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Alfréd Rényi Mathematical Institute of the Hungarian Academy of Sciences

Budapest, P.O.B. 127 H–1364, Hungary, e-mail: major@renyi.hu

Summary: We prove such a multivariate version of Bernstein’s inequality about
the tail distribution of degenerate U -statistics which is an improvement of some
former results. This estimate will be compared with an analogous bound about
the tail distribution of multiple Wiener-Itô integrals. Their comparison shows
that our estimate is sharp. The proof is based on good estimates about high
moments of degenerate U -statistics. They are obtained by means of a diagram
formula which enables us to express the product of degenerate U -statistics as
the sum of such expressions.

1. Introduction.

Let us consider a sequence of iid. random variables ξ1, ξ2, . . . , on a measurable space
(X,X ) with some distribution µ together with a real valued function f = f(x1, . . . , xk)
of k variables defined on the k-th power (Xk,X k) of the space (X,X ) and define with
their help the U -statistics In,k(f), n = k, k + 1, . . . ,

In,k(f) =
1

k!

∑

1≤js≤n, s=1,...,k
js 6=js′ if s6=s′

f (ξj1 , . . . , ξjk
) . (1.1)

We want to get good estimates on the probabilities P
(
n−k/2k!|In,k(f)| > u

)
for u > 0

under appropriate conditions.

Let me first recall a result of Arcones and Giné [2] in this direction. They have
proved the inequality

P
(
k!n−k/2|In,k(f)| > u

)
≤ c1 exp



− c2u

2/k

σ2/k
(

1 + c3

(
un−k/2σ−(k+1)

)2/k(k+1)
)





for all u > 0

(1.2)

with some universal constants c1, c2 and c3 depending only on the order k of the U -
statistic In,k(f) defined in (1.1) if the function f satisfies the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, (1.3)

‖f‖2
2 =

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2, (1.4)
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and it is canonical with respect to the probability measure µ, i.e.

∫
f(x1, . . . , xj−1, u, xj+1, . . . , xk)µ( du) = 0 for all 1 ≤ j ≤ k

and xs ∈ X, s ∈ {1, . . . k} \ {j}.

A U -statistic defined in (1.1) with the help of a canonical function f is called degenerate
in the literature. Degenerate U -statistics are the natural multivariate versions of sums
of iid. random variables with expectation zero.

Actually Arcones and Giné formulated their result in a slightly different but equiva-
lent form. They called their estimate (1.2) a new Bernstein-type inequality. The reason
for such a name is that the original Bernstein inequality (see e.g. [3], 1.3.2 Bernstein
inequality) states relation (1.2) in the special case k = 1 with constants c1 = 2, c2 = 1

2
and c3 = 1

3 if the function f(x) satisfies the conditions sup |f(x)| ≤ 1,
∫

f(x)µ( dx) = 0
and

∫
f2(x)µ( dx) ≤ σ2. (Bernstein’s inequality states a slightly stronger estimate in

the case k = 1. It states this inequality with constants c1 = 1, c2 = 1
2 and c3 = 1

3 if
there is no absolute value inside the probability at the left-hand side of (1.2).)

Our goal is to prove such an improvement of this result which gives the right value of
the parameter c2 in formula (1.2), and we also want to explain the probabilistic content
of such an improvement. For this goal let us first make a more detailed comparison
between Bernstein’s inequality and estimate (1.2).

Let us consider the sum Sn =
n∑

j=1

ξj of iid. random variables ξ1, . . . , ξn such that

Eξ1 = 0, P (|ξ1| ≤ 1) = 1, and consider the probability pn(u) = P
(

1√
n
Sn > u

)
for all

u > 0. Put σ2 = Eξ2
1 . Bernstein’s inequality implies that

pn(u) ≤ exp

{
−
(

1 − Ku√
nσ2

)
u2

2σ2

}
for all 0 ≤ u ≤

√
nσ2

with some number K < 1. A similar estimate holds for 0 ≤ u ≤ C
√

nσ2 for any
number C > 0, but in the case u À √

nσ2 only a much weaker inequality holds. (See
Example 2.4 in [10] for an example where only a very weak estimate holds if u À √

nσ2.)
This means that Bernstein’s inequality has the following perturbation type character.
For small numbers u (if 0 < u < ε

√
nσ2 with some small ε > 0) the expression in

the exponent of the upper bound given for pn(u) is a small perturbation of − u2

2σ2 , of
the expression suggested by the central limit theorem. For u ≤ const.

√
nσ2 a similar

bound holds, only with a worse constant in the exponent. If u À √
nσ2, then no good

Gaussian type estimate holds for the probability pn(u).

Next I formulate the main result of this paper, Theorem 1, which is an estimate
similar to that of [2]. But, as I will show, it is sharper, and it has a perturbation type
character, similar to Bernstein’s inequality.

Theorem 1. Let ξ1, . . . , ξn be a sequence of iid. random variables on a space (X,X )
with some distribution µ. Let us consider a function f(x1, . . . , xk), canonical with respect
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to the measure µ on the space (Xk,X k) which satisfies conditions (1.3) and (1.4) with
some 0σ2 ≤ 1 together with the degenerate U -statistic In,k(f) with this kernel function f .
There exist some constants A = A(k) > 0 and B = B(k) > 0 depending only on the
order k of the U -statistic In,k(f) such that

P (k!n−k/2|In,k(f)| > u) ≤ A exp



− u2/k

2σ2/k
(

1 + B
(
un−k/2σ−(k+1)

)1/k
)



 (1.5)

for all 0 ≤ u ≤ nk/2σk+1.

Remark: Actually, the universal constant B > 0 can be chosen independently of the
order k of the degenerate U -statistic In,k(f) in inequality (1.5).

To understand the content of Theorem 1 better let us recall the following limit
distribution result about degenerate U -statistics, (see e.g. [4]). If the canonical function
f of k variables satisfies condition (1.4), then the degenerate U -statistics n−k/2In,k(f)
converge in distribution to the k-fold Wiener–Itô integral Jµ,k(f),

Jµ,k(f) =
1

k!

∫
f(x1, . . . , xk)µW ( dx1) . . . µW (dxk), (1.6)

of the function f with respect to a white noise µW with reference measure µ. Here µ

is the distribution of the random variables ξj , j = 1, 2, . . . appearing in the U -statistics
In,k(f). Let me recall that a white noise µW with reference measure µ on (X,X )
is a set of jointly Gaussian random variables µW (A), A ∈ X , µ(A) < ∞, such that
EµW (A) = 0, EµW (A)µW (B) = µ(A ∩ B) for all A ∈ X and B ∈ X . The definition of
Wiener–Itô integrals can be found for instance in [6] or [8].

The above result suggests to describe the tail-distribution of the Wiener–Itô integral
Jµ,k(f) and to show that Theorem 1 gives such an estimate which the above mentioned
limit theorem and the tail distribution of Jµ,k(f) suggests. At this moment there appears
an essential difference between the problem discussed in Bernstein’s inequality and its
multivariate version.

We want to estimate both the U -statistic In,k(f) and the Wiener–Itô integral
Jµ,k(f) by means of their variance. (Let me remark that the integral in formula (1.4)
equals the variance of (k!)1/2Jµ,k(f), and it is asymptotically equal to the variance of
(k!)1/2n−k/2In,k(f) for large n. At least, this is the case if f is a symmetric func-
tion of its variables. But, since In,k(f) = In,k(Sym f), Jµ,k(f) = Jµ,k(Sym f), and
‖Sym f‖2

2 ≤ ‖f‖2
2 we may restrict our attention to this case.) But while the variance

and expectation determines the distribution of a Gaussian random variable, the distribu-
tion of a Wiener–Itô integral is not determined by its variance and (zero) expectation.
Hence if we want to compare the estimation of degenerate U -statistics by means of
their variance with a natural Gaussian counterpart of this problem, then it is natural
to consider first the following problem.

Find such an upper estimate for the tail distribution of Wiener–Itô integrals which
holds for all of them with a prescribed bound on their variances, and which is sharp in
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the following sense. There is a Wiener–Itô integral whose variance is not larger than the
prescribed bound, and which satisfies a very similar lower estimate. Then the estimate
for degenerate U -statistics has to be compared with such an estimate for Wiener–Itô
integrals. The following Theorem 2 and Example 3 give an estimate for Wiener–Itô
integrals with the desired properties. (These results were proven in [11.) They suggest

to compare the upper bound in Theorem 1 with the function const. exp
{
− 1

2

(
u
σ

)2/k
}

with some appropriate constant.

Theorem 2. Let us consider a σ-finite measure µ on a measurable space together
with a white noise µW with reference measure µ. Let us have a real-valued function
f(x1, . . . , xk) on the space (Xk,X k) which satisfies relation (1.4) with some σ2 < ∞.
Take the random integral Jµ,k(f) introduced in formula (1.6). This random integral
satisfies the inequality

P (k!|Jµ,k(f)| > u) ≤ C exp

{
−1

2

(u

σ

)2/k
}

for all u > 0 (1.7)

with an appropriate constant C = C(k) > 0 depending only on the multiplicity k of the
integral.

