(x1, . . . , xk) = c(j1, . . . , jk) if x1 ∈ Aj1 , . . . , xk ∈ Ajk
, 1 ≤ js ≤ M, 1 ≤ s ≤ k

and c(j1, . . . , jk) = 0 if js = js′ for some 1 ≤ s < s′ ≤ k (1.6)

with some real numbers c(j1, . . . , jk), 1 ≤ js ≤ M , 1 ≤ s ≤ k, i.e. the function f is
constant on all k-dimensional rectangles Aj1 × · · · × Ajk

, and it equals zero on those
rectangles which have two sides which agree.

We define the Wiener-Itô integral of the elementary function f(x1, . . . , xk) defined
in formula (1.6) with respect to a white noise µW with the (non-atomic) reference
measure µ by the formula

Zµ,k(f) =

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)

=
∑

1≤js≤M, 1≤s≤k

c(j1, . . . , jk)µW (Aj1) · · ·µW (Ajk
).

(1.7)

Then the definition of Wiener–Itô integral can be extended to a general function satis-
fying relation (1.4) by means of an L2-isomorphism. The details of this extension will
be not discussed here.

Let me remark that the condition c(j1, . . . , jk) = 0 if js = js′ for some 1 ≤ s <
s′ ≤ k in the definition of an elementary functions can be interpreted so that, similarly
to the definition of the random integral Jn,k(f) in (1.2), the diagonals are omitted from
the domain of integration of a Wiener–Itô integral Zµ(f).

4



The investigation of Wiener–Itô integrals is simpler than that of random integrals
Jn,k(f) defined in (1.2) or of U -statistics introduced in (1.3) because of the Gaussian
property of the underlying white noise. Beside this, the study of Wiener–Itô integrals
may help us to understand what kind of estimates we can expect in the solution of
problems a) and b) or a′) and b′), and this study also can help to find the proof of these
estimates. Hence it is useful to consider the following two problems.

Problem a′′). Let us give a good estimate on the probabilities P (Zµ,k(f) > u) under
some appropriate not too restrictive conditions on the function f and measure µ.

Problem b′′). Let us have a nice class of functions f ∈ F on the space (Xk,X k). Let

us give a good estimate on the probabilities P

(

sup
f∈F

Zµ,k(f) > u

)

, where Zµ,k(f)

denotes again a Wiener–Itô integral with function f and white noise with reference
measure µ.

In this paper the above problems will be discussed. Such estimates will be presented
for them which depend on some basic characteristics of the random expressions Jn,k(f),
In,k(f) or Zµ,k(f). They will depend mainly on the L2 and L∞-norm of the function f
taking part in the definition of the above quantities. (The L2-norm of the function f
is closely related to the variance of the random variables we consider.) The proof of
the estimates we get is related to some other problems interesting in themselves. My
main goal was to explain the results and ideas behind them. I put emphasis on the
explanation of the picture that can help understanding them, and the details of almost
all proofs are omitted. A detailed explanation together with the proofs can be found in
my Lecture Note [14].

This paper consists of 9 sections. The first four sections contain the results about
problems a), a′) and a′′) together with some other statements which may explain better
their background. Section 5 contains the main ideas of their proof. In Section 6 problems
b), b′) and b′′) are discussed together with some related questions. The main ideas of
the proofs of the results in Section 6 which contain many unpleasant technical details
are discussed in Sections 7 and 8. In Section 9 Talagrand’s theory about concentration
inequalities is considered together with its relation to the problems investigated in this
paper and some open questions.
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2. The discussion of some large deviation results

Let us first restrict our attention to problems a), a′) and a′′), i.e. to the case when we
estimate the distribution of the random integral or U -statistic of one function. These
problems are much simpler in the special case k = 1. But they are not trivial even in
this case. A discussion of some large deviation results may help us to understand them
better. In this section I recall some large deviation results useful for us. I shall not try
to formulate them in the most general form. First I recall a large deviation theorem
about the sum of independent, identically distributed random variables. Actually we
shall not need this result later, it is interesting for us for the sake of some orientation.

Theorem 2.1. Large deviation theorem about partial sums of independent
and identically distributed random variables. Let ξ1, ξ2, . . . , be a sequence of
independent and identically distributed random variables such that Eξ1 = 0, Eetξ1 < ∞
with some t > 0. Let us define the partial sums Sn =

n
∑

j=1

ξj, n = 1, 2, . . . . Then the

relation

lim
n→∞

1

n
log P (Sn ≥ nu) = −ρ(u) for all u > 0 (2.1)

holds with the function ρ(u) defined by the formula ρ(u) = sup
t

(

tu − log Eetξ1
)

. The

function ρ(·) in formula (2.1) has the following properties: ρ(u) > 0 for all u > 0, and
it is a monotone increasing function, there is some number 0 < A ≤ ∞ with a number
A depending on the distribution of the function ξ1 such that ρ(u) < ∞ for 0 ≤ u ≤ A,

and the asymptotic relation ρ(u) = σ2u2

2 +O(u3) holds for small u > 0, where σ2 = Eξ2
1

is the variance of ξ1.

The above theorem states that for all ε > 0 the inequality P (Sn > nu) ≤ e−n(ρ(u)−ε)

holds if n ≥ n(u, ε), and this estimate is essentially sharp. Actually, in nice cases, when
the equation ρ(u) = sup

t

(

tu − log Eetξ1
)

has a solution in t, the above inequality also

holds with ε = 0 for all n ≥ 1. The function ρ(u) in the exponent of the above large
deviation estimate strongly depends on the distribution of ξ1. It is the so-called Legendre
transform of log Eetξ1 , of the logarithm of the moment generating function of ξ1, and
its values in an arbitrary interval determine the distribution of ξ1 completely. On the
other hand, the estimate (2.1) for small u > 0 shows some resemblance to the bound
suggested by the central limit theorem. Indeed, for small u > 0 it yields the upper
bound e−nσ2u2/2+nO(u3), while the central limit theorem would suggest the estimate
e−nσ2u2/2. (Let us recall that the standard normal distribution function Φ(u) satisfies

the inequality
(

1
u − 1

u3

)

e−u2/2
√

2π
< 1 − Φ(u) < 1

u
e−u2/2
√

2π
for all u > 0, hence for large u it

is natural to bound it by e−u2/2.)

The next result I mention, Bernstein’s inequality, (see e.g. [4], 1.3.2 Bernstein’s
inequality) has a closer relation to the problems I am discussing in this paper. It gives
a good upper bound on the distribution of sums of independent, bounded random vari-
ables with expectation zero. It is important that this estimate is universal, the constants
it contains do not depend on the properties of the random variables we consider.
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Theorem 2.2 (Bernstein’s inequality). Let X1, . . . , Xn be independent random
variables, P (|Xj | ≤ 1) = 1, EXj = 0, 1 ≤ j ≤ n. Put σ2

j = EX2
j , 1 ≤ j ≤ n,

Sn =
n
∑

j=1

Xj and V 2
n = Var Sn =

n
∑

j=1

σ2
j . Then

P (Sn > u) ≤ exp







− u2

2V 2
n

(

1 + u
3V 2

n

)







for all u > 0. (2.2)

Let us take a closer look on the content of Theorem 2.2. Estimate (2.2) yields
a bound of different form if the first term is dominating in the sum 1 + u

3V 2
n

in the

denominator of the fraction in this expression and if the second term is dominating
in it. If we fix some constant C > 0, then formula (2.2) yields that P (Sn > u) ≤
e−Bu2/2V 2

n with some constant B = B(C) for 0 ≤ u ≤ CV 2
n . If, moreover 0 ≤ u ≤ εV 2

n

with some small ε > 0, then the estimate P (Sn > u) ≤ e−(1−Kε)u2/2V 2
n holds with

a universal constant K > 0. This means that in the case 0 < u ≤ CV 2
n the tail

behaviour of the distribution of F (u) = P (Sn > u) can be bounded by the distribution
G(u) = P (const.Vnη > u) where η is a standard normal random variable, and V 2

n is the
variance of the partial sum Sn. If 0 ≤ u ≤ εV 2

n with a small ε > 0, then it also can be
bounded by P ((1 − Kε))Vnη > u) with some universal constant K > 0.

In the case u À V 2
n formula (2.2) yields a different type of estimate. In this case we

get that P (Sn > u) < e−(3−ε)u/2 with a small ε > 0, and this seems to be a rather weak
estimate. In particular, it does not depend on the variance V 2

n of Sn. In the degenerate
case Vn = 0 when P (Sn > u) = 0, estimate (2.2) yields a strictly positive upper bound
for P (Sn > u). One would like to get such an improvement of Bernstein’s inequality
which gives a better bound in the case u À V 2

n . Bennett’s inequality (see e.g. [18],
Appendix B, 4 Bennett’s inequality) satisfies this requirement.

Theorem 2.3 (Bennett’s inequality). Let X1, . . . , Xn be independent random vari-

ables, P (|Xj | ≤ 1) = 1, EXj = 0, 1 ≤ j ≤ n. Put σ2
j = EX2

j , 1 ≤ j ≤ n, Sn =
n
∑

j=1

Xj

and V 2
n = Var Sn =

n
∑

j=1

σ2
j . Then

P (Sn > u) ≤ exp

{

−V 2
n

[(

1 +
u

V 2
n

)

log

(

1 +
u

V 2
n

)

− u

V 2
n

]}

for all u > 0. (2.3)

As a consequence, for all ε > 0 there exists some B = B(ε) > 0 such that

P (Sn > u) ≤ exp

{

−(1 − ε)u log
u

V 2
n

}

if u > BV 2
n , (2.4)

and there exists some positive constant K > 0 such that

P (Sn > u) ≤ exp

{

−Ku log
u

V 2
n

}

if u > 2V 2
n . (2.5)
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Estimates (2.4) or (2.5) yield a slight improvement of Bernstein’s inequality in
the case u ≥ KV 2

n with a sufficiently large K > 0. On the other hand, even this
estimate is much weaker than the estimate suggested by a formal application of the
central limit theorem. The question arises whether these estimates are sharp, or they
can be improved. The next example shows that inequalities (2.4) or (2.5) in Bennett’s
inequality are essentially sharp. If we do not impose some additional restrictions, then
at most the universal constants can be improved in them. We show that even a sum of
independent, bounded and identically distributed random variables can be constructed
which satisfies a lower bound similar to the upper bounds in formulas (2.4) and (2.5),
only with possibly different constants.

Example 2.4. Let us fix some positive integer n, real numbers u and σ2 such that
0 < σ2 ≤ 1

8 , n > 3u ≥ 6 and u > 4nσ2. Put V 2
n = nσ2 and take a sequence of

independent, identically distributed random variables X1, . . . , Xn such that P (Xj = 1) =

P (Xj = −1) = σ2

2 , and P (Xj = 0) = 1 − σ2. Put Sn =
n
∑

j=1

Xj. Then ESn = 0,

Var Sn = V 2
n , and

P (Sn ≥ u) > exp

{

−Bu log
u

V 2
n

}

with some appropriate (universal) constant B > 0.

Remark: Here I formulate a statement which we shall not need later. But it can help to
understand better the content of Bennett’s inequality and Example 2.4. The estimate of
Example 2.4 or of relations (2.4) and (2.5) is well comparable with the tail distribution
of a Poisson distributed random variable with parameter λ = const.nσ2 ≥ 1 at level
u ≥ 2λ. Some calculation shows that a Poisson distributed random variable ζλ with
parameter λ > 1 satisfies the inequality e−C1u log(u/λ) ≤ P (ζλ−Eζλ > u) ≤ P (ζλ > u) ≤
P (ζλ − Eζλ > u

2 ) ≤ e−C2u log(u/λ) with some appropriate constants 0 < C1 < C2 < ∞
for all u > 2λ, and Eζλ = Var ζλ = λ. This estimate is similar to the above mentioned
relations.

I have proved the statement of Example 2.4 in Example 3.2 of my Lecture Note [14]
by applying some (simple) ideas in the large deviation theory. Here I briefly explain
another proof (with another universal constants) which may explain better the picture
behind this example.

Proof of the statement of Example 2.4. Let us fix an integer u such that n > 3u and
u > 4nσ2. Let B = B(u) denote the event that among the random variables Xj ,
1 ≤ j ≤ n, there are exactly 3u terms with values +1 or −1, and all other random
variables Xj equal zero. Let us also define the event A = A(u) ⊂ B(u) which holds if
2u random variables Xj are equal to 1, u random variables Xj are equal to −1, and
all remaining random variables Xj , 1 ≤ j ≤ n, are equal to zero. Clearly, P (Sn ≥
u) ≥ P (A) = P (B)P (A|B). On the other hand, P (B) =

(

n
3u

) (

σ2
)3u (

1 − σ2
)n−3u ≥

(

n
3u

)3u (
σ2
)3u

e−4nσ2

= e−3u log(3u/nσ2)−4nσ2

. Here we exploited that because of the

condition σ2 ≤ 1
8 we have 1 − σ2 ≥ e−4σ2

. Beside this, u ≥ 4nσ2, and P (B) ≥
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e−3u log(3u/nσ2)−u ≥ e−B1u log(u/nσ2) with some appropriate B1 > 0 under our assump-
tions.

Let us consider a set of 3u elements, and choose a random subset of it by taking
all elements of this set with probability 1/2 to this random subset independently of
each other. I claim that the conditional probability P (A|B) equals the probability
that this random subset has 2u elements. Indeed, even the conditional probability of
the event A under the condition that for a prescribed set of indices J ⊂ {1, . . . , n}
with exactly 3u elements we have Xj = ±1 if j ∈ J and Xj = 0 if j /∈ J equals the
probability of the event that the above defined random subset has 2u elements. This
is so, because under this condition the random variables Xj take the value +1 with
probability 1/2 for all j ∈ J independently of each other. Hence P (A|B) =

(

3u
2u

)

2−3u ≥
e−Cu ≥ e−B2u log(u/nσ2) with some appropriate constants C > 0 and B2 > 0 under our
conditions, since u

nσ2 ≥ 4 in this case. The estimates given for P (B) and P (A|B) imply
the statement of Example 2.4.

Bernstein’s inequality provides a solution of problems a) and a′) in the case k = 1
under some conditions. Because of the normalization (multiplication by n−1/2 in these
problems) we get our estimates with the choice ū =

√
nu in Bernstein’s inequality.

Observe that Jn,1(f) = 1√
n

n
∑

j=1

(f(ξj) − Ef(ξj)) for k = 1 in the definition (1.2). In

problem a) Bernstein’s inequality gives a good bound on P (Jn,1(f) > u) for a function f
such that |f(x)| ≤ 1

2 for all x ∈ X with the choice Xj = f(ξj) − Ef(ξj), 1 ≤ j ≤ n,

and ū =
√

nu. In problem a′) it gives a good bound on P (n−1/2In,1(f) > u) under
the condition |f(x)| ≤ 1 for all x ∈ X, and Ef(ξ1) = 0 with the choice Xj = f(ξj),
1 ≤ j ≤ n, and ū =

√
nu. We get that in the case 0 ≤ u ≤ C

√
nσ2 the bounds

P (Jn,1(f) > u) ≤ e−Ku2/2σ2

and P (n−1/2In,1(f) > u) ≤ e−Ku2/2σ2

hold with σ2 =
Var f(ξ1) and some constant K = K(C) depending on the number C if the above
conditions hold in the case of problem a) or a′). If 0 ≤ u ≤ ε

√
nσ2 with some small

ε > 0, then the above constant K can be chosen very close to the number 1.

