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Summary: We prove such a multivariate version of Bernstein’s inequal-
ity about the tail distribution of degenerate U -statistics which is an im-
provement of some former results. This estimate will be compared with
an analogous bound about the tail distribution of multiple Wiener-Itô in-
tegrals. Their comparison shows that our estimate is sharp. The proof is
based on good estimates about high moments of degenerate U -statistics.
They are obtained by means of a diagram formula which enables us to
express the product of degenerate U -statistics as the sum of such expres-
sions.

1 Introduction.

Let us consider a sequence of iid. random variables ξ1, ξ2, . . ., on a measurable
space (X,X ) with some distribution µ together with a real valued function
f = f(x1, . . . , xk) of k variables defined on the k-th power (Xk,X k) of the space
(X,X ) and define with their help the U -statistics In,k(f), n = k, k + 1, . . .,

In,k(f) =
1

k!

∑

1≤js≤n, s=1,...,k
js 6=js′ if s6=s′

f (ξj1 , . . . , ξjk
) . (1.1)

We want to get good estimates on the probabilities P
(
n−k/2k!|In,k(f)| > u

)
for

u > 0 under appropriate conditions.
Let me first recall a result of Arcones and Giné [2] in this direction. They

have proved the inequality

P
(

k!n−k/2|In,k(f)| > u
)

≤ c1 exp






− c2u

2/k

σ2/k
(

1 + c3

(
un−k/2σ−(k+1)

)2/k(k+1)
)






(1.2)

for all u > 0 with some universal constants c1, c2 and c3 depending only on the
order k of the U -statistic In,k(f) defined in (1.1) if the function f satisfies the
conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, (1.3)

‖f‖2
2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2, (1.4)
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and it is canonical with respect to the probability measure µ, i.e.

∫

f(x1, . . . , xj−1, u, xj+1, . . . , xk)µ( du) = 0 for all 1 ≤ j ≤ k

and xs ∈ X, s ∈ {1, . . . k} \ {j}.

A U -statistic defined in (1.1) with the help of a canonical function f is called
degenerate in the literature. Degenerate U -statistics are the natural multivariate
versions of sums of iid. random variables with expectation zero.

Actually Arcones and Giné formulated their result in a slightly different but
equivalent form. They called their estimate (1.2) a new Bernstein-type inequal-
ity. The reason for such a name is that the original Bernstein inequality (see
e.g. [3], 1.3.2 Bernstein inequality) states relation (1.2) in the special case k = 1
with constants c1 = 2, c2 = 1

2 and c3 = 1
3 if the function f(x) satisfies the con-

ditions sup
x

|f(x)| ≤ 1,
∫

f(x)µ( dx) = 0 and
∫

f2(x)µ( dx) ≤ σ2. (Bernstein’s

inequality states a slightly stronger estimate in the case k = 1. It states this
inequality with constants c1 = 1, c2 = 1

2 and c3 = 1
3 if there is no absolute value

inside the probability at the left-hand side of (1.2).)
Our goal is to prove such an improvement of this result which gives the right

value of the parameter c2 in formula (1.2), and we also want to explain the
probabilistic content of such an improvement. For this goal let us first make a
more detailed comparison between Bernstein’s inequality and estimate (1.2).

Let us consider the sum Sn =
n∑

j=1

ξj of iid. random variables ξ1, . . . , ξn

such that Eξ1 = 0, P (|ξ1| ≤ 1) = 1, and consider the probability pn(u) =

P
(

1√
n
Sn > u

)

for all u > 0. Put σ2 = Eξ2
1 . Bernstein’s inequality implies that

pn(u) ≤ exp

{

−
(

1 − Ku√
nσ2

)
u2

2σ2

}

for all 0 ≤ u ≤
√

nσ2

with some number K < 1. A similar estimate holds for 0 ≤ u ≤ C
√

nσ2 for
any number C > 0, but in the case u À √

nσ2 only a much weaker inequality
holds. (See Example 2.4 in [10] for an example where only a very weak estimate
holds if u À √

nσ2.) This means that Bernstein’s inequality has the following
perturbation type character. For small numbers u (if 0 < u < ε

√
nσ2 with some

small ε > 0) the expression in the exponent of the upper bound given for pn(u)

is a small perturbation of − u2

2σ2 , of the expression suggested by the central limit
theorem. For u ≤ const.

√
nσ2 a similar bound holds, only with a worse constant

in the exponent. If u À √
nσ2, then no good Gaussian type estimate holds for

the probability pn(u).
Next I formulate the main result of this paper, Theorem 1, which is an

estimate similar to that of [2]. But, as I will show, it is sharper, and it has a
perturbation type character, similar to Bernstein’s inequality.

Theorem 1. Let ξ1, . . . , ξn be a sequence of iid. random variables on a space
(X,X ) with some distribution µ. Let us consider a function f(x1, . . . , xk),
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canonical with respect to the measure µ on the space (Xk,X k) which satisfies
conditions (1.3) and (1.4) with some 0 < σ2 ≤ 1 together with the degener-
ate U -statistic In,k(f) with this kernel function f . There exist some constants
A = A(k) > 0 and B = B(k) > 0 depending only on the order k of the U -
statistic In,k(f) such that

P (k!n−k/2|In,k(f)| > u) ≤ A exp






− u2/k

2σ2/k
(

1 + B
(
un−k/2σ−(k+1)

)1/k
)







(1.5)
for all 0 ≤ u ≤ nk/2σk+1.

Remark: Actually, the universal constant B > 0 can be chosen independently
of the order k of the degenerate U -statistic In,k(f) in inequality (1.5).

To understand the content of Theorem 1 better let us recall the following
limit distribution result about degenerate U -statistics, (see e.g. [4]). If the
canonical function f of k variables satisfies condition (1.4), then the degener-
ate U -statistics n−k/2In,k(f) converge in distribution to the k-fold Wiener–Itô
integral Jµ,k(f),

Jµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW (dxk), (1.6)

of the function f with respect to a white noise µW with reference measure µ.
Here µ is the distribution of the random variables ξj , j = 1, 2, . . . appearing
in the U -statistics In,k(f). Let me recall that a white noise µW with reference
measure µ on (X,X ) is a set of jointly Gaussian random variables µW (A),
A ∈ X , µ(A) < ∞, such that EµW (A) = 0, EµW (A)µW (B) = µ(A ∩ B) for
all A ∈ X and B ∈ X . The definition of Wiener–Itô integrals can be found for
instance in [6] or [8].

The above result suggests to describe the tail-distribution of the Wiener–Itô
integral Jµ,k(f) and to show that Theorem 1 gives such an estimate which the
above mentioned limit theorem and the tail distribution of Jµ,k(f) suggests. At
this moment there appears an essential difference between the problem discussed
in Bernstein’s inequality and its multivariate version.

We want to estimate both the U -statistic In,k(f) and the Wiener–Itô in-
tegral Jµ,k(f) by means of their variance. (Let me remark that the integral
in formula (1.4) equals the variance of (k!)1/2Jµ,k(f), and it is asymptotically
equal to the variance of (k!)1/2n−k/2In,k(f) for large n. At least, this is the case
if f is a symmetric function of its variables. But, since In,k(f) = In,k(Sym f),
Jµ,k(f) = Jµ,k(Sym f), and ‖Sym f‖2

2 ≤ ‖f‖2
2 we may restrict our attention to

this case.) But while the variance and expectation determines the distribution
of a Gaussian random variable, the distribution of a Wiener–Itô integral is not
determined by its variance and (zero) expectation. Hence if we want to com-
pare the estimation of degenerate U -statistics by means of their variance with
a natural Gaussian counterpart of this problem, then it is natural to consider
first the following problem.
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Find such an upper estimate for the tail distribution of Wiener–Itô integrals
which holds for all of them with a prescribed bound on their variances, and which
is sharp in the following sense. There is a Wiener–Itô integral whose variance
is not larger than the prescribed bound, and which satisfies a very similar lower
estimate. Then the estimate for degenerate U -statistics has to be compared
with such an estimate for Wiener–Itô integrals. The following Theorem 2 and
Example 3 give an estimate for Wiener–Itô integrals with the desired properties.
(These results were proven in [11].) They suggest to compare the upper bound

in Theorem 1 with the function const. exp
{

− 1
2

(
u
σ

)2/k
}

with some appropriate

constant.

Theorem 2. Let us consider a σ-finite measure µ on a measurable space to-
gether with a white noise µW with reference measure µ. Let us have a real-valued
function f(x1, . . . , xk) on the space (Xk,X k) which satisfies relation (1.4) with
some σ2 < ∞. Take the random integral Jµ,k(f) introduced in formula (1.6).
This random integral satisfies the inequality

P (k!|Jµ,k(f)| > u) ≤ C exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (1.7)

with an appropriate constant C = C(k) > 0 depending only on the multiplicity
k of the integral.

