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Abstract. This work is the continuation of my paper in Moscow Math.
Journal Vol. 20, No. 4 in 2020. In that paper first I proved the exis-
tence of the spectral measure of a vector-valued stationary Gaussian
random field. I also constructed there the vector-valued random spec-
tral measure corresponding to this spectral measure, presented its most
important properties, and defined the multiple Wiener–Itô integrals with
respect to it. I also proved an important identity about the products
of multiple Wiener–Itô integrals which is called the diagram formula.
Here I prove with the help of these results the multivariate version of
Itô’s formula which shows a relation between multiple Wiener–Itô inte-
grals with respect to vector-valued random spectral measures and Wick
polynomials. Wick polynomials are the multivariate versions of Hermite
polynomials. I also prove a formula that expresses the shift transforms
of a random variable given in the form of a multiple Wiener–Itô inte-
gral. These results enable us to rewrite certain non-linear functionals of
a vector-valued stationary Gaussian random field in a useful form which
suggests a limiting procedure that leads to interesting limit theorems.
Finally, I show when this limiting procedure may be carried out, i.e.,
when the limit theorems suggested by our new representation of the
investigated non-linear functionals are valid.

1. Introduction. The main results of the paper.

This work deals with the properties of vector-valued stationary Gauss-
ian random fields. In particular, one of its subjects is the problem how to
prove non-central limit theorems for certain non-linear functionals of such
random fields. It is the continuation of paper [10]. These two papers deal
with a generalized version of the problems studied in [8]. In Lecture Note [8]
I investigated scalar-valued stationary random fields. I gave a good repre-
sentation of non-linear functionals of a stationary Gaussian random field
with the help of multiple Wiener–Itô integrals with respect to the random
spectral measure of this Gaussian random field. The definition of random
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spectral measures and multiple Wiener–Itô integrals with respect to it is ex-
plained in this Lecture Note. They made possible to prove some interesting
non-central limit theorems.

This work together with paper [10] contain the natural multivariate ver-
sion of the results in [8]. Their results provide a useful representation of
non-linear functionals of a vector-valued stationary Gaussian random field
with the help of (vector-valued) multiple Wiener–Itô integrals with respect
to the random spectral measure of the underlying Gaussian field. The no-
tions needed to understand the meaning of these results are also introduced
in these works. Some useful properties of the multiple Wiener–Itô integrals
are also proved. In a subsequent paper [11] I will prove the natural multi-
variate version of the non-central limit theorems formulated in [8] with the
help of these results.

In Theorem 6 of his paper [1] Arcones formulated the multivariate version
of the non-central limit theorems proved in [8]. Actually, this is the result
we want to prove in [11]. But the formulation and proof of Arcones’ results
are unsatisfactory. He assumed that the natural multivariate versions of
some results in [8] hold true. But he did not formulate precisely the results
he applied, and even the definitions of the notions needed in the formulation
of his results are missing. In this work and in [10] I fill this gap.

Next, I briefly describe the content of the present work and compare it
with the results of [8]. In this description I also mention some results in [10].

In paper [10] I have worked out the theory of vector-valued stationary
Gaussian random fields. I introduced the spectral measure and the random
spectral measure of a vector-valued stationary Gaussian random field. I
also defined a class of generalized stationary Gaussian fields together with
their spectral and random spectral measures. The subsequent results in [10]
are valid both for classical and for these new generalized stationary Gauss-
ian random fields. I defined multiple Wiener–Itô integrals with respect to
random spectral measures and proved some important results about them.
In particular, I proved the so-called diagram formula which enables us to
rewrite the product of multiple Wiener–Itô integrals in the form of a sum of
appropriately defined multiple Wiener–itô integrals. The work [8] contained
the one-dimensional version of these results.

In [8] I considered a scalar-valued stationary Gaussian random field X(p),
p ∈ Z

ν , on the ν-dimensional integer lattice of the Euclidean space Rν , with
expectation EX(p) = 0. I have introduced the Hilbert space H consisting
of those random variables with finite second moment which are measurable
with respect to the σ-algebra generated by the random variables X(p), p ∈
Z
ν , of our random field. Here the usual scalar product 〈ξ, η〉 = Eξη is

applied, and our goal is to understand the behavior of this Hilbert space.
It is proved in [8] that this Hilbert space H has a natural representation

as the direct sum H = H0 + H1 + H2 + · · · of orthogonal subspaces Hn,
0 ≤ n < ∞, which are invariant subspaces of the shift transforms in the
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underlying stationary Gaussian random field, and the subspace Hn consists
of those random variables which can be written in the form of an n-fold
Wiener–Itô integral with respect to the random spectral measure of the
underlying Gaussian random field. (Actually, [8] gives a more detailed de-
scription of the structure of the space H with the help of the so-called Fock
space representation. The definition of the Fock space is given on page 28
of [8], and it is denoted by ExpHG there.) The relation between the Fock
space and the Hilbert space H is formulated in Theorem 4.2 of [8] with the
help of this notation. Here I do not discuss this result.) The proof of the
above representation of the Hilbert space H is based on the so-called Itô
formula which shows a relation between Hermite polynomials and multiple
Wiener–Itô integrals. Another important result in [8], whose proof is also
based on Itô’s formula is a useful formula that enables us to calculate the
shift transforms of a random variable presented in the form of a multiple
Wiener–Itô integral.

Section 2 of this paper deals with the generalization of the above results
if we are working with vector-valued stationary Gaussian random fields.
First, the formulation and proof of the multivariate version of Itô’s formula
are given. In this result, the Wick polynomials, the multivariate generaliza-
tions of Hermite polynomials, take the role of Hermite polynomials. At the
start of Section 2, I recall their definition and most important properties
from [8]. Then I prove the multivariate version of Itô’s formula by adapting
the method of proof of its one-dimensional version. I discuss the proof of
this result in Appendix A of this paper. I explain there the picture behind
the definition of Wick polynomials, about the idea of the proof of the Itô’s
formula, and why Wick polynomials appear in Itô’s formula when vector-
valued Gaussian random fields are considered. I also discuss the question
how the remaining results of Section 2 are proved with the help of Itô’s
formula.

In this paper I consider vector-valued stationary Gaussian random fields
X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν , with expectation EX(p) = 0, p ∈
Z
ν , and a Hilbert space H defined similarly in the case of scalar-valued

random fields. It is the Hilbert space consisting of those random variables
with finite second moment which are measurable with respect to the σ-
algebra generated by the random vectors X(p), p ∈ Z

ν , of our random
field. Similarly to the one-dimensional case, there is a decomposition of
the Hilbert space H to the direct product H = H0 + H1 + H2 + · · · of
orthogonal subspaces, Hn, 0 ≤ n < ∞, which are invariant subspaces of
the shift transformations in the underlying stationary random field. But in
the case of vector-valued stationary Gaussian random fields we can prove
only a weaker result about the behavior of the subspaces Hn than in the
scalar-valued case. It is proved in Proposition 2.3 that the elements of an
everywhere dense linear subspace of Hn can be written in the form of a finite
sum of multiple Wiener–Itô integrals of order n. More explicitly, the Wick
polynomials of order n can be written as a finite sum of multiple Wiener–Itô
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integrals of order n, and they constitute an everywhere dense linear subspace
of Hn. On the other hand, we cannot represent all elements of Hn in such
a way. But even this weaker result is sufficient for our purposes.

The last result of Section 2, Proposition 2.4, contains a useful formula
about the calculation of the shift transforms of a random variable given in
the form of a multiple Wiener–Itô integral. This formula is similar to the
analogous result in the case of scalar-valued stationary random fields.

In Section 3 we deal with the question how the previously proved results
can be applied in the investigation of limit theorems for non-linear function-
als of vector-valued stationary Gaussian random fields.

In several interesting cases (and the problem investigated in paper [11]
belongs to them) the limit problem we are interested in can be reformulated
with the help of Itô’s formula and an appropriate rescaling of certain multiple
Wiener–Itô integrals we are working with to the study of a sequence of
random variables presented in a very special form, and in Section 3 we are
investigating limit theorems for such sequences of random variables.

We consider a sequence of random variables ZN , N = 1, 2, . . . , pre-
sented as a finite sum of k-fold Wiener–Itô integrals with respect to a d-
dimensional random spectral measure. We are interested in the behavior
of such a sequeqnce of random variables ZN , N = 1, 2, . . . , whose elements
are defined by formula (3.9) with the help of random spectral measures
ZG(N) = (ZG(N),1, . . . , ZG(N),d) which correspond to some spectral mea-

sures G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, defined on some torus [−AN , AN )ν ,

where AN → ∞ as N → ∞, and we integrate some kernel functions

h
(N)
j1,...,jn

(x1, . . . , xd) with respect to them. Let us remark that the random

variables ZN introduced in (3.9) are sums of finitely many multiple Wiener–
Itô integrals. Each element of this sum is indexed by some vector (j1, . . . , jk),
and the set of these indices does not depend on the parameter N . We expect
that if both the spectral measures G(N) and the kernel functions hN(j1,...,jn)
appearing in the definition of the random variables ZN behave nicely, then
these random variables have a limit as N → ∞. Somewhat more explicitly,
we expect that if the spectral measures G(N) converge to a spectral measure
G(0) of a d-dimensional (generalized) stationary Gaussian random field, and
the kernel functions hN(j1,...,jk)

(x1, . . . , xd) converge to some nice functions

h0(j1,...,jk)
(x1, . . . , xd) as N → ∞, then the random variables ZN converge in

distribution to the random variable Z0 defined in (3.12) with the help of mul-
tiple Wiener–Itô integrals of the kernel functions h0(j1,...,jk)

(x1, . . . , xd) with

respect to the random spectral measure ZG(0) corresponding to the spectral

measure G(0). Naturally, in the formulation of such a result we have to
clarify what kind of limit should hold for the spectral measures G(N) and
for the kernel functions hN(j1,...,jk)(x1, . . . , xd).

The main result of Section 3 is Proposition 3.1. First the random variables
ZN , N = 0, 1, 2, . . . , mentioned in the above discussion are precisely defined
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in formulas (3.9) and (3.12), and then Proposition 3.1 yields a sufficient con-
dition for the weak convergence of the random variables ZN to Z0 asN → ∞.
This condition consists of two parts. The first part of them demands that the
spectral measures G(N) converge to the spectral measure G(0) and the kernel
functions hN(j1,...,jk)

(x1, . . . , xd) converge to h0(j1,...,jk)
(x1, . . . , xd) as N → ∞

in a right way. This is the condition suggested by the heurisitic argument
of the previous paragraph. But to satisfy the desired weak convergence we
have to impose another condition formulated in condition (b) of Proposi-
tion 3.1. This is a compactness type condition. Heuristically, it has the
following content. There is such a compact set in R

kν that all multiple
Wiener–Itô integrals appearing in the definition of one of the random vari-
ables ZN , N = 1, 2, . . . are essentially concentrated in this compact set.
In the Appendix I explain the role of this condition with the help of some
examples.

The condition about the limiting behavior of the kernel functions
hN(j1,...,jk)

(x1, . . . , xd) is formulated in condition (a) of Proposition 3.1. The

condition imposed on the convergence of the spectral measuresG(N) deserves
special attention.

We are working with spectral measures (G(N)) = (G
(N)
j,j′ ), N = 0, 1, 2, . . . ,

1 ≤ j, j′ ≤ d, and we impose such a condition that for all indices 1 ≤

j, j′ ≤ d the coordinates G
(N)
j,j′ of our spectral measures converge to the

coordinate G
(0)
j,j′ as N → ∞ in an appropriate way. We want to consider

such cases when G(0) is the spectral measure of such a generalized stationary
Gaussian random field which belongs to the class of generalized stationary
Gaussian random fields constructed in Section 4 of [10]. This must be taken
into consideration when we want to decide what kind of convergence of
the spectal measures we impose in Proposition 3.1. The coordinates of
the spectral measures of the generalized stationary Gaussian random fields
we are working with are complex measures on R

ν with locally finite total
variation. (The definition of this notion is explained in Section 4 of [10]). In
Section 3 of this paper we define the vague convergence of complex measures
on R

ν with locally finite total variation, and in Proposition 3.1 we impose

this convergence for the coordinates G
(N)
j,j′ of the sequence spectral measures

G(N).
In Lemma 8.3 of [8] the scalar-valued version of Proposition 3.1 is formu-

lated. In that result, the notion of vague convergence also appears. But the
definition of the vague convergence in [8] and in this paper is slightly differ-
ent. In [8] the vague convergence of locally finite measures, while here the
vague convergence of complex measures on R

ν with locally finite total varia-
tion is defined. The difference between these two definitions is greater than
it may seem at the first sight. Let me remark that while the restriction of a
complex measure on R

ν with locally finite total variation to the measurable
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subsets of a compact subset of Rν is a complex measure, there are such com-
plex measures on R

ν with locally finite total variation which are not complex
measures on the measurable subsets of Rν . Hence we are considering the
vague convergence of different objects in this paper and in [8].

As I mentioned before, Proposition 3.1 is a multivariate generalization of
Lemma 8.3 in [8]. Its proof applies the ideas of the proof of this lemma, but
some additional difficulties also had to be overcome.

Section 3 contains still another result. It is Lemma 3.2 which may be

useful when we apply Proposition 3.1. It states that if all coordinates G
(N)
j,j′ of

a sequence of spectral measures G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, N = 1, 2, . . . ,

converge vaguely to some complex measures G
(0)
j,j′ with finite total variation,

then also G(0) = (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is a positive semidefinite matrix

valued even measure on R
ν .