The above results can be interpreted so that in the case 0 ≤ u ≤ const.
√

nσ2 and
a bounded function f we can get an estimate suggested by the central limit theorem
for problem a), only an additional constant multiplier may appear in the exponent. A
similar statement holds in the case of problem a′), only here the additional condition
Ef(ξj) = 0 has to be imposed. On the other hand, the situation is quite different
if u À √

nσ2. In this case Bernstein’s inequality yields only a very weak estimate.
Bennett’s inequality gives a slight improvement. It yields the inequality P (Jn,1(f) >

u) ≤ e−Bu
√

n log(u/
√

nσ2) with an appropriate constant B > 0 if |f(x)| ≤ 1
2 for all

x ∈ X, u ≥ 2
√

nσ2, and σ2 = Var f(ξ1). We have the estimate P (n−1/2In,1(f) > u) ≤
e−Bu

√
n log(u/

√
nσ2) with an appropriate B > 0 if |f(x)| ≤ 1 for all x ∈ X, Ef(ξ1) = 0,

Var f(ξ1) = σ2, and u ≥ 2
√

nσ2. The above estimates are much weaker than the bound
suggested by a formal application of the central limit theorem. On the other hand,
Example 2.4 shows that we cannot expect a better estimate in this case. Moreover, its
proof gives some insight why we get a different type of estimate in the cases u ≤ √

nσ2

and u À √
nσ2 for problems a) and a′).
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In the proof of Example 2.4 we have defined a ‘bad’ irregular event A such that if it
holds, then the sum of the random variables we consider is sufficiently large. Generally,
the probability of such an event is very small, but if the variance of the random variables
is very small, (in problems a) and a′) this is the case if σ2 ¿ un−1/2) then we can define
such a ‘bad’ irregular event whose probability is not negligible.

We shall consider problems a) and a′) also for k ≥ 2, and this will be called the
multivariate case. The results we get for the solution of problems a) and a′) in the
multivariate case is very similar to the results described above. To understand them
first we have to discuss some problems. In particular, the answer for the following two
questions has to be understood:

Question a). In the solution of problem a′) in the case k = 1 we have imposed
the condition Ef(ξ1) = 0, which means some sort of normalization. What kind
of condition corresponds to it in the multivariate case? This question leads to the
definition of degenerate U -statistics and to the so-called Hoeffding’s decomposition
of U -statistics to a sum of degenerate U -statistics.

Question b). In the discussion of problems a) and a′) we have referred to the central
limit theorem. What kind of limit theorems can take its place in the multivariate
case? What kind of limit theorems do we have for U -statistics In,k(f) or multiple
random integrals Jn,k(f) defined in (1.2)? The limit we get in these problems can
be expressed by means of multiple Wiener–Itô integrals in a natural way.

In the next section the two above questions will be discussed.

3. On some problems about U-statistics and random integrals

A. The normalization of U-statistics.

In the case k = 1 problem a′) meant the estimation of sums of independent and
identically distributed random variables. We got good estimates under the condition
Ef(ξ1) = 0.

In the multivariate case k ≥ 2 we need a stronger normalization property to get
good estimates about the distribution of U -statistics. In this case we have to assume
that the conditional expectations of the terms f(ξj1 , . . . , ξjk

) of the U -statistic under
the condition that the value of all but one arguments takes a prescribed value equals
zero. This property is formulated in a more explicit way in the following definition of
degenerate U -statistics.

Definition of degenerate U-statistics. Let us consider the U -statistic In,k(f) of
order k defined in formula (1.3) with kernel function f(x1, . . . , xk) and a sequence of
independent and identically distributed random variables ξ1, . . . , ξn. It is a degenerate
U -statistic if its kernel function satisfies the relation

Ef(ξ1, . . . , ξk|ξ1 = x1, . . . , ξj−1 = xj−1, ξj+1 = xj+1, . . . , ξk = xk) = 0

for all 1 ≤ j ≤ k and xs ∈ X, s ∈ {1, . . . , k} \ {j}. (3.1)
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The definition of degenerate U -statistics is closely related to the notion of canonical
functions described below.

Definition of canonical functions. A function f(x1, . . . , xk) taking values on the
k-fold product (Xk,X k) of a measurable space (X,X ) is called canonical with respect to
a probability measure µ on (X,X ) if

∫

f(x1, . . . , xj−1, u, xj+1, . . . , xk)µ( du) = 0

for all 1 ≤ j ≤ k and xs ∈ X, s ∈ {1, . . . , k} \ {j}.
(3.2)

It is clear that a U -statistic In,k(f) is degenerate if and only if its kernel function
f is canonical with respect to the distribution µ of the random variables ξ1, . . . , ξn

appearing in the definition of the U -statistic.

Given a function f and a probability measure µ, this function can be written as
a sum of canonical functions (with different sets of arguments) with respect to the
measure µ, and this enables us to decompose a U -statistic as a linear combination of
degenerate U -statistics. This is the content of Hoeffding’s decomposition of U -statistics
described below. To formulate it first I introduce some notations.

Let us consider the k-fold product (Xk,X k, µk) of a measure space (X,X , µ) with
some probability measure µ, and define for all integrable functions f(x1, . . . , xk) and
indices 1 ≤ j ≤ k the projection Pjf of the function f to its j-th coordinate as

Pjf(x1, . . . , xj−1, xj+1, . . . , xk) =

∫

f(x1, . . . , xk)µ( dxj), 1 ≤ j ≤ k. (3.3)

Let us also define the operators Qj = I − Pj as Qjf = f − Pjf on the space of
integrable functions on (Xk,X k, µk), 1 ≤ j ≤ k. In the definition (3.3) Pjf is a
function not depending on the coordinate xj , but in the definition of Qj we introduce
the fictive coordinate xj to make the expression Qjf = f − Pjf meaningful. Now we
can formulate the following result.

Theorem 3.1 (Hoeffding’s decomposition of U-statistics). Let f(x1, . . . , xk) be
an integrable function on the k-fold product space (Xk,X k, µk) of a space (X,X , µ) with
a probability measure µ. It has the decomposition

f =
∑

V ⊂{1,...,k}
fV , with fV (xj , j ∈ V ) =





∏

j∈{1,...,k}\V

Pj

∏

j∈V

Qj



 f(x1, . . . , xk)

(3.4)
such that all functions fV , V ⊂ {1, . . . , k}, in (3.4) are canonical with respect to the
probability measure µ, and they depend on the |V | arguments xj, j ∈ V .

Let ξ1, . . . , ξn be a sequence of independent, µ distributed random variables, and
consider the U -statistics In,k(f) and In,|V |(fV ) corresponding to the kernel functions f ,
fV defined in (3.4) and random variables ξ1, . . . , ξn. Then

In,k(f) =
∑

V ⊂{1,...,k}
(n − |V |)(n − |V | − 1) · · · (n − k + 1)

|V |!
k!

In,|V |(fV ) (3.5)
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is a representation of In,k(f) as a sum of degenerate U -statistics, where |V | denotes the
cardinality of the set V . (The product (n−|V |)(n−|V |−1) · · · (n−k+1) is defined as 1 if
V = {1, . . . , k}, i.e. |V | = k.) This representation is called the Hoeffding decomposition
of In,k(f).

Remark: Hoeffding’s decomposition of U -statistics for sums of degenerate U -statistics
can be slightly simplified by exploiting that In,|V |(fV ) = In,|V |(Sym fV ), and

In,|V |(fV (xj1 , . . . , xj|V |
)) = In,|V |(fV (x1, . . . , x|V |),

i.e. the arguments xj1 , . . . , xj|V |
of the function fV (if V = {j1, . . . , j|V |}) can be replaced

by x1, . . . , x|V | in the U -statistic In,|V |(fV ). In such a way the contribution of all terms
In,|V |(fV ) with |V | = l, with some 0 ≤ l ≤ k, can be unified into one degenerate U -
statistic of order l with a symmetric kernel function. Generally this simplified version
is called the Hoeffding’s decomposition in the literature. Nevertheless, some arguments
can be better carried out by means of the formula presented in Theorem 3.1.

I omit the proof of Theorem 3.1, although it is fairly simple. (See e.g. the Appendix
of [5].) I only try to briefly explain that the construction of Hoeffding’s decomposition
is natural. Let us recall that if we want to decompose a random variable as a sum
of a random variable with expectation zero plus a constant, then we get the random
variable with expectation zero in this decomposition by taking out from the original
random variable its expectation. If we want to introduce such a transformation which
turns to zero not only the expectation of the transformed random variable, but also
its conditional expectation with respect to some condition, then it is natural to take
out from the original random variable its conditional expectation. Since the operators
Pj defined in (3.3) are closely related to the conditional expectations appearing in the
definition of degenerate U -statistics, the above consideration makes natural to write the

identity f =
k
∏

j=1

(Pj + Qj)f =
∑

V ⊂{1,...,k}
fV with the functions defined in (3.4). (In the

justification of the last formula we have to exploit some properties of the operators Pj

and Qj .)

It is clear that EIn,k(f) = 0 for a degenerate U -statistic. Also the inequality

E (In,k(f))
2 ≤ nk

k!
σ2 with σ2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) (3.6)

holds if In,k(f) is a degenerate U -statistic. The measure µ appearing in (3.6) is the
distribution of the random variables ξj taking part in the definition of the U -statistic.

Moreover, lim
n→∞

n−kE (In,k(f))
2

= σ2

k! if the kernel function f is a symmetric func-

tion of its arguments, i.e. f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)) for all permutations
π = (π(1), . . . , π(k)) of the set {1, . . . , k}.

Relation (3.6) can be proved by means of the observation that

Ef(ξj1 , . . . , ξjk
)f(ξj′

1
, . . . , ξj′

k
) = 0
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if {j1, . . . , jk} 6= {j′1, . . . , j′k}, and f is a canonical function with respect to the distribu-
tion µ of the random variables ξj . On the other hand,

|Ef(ξj1 , . . . , ξjk
)f(ξj′

1
, . . . , ξj′

k
)| ≤

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

by the Schwarz inequality if {j1, . . . , jk} = {j′1, . . . , j′k}, i.e. if the sequence of indices
j′1 . . . , j′k is a permutation of the sequence of indices j1, . . . , jk, and there is an identity
in this relation if the function f is symmetric. The last formula enables us to check the
asymptotic relation given for E (In,k(f))

2
after relation (3.6).

Relation (3.6) suggests to restrict our attention in the investigation of problem a′)
to the case of degenerate U -statistics, and it explains why we chose the normalization
n−k/2 in it. In this case we can expect an upper bound not depending on the sample
size n. The estimation of the distribution of a general U -statistic can be reduced to the
degenerate case by means of Hoeffding’s decomposition (Theorem 3.1).

The random integrals Jn,k(f) are defined in (1.2) by means of integration with
respect to the signed measure µn − µ, and this means some sort of normalization. As a
consequence, we can expect a good estimate on their distribution for a rather general
kernel function f . Beside this, a random integral Jn,k(f) can be written as a sum of
U -statistics for which the Hoeffding decomposition can be applied. Hence it can be
rewritten as a linear combination of degenerate U -statistics. In the next result I present
the representation of the random integral Jn,k(f) we get in such a way. It shows that
the implicit normalization caused by integration with respect to µn − µ has a serious
cancellation effect. This enables us to get a good solution for problem a) or b) if we have
a good solution for problem a′) or b′). Unfortunately, the proof of this result demands
rather unpleasant calculations. Hence here I omit this proof. It can be found in [11] or
in Theorem 9.4 of [14].

Theorem 3.2. Let us have a non-atomic measure µ on a measurable space (X,X )
together with a sequence of independent, µ-distributed random variables ξ1, . . . , ξn, and
take a function f(x1, . . . , xk) of k variables on the space (Xk,X k) such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞.

Let us consider the empirical distribution function µn of the sequence ξ1, . . . , ξn intro-
duced in (1.1) together with the k-fold random integral Jn,k(f) of the function f defined
in (1.2). The identity

Jn,k(f) =
∑

V ⊂{1,...,k}
C(n, k, V )n−|V |/2In,|V |(fV ), (3.7)

holds with the canonical (with respect to the measure µ) functions fV (xj , j ∈ V ) defined
in (3.4) and appropriate real numbers C(n, k, V ), V ⊂ {1, . . . , k}, where In,|V |(fV ) is
the (degenerate) U -statistic with kernel function fV and random sequence ξ1, . . . , ξn
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defined in (1.3). The constants C(n, k, V ) in (3.7) satisfy the relations |C(n, k, V )| ≤
C(k) with some constant C(k) depending only on the order k of the integral Jn,k(f),
lim

n→∞
C(n, k, V ) = C(k, V ) with some constant C(k, V ) < ∞ for all V ⊂ {1, . . . , k}, and

C(n, k, {1, . . . , k}) = 1 for V = {1, . . . , k}.
Let us also remark that the functions fV defined in (3.4) satisfy the inequalities

∫

f2
V (xj , j ∈ V )

∏

j∈V

µ( dxj) ≤
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) (3.8)

and
sup

xj , j∈V
|fV (xj , j ∈ V )| ≤ 2|V | sup

xj , 1≤j≤k
|f(x1, . . . , xk)| (3.9)

for all V ⊂ {1, . . . , k}.
The decomposition of the random integral Jn,k(f) in formula (3.7) is similar to

the Hoeffding decomposition of general U -statistics presented in Theorem 3.1. The
main difference between these two formulas is that the coefficients of the normalized
degenerate U -statistics n−|V |/2In,|V |(fV ) at the right-hand side of formula (3.7) can be
bounded by a universal constant depending neither on the sample size n, nor on the
kernel function f of the random integral. This fact has important consequences.

Theorem 3.2 enables us to get good estimates for problem a) if we have such
estimates for problem a′). In particular, formulas (3.6), (3.7) and (3.8) enable us to give
good bounds on the expectation and variance of the random integral Jn,k(f). We have

E (Jn,k(f))
2 ≤ Cσ2 and |EJn,k(f)| ≤ Cσ,

where σ2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)
(3.10)

with some universal constant C > 0 depending only on the order of the random inte-
gral Jn,k(f).

Relation (3.10) yields such an estimate for the second moment of Jn,k(f) as we ex-
pect. On the other hand, although it gives a sufficiently good bound on its first moment,
it does not state that the expectation of Jn,k(f) equals zero. Indeed, formula (3.7) only
gives that |EJn,k(f)| = |C(n, k, ∅)f∅| ≤ C|f∅| = C

∣

∣

∫

f(x1, . . . , xk)µ( dx1) . . . µ( dxk)
∣

∣ ≤
Cσ with some appropriate constant C > 0. The following example shows that EJn,k(f)
need not be always zero. (To understand better why such a situation may appear ob-
serve that the random measures (µn − µ)(B1) and (µn − µ)(B2) are not independent
for disjoint sets B1 and B2.)

We consider a random integral Jn,2(f) of order 2 with an appropriate kernel
function f . We choose a sequence of independent random variables ξ1, . . . , ξn with
uniform distribution on the unit interval [0, 1] and denote its empirical distribution
by µn. The function f = f(x, y) we shall choose is the indicator function of the
unit square, i.e. f(x, y) = 1 if 0 ≤ x, y ≤ 1, and f(x, y) = 0 otherwise. We con-
sider the random integral Jn,2(f) = n

∫

x6=y
f(x, y)(µn( dx) − dx)(µn( dy) − dy) and
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calculate its expected value EJn,2(f). By adjusting the diagonal x = y to the do-
main of integration and taking out the contribution obtained in this way we get that

EJn,2(f) = nE(
∫ 1

0
(µn( dx) − µ( dx))

2 − n2 · 1
n2 = −1, i.e. the expected value of the

above random integral is not equal to zero. (The last term is the integral of the function
f(x, y) on the diagonal x = y with respect to the product measure µn×µn which equals
(µn − µ) × (µn − µ) on the diagonal.)

Now we return to the second problem discussed in this section.

B. Limit theorems for U-statistics and random integrals.

The following limit theorem about normalized degenerate U -statistics will be interesting
for us.

Theorem 3.3. Limit theorem about normalized degenerate U-statistics. Let us
consider a sequence of degenerate U -statistics In,k(f) of order k, n = k, k+1, . . . , defined
in (1.3) with the help of a kernel function f(x1, . . . , xk) on the k-fold product (Xk,X k)
of a measurable space (X,X ), canonical with respect to some non-atomic probability
measure µ on (X,X ) and such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ(dxk) < ∞ together
with a sequence of independent and identically distributed random variables ξ1, ξ2, . . .
with distribution µ on (X,X ). The sequence of normalized U -statistics n−k/2In,k(f)
converges in distribution, as n → ∞, to the k-fold Wiener–Itô integral

1

k!
Zµ,k(f) =

1

k!