Example 3. Let us have a σ-finite measure µ on some measure space (X,X )
together with a white noise µW on (X,X ) with reference measure µ. Let f0(x)
be a real valued function on (X,X ) such that

∫
f0(x)2µ( dx) = 1, and take the

function f(x1, . . . , xk) = σf0(x1) · · · f0(xk) with some number σ > 0 and the
Wiener–Itô integral Jµ,k(f) introduced in formula (1.6).

Then the relation
∫

f(x1, . . . , xk)2 µ( dx1) . . . µ( dxk) = σ2 holds, and the
random integral Jµ,k(f) satisfies the inequality

P (k!|Jµ,k(f)| > u) ≥ C̄
(

u
σ

)1/k
+ 1

exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (1.8)

with some constant C̄ > 0.

By Theorem 1 there are some constants α > 0, C1 > 0, 1 > C2 > 0, C1α < 1
such that under the conditions of this result

P (k!n−k/2|In,k(f)| > u) ≤ A exp

{

−1

2

(u

σ

)2/k
(

1 − C1

( u

nk/2σk+1

)1/k
)}

if 0 < u ≤ αnk/2σk+1

and

P (k!n−k/2|In,k(f)| > u) ≤ A exp

{

−C2

(u

σ

)2/k
}

if αnk/2σk+1 < u ≤ nk/2σk+1.
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A comparison of these estimates with Theorem 2 and Example 3 shows that
Theorem 1 has a behaviour similar to that of Bernstein’s inequality. For rel-
atively small numbers u > 0, more precisely if 0 < u < εnk/2σk+1 with some
ε > 0, the expression in the exponent at the right-hand side of this estimate

is very close to − 1
2

(
u
σ

)2/k
, the term suggested by Theorem 2 and Example 3.

In the more general case u ≤ nk/2σk+1 a similar, but somewhat worse estimate

holds. The term −
(

u
σ

)2/k
in the upper estimate is multiplied by a constant

C2 > 0 in this case which may be much smaller than 1
2 . So the estimate of

Theorem 1 has such a perturbation type character which is missing from the
estimate (1.2).

On the other hand it may seem that the estimate (1.2) has the advan-
tage that it yields a bound for the tail-distribution of a degenerate U -statistic
for all numbers u > 0, while formula (1.5) holds only under the condition
0 ≤ u ≤ nk/2σk+1. Nevertheless, formula (1.5) implies such an estimate also
for u > nk/2σk+1 which is not weaker than the inequality (1.2) (at least if we
do not bother about the value of the universal constants in these estimates).
To see this observe that relation (1.3) remains valid if σ2 is replaced by any
σ̄2 ≥ σ2. As a consequence, for nk/2 ≥ u > nk/2σk+1 relation (1.5) holds

with the replacement of σ by σ̄ =
(
un−k/2

)1/(k+1)
, since all conditions of Theo-

rem 1 are satisfied with such a choice. It yields that P (k!n−k/2|In,k(f)| > u) ≤
A exp

{

− 1
2(1+B)1/k

(
u
σ̄

)2/k
}

= Ae−(u2n)1/(k+1)/2(1+B)1/k

. On the other hand,

σ2/k
(

1 + c3

(
un−k/2σ−(k+1)

)2/k(k+1)
)

≥ c3u
2/k(k+1)n−1/(k+1), hence the right-

hand side of (1.2) can be bounded from below by c1e
−c2(u

2n)1/(k+1)/c3 . Thus
relation (1.5) implies relation (1.2) if nk/2 ≥ u > nk/2σk+1 with possibly worse
constants c̄1 = A, c2 and c̄3 = 2c2(1+B)1/k. If u > nk/2, then the left-hand side
of (1.2) equals zero because of the boundedness of the function f , and relation
(1.2) clearly holds.

Actually the condition u ≤ nk/2σk+1 was rather natural in Theorem 1.
It can be shown that in the case u À nk/2σk+1 there are such degenerate
U -statistics satisfying the conditions of Theorem 1 for which the probability
P (n−k/2k!In,k(f) > u) is much greater than the expression suggested by the
limit theorem for degenerate U -statistics together with Theorem 2 and Exam-
ple 3. Such an example is presented in Examples 4.5 in [10] for k = 2. With
some extra work similar examples of degenerate U -statistics of order k could
also be constructed for any k = 2, 3, . . ..

Let me say some words about the method of proofs. Theorem 1 will be
proved by means of good estimates on high moments of degenerate U -statistics.
These moment estimates will be obtained with the help of a new type of diagram
formula which enables us to write the product of degenerate U -statistics as the
sum of degenerate U -statistics. Such a formula may be interesting in itself.
It is a version of an important result about the representation of a product
of Wiener–Itô integrals in the form of sums of Wiener–Itô integrals. It makes
possible to adapt the methods in the theory of Wiener–Itô integrals to the study
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of degenerate U -statistics. It also gives some insight why the tail distributions
of degenerate U -statistics and Wiener–Itô integral satisfy similar estimates.

This approach is essentially different from that of earlier papers in this field,
e.g. from the proof of paper [2]. I had to choose a different method, because the
technique of previous papers was not strong enough to prove Theorem 1. They
give only such weaker estimates for high moments of degenerate U -statistics
which are not sufficient for our purposes. This weakness has different causes.
First, previous proofs apply an estimate called Borell’s inequality in the liter-
ature, which does not supply a sharp estimate in certain cases. This has the
consequence that we can get only a relatively weak estimate about high mo-
ments of degenerate U -statistics in such a way. (See the end of my paper [11]
for a more detailed discussion.) Beside this, earlier papers in this field apply a
method called the decoupling technique in the literature, and this method has
some properties which enable only the proof a weaker version of Theorem 1.

The decoupling technique contains some randomization procedure, and as
a more careful analysis shows, its application allows us to prove only relatively
weak estimates. The randomization procedure applied in the decoupling tech-
nique makes possible to reduce the estimation of the degenerate U -statistic we
want to bound to the estimation of another degenerate U -statistic which can be
better handled. But this new U -statistic has a larger variance than the original
one. As a consequence, this method cannot give such a good estimate which ‘re-
sembles’ to the limit distribution of the original U -statistic. Hence for relatively
small numbers u it supplies a weaker estimate for the distribution of degenerate
U -statistics than formula 1.5.

Let me still remark that at recent time some new estimates are proved about
the tail distribution of degenerate U -statistics. (See [1], [5], [7].) They may
supply a better bound in certain cases with the help of some additional quantities
related to the properties of the kernel function of the U -statistic. Such problems
will be not discussed in this paper, but I would remark that the method of this
paper may work also in such investigations. The diagram formula supplies a
better estimate for the moments of a degenerate U -statistic if its kernel function
has some nice properties. There is some hope that the recent results about the
tail distribution of degenerate U -statistics can be proved in such a way.

This paper consists of six sections. In Section 2 the proof of Theorem 1 is
reduced to a moment estimate for degenerate U -statistics. To understand the
content of this estimate better I also present its Wiener–Itô integral counterpart.
Theorem 2 follows from this moment estimate for Wiener–Itô integrals in a
standard way. The proof of Theorem 2 and Example 3 will be omitted, since
they can be found in [11]. Sections 3, 4 and 5 contain the proof of the diagram
formula for the product of degenerate U -statistics needed in the proof of the
moment estimate in Section 2. The diagram formula about the product of
two degenerate U -statistics is formulated in Section 3, and its proof is given in
Section 4. Section 5 contains the formulation and proof of the diagram formula
for the products of degenerate U -statistics in the general case. In Section 6 the
moment estimate given is Section 2 is proved by means of the diagram formula.
In such a way the proof of Theorem 1 is completed.
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2 The reduction of the proof of Theorem 1 to a

moment estimate.

Theorem 1 will be proved by means of the following

Proposition A. Let us consider a degenerate U -statistic In,k(f) of order k with
sample size n and with a kernel function f satisfying relations (1.3) and (1.4)
with some 0 < σ2 ≤ 1. Fix a positive number η > 0. There exist some universal
constants A = A(k) >

√
2, C = C(k) > 0 and M0 = M0(k) ≥ 1 depending only

on the order k of the U -statistic In,k(f) such that

E
(

n−k/2k!In,k(f)
)2M

≤ A (1 + C
√

η)
2kM

(
2

e

)kM

(kM)
kM

σ2M

for all integers M such that kM0 ≤ kM ≤ ηnσ2. (2.1)

The constant C = C(k) in formula (2.1) can be chosen e.g. as C = 2
√

2 which
does not depend on the order k of the U -statistic In,k(f).

To understand the content of Proposition A better I formulate its Wiener–Itô
integral counterpart in the following

Proposition B. Let the conditions of Theorem 2 be satisfied for a multiple
Wiener–Itô integral Jµ,k(f) of order k. Then, with the notations of Theorem 2,
the inequality

E (k!|Jµ,k(f)|)2M ≤ 1 · 3 · 5 · · · (2kM − 1)σ2M for all M = 1, 2, . . . (2.2)

holds.