This result is useful because it helps us to decide when the limit matrix

G(0) = (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is the spectral measure of a (generalized)

stationary Gaussian random field. (See the remark after the formulation of
Lemma 3.2).

In this paper together with [10] and also in the work [8] I applied a ver-
sion of the multiple Wiener–Itô integrals introduced by Itô in his paper [7].
(Itô called these random integrals multiple Wiener integrals in his paper.)
I applied, instead of the random integral introduced by Itô a version of
it introduced by Dobrushin in [4], and considered its generalization when
vector-valued stationary Gaussian random fields are taken. At the end of
the Introduction, I give a short explanation why it was useful to work with
this version of the random integrals introduced by Itô in [7], and I also briefly
mention another example where a multidimensional time generalization of
the Itô integral was introduced in order to study some problems.

Itô considered in his paper [7] a measure space (T,B,m), and a set of
(jointly) Gaussian random variables β(E) indexed by such sets E ∈ B for
which m(E) < ∞, and the joint distibution of these random variables is
determined by the relations Eβ(E) = 0, and Eβ(E)β(E′) = m(E ∩E′). He
also imposed the following continuity property for the measure m. For any
set E ∈ B with m(E) < ∞ and ε > 0 there exists a finite decomposition
E =

∑n
i=1Ei such that m(Ei) < ε for all i = 1, . . . , n. Itô defined the

p-fold Wiener integrals of square integrable functions (with respect to the
product measure mp) with respect to the random measure β(E,ω) for all
p = 0, 1, . . . In the definition of the random measure β(E,ω) the parameter
set consists of those measurable sets E for which m(E) < ∞. Then he gave
a useful representation of all square integrable random variables measurable
with respect to the σ-algebra generated by the random variables β(E) as a
sum of multiple Wiener integrals with different multiplicity.

To present such a representation Itô proved some useful results about the
properties of multiple Wiener integrals. In particular, he proved an identity
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that was later called Itô’s formula. He showed with its help an important
relation between multiple Wiener integrals and Hermite polynomials.

In paper [4] Dobrushin proved for the sake of investigation of non-linear
functionals of stationary Gaussian random fields such a version of the ran-
dom integrals in Itô’s paper [7], where he worked in the Euclidean space
(Rν ,B), and he replaced the random measure β(E,ω) by the random spec-
tral measure of a stationary Gaussian random field. I described these results
in more detail in [8], and this paper together with [10] yield a generalization
of these results when vector-valued stationary Gaussian random fields are
considered. These works show that results similar to those of the paper [4]
hold if we work with random spectral measures instead of the random mea-
sure β(E,ω) applied in [4]. One may ask why it was useful to work with
random spectral measures instead of the application of the results in [4].

I want to show that by working with random spectral measures we could
prove some Fourier analysis type results which were useful in our investi-
gation. Proposition 2.4 of this paper is such a result. Here we calculate
the shift transform Tu of a random variable presented in the form of a mul-
tiple Wiener–Itô integral. The shifted random variable is presented in a
Fourier transform type form. Indeed, Proposition 2.4 says that the shift
transform TuY of a random variable Y given in formula (2.6) equals the
multiple Wiener–Itô integral given in formula (2.8). This result together
with Itô’s formula which enables us very often to rewrite the random vari-
ables we are working with as sums of multiple Wiener–Itô integrals help in
the study of limit theorems. The discussion at the beginning of Section 3
shows an example of how to apply these results.

The application of multiple stochastic integrals turned out to be useful
also in the investigation of some other problems. I mention only very briefly
the contribution of Wong–Zakai–Yor to the theory of multiple stochastic
integrals as an example for it. They discussed the following problem. The
study of Itô integrals is very closely related to the study of martingales. For
example, any continuous-time square integrable martingale with continuous
trajectories adapted to a Wiener process has a canonical representation as
an Itô integral with respect to the underlying Wiener process. The above-
mentioned mathematicians were looking for the multidimensional time ver-
sion of this result. Naturally, to formulate this result first the multidimen-
sional time Wiener processes and martingales must be defined. But these
objects are defined in the literature. I would mention that in particular, the
definition of the multidimensional time martingales demands special atten-
tion.

A multidimensional version of the result about the canonical represen-
tation of square-integrable martingales can be proved. But in that repre-
sentation, not only the Itô integrals (integrals with multidimensional time
which also have to be defined) but also multiple Itô integrals appear. The
precise formulation of this result would demand a very long explanation,
hence I omit it. The interested reader can find it in paper [6] and in its
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list of references. This work also discusses with the help of this result a
statistical problem, where the main point of the solution is the calculation
of a Radon–Nikodym derivative.

2. Wick polynomials and their relation to multipe Wiener–Itô

integrals

In the case of scalar-valued stationary Gaussian random fields (i.e., if
d = 1) there is a so-called Itô formula (see Theorem 4.3 in [8]) which shows
an important relation between multiple Wiener–Itô integrals and Hermite
polynomials. Here I present its multivariate version, where Wick polyno-
mials take the role of the Hermite polynomials. Wick polynomials are the
natural multi-dimensional generalizations of Hermite polynomials. I shall
also discuss an important consequence of the multivariate version of the Itô
formula. This formula enables us to present a large class of random vari-
ables in the form of a sum of multiple Wiener–Itô integrals. Besides, there
is a useful formula for the calculation of the shift transforms of such ran-
dom variables which are given in the form of a sum of multiple Wiener–Itô
integrals. As we shall see, this formula is very useful in the study of limit
theorems for non-linear functionals of a vector-valued stationary Gaussian
field. I shall explain in the first part of the Appendix the relation between
the proof of Itô’s formula in the scalar and in the vector-valued case. In
that explanation I also write about the definition of the Wick polynomials
and their role in the proof.

First I recall the definition of Wick polynomials and some results about
their most important properties. Here I follow the discussion in Section 2
of [8].

Let Xt, t ∈ T , be a set of jointly Gaussian random variables indexed by
a parameter set T , and such that EXt = 0 for all t ∈ T . We define the
following real Hilbert spaces H1 and H. A square integrable (real valued)
random variable is in H if and only if it is measurable with respect to the
σ-algebra B = B(Xt, t ∈ T ), and the scalar product in H is defined as
〈ξ, η〉 = Eξη, ξ, η ∈ H. The Hilbert space H1 ⊂ H is the subspace of
H generated by the finite linear combinations

∑
cjXtj , tj ∈ T , with real

coefficients. We consider only such sets of Gaussian random variables Xt

for which H1 is separable. Otherwise Xt, t ∈ T , can be arbitrary, but the
most interesting case for us is when T = Z

ν × {1, . . . , d}, and the original
Gaussian random variables we are working with are the coordinates Xj(p),
j ∈ {1, . . . , d}, p ∈ Z

ν , of a vector-valued stationary Gaussian random field
X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν .
To define theWick polynomials and to get their most important properties

we need the following result formulated in Theorem 2.1 of [8].

Theorem 2A. Let Y1, Y2, . . . be an orthonormal basis in the Hilbert space
H1 defined above with the help of a set of Gaussian random variables Xt,
t ∈ T . Then the set of all possible finite products Hj1(Yl1) · · ·Hjk(Ylk) is
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a complete orthogonal system in the Hilbert space H defined above. (Here,
and in the subsequent discussion Hj(·) denotes the j-th Hermite polynomial
with leading coefficient 1.)

Let H≤n ⊂ H, n = 1, 2, . . . , (with the previously introduced Hilbert space
H) denote the linear subspace of the Hilbert space H which is the closure
of the linear space consisting of the elements Pn(Xt1 , . . . , Xtm), where Pn

runs through all polynomials of degree less than or equal to n, and the
integer m and indices t1, . . . , tm ∈ T are arbitrary. Let H0 = H≤0 consist
of the constant functions, and let Hn = H≤n ⊖H≤n−1, n = 1, 2, . . . , where
⊖ denotes orthogonal completion. It is clear that the Hilbert space H1

given in this definition agrees with the previously defined Hilbert space H1.
If ξ1, . . . , ξm ∈ H1, and Pn(x1, . . . , xm) is a polynomial of degree n, then
Pn(ξ1, . . . , ξm) ∈ H≤n. Then Theorem 2A implies that

H = H0 +H1 +H2 + · · · , (2.1)

where + denotes direct sum. Now I present the definition of Wick polyno-
mials.

Definition of Wick polynomials. Let P (x1, . . . , xm) be a homogeneous
polynomial of degree n, and let a set of (jointly Gaussian) random variables
ξ1, . . . , ξm ∈ H1 be given. The Wick polynomial :P (ξ1, . . . , ξm) : determined
by them is the orthogonal projection of the random variable P (ξ1, . . . , ξm) to
the above-defined subspace Hn of the Hilbert space H. The Wick polynomial
of a homogeneous polynomial of degree n will be called a Wick polynomial of
order n.

In the sequel we shall use the notation : P (ξ1, . . . , ξm) : for the Wick
polynomial corresponding to a homogeneous polynomial P (x1, . . . , xm) with
arguments ξ1, . . . , ξm, ξj ∈ H1 for all 1 ≤ j ≤ m. It may happen that a
random variable ζ can be expressed in two different forms as a homogeneous
polynomial of some random variables from H1, i.e., ζ = P1(ξ1, . . . , ξm), and
ζ = P2(ξ1, . . . , ξm), and P1 6= P2. But in such a case

:P1(ξ1, . . . , ξm) : =:P2(ξ1, . . . , ξm) : ,

i.e., the value of a Wick polynomial : P (ξ1, . . . , ξm) : does not depend on
the representation of the random variable P (ξ1, . . . , ξm).

It is clear that Wick polynomials of different degree are orthogonal. Given
some ξ1, . . . , ξm ∈ H1 define the subspaces H≤n(ξ1, . . . , ξm) ⊂ H≤n, n =
1, 2, . . . , as the set of all polynomials of the random variables ξ1, . . . , ξm with
degree less than or equal to n. Let H≤0(ξ1, . . . , ξm) = H0(ξ1, . . . , ξm) = H0,
and Hn(ξ1, . . . , ξm) = H≤n(ξ1, . . . , ξm)⊖H≤n−1(ξ1, . . . , ξm). With the help
of this notation I formulate the following result given in Proposition 2.2
of [8].

Theorem 2B. Let P (x1, . . . , xm) be a homogeneous polynomial of degree n.
Then :P (ξ1, . . . , ξm) : equals the orthogonal projection of P (ξ1, . . . , ξm) to
Hn(ξ1, . . . , ξm).
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This result has the following important consequences formulated in Corol-
laries 2.3 and 2.4 in [8].

Corollary 2C. Let ξ1, . . . , ξm be an orthonormal system in H1, and let

P (x1, . . . , xm) =
∑

cj1,...,jmx
j1 · · ·xjmm

be a homogeneous polynomial, i.e., let j1 + · · · + jm = n with some fixed
number n for all sets (j1, . . . , jm) appearing in this summation. Then

:P (ξ1, . . . , ξm) : =
∑

cj1,...,jmHj1(ξ1) · · ·Hjm(ξm).

In particular,

: ξn : = Hn(ξ) if ξ ∈ H1, and Eξ2 = 1.

Corollary 2D. Let ξ1, ξ2, . . . be an orthonormal basis in H1. Then the
random variables Hj1(ξ1) · · ·Hjk(ξk), k = 1, 2, . . . , j1 + · · ·+ jk = n, form a
complete orthogonal basis in Hn.

In the proof of the Itô formula for scalar-valued stationary random fields
we needed, besides the diagram formula, the following important recur-
sive formula for Hermite polynomials which is contained for example in
Lemma 5.2 of [8].

Hn(x) = xHn−1(x)− (n− 1)Hn−2(x) for n = 1, 2, . . . , (2.2)

with the notation H−1(x) ≡ 0 in the case n = 1.
In the next result I formulate a multivariate version of this formula for

Wick polynomials.

Proposition 2.1. Let U1, . . . , Un+1, n ≥ 1, be elements in H1. Then

:U1 · · ·Un : Un+1 (2.3)

=:U1 · · ·UnUn+1 : +
n∑

s=1

:U1 · · ·Us−1Us+1 · · ·Un : EUsUn+1.

In the special case n = 1 this formula is meant as U1U2 =:U1U2 : +EU1U2.

Proof of Proposition 2.1. Formula (2.3) clearly holds if all random variables
Uj , 1 ≤ j ≤ n + 1 agree, and EU2

1 = 1, since in this case the left-hand
side of (2.3) equals U1Hn(U1), while its right-hand side equals Hn+1(U1) +
nHn−1(U1) by Corollary 2C, and these two expressions are equal by formula
(2.2). A somewhat more complicated, but similar argument shows that this
formula also holds if the sequence U1, . . . , Un consists of some independent
random variables V1 . . . , Vk with standard normal distribution, the random
variable Vp is contained in the sequence U1,. . . , Un with multiplicity lp,
1 ≤ p ≤ k, and finally Un+1 is either one of these random variables Vp,
1 ≤ p ≤ k, or it is a random variable Vk+1 with standard normal distribution
which is independent of all of them.
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Indeed, if Un+1 = Vp with some 1 ≤ p ≤ k, then the left-hand side of (2.3)
equals

Hl1(V1) · · ·Hlk(Vk)Vp,

while the right-hand side equals

Hl1(V1) · · ·Hlp−1(Vp−1)Hlp+1(Vp)Hlp+1(Vp+1) · · ·Hlk(Vk)

+lpHl1(V1) · · ·Hlp−1(Vp−1)Hlp−1(Vp)Hlp+1(Vp+1) · · ·Hlk(Vk)

by Corollary 2C. A comparison of these expressions together with rela-
tion (2.2) imply that identity (2.3) holds in this case. If Un+1 = Vk+1,
then the left-hand side of (2.3) equals

Hl1(V1) · · ·Hlk(Vk)Vk+1,

and the right-hand side also equals Hl1(V1) · · ·Hlk(Vk)Vk+1. Hence for-
mula (2.3) holds in this case, too.

