
Z. Wahrscheinlichkeitstheorie verw. Gebiete 
50, 1 3 7 -  148 (1979) 

Zeitschrift far 

Wahrschein l ichkei t s theor ie  
und verwandte Gebiete 

�9 by Springer-Verlag 1979 

A Local  Limit  Theorem for the Convolution 

of  Probability Measures  on a Compact  Connected Group 

P. Major I and S.B. Shlosman 2 

i Mathematical  Institute of the Hungar ian  Academy of Sciences, Budapest 1053, Hungary  
2 Institute for Problems of Information Transmission, Academy of Science of the U.S.S.R., Moscow 

Dedicated to Professor Leopold Schmetterer on his sixtieth Birthday 

Summary. Given a sequence of probability measures on a compact con- 
nected group we give an estimate on the speed of convergence to 1 of the 
density function of their n-fold convolution. Our method is an adaptation of 
the characteristic function technique to this case. 

1. Introduction 

The convolution of probabili ty measures #1, ..., #n on a compact group G tends 
under quite general conditions to the Haar  measure of this group. (See e.g. [1, 4, 
5].) In this paper, we investigate the speed of this convergence. 

Let us introduce some notation. Given a measure #, we decompose it as # 
= 2 + v, where )v is the singular and v is the absolute continuous part  of # with 
respect to the Haar  measure Z. Let 

dv 

We define the quantities 

M. (x) = Z (g ~ ~, P (g) => x) 

and 

oo 

g(#) = ~ [ M , ( x ) ]  ~ d~. 
0 

It was shown in [7] and in [8] that S(#) is an important  characteristic of the 
measure #. We introduce another quantity 

7Z 
4- 

s(#) = Sx ~ N.(~) ~ 
0 
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where 

N~(x) =inf  {u: Mu(u) <x} 

i.e. N, is the inverse function of M~. The main result of this paper is the 
following 

Theorem. Let #~, ..., #,, n> 2 be a finite sequence of probability measures on a 
compact connected group G. Let us assume that there are two indices i, j, 
1 < i <j < n, such that #~ and #j are absolutely continuous with respect to the Haar 
measure Z of G with density functions Pi and pj belonging to the class L2(G, Z). 
Then the measure #1 * #2 *... * #, has a density function q, satisfying the inequality 

sup 1%(g)- 1L < IIP~- 1 I[ L~<~, ~ llPj-- IlIL~<G, ~> l~I (1 -- ~ S ( ~ ) ) .  
g~G k= 1 

k~:i , j  

The following relation holds between the quantities S(#) and S(#) introduced in 
[7]. 

[M.(x) ]  3 d~ = S N.(~) d(~ 3) = S 3x2 N.(~) dx. 
0 0 0 

Since N~ is a monotone decreasing function, the last relation implies that 

2. Discussion of the Theorem 

Remark 1. Our theorem has the following 

Corollary. Given a sequence of density functions Pl, P2 . . . .  on a compact connected 
topological group G, we define their convolutions q, =Pl *... * P,. I f  sup Pn(g) < C, 
then ge~ 

s u p [ q n ( g ) - l ] < ( C l - 1 ) ( C 2 - 1 ) e x  p - C# 2 
geG "2 

for every n > 2. In particular if ~ C~-2= oo then q, tends uniformly to 1. ( C is a 
j=l 

universal constant, it can be chosen e.g. as C = 1/200.) 

Proof of the Corollary. As N~(u)>x if and only if Mu(x)Nu the set 
{u, ue[0, 1], N,(u)>x} has Lebesgue measure M~(x). Thus we have 

N,~ (x) dx = ~ Pk(g) dz(g) = 1 

and 

N,~ (x) <= Ck, 0_<x_<l, 
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where Pk is the measure with the density function Pk. Hence 
1 