By the Stirling formula Proposition B implies that

E(k!|Jµ,k(f)|)2M ≤ (2kM)!

2kM (kM)!
σ2M ≤ A

(
2

e

)kM

(kM)kMσ2M (2.3)

for any A >
√

2 if M ≥ M0 = M0(A). The right-hand side of formula (2.2) is
almost as large as the right-hand side of formula (2.3). Hence the estimate (2.3)
gives an almost as good estimate as Proposition B. We shall use this estimate
in the sequel because of its simpler form.

Proposition B can be considered as a corollary of a most important result
about Wiener–Itô integrals called the diagram formula. This result enables us to
rewrite the product of Wiener–Itô integrals as a sum of Wiener–Itô integrals of
different order. It got the name ‘diagram formula’ because the kernel functions
of the Wiener–Itô integrals appearing in the sum representation of the product
of Wiener–Itô integrals are defined with the help of certain diagrams. As the
expectation of a Wiener–Itô integral of order k equals zero for all k ≥ 1, the
expectation of the product is equal to the sum of the constant terms (i.e. of
the integrals of order zero) in the diagram formula. In such a way the diagram
formula yields an explicit (although somewhat complicated) formula about the
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moments of Wiener–Itô integrals. Proposition B can be proved relatively simply
by means of this relation. Since it is written down in paper [11], I omit the
details.

We shall see that there is such a version of the diagram formula which ex-
presses the product of degenerate U -statistics as a sum of degenerate U -statistics
of different order by means of some appropriately defined diagrams. Proposi-
tion A can be proved by means of this version of the diagram formula similarly
to Proposition B. The proof of Proposition A with the help of this version of the
diagram formula will be given in Section 6. The main difference between the
proof of Propositions A and B with the help of the corresponding diagram for-
mula is that in the case of degenerate U -statistics the diagram formula contains
some additional new diagrams, and their contribution also has to be estimated.
It will be shown that if not too high moments of U -statistics are calculated by
means of the diagram formula, then the contribution of the new diagrams is not
too large.

To understand better the content of Proposition A let us compare formu-
las (2.1) and (2.3). These estimates are very similar. The upper bound given
for the 2M -th moment of a degenerate U -statistic in formula (2.1) is less than
AM -times the upper bound given for the 2M -th moment of the corresponding
Wiener–Itô integral in formula (2.3) with some universal constant A > 1. More-
over, the constant A is very close to 1 if the parameter M is relatively small, if
M ≤ εnσ2 with some small number ε > 0. But the estimate (2.1) holds only
for not too large parameters M , because of the condition kM < ηnσ2 in it. Be-
cause of this condition Proposition A gives a much worse bound for the 2M -th
moment of a degenerate U -statistic if M À nσ2 than inequality (2.3) yields for
the 2M -th moment of the corresponding Wiener–Itô integral. These properties
of the moment estimates in Proposition A are closely related to the behaviour
of the estimate in Theorem 1, in particular to the condition u ≤ nk/2σk+1 in it.

Theorem 2 can be proved by means of Proposition B and the Markov in-

equality P (|Jµ,k(f)| > u) ≤ EJµ,k(f)2M

u2M with a good choice of the parameter M .
This is a rather standard approach, and this proof is written down in [11]. Hence
I omit it. Theorem 1 can be proved similarly with the help of Proposition A
and the Markov inequality, but in this case a more careful analysis is needed
to find the good choice of the parameter M with which the Markov inequality
should be applied. I work out the details.

Proof of Theorem 1 by means of Proposition A. We can write by the Markov
inequality and Proposition A with the choice η = kM

nσ2 that

P (k!n−k/2|In,k(f)| > u) ≤ E
(
k!n−k/2In,k(f)

)2M

u2M
(2.4)

≤ A




1

e
· 2kM

(

1 + C

√
kM√
nσ

)2
(σ

u

)2/k





kM

for all integers M ≥ M0 with some M0 = M0(k) and A = A(k).
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We shall prove relation (1.5) with the help of estimate (2.4) first in the case
D ≤ u

σ ≤ nk/2σk with a sufficiently large constant D = D(k,C) > 0 depending
on k and the constant C in (2.4). To this end let us introduce the numbers M̄ ,

kM̄ =
1

2

(u

σ

)2/k 1

1 + B
( u

σ )
1/k

√
nσ

=
1

2

(u

σ

)2/k 1

1 + B
(
un−k/2σ−(k+1)

)1/k
(2.5)

with a sufficiently large number B = B(C) > 0 and M = [M̄ ], where [x] means
the integer part of the number x.

Observe that
√

kM̄ ≤
(

u
σ

)1/k
,

√
kM̄√
nσ

≤
(
un−k/2σ−(k+1)

)1/k ≤ 1, and

(

1 + C

√
kM̄√
nσ

)2

≤ 1 + B

√
kM̄√
nσ

≤ 1 + B
(

un−k/2σ−(k+1)
)1/k

with a sufficiently large B = B(C) > 0 if u
σ ≤ nk/2σk. Hence

1

e
· 2kM

(

1 + C

√
kM√
nσ

)2
(σ

u

)2/k

≤ 1

e
· 2kM̄

(

1 + C

√
kM̄√
nσ

)2
(σ

u

)2/k

≤ 1

e
·

(

1 + C
√

kM̄√
nσ

)2

1 + B
(
un−k/2σ−(k+1)

)1/k
≤ 1

e
(2.6)

if u
σ ≤ nk/2σk. If the inequality D ≤ u

σ also holds with a sufficiently large
D = D(B, k) > 0, then M = [M̄ ] ≥ M0 because of the definition of [M̄ ]
in formula (2.5) and the relation un−k/2σk+1 ≤ 1. With such a choice the
conditions of inequality (2.4) hold. By applying it together with inequality
(2.6) we get that

P (k!n−k/2|In,k(f)| > u) ≤ Ae−kM ≤ Aeke−kM̄

if D ≤ u
σ ≤ nk/2σk. This means that inequality (1.5) holds in this case with a

pre-exponential constant Aek. Since e−kM̄ is bounded from below for u
σ ≤ D

relation (1.5) holds for all 0 ≤ u
σ ≤ nk/2σk with a possible increase of the

pre-exponential coefficient Aek in it. Theorem 1 is proved.

Let us observe that the above calculations show that the constant B in
formula (1.8) can be chosen independently of the order k of the U -statistics
In,k(f).

3 The diagram formula for the product of two

degenerate U-statistics.

To prove Proposition A we need a good identity which expresses the expectation
of the product of degenerate U -statistics in a form that can be better handled.
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Such an identity can be proved by means of a version of the diagram formula for
Wiener–Itô integrals where the product of degenerate U -statistics is represented
as the sum of degenerate U -statistics with appropriate kernel functions. In such
a formula the kernel functions of the sum representation are defined with the
help of some diagrams, and to get a useful result we also need a good estimate
on their L2-norm.

We shall prove such a result. First we prove its special case about the product
of two degenerate U -statistics together with a good estimate on the L2-norm of
the kernel functions in the sum representation. Then the result in the general
case can be obtained by induction.

In the case of the product of two degenerate U -statistics the result we want
to prove can be obtained with the help of the following observation. Let us
have a sequence of iid. random variables ξ1, ξ2, . . . with some distribution µ

on a measurable space (X,X ) together with two functions f(x1, . . . , xk1
) and

g(x1, . . . , xk2
) on (Xk1 ,X k1) and on (Xk2 ,X k2) respectively which are canon-

ical with respect to the probability measure µ. We consider the degenerate
U -statistics In,k1

(f) and In,k2
(g) and want to express their normalized prod-

uct k1!k2!n−(k1+k2)/2In,k1
(f)In,k2

(g) as a sum of (normalized) degenerate U -
statistics. This product can be presented as a sum of U -statistics in a natural
way. Then by writing each term of this sum as a sum of degenerate U -statistics
by means of the Hoeffding decomposition we get the desired representation of
the product. This result will be formulated in Theorem A.

In this Section Theorem A will be described together with the introduction
of the notations needed for its formulation. Its proof will be given in the next
Section.

To define the kernel functions of the U -statistics appearing in the diagram
formula for the product of two U -statistics first we introduce a class of objects
Γ(k1, k2) we shall call coloured diagrams. We define graphs γ ∈ Γ(k1, k2) that
contain the vertices (1, 1), (1, 2), . . . , (1, k1) which we shall call the first row
and (2, 1) . . . , (2, k2) which we shall call the second row of these graphs. From
each vertex there starts zero or one edge, and each edge connects vertices from
different rows. Each edge will get a colour +1 or −1. Γ(k1, k2) consists of all γ

obtained in such a way. These objects γ will be called coloured diagrams.

