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In the present paper it is shown that the central limit theorem holds for some 
non-linear functionals of stationary Gaussian fields if the correlation function of the 

underlying field tends fast enough to zero. The results are formulated in terms of 
the Hermite rank of the functional and of the rate of the correlation function. Then 

we show an example when the limit field is self-similar and Gaussian but not 
necessarily consisting of independent elements. 

I. INTRODUCTION 

Recently several papers have dealt with the asymtotical distribution of 
non-linear fimctionals of Gaussian fields (see, e.g., [ 1-3, 6, 71). It has been 
shown that if the correlation function of the underlying Gaussian field tends 
sufficiently slowly to zero, i.e., the dependence between distant terms is large, 
then a new type of limit theorem appears. In this paper we aim at giving 
some results in a different situation. Roughly speaking, we state that if the 
correlation function tends to zero faster than in the case investigated in the 
above papers then the central limit theorem holds again. 

In order to formulate our results we introduce some notations. Let Z” 
denote the integer lattice in the v-dimensional Euclidean space IR “. Let X,, 
n E Z”, be a v-dimensional stationary Gaussian field with zero mean and unit 
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variance. Put r(n) = EX,X, + m, n, m f 2”. Let H(x) be a real-valued 
function such that 

I 
H(x) exp(-x2/2) dx = 0, 

(1.1) 

5 
H*(x) exp(-x2/2) dx < co. 

Then H(x) can be expanded in the form 

H(x) = 2 CjHj(X), (1.2) 
j=l 

a3 
s cj”j! < 00, 
.j= I 

(1.2’) 

where Hj is the jth Hermite polynomial with leading coefficient 1. We say 
that H(x) has Hermite rank k if in the expansion (1.2) c, = .e. = ck-, = 0 
and ck # 0. (The setup (1.1) and (1.2) and the notion of Hermite rank was 
introduced in [5 I.) We define the sets 

B(n, N) c z: n E z: N= 1, 2,..., 

B(n, N) = (s = (s(l) ,..., s(“)) E Z”, n(‘)N < s(‘) < (nCt) + l)N, t = l,..., V) and 
the random fields 

z:, n E z: N = 1, 2,..., 
(1.3) 

Z; = Z;(H) = A; ’ 1 H(X,), 
j98Cn.N) 

where A, are appropriate norming constants. Now we formulate the 
following 

THEOREM 1. Suppose that the function H has Hermite rank k and the 
correlation function of the stationary Gaussian field X, satisfies the condition 

1 Ir(n)j” < 00. (1.4) 
nezv 

Put A, = Wj2. Then the limits 

lim E(Z~(H,))* = lim A,‘Z! ‘Y 
N-Cl2 N-CC 

y‘ r’(i - j) = a:f! 
i&,Nl jEB%i.Nl 

exist for all l> k, and the infinite sum 
co 
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The finite dimensional distributions of the fields Z:(H) defined in formula 
(1.3) tend, as N -+ co, to the finite dimensional distributions of the field aZ,*, 
where Z,*, n E Z” are independent standard normal random variables. 

Some earlier results on L,-functionals of stationary Gaussian sequence 
appeared in 141. In that paper Sun considered Gaussian sequences with 
square-integrable spectral density function (i.e., C?(n) < co) and suppose in 
addition that 

N N 

lim E(Zt(H,))* = irnm N-’ x 2 r(i- j) 
N+a, * i=l j=1 

exists and finite. Then he showed that a proposition similar to our theorem 
holds. Sun’s proof relies upon some calculations on the spectral density 
function while our approach seems to be more direct. 

Condition (1.4) can be slightly weakened. Theorem 1 remains valid with a 
possibly different normalization if the sum in (1.4) slowly tends to infinity. 
This fact is formulated in the following 

THEOREM 1’. Let the function H be the same as in Theorem 1. Assume 
that the correlation function of the Gaussian field X,, satisfies the conditions 

h‘ 
n&?&N) 

1 r(n)l” = L(N) (1.4’) 

and 

t’“, (L(N))-’ -1 r’(j) 
jeB(0. N) 

(1.4”) 

exists for all 12 k, where L(N) is a slowly varying function and 

@O, N) = (n = (n(l) ,..., n@)) E Z”, -N < no’ < N, j = l,..., v). 