In the general case we can choose some independent Gaussian random
variables Z1, . . . , Zm in H1 with variance 1 in such a way that our random
variables U1, . . . , Un+1 can be expressed as their linear combination, i.e.,
Up =

∑m
l=1 cp,lZl with some coefficients cl,m. We have already seen that

formula (2.3) is valid in the special case when all random variables Up equal
one of the random variables Zj , i.e., if Up = Zj(p) with some 1 ≤ j(p) ≤ m

for all 1 ≤ p ≤ n + 1. Since the expressions of both sides of (2.3) are
multi-linear functionals on the n-fold direct product H1 × · · · × H1, this
implies that formula (2.3) also holds for the random variables U1, . . . , Un+1.
Proposition 2.1 is proved. �

We can prove the multivariate version of Itô’s formula with the help of
Proposition 2.1 and the diagram formula for multiple Wiener–Itô integrals
for vector-valued stationary Gaussian random fields formulated in Section 6
of [10].

Before its formulation, I make a remark about the notation in this section.
In the formulation of Itô’s formula the notation K1,j appears. This no-

tion was introduced in Lemma 3.2 of [10]. It is a real Hilbert space, and it
contains those functions u ∈ K1,j for which we defined the random integral
∫
u(x)ZG,j( dx) with respect to the j-th coordinate ZG,j of the random spec-

tral measure ZG = (ZG,1, . . . , ZG,d), and the value of this integral is a real
valued random variable. In Section 4 of [10] this notion is defined also in
the case of generalized random spectral measure. Later, at the beginning of
Section 5 of [10] its multidimensional generalization, the real Hilbert space
Kn,j1,...,jn = Kn,j1,...,jn(Gj1,j1 . . . . , Gjn,jn) is defined for all n = 1, 2, . . . . It
consists of those functions f(x1, . . . , xn) for which the n-fold (real valued)
Wiener–Itô integral

In(f |j1, . . . , jn) =

∫

f(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn(d xn)

is defined. The Hilbert space K1,j is a special case of these Hilbert spaces
with n = 1. The Hilbert spaces Kn,j1,...,jn will appear also in this work. At
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some points I shall also work with the class of simple functions K̂n,j1,...,jn ⊂
Kn,j1,...,jn defined also in Section 5 of [10]. The multiple Wiener–Itô integrals
were first defined for simple functions which are adapted to some regular sys-
tem (defined also in Section 5 of [10]), and the multiple Wiener–Itô integrals
were defined in the general case by means of a good approximation of the
functions f ∈ Kn,j1,...,jn by simple functions f ∈ K̂n,j1,...,jn .

Theorem 2.2. Multivariate version of Itô’s formula. Let us have some
vector-valued stationary Gaussian random field with a vector-valued random
spectral measure ZG = (ZG,1, . . . , ZG,d). Let us consider some functions
ϕp ∈ K1,jp, 1 ≤ p ≤ n, 1 ≤ jp ≤ d, and define with their help the random
variables Up =

∫
ϕp(x)ZG,jp( dx) ∈ H1, 1 ≤ p ≤ n. The identity

:U1 · · ·Un : (2.4)

=

∫

ϕ1(x1)ϕ2(x2) · · ·ϕn(xn)ZG,j1( dx1)ZG,j2( dx2) · · ·ZG,jn( dxn)

holds.

Proof of Theorem 2.2. Relation (2.4) clearly holds for n = 1. We prove by
induction that it holds for n+ 1 if it holds for k ≤ n. In the proof we apply
the Corollary of Theorem 6.1 from [10], (i.e., the corollary of the diagram
formula from that paper) with the choice

h1(x1, . . . , xn) = ϕ1(x1) · · ·ϕn(xn)

h2(x) = ϕn+1(x),

and the random spectral measure ZG,j′1
is chosen as ZG,j′1

= ZG,jn+1 , where
ZG,jn+1 is the random spectral measure appearing in the definition of Un+1.
We can write with this choice the identity
∫

ϕ1(x1) · · ·ϕn(xn)ZG,j1( dx1) · · ·ZG,jn( dxn)

∫

ϕn+1(x)ZG,jn+1( dx) (2.5)

=

∫

ϕ1(x1) · · ·ϕn(xn)ϕn+1(xn+1)ZG,j1( dx1) · · ·ZG,jn+1( dxn+1)

+
n∑

p=1

EUpUn+1

∫

ϕ1(x1) · · ·ϕp−1(xp−1)ϕp+1(xp) · · ·ϕn(xn−1)

ZG,j1( dx1) · · ·ZG,jp−1( dxp−1)ZG,jp+1( dxp) · · ·ZG,jn( dxn−1),

since formula (6.19) in [10] gives this identity with our choice of h1 and h2.
To see this observe that with these functions h1 and h2 the function hγp in
the formulation of the corollary of Theorem 6.1 in [10] equals for p 6= 0

hγp(x1, . . . , xn−1) = ϕ1(x1) · · ·ϕp−1(xp−1)ϕp+1(xp) · · ·ϕn(xn−1)
∫

ϕp(xn)ϕn+1(xn)Gjp,jn+1( dxn)

= ϕ1(x1) · · ·ϕp−1(xp−1)ϕp+1(xp) · · ·ϕn(xn−1)EUpUn+1
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since Un+1 = Un+1, and by formula (3.7) in [10] which expresses the scalar
product of two one-fold random integrals

EUpUn+1 = EUpUn+1 = E

(∫

ϕp(x)ZG,jp( dx)

∫

ϕn+1(x)ZG,jn+1( dx)

)

=

∫

ϕp(xn)ϕn+1(xn)Gjp,jn+1( dxn),

and for p = 0

hγ0(x1, . . . , xn+1) = ϕ1(x1) · · ·ϕn(xn)ϕn+1(xn+1).

Corollary of Theorem 6.1 in [10] with the above form of the kernel functions
hγp , 0 ≤ p ≤ n, in it imply formula (2.5). Formula (2.5) together with our
induction hypothesis imply that

∫

ϕ1(x1) · · ·ϕn(xn)ϕn+1(xn+1)ZG,j1( dx1) · · ·ZG,jn+1( dxn+1)

=:U1 · · ·Un : Un+1 −
n∑

p=1

:U1 · · ·Up−1Up+1 · · ·Un : EUpUn+1.

In the case n = 1 this formula means that
∫

ϕ1(x1)ϕ2(x2)ZG,j1( dx1)ZG,j2( dx2) = U1U2 − EU1U2.

By comparing the last formula with (2.3) we get that the statement of
Theorem 2.2 holds also for n+ 1. Theorem 2.2 is proved. �

In Theorem 2.2 we rewrote some Wick polynomials of special form as
multiple Wiener–Itô integrals. This enables us to express a sum of such
Wick polynomials as the sum of multiple Wiener–Itô integrals. This implies
that all Wick polynomials of random variables from some H1,j , 1 ≤ j ≤ d,
can be written in the form of a sum of multiple Wiener–Itô integrals. In the
next simple corollary of Theorem 2.2 I describe this result in a more explicit
form.

To formulate this result let us introduce the following notation. Let us
fix some numbers n ≥ 1 (the order of the homogeneous polynomial we
are considering), m ≥ 1 and some functions ϕj,k(x) ∈ K1,j , 1 ≤ j ≤ d,
1 ≤ k ≤ m, and define the random variables

ξj,k =

∫

ϕj,k(x)ZG,j( dx), 1 ≤ j ≤ d, 1 ≤ k ≤ m.

Then ξj,k ∈ H1,j . (We defined the real Hilbert space H1,j in the formulation
of Lemma 3.2 of [10]. This Lemma 3.2 stated that the elements of H1,j can
be given in the form of the above integral.)

In the next corollary, we consider homogeneous polynomials of these ran-
dom variables ξj,k, and express the Wick polynomials corresponding to them
in the form of a sum of multiple Wiener–Itô integrals.
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Corollary of Theorem 2.2. Let us consider a homogeneous polynomial

P (xjs,ks , 1 ≤ js ≤ d, 1 ≤ ks ≤ m for all 1 ≤ s ≤ n)

=
∑

1≤js≤d for all 1≤s≤n
1≤ks≤m for all 1≤s≤n

aj1,k1,...jn,knxj1,k1xj2,k2 · · ·xjn,kn

of order n of the variables xjs,ks with indices 1 ≤ js ≤ d and 1 ≤ ks ≤ m for
all 1 ≤ s ≤ n and real coefficients aj1,k1,...,jn,kn.

If we replace the variables xjs,ks with the random variables

ξjs,ks =

∫

ϕjs,ks(x)ZG,js( dx)

in this polynomial (we choose a function ϕj,k ∈ K1,j in the definition of ξj,k),
then we get the following homogeneous polynomial of some jointly Gaussian
random variables.

P (ξjs,ks , 1 ≤ js ≤ d, 1 ≤ ks ≤ m for all 1 ≤ s ≤ n)

=
∑

1≤js≤d for all 1≤s≤n
1≤ks≤m for all 1≤s≤n

aj1,k1,...jn,knξj1,k1ξj2,k2 · · · ξjn,kn .

With the help of this expression we can define the Wick polynomial

:P (ξjs,ks , 1 ≤ js ≤ d, 1 ≤ ks ≤ m for all 1 ≤ s ≤ n) : .

This Wick polynomial can be expressed as a sum of multiple Wiener–Itô
integrals in the following way.

Let us consider for all sequences of indices {(js, ks), : 1 ≤ s ≤ n} with
1 ≤ js ≤ d, 1 ≤ ks ≤ d for all 1 ≤ s ≤ n the function

fj1,k1,...,jn,kn(x1, . . . , xn) = ϕj1,k1(x1) · · ·ϕjn,kn(xn) ∈ Kn,j1,...,jn

and the multiple Wiener–Itô integral

In(fj1,k1,...,jn,kn |j1, . . . , jn)

=

∫

fj1,k1,...,jn,kn(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn).

The identity

:P (ξjs,ks , 1 ≤ js ≤ d, 1 ≤ ks ≤ m for all 1 ≤ s ≤ n) :

=
∑

1≤js≤d for all 1≤s≤n
1≤ks≤m for all 1≤s≤n

aj1,k1,...jn,knIn(fj1,k1,...,jn,kn |j1, . . . , jn)

holds.

Remark. Theorem 4.7 of [8] contains a version of this result for scalar-valued
stationary Gaussian random fields.

Proof of the Corollary of Theorem 2.2. By Theorem 2.2 we have

aj1,k1,...jn,kn : ξj1,k1ξj2,k2 · · · ξjn,kn : = aj1,k1,...jn,knIn(fj1,k1,...,jn,kn |j1, . . . , jn)
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for all sequences of indices (js, ks), 1 ≤ s ≤ n. By summing up these
inequalities for all sequences of indices we get the proof of the corollary. �

With the help of the above corollary, we prove the following result.

Proposition 2.3. For all n ≥ 1 and functions f ∈ Kn,j1,...,jn with some
indices 1 ≤ js ≤ d, 1 ≤ s ≤ n, In(f |j1, . . . , jn) ∈ Hn for the n-fold Wiener–
Itô integral In(f |j1, . . . , jn). Besides, the set of all sums of n-fold Wiener–Itô
integrals i.e., the set of all sums of the form

∑

1≤js≤d for all 1≤s≤n

In(fj1,...,jn |j1, . . . , jn),

where fj1,...,jn ∈ Kn,j1,...,jn constitute an everywhere dense linear subspace of
Hn.

Proof of Proposition 2.3. We shall prove Proposition 2.3 by induction with
respect to n. By Lemma 3.2 of [10] Proposition 2.3 holds for n = 1. Indeed,

by this result every random variable of the form ξ =
∑d

j=1 ξj with some
ξj ∈ H1,j can be written as the sum of one-fold Wiener–Itô integrals, and
the random variables of this form constitute an everywhere dense linear
subspace of H1.

If the statements of Proposition 2.3 hold for all m < n, then we can say
for one part that In(f |j1, . . . , jn) ∈ H≤n, because this relation holds if f is

a simple function, i.e., if f ∈ K̂n,j1,...,jn with the space K̂n,j1,...,jn defined in

Section 5 of [10], and since K̂n,j1,...,jn is dense in Kn,j1,...,jn , and we defined
the multiple Wiener–Itô integral by the extension of a bounded operator
in the general case, the above property remains valid for general functions
f ∈ Kn,j1,...,jn . Moreover, we know that In(f |j1, . . . , jn) is orthogonal to
all multiple Wiener–Itô integrals of the form Im(h|j′1, . . . , j

′
m) with m < n

because of relation (5.5) in [10]. Then In(f |j1, . . . , jn) is also orthogonal to
any linear combination of such integrals. But these linear combinations con-
stitute an everywhere dense set in Hm by our inductive hypothesis. Hence
In(f |j1, . . . , jn) is orthogonal to the whole space Hm for all 0 ≤ m ≤ n− 1,
and this implies that it is contained in the Hilbert subspace Hn (and not
only in H≤n). It follows from the corollary of Theorem 2.2 that the sums of
multiple Wiener–Itô integrals considered in Proposition 2.3 are dense in Hn,
and they constitute a linear subspace. Indeed, this corollary implies that
a large class of Wick polynomials of order n can be expressed as a sum of
such integrals, and the class of these Wick polynomials of order n is dense
in Hn. Proposition 2.3 is proved. �

Remark. In Proposition 2.3 we expressed a dense subset of Hn as a sum of
n-fold Wiener–Itô integrals, but we did not express all elements of Hn in
such a form. But even this weaker result suffices for our purposes.