Example 3. Let us have a σ-finite measure µ on some measure space (X,X ) to-
gether with a white noise µW on (X,X ) with reference measure µ. Let f0(x) be a
real valued function on (X,X ) such that

∫
f0(x)2µ( dx) = 1, and take the function

f(x1, . . . , xk) = σf0(x1) · · · f0(xk) with some number σ > 0 and the Wiener–Itô integral
Jµ,k(f) introduced in formula (1.6).

Then the relation
∫

f(x1, . . . , xk)2 µ( dx1) . . . µ( dxk) = σ2 holds, and the random
integral Jµ,k(f) satisfies the inequality

P (k!|Jµ,k(f)| > u) ≥ C̄
(

u
σ

)1/k
+ 1

exp

{
−1

2

(u

σ

)2/k
}

for all u > 0 (1.8)

with some constant C̄ > 0.

By Theorem 1 there are some constants α > 0, C1 > 0, 1 > C2 > 0, C1α < 1 such
that under the conditions of this result

P (k!n−k/2|In,k(f)| > u) ≤ A exp

{
−1

2

(u

σ

)2/k
(

1 − C1

( u

nk/2σk+1

)1/k
)}

if 0 < u ≤ αnk/2σk+1

and

P (k!n−k/2|In,k(f)| > u) ≤ A exp

{
−C2

(u

σ

)2/k
}

if αnk/2σk+1 < u ≤ nk/2σk+1.
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A comparison of these estimates with Theorem 2 and Example 3 shows that Theorem 1
has a behaviour similar to that of Bernstein’s inequality. For relatively small numbers
u > 0, more precisely if 0 < u < εnk/2σk+1 with some ε > 0, the expression in the

exponent at the right-hand side of this estimate is very close to − 1
2

(
u
σ

)2/k
, the term

suggested by Theorem 2 and Example 3. In the more general case u ≤ nk/2σk+1 a

similar, but somewhat worse estimate holds. The term −
(

u
σ

)2/k
in the upper estimate

is multiplied by a constant C2 > 0 which may be much smaller than 1
2 . So the estimate

of Theorem 1 — unlike formula (1.2) — has a perturbation type character.

On the other hand it may seem that the estimate (1.2) has the advantage that it
yields a bound for the tail-distribution of a degenerate U -statistic for all numbers u > 0,
while formula (1.5) holds only under the condition 0 ≤ u ≤ nk/2σk+1. Nevertheless,
formula (1.5) implies such an estimate also for u > nk/2σk+1 which is not weaker
than the inequality (1.2) (at least if we do not bother about the value of the universal
constants in these estimates). To see this observe that relation (1.3) remains valid if
σ2 is replaced by any σ̄2 ≥ σ2. As a consequence, for nk/2 ≥ u > nk/2σk+1 rela-

tion (1.5) holds with the replacement of σ by σ̄ =
(
un−k/2

)1/(k+1)
, since all conditions

of Theorem 1 are satisfied with such a choice. It yields that P (k!n−k/2|In,k(f)| >

u) ≤ A exp
{
− 1

2(1+B)1/k

(
u
σ̄

)2/k
}

= Ae−(u2n)1/(k+1)/2(1+B)1/k

. On the other hand,

σ2/k
(

1 + c3

(
un−k/2σ−(k+1)

)2/k(k+1)
)

≥ c3u
2/k(k+1)n−1/(k+1), hence the right-hand

side of (1.2) can be bounded from below by c1e
−c2(u

2n)1/(k+1)/c3 . Thus relation (1.5)
implies relation (1.2) if nk/2 ≥ u > nk/2σk+1 with possibly worse constants c̄1 = A, c2

and c̄3 = 2c2(1+B)1/k. If u > nk/2, then the left-hand side of (1.2) equals zero because
of the boundedness of the function f , and relation (1.2) clearly holds.

Actually the condition u ≤ nk/2σk+1 was rather natural in Theorem 1. It can be
shown that in the case u À nk/2σk+1 there are such degenerate U -statistics satisfying
the conditions of Theorem 1 for which the probability P (n−k/2k!In,k(f) > u) is much
greater than the expression suggested by the limit theorem for degenerate U -statistics
together with Theorem 2 and Example 3. Such an example is presented in Examples 4.5
in [10] for k = 2. With some extra work similar examples of degenerate U -statistics of
order k could also be constructed for any k = 2, 3, . . . .

Let me say some words about the method of proofs. Theorem 1 will be proved
by means of good estimates on high moments of degenerate U -statistics. They can be
obtained with the help of a new type of diagram formula which enables us to write
the product of degenerate U -statistics as the sum of degenerate U -statistics. Such a
formula may be interesting in itself. It is a version of an important result about the
representation of a product of Wiener–Itô integrals in the form of sums of Wiener–Itô
integrals. It makes possible to adapt the methods in the theory of Wiener–Itô integrals to
the study of degenerate U -statistics. It also gives some insight why the tail distributions
of degenerate U -statistics and Wiener–Itô integral satisfy similar estimates.

This approach is essentially different from that of earlier papers in this field, e.g.
from the proof of paper [2]. I had to choose a different method, because the technique
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of previous papers was not strong enough to prove Theorem 1. They give only such
weaker estimates for high moments of degenerate U -statistics which are not sufficient
for our purposes. This weakness has different causes. First, previous proofs apply
an estimate called Borell’s inequality in the literature, which does not supply a sharp
estimate in certain cases. This has the consequence that we can get only a relatively
weak estimate about high moments of degenerate U -statistics in such a way. (See the
end of my paper [11] for a more detailed discussion.) Beside this, earlier papers in this
field apply a method called the decoupling technique in the literature, and this method
has some properties which enable only the proof a weaker version of Theorem 1.

The decoupling technique contains some randomization procedure, and as a more
careful analysis shows, its application allows us to prove only relatively weak estimates.
The randomization procedure applied in the decoupling technique makes possible to
reduce the estimation of the degenerate U -statistic we want to bound to the estimation
of another degenerate U -statistic which can be better handled. But this new U -statistic
has a larger variance than the original one. As a consequence, this method cannot
give such a good estimate which ‘resembles’ to the limit distribution of the original
U -statistic. Hence for relatively small numbers u it supplies a weaker estimate for the
distribution of degenerate U -statistics than formula 1.5.

Let me still remark that at recent time some new estimates are proved about
the tail distribution of degenerate U -statistics. (See [1], [5], [7].) They may supply a
better bound in certain cases with the help of some additional quantities related to the
properties of the kernel function of the U -statistic. Such problems will be not discussed
in this paper, but I would remark that the method of this paper may work also in such
investigations. The diagram formula supplies a better estimate for the moments of a
degenerate U -statistic if its kernel function has some nice properties. There is some
hope that the recent results about the tail distribution of degenerate U -statistics can
be proved in such a way.

This paper consists of six sections. In Section 2 the proof of Theorem 1 is reduced
to a moment estimate for degenerate U -statistics formulated in that section. To under-
stand the content of this moment estimate better I also present its Wiener–Itô integral
counterpart. Theorem 2 follows from this moment estimate for Wiener–Itô integrals in
a standard way. This proof will be omitted, since it can be found in [11]. The proof of
Example 3 can also be found in [11], hence its proof will be also omitted. Sections 3, 4
and 5 contain the proof of the diagram formula for the product of degenerate U -statistics
needed in the proof of the moment estimate in Section 2. The diagram formula about
the product of two degenerate U -statistics is formulated in Section 3, and its proof is
given in Section 4. Section 5 contains the formulation and proof of the diagram formula
for the products of degenerate U -statistics in the general case. In Section 6 the moment
estimate given is Section 2 is proved by means of the diagram formula. In such a way
the proof of Theorem 1 is completed.

6



2. The reduction of the proof of Theorem 1 to a moment estimate.

Theorem 1 will be proved by means of the following

Proposition A. Let us consider a degenerate U -statistic In,k(f) of order k with sample
size n and with a kernel function f satisfying relations (1.3) and (1.4) with some 0 <

σ2 ≤ 1. Fix a positive number η > 0. There exist some universal constants A = A(k) >√
2, C = C(k) > 0 and M0 = M0(k) ≥ 1 depending only on the order k of the U -statistic

In,k(f) such that

E
(
n−k/2k!In,k(f)

)2M

≤ A (1 + C
√

η)
2kM

(
2

e

)kM

(kM)
kM

σ2M

for all integers M such that kM0 ≤ kM ≤ ηnσ2.

(2.1)

The constant C = C(k) in formula (2.1) can be chosen e.g. as C = 2
√

2 which does not
depend on the order k of the U -statistic In,k(f).