Put A, = N”12L(N)“*. Then the limits 

lim E(Zf(H,))’ = uf I! = ,Ji”, (N”L(N))-‘I! 
N-CC 

1 1 r’(i-j) 
iPB(0.N) jEB(0.N) 

exist for all I> k, and the infinite sum 

The finite dimensional distributions of the fields Z:(H) (defined with the 
new norming constants AN) tend to those of the fields oZ,*, as N -+ co. 
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In [ I] the limit behaviour of the fields was investigated in the case when 
the correlation function of the underlying Gaussian field satisfies the relation 

ka < v, (1.4a) 

where L’(. ) is a slowly varying function on Z, and a(. ) is a continuous 
function on the unit sphere. It was shown that in this case a new type of limit 
theorem holds. On the other hand, Theorems 1 and 1’ imply that in the case 
ka > v the central limit theorem holds again. In the case ka = v it may 
happen that the norming constant A, must be chosen as A, = N”‘2L(N), 
L(N) + 03. Thus, e.g., if in the formula (1.4a) L’(N) E 1, a(x) = 1 then we 
have to choose A, = N”‘2(log N)“* in Theorem 1’. Of course there is a gap 
between the conditions (1.4) and (1.4a). In the case when the sequence X, 
has a spectral density function the condition (1.4) for k = 2 is equivalent 
with the square-integrability of the spectral density function which in turn 
does not imply (1.4a). 

Let us emphasize that it may occur that u = 0 in Theorem 1 or 1’. We 
show such an example. In this case the fields Zt tend to zero. Hence it is 
natural to look for a different normalization. 

EXAMPLE (see also [5, Remark, page 2981). Let v = 1, H(x) = x, X, be 
a stationary Gaussian sequence with spectral density g(x), --7c < x < rr, 
which is sufficiently smooth outside zero. Moreover, let g(x) - ]xla, 
1 > a > 0, in a neighbourhood of zero. Then some calculation shows that 

E(ZZ(H))2 = ;j; 

x 
‘,ysy g(x) dx 

= 
I + I =I, +z,. 
IXI<IIN l/N<l*l<<r 

Since (1 - cos Nx)/(l - cos x) < NZ hence I, < const . N-” and since 
(1 - cos Nx)/( 1 - cos x) < const /x I-’ hence I, Q const . N-“. Therefore 
0: = a2 = 0. We remark that in our example the correlation function of X, 
satisfies r(n) - cn -1--a. It is not difficult to make such examples where 
cr: = 0, k > 2. This can be done if the spectral measure of the field H&X,) is 
similar to the spectral measure of the previous example. On the other hand, 
the spectral measure of Hk(X,J is a multiple of the k-fold convolution of the 
spectral measure of the sequence X,. (The convolution is taken on the unit 
circle.) 

Theorems 1 and 1' can be generalized. The condition on stationarity can 
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be dropped, e.g., but in this case a uniform estimate is needed on the 
correlation function. Thus condition (1.4) can be substituted by 

c IEX,,,Xn+m,k < C 
flEZ” 

(1.4b) 

with some C > 0 for all m E Z”. 
One can also consider more general functionals of the Gaussian fields. Let 

us choose some function H(x, ,..., x5), H: R” + R and some lattice points 
d r ,..., d, E Z” such that EH(X,, ,..., Xds) = 0, EH2(XdI ,..., Xds) < 03. We 
define FH, m E Z”, as T”‘H(X,, ,..., X,s) = H(X,,+, ,..., Xd,+ ,). Then if the 
field X, satisfies the conditions of Theorem 1 then the multidimensional 
distributions of the fields 

Z;(H) = N-“i’ x TmH, n E Z’, N = 1, 2,.... 
meB(n,N) 

tend to those of the field aZ,*. The Hermite rank of the function H is defined 
as the biggest k such that H(X,,,..., X,:) is orthogonal to all polynomials of 
the random variables X,,, n E Z”, of order less than k. 

The above statement can be proved similarly to Theorem 2 with the help 
of some ideas from the last section of [ 11. We remark that in our theorems 
not only the behaviour of the underlying Gaussian field but also the Hermite 
rank of the function H plays an important role. The next example shows that 
these results do not follow from the customary central limit theorems for 
weakly dependent random variables. 