Given a coloured diagram γ ∈ Γ(k1, k2) let Bu(γ) denote the set of upper
end-points (1, j) of the edges of the graph γ, B(b,1)(γ) the set of lower end-points
(2, j) of the edges of γ with colour 1, and B(b,−1)(γ) the set of lower end-points
(2, j) of the edges of γ with colour −1. (The letter ‘b’ in the index was chosen
because of the word below.) Finally, let Z(γ) denote the set of edges with colour
1, W (γ) the set of edges with colour −1 of a coloured graph γ ∈ Γ(k1, k2), and
let |Z(γ)| and |W (γ)| denote their cardinality.

Given two functions f(x1, . . . , xk1
) and g(x1, . . . , xk2

) let us define the func-
tion

(f ◦ g)(x(1,1), . . . , x(1,k1), x(2,1), . . . , x(2,k2))

= f(x(1,1), . . . , x(1,k1))g(x(2,1), . . . , x(2,k2)) (3.1)
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Given a function h(xu1
, . . . , xur

) with coordinates in the space (X,X ) (the
indices u1, . . . , ur are all different) let us introduce its transforms Puj

h and Quj
h

by the formulas

(Puj
h)(xul

: ul ∈ {u1, . . . , ur}\{uj}) =

∫

h(xu1
, . . . , xur

)µ( dxuj
), 1 ≤ j ≤ r,

(3.2)
and

(Quj
h)(xu1

, . . . , xur
) = h(xu1

, . . . , xur
)−
∫

h(xu1
, . . . , xur

)µ( dxuj
), 1 ≤ j ≤ r.

(3.3)
At this point I started to apply a notation which may seem to be too compli-
cated, but I think that it is more appropriate in the further discussion. Namely,
I started to apply a rather general enumeration u1, . . . , ur of the arguments of
the functions we are working with instead of their simpler enumeration with
indices 1, . . . , r. But in the further discussion there will appear an enumeration
of the arguments by pairs of integers (l, j) in a natural way, and I found it
simpler to work with such an enumeration than to reindex our variables all the
time. Let me remark in particular that this means that the definition of the
U -statistic with a kernel function f(x1, . . . , xk) given in formula (1.1) will ap-
pear sometimes in the following more complicated, but actually equivalent form:
We shall work with kernel function f(xu1

, . . . , xuk
) instead of f(x1, . . . , xk), the

random variables ξj will be indexed by us, i.e. to the coordinate xus
we shall

put the random variables ξjus
with indices 1 ≤ jus

≤ n, and in the new notation
formula (1.1) will look like

In,k(f) =
1

k!

∑

1≤jus≤n, s=1,...,k

jus 6=ju′
s

if us 6=u′

s

f
(

ξju1
, . . . , ξjuk

)

.

Let us define for all coloured diagrams γ ∈ Γ(k1, k2) the function αγ(1, j),
1 ≤ j ≤ k1, on the vertices of the first row of γ as αγ(1, j) = (1, j) if no edge
starts from (1, j), and αγ(1, j) = (2, j′) if an edge of γ connects the vertices (1, j)
and (2, j′). Given two functions f(x1, . . . , xk1

) and g(x1, . . . , xk2
) together with

a coloured diagram γ ∈ Γ(k1, k2) let us introduce, with the help of the above
defined function αγ(·) and (f ◦ g) introduced in (3.1) the function

(f ◦ g)γ(x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2)

= (f ◦ g)(xαγ(1,1), . . . , xαγ(1,k1), x(2,1), . . . , x(2,k2)). (3.4)

(In words, we take the function (f ◦ g), and if there is an edge of γ starting
from a vertex (1, j), and it connects this vertex with the vertex (2, j ′), then the
argument x(1,j) is replaced by the argument x(2,j′) in this function.) Let us also
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introduce the function

(f ◦ g)γ

(
x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1)

)

=
∏

(2,j′)∈B(b,1)(γ)

P(2,j′)

∏

(2,j′)∈B(b,−1)(γ)

Q(2,j′)

(f ◦ g)γ

(
x(j,1), x(j′,2), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2

)
. (3.5)

(In words, we take the function (f ◦ g)γ and for such indices (2, j′) of the graph γ

from which an edge with colour 1 starts we apply the operator P(2,j′) introduced
in formula (3.2) and for those indices (2, j ′) from which an edge with colour −1
starts we apply the operator Q(2,j′) defined in formula (3.3).) Let us also remark
that the operators P(2,j′) and Q(2,j′) are exchangeable for different indices j ′,
hence it is not important in which order we apply the operators P(2,j′) and
Q(2,j′) in formula (3.5).

In the definition of the function (f◦g)γ those arguments x(2,j′) of the function

(f ◦ g)γ which are indexed by such a pair (2, j ′) from which an edge of colour 1
of the coloured diagram γ starts will disappear, while the arguments indexed by
such a pair (2, j′) from which an edge of colour −1 of the coloured diagram γ

starts will be preserved. Hence the number of arguments in the function (f ◦g)γ

equals k1 +k2 −2|B(b,1)(γ)|− |B(b,−1)(γ)|, where |B(b,1)(γ)| and |B(b,−1)(γ)| de-
note the cardinality of the lower end-points of the edges of the coloured diagram
γ with colour 1 and −1 respectively, In an equivalent form we can say that the
number of arguments of (f ◦ g)γ equals k1 + k2 − (2|Z(γ)| + |W (γ)|).

Now we are in the position to formulate the diagram formula for the product
of two degenerate U -statistics.

Theorem A. Let us have a sequence of iid. random variables ξ1, ξ2, . . . with
some distribution µ on some measurable space (X,X ) together with two bounded,
canonical functions f(x1, . . . , xk1

) and g(x1, . . . , xk2
) with respect to the proba-

bility measure µ on the spaces (Xk1 ,X k1) and (Xk2 ,X k2). Let us introduce the
class of coloured diagrams Γ(k1, k2) defined above together with the functions
(f ◦ g)γ defined in formulas (3.1)—(3.5).

For all γ ∈ Γ the function (f ◦ g)γ is canonical with respect to the measure
µ with k(γ) = k1 + k2 − (2|Z(γ)|+ |W (γ)|) arguments, where |Z(γ)| denotes the
number of edges with colour 1 and |W (γ)| the number of edges with colour −1
of the coloured diagram γ. The product of the degenerate U -statistics In,k1

(f)
and In,k2

(g), n ≥ max(k1, k2), defined in (1.1) satisfies the identity

k1!n−k1/2In,k1
(f)k2!n−k2/2In,k2

(g)

=
∑′(n)

γ∈Γ(k1,k2)

|Z(γ)|∏

j=1

(n − (k1 + k2) + |W (γ)| + |Z(γ)| + j)

n|Z(γ)| (3.6)

n−|W (γ)|/2 · k(γ)!n−k(γ)/2In,k(γ)((f ◦ g)γ),
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where
∑′(n)

means that summation is taken only for such coloured diagrams
γ ∈ Γ(k1, k2) which satisfy the inequality k1 + k2 − (|Z(γ)| + |W (γ)|) ≤ n, and
|Z(γ)|∏

j=1

equals 1 in the case |Z(γ)| = 0.

The L2-norm of the functions (f ◦ g)γ is defined by the formula

‖(f ◦ g)γ‖2
2

=

∫

(f ◦ g)2γ(x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1))

∏

(1,j) : j∈{1,...,k1}\Bu(γ)

µ( dx(1,j))
∏

(2,j′) : j′∈{1,...,k2}\B(b,1)

µ( dx(2,j′)).

If W (γ) = 0, then the inequality

‖(f ◦ g)γ‖2 ≤ ‖f‖2‖g‖2 (3.7)

holds. In the general case we can say that if the functions f and g satisfy formula
(1.3), then the inequality

‖(f ◦ g)γ‖2 ≤ 2|W (γ)| min(‖f‖2, ‖g‖2) (3.8)

holds. Relations (3.7) and (3.8) remain valid if we drop the condition that the
functions f and g are canonical.

Relations (3.7) and (3.8) mean in particular, that we have a better estimate
for ‖(f ◦ g)γ‖2 in the case when the coloured diagram γ contains no edge with
colour −1, i.e. if |W (γ)| = 0, than in the case when it contains at least one edge
with colour −1.

Let us understand how we define those terms at the right-hand side of (3.6)
for which k(γ) = 0. In this case (f ◦ g)γ is a constant, and to make formula
(3.6) meaningful we have to define the term In,k(γ)((f ◦ g)γ) also in this case.
The following convention will be used. A constant c will be called a degenerate
U -statistic of order zero, and we define In,0(c) = c.

Theorem A can be considered as a version of the result of paper [9], where
a similar diagram formula was proved about multiple random integrals with
respect to normalized empirical measures. Degenerate U -statistics can also be
presented as such integrals with special, canonical kernel functions. Hence there
is a close relation between the results of this paper and [9]. But there are
also some essential differences. For one part, the diagram formula for multiple
random integrals with respect to normalized empirical measures is simpler than
the analogous result about the product of degenerate U -statistics, because the
kernel functions in these integrals need not be special, canonical functions. On
the other hand, the diagram formula for degenerate U -statistics yields a simpler
formula about the expected value of the product of degenerate U -statistics,
because the expected value of a degenerate U -statistic of order k ≥ 1 equals
zero, while the analogous result about multiple random integrals with respect
to normalized empirical measures may not hold. Another difference between
this paper and [9] is that here I worked out a new notation which, I hope, is
more transparent.
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4 The proof of Theorem A.