1 c-~ 1 
lx2N.~(x) dx>- ~ Ck x 2 d x -  2, 
o - o 3Ck 

and 

(4)  3 1 
s(#~) > 3 c ~  

As []Pk- 1 ][L~(G, z) < C k -  1, the theorem together with the estimate on S(#k) imply 
the corollary. At the end of this paper in Remark 4 we will investigate whether 
the result of the theorem and its corollary are sharp. We will show that if G is 
commutative, or more generally, it has a one-dimensional representation and 
the functions M k, Mk(1 ) < i ,  are fixed then the following estimates from below 
hold true: There exists a sequence of measures #1, #2,..- in such a way that the 
absolute continuous part of #k has a density function Pk with distribution M k i.e. 
z(g~G, pk(g)>=x)=Mk(x) and the density function q~ of the measure #(~) 
=#~ , . . . ,  #~ satisfies the inequality 

sup Iq,(g)-  11 > 1[ max(1 - 11 S(#~), 0) (2.2) 
g~G k= 1 

(if the density qn exists at all). If ZS(pk)< oc then the sequence #(n) does not tend 
to the Haar measure even in the weak-star topology. In particular in the 
exponent in formula (2.1) only the constant factor can be improved, and if the Cj 
are given in the corollary in such a way that S C i 2 <  0% then qn may not tend 
uniformly to 1. 

Remark 2. Let p be a density function on the group G. Let p , = p , . . .  , p  denote 
the n-fold convolution of this function. Our theorem implies that if 

peL2(G,z), 

then 

sup ]p,(g)-  11NKq n 

with some K > 0, 0 < q < 1 for every n > 2. The same results holds for sufficiently 
large n if we assume only that p~LI+~(G,z) with some e>0.  Indeed, if 
q l EL~ (G, X), q2 ~L~ (G, X), c~, fl > 1 then q l * q2 ~L~fl (G, X), and this statement implies 
that pk~L2(G,z) for sufficiently large k. The last statement follows from the 
following estimates" 

1 

ql * q2(g)=~ q~ (h) q2(h -1 g) dz(h) N [[, q~ (h) q2(h - ~ g),G dz(h)] g 

<-- [~ q2( h-  ~ g)~ dz(h)] ~(1-~) [I q~ (h) ~ q2( h-~ g)~ dz(h)] ~2~ 

by H61der's inequality. 
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Therefore 

[-ql * q2(g)] ~ d)~(h)< C ~ ql(h) ~ q2(h -1 g)e dx(h) dz(g) 

= C ~ q l (h) ~ d 7~ (h) ~ q2 (h) ~ dz (h) 

with C-=[S q2(h) p dz(h)] (~ 1) 
On the other hand, there exists a density function p such that p, does not 

tend uniformly to 1. The following example shows this: 
Let G be the interval [ - � 89  �89 with addition modulo 1. We define 

fro(g) = {20 m4 ifotherwise [g] <2-(m4+m+ 1) 

Set p(g)= ~ fro(g). The functions p. do not tend umformly to 1 since the 

inequality p . (g)>2 ~"2 if Igl<2 -n4-2" holds for every large n. (Actually, this 
inequality holds even for the n-fold convolution of the function f..) 

The results in [7] and [8] imply that the measures #,, # .(A)= ~ p.(g)dz(g ) 
A 

tend to the Haar measure in the variational metric. Actually the speed of 
convergence is exponential. But, as the last example shows, p.(g) does not 
necessarily tend uniformly to 1. 

The argument of Remark 2 shows that the condition about the existence of 
two square integrable density functions can be substituted by some other 
condition. On the other hand if we have no moment type conditions on the 
density functions then the statement of the theorem may cease holding. 

Remark 3. If the quantity S(#) is large then the absolute continuous part of the 
measure # cannot be concentrated on a small subset of G. Thus the intuitive 
meaning of our theorem is the following: If the measures #k are not con- 
centrated on very small subsets of G then their convolutions tend to the Haar 
measure of G. The condition about the existence of two square integrable 
density functions was imposed in order to guarantee a local limit theorem, i,e. a 
limit theorem for the density functions of the convolutions. If we drop this 
condition we can still state the following result. If a .sequence of probability 
measures #1, #2 . . . .  , #n-.. is such that Y,S(#k)= oo then the sequence of measures 
#(")=#1"-..  * #, tends to the Haar  measure in the variational metric. This result 
can simply be deduced from our theorem, and actually in [8] it was deduced 
from a weaker statement. One can also give an estimate on the distance of the 
measures #(") and X in the variational metric. We show this is an example. 