To understand the content of Proposition A better I formulate its Wiener–Itô in-
tegral counterpart in the following

Proposition B. Let the conditions of Theorem 2 be satisfied for a multiple Wiener–Itô
integral Jµ,k(f) of order k. Then, with the notations of Theorem 2, the inequality

E (k!|Jµ,k(f)|)2M ≤ 1 · 3 · 5 · · · (2kM − 1)σ2M for all M = 1, 2, . . . (2.2)

holds.

By the Stirling formula Proposition B implies that

E(k!|Jµ,k(f)|)2M ≤ (2kM)!

2kM (kM)!
σ2M ≤ A

(
2

e

)kM

(kM)kMσ2M (2.3)

for any A >
√

2 if M ≥ M0 = M0(A). The right-hand side of formula (2.2) is almost as
large as the right-hand side of formula (2.3). Hence the estimate (2.3) gives an almost
as good estimate as Proposition B. We shall use this estimate in the sequel because of
its simpler form.

Proposition B can be considered as a corollary of a most important result about
Wiener–Itô integrals called the diagram formula. This result enables us to rewrite the
product of Wiener–Itô integrals as a sum of Wiener–Itô integrals of different order. It
got the name ‘diagram formula’ because the kernel functions of the Wiener–Itô integrals
appearing in the sum representation of the product of Wiener–Itô integrals are defined
with the help of certain diagrams. As the expectation of a Wiener–Itô integral of order
k equals zero for all k ≥ 1, the expectation of the product is equal to the sum of the
constant terms (i.e. of the integrals of order zero) in the diagram formula. In such a way
the diagram formula yields an explicit (although somewhat complicated) formula about
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the moments of Wiener–Itô integrals. Proposition B can be proved relatively simply by
means of this relation. Since it is written down in paper [11], I omit the details.

We shall see that there is such a version of the diagram formula which expresses
the product of degenerate U -statistics as a sum of degenerate U -statistics of different
order by means of some appropriately defined diagrams. Proposition A can be proved
by means of this version of the diagram formula similarly to Proposition B. The proof
of Proposition A with the help of this version of the diagram formula will be given in
Section 6. The main difference between the proof of Propositions A and B with the help
of the corresponding diagram formula is that in the case of degenerate U -statistics the
diagram formula contains some additional new diagrams, and their contribution also
has to be estimated. It will be shown that if not too high moments of U -statistics are
calculated by means of the diagram formula, then the contribution of the new diagrams
is not too large.

To better understand the content of Proposition A let us compare formulas (2.1)
and (2.3). These estimates are very similar. The upper bound given for the 2M -th mo-
ment of a degenerate U -statistic in formula (2.1) is less than AM -times the upper bound
given for the 2M -th moment of the corresponding Wiener–Itô integral in formula (2.3)
with some universal constant A > 1. Moreover, the constant A is very close to 1 if
the parameter M is relatively small, if M ≤ εnσ2 with some small number ε > 0. But
the estimate (2.1) holds only for not too large parameters M , because of the condition
kM < ηnσ2 in it. Because of this condition Proposition A gives a much worse bound for
the 2M -th moment of a degenerate U -statistic if M À nσ2 than inequality (2.3) yields
for the 2M -th moment of the corresponding Wiener–Itô integral. The above mentioned
properties of the moment estimates in Proposition A are closely related to the behaviour
of the estimate in Theorem 1, in particular to the condition u ≤ nk/2σk+1 in it.

Theorem 2 can be proved by means of the Proposition B and the Markov inequality

P (|Jµ,k(f)| > u) ≤ EJµ,k(f)2M

u2M with a good choice of the parameter M . This is a rather
standard approach, and this proof is written down in [11]. Hence I omit it. Theorem 1
can be proved similarly with the help of Proposition A and the Markov inequality, but
in this case a more careful analysis is needed to find the good choice of the parameter M

with which the Markov inequality should be applied. I work out the details.

Proof of Theorem 1 by means of Proposition A. We can write by the Markov inequality
and Proposition A with the choice η = kM

nσ2 that

P (k!n−k/2|In,k(f)| > u) ≤ E
(
k!n−k/2In,k(f)

)2M

u2M

≤ A


1

e
· 2kM

(
1 + C

√
kM√
nσ

)2 (σ

u

)2/k




kM (2.4)

for all integers M ≥ M0 with some M0 = M0(k) and A = A(k).

We shall prove relation (1.5) with the help of estimate (2.4) first in the case D ≤
u
σ ≤ nk/2σk with a sufficiently large constant D = D(k,C) > 0 depending on k and the
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constant C in (2.4). To this end let us introduce the numbers M̄ ,

kM̄ =
1

2

(u

σ

)2/k 1

1 + B
( u

σ )
1/k

√
nσ

=
1

2

(u

σ

)2/k 1

1 + B
(
un−k/2σ−(k+1)

)1/k
(2.5)

with a sufficiently large number B = B(C) > 0 and M = [M̄ ], where [x] means the
integer part of the number x.

Observe that
√

kM̄ ≤
(

u
σ

)1/k
,

√
kM̄√
nσ

≤
(
un−k/2σ−(k+1)

)1/k ≤ 1, and

(
1 + C

√
kM̄√
nσ

)2

≤ 1 + B

√
kM̄√
nσ

≤ 1 + B
(
un−k/2σ−(k+1)

)1/k

with a sufficiently large B = B(C) > 0 if u
σ ≤ nk/2σk. Hence

1

e
· 2kM

(
1 + C

√
kM√
nσ

)2 (σ

u

)2/k

≤ 1

e
· 2kM̄

(
1 + C

√
kM̄√
nσ

)2 (σ

u

)2/k

≤ 1

e
·

(
1 + C

√
kM̄√
nσ

)2

1 + B
(
un−k/2σ−(k+1)

)1/k
≤ 1

e

(2.6)

if u
σ ≤ nk/2σk. If the inequality D ≤ u

σ also holds with a sufficiently large D =
D(B, k) > 0, then M = [M̄ ] ≥ M0 because of the definition of [M̄ ] in formula (2.5)
and the relation un−k/2σk+1 ≤ 1. With such a choice the conditions of inequality (2.4)
hold. By applying it together with inequality (2.6) we get that

P (k!n−k/2|In,k(f)| > u) ≤ Ae−kM ≤ Aeke−kM̄

if D ≤ u
σ ≤ nk/2σk. This means that inequality (1.5) holds in this case with a pre-

exponential constant Aek. Since e−kM̄ is bounded from below for u
σ ≤ D relation (1.5)

holds for all 0 ≤ u
σ ≤ nk/2σk with a possible increase of the pre-exponential coefficient

Aek in it. Theorem 1 is proved.

Let us observe that the above calculations show that the constant B in formula
(1.8) can be chosen independently of the order k of the U -statistics In,k(f).
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3. The diagram formula for the product of two degenerate U-statistics.

To prove Proposition A we need a good identity which expresses the expectation of the
product of degenerate U -statistics in a form that can be better handled. Such an identity
can be proved by means of a version of the diagram formula for Wiener–Itô integrals
where the product of degenerate U -statistics is represented as the sum of degenerate
U -statistics with appropriate kernel functions. In such a formula the kernel functions of
the sum representation are defined with the help of some diagrams, and to get a useful
result we also need a good estimate on their L2-norm.

We shall prove such a result. First we prove its special case about the product of
two degenerate U -statistics together with a good estimate on the L2-norm of the kernel
functions in the sum representation. Then the result in the general case can be obtained
by induction.

In the case of the product of two degenerate U -statistics the result we want to prove
can be obtained with the help of the following observation. Let us have a sequence of
iid. random variables ξ1, ξ2, . . . with some distribution µ on a measurable space (X,X )
together with two functions f(x1, . . . , xk1) and g(x1, . . . , xk2) on (Xk1 ,X k1) and on
(Xk2 ,X k2) respectively which are canonical with respect to the probability measure µ.
We consider the degenerate U -statistics In,k1(f) and In,k2(g) and want to express their
normalized product k1!k2!n−(k1+k2)/2In,k1(f)In,k2(g) as a sum of (normalized) degen-
erate U -statistics. This product can be presented as a sum of U -statistics in a natural
way. Then by writing each term of this sum as a sum of degenerate U -statistics by
means of the Hoeffding decomposition we get the desired representation of the product.
This result will be formulated in Theorem A.

In this Section Theorem A will be described together with the introduction of the
notations needed for its formulation. Its proof will be given in the next Section.

To define the kernel functions of the U -statistics appearing in the diagram formula
for the product of two U -statistics first we introduce a class of objects Γ(k1, k2) we
shall call coloured diagrams. We define graphs γ ∈ Γ(k1, k2) that contain the vertices
(1, 1), (1, 2), . . . , (1, k1) which we shall call the first row and (2, 1) . . . , (2, k2) which we
shall call the second row of these graphs. From each vertex there starts zero or one
edge, and each edge connects vertices from different rows. Each edge will get a colour
+1 or −1. Γ(k1, k2) consists of all γ obtained in such a way. These objects γ will be
called coloured diagrams.