Given a Gaussian sequence X,, n E Z, and a real Borel-measurable 
function G(x) define the o-fields 

Sa,dG) = W(Xj), a <j -c 61, -oo&a<b<w. 

We can find two functions G*(x) and G,(x) with the following properties: 

(i) With G,(x)= x the u-fields S,.,(Gi), i = 1, 2, 3, are identical for all 
a and b. 

(ii) Gi has Hermite rank i. 

This has the following consequence: If the correlation function of the 
underlying Gaussian sequence X, is 

r(n) - nea, f<a<f, 

then the central limit theorem holds for the sequence G,(XJ, n E Z. On the 
other hand, a non-central limit theorem holds for the sequence G2(X,,), 
)2 E Z. Since these sequences generate the same a-fields our central limit 
theorem cannot follow from any mixing-type conditions. 

683/I3/3-4 
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For example, G&X) may be 

X, if ]xl>c, 

-4 if Ix]<c, 

where c is the only positive solution of the equality 

l/q- x2 exp(-x2/2) dx = b. 

The construction of G,(x) is also very simple but more tedious, therefore we 
omit the details. 

This paper consists of three sections. In Section 2 we prove Theorems 1 
and 1’. In Section 3 we discuss a model where the limit is a self-similar but 
not necessarily independent Gaussian field. The investigation of this model 
was motivated by [2]. 

II. PROOFS 

We shall prove only Theorem 1 in detail. We apply the following formula: 
if < and q are jointly Gaussian random variables, Et = Eq = 0, 
Et* = Ey* = 1, E& = r, then 

EfUQ H,(v) = W, 1) rkkL (2.1) 

where 6 denotes the Kronecker delta. (Later we shall apply a more general 
formula.) It follows from (2.1) that 

E(Z:(H))* = f c; E(Z;(H,))*, 
/=I 

~~Zwm2 < I! 2 Ir(n)l’ < I! c I r(n)l” nae(0.N) nG?” 

(2.2) 

(2.3) 

for l>kand 

lEZ~W,)* - EZi’W,)* I Q E c I WI’ + 
n: m&1, >K I r(n)r (2.4) 

nsz” 

for arbitrary K > 0 and E > 0 if N > N(E, K) and A4 > M(E, K). It follows 
from (1.4) and (2.4) that the limit CJ~ defined in (1.5) exists. Then (2.3) (1.4) 
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and (1.2’) imply that u* < co. Moreover, because of 
relations in (2.1), 

the orthogonality 

E jz; ( 1 c,H,(x)) 1 = ,& c:W:W,))* < E /=T (2.5) 

for all E > 0 if T > T(E). Because of relation (2.5) we can restrict ourselves to 
the special case when H is a polynomial, i.e., when the sum in (1.2) is finite. 
So we shall assume that H is a polynomial or order T. We remark that Sun 
[4] also shows that H(x) can be replaced by polynomials. 

Let us fix some lattice points n, ,..., nd E Z” and real numbers b ,,..., b,. 
We shall apply the method of moments, i.e., we shall show that the 

moments of the random variables EN = ,JJ’= i bjZzi tend to the moments of 
an appropriate normal random variable. More precisely, 

PI* 

, if p is even, 
(2.6) 

= 0, if p is odd. 

Theorem 1 follows from relation (2.6). 
To prove relation (2.6) we need a so-called diagram formula about the 

expectation of a product of Hermite polynomials of standard Gaussian 
random variables. It can be found, e.g., in Lemma 3.2 of [5], although with a 
different notation. 

We call an undirected graph G with U, + ..a + up vertices a diagram of 
order (u, ,..., up) if: 

(i) The set of vertices V of the graph G has the form 

v= (j Lj, 
j= I 

where 

Lj=((j,l): l<E<u,}, j = l,..., p 

(for uj = 0 define Lj = 0). We call Lj the jth level of the graph G. 

(ii) Each vertex is of degree 1. 

(iii) Edges may pass only between different levels, i.e., for 
((j, ,I, 1, (j, , I,)) E G we have j, f j, . 