Let # be a probability measure on G, S(#)>0 and let #(") be its n-fold 
convolution. Then we can choose two appropriate probability measures #1 and 
#2 in such a way that #=c~#1 +(1 - ~ ) # 2  with some 0<c~<1, S(#1)>0, S(#2)>0, 

is absolute continuous with respect to the Haar  measure X and aff~eL2(G, Z)- #1 
We have 

aZ 

#(n) = Z c~ k(i~ ..... i~)(1 -- ct) n-k(q ..... L,,) #q , . . . ,  #~,~ 
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where i~:1 or 2 , j=1 ,2 ,  ..., n and k(il, i2, ..., i,) is the number of 1 - s  among 
the indices i 1, i2, . . . , i  n .  If k(il, i 2, . . . , i , ) > 2  then because of the theorem 
#i, * #<~ *... * #i, has a density function which tends to 1 exponentially fast. The 
sum of the coefficients of those term for which k(il, i 2 . . . .  , in)<2 is exponentially 
small. Therefore we can conclude that the measures #(,3 tend to the Haar 
measure Z in the variational metric expontially fast. As the condition S(/~) >0  is 
equivalent to saying that # has an absolute continuous part actually we obtained 
a strenghtened form of a result of Bhattacharya (theorem [3] in 1). The other 
results of [1, 5] and [6] concerning compact connected groups can also be 
deduced from our result. In case of a non-connected group the conditions of our 
theorem are not sufficient to imply convergence to the Haar measure of this 
group. In this case some additional conditions must be imposed in order to 
exclude the possibility that the measures are concentrated on a closed proper 
subgroup. 

Let us finally remark that the paper [2] had a great impact on this work. In 
that paper a special case of the corollary of this work would have been needed. 
The result needed in [2] was reduced to a much weaker statement about the 
convolution of measures on the unit circle, but it did not follow from previously 
known results about compact groups. Finally it was deduced from a local 
central limit theorem on the real line. Later the authors of the present paper 
found a simple proof for the corollary of this paper in the case when the group 
G is the unit circle. The present work, just as papers [7] and [8], was made in an 
attempt to understand the more general law behind this result. Paper [7] 
contains no proof. In paper [8] the case of a general compact connected group 
is reduced to the case of the unit circle. It is done by means of some structure 
theorems about Lie groups. In the present work we applied Fourier analysis in 
the general situation. This method enabled us to generalize the results and to 
simplify the proof. 

3. Proof of the Theorem 

First we recall some facts from the harmonic analysis on compact groups (see 
[3]). Given a (locally) compact group G and a complex Hilbert space H a 
mapping ~r: G ~L(H),  where L(H) is the group of unitary transformations on H, 
is called a representation of G in H if it has the properties (I) o-(glg2) 
=a(gt )  o-(g2) for all ga, g2 ~G and (II) for all x e H  the mapping x-*cr(g)x is 
continuous in g~G. The representation a is called irreducible if there is no 
proper closed subspace of H invariant under all o-(g), geG. Every representation 
of a compact group G is the direct product of some irreducible representations, 
and every irreducible representation is finite dimensional. If G is commutative, 
then every irreducible representation is one-dimensional. Two representations al  
and cr 2 are called unitarily equivalent if there exists a unitary transformation U 
such that oh(g)= Uo-2(g ) U* for every geG. 