The proof of Theorem A. Let us consider all possible sets {(u1, u
′
1), . . . , (ul, u

′
l)},

1 ≤ l ≤ min(k1, k2) containing such pairs of integers for which us ∈ {1, . . . , k1},
u′

s ∈ {1, . . . , k2}, 1 ≤ s ≤ l, all points u1, . . . , ul are different, and the same rela-
tion holds for the points u′

1, . . . , u
′
l, too. Let us correspond the diagram contain-

ing two rows (1, 1), . . . , (1, k1) and (2, 1), . . . , (2, k2) and the edges connecting the
vertices (1, us) and (2, u′

s), 1 ≤ s ≤ l to the set of pairs {(u1, u
′
1), . . . , (ul, u

′
l)},

and let Γ̄(k1, k2) denote the set of all (non-coloured) diagrams we can ob-
tain in such a way. Let us consider the product k1!In,k1

(f)k2!In,k2
(g), and

rewrite it in the form of the sum we get by carrying out a term by term mul-
tiplication in this expression. Let us put the terms of this sum into disjoint
classes indexed by the elements of the diagrams γ̄ ∈ Γ̄(k1, k2) in the follow-
ing way: A product f(ξj1 , . . . , ξjk1

)g(ξj′

1
, . . . , ξj′

k2
) belongs to the class indexed

by the graph γ̄ ∈ Γ̄(k1, k2) with edges {((1, u1), (2, u′
1)), . . . , ((1, ul), (2, u′

l))}
if jus

= j′u′

s
, 1 ≤ s ≤ l, for the indices of the random variables appearing

in the above product, and no more coincidence may exist between the indices
j1, . . . , jk1

, j′1, . . . , j
′
k2

. With such a notation we can write

n−k1/2k1!In,k1
(f)n−k2/2k2!In,k2

(g) =
∑′(n)

γ̄∈Γ̄

n−(k1+k2)/2k̄(γ̄)!In,k̄(γ̄)(f ◦ g)γ̄),

(4.1)
where the functions (f ◦ g)γ̄ are defined in formulas (3.1) and (3.4). (Observe
that although formula (3.4) was defined by means of coloured diagrams, the
colours played no role in it. The formula remains meaningful, and does not
change if we replace the coloured diagram γ by the diagram γ̄ we get by omitting
the colours of its edges.) The quantity k̄(γ̄) equals the number of such vertices
of γ̄ from the first row from which no edge starts plus the number of vertices

in the second row, and the notation
∑′(n)

means that summation is taken only
for such diagrams γ̄ ∈ Γ̄ for which n ≥ k̄(γ̄).

Let the set V1 = V1(γ̄) consist of those vertices (1, u1) = (1, u1)γ ,. . . ,
(1, us1

) = (1, us1
)γ of the first row {(1, 1), . . . , (1, k1)} of the diagram γ̄ from

which no edge starts, and let V2 = V2(γ̄) contain those vertices (2, v1) =
(2, v1)γ ,. . . , (2, vs1

) = (2, vs2
)γ from the second row {(2, 1), . . . , (2, k2)} of γ

from which no edges start. Then k̄(γ̄) = s1 + k2, and the function (f ◦ g)γ̄ has
arguments of the form x(1,up), (1, up) ∈ V1 and x(2,v), 1 ≤ v ≤ k2.

Relation (4.1) is not appropriate for our goal, since the functions (f ◦ g)γ̄

in it may be non-canonical. Hence we apply Hoeffding’s decomposition for the
U -statistics In,k̄(γ̄)(f ◦ g)γ̄ in formula (4.1) to get the desired representation
for the product of degenerate U -statistics. Actually some special properties of
the function (f ◦ g)γ̄ enable us to simplify a little bit this decomposition. (The
Hoeffding decomposition is a simple but important result which gives an explicit
method to rewrite a general U -statistic in the form of sums of degenerate U -
statistics. It has an equivalent reformulation by which an arbitrary (kernel)
function of several variables can be rewritten as the sum of canonical functions
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with different number of variables. It has a concise explanation for instance in
the Appendix of [4]. In the subsequent considerations I write down what this
result yields in the present situation.)

To carry out this procedure let us observe that a function f(xu1
, . . . , xuk

)
is canonical if and only if Pul

f(xu1
, . . . , xuk

) = 0 with the operator Pul
defined

in (3.2) for all indices ul. Beside this, the condition that the functions f and
g are canonical implies the relations P(1,u)(f ◦ g)γ̄ = 0 for (1, u) ∈ V1 and

P(2,v)(f ◦ g)γ̄ = 0 for (2, v) ∈ V2. Moreover, these relations remain valid if we

replace the functions (f ◦ g)γ̄ by such functions which we get by applying the
product of some transforms P(2,v) and Q(2,v), (2, v) ∈ {(2, 1), . . . , (2, k2)}\V2 for
them with the transforms P and Q defined in formulas (3.2) and (3.3). (Here
we applied such transforms P and Q which are indexed by those vertices of the
second row of γ̄ from which some edge starts.)

Beside this, the transforms P(2,v) or Q(2,v) are exchangeable with the opera-
tors P(2,v′) or Q(2,v′) if v 6= v′, P(2,v) + Q(2,v) = I, where I denotes the identity
operator, and P(2,v)Q(2,v) = 0, since P(2,v)Q(2,v) = P(2,v)−P 2

(2,v) = 0. The above

relations enable us to make the following decomposition of the function (f ◦ g)γ̄

to the sum of canonical functions (just as it is done in the Hoeffding decompo-
sition): Let us introduce the class of those coloured diagram Γ(γ̄) which we can
get by colouring all edges of the diagram γ either with colour 1 or colour −1.
Some calculation shows that

(f ◦ g)γ̄ =




∏

(2,v)∈{(2,1),...,(2,k2)}\V2

(P(2,v) + Q(2,v))



 (f ◦ g)γ̄ =
∑

γ∈Γ(γ̄)

(f ◦ g)γ ,

(4.2)
where the function (f ◦ g)γ is defined in formula (3.5). We get the right-hand
side of relation (4.2) by carrying out the multiplications for the middle term of
this expression, and exploiting the properties of the operators P(2,v) and Q(2,v).
Moreover, these properties also imply that the functions (f ◦ g)γ are canonical
functions of their variables x(1,u), (1, u) ∈ V1 and x(2,v), (2, v) ∈ B(b,−1)(γ) ∪
V2. Indeed, the above properties of the operators P(2,v) and Q(2,v) imply that
P(1,u)(f ◦ g)γ = 0 if (1, u) ∈ V1, and P(2,v)(f ◦ g)γ = 0 if (2, v) ∈ B(b,−1)(γ)∪V2.

Let Z(γ) denote the set of edges of colour 1, W (γ) the set of edges of colour
−1 in the coloured diagram γ, and let |Z(γ)| and W (γ)| be their cardinal-
ity. Then (f ◦ g)γ is a (canonical) function with k(γ) = k1 + k2 − (|W (γ)| +
2|Z(γ)|) variables, and formula (4.2) implies the following representation of the
U -statistic In,k̄(γ̄)

(
f ◦ g)γ̄

)
in the form of a sum of degenerate U -statistics:

n−(k1+k2)/2k̄(γ̄)!In,k̄(γ̄)

(
(f ◦ g)γ̄

)

= n−(k1+k2)/2
∑

γ∈Γ(γ̄)

Jn(γ)n|Z(γ)|k(γ)!In,k(γ) ((f ◦ g)γ) (4.3)
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with Jn(γ) = 1 if |Z(γ)| = 0, and

Jn(γ) =

|Z(γ)|∏

j=1

(n − (k1 + k2) + |W (γ)| + |Z(γ)| + j)

n|Z(γ)| if |Z(γ)| > 0.

The coefficient Jn(γ)n|Z(γ)| appeared in formula (4.3), since if we apply the
decomposition (4.2) for all terms (f ◦ g)γ̄(ξj(1,u)

, ξj(2,v)
, (1, u) ∈ V1, (2, v) ∈

{1, . . . k2}) of the U -statistic k̄(γ̄)!In,k(γ̄)

(
(f ◦ g)γ̄

)
, then each term

(f ◦ g)γ(ξj(1,u)
, ξj(2,v)

, (1, u) ∈ V1, (2, v) ∈ V2 ∪ V1)

of the U -statistic In,k(γ) ((f ◦ g)γ) appears Jn(γ)n|Z(γ)| times. (This is so, be-
cause k̄(γ) = k1 +k2− (|W (γ)|+2|Z(γ)|) variables are fixed in the term (f ◦g)γ

from the k(γ̄) = k1 + k2 − (|W (γ)| + |Z(γ)|) variables in the term (f ◦ g)γ̄ , and
to get formula (4.3) from formula (4.2) the indices of the remaining |Z(γ)| vari-
ables can be freely chosen from the indices 1, . . . , n, with the only restriction
that all indices must be different.)