Given a coloured diagram γ ∈ Γ(k1, k2) let Bu(γ) denote the set of upper end-
points (1, j) of the edges of the graph γ, B(b,1)(γ) the set of lower end-points (2, j) of
the edges of γ with colour 1, and B(b,−1)(γ) the set of lower end-points (2, j) of the
edges of γ with colour −1. (The letter ‘b’ in the index was chosen because of the word
below.) Finally, let Z(γ) denote the set of edges with colour 1, W (γ) the set of edges
with colour −1 of a coloured graph γ ∈ Γ(k1, k2), and let |Z(γ)| and |W (γ)| denote
their cardinality.

Given two functions f(x1, . . . , xk1) and g(x1, . . . , xk2) let us define the function

(f ◦ g)(x(1,1), . . . , x(1,k1), x(2,1), . . . , x(2,k2))
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= f(x(1,1), . . . , x(1,k1))g(x(2,1), . . . , x(2,k2)) (3.1)

Given a function h(xu1 , . . . , xur ) with coordinates in the space (X,X ) (the indices
u1, . . . , ur are all different) let us introduce its transforms Puj h and Quj h by the formulas

(Puj h)(xul
: ul ∈ {u1, . . . , ur} \ {uj}) =

∫
h(xu1 , . . . , xur )µ( dxuj ), 1 ≤ j ≤ r, (3.2)

and

(Quj h)(xu1 , . . . , xur ) = h(xu1 , . . . , xur )−
∫

h(xu1 , . . . , xur )µ( dxuj ), 1 ≤ j ≤ r. (3.3)

At this point I started to apply a notation which may seem to be too complicated,
but I think that it is more appropriate in the further discussion. Namely, I started
to apply a rather general enumeration u1, . . . , ur of the arguments of the functions we
are working with instead of their simpler enumeration with indices 1, . . . , r. But in the
further discussion there will appear an enumeration of the arguments by pairs of integers
(l, j) in a natural way, and I found it simpler to work with such an enumeration than
to reindex our variables all the time. Let me remark in particular that this means that
the definition of the U -statistic with a kernel function f(x1, . . . , xk) given in formula
(1.1) will appear sometimes in the following more complicated, but actually equivalent
form: We shall work with kernel function f(xu1 , . . . , xuk

) instead of f(x1, . . . , xk), the
random variables ξj will be indexed by us, i.e. to the coordinate xus we shall put the
random variables ξjus

with indices 1 ≤ jus ≤ n, and in the new notation formula (1.1)
will look like

In,k(f) =
1

k!

∑

1≤jus≤n, s=1,...,k

jus 6=ju′

s
if us 6=u′

s

f
(
ξju1

, . . . , ξjuk

)
. (1.1′)

Let us define for all coloured diagrams γ ∈ Γ(k1, k2) the function αγ(1, j), 1 ≤
j ≤ k1, on the vertices of the first row of γ as αγ(1, j) = (1, j) if no edge starts from
(1, j), and αγ(1, j) = (2, j′) if an edge of γ connects the vertices (1, j) and (2, j ′).
Given two functions f(x1, . . . , xk1) and g(x1, . . . , xk2) together with a coloured diagram
γ ∈ Γ(k1, k2) let us introduce, with the help of the above defined function αγ(·) and
(f ◦ g) introduced in (3.1) the function

(f ◦ g)γ(x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2)

= (f ◦ g)(xαγ(1,1), . . . , xαγ(1,k1), x(2,1), . . . , x(2,k2)).
(3.4)

(In words, we take the function (f ◦ g), and if there is an edge of γ starting from a
vertex (1, j), and it connects this vertex with the vertex (2, j ′), then the argument x(1,j)

is replaced by the argument x(2,j′) in this function.) Let us also introduce the function

(f ◦ g)γ

(
x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1)

)

=
∏

(2,j′)∈B(b,1)(γ)

P(2,j′)

∏

(2,j′)∈B(b,−1)(γ)

Q(2,j′)

(f ◦ g)γ

(
x(j,1), x(j′,2), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2

)
.

(3.5)
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(In words, we take the function (f ◦ g)γ and for such indices (2, j ′) of the graph γ from
which an edge with colour 1 starts we apply the operator P(2,j′) introduced in formula
(3.2) and for those indices (2, j ′) from which an edge with colour −1 starts we apply the
operator Q(2,j′) defined in formula (3.3).) Let us also remark that the operators P(2,j′)

and Q(2,j′) are exchangeable for different indices j ′, hence it is not important in which
order we apply the operators P(2,j′) and Q(2,j′) in formula (3.5).

In the definition of the function (f ◦ g)γ those arguments x(2,j′) of the function

(f ◦ g)γ which are indexed by such a pair (2, j ′) from which an edge of colour 1 of
the coloured diagram γ starts will disappear, while the arguments indexed by such a
pair (2, j′) from which an edge of colour −1 of the coloured diagram γ starts will be
preserved. Hence the number of arguments in the function (f ◦ g)γ equals k1 + k2 −
2|B(b,1)(γ)| − |B(b,−1)(γ)|, where |B(b,1)(γ)| and |B(b,−1)(γ)| denote the cardinality of
the lower end-points of the edges of the coloured diagram γ with colour 1 and −1
respectively, In an equivalent form we can say that the number of arguments of (f ◦ g)γ

equals k1 + k2 − (2|Z(γ)| + |W (γ)|).
Now we are in the position to formulate the diagram formula for the product of

two degenerate U -statistics.

Theorem A. Let us have a sequence of iid. random variables ξ1, ξ2, . . . with some
distribution µ on some measurable space (X,X ) together with two bounded, canonical
functions f(x1, . . . , xk1) and g(x1, . . . , xk2) with respect to the probability measure µ on
the spaces (Xk1 ,X k1) and (Xk2 ,X k2). Let us introduce the class of coloured diagrams
Γ(k1, k2) defined above together with the functions (f ◦ g)γ defined in formulas (3.1)—
(3.5).

For all γ ∈ Γ the function (f ◦ g)γ is canonical with respect to the measure µ with
k(γ) = k1+k2−(2|Z(γ)|+|W (γ)|) arguments, where |Z(γ)| denotes the number of edges
with colour 1 and |W (γ)| the number of edges with colour −1 of the coloured diagram γ.
The product of the degenerate U -statistics In,k1(f) and In,k2(g), n ≥ max(k1, k2), de-
fined in (1.1) satisfies the identity

k1!n−k1/2In,k1(f)k2!n−k2/2In,k2(g)

=
∑′(n)

γ∈Γ(k1,k2)

|Z(γ)|∏
j=1

(n − (k1 + k2) + |W (γ)| + |Z(γ)| + j)

n|Z(γ)| (3.6)

n−|W (γ)|/2 · k(γ)!n−k(γ)/2In,k(γ)((f ◦ g)γ),

where
∑′(n)

means that summation is taken only for such coloured diagrams γ ∈

Γ(k1, k2) which satisfy the inequality k1 + k2 − (|Z(γ)| + |W (γ)|) ≤ n, and
|Z(γ)|∏
j=1

equals

1 in the case |Z(γ)| = 0.

The L2-norm of the functions (f ◦ g)γ is defined by the formula

‖(f ◦ g)γ‖2
2 =

∫
(f ◦ g)2γ(x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1))

12



∏

(1,j): j∈{1,...,k1}\Bu(γ)

µ( dx(1,j))
∏

(2,j′): j′∈{1,...,k2}\B(b,1)

µ( dx(2,j′)).

If W (γ) = 0, then the inequality

‖(f ◦ g)γ‖2 ≤ ‖f‖2‖g‖2 (3.7)

holds. In the general case we can say that if the functions f and g satisfy formula (1.3),
then the inequality

‖(f ◦ g)γ‖2 ≤ 2|W (γ)| min(‖f‖2, ‖g‖2) (3.8)

holds. Relations (3.7) and (3.8) remain valid if we drop the condition that the functions
f and g are canonical.

Relations (3.7) and (3.8) mean in particular, that we have a better estimate for
‖(f ◦ g)γ‖2 in the case when the coloured diagram γ contains no edge with colour −1,
i.e. if |W (γ)| = 0, than in the case when it contains at least one edge with colour −1.

Let us understand how we define those terms at the right-hand side of (3.6) for
which k(γ) = 0. In this case (f ◦g)γ is a constant, and to make formula (3.6) meaningful
we have to define the term In,k(γ)((f ◦ g)γ) also in this case. The following convention
will be used. A constant c will be called a degenerate U -statistic of order zero, and we
define In,0(c) = c.