In the case of scalar-valued stationary random fields, we have a stronger
result. In that case, we can express all elements of Hn as an n-fold Wiener–
Itô integral, and actually, we can say somewhat more. There is a so-called
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Fock space representation of all elements h ∈ H, which represents the el-
ements h ∈ H in the form of a sum of multiple Wiener–Itô integrals of
different multiplicity. (See Theorem 4.2 of [8] together with the definition
of Fock spaces on page 28 of [8].) Moreover, this result has some useful
consequences about the properties of this representation.

We cannot prove a similar result in the vector-valued case. This difference
appears because of the following reason. If a sequence of random variables
hN ∈ Hn, N = 0, 1, 2, . . . , has the property that hN → h0 with some
h0 ∈ Hn in the norm of Hn as N → ∞ in the scalar-valued case, then these
random variables hN can be expressed as n-fold Wiener–Itô integrals of such
functions kN ∈ Kn for which kN → k0 in the norm of Kn. On the other
hands, in the case of vector-valued models we do not have a similar result.

Next, we consider a vector-valued stationary Gaussian random field

X(p) = (X1(p), . . . , Xd(p)), p ∈ Z
ν ,

whose elements can be written in the form Xj(p) =
∫
ei(p,x)ZG,j( dx) by

means of the random spectral measure ZG = (ZG,1, . . . , ZG,d) of this random
field for all p ∈ Z

ν and 1 ≤ j ≤ d. Let us consider a random variable Y ∈ Hn

which can be represented as the n-fold Wiener–Itô integral of some function
h ∈ Kn,j1,...,jn , i.e.,

Y =

∫

h(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn). (2.6)

I shall express the shift transforms TuY , u ∈ Z
ν , of Y given in formula (2.6)

by an expression which shows some similarity to the Fourier transform of a
function.

To do this first I recall the definition of the shift transforms Tu, u ∈ Z
ν ,

in a stationary random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Z
ν .

Given some element Xj(m), m ∈ Z
ν , 1 ≤ j ≤ d, of the random field,

and u ∈ Z
ν , we define the shift transform of Xj(m) by Tu as TuXj(m) =

Xj(u + m). More generally, given any measurable function h(Xj(m),m ∈
Z
ν , 1 ≤ j ≤ d), we define the shift transform of the random variable

Y = h(Xj(m), m ∈ Z
ν , 1 ≤ j ≤ d), by the formula TuY = h(Xj(m+u), m ∈

Z
ν , 1 ≤ j ≤ d). This transformation was discussed in the scalar-valued case

in [8]. It can be seen, (similarly to the argument in that work) that the def-
inition of this transformation is meaningful, (i.e., the value of TuY does not
depend on the choice of the function h for which Y = h(Xj(m), m ∈ Z

ν , 1 ≤
j ≤ d)), and we have defined in such a way unitary (linear) transformations
Tu, u ∈ Z

ν , on H for which TuTv = Tu+v.
In Lemma 3.2 of [10] I have shown that each random variable Uj ∈ H1,j

can be written in the form Uj =
∫
h(x)ZG,j( dx) with some function h(x) ∈

K1,j . On the other hand, I claim that for all u ∈ Z
ν

TuUj =

∫

ei(u,x)h(x)ZG,j( dx) if Uj =

∫

h(x)ZG,j( dx) (2.7)
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with some h ∈ K1,j . Indeed, relation (2.7) clearly holds if h(x) = ei(p,x) with
some p ∈ Z

ν , since in this case Uj = Xj(p) and TuUj = Xj(p+ u). But this
implies that relation (2.7) holds for all finite trigonometrical polynomials

of the form h(x) =
∑

cke
i(pk,x), and for the closure of these functions with

respect to the L2 norm determined by the measure Gj,j , i.e., for all h ∈ K1,j .
In Proposition 2.4 I present a similar formula about the shift transforms

of a random variable Y given by formula (2.6). This result is useful in
the study of limit theorems related to non-linear functionals of a stationary
Gaussian field.

Proposition 2.4 about the representation of shift transformations.

Let a vector-valued stationary Gaussian random field

X(p) = (X1(p), . . . , Xd(p)), p ∈ Z
ν ,

be given with a vector-valued random spectral measure ZG = (ZG,1, . . . , ZG,d)

such that Xj(p) =
∫
ei(p,x)ZG,j( dx) for all p ∈ Z

ν and 1 ≤ j ≤ d. Let
Y ∈ Hn be the random variable defined in formula (2.6) with the help of this
vector-valued random spectral measure ZG and some function h ∈ Kn,j1,...,jn.
Then

TuY =

∫

ei(u,x1+···+xn)h(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn) (2.8)

for all u ∈ Z
ν .

Proof of Proposition 2.4. Formula (2.8) holds in the special case if n = 1,
and h(x) ∈ K1,j , since in this case Y =

∫
h(x)ZG,j( dx), and

TuY =

∫

ei(u,x)h(x)ZG,j( dx)

by formula (2.7).
I claim that formula (2.8) also holds in the case when the random variable

Y is given by formula (2.6) with a kernel function of the form h(x1, . . . , xn) =
ϕ1(x1) · · ·ϕn(xn) defined with the help of some functions ϕs(x) ∈ K1,js ,
1 ≤ s ≤ n. Indeed, in this case Y =:U1 · · ·Un : with Us =

∫
ϕs(x)ZG,js( dx),

1 ≤ s ≤ n, because of Theorem 2.2. On the other hand, I claim that

Tu :U1 · · ·Un : =: (TuU1) · · · (TuUn) : .

To see this let us observe that by Theorem 2B :U1 · · ·Un : is the orthogonal
projection of the product U1 · · ·Un to the Hilbert subspace Hn(U1, . . . , Un).
Similarly, : (TuU1) · · · (TuUn) : is the orthogonal projection of the vector
(TuU1) · · · (TuUn) to the Hilbert subspace Hn(TuU1, . . . , TuUn). Since the
vectors (U1, . . . , Un) and (TuU1, . . . , TuUn) have the same distribution, and
the Wick polynomial corresponding to their product can be calculated in
the same way this implies that if :U1 · · ·Un : = g(U1, . . . , Un) with some
function g, then

: (TuU1) · · · (TuUn) : = g(TuU1, . . . , TuUn)
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with the same function g. (In the present case g(x1, . . . , xn) is a polyno-
mial of order n.) On the other hand, Tu :U1 · · ·Un : = Tug(U1, . . . , Un) =
g(TuU1, . . . , TuUn) in this case. The above argument implies the desired
identity.

Thus we can state that if Y is defined by formula (2.6) with a function

h(x1, . . . , xn) = ϕ1(x1) · · ·ϕn(xn)

with the above properties, then

TuY = : (TuU1) · · · (TuUn) :

=

∫

ei(u,x1+···+xn)h(x1, . . . , xn)ZG,j1( dx1) . . . ZG,jn( dxn)

because of Theorem 2.2 and the relation TuUs =
∫
ei(u,x)ϕs(x)ZG,js( dx) for

all indices 1 ≤ s ≤ n.
From the result in the previous case follows that relation (2.8) also holds

if Y is defined by (2.6) with a function h(x1, . . . , xn) of the form of a finite
sum

h(x1, . . . , xn) =
∑

k

ϕ1,k(x1)ϕ2,k(x2) · · ·ϕn,k(xn)

with ϕs,k ∈ K1,js , 1 ≤ s ≤ n.
Since functions of the above form are dense in Kn,j1,...,jn , Tu is a unitary

operator, and both (linear) transformations

h(x1, . . . , xn) → ei(u,x1+···+xn)h(x1, . . . , xn)

and h → In(h|j1, . . . , jn) from the space Kn,j1,...,jn to the spaces Kn,j1,...,jn

and Hn are of bounded norms, it is not difficult to see that Proposition 2.4
holds in the general case. Proposition 2.4 is proved. �

3. On the proof of limit theorems for non-linear functionals

of vector-valued stationary Gaussian random fields

First I recall the limit theorem problem we are interested in.
Let X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν , be a d-dimensional vector-valued
Gaussian stationary field, and let a function H(x1, . . . , xd), H : R

d → R
1,

of d variables be given. Let us define with their help the random variables
Y (p) = H(X1(p), . . . , Xd(p)) for all p ∈ Z

ν , and introduce for all N =
1, 2, . . . the normalized random sum

SN = A−1
N

∑

p∈BN

Y (p) (3.1)

with an appropriate norming constant AN > 0, where

BN = {p = (p1, . . . , pν) : 0 ≤ pk < N for all 1 ≤ k ≤ ν}. (3.2)

Let us also fix the vector-valued random spectral measure (ZG,1, . . . , ZG,d)

on the torus [−π, π)ν for which Xj(p) =
∫
ei(p,x)ZG,j( dx), 1 ≤ j ≤ d,

p ∈ Z
ν . We are interested in the question what kind of limit theorems
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may hold for the normalized sums SN defined in (3.1) as N → ∞ with an
appropriate norming constants AN . Here we are interested in the case when
the correlation functions rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, tend to zero
slowly as |p| → ∞. This means strong dependence of the random variables
in the stationary random fields. In such cases, we can get limit theorems
with a non-Gaussian limit.

We have studied the above problem in [5] for scalar-valued stationary
random fields, i.e., in the case d = 1, and we have proved some new kinds
of limit theorems. Let me remark that at the same time M. Taqqu also
proved similar results with the help of a different method, see [13]. I do not
discuss Taqqu’s work, because here I am interested in the question of how
to generalize the method in [5] to prove limit theorems also for non-linear
functionals of vector-valued stationary Gaussian random fields.

In paper [10] and Section 2 of this work I discussed the notions and
results we have to adopt some important methods of [8] when we are working
with multivariate models. In this section, I explain how to generalize those
methods of [8] which lead to non-central limit theorems when we are working
with non-linear functionals of vector-valued stationary Gaussian random
fields. I shall give the proof of the limit theorems in paper [11] with the help
of the results in this paper.

In the first step of this discussion I rewrite the limit problem we are
interested in in a different form. Let us observe that we have Xj(p) =
TpXj(0) with the shift transform Tp for all p ∈ Z

ν and 1 ≤ j ≤ d, hence
Y (p) = TpY (0), and we can rewrite the sum in (3.1) in the form

SN = A−1
N

∑

p∈BN

TpY (0). (3.3)

As it will turn out the crucial point in the investigation of our limit theorems
is the study of limit theorems in the special case when Y (0) is a Wick
polynomial, and here we restrict our attention to this case.

Let us consider the case when Y (0) is a Wick polynomial of order k which
has the form

Y (0) = :
∑

(k1,...,kd)
k1+···+kd=k

ak1,...,kdX1(0)
k1 · · ·Xd(0)

kd : (3.4)

with some real coefficients ak1,...,kd . Then by the corollary of Theorem 2.2
and the identities Xj((0) =

∫
I1(x)ZG,j( dx), 1 ≤ j ≤ d, where I1(·) denotes

the indicator function of the torus [−π, π)ν , the random variable Y (0) can
be written in the form

Y (0) =
∑

(k1,...,kd)
kj≥0, 1≤j≤d,
k1+···+kd=k

ak1,...,kd

∫

I1(x1) . . . I1(xk)
d∏

j=1





k1+···+kj∏

t=k1+···+kj−1+1

ZG,j( dxt)



 ,
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where for j = 1 we define
k1+···+kj∏

t=k1+···+kj−1+1

ZG,j( dxt) =
k1∏

t=1
ZG,1( dxt), and if

kj = 0 for some 1 ≤ j ≤ d, then the product
k1+···+kj∏

t=k1+···+kj−1+1

ZGj
( dxt) is

omitted from this expression.
By Proposition 2.4 we can write

TpY (0) =
∑

(k1,...,kd)
kj≥0, 1≤j≤d,
k1+···+kd=k

ak1,...,kd

∫

ei(p,x1+···+xk)
d∏

j=1





k1+···+kj∏

t=k1+···+kj−1+1

ZG.j( dxt)





(3.5)
for all indices p ∈ Z

ν .
We get by summing up formula (3.5) for all p ∈ BN with our choice of

Y (0) that

SN = A−1
N

∑

(k1,...,kd)
kj≥0, 1≤j≤d,
k1+···+kd=k

ak1,...,kd

∫ ν∏

l=1

eiN(x
(l)
1 +···+x

(l)
k

) − 1

ei(x
(l)
1 +···+x

(l)
k

) − 1

d∏

j=1





k1+···+kj∏

t=k1+···+kj−1+1

ZG,j( dxt)



 ,

where we write x = (x(1), . . . , x(ν)) for all x ∈ [−π, π)ν . (The set BN

was defined in (3.2).) I shall rewrite the above identity in a form more
appropriate for us, First I apply the change of variables yl = Nxl, 1 ≤ l ≤ n.
It yields that

SN =
∑

(k1,...,kd)
kj≥0, 1≤j≤d,
k1+···+kd=k

∫

hNk1,...,kd(y1, . . . , yk)
d∏

j=1





k1+···+kj∏

t=k1+···+kj−1+1

ZG(N),j( dyt)



 ,

(3.6)
where

hNk1,...,kd(y1, . . . , yk) = ak1,...,kd

ν∏

l=1

ei(y
(l)
1 +···+y

(l)
k

) − 1

N(ei(y
(l)
1 +···+y

(l)
k

)/N − 1)

is a function on [−Nπ,Nπ)ν , and ZG(N),j(A) = Nν/kA
−1/n
N ZG,j(

A
N ) is de-

fined for all measurable sets A ⊂ [−Nπ,Nπ)ν and j = 1, . . . , d. Here we

use the notation ys = (y
(1)
s , . . . , y

(ν)
s ), 1 ≤ s ≤ k. Let us observe that

(ZG(N),1, . . . , ZG(N),d) is a vector-valued random spectral measure on the

torus [−Nπ,Nπ)ν , corresponding to the matrix valued spectral measure

G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, on the torus [−Nπ,Nπ)ν), defined by the
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formula

G
(N)
j,j′ (A) = N2ν/kA

−2/n
N Gj,j′

(
A

N

)

, 1 ≤ j, j′ ≤ d,

for all measurable sets A ⊂ [−Nπ,Nπ)ν , where G = (Gj,j′), 1 ≤ j, j′ ≤ d,
is the matrix valued spectral measure of the original vector-valued station-
ary random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν . On the other hand,

hNk1,...,kd ∈ Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

) with jp = s if k1 + · · · + ks−1 < p ≤

k1 + · · ·+ ks, 1 ≤ s ≤ d. (For s = 1 we define k1 + · · ·+ ks−1 = 0.)
In formula (3.6) we have taken summation for the series (k1, . . . , kd) ∈

K, where K = {(k1, . . . , kd) : ks ≥ 0, 1 ≤ s ≤ d, k1 + · · · + kd = k},
and in each term of the sum at its right-hand side there was a product of

the form
∏k

s=1 ZG(N),js
(dut) with a sequence (j1, . . . , jk) ∈ J , where J =

{(j1, . . . , jk) : 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ d}, and it depended on the sequence
(k1, . . . , kd) which indices j1, . . . , jk) appeared in the above product.