Formula (3.6) follows from relations (4.1) and (4.3). To see that we wrote
the right power of n in this formula observe that

n−(k1+k2)/2n|Z(γ)| = n−k(γ)/2n−|W (γ)|/2.

To prove inequality (3.7) in the case |W (γ)| = 0 let us estimate first the
value of the function (f ◦ g)2γ(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ V2) by means of
the Schwarz inequality. We get that

(f ◦ g)2γ(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ V2)

≤
∫

f2(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ B(b,1)(γ))
∏

(2,v)∈B(b,1)(γ)

µ( dx(2,v))

∫

g2(x(2,v), (2, v) ∈ V2 ∪ B(b,1)(γ), )
∏

(2,v)∈B(b,1)(γ)

µ( dx(2,v))

=
∏

(2,v)∈B(b,1)(γ)

P(2,v)f
2(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ B(b,1)(γ))

∏

(2,v)∈B(b,1)(γ)

P(2,v)g
2(x(2,v), (2, v) ∈ V2 ∪ B(b,1)(γ)) (4.4)

with the operators P defined in formula (3.2).
Let us observe that the two functions at the right-hand side of (4.4) are

functions of different arguments. The first of them depends on the arguments
x(1,u), (1, u) ∈ V1, the second one on the arguments x(2,v), (2, v) ∈ V2. Beside
this, as the operators P appearing in their definition are contraction in L1-norm,
these functions are bounded in L1 norm by ‖f‖2

2 and ‖g‖2
2 respectively. Because
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of the above relations we get formula (3.7) by integrating inequality (4.4) and
applying Fubini’s theorem.

To prove inequality (3.8) let us introduce, similarly to formula (3.3), the
operators

Q̃uj
h(xu1

, . . . , xur
) = h(xu1

, . . . , xur
) +

∫

h(xu1
, . . . , xur

)µ( dxuj
), 1 ≤ j ≤ r,

in the space of functions h(xu1
, . . . , xur

) with coordinates in the space (X,X ).
(The indices u1, . . . , ur are all different.) Observe that both the operators Q̃uj

and the operators Puj
defined in (3.2) are positive, i.e. these operators map a

non-negative function to a non-negative function. Beside this, Quj
≤ Q̃uj

, i.e.

Q̃uj
− Quj

is a non-negative operator, and the norms of the operators
Q̃uj

2 and
Puj

are bounded by 1 both in the L1(µ), the L2(µ) and the supremum norm.

Let us define the function

(f̃ ◦ g)γ

(
x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1)

)

=
∏

(2,j′)∈B(b,1)(γ)

P(2,j′)

∏

(2,j′)∈B(b,−1)(γ)

Q̃(2,j′)

(f ◦ g)γ

(
x(j,1), x(j′,2), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2

)

with the notation of Section 3. We have defined the function (f̃ ◦ g)γ with the

help of (f ◦ g)γ similarly to the definition of (f ◦ g)γ in (3.5), only we have

replaced the operators Q(2,j′) by Q̃(2,j′) in it.

We may assume that ‖g‖2 ≤ ‖f‖2. We can write because of the properties of
the operators Puj

and Q̃uj
listed above and the condition sup |f(x1, . . . , xk)| ≤ 1

that

|(f ◦ g)γ | ≤ ( ˜|f | ◦ |g|)γ ≤ (1̃ ◦ |g|)γ , (4.5)

where ‘≤’ means that the function at the right-hand side is greater than or equal
to the function at the left-hand side in all points, and 1 denotes the function
which equals identically 1. Because of relation (4.5) to prove relation (3.8) it is
enough to show that

‖(1̃ ◦ |g|)γ‖2 =

∥
∥
∥
∥
∥
∥

∏

(2,j)∈B(b,1)(γ)

P(2,j)

∏

(2,j)∈B(b,−1)(γ)

Q̃(2,j) |g(x(2,1), . . . , x(2,k2))|

∥
∥
∥
∥
∥
∥

2

≤ 2|W (γ)|‖g‖2. (4.6)

But this inequality trivially holds, since the norm of all operators P(2,j) in

formula (4.6) is bounded by 1, the norm of all operators Q̃(2,j) is bounded by 2
in the L2(µ) norm, and |B(b,−1)| = |W (γ)|.
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5 The diagram formula for the product of sev-

eral degenerate U-statistics.

The product of more than two degenerate U -statistics can also be expressed in
the form of a sum of degenerate U -statistics by means of a recursive application
of Theorem A. We shall present this result in Theorem B and prove it together
with an estimate about the L2-norm of the kernel functions of the degenerate U -
statistics appearing in Theorem B. This estimate will be given in Theorem C.
Since the expected value of all degenerate U -statistics of order k ≥ 1 equals
zero, the representation of the product of U -statistics in the form of a sum of
degenerate U -statistics implies that the expected value of this product equals
the sum of the constant terms in this representation. In such a way we get a
formula for the expected value of a product of degenerate U -statistics which
together with Theorem C will be sufficient to prove Proposition A. But the
formula we get in this way is more complicated than the analogous diagram
formula for products of Wiener–Itô integrals. To overcome this difficulty it is
useful to work out a good “book-keeping procedure”.

Let us have a sequence of iid. random variables ξ1, ξ2, . . . taking values
on a measurable space (X,X ) with some distribution µ, and consider L func-
tions fl(x1, . . . , xkl

) on the measure spaces (Xkl ,X kl), 1 ≤ l ≤ L, canoni-
cal with respect to the measure µ. We want to represent the product of
L ≥ 2 normalized degenerate U -statistics n−kl/2kl!In,kl

(fkl
) in the form of a

sum of degenerate U -statistics similarly to Theorem A. For this goal I define a
class of coloured diagrams Γ(k1, . . . , kL) together with some canonical functions
Fγ = Fγ(fk1

, . . . , fkL
) depending on the diagrams γ ∈ Γ(k1, . . . , kL) and the

functions fl(x1, . . . , xkl
), 1 ≤ l ≤ L.

The coloured diagrams will be graphs with vertices (l, j) and (l, j, C), 1 ≤
l ≤ L, 1 ≤ j ≤ kl, and edges between some of these vertices which will get
either colour 1 or colour −1. The set of vertices {(l, j), (l, j, C), 1 ≤ j ≤ kl} will
be called the l-th row of the diagrams. (The vertices (l, j, C) are introduced,
because it turned out to be useful to take a copy (l, j, C) of some vertices (l, j).
The letter C was chosen to indicate that it is a copy.) From all vertices there
starts either zero or one edge, and edges may connect only vertices in different
rows. We shall call all vertices of the form (l, j) permissible, and beside this
some of the vertices (l, j, C) will also be called permissible. Those vertices will
be called permissible from which some edge may start.

We shall say that an edge connecting two vertices (l1, j1) with (l2, j2) or (a
permissible) vertex (l1, j1, C) with another vertex (l2, j2) such that l2 > l1 is
of level l2, and (l2, j) will be called the lower end-point of such an edge. (The
coloured diagrams we shall define contain only edges with lower end-points of
the form (l, j).) We shall call the restriction γ(l) of the diagram γ to level l that
part of a diagram γ which contains all of its vertices together with those edges
(together with their colours) whose levels are less than or equal to l, and tells
which of the vertices (l′, j, C) are permissible for 1 ≤ l′ ≤ l. We shall define
the diagrams γ ∈ Γ(k1, . . . , kL) inductively by defining their restrictions γ(l)

18



to level l for all l = 1, 2, . . . , L. Those diagrams γ will belong to Γ(k1, . . . , kL)
whose restrictions γ(l) can be defined through the following procedure for all
l = 1, 2, . . . , L.

The restriction γ(1) of a diagram γ to level 1 contains no edges, and no
vertex of the form (1, j, C), 1 ≤ j ≤ k1, is permissible. If we have defined the
restrictions γ(l − 1) for some 2 ≤ l ≤ L, then those diagrams will be called
restrictions γ(l) at level l which can be obtained from a restriction γ(l − 1)
in the following way: Take the vertices (l, j), 1 ≤ j ≤ kl, from the l-th row.
From each of these vertices there starts either zero or one edge, and they get
either colour 1 or colour −1. The other end-point of these edges must be such
a vertex (l′, j′) or a permissible vertex (l′, j′, C) with some 1 < l′ < l which is
not an end-point of a vertex in γ(l − 1). We define γ(l) first by adjusting the
coloured edges constructed in the above way to the (coloured) edges of γ(l− 1),
and then defining the set of permissible vertices in γ(l). It contains beside the
permissible vertices of γ(l − 1) and the vertices (l, j), 1 ≤ j ≤ kl, those vertices
(l, j, C) for which (l, j) is the lower end-point of an edge with colour −1 in γ(l).
Γ(k1, . . . , kL) will consist of all coloured diagrams γ = γ(L) obtained in such a
way.