Theorem A can be considered as a version of the result of paper [9], where a
similar diagram formula was proved about multiple random integrals with respect to
normalized empirical measures. Degenerate U -statistics can also be presented as such
integrals with special, canonical kernel functions. Hence there is a close relation between
the results of this paper and [9]. But there are also some essential differences. For
one part, the diagram formula for multiple random integrals with respect to normalized
empirical measures is simpler than the analogous result about the product of degenerate
U -statistics, because the kernel functions in these integrals need not be special, canonical
functions. On the other hand, the diagram formula for degenerate U -statistics yields
a simpler formula about the expected value of the product of degenerate U -statistics,
because the expected value of a degenerate U -statistic of order k ≥ 1 equals zero,
while the analogous result about multiple random integrals with respect to normalized
empirical measures may not hold. Another difference between this paper and [9] is that
here I worked out a new notation which, I hope, is more transparent.
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4. The proof of Theorem A.

The proof of Theorem A. Let us consider all possible sets {(u1, u
′
1), . . . , (ul, u

′
l)}, 1 ≤ l ≤

min(k1, k2) containing such pairs of integers for which us ∈ {1, . . . , k1}, u′
s ∈ {1, . . . , k2},

1 ≤ s ≤ l, all points u1, . . . , ul are different, and the same relation holds for the points
u′

1, . . . , u
′
l, too. Let us correspond the diagram containing two rows (1, 1), . . . , (1, k1)

and (2, 1), . . . , (2, k2) and the edges connecting the vertices (1, us) and (2, u′
s), 1 ≤

s ≤ l to the set of pairs {(u1, u
′
1), . . . , (ul, u

′
l)}, and let Γ̄(k1, k2) denote the set of all

(non-coloured) diagrams we can obtain in such a way. Let us consider the product
k1!In,k1(f)k2!In,k2(g), and rewrite it in the form of the sum we get by carrying out a
term by term multiplication in this expression. Let us put the terms of this sum into
disjoint classes indexed by the elements of the diagrams γ̄ ∈ Γ̄(k1, k2) in the following
way: A product f(ξj1 , . . . , ξjk1

)g(ξj′

1
, . . . , ξj′

k2
) belongs to the class indexed by the graph

γ̄ ∈ Γ̄(k1, k2) with edges {((1, u1), (2, u′
1)), . . . , ((1, ul), (2, u′

l))} if jus = j′u′

s
, 1 ≤ s ≤ l,

for the indices of the random variables appearing in the above product, and no more
coincidence may exist between the indices j1, . . . , jk1 , j

′
1, . . . , j

′
k2

. With such a notation
we can write

n−k1/2k1!In,k1(f)n−k2/2k2!In,k2(g) =
∑′(n)

γ̄∈Γ̄

n−(k1+k2)/2k̄(γ̄)!In,k̄(γ̄)(f ◦ g)γ̄), (4.1)

where the functions (f ◦ g)γ̄ are defined in formulas (3.1) and (3.4). (Observe that
although formula (3.4) was defined by means of coloured diagrams, the colours played
no role in it. The formula remains meaningful, and does not change if we replace the
coloured diagram γ by the diagram γ̄ we get by omitting the colours of its edges.) The
quantity k̄(γ̄) equals the number of such vertices of γ̄ from the first row from which no

edge starts plus the number of vertices in the second row, and the notation
∑′(n)

means
that summation is taken only for such diagrams γ̄ ∈ Γ̄ for which n ≥ k̄(γ̄).

Let the set V1 = V1(γ̄) consist of those vertices (1, u1) = (1, u1)γ , . . . , (1, us1) =
(1, us1)γ of the first row {(1, 1), . . . , (1, k1)} of the diagram γ̄ from which no edge starts,
and let V2 = V2(γ̄) contain those vertices (2, v1) = (2, v1)γ , . . . , (2, vs1) = (2, vs2)γ from
the second row {(2, 1), . . . , (2, k2)} of γ from which no edges start. Then k̄(γ̄) = s1 +k2,
and the function (f ◦ g)γ̄ has arguments of the form x(1,up), (1, up) ∈ V1 and x(2,v),
1 ≤ v ≤ k2.

Relation (4.1) is not appropriate for our goal, since the functions (f ◦ g)γ̄ in it
may be non-canonical. Hence we apply Hoeffding’s decomposition for the U -statistics
In,k̄(γ̄)(f ◦ g)γ̄ in formula (4.1) to get the desired representation for the product of

degenerate U -statistics. Actually some special properties of the function (f ◦ g)γ̄ enable
us to simplify a little bit this decomposition. (The Hoeffding decomposition is a simple
but important result which gives an explicit method to rewrite a general U -statistic
in the form of sums of degenerate U -statistics. It has an equivalent reformulation by
which an arbitrary (kernel) function of several variables can be rewritten as the sum of
canonical functions with different number of variables. It has a concise explanation for
instance in the Appendix of [4]. In the subsequent considerations I write down what
this result yields in the present situation.)
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To carry out this procedure let us observe that a function f(xu1 , . . . , xuk
) is canon-

ical if and only if Pul
f(xu1 , . . . , xuk

) = 0 with the operator Pul
defined in (3.2) for all

indices ul. Beside this, the condition that the functions f and g are canonical implies
the relations P(1,u)(f ◦ g)γ̄ = 0 for (1, u) ∈ V1 and P(2,v)(f ◦ g)γ̄ = 0 for (2, v) ∈ V2.

Moreover, these relations remain valid if we replace the functions (f ◦ g)γ̄ by such
functions which we get by applying the product of some transforms P(2,v) and Q(2,v),
(2, v) ∈ {(2, 1), . . . , (2, k2)} \ V2 for them with the transforms P and Q defined in for-
mulas (3.2) and (3.3). (Here we applied such transforms P and Q which are indexed by
those vertices of the second row of γ̄ from which some edge starts.)

Beside this, the transforms P(2,v) or Q(2,v) are exchangeable with the operators
P(2,v′) or Q(2,v′) if v 6= v′, P(2,v) + Q(2,v) = I, where I denotes the identity operator,
and P(2,v)Q(2,v) = 0, since P(2,v)Q(2,v) = P(2,v) −P 2

(2,v) = 0. The above relations enable

us to make the following decomposition of the function (f ◦ g)γ̄ to the sum of canonical
functions (just as it is done in the Hoeffding decomposition): Let us introduce the class
of those coloured diagram Γ(γ̄) which we can get by colouring all edges of the diagram
γ either with colour 1 or colour −1. Some calculation shows that

(f ◦ g)γ̄ =


 ∏

(2,v)∈{(2,1),...,(2,k2)}\V2

(P(2,v) + Q(2,v))


 (f ◦ g)γ̄ =

∑

γ∈Γ(γ̄)

(f ◦ g)γ , (4.2)

where the function (f ◦ g)γ is defined in formula (3.5). We get the right-hand side of
relation (4.2) by carrying out the multiplications for the middle term of this expression,
and exploiting the properties of the operators P(2,v) and Q(2,v). Moreover, these proper-
ties also imply that the functions (f ◦g)γ are canonical functions of their variables x(1,u),
(1, u) ∈ V1 and x(2,v), (2, v) ∈ B(b,−1)(γ)∪V2. Indeed, the above properties of the oper-
ators P(2,v) and Q(2,v) imply that P(1,u)(f ◦ g)γ = 0 if (1, u) ∈ V1, and P(2,v)(f ◦ g)γ = 0
if (2, v) ∈ B(b,−1)(γ) ∪ V2.

Let Z(γ) denote the set of edges of colour 1, W (γ) the set of edges of colour −1 in
the coloured diagram γ, and let |Z(γ)| and W (γ)| be their cardinality. Then (f ◦ g)γ is
a (canonical) function with k(γ) = k1 + k2 − (|W (γ)| + 2|Z(γ)|) variables, and formula
(4.2) implies the following representation of the U -statistic In,k̄(γ̄)

(
f ◦ g)γ̄

)
in the form

of a sum of degenerate U -statistics:

n−(k1+k2)/2k̄(γ̄)!In,k̄(γ̄)

(
(f ◦ g)γ̄

)

= n−(k1+k2)/2
∑

γ∈Γ(γ̄)

Jn(γ)n|Z(γ)|k(γ)!In,k(γ) ((f ◦ g)γ) (4.3)

with Jn(γ) = 1 if |Z(γ)| = 0, and

Jn(γ) =

|Z(γ)|∏
j=1

(n − (k1 + k2) + |W (γ)| + |Z(γ)| + j)

n|Z(γ)| if |Z(γ)| > 0.
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The coefficient Jn(γ)n|Z(γ)| appeared in formula (4.3), since if we apply the decompo-
sition (4.2) for all terms (f ◦ g)γ̄(ξj(1,u)

, ξj(2,v)
, (1, u) ∈ V1, (2, v) ∈ {1, . . . k2}) of the U -

statistic k̄(γ̄)!In,k(γ̄)

(
(f ◦ g)γ̄

)
, then each term (f ◦g)γ(ξj(1,u)

, ξj(2,v)
, (1, u) ∈ V1, (2, v) ∈

V2 ∪ V1) of the U -statistic In,k(γ) ((f ◦ g)γ) appears Jn(γ)n|Z(γ)| times. (This is so, be-
cause k̄(γ) = k1+k2−(|W (γ)|+2|Z(γ)|) variables are fixed in the term (f ◦g)γ from the
k(γ̄) = k1+k2−(|W (γ)|+|Z(γ)|) variables in the term (f ◦ g)γ̄ , and to get formula (4.3)
from formula (4.2) the indices of the remaining |Z(γ)| variables can be freely chosen
from the indices 1, . . . , n, with the only restriction that all indices must be different.)