Let 27={a} denote the set of irreducible unitarily non-equivalent group 
representations of the group G. If # is a finite measure on G, its Fourier 
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transform/~ is the operator valued function defined by the equation 

a(g) a x. 
O 

The following relation holds true: 

(#1 * #2)(a)=/~a (a) fiz(a). (3.1) 

Let d(a) denote the dimension of the representation a, and let e~ . . . .  e~(o) be an 
orthonormal basis in the space of the representation. By the Peter-Weyl theorem 
the set of functions d(a)�89 a(g)e~), 1 < i,j < d(a), aeS  is a complete orthonor- 
real system in the space LZ(G, Z)- Thus for every f~l~(G, Z) 

J" If(g)t 2 d z ( g ) = Z  d(a) y'  1@7, f(a) ey)[ 2 
G o" 1 <i, j<=d(~) 

d(,z) a(~) 

= ~  d(a) ~, L[f(a) e~][ a = ~  d(a) ~ ]]f*(a) e~[] 2, (3.2) 
a j = l  ~ j = l  

where f is the Fourier transform of the measure f . ) (  and f*(a)  denotes the 
adjoint off(a) .  Let us define the norm of the measure # as 

I[#H= sup [I/~(a)][ 
~eE {Id} 

where IL~(G)I] is the usual norm of the linear transformation fi(a) in the d(a) 
dimensional complex Euclidean space. 

Let peL2(G, Z) be a density function, and/~ a probability measure on G. We 
consider the density functions qa and q2 of the measures # * p- )( and p. Z * #. 

As p �9 p. Z - Z  =kt* ( p -  1). Z and p. Z */~-Z = ( P -  1). Z * # relations (3.1) and 
(3.2) imply that 

][ql- 1 II L~(G, ~)< IhP - 111/~(a, z)' IL#H- (3.3) 

With the help of relation (3.3) we prove the following basic lemma. We preserve 
the notation of the theorem. 

Lemma 1. Let G be a (not necessarily connected) compact group, Let the 
sequence I~ ... .  , #, of measures satisfy the conditions of the theorem. Then we have 

sup [q,(g)-ll-<_ I[p,--IlIL2(G,z)" Il pj - l l[ c= (G, z) H ]l/*k[I. 
g~G k = 1 

k * i , j  

Proof Let us define 

d v  i 
V l ~ - # i * . . . * ] l i ,  v 2 : P I + 1  * " ' * # n ,  qi=dz, 

Relation (3.3) implies that 

i - 1  

Ilqx- 1 IIL2(~,z)-<--I[Pi- lllc2(~,z) [ I  II/~kll 
k = i  

i=1,2 .  
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and 

I[q2 - 1 IlL 2, (~,x)< ][pj -- 1 IIL2(G, z) I~  II~ll. 
k ~ i +  1 

k q - j  

Applying the Cauchy-Schwarz inequality we obtain that 

IG(go)-  11 = jEq, - 1] �9 [q2 - 1] (go)l 

=J~ [q~(g)- 1] [qz(g -1 g o ) -  1] dz(g)l 

_-< I[qa - 1 II L~<G, ~) [INN-- 1 IJ L~<G, ~ 

for every gonG. These inequalities imply the lemma. 
In order to complete the proof of the theorem we have to estimate IPakll. 
Let us now consider an n-dimensional unitary irreducible representation 

n: G--* U(n) of the compact connected group G. Let S 2 n -  1 c(Fn denote the unit 
sphere in the space of the representation, and let N2,-~ be the Borel o--algebra 
on S 2"- 1. Let z be a (G, n)-invariant probability measure on S 2"- ~ i.e. let z(E) 
=z(n(g)E) for every E e ~  2"- 1 and geG, 

We identify ~2" with the 2n dimensional real Euclidean space R 2" by defining 
the scalar product in the new space as the real part of the scalar product in C". 
We identify also the unit sphere S 2"- 1 c R 2 ,  with S 2~ ~ ~ "  and the o--algebras 
on these spheres. We introduce the metric p(x, y)=  arccos (x, y),  x, yES 2"- 1. Let 
us finally fix an x~S e"- ~ and define the set 

~ ( r )  = {y, y e s  2"- 1, p(x, y) < r}. 

We need the following estimate on z (~(r ) ) .  

Lemma 2. The inequality 

z ( ~ ( r ) )  < [27r] -1 

holds true, where [ ] denotes integer part. 

Proof Let us consider the set 

O(x) = {~(g) x:  geG}  

It is enough to show that there exist m= points .Xl, . . . ,  X m such that x 1 =x,  

xj~O(x) and g(xi, x j )>2r  if i+j. Indeed, these properties imply that 
~ x i ( r ) ~ x j ( r )  =0 if i+j, and r (~x , ( r ) )=r(~j (r ) )  because of the (G, n)-invariance 
of z. 