Let r= r(u , ,..., up) denote the set of diagrams with properties (i)-(iii). 
Given a graph G E r let G(V) denote the set of the edges of G. For a 
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w E G(V) w  = ((j,, 1,), (j2, I,)), j, < j2, we define the functions d,(w) = j, 
and C&(W) = j,. Now we formulate the 

LEMMA (DIAGRAM FORMULA). Let (X, ,..., X,), p > 2, be a Gaussian 
vector, EXj = 0, EXT = 1, EXjX, = r(j, k), j, k = l,,.., p. Then for the 
Hermite polynomials H,,(x),..., H,B(x) we have 

E /fiHIJxi)I=~rrG~ 

where r= r(ll,..., I,) and ZG.= nwsGCV) r(d,(w), d,(w)). 

We may observe that formula (2.1) is a special case of the diagram 
formula: when p = 2, there are k! diagrams of order (k, k). In this context it 
is clear that in (j, 1) the index j corresponds to that of the variables and 1 to 
the order of the Hermite polynomials. 

We shall call a diagram regular if its levels can be paired in such a way 
that no edge passes between levels in different pairs. Now we turn to the 
proof of relation (2.6). We have 

(XJ = (gl fi bjCJ2 ,,&Ij.,, 

= ,,,jTy,Dj II, sN(jiT ‘A 

where 

4@) = (Cj, 1) = ((j, ,..., jp), (II ,..., I,)), 1 < ji < 4 

(2.7) 

1 < li < T, ji and li are integers; i = l,..., p} w3) 

and SNOT 0 =Ai’bjc, ILm.,N) H,(X,)- 
We shall prove formula (2.6) by means of the diagram formula and 

relation (2.7). The main idea of the proof is that in our case only the regular 
diagrams count, and the contribution of the terms I, is negligible for 
nonregular diagrams G. 

Let us fix some 0, 1) = ((j, ,,.., jJ, (I, ,..., 1,)} E YCp). We shall investigate 
the expression 

E fi S”(ji, li> 
I i=l I 

=E fi A,+,ic,i c 
I 

&wnli) 
i=l mjsm,,.N) I 

(2.9) 
mEM GEF wsG(V) 
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where zaj, I) = ng= 1 bjicli, r = r(Z, ,..., 1,) and ~4 = Wi, N) = {m = 

il 

ml ,..., m,): m, E B(nji, N), i = l,..., p}. For a fixed Cj, I) = ((j, Y-.7 j,), 
, ,..., l,)) E Pp) and G E T(I, ,..., E,) define 

We shall prove the following 

PROPOSITION. Zf G = G(l) = G(Z , ,..,, I,,) is not a regular diagram then, for 
all j = (j, ,..., jP>, 

lim TJj, I, N) = 0. 
N-CE 

First we prove relation (2.6) with the help of the Proposition. By relations 
(2.7), (2.9) and (2.10) we have 

Let r*(l I ,..., I,) denote the set of regular diagrams in Qf, ,..., 1,). If p is an 
odd number then r*(l I ,..., 1,) is empty. Hence the Proposition and relation 
(2.11) imply that 

if p is an odd number. (2.12) 

If p is an even number then write p = 2q. Let us fix a diagram 
GEZ-“(Z , ,..., I,) and define the pairs (i(l), i(2)), (i(3), i(4)) ,..., (i(p - l), 
i(p)), where (i(l),..., i(p)) is such a permutation of the set (1, 2,..., p} that 
edges go only between the levels i(2m - 1) and i(2m), m = I,..., q. Let the 
i(2m - 1)th and i(2m)th levels of G have cardinality t(m), m = l,..., q. We 
can write 

where B,(m) = B(nji,lm-,,T N), B,(m) = B(nji,lmj’ N>. Since 

lim Ai2 r T r’(zf - 0) = 6(n, m) 17: 
N+a, u&t.N, “.BLiim,N) 

the last relation implies that 

lim T&j, I, N) 
N+CC 

=U 
2 2 
f(1) - ..’ . uf(q) if ji(2m-I) =Ji(Zm), m = l,..., q, 

=o otherwise. (2.13) 
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C,@)= c Hj, 1) TcAi, 1, N), j=til,.....ip) 
where I = (1 , ,..., 1,). It follows from (2.13) that 