Formula (3.6) follows from relations (4.1) and (4.3). (To see that we wrote the
right power of n in this formula observe that n−(k1+k2)/2n|Z(γ)| = n−k(γ)/2n−|W (γ)|/2.)

To prove inequality (3.7) in the case |W (γ)| = 0 let us estimate first the value of
the function (f ◦ g)2γ(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ V2) by means of the Schwarz
inequality. We get that

(f ◦ g)2γ(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ V2)

≤
∫

f2(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ B(b,1)(γ))
∏

(2,v)∈B(b,1)(γ)

µ( dx(2,v))

∫
g2(x(2,v), (2, v) ∈ V2 ∪ B(b,1)(γ), )

∏

(2,v)∈B(b,1)(γ)

µ( dx(2,v))

=
∏

(2,v)∈B(b,1)(γ)

P(2,v)f
2(x(1,u), x(2,v), (1, u) ∈ V1, (2, v) ∈ B(b,1)(γ))

∏

(2,v)∈B(b,1)(γ)

P(2,v)g
2(x(2,v), (2, v) ∈ V2 ∪ B(b,1)(γ))

(4.4)
with the operators P defined in formula (3.2).

Let us observe that the two functions at the right-hand side of (4.4) are functions
of different arguments. The first of them depends on the arguments x(1,u), (1, u) ∈ V1,
the second one on the arguments x(2,v), (2, v) ∈ V2. Beside this, as the operators P

appearing in their definition are contraction in L1-norm, these functions are bounded in
L1 norm by ‖f‖2

2 and ‖g‖2
2 respectively. Because of the above relations we get formula

(3.7) by integrating inequality (4.4) and applying Fubini’s theorem.

To prove inequality (3.8) let us introduce, similarly to formula (3.3), the operators

Q̃uj h(xu1 , . . . , xur ) = h(xu1 , . . . , xur ) +

∫
h(xu1 , . . . , xur )µ( dxuj ), 1 ≤ j ≤ r,

in the space of functions h(xu1 , . . . , xur ) with coordinates in the space (X,X ). (The
indices u1, . . . , ur are all different.) Observe that both the operators Q̃uj and the oper-
ators Puj defined in (3.2) are positive, i.e. these operators map a non-negative function

to a non-negative function. Beside this, Quj ≤ Q̃uj , i.e. Q̃uj − Quj is a non-negative
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operator, and the norms of the operators
Q̃uj

2 and Puj are bounded by 1 both in the
L1(µ), the L2(µ) and the supremum norm.

Let us define the function

(f̃ ◦ g)γ

(
x(1,j), x(2,j′), j ∈ {1, . . . , k1} \ Bu(γ), j′ ∈ {1, . . . , k2} \ B(b,1)

)

=
∏

(2,j′)∈B(b,1)(γ)

P(2,j′)

∏

(2,j′)∈B(b,−1)(γ)

Q̃(2,j′)

(f ◦ g)γ

(
x(j,1), x(j′,2), j ∈ {1, . . . , k1} \ Bu(γ), 1 ≤ j′ ≤ k2

)

with the notation of Section 3. We have defined the function (f̃ ◦ g)γ with the help

of (f ◦ g)γ similarly to the definition of (f ◦ g)γ in (3.5), only we have replaced the

operators Q(2,j′) by Q̃(2,j′) in it.

We may assume that ‖g‖2 ≤ ‖f‖2. We can write because of the properties of the
operators Puj and Q̃uj listed above and the condition sup |f(x1, . . . , xk)| ≤ 1 that

|(f ◦ g)γ | ≤ ( ˜|f | ◦ |g|)γ ≤ ( ˜1 ◦ |g|)γ , (4.5)

where ‘≤’ means that the function at the right-hand side is greater than or equal to
the function at the left-hand side in all points, and 1 denotes the function which equals
identically 1. Because of relation (4.5) to prove relation (3.8) it is enough to show that

‖( ˜1 ◦ |g|)γ‖2 =

∥∥∥∥∥∥

∏

(2,j)∈B(b,1)(γ)

P(2,j)

∏

(2,j)∈B(b,−1)(γ)

Q̃(2,j) |g(x(2,1), . . . , x(2,k2))|

∥∥∥∥∥∥
2

≤ 2|W (γ)|‖g‖2.

(4.6)

But this inequality trivially holds, since the norm of all operators P(2,j) in formula (4.6)

is bounded by 1, the norm of all operators Q̃(2,j) is bounded by 2 in the L2(µ) norm,
and |B(b,−1)| = |W (γ)|.
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5. The diagram formula for the product of several degenerate U-statistics.

The product of more than two degenerate U -statistics can also be expressed in the form
of a sum of degenerate U -statistics by means of a recursive application of Theorem A. We
shall present this result in Theorem B and prove it together with an estimate about the
L2-norm of the kernel functions of the degenerate U -statistics appearing in Theorem B.
This estimate will be given in Theorem C. Since the expected value of all degenerate
U -statistics of order k ≥ 1 equals zero, the representation of the product of U -statistics
in the form of a sum of degenerate U -statistics implies that the expected value of this
product equals the sum of the constant terms in this representation. In such a way
we get a formula for the expected value of a product of degenerate U -statistics which
together with Theorem C will be sufficient to prove Proposition A. But the formula we
get in this way is more complicated than the analogous diagram formula for products
of Wiener–Itô integrals. To overcome this difficulty we have to work out a good “book-
keeping method”.

Let us have a sequence of iid. random variables ξ1, ξ2, . . . taking values on a mea-
surable space (X,X ) with some distribution µ, and consider L functions fl(x1, . . . , xkl

)
on the measure spaces (Xkl ,X kl), 1 ≤ l ≤ L, canonical with respect to the mea-
sure µ. We want to represent the product of L ≥ 2 normalized degenerate U -statistics
n−kl/2kl!In,kl

(fkl
) in the form of a sum of degenerate U -statistics similarly to The-

orem A. For this goal I define a class of coloured diagrams Γ(k1, . . . , kL) together
with some canonical functions Fγ = Fγ(fk1 , . . . , fkL

) depending on the diagrams γ ∈
Γ(k1, . . . , kL) and the functions fl(x1, . . . , xkl

), 1 ≤ l ≤ L.

The coloured diagrams will be graphs with vertices (l, j) and (l, j, C), 1 ≤ l ≤ L,
1 ≤ j ≤ kl, and edges between some of these vertices which will get either colour 1
or colour −1. The set of vertices {(l, j), (l, j, C), 1 ≤ j ≤ kl} will be called the l-th
row of the diagrams. (The vertices (l, j, C) are introduced, because it turned out to be
useful to take a copy (l, j, C) of some vertices (l, j). The letter C was chosen to indicate
that it is a copy.) From all vertices there starts either zero or one edge, and edges
may connect only vertices in different rows. We shall call all vertices of the form (l, j)
permissible, and beside this some of the vertices (l, j, C) will also be called permissible.
Those vertices will be called permissible from which some edge may start.

We shall say that an edge connecting two vertices (l1, j1) with (l2, j2) or (a permis-
sible) vertex (l1, j1, C) with another vertex (l2, j2) such that l2 > l1 is of level l2, and
(l2, j) will be called the lower end-point of such an edge. (The coloured diagrams we
shall define contain only edges with lower end-points of the form (l, j).) We shall call
the restriction γ(l) of the diagram γ to level l that part of a diagram γ which contains
all of its vertices together with those edges (together with their colours) whose levels
are less than or equal to l, and tells which of the vertices (l′, j, C) are permissible for
1 ≤ l′ ≤ l. We shall define the diagrams γ ∈ Γ(k1, . . . , kL) inductively by defining
their restrictions γ(l) to level l for all l = 1, 2, . . . , L. Those diagrams γ will belong to
Γ(k1, . . . , kL) whose restrictions γ(l) can be defined through the following procedure for
all l = 1, 2, . . . , L.

The restriction γ(1) of a diagram γ to level 1 contains no edges, and no vertex of
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the form (1, j, C), 1 ≤ j ≤ k1, is permissible. If we have defined the restrictions γ(l− 1)
for some 2 ≤ l ≤ L, then those diagrams will be called restrictions γ(l) at level l which
can be obtained from a restriction γ(l−1) in the following way: Take the vertices (l, j),
1 ≤ j ≤ kl, from the l-th row. From each of these vertices there starts either zero or
one edge, and they get either colour 1 or colour −1. The other end-point of these edges
must be such a vertex (l′, j′) or a permissible vertex (l′, j′, C) with some 1 < l′ < l

which is not an end-point of a vertex in γ(l − 1). We define γ(l) first by adjusting the
coloured edges constructed in the above way to the (coloured) edges of γ(l − 1), and
then defining the set of permissible vertices in γ(l). It contains beside the permissible
vertices of γ(l − 1) and the vertices (l, j), 1 ≤ j ≤ kl, those vertices (l, j, C) for which
(l, j) is the lower end-point of an edge with colour −1 in γ(l). Γ(k1, . . . , kL) will consist
of all coloured diagrams γ = γ(L) obtained in such a way.