Thus 

( ~ (  r < -  "C x r 72 x i  _~_ 
l m 

as we claimed. 
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Because of the orthogonality of the functions (e, Id e ) =  1 and (e~, he j) i,j 
= 1,. . . ,  n in the space LZ(G, Z) we have 

j" n(g) xdz(g) =0. 
G 

Thus the set O(x) cannot be contained in any half-sphere of S 2"- 1. On the other 
hand O(x) is a connected set, being the image of a continuous mapping from a 
connected topological space. Now we begin the construction of the sequence 
x 1 . . . .  , x m with the required properties. Let x 1 =x.  If xl  . . . . .  xj are already given 
we look for a point xj+ ~O(x )  such that p(xj+ 1, {xl . . . .  , xj})=2r.  It is sufficient 
to show that there exists such a point xj+~, i f j < m .  It is not difficult to see by 
induction that i f j  < m, there exists a segment containing x l, ..., xj with diameter 
less than or equal to (2) ' -1)r .  As O(x) is contained in no half-sphere, there exists 
a point y~O(x) such that p(y, {x~ . . . .  , x j})> 2r. Because of the connectedness of 
O(x) there exists also an xj+lsO(x  ) such that p(xj+ 1, {x 1 . . . .  ,x j})=2r .  The 
lemma is proven. 

We will use the following somewhat weaker statement: 

7"C 
z ( ~ ( r ) ) < r  if r < ~ .  (3.4) 

Now we prove the following 

Lemma 3. Let # be a probability measure on G, and 7c a non-trivial irreducible 
unitary representation of G. Then the inequality 

IIP(~)II < 1 - ~ S ( # )  

holds true. 

Lemmas 1 and 3 together imply the theorem. 

Proof of Lemma 3. Given two points x, y e s  z"- 1 we give an estimate from below 
on 1 - ( x ,  fi(n)y). Let # = 2 + v ,  where 2 is the singular and v is the absolute 
continuous part of #. We have 

1 - ( x ,  ~(~) y) =~D - (x ,  ~(g) y)] d#(g) 
~z 

> ~ [1 - (x, 7c(g) y ) ]  dr(g) = ~ [1 - cos u] dO(u) (3.5) 
G 0 

where 

0(A)=v(g:  g6G, p(x, ~z(g)y)6A), for A=[0 ,  ~r]. 

The last identity can be shown on applying the transformation 

T: ~ --, [0, ~3, T(g) = p (x, ~(g) y). 

Let us define the measure ~ on the interval [0, ~] by the formula 
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Nu(x)dx if a < -  

~(F0, a))= 

I v(G) if a_> ~ 
- 4  

We have 

@([0, n]) = ~([0, n]) = v(G). 

We are going to show that 

O([0, a ) )<~([0 ,  a)) for all 0_<a<n.  

First we show that if CoG is a measurable set, and z ( C ) < a  then 

(3.6) 

(3.7) 

~(C)<__iN~(x ) dx. 
0 

Let us define the functions 

dv 
M~,c(X)=Z (geC, ~ (g)> x) 

and 

N., c(X) =inf {u: M,,, c(U) <x}. 

Then we have 

M~,,c(x)<M.(x), N.,c(x)<N.(x) 

and 

Nu, c(a) = O. 

Hence 

0 0 

Now in order to prove formula (3.7) it is enough to show that for all sets 

7C 
C(a)={geG, p(x,n(g)y)<a}, a<-- 

- 4  
we have z(C(a))<a. 