Because of relation (2.1 l), the Proposition and the definition of I(G), 

‘=x?(G), (2.14) 

where the summation in C’ goes over the regular diagrams with p levels. 
The number of regular diagrams which contain 2mj levels of cardinality kj, 
j = l,..., s, with some integer s such that CJ= 1 mj = q and with all kj being 
different, is 

(2m,)j2q);2m 
. *a* 

>, 0 (2mj - 1)(2mj - 3) - .a 1 . fi (k,!)“’ 
S-J 1 i= I 

= (2q - 1)(2q - 3) +.. 1 . m, ! p.!, m , (k, !)“’ .a. (k,!)“~. 
5. 

For such regular diagrams 

Hence relation (2.14) implies that 

P 

xc s 4 4! ii 
s=l In,+ .zm,=q g t , 

m, . -.a m,. 
JfJ (kj! ~Xi~:,)mi 

j=l,....s 

=(2q-1)(2q-3).***1* (~,b:)q($“l!c:o:)o. 

This relation, togather with (2.12), implies (2.6). 
Now we turn to the 
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Proof of the Proposition. Given a permutation rr of the set {l,..., p} and a 
diagram G E Z(l ,,..., 1,) we define the diagram rrG in the following way: The 
GW level of XG has cardinality lj, j = l,..., p, and 
w  = {(jl, k,), (j2, k2)} E G(V) if and only if X(W) = {(n(jl), k,), 
(n(j,), k,)} E zG(V). Given a diagram G E Z(l 1,..., lp) we define the integer- 
valued function k, on the set {I,..., p} in the following way: kG(j) is the 
cardinality of the edges w  E G(V) such that d,(w) = j. 

Observe that for G E I(/, ,..., Z,), j = ( j, ,..., j,,), I = (11 ,..., 1,), 

T&i, 1, N) = T,&(i), $0, N), (2.15) 

where rrQ> = (z(jr),..., rc(j,)) and z(I) = (n(r,),..., n(l,)). For all diagrams G 
there exists a permutation 7c such that G’ = nG has the following property: 
G’ E Z(Z; ,..., 1;) with some integers 1; ,..., 1; and 

1;<1;+.<1;. (*) 

Because of relation (2.15) it is enough to prove the Proposition only for such 
diagrams G E Z(l, ,..., I,) which have the property (*). We can write 

(2.16) 

In the inner product of the expression in the right-hand side of (2.16) there 
are kG(i) terms and the inequality 

weG(l’) 
dl(w)=i 

WEG(Y) 
dl(w)=i 

holds. Hence we get, first setting m2,..., mp fixed and summing up 
(2.16), that 

for m, in 

lpi n lr(mi - md2wJL 
micB(nj,,N) i=2 wcG(o) 

i=2,...,p d,(w)=i 

where C > 0 is chosen so that B(ni, N) cB(0, CN) for j= l,..., p. Then 
iterating the above procedure for m,,..., m,, and exploiting that 
m - u E B(O, 2CN) if m E B(nj,, N), s = l,..., p, and u E B(0, CN) we get 
that 

IT,(j,l,N)(<A,P fi T;‘ 
i= I mcZiK2CN) 

1 r(m)1 kc(i’. (2.17) 
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(For the definition of B we refer to Theorem l’.) Obviously, since Zi > k, we 
have 

5 

mciK2w 
I r(m)1 

k,(i) < const . N(I-g(i))v (2.18) 

if k&i) = 0 or kG(i) = Zi, where g(i) = k,(i)/li. On the other hand, we claim 
that 

T‘ 
m  diy,2CN, 

I r(m)1 
k,(i) = fl(~(l -g(i))? (2.18’) 

if 0 < k&i) < Zi. Indeed, because of (1.4) there is a finite set B = B(E) c Z” 
such that C,,,EZV-B 1 r(m)l'i < E. Hence by Holder’s inequality we get 

5‘ 
rnEig2CN) 

I @)I k,(i) < c(q + @) . (4cjq(l-~(i)ly 

Since E is arbitrary small, relation (2.18’) holds. Relations (2.18) and (2.18’) 
imply that 

and (2.19) holds with LY(.) if 0 < kG(i) ( Zi for some i. In a non-regular 
diagram at least one of the following properties hold: either 0 < kG(i) < Zi for 
some i or G contains an edge between levels of different cardinality. Now the 
Proposition follows from the inequality 

5 g(i) > P/Z 
i=l 

(2.20) 

where there is strict inequality if G contains an edge connnecting levels of 
different cardinality. 