∫

f(x1, . . . , xk)µW (dx1) . . . µW (dxk)

with kernel function f(x1, . . . , xk) and a white noise µW with reference measure µ.

The proof of Theorem 3.3 can be found for instance in [5]. Here I present a heuristic
explanation of this result.

To understand Theorem 3.3 it is useful to rewrite the normalized degenerate U -
statistics we consider in the form of multiple random integrals with respect to a nor-
malized empirical measure. We can write

n−k/2In,k(f) = nk/2

∫ ′
f(x1, . . . , xk)µn( dx1) . . . µn( dxk)

= nk/2

∫ ′
f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dx1)),

(3.11)
where µn is the empirical distribution function of the sequence ξ1, . . . , ξn defined in (1.1),
and the prime in

∫ ′
denotes that the diagonals, i.e. the points x = (x1, . . . , xk) such that

xj = xj′ for some pairs of indices 1 ≤ j, j ′ ≤ k, j 6= j′ are omitted from the domain of
integration. The last identity of formula (3.11) holds, because in the case of a function
f(x1, . . . , xk) canonical with respect to a non-atomic measure µ we get the same result
by integrating with respect to µn( dxj) and with respect to µn( dxj) − µ( dxj). (The
non-atomic property of the measure µ is needed to guarantee that the integrals we
consider with respect to the measure µ remain zero if the diagonals are omitted from
the domain of integration.)
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Formula (3.11) may help to understand Theorem (3.3), because the random fields
n1/2(µn(A) − µ(A)), A ∈ X , converge to a Gaussian field ν(A), A ∈ X , as n → ∞,
and this suggests a limit similar to the result of Theorem (3.3). But it is not so simple
to carry out a limiting procedure leading to the proof of Theorem 3.3 with the help
of formula (3.11). Some problems arise, because the fields n1/2(µn − µ) converge to a
not white noise type Gaussian field. The limit we get is similar to a Wiener bridge on
the real line. Hence a relation between Wiener processes and Wiener bridges suggests
to write the following version of formula (3.11). Let η be a standard Gaussian random
variable, independent of the random sequence ξ1, ξ2, . . . . We can write, by exploiting
again the canonical property of the function f , the identity

n−k/2In,k(f) = nk/2

∫ ′
f(x1, . . . , xk)(µn( dx1) − µ( dx1) + ηµ( dx1))

. . . (µn( dxk) − µ( dxk) + ηµ( dxk)).

(3.12)

The random measures n1/2(µn − µ + ηµ) converge to a white noise with reference
measure µ, hence a limiting procedure in formula (3.12) yields Theorem 3.3. Moreover,
in the case of elementary functions f the central limit theorem and formula (3.12) imply
the statement of Theorem 3.3 directly. (Elementary functions are defined in formula
(1.6).) After this, Theorem 3.3 can be proved in the general case with the help of the
investigation of the L2-contraction property of some operators. I omit the details.

A similar limit theorem holds for random integrals Jn,k(f). It can be proved by
means of Theorem 3.2 and an adaptation of the above sketched argument for the proof
of Theorem 3.3. It states the following result.

Theorem 3.4. Limit theorem about multiple random integrals Jn,k(f). Let us
have a sequence of independent and identically distributed random variables ξ1, ξ2, . . .
with some non-atomic distribution µ on a measurable space (X,X ) and a function
f(x1, . . . , xk) on the k-fold product (Xk,X k) of the space (X,X ) such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞.

Let us consider for all n = 1, 2, . . . the random integrals Jn,k(f) of order k defined in
formulas (1.1) and (1.2) with the help of the empirical distribution µn of the sequence
ξ1, . . . , ξn and the function f . The random integrals Jn,k(f) converge in distribution, as
n → ∞, to the following sum U(f) of multiple Wiener–Itô integrals:

U(f) =
∑

V ⊂{1,...,k}

C(k, V )

V !
Zµ,|V |(fV ) =

∑

V ⊂{1,...,k}

C(k, V )

V !

∫

fV (xj , j ∈ V )
∏

j∈V

µW (dxj),

where the functions fV (xj j ∈ V ), V ⊂ {1, . . . , k}, are those functions defined in formula
(3.4) which appear in the Hoeffding decomposition of the function f(x1, . . . , xk), the con-
stants C(k, V ) are the limits appearing in the limit relation lim

n→∞
C(n, k, V ) = C(k, V )
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satisfied by the quantities C(n, k, V ) in formula (3.7), and µW is a white noise with
reference measure µ.

The results of this section suggest that to understand what kind of results we can
expect for the solution of problems a) and a′) it is useful to study first their simpler
counterpart, problem a′′) about the behaviour of multiple Wiener–Itô integrals. They
also show that problem a′) is interesting in the case when the distribution of degen-
erate U -statistics is investigated. The next section contains some results about these
problems.

4. Estimates on the distribution of random integrals and U-statistics

First I formulate the results about the solution of problem a′′), about the tail-behaviour
of multiple Wiener–Itô integrals.

Theorem 4.1. Let us consider a σ-finite measure µ on a measurable space (X,X )
together with a white noise µW with reference measure µ. Let us have a real-valued
function f(x1, . . . , xk) on the space (Xk,X k) which satisfies relation (1.4) with some
σ2 < ∞. Take the random integral Zµ,k(f) introduced in formula (1.5). It satisfies the
inequality

P (|Zµ,k(f)| > u) ≤ C exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (4.1)

with an appropriate constant C = C(k) > 0 depending only on the multiplicity k of the
integral.

The next example shows that the estimate of Theorem 4.1 is sharp.

Example 4.2. Let us have a σ-finite measure µ on some measurable space (X,X )
together with a white noise µW on (X,X ) with reference measure µ. Let f0(x) be a
real valued function on (X,X ) such that

∫

f0(x)2µ( dx) = 1, and take the function
f(x1, . . . , xk) = σf0(x1) · · · f0(xk) with some number σ > 0 and the Wiener–Itô integral
Zµ,k(f) introduced in formula (1.5). Then the relation

∫

f(x1, . . . , xk)2 µ( dx1) . . . µ( dxk) = σ2

holds, and the Wiener–Itô integral Zµ,k(f) satisfies the inequality

P (|Zµ,k(f)| > u) ≥ C̄
(

u
σ

)1/k
+ 1

exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (4.2)

with some constant C̄ > 0.

Let us also remark that a Wiener–Itô integral Zµ,k(f) defined in (1.5) with a ker-
nel function f satisfying relation (1.4) also satisfies the relations EZµ,k(f) = 0 and
EZµ,k(f)2 ≤ k!σ2 with the number σ2 appearing in (1.4). We can write identity in the
last inequality if the function f is symmetric, i.e. if f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k))
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for all permutations π of the set {1, . . . , k}. Hence we can interpret Theorem 4.1 in
the following way. The random integral Zµ,k(f) has expectation zero, its variance is
less than or equal to k!σ2, there is identity in this relation if f is a symmetric function,
and the tail-behaviour of the distribution of this random integral satisfies an estimate
similar to that of σηk, where η is a standard normal random variable. We cannot state
that the estimate (4.1) in Theorem 4.1 is always sharp, but Example 4.2 shows that
there are cases when the exponent in estimate (4.1) cannot be improved.

Let me also remark that the above statement can be formulated in a slightly nicer
form if we compare the distribution of Zµ,k(f) not with that of σηk, but with that of
σHk(η), where Hk(x) is the k-th Hermite polynomial with leading coefficient 1. The
identities EHk(η) = 0, EHk(η)2 = k! hold. Thus we can say not only that the tail
distributions of Zµ,k(f) and σHk(η) are similar, but in the case of a symmetric function
f also their first two moments agree.

In problems a) and a′) we can expect an estimate slightly weaker but similar to
that of Theorem 4.1. In the case of problem a′) the following result holds (see [12]).

Theorem 4.3. Let ξ1, . . . , ξn be a sequence of independent and identically distributed
random variables on a space (X,X ) with some distribution µ. Let us consider a function
f(x1, . . . , xk) on the space (Xk,X k), canonical with respect to the measure µ which
satisfies the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, (4.3)

‖f‖2
2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2, (4.4)

with some 0 < σ2 ≤ 1 together with the degenerate U -statistic In,k(f) defined in formula
(1.3) with this kernel function f . There exist some constants A = A(k) > 0 and
B = B(k) > 0 depending only on the order k of the U -statistic In,k(f) such that

P (k!n−k/2|In,k(f)| > u) ≤ A exp







− u2/k

2σ2/k
(

1 + B
(

un−k/2σ−(k+1)
)1/k

)







(4.5)

for all 0 ≤ u ≤ nk/2σk+1.

Remark: Actually, the universal constant B > 0 can be chosen independently of the
order k of the degenerate U -statistic In,k(f) in inequality (4.5).

Theorem 4.3 can be considered as a generalization of Bernstein’s inequality (The-
orem 2.2) to the multivariate case in a slightly weaker form when only the sum of
independent and identically distributed random variables is considered. Its statement,
inequality (4.5) does not contain an explicit value for the constants A and B, which are
equal to A = 2 and B = 1

3 in the case of Bernstein’s inequality. (The constant A = 2
appears, because we wrote absolute value in the probability at left-hand side of (4.5).)
There is a formal difference between formula (2.2) and the statement of formula (4.5) in
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the case k = 1, because in formula (4.5) the U -statistic In,k(f) of order k is multiplied
by n−k/2. Another difference is between them that inequality (4.5) in Theorem 4.3 is
stated under the condition 0 ≤ u ≤ nk/2σk+1, and this restriction has no counterpart in
Bernstein’s inequality. But, as I shall show, Theorem 4.3 also contains an estimate for
u ≥ nk/2σk+1 in an implicit way, and it can be considered as the multivariate version
of Bernstein’s inequality.

Beside this, Bernstein’s inequality gives a good estimate only if 0 ≤ u ≤ const.
√

nσ2

(with the normalization of Theorem 4.3, i.e. if the probability P

(

n−1/2
n
∑

k=1

Xk > u

)

is considered). As we shall see, in the multivariate case a similar picture appears. We
get a good estimate for problem a′) suggested by Theorem 4.1 only under the condition
0 ≤ u ≤ const. nk/2σk+1. Let us also observe that if 0 < u ≤ εnk/2σk+1 with a suffi-
ciently small ε > 0, then Theorem 4.3 implies the inequality P (k!n−k/2|In,k(f)| > u) ≤
A exp

{

− 1−Cε1/k

2

(

u
σ

)2/k
}

with some universal constants A > 0 and C > 0 depending

only on the order k of the U -statistic In,k(f). This means that in this case Theorem 4.3
yields an almost as good estimate as Theorem 4.1 about the distribution of multiple
Wiener–Itô integrals. We have seen that Bernstein’s inequality has a similar property
if we compare the estimate (2.2) in the case 0 < u ≤ εV 2

n with a small ε > 0 to the
central limit theorem.

To see what kind of estimate Theorem 4.3 yields in the case u ≥ nk/2σk+1 let us
observe that in condition (4.4) we have an inequality and not an identity. Hence in the

case nk/2 ≥ u > nk/2σk+1 relation (4.5) holds with σ̄ =
(

un−k/2
)1/(k+1)

, and we have

P (k!n−k/2|In,k(f)| > u) ≤ A exp
{

− 1
2(1+B)1/k

(

u
σ̄

)2/k
}

= Ae−(u2n)1/(k+1)/2(1+B)1/k

.

(The inequality nk/2 ≥ u was imposed to satisfy the condition 0 ≤ σ̄2 ≤ 1.) If u > nk/2,
then the probability at the left-hand side of (4.5) equals zero because of condition (4.3).
It is not difficult to see by means of the above calculation that Theorem 4.3 implies the
inequality

P
(

k!n−k/2|In,k(f)| > u
)

≤ c1 exp







− c2u
2/k

σ2/k
(

1 + c3

(

un−k/2σ−(k+1)
)2/k(k+1)

)







for all u > 0

(4.6)

with some universal constants c1, c2 and c3 depending only on the order k of the U -
statistic In,k(f), if the conditions of Theorem 4.3 hold. Inequality (4.6) holds for all
u ≥ 0. Arcones and Giné formulated and proved this estimate in a slightly different
but equivalent form in paper [2] under the name generalized Bernstein’s inequality.
This result is weaker than Theorem 4.3, since it does not give a good value for the
constant c2. The method of paper [2] is based on a symmetrization argument. Sym-
metrization arguments can be very useful in the study of problems b) and b′) formulated
in the Introduction, but they cannot supply a proof of Theorem 4.3 with good constants
because of some principal reasons.

The following result which can be considered as a solution of problem a) is a fairly
simple consequence of Theorem 4.1, Theorem 3.2 and formulas (3.8) and (3.9).
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Theorem 4.4. Let us take a sequence of independent and identically distributed random
variables ξ1, . . . , ξn on a measurable space (X,X ) with a non-atomic distribution µ on
it together with a measurable function f(x1, . . . , xk) on the k-fold product (Xk,X k) of
the space (X,X ) with some k ≥ 1 which satisfies conditions (4.3) and (4.4) with some
constant 0 < σ ≤ 1. Then there exist some constants C = Ck > 0 and α = αk > 0 such
that the random integral Jn,k(f) defined by formulas (1.1) and (1.2) with this sequence
of random variables ξ1, . . . , ξn and function f satisfies the inequality

P (|Jn,k(f)| > u) ≤ C exp

{

−α
(u

σ

)2/k
}

for all 0 < u ≤ nk/2σk+1. (4.7)

Theorem 4.4 provides a slightly weaker estimate on the probability considered in
Problem a) than Theorem 4.3 about its counterpart in Problem a′). It does not give an
almost optimal constant α in the inequality (4.7) for 0 ≤ u ≤ εnk/2σk+1 with a small
ε > 0. On the other hand, this estimate is sharp in that sense that disregarding the value
of the universal constant in them we cannot present a better estimate. It seems to be
appropriate in the solution of the problems about non-parametric maximum likelihood
estimates mentioned in the Introduction.

Formula (4.7) can be rewritten as an estimate on the probability P (|Jn,k(f)| > u)
in a form similar to relation (4.6), which holds for all u > 0. On the other hand,
both Theorem 4.3 and Theorem 4.4 yield a very weak estimate if u À nk/2σk+1. We
met a similar situation in Section 3 when these problems were investigated in the case
k = 1. It is natural to expect that a generalization of Bennett’s inequality holds in the
multivariate case k ≥ 2, and it gives an improvement of estimates (4.5) and (4.7) in
the case u À nk/2σk+1 for all k ≥ 1. I can prove only partial results in this direction
which are not sharp in the general case. On the other hand, there is a possibility to
give such a generalization of Example 2.4 which shows that the inequalities implied by
Theorem 4.3 or 4.4 in the case u ≥ nk/2σk+1, k ≥ 2 have only a slight improvement.

The results of Theorems 4.3 and 4.4 imply that in the case u ≤ nk/2σk+1 under the
condition of these results the probabilities P (nk/2|In,k(f)| > u) and P (|Jn,k(f)| > u)
can be bounded by P (Cσ|η|k > u) with an appropriate universal constant C = C(k) > 0
depending only on the order k of the degenerate U -statistic In,k(f) or of the multiple
random integral Jn,k(f), where the random variable η has standard normal distribution,
and σ2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk). A generalization of Example 2.4 can be
given which shows for all k ≥ 1 that in the case u À nk/2σk+1 we can have only a much
weaker estimate. I shall present such an example only for k = 2, but it can be gener-
alized for all k ≥ 1. This example is taken from my Lecture Note [14] (Example 8.6).
Here I present it without a detailed proof. The proof which exploits the properties of
Example 2.4 is not long. But I found more instructive to explain the idea behind this
example.