We want to rewrite expression (3.6) in a more pleasant form. For this
goal, we make the following observation. There is a natural invertible map
T : J → K, defined as T (j1, . . . , jk) = (k1(j1, . . . , jk), . . . kd(j1, . . . , jk)) for
all (j1, . . . , jk) ∈ J , where for all indices 1 ≤ s ≤ d ks(j1, . . . , jk) equals the
number of those elements jp in the sequence (j1, . . . , jk) for which jp = s.
Its inverse is defined by the formula

T−1(k1, . . . , kd) = (j1(k1, . . . , kd), . . . , jk(k1, . . . , kd))

for all (k1, . . . , kd) ∈ K, where js(k1, . . . , kd) = min{u : k1 + · · ·+ ku ≥ s}.
With the help of the above defined functions ks = ks(j1, . . . , jk), 1 ≤

s ≤ d, we can rewrite the identity in (3.6) in a form more appropriate for
us. In this new formula we take summation for (j1, . . . , jk) ∈ J instead of
(k1, . . . , kd) ∈ K. We get that

SN =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫

hNj1,...jk(y1, . . . , yk)ZG(N),j1
( dy1) . . . ZG(N),jk

( dyk)

(3.7)
with

hNj1,...,jk(y1, . . . , yk) = ak1(j1,...,jk),...,kd(j1,...,jk)

ν∏

l=1

ei(y
(l)
1 +···+y

(l)
k

) − 1

N(ei(y
(l)
1 +···+y

(l)
k

)/N − 1)
.

Let us observe that

lim
N→∞

hNj1,...,jk(y1, . . . , yk) = h0j1,...,k(y1, . . . , yk)

with the function

h0j1,...,jk(y1, . . . , yk) = ak1(j1,...,jk),...,kd(j1,...,jk)

ν∏

l=1

ei(y
(l)
1 +···+y

(l)
k

) − 1

i(y
(l)
1 + · · ·+ y

(l)
k )

defined on R
kν , and this convergence is uniform in all bounded subsets of

R
kν .
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It is natural to expect that if the matrix valued spectral measures G(N) =

(G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, converge to a matrix valued spectral measure G(0) =

(G
(0)
j,j′), 1 ≤ j, j′ ≤ d, defined on R

ν in an appropriate way, then a limiting

procedure in formula (3.7) supplies the limit theorem SN → S0 in distribu-
tion with

S0 =
∑

(j1,...,jk)
1≤j1≤···≤jk≤d

∫

h0j1,...jk(y1, . . . , yk)ZG(0),j1
( dy1) . . . ZG(0),jk

( dyk)

as N → ∞, where (ZG(0),1, . . . , ZG(0),d) is a vector-valued random spectral

measure on R
ν corresponding to the matrix valued spectral measure (G

(0)
j,j′),

1 ≤ j, j′ ≤ d. On the other hand, the convergence of the spectral measures
G(N) to the spectral measure G(0) is satisfied in many interesting models,
for instance in the models investigated in paper [11].

Next, I explain how to work out a precise method to prove limit theorems
on the basis of the above heuristic argument. In particular, we are interested
in the question of when the above sketched heuristic argument can be carried
out. In the scalar-valued case, this problem was solved in Lemma 8.3 of [8].
Here I prove the vector-valued variant of this result.

In the formulation of Lemma 8.3 of [8], we had to introduce a version of
the notion of weak convergence of finite measures to a larger class of mea-
sures, to the class of so-called locally finite measures. They are measures,
whose restrictions to any compact set are finite. Here I introduce a slight
generalization of the notion called vague convergence in [8] to the case when
we are working with complex measures of locally finite total variation. In [8]
we have worked with (positive) measures. (The definition of complex mea-
sures on R

ν with locally finite total variation was explained in Section 4 of
the paper [10].)

Definition of vague convergence of complex measures on R
ν with

locally finite total variation. Let GN , N = 1, 2, . . . , be a sequence of
complex measures on R

ν with locally finite total variation. We say that the
sequence GN vaguely converges to a complex measure G0 on R

ν with locally

finite total variation (in notation GN
v
→ G0) if

lim
N→∞

∫

f(x)GN ( dx) =

∫

f(x)G0( dx) (3.8)

for all continuous functions f on R
ν with a bounded support.

I shall take a sequence of sums of k-fold Wiener–Itô integrals, and then I
formulate Proposition 3.1 which states that under some appropriate condi-
tions these sums of random integrals have a limit that can be expressed in
an explicit form. This result together with the representation of non-linear
functionals of vector-valued stationary Gaussian random fields by means
of multiple Wiener–Itô integrals enable us to prove limit theorems with
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a non-Gaussian limit for non-linear functionals of vector-valued stationary
Gaussian random fields.

For all N = 1, 2, . . . take a sequence of matrix valued non-atomic spectral

measures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, on the torus [−ANπ,ANπ)ν with parameter

AN such that AN → ∞ as N → ∞. Let us also take some functions

hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk = Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

)

on the torus [−ANπ,ANπ)ν for all (j1, . . . , jk) with 1 ≤ js ≤ d, 1 ≤ s ≤ k,
and N = 1, 2, . . . . For all N = 1, 2, . . . fix a vector-valued random spectral
measure

(ZG(N),1, . . . , Z
(N)

G(N),d
)

on the torus [−ANπ,ANπ)ν corresponding to the matrix valued spectral

measure (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d. Let us define with the help of these quantities

the sums of n-fold Wiener–Itô integrals

ZN =
∑

(j1,...,jk)
1≤js≤d for all 1≤s≤k

∫

hNj1,...,jk(x1, . . . , xk)ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk),

(3.9)
N = 1, 2, . . . . In the next result I show that under appropriate conditions
these random variables ZN converge in distribution to a random variable Z0

expressed in the form of a sum of multiple Wiener–Itô integrals.

Proposition 3.1. For all N = 1, 2, . . . let us consider the sums of k-fold
Wiener–Itô integrals ZN defined in formula (3.9) with the help of certain
vector-valued random spectral measures (ZG(N),1, . . . , ZG(N),d) corresponding

to some non-atomic matrix valued spectral measures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d,

defined on tori [−AN , AN )ν such that AN → ∞ as N → ∞, and functions

hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

).

Let the coordinates G
(N)
j,j′ , 1 ≤ j, j′ ≤ d, of the matrix valued spectral mea-

sures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, converge vaguely to the coordinates G

(0)
j,j′ of a

non-atomic matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, on R

ν for

all 1 ≤ j, j′ ≤ d as N → ∞, and let (ZG(0),1, . . . , ZG(0),d) be a vector-valued
random spectral measure on R

ν corresponding to the matrix valued spectral

measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d. Let us also have some functions h0j1,...,jk for

all (j1, . . . , jk) with 1 ≤ js ≤ d, 1 ≤ s ≤ k, such that these functions and
matrix valued spectral measures satisfy the following conditions.

(a): The functions h0j1,...,jk(x1, . . . , xk) are continuous on R
kν for all

1 ≤ js ≤ d, 1 ≤ s ≤ k, and for all T > 0 and indices 1 ≤ js ≤ d,
1 ≤ s ≤ k, the functions hNj1,...,jk(x1, . . . , xk) converge uniformly to

the function h0j1,...,jk(x1, . . . , xk) on the cube [−T, T ]kν as N → ∞.
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(b): For all ε > 0 there is some T0 = T0(ε) > 0 such that
∫

Rkν\[−T,T ]kν
|hNj1,...,jk(x1, . . . , xk)|

2G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

(dxk) < ε2 (3.10)

for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, and N = 1, 2 . . . if T > T0.

Then inequality (3.10) holds also for N = 0,

h0j1,...,jk ∈ Kk,j1,...,jk = Kk,j1,...,jk(G
(0)
j1,j1

, . . . G
(0)
jk,jk

), (3.11)

the sum of random integrals

Z0 =
∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫

h0j1,...,jk(x1, . . . , xk)ZG(0),j1
( dx1) . . . ZG(0),jk

( dxk)

(3.12)
exists, and the random variables ZN defined in (3.9) satisfy the relation

ZN
D
→ Z0 as N → ∞, where

D
→ denotes convergence in distribution.

Remark 1. A complex measure G
(N)
j,j′ with finite total variation defined on

the torus [−ANπ,ANπ)ν can be identified in a natural way with a complex
measure on R

ν which is concentrated on its subset [−ANπ,ANπ)ν . We take

this identification of G
(N)
j,j′ with a complex measure on R

ν when we give

meaning to formula (3.8) with GN = G
(N)
j,j′ and G0 = G

(0)
j,j′ in the definition

of the vague convergence of the complex measures G
(N)
j,j′ to G

(0)
j,j′ as N → ∞.

Remark 2. In Proposition 3.1 we imposed two conditions for the convergence
of the sums of multiple Wiener–Itô integrals ZN defined in (3.9) to the sum
of multiple Wiener–Itô integrals Z0 defined in (3.12). First we demanded
that the spectral measures and kernel functions appearing in the definition
of the expressions ZN should converge to the corresponding spectral measure
and kernel functions appearing in the definition of the expression Z0 in an
appropriate way. We still imposed an additional condition in part (b) of
Proposition 3.1. This is a compactness type condition which implies that
the essential part of the random integrals in the definition of the random
variables ZN are essentially concentrated in a compact set not depending on
the parameter N . I shall show in the Appendix with the help of an example
that condition (b) cannot be omitted from Proposition 3.1. If we drop it
Proposition 3.1 may not hold any longer. I shall also make some additional
remarks about Proposition 3.1.

Proposition 3.1 is a multivariate version of Lemma 8.3 in [8]. I gave a
simpler proof of the scalar-valued result in Lemma 6.6 of [9], and I shall
adopt this proof. In the proof of Proposition 3.1 we have to overcome
some additional difficulties, which arose because we are working with vector-
valued random fields. First I explain the method of the proof.
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In the first step of the proof, we show that relation (3.11) holds, and the
random integrals appearing in the definition of Z0 really exist. The main

step in the proof of this result is to show that the measures µ
(N)
j1,...,jk

defined at

the start of the proof weakly converge to a measure µ
(0)
j1,...,jk

. First, we prove
the vague convergence of these measures with the help of the conditions
at the beginning of Proposition 3.1, and then we show with the help of
condition (b) of this result that weak convergence holds, too.

In the next step, we reduce the proof of Proposition 3.1 to that of rela-
tion (3.13). This reduction contains the statement of Proposition 3.1 in the
special case when the kernel functions

hNj1,...,jk(x1, . . . , xk) and h0j1,...,jk(x1, . . . , xk)

in the random integrals in formulas (3.9) and (3.12) are replaced by

h0j1,...,jn(x1, . . . , xk)χT (x1, . . . , xk),

where χT (x1, . . . , xk) is the indicator function of the cube [−T, T ]kν .
The proof of this reduction is based on the application of inequality (5.6)

in [10] which helps to show that the expressions ZN in (3.9) and (3.12) are
changing very little if we restrict the domain of integration in the Wiener–
Itô integrals appearing in them to a cube [−T, T ]kν with a sufficiently large
number T > 0 or if we replace the kernel functions hNj1,...,jk(x1, . . . , xk) in

these random integrals by their limit h0j1,...,jk(x1, . . . , xk). We also exploit
that the weak convergence of distribution functions to a limit can be refor-
mulated by means of their characteristic functions in an equivalent way.