Given a coloured diagram γ ∈ Γ(k1, . . . , kL) we shall define recursively some (canon-
ical) functions Fl,γ with the help of the functions f1, . . . , fl for all 1 ≤ l ≤ L in the way
suggested by Theorem A. Then we put Fγ = FL,γ and give the desired representation
of the product of the degenerate U -statistics with the help of U -statistics with kernel
functions Fγ and constants Jn(l, γ), γ ∈ Γ(k1, . . . , kL), 1 ≤ l ≤ L.

Let us fix some coloured diagram γ ∈ Γ(k1, . . . , kL) and introduce the following
notations: Let B(b,−1)(l, γ) denote the set of lower end-points of the form (l, j) of edges
with colour −1 and B(b,1)(l, γ) the set of lower end-points of the form (l, j) with colour 1.
Let U(l, γ) denote the set of those permissible vertices (l′, j) and (l′, j, C) with l′ ≤ l

from which no edge starts in the restriction γ(l) of the diagram γ to level l, i.e. either
no edge starts from this vertex, or if some edge starts from it, then its other end-point
is a vertex (l′, j) with l′ > l. Beside this, given some integer 1 ≤ l1 < l let U(l, l1, γ)
denote the restriction of U(l, γ) to its first l1 rows, i.e. U(l, l1, γ) consists of those
vertices (l′, j) and (l′, j, C) which are contained in U(l, γ), and l′ ≤ l1. We shall define
the functions Fl(γ) with arguments of the form x(l′,j) and x(l′,j,C) with (l′, j) ∈ U(l, γ)
and (l′, j, C) ∈ U(l, γ). For this end put first

F1,γ(x(1,1), . . . , x(k1,1)) = f1(x(1,1), . . . , x(k1,1)). (5.1)

To define the function Fl,γ for l ≥ 2 first we introduce a function αl,γ(·) on the set of
vertices in U(l − 1, γ) in the following way. If a vertex (l′, j′) or (l′, j′, C) in U(γ, l − 1)
is such that it is connected to no vertex (l, j), 1 ≤ j ≤ kl, then αl,γ(l′, j′) = (l′, j′),
αl,γ(l′, j′, C) = (l′, j′, C) and if (l′, j′) is connected to a vertex (l, j), then αl,γ(l′, j′) =
(l, j), if (l′, j′, C) is connected with a vertex (l, j), then αl,γ(l′, j′, C) = (l, j). We define,
similarly to the formula (3.4) the functions

F̄l,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ), x(l,j), 1 ≤ j ≤ kl)

= Fl−1,γ(xαl,γ(l′,j′), xαl,γ(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l − 1, γ))

fl(x(l,1), . . . , x(l,kl)),

(5.2)

i.e. we take the function Fl−1,γ ◦ fl and replace the arguments of this function indexed
by such a vertex of γ which is connected by an edge with a vertex in the l-th row of γ

by the argument indexed with the lower end-point of this edge.
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Then we define with the help of the operators Puj and Quj introduced in (3.2) and
(3.3) the functions
¯̄F l,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ),

x(l,j), j ∈ {1, . . . , kl} \ B(l,1)(l, γ))

=
∏

(l,j)∈B(b,1)(l,γ)

P(l,j)

∏

(l,j)∈B(b,−1)(l,γ)

Q(l,j)

F̄l,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ), x(l,j), 1 ≤ j ≤ kl),
(5.3)

similarly to the formula (3.5), i.e. we apply for the function F̄l(γ) the operators P(l,j)

for those indices (l, j) which are the lower end-points of an edge with colour 1 and the
operators Q(l,j) for those indices (l, j) which are the lower end-points of an edge with
colour −1.

Finally we define the function Fl,γ simply by reindexing some arguments of the

function ¯̄F l,γ to get a function which is indexed by the vertices in U(l, γ). To this end
we define the function Al,γ(·) on the set of vertices {(l, j): (l, j) ∈ {(l, 1), . . . , (l, kl)} \
B(b,1)(l, γ) as Al,γ(l, j) = (l, j, C) if (l, j) ∈ B(b,−1)(l, γ), and Al,γ(l, j) = (l, j) if (l, j) ∈
{(l, 1), . . . , (l, kl)} \ (B(b,1)(l, γ) ∪ B(b,−1)(l, γ)). Then we put

Fl,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, γ))

= ¯̄F l,γ(x(l′,j′), x(l′,j′,C), (l′, j′) and (l′, j′, C) ∈ U(l, l − 1, γ),

xAl,γ(l,j), (l, j) ∈ {(l, 1), . . . , (l, kl)} \ B(b,1)(l, γ)).

(5.4)

Now we can formulate the following generalization of Theorem A.

Theorem B. Let us have a sequence of iid. random variables ξ1, ξ2, . . . with some
distribution µ on a measurable space (X,X ) together with L ≥ 2 bounded functions
fl(x1, . . . , xkl

) on the spaces (Xkl ,X kl), 1 ≤ l ≤ L, canonical with respect to the prob-
ability measure µ. Let us introduce the class of coloured diagrams Γ(k1, . . . , kL) defined
above together with the functions Fγ = FL,γ(f1, . . . , fL) defined in formulas (5.1)—
(5.4).

Put k(γ(l)) =
l∑

p=1
kp −

l∑
p=2

(2|B(b,1)(p, γ)| + |B(b,−1)(p, γ)|), where |B(b,1)(p, γ)| de-

notes the number of lower end-points in the p-th row of γ with colour 1 and |B(b,−1)(p, γ)|
is the number of lower end-points in the p-th row of γ with colour −1, 1 ≤ l ≤ L, and
define k(γ) = k(γ(L)). Then k(γ(l)) is the number of variables of the function Fl,γ ,
1 ≤ l ≤ L.

The functions Fγ are canonical with respect to the measure µ with k(γ) variables,
and the product of the degenerate U -statistics In,kl

(f), n ≥ max
1≤l≤L

kl, defined in (1.1)

satisfies the identity
L∏

l=1

kl!n
−kl/2In,kl

(fkl
) =

∑′(n, L )

γ∈Γ(k1,...,kL)

(
L∏

l=1

Jn(l, γ)

)
n−|W (γ)|/2 ·k(γ)!n−k(γ)/2In,k(γ)(Fγ),

(5.5)
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where |W (γ)| =
L∑

l=2

|B(b,−1)(l, γ)| is the number of edges with colour −1 in the coloured

diagram γ, and
∑′(n, L)

means that summation is taken for those γ ∈ Γ(k1, . . . , kL)
which satisfy the relation k(γ(l − 1)) + kl − (|B(b,1)(l, γ)| + |B(b,−1)(l, γ)|) ≤ n for all
2 ≤ l ≤ L. Beside this, the constants Jn(l, γ), 1 ≤ l ≤ L, in formula (5.5) are defined
by the relations Jn(1, γ) = 1, and

Jn(l, γ) =

|B(b,1)(l,γ)|∏
j=1

(n − (k(γ(l − 1)) + kl) + |B(b,−1)(l, γ)| + |B(b,1)(l, γ)| + j)

n|B(b,1)(l,γ)| , (5.6)

2 ≤ l ≤ L, if |B(b,1)(l, γ)| ≥ 1, and Jn(l, γ) = 1 if |B(b,1)(l, γ)| = 0, where |B(b,1)(l, γ)|
and |B(b,−1)(l, γ)| denote the number of those edges in γ with colour 1 and with colour
−1 respectively whose lower end-points are in the l-th row of γ.

Let Γ̄(k1, . . . , kL) denote the class of those coloured diagrams of Γ(k1, . . . , kL) for
which every permissible vertex is the end-point of some edge. A coloured diagram γ ∈
Γ(k1, . . . , kL) satisfies the relation γ ∈ Γ̄(k1, . . . , kL) if and only if k(γ) = 0. In this case
Fγ is constant, and In,k(γ)(Fγ) = Fγ . For all other coloured diagrams γ ∈ Γ(k1, . . . , kL)
k(γ) ≥ 0. The identity

E

(
L∏

l=1

kl!n
−kl/2In,kl

(fkl
)

)
=
∑′(n,L )

γ∈Γ̄(k1,...,kL)

(
L∏

l=1

Jn(l, γ)

)
n−|W (γ)|/2 · Fγ (5.7)

holds.