Example 4.5. Let ξ1, . . . , ξn be a sequence of independent, identically distributed valued
random variables taking values on the plane, i.e. on X = R2, such that ξj = (ηj,1, ηj,2),

ηj,1 and ηj,2 are independent, P (ηj,1 = 1) = P (ηj,1 = −1) = σ2

8 , P (ηj,1 = 0) = 1 − σ2

4 ,
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P (ηj,2 = 1) = P (ηj,2 = −1) = 1
2 for all 1 ≤ j ≤ n. Let us introduce the function

f(x, y) = f((x1, x2), (y1, y2)) = x1y2 + x2y1, x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2 on
X2, and define the U -statistic

In,2(f) =
∑

1≤j,k≤n, j 6=k

(ηj,1ηk,2 + ηk,1ηj,2) (4.8)

of order 2 with the above kernel function f and the sequence of independent random
variables ξ1, . . . , ξn. Then In,2(f) is a degenerate U -statistic. If u ≥ B1nσ3 with some
appropriate constant B1 > 0, B−1

2 n ≥ u ≥ B2n
−2 with a sufficiently large fixed number

B2 > 0, and 1 ≥ σ ≥ 1
n , then the estimate

P (n−1In,2(f) > u) ≥ exp
{

−Bn1/3u2/3 log
( u

nσ3

)}

(4.9)

holds with some constant B > 0 depending neither on n nor on σ.

It is not difficult to see that the U -statistic In,2(f) introduced in Example 4.5 is a
degenerate U -statistic of order two with a kernel function f such that sup |f(x, y)| ≤ 1
and σ2 =

∫

f2(x, y)µ( dx)µ( dy) = E(2ηj,1ηj,2)
2 = σ2. Example 4.5 means that in the

case u À nσ3, (i.e. if u À nk/2σk+1 with k = 2) we have a much weaker estimate than
in the case u ≤ nσ3. Let us fix the numbers u and n, and consider the dependence of our

estimate on σ. We have P (n−1|In,2(f)| > u) ≤ e−Ku/σ = e−Ku2/3n1/3

if σ = u1/3n−1/3,
and Example 4.5 shows that a rather weak improvement can be made if σ ¿ u1/3n−1/3.

To understand why the statement of Example 4.5 holds observe that we commit
a small error if the condition j 6= k is omitted from the summation in formula (4.8),

and this suggests that the approximation 1
nIn,2(f) ∼ 2

n

(

n
∑

j=1

ηj,1

)(

n
∑

j=1

ηj,2

)

causes

a negligible error. This fact together with the independence of the sequences ηj,1,
1 ≤ j ≤ n, and ηj,2, 1 ≤ j ≤ n, imply that

P (n−1In,2(f) > u) ∼ P









n
∑

j=1

ηj,1









n
∑

j=1

ηj,2



 >
nu

2





≥ P





n
∑

j=1

ηj,1 > v1



P





n
∑

j=1

ηj,2 > v2





(4.10)

with such a choice of numbers v1 and v2 for which v1v2 = nu
2 .

The first probability at the right-hand side of (4.10) can be bounded because of

the result of Example 2.4 as P

(

n
∑

j=1

ηj,1 > v1

)

≥ e−Bv1 log(4v1/nσ2) if v1 ≥ 4nσ2, and

the second probability as P

(

n
∑

j=1

ηj,2 > v2

)

≥ Ce−Kv2
2/n with some appropriate C > 0
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and K > 0 if 0 ≤ v2 ≤ n. We can get the proof of the statement of Example 4.5 by an
appropriate choice of the numbers v1 and v2.

In Theorem 4.1 the distribution of a k-fold Wiener–Itô integral Zµ,k(f) was bounded
by the distribution of σηk with a standard normal random variable η and an appropriate
constant σ. By Theorems 4.3 and 4.4 a similar, but weaker estimate holds for the
distribution of a degenerate U -statistic In,k(f) or random integral Jn,k(f). In the next
section I briefly explain why such results hold.

There is a method to get a good estimate on the moments of the random variables
considered in the above theorems, and they enable us to get a good estimate also on the
distribution of the random integrals and U -statistics appearing in these theorems. The
moments of a k-fold Wiener–Itô integral can be bounded by the moments of σηk with
an appropriate σ > 0, and this estimate implies Theorem 4.1. Theorems 4.2 and 4.4
can be proved in a similar way. But we can give a good estimate only on not too high
moments of the random variables In,k(f) and Jn,k(f), and this is the reason why we
get only a weaker result for their distribution.

5. On the proof of the results in the previous section

Theorem 4.1 can be proved by means of the following

Proposition 5.1. Let the conditions of Theorem 4.1 be satisfied for a multiple Wiener–
Itô integral Zµ,k(f) of order k. Then, with the notations of Theorem 4.1, the inequality

E (|Zµ,k(f)|)2M ≤ 1 · 3 · 5 · · · (2kM − 1)σ2M (5.1)

holds for all M = 1, 2, . . . .

By the Stirling formula Proposition 5.1 implies that

E(|Zµ,k(f)|)2M ≤ (2kM)!

2kM (kM)!
σ2M ≤ A

(

2

e

)kM

(kM)kMσ2M (5.2)

for any A >
√

2 if M ≥ M0 = M0(A), and this estimate is sharp. The following
Proposition 5.2 which can be applied in the proof of Theorem 4.3 states a similar, but
weaker inequality for the moments of normalized degenerate U -statistics.

Proposition 5.2. Let us consider a degenerate U -statistic In,k(f) of order k with
sample size n and with a kernel function f satisfying relations (4.3) and (4.4) with
some 0 < σ2 ≤ 1. Fix a positive number η > 0. There exist some universal constants
A = A(k) >

√
2, C = C(k) > 0 and M0 = M0(k) ≥ 1 depending only on the order of

the U -statistic In,k(f) such that

E
(

n−k/2k!In,k(f)
)2M

≤ A
(

1 + C
√

α
)2kM

(

2

e

)kM

(kM)
kM

σ2M

for all integers M such that kM0 ≤ kM ≤ αnσ2.

(5.3)
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The constant C = C(k) in formula (5.3) can be chosen e.g. as C = 2
√

2 which does not
depend on the order k of the U -statistic In,k(f).

Formula (5.1) can be reformulated as E(|Zµ,k(f)|)2M ≤ E(σηk)2M , where η is
a standard normal random variable. Theorem 4.1 states that the tail distribution of
k!|Zµ,k(f)| satisfies an estimate similar to that of σ|η|k. This can be deduced rel-
atively simply from Proposition 5.1 and the Markov inequality P (|Zµ,k(f)| > u) ≤
E(k!|Zµ,k(f)|)2M

u2M with an appropriate choice of the parameter M .

Proposition 5.2 gives a bound on the moments of k!n−k/2In,k(f) similar to the
estimate (5.2) on the moments of Zµ,k(f). The difference between them is that esti-

mate (5.3) in Proposition 5.2 contains a factor (1 + C
√

α)
2kM

at its right-hand side,

and it holds only for such moments E
(

k!n−k/2In,k(f)
)2M

for which kM0 ≤ kM ≤ αnσ2

with some constant M0. The parameter α > 0 in relation (5.2) can be chosen in an
arbitrary way, but it yields a really useful estimate only for not too large values. The-
orem 4.3 can be proved by means of the estimate in Proposition 5.2 and the Markov
inequality. But because of the relatively weak estimate of Proposition 5.2 we can get
only the estimate of Theorem 4.3 for degenerate U -statistics. The main step both in
the proof of Theorem 4.1 and 4.3 is to get the moment estimates of Propositions 5.1
and 5.2.

Proposition 5.1 can be proved by means of an important result about Wiener–Itô
integrals, the so-called diagram formula. This result can be found e.g. in [9]. It enables
us to rewrite the product of Wiener–Itô integrals as a sum of Wiener–Itô integrals of
different order. It got the name ‘diagram formula’, because the kernel functions of the
Wiener–Itô integrals appearing in the sum representation of the product of Wiener–
Itô integrals are defined with the help of certain diagrams. As the expectation of a
Wiener–Itô integral of order k equals zero for all k ≥ 1, the expectation of the product
equals the sum of the constant terms (i.e. of the integrals of order zero) in the diagram
formula. The sum of the constant terms in the diagram formula can be bounded, and
such a calculation leads to the proof of Proposition 5.1.

A version of the diagram formula can be proved both for the product of multiple
random integrals Jn,k(f) defined in formula (1.2) (see [10]) or for degenerate U -statistics
(see [12]) which expresses the product of multiple random integrals or degenerate U -
statistics as a sum of multiple random integrals or degenerate U -statistics of different
order. The main difference between these new and the original diagram formula about
Wiener–Itô integrals is that in the case of random (non-Gaussian) integrals or degenerate
U -statistics some new diagrams appear, and they give an additional contribution in
the sum representation of the product of random integrals Jn,k(f) or of degenerate
U -statistics In,k(f).

Proposition 5.2 can be proved by means of the diagram formula for the product
of degenerate U -statistics and a good bound on the contribution of all integrals cor-
responding to the diagrams. Theorem 4.4 can be proved similarly by means of the
diagram formula for the product of multiple random integrals Jn,k(f) (see [10]). The
main difficulty of such an approach arises, because the expected value of a k-fold ran-
dom integral Jn,k(f) (unlike that of a Wiener–Itô integral or degenerate U -statistic)
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may be non-zero also in the case k ≥ 1. The expectation of all these integrals is small,
but since the diagram formula contains a large number of such terms, it cannot sup-
ply such a sharp estimate for the moments random integrals Jn,k(f) as we have for
degenerate U -statistics In,k(f). On the other hand, Theorem 4.4 can be deduced from
Theorems 4.3, 3.2, and formulas (3.8) and (3.9).

The statement of Example 4.2 follows relatively simply from another important
result about multiple Wiener–Itô integrals, from the so-called Itô formula (see e.g. [7]
or [9]) which enables us to express the random integrals considered in Example 4.2 as
the Hermite polynomial of an appropriately defined standard normal random variable.

Here I did not formulate the diagram formula, hence I cannot explain the details
of the proof of Propositions 5.1 and 5.2. Instead of it I discuss briefly an analogous, but
simpler problem which may help in getting some feeling why such results hold.

Let us consider a sequence of independent and identically distributed random vari-

ables ξ1, . . . , ξn with expectation zero, take their sum Sn =
n
∑

j=1

ξj , and let us try to

give a good estimate on the moments ES2M
n for all M = 1, 2, . . . . Because of the

independence of the random variables ξj and the condition Eξj = 0 we can write

ES2M
n =

∑

(j1,...,js,l1,...,ls)
j1+···+js=2M, ju≥2, for all 1≤u≤s

lu 6=lu′ if u6=u′

Eξj1
l1
· · ·Eξjs

ls
. (5.4)

Simple combinatorial considerations show that a dominating number of terms at the
right-hand side of (5.4) are indexed by a vector (j1, . . . , jM , l1, . . . , lM ) such that ju = 2

for all 1 ≤ u ≤ M , and the number of such vectors is equal to
(

n
M

) (2M)!
2M ∼ nM (2M)!

2M M !
.

The last asymptotic relation holds if the number n of terms in the random sum Sn

is sufficiently large. The above considerations suggest that under not too restrictive

conditions ES2M
n ∼

(

nσ2
)M (2M)!

2M M !
= Eη2M

nσ2 , where σ2 = Eξ2 is the variance of the terms
in the sum Sn, and ηu is a random variable with normal distribution with expectation
zero and variance u. The question arises when the above heuristic argument gives a
right estimate.

For the sake of simplicity let us restrict our attention to the case when the absolute
value of the random variables ξj is bounded by 1. Let us observe that even in this case
we have to impose a condition that the variance σ2 of the random variables ξj is not too
small. Indeed, let us consider such random variables ξj , for which P (ξj = 1) = P (ξj =

−1) = σ2

2 , P (ξj = 0) = 1 − σ2. Then these random variables ξj have variance σ2, and
the contribution of the terms Eξ2M

j , 1 ≤ j ≤ n, to the sum in (5.4) equals nσ2. If σ2 is

very small, then it may occur that nσ2 À
(

nσ2
)M (2M)!

2M M !
, and the approximation given

for ES2M
n in the previous paragraph does not hold any longer. Let us observe that for

larger moments ES2M
n the choice of a smaller variance σ2 is sufficient to violate the

asymptotic relation obtained by this approximation.

A similar picture arises in Proposition 5.2. If the variance of the random variable
In,k(f) is not too small, then those terms give the essential contribution to the moments

24



of In,k(f) which correspond to such diagrams which appear also in the diagram formula
for Wiener–Itô integrals. The higher moment we estimate the stronger condition we
have to impose on the variance of In,k(f) to preserve this property and to get a good
bound on the moment we consider.

In the next Section problems b), b′) and b′′) will be discussed, where the distri-
bution of the supremum of an appropriate class of multiple random integrals Jn,k(f),
degenerate U -statistics In,k(f) and multiple Wiener–Itô integrals Zµ,k(f) will be esti-
mated for an appropriate class of functions f ∈ F . Under some appropriate conditions
for the class of functions F a similar estimate can be proved in these problems as in
their natural counterpart when only one function is taken. The only difference is that
we may have worse universal constants in the new estimates. The conditions we had
to impose in the results about problems a) and a′) appear in their counterparts prob-
lems b) and b′) in a natural way. But these conditions also have some hidden, more
surprising consequences in the study of the new problems.

6. On the supremum of random integrals and U-statistics

To formulate the results of this section first I introduce some notions which appear
in their formulation. Such properties will be introduced which say about a class of
functions that it has relatively small and in some sense dense finite subsets.

First I introduce the following definition.

Definition of Lp-dense classes of functions with respect to some measure.
Let us have a measurable space (Y,Y), together with a σ-finite measure ν and a set G
of Y measurable real valued functions on this space. We call G an Lp-dense class of
functions, 1 ≤ p < ∞, with respect to this measure ν with parameter D and exponent L
if for all numbers 1 ≥ ε > 0 there exists a finite ε-dense subset Gε = {g1, . . . , gm} ⊂ G
in the space Lp(Y,Y, ν) consisting of m ≤ Dε−L elements, i.e. there exists a set Gε ⊂ G
with m ≤ Dε−L elements such that inf

gj∈Gε

∫

|g − gj |p dν < εp for all functions g ∈ G.

We shall also need the following notion.

Definition of Lp-dense classes of functions. Let us have a measurable space (Y,Y)
and a set G of Y measurable real valued functions on this space. We call G an Lp-dense
class of functions, 1 ≤ p < ∞, with parameter D and exponent L if it is Lp-dense with
parameter D and exponent L with respect to all probability measures ν on (Y,Y).

The above introduced properties can be considered as a possible version of the so-
called ε-entropy frequently applied in the literature. Nevertheless, there seems to exist
no unanimously accepted version of this notion. Generally we shall apply the above
introduced definitions with the choice p = 2, but because of some arguments in this
paper it was more natural to introduce them in a more general form. The first result I
present can be considered as a solution of problem b′′).

Theorem 6.1 Let us consider a measurable space (X,X ) together with a σ-finite non-
atomic measure µ on it, and let µW be a white noise with reference measure µ on (X,X ).
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Let F be a countable and L2-dense class of functions f(x1, . . . , xk) on (Xk,X k) with
some parameter D and exponent L with respect to the product measure µk such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 with some 0 < σ ≤ 1 for all f ∈ F .

Let us consider the multiple Wiener integrals Zµ,k(f) introduced in formula (1.5) for
all f ∈ F . The inequality

P

(

sup
f∈F

|Zµ,k(f)| > u

)

≤ C(D+1) exp

{

−α
(u

σ

)2/k
}

if
(u

σ

)2/k

≥ ML log
2

σ
(6.1)

holds with some universal constants C = C(k) > 0, M = M(k) > 0 and α = α(k) > 0.

The next two results can be considered as a solution of problems b) and b′).