Then we formulate a new, simpler version of the limit relation (3.13) in
formula (3.18) which implies relation (3.13), hence Proposition 3.1, too. In
this version we replace the kernel functions h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)

in (3.13) by such simple functions which provide a good approximation of
them. (See Section 5 of [10] for the definition of simple functions and of their
properties needed in our proof.) We want to find such simple functions which
provide a good approximation of the random integrals appearing at the
right-hand side of (3.13) if we replace each kernel function in these integrals
by the appropriate element of them. First we want to guarantee only the
weaker statement that we get a good approximation by this replacement
in the special case when the expression at the right-hand side of (3.13) is
considered. On the other hand, we prescribe an additional property of these
simple functions. We demand that they should be adapted to such a regular
system whose elements have boundaries with zero µ0 measure with respect
to an appropriate measure µ0. We impose this extra condition because
it will imply that the replacement of the kernel functions in the random
integrals in (3.13) with the appropriate simple functions provides a good
approximation not only for the expression on the right-hand side of this
formula, where we integrate with respect to the random spectral measures
ZG(0),j , but also for the expressions on the left-hand side of this formula
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for large indices N , where we integrate with respect to the random spectral
measures ZG(N),j .

The reduction of the proof of (3.13) to the proof of (3.18) is done similarly
to the reduction of the proof of Proposition 3.1 to the proof of (3.13) with
the help of formulas (3.16) and (3.17). These relations are consequences of
the properties of the simple functions we chose to approximate the kernel
functions in the random integrals in (3.13). Then we have to prove rela-
tion (3.18). At this point, some new difficulties arise if we are working with
vector (and not scalar) valued random fields.

An essential point of the proof of (3.18) is to show that under the condi-

tions of Proposition 3.1 G
(N)
j,j′ (∆) → G

(0)
j,j′(∆) as N → ∞ for all 1 ≤ j, j′ ≤ d

if the boundary of the set ∆ behaves nicely. The proof is fairly simple for
j = j′. In this case, we can apply some results about weak convergence of
measures. But the proof is more difficult for pairs (j, j′) with j 6= j′. This

difficulty arises, because if j 6= j′, then G
(N)
j,j′ (·) with a fixed parameter N can

be not a (real-valued, positive) measure. To get a proof in this case we apply

a special argument, where we exploit that G
(N)
j,j′ is one of the coordinates of

a positive semidefinite matrix valued measure G(N).

If the limit behavior of the complex measures G
(N)
j,j′ with locally finite total

variation is already known, then relation (3.18) can be proved in a standard
way. For all N = 0, 1, 2, . . . we consider the random vector ZN (D) we obtain
if we restrict the random spectral measure ZGN to the elements of the regular
system D we are working with. It can be proved that the distributions of the
random vectors ZN (D) weakly converge to the distribution of Z0(D) as N →
∞. As the random variables YN appearing in formula (3.18) are polynomials
of the arguments in the random vectors ZN (D), the limit relation in (3.18)
simply follows from the above weak convergence.

Proof of Proposition 3.1. First I show that relation (3.10) holds also for

N = 0. To see this let us first show that the measures µ
(N)
j1,...,jk

, N = 1, 2, . . . ,
defined as

µ
(N)
j1,...,jk

(A) =

∫

A
|hNj1,...,jk(x1, . . . , xk)|

2G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

(dxk), A ⊂ R
kν ,

converge vaguely to the locally finite measure µ
(0)
j1,...,jk

defined as

µ
(0)
j1,...,jk

(A) =

∫

A
|h0j1,...,jk(x1, . . . , xk)|

2G
(0)
j1,j1

( dx1) . . . G
(0)
jk,jk

(dxk), A ⊂ R
kν ,

if N → ∞.
Indeed, it follows from the vague convergence of the measures G

(N)
j,j to G

(0)
j,j

as N → ∞ and the continuity of the function h
(0)
j1,...,jn

that this relation holds

if we replace the kernel function |hNj1,...,jk(x1, . . . , xk)|
2 by the kernel function
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|h0j1,...,jk(x1, . . . , xk)|
2 in the definition of the measures µ

(N)
j1,...,jk

. Then con-

dition (a) of Proposition 3.1 implies that this relation also holds with the

original definition of the measures µ
(N)
j1,...,jk

.

Next I state that the measure µ
(0)
j1,...,jk

is finite, and the measures µ
(N)
j1,...,jk

converge to it not only vaguely but also weakly. Indeed, condition (b) im-

plies that the sequence of measures µ
(N)
j1,...,jk

is compact with respect to the
topology defining the weak convergence of finite measures, hence any sub-
sequence of it has a convergent sub-subsequence. But the limit of such a
sub-subsequence can be only its limit with respect to the vague convergence,

i.e., it is µ
(0)
j1,...,jk

. This implies that µ
(0)
j1,...,jk

is a finite measure, and the se-

quence of measures µ
(N)
j1,...,jk

converges also weakly to it.

Finally the properties of the functions hNj1,...,jk , and their convergence to

h0j1,...,jk formulated in condition (a) imply that also the symmetry property

h0j1,,...,jk(−x1, . . . ,−xk) = h0j1,,...,jk(x1, . . . , xk) holds, hence relation (3.11) is

valid, and the random integral Z0 defined in (3.12) is meaningful.

Next I reduce the proof of the relation ZN
D
→ Z0 to the proof of the

following statement:
Under the conditions of Proposition 3.1

∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫

h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk) (3.13)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

D
→

∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫

h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)

ZG(0),j1
( dx1) . . . ZG(0),jk

( dxk),

as N → ∞, where χT (x1, . . . , xk) is the indicator function of the cube
[−T, T ]kν . We make a small, not so important technical restriction in the
choice of the number T in (3.13). Let me recall that for all all vector-valued
spectral measures GN there is a finite measure µN on R

ν such that all coordi-

nates G
(N)
j,j′ of GN , (more precisely their restrictions to any compact sets) are

such measures which are absolutely continuous measures with respect to µN .
(See Section 4 of [10].) We fix such a measure µN for all N = 0, 1, 2, . . . ,
and we shall call them dominating measures. We shall work with such mea-
sures µN in the proof of Proposition 3.1. We state formula (3.13) for all
such T > 0 for which the boundary of the cube [−T, T ]kν has zero measure
with respect to the measure µ0 × · · · × µ0

︸ ︷︷ ︸

k times

.



28 PÉTER MAJOR

To prove this reduction let us observe that by formulas (5.6) in [10]
and (3.10)

E

[∫

[1− χT (x1, . . . , xk)]h
N
j1,...,jk

(x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

]2

≤ k!

∫

Rkν\[−T,T ]kν
|hNj1,...,jk(x1, . . . , xn)|

2G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk) < k!ε2

for all sequences (j1, . . . , jk), 1 ≤ js ≤ d, 1 ≤ s ≤ k, and N = 0, 1, 2, . . . if
T > T0(ε). Hence

E

[
∑

(j1,...,jk)
1≤js≤d for all 1≤s≤k

∫

[1− χT (x1, . . . , xk)]h
N
j1,...,jk

(x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

]2

≤ dkk!ε2 (3.14)

for all N = 0, 1, . . . if T > T0(ε).

Since G
(N)
j,j

v
→ G

(0)
j,j for all 1 ≤ j ≤ d as N → ∞, hence for all T > 0 there

is some number C(T ) such that G
(N)
j,j ([−T, T ]) ≤ C(T ) for all N = 1, 2, . . .

and 1 ≤ j ≤ d. Because of this estimate and the uniform convergence
hNj1,...,jk → h0j1,...,jk on any cube [−T, T ]kν we have

E

[∫

[hNj1,...,jk(x1, . . . , xk)− h0j1,...,jk(x1, . . . , xk)]χT (x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

]2

≤ k!

∫

[−T,T ]kν
|hNj1,...,jk(x1, . . . , xk)− h0j1,...,jk(x1, . . . , xk)|

2

G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk) < ε2

for all T > 0 and (j1, . . . , jk), 1 ≤ js ≤ d, 1 ≤ s ≤ k, if N > N1 with some
N1 = N1(T, ε). Hence

E

[
∑

1≤j1,...,jk≤d

∫

[hNj1,...,jk(x1, . . . , xk)− h0j1,...,jk(x1, . . . , xk)] (3.15)

χT (x1, . . . , xk)ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

]2

≤ dkε2

for all T > 0 if N > N1 with some N1 = N1(T, ε).
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Let us define the quantities

UN = UN (T ) =
∑

1≤j1,...,jk≤d

∫

hNj1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk),

and

VN = VN (T ) =
∑

1≤j1,...,jk≤d

∫

h0j1,...,jn(x1, . . . , xk)χT (x1, . . . , xk)

ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk),

N = 1, 2, . . . . We introduce the definition of VN = VN (T ) also for N = 0,
where we replace the spectral measures ZG(N),j , N ≥ 1, 1 ≤ j ≤ d, by
ZG(0),j , 1 ≤ j ≤ d, in the definition of VN . We can reduce the proof of the

relation ZN
D
→ Z0 to formula (3.13) in the following way. By formula (3.14)

we can state that

|E(eitZN − eitUN )| ≤ E|(1− eit(ZN−UN ))| ≤ E|(t(ZN − UN )|

≤ |t|(E(ZN − UN )2)1/2 ≤ |t|(dkk!)1/2ε.

for all t ∈ R
1 with the random variable ZN defined in (3.9) if T > T0 and

N > N0(ε). Similarly, |E(eitUN − eitVN )| ≤ |t|(E(UN − VN )2)1/2 ≤ |t|dk/2ε
for all t ∈ R

1 and N > N0 by inequality (3.15). Besides, (3.14) with N = 0
implies that

E|eitV0 − EeitZ0 | ≤ |t|(E(Z0 − Vo)
2)1/2 ≤ |t|dn/2ε

for all t ∈ R
1 if T > T0(ε), where Z0 is defined in (3.12) and V0 after the

definition of VN for N ≥ 1. Finally, EeitVN → EeitV0 for all t ∈ R
1 if relation

(3.13) holds. These relations together imply that |EeitZN −EeitZ0 | ≤ C(t)ε
if N > N0(t, ε) with some numbers C(t) and N0(t, ε). Since this inequality

holds for all ε > 0, it implies that ZN
D
→ Z0. (In formula (3.13) we imposed

a condition on the parameter T > 0. We demanded that the boundary of
[−T, T ]kν must have measure zero with respect to the product measure of
µ0. It causes no problem that we can apply the above argument only for
parameters T with this property.)

We shall prove (3.13) with the help of some statements formulated below.
To formulate them let us first fix a number T > 0 such that the bound-
ary of the cube [−T, T ]kν has zero measure with respect to the measure
µ0 × · · · × µ0
︸ ︷︷ ︸

n times

. Observe that

h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk) ∈ Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

)

for all T > 0 and N = 0, 1, 2, . . . . I claim that for all ε > 0 a regular system
D = D(ε) = {∆k, k = ±1, . . . ,±M} can be constructed for which all of its
elements have zero measure with respect the a dominating measure µ0, i.e.
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µ0(∂∆k) = 0 for all 1 ≤ |k| ≤ M , ∆k ⊂ [−T, T ]ν for all 1 ≤ |k| ≤ M , and
such that there exist some simple functions

f ε
j1,...,jk

∈ K̂n,j1,...,jk(G
(0)
j1,j1

, . . . , G
(0)
jn,jk

)

indexed by the parameters (j1, . . . , jk), 1 ≤ js ≤ d, 1 ≤ s ≤ k, which are
adapted to this regular system, and satisfy the inequalities written down in
the following two formulas (3.16 and (3.17).

∫

|h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)− f ε
j1,...,jk

(x1, . . . , xk)|
2

G
(0)
j1,j1

( dx1) . . . G
(0)
jk,jk

( dxk) < ε2 (3.16)

for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, and also
∫

|h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)− f ε
j1,...,jk

(x1, . . . , xk)|
2

G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk) < ε2 (3.17)

for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, and N ≥ N0 with some N0 = N0(ε, T ).
I also claim that with such a choice of simple functions

YN
D
→ Y0 (3.18)

as N → ∞, where

YN = YN (ε, T )

=
∑

(j1,...,jk)
1≤js≤d for all 1≤s≤k

∫

f ε
j1,...,jk

(x1, . . . , xk)ZG(N),j1
( dx1) . . . ZG(N),jk

( dxk)

for N = 0, 1, 2, . . . .
Let us show that for all ε > 0 there exists a regular system D together

with some simple functions f ε
j1,...,jk

adapted to it which satisfy the desired
properties.

Indeed, by Lemma (5.2) of [10] for all ε > 0 and parameters (j1, . . . , jk),
1 ≤ js ≤ d, 1 ≤ s ≤ k, there exists such a simple function f ε

j1,...,jk
adapted

to a regular system Dj1,...,jk in such a way that this function f ε
j1,...,jk

satisfies

(3.16), and the elements of Dj1,...,jk have boundaries with zero µ0 measure.
Let us make such a construction for all parameters (j1, . . . , jk). It can be
seen that there is a refinement D of the regular systems Dj1,...,jk such that all
simple functions f ε

j1,...,jk
are adapted to it, and its elements have boundaries

with zero µ0 probability. (I omit the details of this construction.) This
regular system together with the functions f ε

j1,...,jk
adapted to it satisy the

desired requirements, because, as we shall see, their properties imply that
these functions satisfy not only (3.16), but also (3.17).

Relation (3.13) can be proved with the help of relations (3.16), (3.17) and

(3.18) similarly to the reduction of the relation ZN
D
→ Z0 to formula (3.13).