Theorem B can be deduced relatively simply from Theorem A by induction with
respect to the number L of the functions. Theorem A contains the results of Theorem B
in the case L = 2. A simple induction argument together with the formulas describing
the functions Fl,γ by means of the functions Fl−1,γ and fl and Theorem A imply that
all functions Fγ in Theorem B are canonical. Finally, an inductive procedure with
respect to the number L of the functions fl shows that relation (5.5) holds. Indeed,
by exploiting that formula (5.5) holds for the product of the first L − 1 degenerate
U -statistics, then multiplying this identity with the last U -statistic and applying for
each term at the right-hand side Theorem A we get that relation (5.5) also holds for
the product L degenerate U -statistics.

A simple inductive procedure with respect to l shows that for all 2 ≤ l ≤ L

the diagram γ(l) contains k(γ(l)) =
l∑

p=1
kl −

l∑
p=2

(2|B(b,1)(p, γ)| + |B(b,−1)(p, γ)|) per-

missible vertices in its first l rows which are not an end-point of an edge in γ(l). In
particular, k(γ) = 0 if and only if γ ∈ Γ̄(k1, . . . , kL) with the class of coloured dia-
grams Γ̄(k1, . . . , kL) introduced at the end of Theorem B. Since EIn,k(f) = 0 for all
degenerate U -statistics of order k ≥ 1, this property together with relation (5.5) imply
identity (5.7).
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In the proof of Proposition A we shall also need an estimate formulated in Theo-
rem C. It is a simple consequence of inequalities (3.7) and (3.8) in Theorem A.

Theorem C. Let us have L functions fl(x1, . . . , xkl
) on the spaces (Xkl ,X kl), 1 ≤ l ≤

L, which satisfy formulas (1.3) and (1.4) (if we replace the index k by index kl in these
formulas), but these functions need not be canonical. Let us take a coloured diagram
γ ∈ Γ(k1, . . . , kL) and consider the function Fγ = FL,γ(f1, . . . , fL) defined by formulas
(5.1)—(5.5). The L2-norm of the function Fγ (with respect to a power of the measure
µ to the space, where Fγ is defined) satisfies the inequality ‖Fγ‖2 ≤ 2|W (γ)|σ(L−U(γ)),
where |W (γ)| denotes the number of edges of colour −1, and U(γ) the number of rows
which contain the lower vertex of an edge of colour −1 in the coloured diagram γ.

Proof of Theorem C. We shall prove the inequality

‖Fl,γ‖2 ≤ 2|W (l,γ)|σ(l−U(l,γ)) for all 1 ≤ l ≤ L, (5.8)

where |W (l, γ)| denotes the number of edges with colour 1, and U(l, γ) is the number
of rows containing a lower point of an edge with colour −1 in the coloured diagram
γ(l). Formula (5.8) will be proved by means of induction with respect to l. It implies
Theorem C with the choice l = L.

Relation (5.8) clearly holds for l = 1. To prove this relation by induction with
respect to l for all 1 ≤ l ≤ L let us first observe that sup 2−|W (l,γ)||Fl,γ | ≤ 1 for all
1 ≤ l ≤ L. This relation can be simply checked by induction with respect to l.

If we know relation (5.8) for l − 1, then it follows for l from relation (3.7) if
|B(b,−1)(l, γ)| = 0, that is if there is no edge of colour −1 with lower end-point in the l-th
row. Indeed, in this case ‖Fl,γ(f1, . . . , fl)‖2 ≤ ‖Fl−1,γ‖2‖fl‖2 ≤ ‖Fl−1,γ(f1, . . . , fl−1)‖2 ·
σ, |W (l, γ)| = |W (l− 1, γ)|, and U(l, γ) = U(l− 1, γ). Hence relation (5.8) holds in this
case.

If |B(b,−1)(l, γ)| ≥ 1, then we can apply formula (3.8) for the expression ‖Fl,γ‖2 =

‖ ¯̄F l,γ‖2 = ‖(Fl−1,γ ◦ fl)γ̃(l)‖2, where γ̃(l) is that coloured diagram with two rows whose
first row consists of the indices of the variables of the function Fl−1,γ , its second row
consists of the vertices (l, j), 1 ≤ j ≤ kl, and γ̃(l) contains the edges of γ between
these vertices together with their colour. Then relation (3.8) implies that ‖Fl,γ‖2 ≤
2|B(b,−1)|‖Fl−1,γ‖2 ≤ 2(|W (l−1,γ)|+|B(b,−1)(l,γ)|)σ(l−1−U(l−1,γ)) if |B(b,−1)(l, γ)| ≥ 1. Be-
side this, |W (l − 1, γ)| + |B(b,−1)(l, γ)| = |W (l, γ)|, and l − 1 − U(l − 1, γ) = l − U(l, γ)
in this case. Hence relation (5.8) holds in this case, too.
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6. The proof of Proposition A.

Proof of Proposition A. We shall prove relation (2.1) by means of identity (5.7) and
Theorem C with the choice L = 2M and fl(x1, . . . , xkl

) = f(x1, . . . , xk) for all 1 ≤
l ≤ 2M . We shall partition the class of coloured diagrams γ ∈ Γ(k,M) = Γ̄(k, . . . , k︸ ︷︷ ︸

2M times

)

with the property that all permissible vertices are the end-points of some edge to classes
Γ(k,M, p), 1 ≤ p ≤ M , in the following way: γ ∈ Γ(k,M, p) for a coloured diagram
γ ∈ Γ(k,M) if and only if it has 2p permissible vertices of the form (l, j, C). (A coloured
diagram γ ∈ Γ(k,M) has even number of such vertices.) First we prove the following
estimate:

There exists some constant A = A(k) > 0 and threshold index M0 = M0(k)
such that for all M ≥ M0 and 0 ≤ p ≤ kM the cardinality |Γ(k,M, p)| of the

set Γ(k,M, p) can be bounded from above by A22p
(
2kM
2p

) (
2
e

)kM
(kM)kM+p.

We can bound the number of coloured diagrams in Γ(k,M, p) by calculating first
the number of choices of the 2p permissible vertices from the 2kM vertices of the form
(l, j, C) which we adjust to the 2kM permissible vertices (l, j) and then by calculating
the number of such graphs whose vertices are the above chosen permissible vertices,
and from all vertices there starts exactly one edge. (Here we allow to connect vertices
from the same row. Observe that by defining the set of permissible vertices (l, j, C)
in a coloured diagram γ we also determine the colouring of its edges.) Thus we get
that |Γ(k,M, p)| can be bounded from above by

(
2kM
2p

)
1 · 3 · 5 · · · (2kM + 2p − 1) =

(
2kM
2p

) (2kM+2p)!
2kM+p(kM+p)!

. (The appearance of the factor 1 · 3 · 5 · · · (2kM + 2p − 1) in this

estimate can be explained in a standard way. Let us list the 2kM + 2p vertices in some
order. The first vertex can be connected with 2kM + 2p − 1 vertices by an edge. Then
the first vertex from which no edge starts can be connected with 2kM + 2p− 3 vertices.
Continuing this procedure we get the above product for the number of possible system
of edges between the already fixed vertices.) We can write by the Stirling formula,

similarly to the estimation of the right-hand side of formula (2.2) that (2kM+2p)!
2kM+p(kM+p)!

≤
A
(

2
e

)kM+p
(kM + p)kM+p with some constant A >

√
2 if M ≥ M0 with some M0 =

M0(A). Since p ≤ kM we can write (kM + p)kM+p ≤ (kM)kM
(
1 + p

kM

)kM
(2kM)p ≤

(kM)kM+pep2p. The above inequalities imply that

|Γ(k,M, p)| ≤ A

(
2kM

2p

)(
2

e

)kM

(kM)kM+p22p if M ≥ M0, (6.1)

as we have claimed.

Observe that for γ ∈ Γ(k,M, p) the quantities introduced in the formulation of The-
orems B and C satisfy the relations |W (γ)| = 2p, |Fγ | = ‖Fγ‖2 and U(γ) ≤ |W (γ)| = 2p.

Hence by Theorem C we have n−|W (γ)|/2|Fγ | ≤ 2pn−pσ2M−U(γ) ≤ 2p
(
nσ2

)−p
σ2M ≤

ηp2p(kM)−pσ2M if kM ≤ ηnσ2 and σ2 ≤ 1.
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This estimate together with relation (5.7) and the fact that the constants Jn(l, γ)
defined in (5.6) are bounded by 1 imply that for kM ≤ ηnσ2

E
(
n−k/2k!In,k(fk)

)2M

≤
∑

γ∈Γ(k,M)

n−|W (γ)|/2 · |Fγ | ≤
kM∑

p=0

|Γ(k,M, p)|ηp2p(kM)−pσ2M .

Hence by formula (6.1)

E
(
n−k/2k!In,k(fk)

)2M

≤ A

(
2

e

)kM

(kM)kMσ2M
kM∑

p=0

(
2kM

2p

)(
2
√

2η
)2p

≤ A

(
2

e

)kM

(kM)kMσ2M
(

1 + 2
√

2η
)2kM

if kM ≤ ηnσ2. Thus we have proved Proposition A with C = 2
√

2.
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