Theorem 6.2. Let us have a non-atomic probability measure µ on a measurable space
(X,X ) together with a countable and L2-dense class F of functions f = f(x1, . . . , xk)
of k variables with some parameter D and exponent L, L ≥ 1, on the product space
(Xk,X k) which satisfies the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, for all f ∈ F (6.2)

and

‖f‖2
2 = Ef2(ξ1, . . . , ξk) =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 for all f ∈ F
(6.3)

with some constant 0 < σ ≤ 1. Then there exist some constants C = C(k) > 0,
α = α(k) > 0 and M = M(k) > 0 depending only on the parameter k such that the
supremum of the random integrals Jn,k(f), f ∈ F , defined by formula (1.2) satisfies the
inequality

P

(

sup
f∈F

|Jn,k(f)| ≥ u

)

≤ CD exp

{

−α
(u

σ

)2/k
}

if nσ2 ≥
(u

σ

)2/k

≥ M(L + β)3/2 log
2

σ
,

(6.4)

where β = max
(

log D
log n , 0

)

and the numbers D and L agree with the parameter and

exponent of the L2-dense class F .

Theorem 6.3. Let us have a probability measure µ on a measurable space (X,X )
together with a countable and L2-dense class F of functions f = f(x1, . . . , xk) of k
variables with some parameter D and exponent L, L ≥ 1, on the product space (Xk,X k)
which satisfies conditions (6.2) and (6.3) with some constant 0 < σ ≤ 1. Beside these
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conditions let us also assume that the U -statistics In,k(f) defined with the help of a
sequence of independent µ distributed random variables ξ1, . . . , ξn are degenerate for all
f ∈ F , or in an equivalent form, all functions f ∈ F are canonical with respect to
the measure µ. Then there exist some constants C = C(k) > 0, α = α(k) > 0 and
M = M(k) > 0 depending only on the parameter k such that the inequality

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ CD exp

{

−α
(u

σ

)2/k
}

if nσ2 ≥
(u

σ

)2/k

≥ M(L + β)3/2 log
2

σ
,

(6.5)

holds, where β = max
(

log D
log n , 0

)

and the number D and L agree with the parameter and

exponent of the L2-dense class F .

The above theorems say that under some conditions on the class of functions F
we can give an almost as good estimate for problems b), b′) and b′′) as for the analo-
gous problems a), a′) and a′′), where similar problems were investigated, but only one
function f was considered. An essential restriction in the results of Theorems 6.1, 6.2

and 6.3 is that the condition
(

u
σ

)2/k ≥ M(L,D) log 2
σ is imposed in them with some

constant M(L,D, k) depending on the exponent L and parameter D of the L2-dense
class F . In Theorem 6.1 we have chosen M(L,D, k) = ML, in Theorems 6.2 and 6.3
M(L,D, k) = M(L + β)3/2 with an appropriate universal constant M = M(k) and

β = max
(

0, log D
log n

)

. We are interested not so much in a good choice of the quantity

M(L,D, k) in these results. Actually, they could have been chosen in a better way. We
would like to understand why our results hold only under such a condition.

I shall also discuss some other questions related to the above theorems. Beside

the role of the lower bound on
(

u
σ

)2/k
one would also like to understand why we have

imposed the condition of L2-dense property for the class of functions F in Theorems 6.2
and 6.3. This is a stronger restriction than the condition about the L2-dense property
of the class F with respect to the measure µk imposed in Theorem 6.1. It may be a little
bit mysterious why we need in Theorems 6.2 and 6.3 the condition that this class of
functions must be L2(ν)-dense with respect to such probability measures ν which seem
to have no relation to our problems. I can give only a partial answer to this question. In
the next section I present a very brief sketch of the proofs, and it shows that in the proof
of Theorems 6.2 and 6.3 we apply the L2-dense property of the class of functions F in
the form as we have imposed it. I shall discuss another question which also naturally
arises in this context. One would like to know some results which enable us to check
the L2-dense property and which show that it holds in many interesting cases.

I shall discuss still another problem related to the above results. One would like to
weaken the condition by which the classes of functions F must be countable. Let me
recall that in the Introduction I mentioned that our results can be applied in the study
of some non-parametric maximum likelihood problems. In these applications such cases
may occur where we have to work with the supremum of non-countably infinite random
integrals. I shall discuss this question separately at the end of this section.
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I show an example which shows that the condition
(

u
σ

)2/k ≥ M(L,D, k) log 2
σ with

some appropriate constant M(L,D, k) > 0 cannot be omitted from Theorem 6.1. In this
example we shall take ([0, 1],B), i.e. the interval [0, 1] together with the Borel σ-algebra
as the measurable space (X,X ), and introduce the Lebesgue measure λ on [0, 1] together
with the usual white noise λW with the Lebesgue measure as the reference measure.
We define the class of functions of k variables F = Fσ on ([0, 1]k,Bk) consisting of

the indicator functions of the k-dimensional rectangles
k
∏

j=1

[aj , bj ] ⊂ [0, 1]k such that all

numbers aj and bj , 1 ≤ j ≤ k, are rational, and the volume of these rectangles satisfy

the condition
k
∏

j=1

(bj − aj) ≤ σ2 with some fixed number σ. It can be seen that this

countable class of functions F is L2-dense with respect to the measure λ, (moreover it
is L2-dense in the general sense), hence Theorem 6.1 can be applied for the supremum
of the Wiener–Itô integrals Zλ,k(f) with the above class of functions f ∈ F .

Let us choose some small number σ > 0 such that σ2/k is a rational number, and
let us define the functions fj as the indicator functions of the k-dimensional cube with
edges [al, al+1] = [(j−1)σ2/k, jσ2/k], 1 ≤ l ≤ for all 1 ≤ j ≤ N , with N = [σ−2/k], where
[x] denotes the integer part of the number x. Then all these functions fj are elements
of the above defined class of functions F = Fσ. The integrals Zλ,k(fj), 1 ≤ j ≤ N , are
independent random variables. Hence

P

(

sup
f∈F

|Zλ,k(f)| > u

)

≥ P

(

sup
1≤j≤N

|Zλ,k(fj)| > u

)

= 1 − P (|Zλ,k(f1)| ≤ u)N (6.6)

for all numbers u > 0. I will show with the help of relation (6.6) that for a small

σ > 0 and such a number u for which
(

u
σ

)2/k
= a log 2

σ with some a < 4
k the probability

P

(

sup
f∈F

|Zλ,k(f)| > u

)

is very close to 1.

Indeed, it can be seen with the help of the Itô formula that for all 0 < γ < 1 there

exists some σ0 = σ0(γ) such that P (|Zλ,k(f1)| ≤ u) ≤ 1− e−γ(u/σ)2/k/2 = 1−
(

σ
2

)γa/2
if

0 < σ < σ0. (Actually a similar calculation is applied also in the proof of the statement
of Example 5.2.) Hence relation (6.6) and the inequality N ≥ σ−2/k − 1 imply that

P

(

sup
f∈F

|Zλ,k(f)| > u

)

≥ 1 −
(

1 −
(

σ
2

)γa/2
)σ−2/k−1

. By choosing γ sufficiently close

to 1 it can be shown with the help of the above relation that with a sufficiently small

σ > 0 and the above choice of the number u the probability P

(

sup
f∈F

|Zλ,k(f)| > u

)

is

almost 1.

The above calculation shows that a condition of the type
(

u
σ

)2/k ≥ M(L,D, k) log 2
σ

cannot be dropped in Theorem 6.1. With some extra work a similar example can be
made in the case of Theorem 6.2. In this example we can choose the same space (X,X ),
the same class of functions F = Fσ, only the white noise has to be replaced for instance
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by a sequence of independent random variables ξ1, . . . , ξn with uniform distribution on
the unit interval and with a sufficiently large sample size n. (The lower bound on the
sample size should depend also on σ.) Also in the case of Theorem 6.3 a similar example
can be constructed. I omit the details.

The theory of Vapnik–Červonenkis classes is a fairly popular and important subject
in probability theory. I shall show that this theory is also useful in the study of our
problems. It provides a useful sufficient condition for the L2-dense property of a class
of functions, a property which played an important role in Theorems 6.2 and 6.3. To
formulate the result interesting for us first I recall the notion of Vapnik–Červonenkis
classes.

Definition of Vapnik-Červonenkis classes of sets and functions. Let a set S be
given, and let us select a class D consisting of certain subsets of this set S. We call D
a Vapnik–Červonenkis class if there exist two real numbers B and K such that for all
positive integers n and subsets S0(n) = {x1, . . . , xn} ⊂ S of cardinality n of the set S
the collection of sets of the form S0(n)∩D, D ∈ D, contains no more than BnK subsets
of S0(n). We shall call B the parameter and K the exponent of this Vapnik–Červonenkis
class.

A class of real valued functions F on a space (Y,Y) is called a Vapnik–Červonenkis
class if the collection of graphs of these functions is a Vapnik–Červonenkis class, i.e. if
the sets A(f) = {(y, t) : y ∈ Y, min(0, f(y)) ≤ t ≤ max(0, f(y))}, f ∈ F , constitute a
Vapnik–Červonenkis class of subsets of the product space S = Y × R1.

The theory about Vapnik–Červonenkis classes has a big literature. There are results
which give a good possibility to show that certain classes of sets or functions are Vapnik–
Červonenkis classes. Here I do not discuss them. I only present an important result
of Richard Dudley, which states that a Vapnik–Červonenkis class of functions bounded
by 1 is an L1-dense class of functions.

Theorem 6.4. Let f(y), f ∈ F , be a Vapnik–Červonenkis class of real valued functions
on some measurable space (Y,Y) such that sup

y∈Y
|f(y)| ≤ 1 for all f ∈ F . Then F is an

L1-dense class of functions on (Y,Y). More explicitly, if F is a Vapnik–Červonenkis
class with parameter B ≥ 1 and exponent K > 0, then it is an L1-dense class with
exponent L = 2K and parameter D = CB2(4K)2K with some universal constant C > 0.

The proof of this result can be found in [18] (25 Approximation Lemma) or in
my Lecture Note [14]. Formally, Theorem 6.4 gives a sufficient condition for a class of
functions to be an L1-dense class. But it is fairly simple to show that a class of functions
satisfying the conditions of Theorem 6.4 is not only an L1, but also an L2-dense class.
Indeed, an L1-dense class of functions whose absolute values are bounded by 1 in the
supremum norm is also an L2-dense class, only with a possibly different exponent and
parameter. I finish this section by discussing the problem how to replace the condition
of countable cardinality of the class of functions in Theorems 6.2 and 6.3 by a useful
weaker condition.
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On the supremum of non-countable classes of random integrals and U-

statistics

First I introduce the following notion.

Definition of countably approximable classes of random variables. Let a class
of random variables U(f), f ∈ F , indexed by a class of functions on a measurable space
(Y,Y) be given. We say that this class of random variables U(f), f ∈ F , is countably
approximable if there is a countable subset F ′ ⊂ F such that for all numbers u > 0 the
sets A(u) = {ω : sup

f∈F
|U(f)(ω)| ≥ u} and B(u) = {ω : sup

f∈F ′

|U(f)(ω)| ≥ u} satisfy the

identity P (A(u) \ B(u)) = 0.

Clearly, B(u) ⊂ A(u) for the sets A(u) and B(u). In the above definition we
demanded that for all u > 0 the set B(u) should be almost as large as A(u). It is
fairly simple to see that in Theorems 6.1, 6.2 and 6.3 the condition about the countable
cardinality of the class of functions F can be replaced by the weaker condition that the
class of random variables Zµ,k(f), Jn,k(f) or In,k(f), f ∈ F , is a countably approximable
class of functions. One would like to get some results which enable us to check this
property. The following simple lemma (see Lemma 4.3 in [14]) may be useful for us.

Lemma 6.5. Let a class of random variables U(f), f ∈ F , indexed by some set F of
functions on a space (Y,Y) be given. If there exists a countable subset F ′ ⊂ F of the set
F such that the sets A(u) = {ω : sup

f∈F
|U(f)(ω)| ≥ u} and B(u) = {ω : sup

f∈F ′

|U(f)(ω)| ≥

u} introduced for all u > 0 in the definition of countable approximability satisfy the
relation A(u) ⊂ B(u − ε) for all u > ε > 0, then the class of random variables U(f),
f ∈ F , is countably approximable.

The above property holds if for all f ∈ F , ε > 0 and ω ∈ Ω there exists a function
f̄ = f̄(f, ε, ω) ∈ F ′ such that |U(f̄)(ω)| ≥ |U(f)(ω)| − ε.

Thus to prove the countable approximability property of a class of random variables
U(f), f ∈ F , it is enough to check the condition formulated in the second paragraph of
Lemma 6.5. I present an example when this condition can be checked. This example is
interesting in particular, because in the study of non-parametric maximum likelihood
problems such examples have to be considered.

Let us fix a function f(x1, . . . , xk), sup |f(x1, . . . , xk)| ≤ 1, on the space (Xk,X k) =
(Rks,Bks) with some s ≥ 1, where Bt denotes the Borel σ-algebra on the Euclidean space
Rt, together with some probability measure µ on (Rs,Bs). For all vectors (u1, . . . , uk),
(v1, . . . , vk) such that uj , vj ∈ Rs and uj ≤ vj , 1 ≤ j ≤ k, (i.e. all coordinates of uj is
smaller than or equal to the corresponding coordinate of vj) let us define the function
fu1,...,uk,v1,...,vk

which equals the function f on the rectangle [u1, v1] × · · · [uk, vk], and
it is zero outside of this rectangle.

Let us consider a sequence of i.i.d. random variables ξ1, . . . , ξn taking values in
the space (Rs,Bs) with some distribution µ, and define the empirical measure µn

and random integrals Jn,k(fu1,...,uk,v1,...,vk
) by formulas (1.1) and (1.2) for all vectors
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(u1, . . . , uk), (v1, . . . , vk), uj ≤ vj for all 1 ≤ j ≤ k, with the above defined functions
fu1,...,uk,v1,...,vk

. The following result holds (see Lemma 4.4 in [14]).

Lemma 6.6. Let us take n independent and identically distributed random variables
ξ1, . . . , ξn with values in the space (Rs,Bs). Let us define with the help of their dis-
tribution µ and the empirical distribution µn determined by them the class of random
variables Jn,k(fu1,...,uk,v1,...,vk

) introduced in formula (1.2), where the class of kernel
functions F in these integrals consists of all functions fu1,...,uk,v1,...,vk

∈ (Rsk,Bsk),
uj , vj ∈ Rs, uj ≤ vj, 1 ≤ j ≤ k, introduced in the last but one paragraph. This class of
random variables Jn,k(f), f ∈ F , is countably approximable.

Let me also remark that the class of functions fu1,...,uk,v1,...,vk
is also an L2-dense

class of functions, actually it is also a Vapnik–Červonenkis class of functions. As a
consequence, Theorem 6.2 can be applied for this class of functions.

To understand better the picture behind the above results let us make the following
remark. The class of random variables Zµ,k(f), Jn,k(f) or In,k(f), f ∈ F , can be
considered as a stochastic process indexed by the functions f ∈ F , and we estimate the
supremum of this stochastic process. In the study of a stochastic process with a large
parameter set one introduces some smoothness type property of the trajectories which
can be satisfied. Here we followed a very similar approach. The condition formulated in
the second paragraph of Lemma 6.5 can be considered as the smoothness type property
needed in our problem.

In the study of a general stochastic process one has to make special efforts to find its
right version with sufficiently smooth trajectories. In the case of the random processes
Jn,k(f) or In,k(f), f ∈ F , this right version can be constructed in a natural, simple way.
We have a finite sequence of random variables ξ1(ω), . . . , ξn(ω) at the start, and we can
define the random integrals Jn,k(f)(ω) or U -statistics In,k(f)(ω), f ∈ F , for all ω ∈ Ω
on the probability field (Ω,A, P ) where the random variables ξ1(ω), . . . , ξn(ω) are living
separately. It remains to check whether the ‘trajectories’ of this random process have
the ‘smoothness properties’ necessary for us. The case of a class of Wiener–Itô integrals
Zµ,k(f), f ∈ F , is different. Wiener–Itô integrals are defined with the help of some L2-
limit procedure. Hence each random integral Zµ,k(f) is defined only with probability 1,
and in the case of a non-countable set of functions F we have to find the right version
Zµ,k(f), f ∈ F , of the Wiener–Itô integrals to get a countably approximable class of
random variables.