Given a coloured diagram γ ∈ Γ(k1, . . . , kL) we shall define recursively some
(canonical) functions Fl,γ with the help of the functions f1, . . . , fl for all 1 ≤
l ≤ L in the way suggested by Theorem A. Then we put Fγ = FL,γ and give the
desired representation of the product of the degenerate U -statistics with the help
of U -statistics with kernel functions Fγ and constants Jn(l, γ), γ ∈ Γ(k1, . . . , kL),
1 ≤ l ≤ L.

Let us fix some coloured diagram γ ∈ Γ(k1, . . . , kL) and introduce the fol-
lowing notations: Let B(b,−1)(l, γ) denote the set of lower end-points of the form
(l, j) of edges with colour −1 and B(b,1)(l, γ) the set of lower end-points of the
form (l, j) with colour 1. Let U(l, γ) denote the set of those permissible vertices
(l′, j) and (l′, j, C) with l′ ≤ l from which no edge starts in the restriction γ(l)
of the diagram γ to level l, i.e. either no edge starts from this vertex, or if
some edge starts from it, then its other end-point is a vertex (l′, j) with l′ > l.
Beside this, given some integer 1 ≤ l1 < l let U(l, l1, γ) denote the restriction
of U(l, γ) to its first l1 rows, i.e. U(l, l1, γ) consists of those vertices (l′, j) and
(l′, j, C) which are contained in U(l, γ), and l′ ≤ l1. We shall define the func-
tions Fl(γ) with arguments of the form x(l′,j) and x(l′,j,C) with (l′, j) ∈ U(l, γ)
and (l′, j, C) ∈ U(l, γ). For this end put first

F1,γ(x(1,1), . . . , x(k1,1)) = f1(x(1,1), . . . , x(k1,1)). (5.1)

To define the function Fl,γ for l ≥ 2 first we introduce a function αl,γ(·) on
the set of vertices in U(l − 1, γ) in the following way. If a vertex (l′, j′) or
(l′, j′, C) in U(γ, l−1) is such that it is connected to no vertex (l, j), 1 ≤ j ≤ kl,
then αl,γ(l′, j′) = (l′, j′), αl,γ(l′, j′, C) = (l′, j′, C) and if (l′, j′) is connected to
a vertex (l, j), then αl,γ(l′, j′) = (l, j), if (l′, j′, C) is connected with a vertex
(l, j), then αl,γ(l′, j′, C) = (l, j). We define, similarly to the formula (3.4) the
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functions

F̄l,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ), x(l,j), 1 ≤ j ≤ kl)

= Fl−1,γ(xαl,γ(l′,j′), xαl,γ(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l − 1, γ))

fl(x(l,1), . . . , x(l,kl)), (5.2)

i.e. we take the function Fl−1,γ ◦ fl and replace the arguments of this function
indexed by such a vertex of γ which is connected by an edge with a vertex in
the l-th row of γ by the argument indexed with the lower end-point of this edge.

Then we define with the help of the operators Puj
and Quj

introduced in
(3.2) and (3.3) the functions

¯̄Fl,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ),

x(l,j), j ∈ {1, . . . , kl} \ B(l,1)(l, γ))

=
∏

(l,j)∈B(b,1)(l,γ)

P(l,j)

∏

(l,j)∈B(b,−1)(l,γ)

Q(l,j)F̄l,γ(x(l′,j′), x(l′,j′,C),

(l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ), x(l,j), 1 ≤ j ≤ kl), (5.3)

similarly to the formula (3.5), i.e. we apply for the function F̄l(γ) the operators
P(l,j) for those indices (l, j) which are the lower end-points of an edge with colour
1 and the operators Q(l,j) for those indices (l, j) which are the lower end-points
of an edge with colour −1.

Finally we define the function Fl,γ simply by reindexing some arguments of

the function ¯̄Fl,γ to get a function which is indexed by the vertices in U(l, γ).
To this end we define the function Al,γ(·) on the set of vertices {(l, j) : (l, j) ∈
{(l, 1), . . . , (l, kl)} \B(b,1)(l, γ) as Al,γ(l, j) = (l, j, C) if (l, j) ∈ B(b,−1)(l, γ), and
Al,γ(l, j) = (l, j) if (l, j) ∈ {(l, 1), . . . , (l, kl)} \ (B(b,1)(l, γ)∪B(b,−1)(l, γ)). Then
we put

Fl,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, γ))

= ¯̄Fl,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ),

xAl,γ(l,j), (l, j) ∈ {(l, 1), . . . , (l, kl)} \ B(b,1)(l, γ)). (5.4)

Now we can formulate the following generalization of Theorem A.

Theorem B. Let us have a sequence of iid. random variables ξ1, ξ2, . . . with
some distribution µ on a measurable space (X,X ) together with L ≥ 2 bounded
functions fl(x1, . . . , xkl

) on the spaces (Xkl ,X kl), 1 ≤ l ≤ L, canonical with re-
spect to the probability measure µ. Let us introduce the class of coloured diagrams
Γ(k1, . . . , kL) defined above together with the functions Fγ = FL,γ(f1, . . . , fL)
defined in formulas (5.1)—(5.4).

Put k(γ(l)) =
l∑

p=1
kp−

l∑

p=2
(2|B(b,1)(p, γ)|+|B(b,−1)(p, γ)|), where |B(b,1)(p, γ)|

denotes the number of lower end-points in the p-th row of γ with colour 1 and
|B(b,−1)(p, γ)| is the number of lower end-points in the p-th row of γ with colour
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−1, 1 ≤ l ≤ L, and define k(γ) = k(γ(L)). Then k(γ(l)) is the number of
variables of the function Fl,γ , 1 ≤ l ≤ L.

The functions Fγ are canonical with respect to the measure µ with k(γ)
variables, and the product of the degenerate U -statistics In,kl

(f), n ≥ max
1≤l≤L

kl,

defined in (1.1) satisfies the identity

L∏

l=1

kl!n
−kl/2In,kl

(fkl
) (5.5)

=
∑′(n, L)

γ∈Γ(k1,...,kL)

(
L∏

l=1

Jn(l, γ)

)

n−|W (γ)|/2 · k(γ)!n−k(γ)/2In,k(γ)(Fγ),

where |W (γ)| =
L∑

l=2

|B(b,−1)(l, γ)| is the number of edges with colour −1 in

the coloured diagram γ, and
∑′(n, L)

means that summation is taken for those
γ ∈ Γ(k1, . . . , kL) which satisfy the relation k(γ(l − 1)) + kl − (|B(b,1)(l, γ)| +
|B(b,−1)(l, γ)|) ≤ n for all 2 ≤ l ≤ L. Beside this, the constants Jn(l, γ),
1 ≤ l ≤ L, in formula (5.5) are defined by the relations Jn(1, γ) = 1, and

Jn(l, γ) =

|B(b,1)(l,γ)|
∏

j=1

(n − (k(γ(l − 1)) + kl) + |B(b,−1)(l, γ)| + |B(b,1)(l, γ)| + j)

n|B(b,1)(l,γ)| ,

(5.6)
2 ≤ l ≤ L, if |B(b,1)(l, γ)| ≥ 1, and Jn(l, γ) = 1 if |B(b,1)(l, γ)| = 0, where
|B(b,1)(l, γ)| and |B(b,−1)(l, γ)| denote the number of those edges in γ with colour
1 and with colour −1 respectively whose lower end-points are in the l-th row of γ.

Let Γ̄(k1, . . . , kL) denote the class of those coloured diagrams of Γ(k1, . . . , kL)
for which every permissible vertex is the end-point of some edge. A coloured
diagram γ ∈ Γ(k1, . . . , kL) satisfies the relation γ ∈ Γ̄(k1, . . . , kL) if and only
if k(γ) = 0. In this case Fγ is constant, and In,k(γ)(Fγ) = Fγ . For all other
coloured diagrams γ ∈ Γ(k1, . . . , kL) k(γ) ≥ 0. The identity

E

(
L∏

l=1

kl!n
−kl/2In,kl

(fkl
)

)

=
∑′(n, L)

γ∈Γ̄(k1,...,kL)

(
L∏

l=1

Jn(l, γ)

)

n−|W (γ)|/2 · Fγ (5.7)

holds.