Given an edge w  E G(V) we define the numbers pi(w) and p2(w) as the 
cardinalities of the d,(w)th and the d,(w)th levels, respectively. Because of 
property (*) we have pi(w) > p*(w) for all w  E G( I’). Hence 

because the term l/Zj appears exactly Zj times among the summands l/p,(w) 
and l/p,(w). Relation (2.20) is thus proved, for there are exactly Zj edges 
arriving at thejth level from levels of either lower or higher indices. 

The proof of Theorem 1’ is almost the same, therefore we remark only the 
most important changes. In relations (2.18) and (2.18’) we have to multiply 
the right-hand side by L(N)g”‘. Then we get a non-positive power of N/L(N) 
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in the right-hand side of (2.19). The proof of (2.18’) must be slightly 
changed. We have to split up the investigated sum as 

where E > 0 is sufficiently small. Both 1i and I, can be estimated by Holder’s 
inequality. In the estimation of I, we can exploit the fact that it contains 
only (2&N)” summands and in the estimation of I, we use the relation 

\‘ I +n>p = 4w)), 
mee(O.ZCN)-B(0.W 

where L(N) is a slowly varying function. The remaining modification in the 
proof of Theorem 1’ is the following: At the reduction of H(x) to a 
polynomial we have to make more careful estimations, and we have to 
observe that Zf(H,) and ZE(H,) remain almost uncorrelated for n # m, n, 
m E Z”. 

Finally, we remark that the following Theorem 1” can be proved similarly 
to Theorems 1 and 1’. (The only difference is that one has to supply the 
auxiliary sequence b with two indices.) 

THEOREM 1”. Under the condition (1.4) or (1.4’) the joint distribution of 
the fields Zz(H,), Zf(H,+ ,),... tends to those of the fields ok $8 Z,*(k), 
ok+, d-Z,* ,..., where Z,*“, Z*‘k+” ,..., n E Z’, are independent 
random fields consisting of independent ltandard normal variables. 

III. A DIFFERENT MODEL 

In this section we prove a limit theorem of a different type for non-linear 
functionals of stationary Gaussian sequences. In this example the limit will 
be Gaussian but the elements of the limit sequence are generally not 
independent. Since the proofs follow the ideas of the previous section 
together with some calculations from [2] we shall outline them very briefly. 

Let X,, n = ... - LO, l,..., be a stationary Gaussian sequence, 
EX,, = 0, EX: = 1 and denote r(n) = EX,X,. Let the real function H(x) 
satisfy (1.1) and suppose that H(x) has Hermite rank k. Set Y,, = H(X,,) and 
define 

U,,,=U,,,(H)= f a,Y,,+, 
n= -m 

(3.1) 
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for m = . . . -1, 0, l,.,., where a,, n = .. . -1, 0, l,..., is a real sequence 
satisfying the following conditions: For some --# < p < 4 

a, = a&3) = C(1) n-4-1 + rr(nP-‘) for n > 0, 

a”=a,(p)=C(2)Jn(-~-1 +u(lnl+‘) for n < 0. 
(3.2) 

Set b, = ;(a, + a-,) and assume that 

5 a, = 0, if O</?<+, (3.3) 
n=-UZ 

C( 1) = -C(2) and x lbnl < 003 if p = 0. 

Furthermore, suppose that 

Now we can formulate our 

(3.4) 

THEOREM 2. Define 

(n+lm-I 

z;=Z;(H)=A,’ -s u, 

&N 
(3.5) 

for n = me. -1, 0, l,..., N= 1, 2 ,..., where U, is defined in (3.1) and the 
norming constants are A, = N”2--4 with the j3 defined in formula (3.2). 