R. M. Dudley (see e.g. [4]) worked out a rather deep theory to overcome the mea-
surability difficulties appearing in the case of a non-countable set of random variables
by working with analytic sets, Suslin property, outer probability. e.t.c. I must admit
that I do not know the precise relation between this theory and our method. At any
rate, in the problems discussed here our elementary approach seems to be satisfactory.

In the next two sections I discuss the idea of the proof of Theorems 6.1, 6.2 and 6.3.
A simple and natural approach, the so-called chaining argument suffices to prove The-
orem 6.1. In the case of Theorems 6.2 and 6.3 this chaining argument can only help to
reduce the proof to a slightly weaker statement, and we apply an essentially different
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method based on some randomization arguments to complete the proof. Since in the
multivariate case k ≥ 2 some essential additional difficulties appear, it seemed to be
more natural to discuss it in a separate Section.

7. The method of proof of Theorems 6.1, 6.2 and 6.3

There is a simple but useful method, called the chaining argument, which helps us to
prove Theorem 6.1. It suggests to take an appropriate increasing sequence Fj , j =
0, 1, . . . , of L2-dense subsets of the class of functions F and to give a good estimate on
the supremum of the Wiener–Itô integrals Zµ,k(f), f ∈ Fj , for all j = 0, 1, . . . .

In the application of this method let us first define a sequence of subclasses Gj of
F , j = 0, 1, 2, . . . , such that Gj = {gj,1, . . . , gj,mj} ⊂ F is an 2−jkσ-dense subset of F
in the L2(µ

k)-norm, i.e. let

inf
1≤l≤mj

ρ(f, gj,l)
2 = inf

1≤l≤mj

∫

(f(x1, . . . , xk) − gj,l(x1, . . . , xk))2µ( dx1) . . . µ( dxk)

≤ 2−2jkσ2

(7.1)
for all f ∈ F , and let mj ≤ D2jkLσ−L. Such sets Gj exist because of the conditions

of Theorem 6.1. Let us also define the classes of functions Fj =
j
⋃

p=0
Gp, and sets Bj =

Bj(u) =

{

ω : sup
f∈Fj

Zµ,k(f)(ω) ≥ u
(

1 − 2−jk/2
)

}

, j = 0, 1, 2, . . . . Given a function

fj+1,l ∈ Gj+1 let us choose such a function fj,l′ ∈ Fj with some l′ = l′(l) for which
ρ(fj,l′ , fj+1,l) ≤ 2−jkσ with the function ρ(f, g) defined in formula (7.1). Then

P (Bj+1) ≤ P (Bj) +

mj+1
∑

l=1

P
(

|Zµ,k(fj+1,l − fj,l′)| > u2−k(j+1)/2
)

. (7.2)

Theorem 4.1 enables us to give a good estimate on the terms in the sum at the right-
hand side of (7.2). Similarly, it enables us to give a good estimate on P (B0). With
the help of some small modification of the construction we also can guarantee that
∞
⋃

j=0

Fj = F . Then we can get the proof of Theorem 6.1 with the help of the estimates

in Theorem 4.1.

Theorem 6.2 can be deduced from Theorem 6.3 relatively simply with the help of
Theorem 3.3, since Theorem 6.3 enables to give a good bound on all terms in the sum
at the right-hand side of formula (3.7). The only non-trivial step in this argument is
to show that the set of functions fV , f ∈ F , appearing in formula (3.7) satisfy the
estimates we need in the application of Theorem 6.3. Relations (3.8) and (3.9) are parts
of the estimates we need. Beside this, we have to show that if F is an L2-dense class
of functions, then the same relation holds for the class of functions FV = {fV : f ∈ F}
for all sets V ⊂ {1, . . . , k}. This relation can also be shown with the help of a not too
difficult proof (see [11] or [14]), but this question will be not discussed here.
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One may try to prove Theorem 6.3, similarly to Theorem 6.1, with the help of the
chaining argument. But this method does not work well in this case. The reason for its
weakness is that the tail distribution of a degenerate U -statistic with a small variance
σ2 does not satisfy such a good estimate as the tail distribution of a multiple Wiener–Itô
integral. At this point the condition u ≤ nk/2σk+1 in Theorem 4.2 plays an important
role. Let us recall that, as Example 4.5 shows, the tail distribution of the normalized
degenerated U -statistics n−k/2In,k(f) satisfies only a relatively weak estimate at level u
if u À nk/2σk+1. We may try to work with an estimate analogous to relation (7.2) in
the proof of Theorem 6.3. But the probabilities appearing at the right-hand side of such
an estimate cannot be well estimated for large indices j.

Thus we can start the procedure of the chaining argument, but after finitely many
steps we have to stop it. In such a way we can find a relatively dense subset F0 ⊂ F
(in L2(µ) norm) such that a good estimate can be given for the distribution of the
supremum sup

f∈F0

In,k(f). This result enables us to reduce Theorem 6.3 to a slightly

weaker statement formulated in Proposition 7.1 below, but it cannot yield more help.
Nevertheless, such a reduction turned out to be useful.

Proposition 7.1. Let us have a probability measure µ on a measurable space (X,X )
together with a sequence of independent and µ distributed random variables ξ1, . . . , ξn

and a countable L2-dense class F of canonical kernel functions f = f(x1, . . . , xk) (with
respect to the measure µ) with some parameter D and exponent L on the product space
(Xk,X k) such that all functions f ∈ F satisfy conditions (6.2) and (6.3) with some
0 < σ ≤ 1. Let us consider the (degenerate) U -statistics In,k(f) with the random
sequence ξ1, . . . , ξn and kernel functions f ∈ F . There exists a sufficiently large constant
K = K(k) together with some numbers C̄ = C̄(k) > 0, γ = γ(k) > 0 and threshold
index A0 = A0(k) > 0 depending only on the order k of the U -statistics such that if

nσ2 > K(L+β) log n with β = max
(

log D
log n , 0

)

, then the degenerate U -statistics In,k(f),

f ∈ F , satisfy the inequality

P

(

sup
f∈F

|n−k/2In,k(f)| ≥ Ank/2σk+1

)

≤ C̄e−γA1/2knσ2

if A ≥ A0. (7.3)

The statement of Proposition 7.1 is similar to that of Theorem 6.3. The essential dif-
ference between them is that Proposition 7.1 yields an estimate only for u ≥ A0n

k/2σk+1

with a sufficiently large constant A0, i.e. for relatively large numbers u. In the case
u À nk/2σk+1 it yields a weaker estimate than formula (6.5) in Theorem 6.3, but ac-
tually we need this estimate only in the case when the number A in formula (7.3) is
bounded away both from zero and infinity.

The reduction of Theorem 6.3 to Proposition 7.1 is useful for us, because the
proof of the latter result is based on a symmetrization argument which works only
for such numbers u = Ank/2σk+1 which satisfy the conditions of Proposition 7.1. It
may seem pure luck that Proposition 7.1 covers the case needed to complete the proof of
Theorem 6.3 after the application of the chaining argument. But this may have a deeper
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cause. The proof of Proposition 7.1, briefly explained below, is based on an inductive
procedure. In each step of this procedure we diminish the number A0 for which we can
show that inequality (7.3) holds for all numbers Ank/2σk+1 with A ≥ A0. We follow this
diminishing procedure of the number A0 as far as we can. As the proof shows we have to
stop at that point, where the probabilities we are interested have the ‘typical magnitude’
and not the appearance of some ‘irregular event’ yields the main contribution to their
values. This means that we have to finish the application of the method of the chaining
argument and the inductive procedure in the proof of Proposition 7.1 at the same point.

In the symmetrization argument applied in the proof of Proposition 7.1 several
additional difficulties arise if the multivariate case k ≥ 2 is considered. Hence in this
section I discuss only the case k = 1. A degenerate U -statistic In,1(f) of order 1 is the
sum of independent, identically distributed random variables with expectation zero. In
this paper the proof of Proposition 7.1 will be only briefly explained. A detailed proof
can be found in [11] or [14]. Let me also remark that the method of these works was
taken from Alexander’s paper [1], where all ideas appeared in a different context.

We shall bound the probability appearing at the left-hand side of (7.3) (with k = 1)
from above by the probability of the event that the supremum of appropriate randomized
sums is larger than some number. We apply a symmetrization method which means that
we estimate an expression we want to bound by means of a randomized (symmetrized)
expression. Lemma 7.2, formulated below, has such a character.

Lemma 7.2. Let us fix a countable class of functions F on a measurable space (X,X )
together with a real number 0 < σ < 1. Consider a sequence of independent, identically
distributed X-valued random variables ξ1, . . . , ξn such that Ef(ξ1) = 0, Ef2(ξ1) ≤ σ2

for all f ∈ F together with another sequence ε1, . . . , εn of independent random variables
with distribution P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, independent also of the
random sequence ξ1, . . . , ξn. Then

P





1√
n

sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

f(ξj)

∣

∣

∣

∣

∣

∣

≥ An1/2σ2





≤ 4P





1√
n

sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

∣

≥ A

3
n1/2σ2



 if A ≥ 3
√

2√
nσ

.

(7.4)

Let us first understand why Lemma 7.2 can help in the proof of Proposition 7.1. It
enables us to reduce the estimate of the probability at the left-hand side of formula (7.4)
to that at its right-hand side. This reduction turned out to be useful for the follow-
ing reason. At the right-hand side of formula 7.4 we have the probability of such an
event which depends on the random variables ξ1, . . . , ξn and some randomizing terms
ε1, . . . , εn. Let us estimate the probability of this event by bounding first its conditional
probability under the condition that the values of the random variables ξ1, . . . , ξn are
prescribed. These conditional probabilities can be well estimated by means of Hoeffd-
ing’s inequality formulated below, and the estimates we get for them also yield a good
bound on the expression at the right-hand side of (7.4).
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Hoeffding’s inequality states that the linear combinations of independent random
variables εj , P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, behave so as the central limit
theorem suggests. It is formulated in a more explicit way in the following Theorem 7.3.

Theorem 7.3 (Hoeffding’s inequality). Let ε1, . . . , εn be independent random vari-
ables, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, and let a1, . . . , an be arbitrary real

numbers. Put V =
n
∑

j=1

ajεj. Then

P (V > y) ≤ exp

{

− y2

2
∑n

j=1 a2
j

}

for all y > 0. (7.5)

As we shall see, the application of Lemma 7.2 together with the above mentioned
conditioning argument and Hoeffding’s inequality enable us to reduce the estimation of

the distribution of sup
f∈F

n
∑

j=1

f(ξj) to that of sup
f∈F

n
∑

j=1

f2(ξj) ≤ sup
f∈F

n
∑

j=1

[f2(ξj)−Ef2(ξj)]+

n sup
f∈F

Ef2(ξ1). At first sight it may seem so that we did not gain very much by applying

this approach. We have replaced the estimation of the supremum of a class of sums of
independent and identically distributed random variables to the estimation of a similar
supremum. But a closer look shows that this method can help us in finding a proof of
Proposition 7.1. We have to follow at what level we wanted to bound the distribution
of the supremum in the original problem, and what level we have to choose in the
modified problem to get a good estimate in the problem we are interested in. It turns
out that in the second problem we need a good estimate about the distribution of
the supremum of a class of sums of independent and identically distributed random
variables at a considerable higher level. This observation enables us to work out an
inductive procedure which leads to the proof of Proposition 7.1.

Indeed, in Proposition 7.1 we have to prove estimate (7.3) for all numbers A ≥ A0

with some appropriate number A0. Let us observe that this estimate trivially holds
if A0 > σ−2, because in this case the boundedness condition (6.2) on the functions
f ∈ F implies that the probability at the left-hand side of (7.3) equals zero. The
argument of the previous paragraph suggests to show that if relation (7.3) holds for
some constant A0, then it also holds for a smaller A0 and to prove Proposition 7.1 by
an inductive procedure in which we diminish the number A0 at each step.

The actual proof consists of an elaboration of the details in the above heuristic
approach. An inductive procedure is applied in which it is shown that if relation (7.3)
holds with some number A0 for a class of functions F satisfying the conditions of

Proposition 7.1, then this relation also holds for it if A0 is replaced by A
3/4
0 , provided

that A0 is larger than some fixed universal constant. I would like to emphasize that
we prove this statement not only for the class of functions F we are interested in, but
simultaneously for all classes of functions which satisfy the conditions of Proposition 7.1.
As we want to prove the inductive statement for a class of functions F , then we apply our
previous information not for this class of functions, but for another appropriately defined
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class of functions F ′ = F ′(F) which also satisfies the conditions of Propositions 7.1. I
omit the details of the proof, I only discuss one point which deserves special attention.

Hoeffding’s inequality, applied in the justification of the inductive procedure leading
to the proof of Proposition 7.1 gives an estimate for the distribution of a single sum,
while we need a good estimate on the supremum of a class of sums. The question may
arise whether this does not cause some problem in the proof. I try to briefly explain
that the reason to introduce the condition about the L2-dense property of the class F
was to overcome this difficulty.

In the inductive procedure we want to prove that relation (7.3) holds for all

A ≥ A
3/4
0 if it holds for all A ≥ A0. It can be shown by means of the inductive

assumption which states that relation (7.3) holds for A ≥ A0 and Hoeffding’s inequality
(Theorem 7.3) that there is a set D ⊂ Ω such that the conditional probabilities

P





1√
n

∣

∣

∣

∣

∣

∣

n
∑

j=1

εjf(ξj)

∣

∣

∣

∣

∣

∣

≥ An1/2σ2

6

∣

∣

∣

∣

∣

∣

ξ1(ω), . . . ξn(ω)



 (7.6)

are very small for all f ∈ F , and the probability of the set Ω \ D is negligibly small.
Let me emphasize that at this step of the proof we can give a good estimate about the
conditional probability in (7.6) for all functions f ∈ F if ω ∈ D, but we cannot work
with their supremum which we would need to apply formula (7.4). We overcome this
difficulty with the help of the following argument.

Let us introduce the (random) probability measure ν = ν(ω) uniformly distributed
in the points ξ1(ω), . . . , ξn(ω) for all ω ∈ D. Let us observe that the (random) measure
ν has a support consisting of n points, and the ν-measure of all points in the support
of ν equals 1

n . This implies that we can bound a function defined on the support
of the measure ν in the supremum norm by means of its L2(ν)-norm. This property
together with the L2(ν)-dense property of the class of functions F imposed in the
conditions of Proposition 7.1 imply that we can choose a finite set {f1, . . . , fm} ⊂ F
with relatively few elements m in such a way that for all f ∈ F there is some function
fl, 1 ≤ l ≤ m, whose distance from the function f in the L2(ν) norm is less than Aσ2/6,

hence inf
1≤l≤m

n−1/2

∣

∣

∣

∣

∣

n
∑

j=1

εj(f(ξj) − fl(ξj))

∣

∣

∣

∣

∣

≤ n1/2
∫

|f − fl|dν ≤ An1/2σ2

6 . The condition

that F is L2-dense with exponent L and parameter D enables us to give a good upper
bound on the number m. This is the point, where we exploited the condition that the
class of functions F is L2-dense in full strength. Since we can give a good bound on
the conditional probability in (7.6) for all functions f = fl, 1 ≤ l ≤ m, we can bound
the probability at the right-hand side of (7.4). It turns out that the estimate we get in
such a way is sufficiently sharp, and we can prove the inductive statement, hence also
Proposition 7.1 by working out the details.

I briefly explain the proof of Lemma 7.2. The randomizing terms εj , 1 ≤ j ≤ n, in
it can be introduced with the help of the following simple lemma.

Lemma 7.4. Let ξ1, . . . , ξn and ξ̄1, . . . , ξ̄n be two sequences of independent and iden-
tically distributed random variables with the same distribution µ on some measurable
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space (X,X ), independent of each other. Let ε1, . . . , εn be a sequence of independent
random variables P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, which is independent of the
random sequences ξ1, . . . , ξn and ξ̄1, . . . , ξ̄n. Take a countable set of functions F on the
space (X,X ). Then the set of random variables

1√
n

n
∑

j=1

(

f(ξj) − f(ξ̄j)
)

, f ∈ F ,

and its randomized version

1√
n

n
∑

j=1

εj

(

f(ξj) − f(ξ̄j)
)

, f ∈ F ,

have the same joint distribution.