Indeed, one gets from inequalities (3.16), (5.6) in [10] and the definition of
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the quantities VN and Y0, by applying an argument similar to the proof of
relation (3.14) that

E(V0 − Y0)
2 ≤ k!kdε2,

and also

E(VN − YN )2 ≤ kdk!ε2

if N > N0(ε, T ) by (3.17) and (5.6) in [10].
Then we can show with the help of these relations similarly to the reduc-

tion of the relation ZN
D
→ Z0 to formula (3.13) that |EeitVN − EeitYN | ≤ ε,

|EeitYN − EeitY0 | ≤ ε, and |EeitY0 − EeitV0 | ≤ ε if N > N0(ε, t, T ) with
some threshold index N0(ε, t, T ). Here in the first and third inequality we
apply the last two inequalities which were consequences of (3.16) and (3.17),
while the second inequality follows from (3.18). Since these relations hold
for all ε > 0 they imply that EeitVN → EeitV0 for all t ∈ R

1 as N → ∞,

i.e. VN
D
→ V0 as N → ∞, and this is formula (3.13) written with a different

notation.
It remains to prove (3.16), (3.17) and (3.18). We made such a construc-

tion of a regular system and simple functions adapted to it with the help
of Lemma 5.2 in [10] which satisfy (3.16). Then formula (3.17) follows
from some classical results about vague (and weak) convergence of measures.
Since we are working in the proof of (3.17) in a cube [−T, T ]kν it is enough
to know the results about weak convergence to carry out our arguments.

Let us first observe that since the restrictions of the measures G
(N)
j,j to

[−T, T ]ν tend weakly to the restriction of the measure G
(0)
j,j to the cube

[−T, T ]ν as N → ∞, we can also say that the restrictions of the product

measures G
(N)
j1,j1

× · · · ×G
(N)
jk,jk

to the cube [−T, T ]kν converge weakly to the

restriction of the product measure G
(0)
j1,j1

×· · ·×G
(0)
jk,jk

on the cube [−T, T ]kν ,
as N → ∞. On the other hand, the function

H0
j1,...jk

(x1, . . . , xk)

= |h0j1,...,jk(x1, . . . , xk)χT (x1, . . . , xk)− f ε
j1,...,jk

(x1, . . . , xk)|
2

is almost everywhere continuous with respect to the measure G
(0)
j1,j1

× · · · ×

G
(0)
jk,jk

. By the general theory about convergence of measures these properties
imply that

∫

H0
j1,...jk

(x1, . . . , xk)G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk)

→

∫

H0
j1,...jk

(x1, . . . , xk)G
(0)
j1,j1

( dx1) . . . G
(0)
jk,jk

( dxk)

as N → ∞. (Such a convergence is proved for probability measures for
example in [2].) A careful analysis shows that this result remains valid
for sequences of finite, but not necessarily probability measures. Let me
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remark that here we are working with (real, non-negative) measures. The
last relation together with (3.16) imply (3.17).

To prove relation (3.18) first we show that G
(N)
j,j′ (∆k) → G

(0)
j,j′(∆k) as

N → ∞ for all 1 ≤ j, j′ ≤ d and ∆k ∈ D with the regular system D we are
working with. (Let me recall that the boundary of all sets ∆k ∈ D has zero

µ0 measure and hence also zero G
(0)
j,j′ measure.)

If j = j′ then this relation follows immediately from the facts that G
(N)
j,j

v
→

G
(0)
j,j , G

(0)
j,j (∂∆k) = 0 for all 1 ≤ |k| ≤ M , and G

(N)
j,j is a locally finite measure

for all N = 0, 1, 2, . . . . If j 6= j′, then we have to apply a more refined

argument, since in this case we only know that G
(N)
j,j′ is a complex measure

with locally finite total variation. In this case we will exploit that the matrix

valued measures (G
(N)
j.j′ ), 1 ≤ j, j′ ≤ d, are positive semidefinite. This implies

that the Radon–Nikodym derivatives g
(N)
j,j′ of the complex measures G

(N)
j,j′

with respect to the dominating measure µN have the following property.
For all N = 0, 1, 2, . . . and 1 ≤ j, j′ ≤ d such that j 6= j′ the 2× 2 matrices

g(N)(x|j, j′) =

(

g
(N)
j,j (x), g

(N)
j,j′ (x)

g
(N)
j′,j (x), ng

(N)
j′,j′(x)

)

are positive semidefinite for µN almost all x ∈ R
ν . Let us define for all

non-negative functions v(x), x ∈ R
ν the vector S(x|v) = (

√

v(x),
√

v(x)).

By exploiting that the matrices g(N)(x|j, j′) are positive semidefinite we get
that

∫
v(x)[G

(N)
j,j ( dx) +G

(N)
j,j′ ( dx) +G

(N)
j′,j ( dx) +G

(N)
j′,j′( dx)]

=
∫
S(x|v)g(N)(x|j, j′)S(x|v)∗µN ( dx) ≥ 0

for all functions v such that v(x) ≥ 0, x ∈ R
ν . Hence H

(N)
j.j′ = [G

(N)
j,j +G

(N)
j,j′ +

G
(N)
j′,j + G

(N)
j′,j′ ] is a locally finite measure on R

ν . Moreover H
(N)
j,j′

v
→ H

(0)
j,j′ as

N → ∞. This implies that H
(N)
j,j′ (∆k) → H

(0)
j,j′(∆k), therefore G

(N)
j,j′ (∆k) +

G
(N)
j′,j (∆k) → G

(0)
j,j′(∆k) +G

(0)
j′,j(∆k) as N → ∞ for all ∆k ∈ D.

We get similarly by working with the vectors R(x|v) = (
√

v(x), i
√

v(x))

instead of the vectors S(x|v) = (
√

v(x),
√

v(x)) for all functions v(x) ≥ 0,

x ∈ R
ν , that K

(N)
j.j′ = [G

(N)
j,j + iG

(N)
j,j′ − iG

(N)
j′,j + G

(N)
j′,j′ ] is a a locally finite

measure for all N = 0, 1, 2, . . . , and K
(N)
j,j

v
→ K

(0)
j,j′ as N → ∞. Thus

K
(N)
j,j′ (∆k) → K

(0)
j,j′(∆k), therefore G

(N)
j,j′ (∆k) − G

(N)
j′,j (∆k) → G

(0)
j,j′(∆k) −

G
(0)
j′,j(∆k) asN → ∞ for all ∆k ∈ D. These relations imply thatG

(N)
j,j′ (∆k) →

G
(0)
j,j′(∆k) for all ∆k ∈ D.
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Let us define for all N = 0, 1, 2, . . . and our regular system D = {∆k, 1 ≤
|k| ≤ M} the Gaussian random vector

ZN (D) =
(

ReZG(N),j(∆k), ImZG(N),j(∆k), |k| ≤ M, 1 ≤ j ≤ d
)

I claim that the elements of the covariance matrices of the random vectors
ZN (D) can be expressed by means of the numbers G

(N)
j,j′ (∆k), 1 ≤ |k| ≤ M

and 1 ≤ j, j′ ≤ d, and the covariance matrices of ZN (D) converge to the
covariance matrix of Z0(D) as N → ∞. (In the proof of this statement
I repeat some arguments applied in the investigation of random spectral
measures in Section 3 of [10].)

To prove these relations observe that

ReZG(N),j(∆k) =
ZG(N),j(∆k) + ZG(N),j(∆k)

2
,

ImZG(N),j(∆k) =
ZG(N),j(∆k)− ZG(N),j(∆k)

2i
,

and ZG(N),j(∆k) = ZG(N),j(−∆k) = ZG(N),j(∆−k). (In the last identity we

exploited also the properties of the regular systemsD.) Also the properties of
the regular systems imply that if ∆k,∆l ∈ D, then we have either ∆k∩∆l =
∆k or ∆k ∩∆l = ∅. The first identity holds if l = k and the second one if

l 6= k. Hence we have either EZG(N),j(∆k)ZG(N),j′(∆l) = G
(N)
j,j′ (∆k) if k = l

or EZG(N),j(∆k)ZG(N),j′(∆l) = 0 if k 6= l. These relations imply that we can
express all covariances

EReZG(N),j(∆k)ReZG(N),j′(∆l), EReZG(N),j(∆k)ImZG(N),j′(∆l)

and EImZG(N),j(∆k)ImZG(N),j′(∆l)

with the help of the quantities G
(N)
j,j′ (∆k), 1 ≤ j, j′ ≤ d, 1 ≤ |k| ≤ M . The

convergence of the numbers G
(N)
j,j′ (∆k) to G

(0)
j,j′(∆k) also implies that the

covariance matrices of ZN (D) converge to the covariance matrix of Z0(D)
as N → ∞.

The convergence of the covariance matrices of the Gaussian random vec-
tors ZN (D) with expectation zero also implies that the distributions of
ZN (D) converge weakly to the distribution of Z0(D) as N → ∞. But then
the same can be told about any continuous functions of the coordinates
of the random vectors ZN (D). Because of the definition of the multiple
Wiener–Itô integrals of simple functions the random variables YN in for-
mula (3.18) are polynomials, hence continuous functions of the coordinates
of the random vectors ZN (D). Besides, these polynomials do not depend
on the parameter N . Hence the previous results imply that formula (3.18)
holds. Proposition 3.1 is proved. �

To simplify the application of Proposition 3.1 we also prove the following
lemma.
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Lemma 3.2. Let us have a sequence of matrix valued spectral measures

(G
(N)
j,j′ ), N = 1, 2, . . . , 1 ≤ j, j′ ≤ d, on the torus [−ANπ,ANπ]ν such that

AN → ∞, and G
(N)
j,j′

v
→ G

(0)
j,j′ with some complex measure (G

(0))
j,j′ ) with locally

finite total variation for all 1 ≤ j, j′ ≤ d as N → ∞. Then G(0) = (G
(0)
j,j′),

1 ≤ j, j′ ≤ d, is a positive semidefinite matrix valued even measure on R
ν .

Remark. Lemma 3.2 helps to show that in many interesting cases the limit

matrix G(0) = (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, of the spectral measures G(N) = (G

(N)
j,j′ ),

1 ≤ j, j′ ≤ d, N = 1, 2, . . . , in Proposition 3.1 is the spectral measure of
a generalized stationary Gaussian random field. Indeed, in Theorem 4.1
of [10] it was shown that a positive semidefinite matrix valued measure on
R
ν whose distribution is moderately increasing at infinity is the spectral

measure of such a random field. (See Section 4 of [10] for the definition of

these notions.) So by Lemma 3.2 to prove that G(0) is the spectral measure
of a generalized stationary Gaussian random field it is enough to show that
the distribution of G(0) is moderately increasing.

Proof of Lemma 3.2. We have to show that (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is

a positive semidefinite matrix valued measure. To do this take a vector
v(x) = (v1(x), . . . , vd(x)) whose coordinates vk(x), 1 ≤ k ≤ d, are continu-
ous functions with compact support. We have

lim
N→∞

d∑

j=1

d∑

j′=1

∫

vj(x)vj′(x)G
(N)
j,j′ ( dx) =

d∑

j=1

d∑

j′=1

∫

vj(x)vj′(x)G
(0)
j,j′( dx) ≥ 0.

(3.19)

The identity in (3.19) holds, since G
(N)
j,j′

v
→ G

(0)
j,j′ for all 1 ≤ j, j′ ≤ d. The

inequality at the end of (3.19) also holds, because (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, is

a positive semidefinite matrix valued measure for all N = 1, 2, . . . , and this
implies that the left-hand side of (3.19) is non-negative for all N = 1, 2, . . . .

Thus we got that if g
(0)
j,j′(x) is the Radon–Nikodym derivative of G

(0)
j,j′ with

respect to some dominating measure µ0 in the point x ∈ R
ν for all 1 ≤

j, j′ ≤ d, we take the d× d matrix g(0)(x) = (g
(0)
j,j′(x)), 1 ≤ j, j′ ≤ d, and the

coordinates of the vector v(x) = (v1(x), . . . , vd(x)) are continuous functions
with compact support, then

∫

v(x)g(0)(x)v∗(x)µ0( dx) ≥ 0.

In the proof of Theorem 2.2 of [10] we have shown that this relation implies

that (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, is a positive semidefinite matrix valued measure.

We still have to show that the complex measure G
(0)
j,j′ with locally finite

variation is even for all 1 ≤ j, j′ ≤ d. To do this fix a pair j, j′ of indices,

1 ≤ j, j′ ≤ d, and define for all N = 0, 1, 2, . . . the complex measure (G′)
(N)
j,j
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by the relation (G′)
(N)
j,j′ (A) = G

(N)
j,j′ (−A) for all bounded, measurable sets

A ⊂ R
ν . It is not difficult to see that not only G

(N)
j,j′

v
→ G

(0)
j,j′ , but also

(G′)
(N)
j,j′

v
→ (G′)0j,j′ as N → ∞. The evenness of the measures G

(N)
j,j′ for

N = 1, 2, . . . means that G
(N)
j,j′ = (G′)

(N)
j,j′ for all N = 1, 2, . . . . By taking the

limit N → ∞ we get that G
(0)
j,j′ = (G′)

(0)
j,j′ . This means that G

(0)
j,j is an even

complex measure with locally finite variation. Lemma 3.2 is proved. �

Appendix A. On the results in Section 2.

I wrote an Appendix consisting of two parts. In the first part I discuss
some questions related to Section 2 while in the second part some questions
related to Section 3.

In the first part, I write about the idea of the proof of Itô’s formula
together with the introduction of Wick polynomials. I also explain how
Itô’s formula is applied in the proof of the other results in Section 2.

In the second part, I write about the investigation of limit problems for
non-linear functionals a stationary Gaussian random fields and the content
of Proposition 3.1. Here I want to explain the role of the compactness type
condition (b) in this proposition. I shall do this with the help of an example.