Under the assumptions (3.2), (3.3) and (3.4) the infinite sum in (3.1) is 
convergent in the L,-sense, hence the random variables Z:(H) exist. Then 
there also exist the limits 

lim E(Zt(H,))’ = I! uf 
N-m 

for all 1 > k, 

and 

a2 = 2 c; j! 0; < 00, 
j=k 

(3.6) 

and the sequence Z:(H) tends to a stationary Gaussian sequence oZ,*, where 
EZ,* = 0, EZ,*’ = 1, and Z,* is self-similar with self-similarity parameter 
;- P. 

We remark that the above properties determine the distribution of the limit 
sequence Z,*. 
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Proof of Theorem 2. It can be proved similarly to 121 that the random 
variables U, and Zz are meaningful. The next step of the proof is the 
investigation of the covariance structure of the sequences Zp. We can write 

Z;(H) = ND-“* f yj+nN(N) H(X-,), (3.7) 
jz-00 

where 

Hence 

N-j-i 
yj(N)= 2: ak. 

k= -j 

with 

r(N, % 1) = Ez:(ff,) Zp&) 

=N24-1 -$ 
jzt, ,=z, ?jcN) Tk+ndN) r'(k -j) 

= 2 fN(p + nN) r'(p) 
p=-03 

tN(p) = N*‘-’ 5 Yj(N> Yp -j(N)* 
j=-a, 

(3.8) 

It follows from the estimations of Section 3 of [2] that t,,(p) is bounded for 
both variables N and p, and there exists a function t*(x) on R such that 

lim t, ‘$ + t*(x) if EE + X. 
N+X ( ) N 

Hence relations (3.8) and (3.5) imply that 

R,(n) = (Jim, EZz(H,) Z:(H,) = t*(n) 5 r’(p) (3.9) -t p= -cm 

for l> k. It follows from (3.9) that the limits 

R(n) = brl EZ;(H) EZ;(H) 

exist, and we can reduce the proof of Theorem 2, just as in Theorem 1, to the 
case when H is a polynomial. It follows from the definition of the sequences 
Zz that for all positive integers N, n, k, 

1 k-l Ik+l)n-1 
EzkNzkN= ’ r 

0 n k’-24 L -? EZ!ZN 
J I' 

j=O I%! 
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Letting N tend to infinity we get that a stationary Gaussian sequence with 
mean zero and correlation function R(n) is self-similar with self-similarity 
parameter i -/I. Hence to prove Theorem 2 it is enough to show that the pth 
moment of the linear combinations C, = C bjZri tend to the pth moment of 

; b;;,;;; -;,;:;;’ 
variable with expectation zero and variance 

IS can be proved similarly to Theorem 1. We can write 

C E fi S”(ji, li>, 
(j,l)E2%) i=l 

where Y@) is defined in (2.8), and 

S”(j, I) = A,‘bjc,Z;,(H,). (3.11) 

For a fixed (j, 1) E Y@) we have, by the diagram formula and (3.7), 

where @ = (u = (u, ,..., up): ui E 2, i = 1, 2 ,..., p), r= r(Z, ,..., I,) and K(j, 1) 
is the same as in Section 2. Define for a fixed j = (jr ,..., jp) and I= (II ,..., I,) 
and G E r(l , ,..., I,) the quantity 

Let G be a regular diagram whose levels are paired as (i(l), i(2)),..., 
(i(p - l), i(p)), and the edges go only between the levels i(2m - 1) and 
i(2m), m = l,..., q, p = 2q. Let t(m) be the cardinality of the i(2m - 1)th and 
i(2m)th levels rn = l,..., q, p = 2q. Then 

By relations (3.10) and (3.12) formula (2.11) remains valid in this setting 
with the newly defined functions TG. Because of relation (3.13) a calculation 
similar to that in Section 2 shows that 
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lim 1 KO’,I) c TJ.i, 1, N) 
N+cc (j,I)EP(P) GEI-*(/,,...,t& 

P/2 

= (p - l)!! c bjb,zqzj - n,) 
I 

if p is even, 

=o if p is odd. 

Hence in order to complete the proof of Theorem 2 it is enough to show that 

lim T,fj, 1, N) = 0 
N-02 

if G is not a regular diagram. This relation can be proved just as the 
proposition, therefore we omit the proof. 
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