Lemma 7.2 can be proved by means of Lemma 7.4 and some calculations. There is
one harder step in the calculations. We have to bound from above a probability of the

type P

(

1√
n

sup
f∈F

n
∑

j=1

f(ξj) > u

)

by means of a probability of the type

P





1√
n

sup
f∈F

n
∑

j=1

(

f(ξj) − f(ξ̄j)
)

> u − K





with some number K > 0. (Here we applied the notation of Lemma 7.4.) At this point
the following symmetrization lemma may be useful for us.

Lemma 7.5 (Symmetrization Lemma). Let Zp and Z̄p, p = 1, 2, . . . , be two se-
quences of random variables independent of each other, and let the random variables
Z̄p, p = 1, 2, . . . , satisfy the inequality

P (|Z̄p| ≤ α) ≥ β for all p = 1, 2, . . . (7.7)

with some numbers α ≥ 0 and β ≥ 0. Then

P

(

sup
1≤p<∞

|Zp| > α + u

)

≤ 1

β
P

(

sup
1≤p<∞

|Zp − Z̄p| > u

)

for all u > 0.

The proof of Lemma 7.5 can be found for instance in [18] (8 Symmetrization
Lemma) or in [14] Lemma 7.1.

Let us list the element of the countable class of functions F in Lemma 7.2 in the
form F = {f1, f2, . . . , }. Then Lemma 7.2 can be proved by means of Lemma 7.4 and
Lemma 7.5 with the choice of the random variables

Zp =
1√
n

n
∑

j=1

fp(ξj) and Z̄p =
1√
n

n
∑

j=1

fp(ξ̄j), p = 1, 2, . . . . (7.8)

I omit the details.

One may try to generalize the above rather briefly explained proof of Theorem 6.3
to the multivariate case k ≥ 2. Here the question arises how to generalize Lemma 7.2 to
the multivariate case and how to prove this generalization. These are highly non-trivial
problems. This will be the main subject of the next section.
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8. On the proof of Theorem 6.3 in the multivariate case

Here we are mainly interested in the question how to carry out the symmetrization
procedure in the proof of Proposition 7.1 to the multivariate case k ≥ 2. It turned out
that it is possible to reduce this problem to the investigation of modified U -statistics,
where k independent copies of the original random sequence are taken and put into the
k different arguments of the kernel function of the U -statistic of order k. Such modified
versions of U -statistics are called decoupled U -statistics in the literature, and they can
be better studied by means of the symmetrization argument we are going to apply. To
give a precise meaning of the above statements some definitions have to be introduced
and some results have to be formulated. I introduce the following notions.

The definition of decoupled and randomized decoupled U-statistics. Let us

have k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence ξ1, . . . , ξn of indepen-

dent and identically distributed random variables taking their values on a measurable
space (X,X ) together with a measurable function f(x1, . . . , xk) on the product space
(Xk,X k) with values in a separable Banach space. Then the decoupled U -statistic de-

termined by the random sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and kernel function f is

defined by the formula

Īn,k(f) =
1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

f
(

ξ
(1)
l1

, . . . , ξ
(k)
lk

)

. (8.1)

Let us have beside the sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and function f(x1, . . . , xk)

a sequence of independent random variables ε = (ε1, . . . , εn), P (εl = 1) = P (εl =
−1) = 1

2 , 1 ≤ l ≤ n, which is independent also of the sequences of random variables

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. We define the randomized decoupled U -statistic determined by

the random sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, the kernel function f and the randomiz-

ing sequence ε1, . . . , εn by the formula

Īε
n,k(f) =

1

k!

∑

1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1)
l1

, . . . , ξ
(k)
lk

)

. (8.2)

Our first goal is to reduce the study of inequality (7.3) in Proposition 7.1 to an
analogous problem about the supremum of decoupled U -statistics defined above. Then
we want to show that a symmetrization argument enables us to reduce this problem
to the study of randomized decoupled U -statistics introduced in formula (8.2). A re-
sult of de la Peña and Montgomery–Smith formulated below can be considered as the
realization of our first goal. Let me remark that both in the definition of decoupled U -
statistics and in the result of de la Peña and Montgomery–Smith such functions f are
considered which take their values in a separable Banach space, i.e. we do not restrict
our attention to real-valued functions. This is not because of my inclination for results
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in general spaces, but because in such a general setting we can get a simpler proof of
inequality (8.4) presented below. (The definition of U -statistics given in formula (1.3)
is also meaningful in the case of Banach-space valued functions f .)

Theorem 8.1. (de la Peña and Montgomery–Smith) Let us consider a sequence
of independent and identically distributed random variables ξ1, . . . , ξn on a measurable

space (X,X ) together with k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. Let us also

have a function f(x1, . . . , xk) on the k-fold product space (Xk,X k) which takes its values
on a separable Banach space B. Define the U -statistic and decoupled U -statistic In,k(f)

and Īn,k(f) with the help of the above random sequences ξ1, . . . , ξn, ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤

k, and kernel function f . There exist some constants C̄ = C̄(k) > 0 and γ = γ(k) > 0
depending only on the order k of the U -statistic such that

P (‖In,k(f)‖ > u) ≤ C̄P
(

‖Īn,k(f)‖ > γu
)

(8.3)

for all u > 0. Here ‖ · ‖ denotes the norm in the Banach space B where the function f
takes its values.

More generally, if we have a countable sequence of functions fs, s = 1, 2, . . . , taking
their values in the same separable Banach-space, then

P

(

sup
1≤s<∞

‖In,k(fs)‖ > u

)

≤ C̄P

(

sup
1≤s<∞

∥

∥Īn,k(fs)
∥

∥ > γu

)

. (8.4)

The proof of Theorem 8.2 can be found in [3] or in Appendix B of my Lecture
Note [14]. Actually [3] contains only the proof of inequality (8.3), but (8.4) can be
deduced from it simply by introducing appropriate separable Banach spaces and by
exploiting that the universal constants in formula (8.3) do not depend on the Banach
space where the random variables are living. Theorem 8.1 is useful for us, because it
shows that Proposition 7.1 simply follows from its version presented in Proposition 8.2
below, where U -statistics are replaced by decoupled U -statistics. The distribution of a
decoupled U -statistic is not changing if we replace the sequences of random variables
put in some coordinates of its kernel function by an independent copy, and this is a very
useful property in the application of symmetrization arguments. Beside this, the usual
arguments applied in calculation with usual U -statistics can be adapted to the study of
decoupled U -statistics. Now I formulate the following version of Proposition 7.1.

Proposition 8.2. Let a class of functions f ∈ F on the k-fold product (Xk,X k) of a
measurable space (X,X ), a probability measure µ on (X,X ) together with a sequence
of independent and µ distributed random variables ξ1, . . . , ξn satisfy the conditions of

Proposition 7.1. Let us take k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the random

sequence ξ1, . . . , ξn, and consider the decoupled U -statistics Īn,k(f), f ∈ F , defined with
their help by formula (8.1). There exists a sufficiently large constant K = K(k) together
with some number γ = γ(k) > 0 and threshold index A0 = A0(k) > 0 depending only on
the order k of the decoupled U -statistics we consider such that if nσ2 > K(L + β) log n
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with β = max
(

log D
log n , 0

)

, then the (degenerate) decoupled U -statistics Īn,k(f), f ∈ F ,

satisfy the following version of inequality (7.3):

P

(

sup
f∈F

|n−k/2Īn,k(f)| ≥ Ank/2σk+1

)

≤ e−γA1/2knσ2

if A ≥ A0. (8.5)

It is clear that Proposition 8.2 and Theorem 8.1 imply Proposition 7.1. Hence it is
enough to concentrate on the proof of Proposition 8.2. It is natural to try to adapt the
method applied in the proof of Proposition 7.1 in the case k = 1. I try to explain what
kind of new problems appear in the multivariate case, and how to overcome them.

The proof of Proposition 7.1 was based on a symmetrization type result formu-
lated in Lemma 7.2 and Hoeffding’s inequality (Theorem 7.3). We have to find the
multivariate versions of these results. It is not difficult to find the multivariate version
of Hoeffding’s inequality. Such a result can be found in [14] (Theorem 12.3), or [13]
contains an improved version with optimal constant in the exponent. Here I do not
formulate this result, I only explain its main content. Let us consider a homogeneous
polynomial of Rademacher functions of order k. The multivariate version of Hoeffding’s
inequality states that its tail distribution can be bounded by that of Kσηk with some
constant K = K(k) depending only on the order k of the homogeneous polynomial,
where η is a standard normal random variable, and σ2 is the variance of the random
homogeneous polynomial.

The problem about the multivariate generalization of Lemma 7.2 is much harder.
We want to prove the following multivariate version of this result.

Lemma 8.3. Let F be a class of functions on the space (Xk,X k) which satisfies the
conditions of Proposition 7.1 with some probability measure µ. Let us have k independent

copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence of independent µ distributed random

variables ξ1, . . . , ξn, and a sequence of independent random variables ε = (ε1, . . . , εn),
P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is independent also of the random

sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. Consider the decoupled U -statistics Īn,k(f) defined

with the help of these random variables by formula (8.1) together with their randomized
version Īε

n,k(f) defined in (8.2) for all f ∈ F . There exists some constant A0 = A0(k) >
0 such that the inequality

P

(

sup
f∈F

n−k/2
∣

∣Īn,k(f)
∣

∣ > Ank/2σk+1

)

< 2k+1P

(

sup
f∈F

∣

∣Īε
n,k(f)

∣

∣ > 2−(k+1)Ankσk+1

)

+ Bnk−1e−A1/(2k−1)nσ2/k (8.6)

holds for all A ≥ A0 with some appropriate constant B = B(k). One can choose for
instance B = 2k in this result.

The estimate (8.6) in Lemma 8.3 is similar to formula (7.4) in Lemma 7.2. There
is a slight difference between them, because the right-hand side of (8.6) contains an
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additional constant term. But this term is sufficiently small, and its presence causes no
problem as we try to prove Proposition 8.2 by means of Lemma 8.3. In this proof we
want to estimate the distribution of the supremum of the decoupled U -statistics Īn,k(f),
f ∈ F , defined in formula (8.1), and Lemma 8.3 helps us in reducing this problem to
an analogous one, where these decoupled U -statistics are replaced by the randomized
decoupled U -statistics Īε

n,k(f), defined in formula (8.2). This reduced problem can be
studied by taking the conditional probability of the event whose probability is considered
at the right-hand side of (8.6) with respect to the condition that all random variables

ξ
(j)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n take a prescribed value. These conditional probabilities

can be estimated by means of the multivariate version of the Hoeffding inequality, and
then an adaptation of the method described in the previous section supplies the proof
of Proposition 8.2. The proof is harder in this new case, but no new principal difficulty
arises.

Lemma 7.2 was proved by means of a simple result formulated in Lemma 7.4 which
enabled us to introduce the randomizing terms εj , 1 ≤ j ≤ n. In this result we have
taken beside the original sequence ξ1, . . . , ξn an independent copy ξ̄1, . . . , ξ̄n. In the
next Lemma 8.4 I formulate a multivariate version of Lemma 7.4 which may help in
the proof of Lemma 8.3. In its formulation I introduce beside the k independent copies

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the original sequence of independent, identically distributed

random variables ξ1, . . . , ξn appearing in the definition of a decoupled U -statistic of

order k another k independent copies ξ̄
(j)
1 , . . . , ξ̄

(j)
n , 1 ≤ j ≤ k, of this sequence. Be-

cause of notational convenience I reindex them, and I shall deal in Lemma 8.4 with 2k

independent copies ξ
(j,1)
1 , . . . , ξ

(j,1)
n and ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, of the original

sequence ξ1, . . . , ξn.

Now I formulate Lemma 8.4.

Lemma 8.4. Let us have a (non-empty) class of functions F of k variables f(x1, . . . , xk)

on a measurable space (Xk,X k) together with 2k independent copies ξ
(j,1)
1 , . . . , ξ

(j,1)
n and

ξ
(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, of a sequence of independent and identically distributed

random variables ξ1, . . . , ξn on (X,X ), and another sequence of independent random
variables ε1, . . . , εn, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, independent of all
previously considered random sequences. Let us denote the class of sequences of length
k consisting of ±1 digits by Vk, and let m(v) denote the number of digits −1 in a sequence
v = (v(1), . . . , v(k)) ∈ Vk. Let us introduce, with the help of the above notations, the
random variables Ĩn,k(f) and Ĩn,k(f, ε) as

Ĩn,k(f) =
1

k!

∑

v∈Vk

(−1)m(v)
∑

1≤lr≤n, r=1,...,k
lr 6=lr′ if r 6=r′

f
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

(8.7)

and

Ĩn,k(f, ε) =
1

k!

∑

v∈Vk

(−1)m(v)
∑

1≤lr≤n, r=1,...,k
lr 6=lr′ if r 6=r′

εl1 · · · εlkf
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

(8.8)
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for all f ∈ F . The joint distributions of the set of random variables {Ĩn,k(f); f ∈ F}
and {Ĩn,k(f, ε); f ∈ F} defined in formulas (8.7) and (8.8) agree.

The proof of Lemma 8.4 can be found as Lemma 11.5 in [14]. Actually, this proof
is not difficult. Let us observe that the inner sum in formula (8.7) is a decoupled U -
statistic, and in formula (8.8) a randomized decoupled U -statistic. (Actually they are
multiplied by k!). In formulas (8.7) and (8.8) we took such a linear combination of
these expressions which is similar to the formula appearing in the definition of Stieltjes
measures.

Let us list the functions in the class of functions F in Lemma 8.3 in the form
{f1, f2, . . . } = F , and introduce the quantities

Zp = n−k/2
∑

1≤lr≤n, r=1,...,k
lr 6=lr′ if r 6=r′

f
(

ξ
(1,1))
l1

, . . . , ξ
(k,1)
lk

)

, p = 1, 2, . . . , (8.9)

and
Z̄p = Zp − n−k/2Ĩn,k(fp), p = 1, 2, . . . , (8.10)

with the random variables Ĩn,k(f) introduced in (8.7). We would like to prove Lemma 8.3
with the help of Lemma 8.4. This can be done with the help of some calculations, but
this require to overcome some very hard problems. We should bound a probability

of the form P

(

sup
1≤p<∞

Zp > u

)

from above with the help of a probability of the form

P

(

sup
1≤p<∞

(Zp − Z̄p) > u
2

)

for all sufficiently large numbers u. We should provide such

an estimate for all not too large numbers u. The question arises how to prove such an
estimate. This problem is the most difficult part of the proof.

In the case k = 1 considered in the previous section the analogous problem could
be simply solved by means of a Symmetrization Lemma (Lemma 7.5). This Lemma
cannot be applied in the present case, because it has an important condition, by which
the sequences of random variables Zp, p = 1, 2, . . . , and Z̄p, p = 1, 2, . . . , should be
independent. In the problem of Section 7 we could work with such sequences which
satisfy this condition. On the other hand, the sequences Zp and Z̄p, p = 1, 2, . . . ,
defined in formulas (8.9) and (8.10) we have to work with now are not independent in
the case k ≥ 2. They satisfy some weak sort of independence, and the problem is how
to exploit this to get the estimates we need.

Let us first formulate such a version of the Symmetrization Lemma which can be
applied also in the problem investigated now. This is done in the next Lemma 8.5.

Lemma 8.5 (Generalized version of the Symmetrization Lemma.) Let Zp and
Z̄p, p = 1, 2, . . . , be two sequences of random variables on a probability space (Ω,A, P ).
Let a σ-algebra B ⊂ A be given on the probability space (Ω,A, P ) together with a B-
measurable set B and two numbers α > 0 and β > 0 such that the random variables Zp,
p = 1, 2, . . . , are B measurable, and the inequality

P (|Z̄p| ≤ α|B)(ω) ≥ β for all p = 1, 2, . . . if ω ∈ B (8.11)
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holds. Then

P

(

sup
1≤p<∞

|Zp| > α + u

)

≤ 1

β
P

(

sup
1≤p<∞

|Zp − Z̄p| > u

)

+ (1 − P (B)) for all u > 0.