First I try to explain the idea behind the proof of Itô’s formula. To do
this first I consider its one-dimensional version. In that case we want to
prove the following statement. Let ϕ(x), ϕ(−x) = ϕ(x), be such a function
for which

∫
|ϕ(x)|2G( dx) = 1 with a spectral measure G, and consider

a random spectral measure ZG corresponding to the spectral measure G.
Then Y =

∫
ϕ(x)ZG( dx) is a standard normal random variable, and the

identity

Hn

(∫

ϕ(x)ZG( dx)

)

=

∫

ϕ(x1) · · ·ϕ(xn)ZG( dx1) . . . ZG( dxn). (A.1)

holds for all n ≥ 1. Actually, Itô’s formula is a more general result, but here
it will be enough to consider this special case.

It is proved in the general theory that the above-defined random vari-
able Y has standard normal distribution. Formula (A.1) is proved by induc-
tion with respect to n. In this induction, we apply the recursion formula (2.2)
for Hermite polynomials and the diagram formula for the product of multiple
Wiener–Itô integrals. We exploit that they “fit to each other”.

Formula (A.1) clearly holds for n = 1. To prove it for n if we know it for
m < n we rewrite the left-hand side of (A.1) with the help of the recursion
formula (2.2). We rewrite the random integral

∫

ϕ(x1) · · ·ϕ(xn)ZG( dx1) . . . ZG( dxn)
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at the right hand of (A.1) by means of the identity that we get by applying
the diagram formula for the product

∫

ϕ(x1) · · ·ϕ(xn−1)ZG( dx1) . . . ZG( dxn−1)

∫

ϕ(x)ZG( dx).

(I remark that Proposition 5.1 of [8] yields a generalization of the formula we
get in such a way.) Then some calculations with the help of these formulas
and the inductive hypothesis yield the proof of formula (A.1) for n.

Itô’s formula for vector-valued stationary Gaussian random fields can be
proved by an appropriate adaptation of the above argument. In the proof,
we apply a useful special case of the diagram formula for vector-valued
stationary Gaussian random fields presented in [10]. It is formulated in the
corollary of Theorem 6.1 in[10].

On the other hand, we need a new identity instead of formula (2.2) in
the proof, and we can formulate it with the help of Wick polynomials. This
was the reason for their introduction in this paper. They are defined in
Section 2 with the help of some results in [10]. First we have to understand
that this definition is correct. Namely, we have to show that the Wick
polynomial :P (ξ1, . . . , ξm) : of a homogeneous polynomial P (ξ1, . . . , ξm) of
order n depends only on the random variables ξ1, . . . , ξm, although in its
definition we applied a projection to a Hilbert space Hn which may depend
on other random variables, too.

The result of Theorem 2B implies the correctness of this definition. It
states that the value of the Wick polynomial does not change if we take
projection to the Hilbert space Hn(ξ1, . . . , ξm) introduced before the formu-
lation of this result instead of the projection to Hn. The definition of this
new Hilbert space is similar to that of Hn, the only difference is that here
we work only with the random variables ξ1, . . . , ξm.

The proof of Theorem 2B exploits the following property of Gaussian
random vectors. If some coordinates of a Gaussian random vector are un-
correlated, then they are also independent. This implies that the elements of
the underlying Gaussian random field can be decomposed as Xt = η1,t+η2,t,
t ∈ T , in such a way that η1,t is a linear combination of the random variables
ξ1, . . . , ξm, while η2,t is uncorrelated, hence independent of them. The proof
of Theorem 2B is based on this fact. I omit the details of the proof.

Theorem 2B implies in particular that : ξn : = Hn(ξ) if ξ is a standard
normal random variable. Corollary 2C describes a deeper relation between
Hermite and Wick polynomials. This can be exploited. For instance, the
identity (2.3) formulated in Proposition 2.1 can be proved with its help and
formula (2.2) about Hermite polynomials. This identity plays an important
role in the proof of Itô’s formula.

The proof of Itô’s formula for vector-valued stationary Gaussian random
fields is made with the help of the identity (2.3) for Wick polynomials and
the Corollary of Theorem 6.1 in [10]. (Theorem 6.1 in [10] is the diagram
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formula for vector-valued stationary Gaussian random fields.) It is a natural
adaptation of the previously discussed proof in the scalar-valued case.

It is easy to deduce from Theorem 2.2 its Corollary. In this Corollary the
Wick polynomials of such homogeneous polynomials are considered whose
arguments are elements of one of the Hilbert spaces H1,j , 1 ≤ j ≤ d. In the
Corollary of Theorem 2.2 such expressions are expressed in the form of a sum
of multiple Wiener–Itô integrals. The class of homogeneous polynomials
considered in the Corollary of Theorem 2.2 is fairly large. This fact is
exploited in the proof of Proposition 2.3, which states that the set of all
finite sums of n-fold Wiener–Itô integrals constitute an everywhere dense
class of functions in Hn.

In the last result of Section 2, in Theorem 2.4 a random variable, defined in
formula (2.6) in the form of a multiple Wiener–Itô integral is considered, and
its shift transforms are given in formula (2.8). This is an important result,
and its proof is based also on the Itô formula. The validity of formula (2.8)
can be checked first for the shifts of one-fold Wiener–Itô integrals. Then it
can be proved with the help of the Itô formula for such multiple Wiener–Itô
integrals whose kernel functions have the special form

h(x1, . . . , xn) = ϕ1(x1) · · ·ϕn(xn).

After this Proposition 2.4 can be proved in the general case by means of a
standard method.

Appendix B. On the results in Section 3.

At the beginning of Section 3 I formulated a limit problem. I consid-
ered a vector-valued stationary Gaussian random field X(p), p ∈ Z

ν , de-
fined a Wick polynomial of order k of the coordinates of the vector X(0)
in (3.4), and I was interested in a limit problem for the expressions SN

defined in (3.3). These expressions are normalized partial sums whose el-
ements are shifts TpY (0) of the random variable Y (0). This problem is a
multivariate version of the problem studied in [5].

The expressions SN can be rewritten in an interesting simple form with
the help of Itô’s formula that enables us to rewrite Y (0) in the form of a
sum of multiple Wiener–Itô integrals, and of Proposition 2.4 that gives a
useful formula for its shifts TpY (0). I could express with their help and with
an appropriate rescaling of the random integrals we are working with the
expression SN in the form given in (3.7). I applied this rescaling to get such
an expression in(3.7), where the kernel functions of the multiple Wiener–Itô
integrals have a limit as N → ∞. This formula suggests that if the matrix
valued spectral measures G(N) have a limit, then we can get the limit of
the random variables SN by means of a natural limiting procedure. Maybe,
this can be done only if some additional not too restrictive conditions are
satisfied. Proposition 3.1 gives a useful sufficient condition for the right to
carry out such a limiting procedure, and to get a limit theorem in this way.
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In the formulation of Proposition 3.1 some random variables ZN , N =
0, 1, 2, . . . , defined in (3.9) and (3.12) are considered. First it is shown that
under the conditions of Proposition 3.1 these random variables exist (the
multiple integrals appearing in their definition are well-defined), and then

also the convergence ZN
D
→ Z0 is proved.

The first conditions of Proposition 3.1 are natural. They demand that the
kernel functions hNj1,...,jk(x1, . . . , xk) of the random integrals in ZN and the

matrix valued spectral measures G(N) converge to h0j1,...,jk(x1, . . . , xk) and

G(0) in an appropriate way. (Actually, there is also a hidden condition here.
It is the condition that the functions h0j1,...,jk(x1, . . . , xk) must be continuous.

In the scalar-valued version of this result, in Proposition 8.3 of [8] a slightly
weaker continuity condition is imposed. Here we do not discuss the question
how the continuity property in Proposition 3.1 can be weakened.)

On the other hand, part (b) of Proposition 8.3 contains an additional
condition that deserves special attention. We can understand its role better
by considering the application of Proposition 3.1 in the proof of the main
result in [11] or the application of its scalar-valued version in the proof of
Theorem 8.2 of [8].

In Theorem 8.2 of [8] a scalar-valued stationary Gaussian random field
X(p), p ∈ Z

ν , is considered. The random variables Y (p) = Hk(X(p)) =
TpY (0) are introduced, where Hk(·) is the Hermite polynomial of order k,
and the normalized partial sums SN are defined by formula (3.3) with
these random variables Y (p). A non-central limit theorem is proved with

normalizing constants AN = Nν−kα/2L(N)k/2 if the corelation function

r(p) = EX(0)X(p) satisfies the relation r(p) = |p|−αa
(

p
|p|

)

L(|p|) with

some 0 < α < ν
k , where L(·) is a slowly varying function at infinity, and

a(·) is a function on the unit sphere of Rν . It shows the dependence of the
correlation function r(p) on the direction of the vector p.

Paper [11] contains a multivariate version of this result. Here a vector-
valued stationary Gaussian random fieldX(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν ,
is considered, and a limit theorem is proved for the random variables SN ,
defined in (3.3) and (3.4) under appropriate condition. A condition, similar
to the condition of the correnlation function in Theorem 8.2 of [8] is imposed
on the correlation function rj,j′(p) = EXj(0)Xj′(p) which is described in
formula (1.3) of [10]. A non-central limit theorem with normalizing constants

AN = Nν−kα/2L(N)k/2 is proved if this condition holds for the correlation
function with exponent 0 < α < ν

k .
It is worth understanding why the condition α < ν

k in the exponent of the
formula expressing the decrease of the correlation function is needed in the
proof of these results. In the first step of these proofs, we have to describe
the asymptotic behavior of the spectral measure of the underlying stationary
Gaussian random field. In the scalar-valued this is done in Lemma 8.2 of [8].
It describes the limit behavior of the appropriately rescaled versions GN of
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the spectral measure G of the stationary Gaussian random field we are work-
ing with. These measures are defined by the identity GN (A) = Nα

L(N)G
(
A
N

)

for all measurable sets A. In this lemma, it is proved that the measures GN

have a vague limit G0 as N → ∞, and the limit measure has the homogene-
ity property G0(A) = t−αG0(tA) for all measurable sets A and t > 0. There
is a similar result also in the case of vector-valued stationary Gaussian fields.

The above results imply that the spectral measures and kernel functions
in the representation of SN in formula (3.7) satisfy the starting conditions
of Proposition 3.1 if the correlation function of the underlying stationary
Gaussian field has such an asymptotic behavior at the infinity as it is de-
manded in the above-mentioned results. Moreover, they are satisfied if the
correlation function satisfies the desired relation with arbitrary “homogene-
ity parameter” ν > α > 0.

One would like to understand where we exploited the condition α < ν
k ,

and what can be told if this condition is violated. (The number k was
the order of the Wick polynomial we were working with.) This question is
related to condition (b) in Proposition 3.1. It is proved that this condition
is satisfied under the additional condition α < ν

k . (This is proved in [5]
or [8] in the scalar and in [11] in the vector-valued case.) On the other
hand, it can be proved that if the asymptotic formula prescribed for the
correlation function satisfies the prescribed asymptotic relation with α ≥ ν

k ,
then relation (3.11) does not hold, and as a consequence, the definition of
the random variable Z0 in (3.12) is incorrect.

We have more detailed knowledge of the behavior of the random sum SN

defined in (3.3) if α > ν
k . It is known that it satisfies the central limit theorem

with the standard normalization Nν/2. This follows from the central limit
theorem proved in [3] in the scalar and in Theorem 4 of [1] in the vector-
valued case. One only has to check that the conditions of these results
are satisfied in this case, and this can be done by calculating the necessary
covariances. A similar central limit theorem also holds if α = ν

k , but in this

case, it may happen that the norming constant is Nν/2L(N) with a slowly
varying function L(N) tending to infinity as N → ∞.

The above-discussed results suggest the following heuristic picture about
a generalized version of the results discussed in the Appendix.

Let us have a stationary Gaussian random field X(p), p ∈ Z
ν and a

non-linear functional Y of this random field. Take the shifts Y (p) = TpY ,
p ∈ Z

ν , of this non-linear functional, and consider their normalized sums SN

defined in formula (3.1). We are interested in what kind of limit theorem
holds for this sequence SN as N → ∞ if we choose the norming constants
AN appropriately. In Section 3 we considered a special case of this problem
and proved by applying a method that it can be reformulated to the problem
about the limit theorem for a sequence ZN defined in (3.9). Such a sequence
has a limit if the kernel functions and spectral measures in the definition
of ZN behave nicely. A similar reformulation of the above-mentioned limit
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problem is possible in a more general case, only different kernel functions
appear in the definition of the random integrals in (3.9). Proposition 3.1
may help in the study of the limit behavior of the random variables ZN

defined in (3.9). It turned out that condition (b) of Proposition 3.1 is an
important condition of this result. Let us understand its role better.

Condition (b) of Proposition 3.1 is a compactness type condition formu-
lated in (3.10). Let us consider the integrals in it when we integrate on the
whole space R

ν . If the values of these integrals tend to infinity as N → ∞,
then for large N the essential part of the random integrals in (3.9) comes
from a region that contains vectors with a very big norm in R

kν . It is natu-
ral to expect that in such cases the random variables ZN satisfy the central
limit theorem with the classical norming constants AN = Nν/2 under very
general conditions. Such a result is proved beside the above-mentioned pa-
pers [1] and [3] also in the book [12]. On the other hand, Proposition 3.1
implies the existence of a non-Gaussian limit, expressed by means of a sum
of multiple Wiener–Itô if the the spectral measures and the kernel functions
have a limit, and condition (b) of Proposition 3.1 holds.
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