Theorem B can be deduced relatively simply from Theorem A by induction
with respect to the number L of the functions. Theorem A contains the results
of Theorem B in the case L = 2. A simple induction argument together with
the formulas describing the functions Fl,γ by means of the functions Fl−1,γ and
fl and Theorem A imply that all functions Fγ in Theorem B are canonical.
Finally, an inductive procedure with respect to the number L of the functions
fl shows that relation (5.5) holds. Indeed, by exploiting that formula (5.5)
holds for the product of the first L−1 degenerate U -statistics, then multiplying
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this identity with the last U -statistic and applying for each term at the right-
hand side Theorem A we get that relation (5.5) also holds for the product L

degenerate U -statistics.
A simple inductive procedure with respect to l shows that for all 2 ≤ l ≤ L

the diagram γ(l) contains k(γ(l)) =
l∑

p=1
kl −

l∑

p=2
(2|B(b,1)(p, γ)| + |B(b,−1)(p, γ)|)

permissible vertices in its first l rows which are not an end-point of an edge
in γ(l). In particular, k(γ) = 0 if and only if γ ∈ Γ̄(k1, . . . , kL) with the
class of coloured diagrams Γ̄(k1, . . . , kL) introduced at the end of Theorem B.
Since EIn,k(f) = 0 for all degenerate U -statistics of order k ≥ 1, this property
together with relation (5.5) imply identity (5.7).

In the proof of Proposition A we shall also need an estimate formulated
in Theorem C. It is a simple consequence of inequalities (3.7) and (3.8) in
Theorem A.

Theorem C. Let us have L functions fl(x1, . . . , xkl
) on the spaces (Xkl ,X kl),

1 ≤ l ≤ L, which satisfy formulas (1.3) and (1.4) (if we replace the index
k by index kl in these formulas), but these functions need not be canonical.
Let us take a coloured diagram γ ∈ Γ(k1, . . . , kL) and consider the function
Fγ = FL,γ(f1, . . . , fL) defined by formulas (5.1)—(5.5). The L2-norm of the
function Fγ (with respect to a power of the measure µ to the space, where Fγ is
defined) satisfies the inequality ‖Fγ‖2 ≤ 2|W (γ)|σ(L−U(γ)), where |W (γ)| denotes
the number of edges of colour −1, and U(γ) the number of rows which contain
the lower vertex of an edge of colour −1 in the coloured diagram γ.

Proof of Theorem C. We shall prove the inequality

‖Fl,γ‖2 ≤ 2|W (l,γ)|σ(l−U(l,γ)) for all 1 ≤ l ≤ L, (5.8)

where |W (l, γ)| denotes the number of edges with colour 1, and U(l, γ) is the
number of rows containing a lower point of an edge with colour −1 in the
coloured diagram γ(l). Formula (5.8) will be proved by means of induction with
respect to l. It implies Theorem C with the choice l = L.

Relation (5.8) clearly holds for l = 1. To prove this relation by induction
with respect to l for all 1 ≤ l ≤ L let us first observe that sup 2−|W (l,γ)||Fl,γ | ≤ 1
for all 1 ≤ l ≤ L. This relation can be simply checked by induction with respect
to l.

If we know relation (5.8) for l − 1, then it follows for l from relation (3.7) if
|B(b,−1)(l, γ)| = 0, that is if there is no edge of colour −1 with lower end-point
in the l-th row. Indeed, in this case ‖Fl,γ(f1, . . . , fl)‖2 ≤ ‖Fl−1,γ‖2‖fl‖2 ≤
‖Fl−1,γ(f1, . . . , fl−1)‖2 · σ, |W (l, γ)| = |W (l − 1, γ)|, and U(l, γ) = U(l − 1, γ).
Hence relation (5.8) holds in this case.

If |B(b,−1)(l, γ)| ≥ 1, then we can apply formula (3.8) for the expression

‖Fl,γ‖2 = ‖ ¯̄Fl,γ‖2 = ‖(Fl−1,γ ◦ fl)γ̃(l)‖2, where γ̃(l) is that coloured diagram
with two rows whose first row consists of the indices of the variables of the
function Fl−1,γ , its second row consists of the vertices (l, j), 1 ≤ j ≤ kl, and
γ̃(l) contains the edges of γ between these vertices together with their colour.
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Then relation (3.8) implies that

‖Fl,γ‖2 ≤ 2|B(b,−1)|‖Fl−1,γ‖2 ≤ 2(|W (l−1,γ)|+|B(b,−1)(l,γ)|)σ(l−1−U(l−1,γ))

if |B(b,−1)(l, γ)| ≥ 1. Beside this, |W (l − 1, γ)| + |B(b,−1)(l, γ)| = |W (l, γ)|, and
l − 1 − U(l − 1, γ) = l − U(l, γ) in this case. Hence relation (5.8) holds in this
case, too.

6 The proof of Proposition A.

Proof of Proposition A. We shall prove relation (2.1) by means of identity (5.7)
and Theorem C with the choice L = 2M and fl(x1, . . . , xkl

) = f(x1, . . . , xk) for
all 1 ≤ l ≤ 2M . We shall partition the class of coloured diagrams γ ∈ Γ(k,M) =
Γ̄(k, . . . , k
︸ ︷︷ ︸

2M times

) with the property that all permissible vertices are the end-points of

some edge to classes Γ(k,M, p), 1 ≤ p ≤ M , in the following way: γ ∈ Γ(k,M, p)
for a coloured diagram γ ∈ Γ(k,M) if and only if it has 2p permissible vertices
of the form (l, j, C). (A coloured diagram γ ∈ Γ(k,M) has even number of such
vertices.) First we prove the following estimate:

There exists some constant A = A(k) > 0 and threshold index M0 =
M0(k) such that for all M ≥ M0 and 0 ≤ p ≤ kM the cardinal-
ity |Γ(k,M, p)| of the set Γ(k,M, p) can be bounded from above by

A22p
(
2kM
2p

) (
2
e

)kM
(kM)kM+p.

We can bound the number of coloured diagrams in Γ(k,M, p) by calculating
first the number of choices of the 2p permissible vertices from the 2kM vertices
of the form (l, j, C) which we adjust to the 2kM permissible vertices (l, j) and
then by calculating the number of such graphs whose vertices are the above
chosen permissible vertices, and from all vertices there starts exactly one edge.
(Here we allow to connect vertices from the same row. Observe that by defining
the set of permissible vertices (l, j, C) in a coloured diagram γ we also determine
the colouring of its edges.) Thus we get that |Γ(k,M, p)| can be bounded from

above by
(
2kM
2p

)
1·3·5 · · · (2kM +2p−1) =

(
2kM
2p

) (2kM+2p)!
2kM+p(kM+p)!

. (The appearance

of the factor 1 · 3 · 5 · · · (2kM + 2p − 1) in this estimate can be explained in a
standard way. Let us list the 2kM + 2p vertices in some order. The first
vertex can be connected with 2kM + 2p− 1 vertices by an edge. Then the first
vertex from which no edge starts can be connected with 2kM + 2p− 3 vertices.
Continuing this procedure we get the above product for the number of possible
system of edges between the already fixed vertices.) We can write by the Stirling
formula, similarly to the estimation of the right-hand side of formula (2.2) that

(2kM+2p)!
2kM+p(kM+p)!

≤ A
(

2
e

)kM+p
(kM + p)kM+p with some constant A >

√
2 if M ≥

M0 with some M0 = M0(A). Since p ≤ kM we can write (kM + p)kM+p ≤
(kM)kM

(
1 + p

kM

)kM
(2kM)p ≤ (kM)kM+pep2p. The above inequalities imply
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that

|Γ(k,M, p)| ≤ A

(
2kM

2p

)(
2

e

)kM

(kM)kM+p22p if M ≥ M0, (6.1)

as we have claimed.
Observe that for γ ∈ Γ(k,M, p) the quantities introduced in the formula-

tion of Theorems B and C satisfy the relations |W (γ)| = 2p, |Fγ | = ‖Fγ‖2

and U(γ) ≤ |W (γ)| = 2p. Hence by Theorem C we have n−|W (γ)|/2|Fγ | ≤
2pn−pσ2M−U(γ) ≤ 2p

(
nσ2

)−p
σ2M ≤ ηp2p(kM)−pσ2M if kM ≤ ηnσ2 and

σ2 ≤ 1.
This estimate together with relation (5.7) and the fact that the constants

Jn(l, γ) defined in (5.6) are bounded by 1 imply that for kM ≤ ηnσ2

E
(

n−k/2k!In,k(fk)
)2M

≤
∑

γ∈Γ(k,M)

n−|W (γ)|/2 · |Fγ |

≤
kM∑

p=0

|Γ(k,M, p)|ηp2p(kM)−pσ2M .

Hence by formula (6.1)

E
(

n−k/2k!In,k(fk)
)2M

≤ A

(
2

e

)kM

(kM)kMσ2M
kM∑

p=0

(
2kM

2p

)(

2
√

2η
)2p

≤ A

(
2

e

)kM

(kM)kMσ2M
(

1 + 2
√

2η
)2kM

if kM ≤ ηnσ2. Thus we have proved Proposition A with C = 2
√

2.
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[6] Itô, K. (1951) Multiple Wiener integral. J. Math. Soc. Japan 3. 157–164

[7] LataÃla, R. (2006) Estimates of moments and tails of Gaussian chaoses.
Annals of Probability 34 2315–2331

[8] Major, P. (1981) Multiple Wiener–Itô integrals. Lecture Notes in Mathe-
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