(8.12)

The proof of Lemma 8.5 is contained together with its proof in [14] under the
name Lemma 13.1, and the proof is not hard. It consists of a natural adaptation of
the proof of the original Symmetrization Lemma, presented in Lemma 7.5. The hard
problem is to check condition formula (8.11) if we try to apply Lemma 8.5. In our case
we would like to apply it for the random variables Zp and Z̄p, p = 1, 2, . . . , defined in

formulas (8.9) and (8.10) together with the σ-algebra B = B(ξ
(j,1)
1 , . . . , ξ

(j,1)
n , 1 ≤ j ≤ k)

generated by the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , 1 ≤ j ≤ k. We would like to show

that relation (8.11) holds with this choice on a set B of probability almost 1. (Let me
emphasize that in (8.11) a set of inequalities must hold for all p = 1, 2, . . . simultaneously
if ω ∈ B.)

In the analogous problem considered in Section 7 we had to check condition (7.7)
with some appropriate constants α > 0 and β > 0 for the random variables Z̄p p =
1, 2, . . . , defined in formula (7.8). This could be checked fairly simply by the calculation
of the variance of the random variables Z̄p, p = 1, 2, . . . . A natural adaptation of this
approach is to bound from above the supremum sup

1≤p<∞
E
(

Z̄2
p |B
)

of the conditional

second moments of the random variables Z̄p, 1 ≤ p < ∞, defined in (8.10) with respect
to the σ-algebra B and to show that this expression is small with large probability. I
have followed this approach in [11] and [14]. One can get the desired estimates, but
many unpleasant technical details have to be overcome during the proof. I do not discuss
here all details, I only briefly explain what kind of problems we meet when try to apply
this method in the special case k = 2 and give some indications how we can overcome
them.

In the case k = 2 the definition of Z̄p is very similar to that of Ĩn,2(fp) defined in
(8.7) with the function f = fp. The only difference is that in the definition of Zp we
have to take the values v = (1,−1), v = (−1, 1) and v = (−1,−1) in the outer sum,
i.e. the term v = (1, 1) is dropped, and we multiply by (−1)m(v)+1 instead of (−1)m(v).
We can get the desired estimate on the conditional supremum of second moments if we
can prove a good estimate on the conditional second moments of the supremum of the
inner sums in Ĩn,2(fp), 1 ≤ p < ∞, in the case of each index v = (1,−1), v = (−1, 1)
and v = (−1,−1). If we can get a good estimate in the case v = (1,−1), then we can
get it in the remaining cases, too. So we have to give a good bound on the expression

sup
1≤p<∞

E







1

n





∑

1≤lr≤n, r=1,2, l1 6=l2

fp

(

ξ
(1,1)
l1

, ξ
(2,−1)
l2

)





2
∣

∣

∣

∣

∣

∣

∣

B






. (8.13)

Moreover, since the sequence of random variables ξ
(2,−1)
l , 1 ≤ l ≤ n, is indepen-

dent of the σ-algebra B, and the canonical property of the functions fp implies some
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orthogonalities, the estimation of the expression in (8.13) can be simplified. A detailed
calculation shows that it is enough to prove the following inequality:

Let us have a countable class F of canonical functions f(x, y) with respect to a
probability measure µ on the second power (X2,X 2) of a measurable space (X,X ),
which is L2-dense with some exponent L and parameter D, (the probability measure µ
is living in the space (X,X )) together with a sequence of independent and µ-distributed
random variables ξ1, . . . , ξn, n ≥ 2, on (X,X ), and let the relation

∫

f(x, y)2µ( dx)µ( dy) ≤ σ2, sup |f(x, y)| ≤ 1 for all f ∈ F (8.14)

hold with some number 0 < σ2 ≤ 1 which satisfies the relation nσ2 ≥ K(L+β) log n with

β = max
(

log D
log n , 0

)

and a sufficiently large fixed constant K > 0. Then the inequality

P



sup
f∈F

1

n

∫

(

n
∑

l=1

f(ξl, y)

)2

µ( dy) ≥ A2nσ4



 ≤ exp
{

−A1/3nσ2
}

(8.15)

holds if A ≥ A0 with some sufficiently large fixed constant A0.

Inequality (8.15) is similar to relation (7.3) in Proposition 7.1 in the case k = 1,
but it does not follow from it. (It follows from (7.3) in the special case when the
function f does not depend on the argument y with respect to which we integrate.)
On the other hand, inequality (8.15) can be proved by working out a similar, although
somewhat more complicated symmetrization argument and induction procedure as it
was done in the proof of Proposition 7.1 in the case k = 1. After this, inequality (8.15)
enables us to work out the symmetrization argument we need to prove Proposition 7.1
for k = 2. This procedure can be continued for all k = 2, 3, . . . . If we have already
proved Proposition 7.1 for some k, then an inequality can be formulated and proved with
the help of the already known results which enable us to carry out that symmetrization
procedure which is needed in the proof of Proposition 7.1 in the case k + 1. This is a
rather cumbersome method with a lot of technical details, hence its detailed explanation
had to be omitted from an overview paper. In the work [14] Sections 13, 14 and 15 deal
only with the proof of Proposition 7.1. Section 13 contains the proof of some preparatory
results and the formulation of the inductive statements we have to prove to get the result
of Proposition 7.1, Section 14 contains the proof of the Symmetrization arguments we
need, and finally the proof is completed with their help in Section 15.

There is an interesting theory of Talagrand about so-called concentration inequali-
ties. This theory has some relation to the questions discussed in this paper. In the last
section this relation will be discussed together with some open problems.
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9. Relation with other results and some open problems

Talagrand worked out a deep theory about so-called concentration inequalities. (See
his overview in paper [19] about this subject.) His results are closely related to the
supremum estimates described in this paper. First I discuss this relation.

On Talagrand’s concentration inequalities.

Talagrand considered a sequence of independent random variables ξ1, . . . , ξn, a class of

functions F , took the partial sums
n
∑

j=1

f(ξj) for all functions f ∈ F , and investigated

their supremum. He proved such estimates which state that this supremum is very close
to its expected value, (it is concentrated around it). The following theorem is a typical
result in this direction.

Theorem 9.1. (Theorem of Talagrand.) Consider n independent and identically
distributed random variables ξ1, . . . , ξn with values in some measurable space (X,X ).
Let F be some countable family of real-valued measurable functions of (X,X ) such that

‖f‖∞ ≤ b < ∞ for every f ∈ F . Let Z = sup
f∈F

n
∑

i=1

f(ξi) and v = E(sup
f∈F

n
∑

i=1

f2(ξi)).

Then for every positive number x,

P (Z ≥ EZ + x) ≤ K exp

{

− 1

K ′
x

b
log

(

1 +
xb

v

)}

(9.1)

and

P (Z ≥ EZ + x) ≤ K exp

{

− x2

2(c1v + c2bx)

}

, (9.2)

where K, K ′, c1 and c2 are universal positive constants. Moreover, the same inequalities
hold when replacing Z by −Z.

Inequality (9.1) can be considered as a generalization of Bennett’s inequality, in-
equality (9.2) as a generalization of Bernstein’s inequality. In these estimates the dis-
tribution of the supremum of possibly infinitely many partial sums of independent and
identically distributed functions are considered. A remarkable feature of Theorem 9.1
is that it imposes no condition about the structure of the class of functions F . In this
respect it differs from Theorems 6.2 and 6.3 in this paper, where such a class of functions
F is considered which satisfies a so-called L2-density property.

Talagrand’s study was also continued by other authors, who got interesting results.
In particular, the works of M. Ledoux [8] and P. Massart [17] are worth mentioning. In
these works the above mentioned result was improved. Such a version was proved which
also holds for the supremum of appropriate classes of sums of independent but not nec-
essarily identically distributed random variables. (On the other hand, I do not know of
such a generalization in which U -statistics of higher order are considered.) Beside this,

there are such improvements of Theorem 9.1 in which the quantity v = E(sup
f∈F

n
∑

i=1

f2(ξi))
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is replaced by σ2 = sup
f∈F

n
∑

i=1

Var (f(ξi)), i.e. the supremum of the expectation of the indi-

vidual partial sums
n
∑

i=1

f2(ξi) is considered (the statement that σ2 equals the supremum

of the expected values of the partial sums
n
∑

i=1

f2(ξi) holds if Ef(ξi) = 0 for all random

variables ξi and functions f) instead of the second moment of the supremum of these
partial sums.

On the other hand, the estimates in Theorem 9.1 contain the expected value EZ =

E

(

sup
f∈F

n
∑

i=1

f(ξi)

)

, and this quantity appears in all concentration type inequalities. This

fact has deep consequences which deserve a more detailed discussion.

Let us consider Theorem 9.1 or one of its improvements and try to understand
what kind of solution they provide for problem b) or b′) formulated in Section 1 in
the case k = 1. They supply a good estimate on the probabilities we consider for the

numbers u ≥ n−1/2EZ = n−1/2E(sup
f∈F

n
∑

i=1

f(ξi)). But to apply these results we need a

good estimate on the expectation EZ of the supremum of the partial sums we consider,
and the proof of such an estimate is a highly non-trivial problem.

Let us consider problem b′) (in the case k = 1) for such a class of functions F which
satisfies the conditions of Theorem 6.3. The considerations taken in Section 6 show
that there are such classes of functions F which satisfy the conditions of Theorem 6.3,

and for which the probability P (sup
f∈F

n−1/2
n
∑

i=1

f(ξi) > ασ log 2
σ ) is almost 1 with an

appropriate small number α > 0 for all large enough sample sizes n. (Here the number
σ is the same as in Theorem 6.3.) This means that En−1/2Z ≥ α − ε for all ε > 0
if the sample size n of the sequence ξ1, . . . , ξn is greater than n0 = n0(ε, σ). Some
calculation also shows that under the conditions of Theorem 6.3 En−1/2Z ≤ Kσ log 2

σ
with an appropriate number K > 0. (In this calculation some difficulty may arise,
because Theorem 6.3 for k = 1 does not yield a good estimate if u ≥ √

nσ2. But

we can write P (sup
f∈F

n−1/2
n
∑

i=1

f(ξi) > u) ≤ e−α(u/σ̄)2 = e−αu
√

n with σ̄2 = un−1/2 if

u ≥ √
nσ2, and this estimate is sufficient for us. We get the upper bound we formulated

for n−1/2EZ from Theorem 6.3 only under the condition nσ2 ≥ const. log 2
σ with some

appropriate constant. It can be seen that this condition is really needed, it appeared not
because of the weakness of our method. I omit the details of the calculation.) Then the
concentration inequality Theorem 9.1, or more precisely its improvement, Theorem 3
in paper [17] which gives a similar inequality, but with the quantity σ2 instead of v
implies Theorem 6.3 in the case k = 1. This means that Theorem 6.3 can be deduced
from concentration type inequalities in the case k = 1 if we can show that under its
conditions En−1/2Z ≤ Kσ log 2

σ with some appropriate K > 0 depending only on the
exponent and parameter of the L2-dense class F . Such a proof can be made (see [6]
on the basis of paper [19]), but it requires rather long and non-trivial considerations. I
prefer a direct proof of Theorem 6.3.
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Finally I discuss the question about some natural generalization of the problems
considered in this work.

Some natural generalizations of the problem discussed in this paper

Problems a), b) and a′), b′) in the case k ≥ 2 can be considered as a natural general-
ization of some questions about the behaviour of sums of independent and identically
distributed random variables to the multivariate case. It seems natural to consider the
sum of independent, but not necessarily identically distributed random variables, and
to investigate the natural multivariate generalization of the results describing their be-
haviour. The first step of such a program would be the formulation of the generalization
of problem a′) in this direction. I shall discuss this problem.

First we have to define the natural generalization of U -statistics, which can be
considered as the multivariate version of sums of independent, but not necessarily iden-
tically distributed random variables. We also have to clarify when such generalized U -
statistics can be considered as degenerate U -statistics. The following definition seems
to be natural.

Let us consider a sequence of independent, but not necessarily identically dis-
tributed random variables ξ1, . . . , ξn and a set of functions

f = {fl1,...,lk(x1, . . . , xk), 1 ≤ lj ≤ n, 1 ≤ j ≤ k, and lj 6= lj′ if j 6= j′}

on the k-fold product (Xk,X k) of a measurable space (X,X ). This set of functions f
will be considered as the class of kernel functions of the generalized U -statistic of order k
defined as

In,k(f) =
∑

1≤lj≤n, 1≤j≤k

lj 6=lj′ if j 6=j′

fl1,...,lk(ξl1 , . . . , ξlk). (9.3)

We call the generalized U -statistic In,k(f) of order k degenerate if for all sets of indices
(l1, . . . , lk) in the sum (9.3) and for all 1 ≤ j ≤ k

E(fl1,...,lk(ξl1 , . . . , ξlk)|ξls , s ∈ {1 . . . , k} \ {j}) = 0 with probability 1. (9.4)

With the help of the above notations the following generalized version of problem a′)
can be formulated.

Generalized version of problem a′). Let us consider a generalized degenerate U -
statistic In,k(f) determined by a sequence of independent random variables ξ1, . . . , ξn

and a class of kernel functions f = {fl1,...,lk(x1, . . . , xk)}. Let us give a good estimate
on the probabilities

P (|In,k(f)| > u) for all u > 0. (9.5)

One would like to get such an estimate on the probability in formula (9.5) which
contains the result of Theorem 4.3 as a special case. It may be expected that the
method of Theorem 4.3 can be adapted to the investigation of this more general problem.
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It may be worth mentioning that the method of Hoeffding’s decomposition can be
adapted to the case of generalized U -statistics, and the diagram formula about the
expression of the product of degenerate U -statistics in the form of a sum of degenerate
U -statistics can also be generalized to generalized U -statistics, although the result has
a more complicated form in this case. This means that the basic tools of the proof of
Theorem 4.3 can be applied also in the study of this problem.

Nevertheless, there remains the question how to find the right form of the estimate
of the probability in formula (9.5). This seems to be a non-trivial question. It is possible
that this is the hardest part of the problem. I make some comments about it.

It is natural to expect that generalized degenerate U -statistics In,k(f) of order k
(without normalization) satisfy the inequality

P (|In,k(f)| > u) < A exp

{

−C

(

u

Vn

)2/k
}

(9.6)

with some universal constants A = A(k) > 0 and C = C(k) > 0 in a relatively large
interval for the parameter u, where V 2

n denotes the variance of In,k(f). An essen-
tial problem is to find a relatively good constant C and to determine that interval
0 < u < Dn, where the estimate (9.6) should hold. Theorem 4.3 states that in the
case of classical degenerate U -statistics inequality (9.6) holds in the interval [0, Dn]
with Dn = const. nkσk+1, where σ2 = Ef(ξ1, . . . , ξk)2. In the special case k = 1
Dn = const.nkσk+1 = const. nσ2 = const.V 2

n . Beside this, generalized U -statistics
of order k = 1 satisfy inequality (9.6) in the interval [0, Dn] = [0, const. V 2

n ] with ap-
propriate constants A > 0 and C > 0 by Bernstein’s inequality (Theorem 2.2). We
have to understand what is the right choice of Dn in the case of generalized degen-
erate U -statistics of order k ≥ 2. In the case of classical degenerate U -statistics it is
Dn = const.nkσk+1, but it is not clear what corresponds to this quantity in the case of
generalized degenerate U -statistics. (The variance of a degenerate U -statistic of order k
is of order nkσ2.) The clarification of this question seems to be the most important
point in the solution of the generalized version of problem a′).
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6.) Giné, E. and Guillou, A. (2001) On consistency of kernel density estimators for
randomly censored data: Rates holding uniformly over adaptive intervals. Ann.
Inst. Henri Poincaré PR 37 503–522
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