But defining the measure z on the unit sphere by 

z(B)=z(g:  n(g)yeB) for B ~  2~-~ 

it is not difficult to see that r is a (G, n) invariant measure. Hence, applying relation 
(3.4), we obtain that 

z(C(a))=z(~x(a))<a for a < - .  
- 4  
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Since 1 - cos u is a monotone increasing function on the interval [0, ~z], relations (3.6) 
and (3.7) imply the inequality 

i E1 - cos u] d 0 (u) ~ i E1 - cos u] d ~(u). 
0 0 

This fact can easily be seen, e.g. on integrating by parts. Therefore relation (3.5) yields 
the inequality 

rc 4 

1 -<x, ~(~)y)>=S E1 - c o s  u] d~(u)~ E1 - cos ~3 x.(~) du 
0 0 

4 >--~}-S u~x.(u) d~. 
0 

In other words 

(x, ~(~)y) <= 1 - ~ S ( u )  

for every x, y~S 2n- 1, therefore the lemma is proven. 

Remark 4. The estimate in Lemma 3, and hence also in the theorem can be improved. If 
G is a commutative compact connected group we can give a sharp estimate on iq/~ (~)H- 
In this case every irreducible non-trivial representation is one-dimensional, and if~z is 
such a representation, the only (G, rc)-invariant probability measure m on S 1 is the 
uniform distribution on the unit circle. 

Indeed, every rotation ~z(g), geG leaves the measure m invariant. The set A 
= {re(g): g e G} is a connected subset of the unit circle, containing at least two points. 
Thus A contains an arc. The only invariant measure with respect to these rotations is 
the uniform distribution. 

This means that in the commutative case we can write 

Y 
~(~Ar)) = - ,  O_<r_<~ 

7"C 

in Lemma 2. 
Thus we obtain the estimate 

I1~l[ ~ 1 - S( /~ )  

instead of Lemma 3, where 

1 

S(/0 =~ E 1 - c o s  rcu] N•(u) du. 
0 

This implies that the estimate in the theorem can be improved to 

sup Iq . (g ) -  11 < ILPi- 1 II L~(a, x)Ikpj- 1 II z 2 (G, Z) ~I (1 --g(~'~k))' 
geG k= 1 

k * i , j  

(3.8) 
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On the other hand ira representation 7~ of the group G and the distributions M k of the 
functions Pk are fixed, where Pk is the density function of the absolute continuous part 
of the measure Pk appearing in the theorem, then fixing an arbitrary x eS the measures 
#k can be chosen so that 

~k0Z) X = (1 --S(Pk) ) X. (3.9) 

This implies that #k can be chosen in such a way that 

/~k (~c) = (1 - S(#k))" Id. (3.10) 

A measure #k satisfying (3.9) can be obtained by concentrating its singular part 2 k on 
the unit element of G and defining the density Pk of its absolute continuous part in such 
a way that the distribution function of Pk is M k and pk(gl)>pk(g2) if 
(X, 7c(gOx)>(X, 7C(g2)X). The density function gn can be written as 

qn (g) = 1 + ~ a n (or) ~ (g), 
ff 

where 

an(~)---- ]:I /~,,(~), 
k - - 1  

and o- - s  denote the non-trivial irreducible representations of the group G. 
Because of the orthogonality of the ~r- s we may write 

S gn(g)- 11 a d z ( g ) = ~  lan(~ 2 ~ Jan(Ir)[ 2 = h [1 - -  S ( # k ) ]  2. 
r k = l  

Therefore 

sup IG(g) - 11 > 1~ [1 --:~(#k)]" (3.11) 
g~G k -  1 

It is not difficult to see that 

2S(g) < S(#) G 11 S(#). (3.12) 

This estimate together with (3.11) imply that the relation (2.2) holds for an appropriate 
construction in case of commutative groups. The same argument works ifG has a one- 
dimensional representation ~. A sequence of measures #(") on G does not tend to the 
Haar measure of G in the weak-star topology if there exists a non-trivial (one- 
dimensional) representation 7~ such that lim/~(n)(~) =0  does not hold. Under the 

n ~ o o  

conditions mentioned at the end of Corollary 1 one can choose a sequence of 
measures #k and a one-dimensional representation n in such a way that they satisfy 
(3.10). This relation implies that 

P(")(~) = h ( 1 -  S(#k))Id. 
k = l  
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Since we assumed that Z S (gk) < oo and M k (1) < 1 for every k (the latter relation implies 
that 1 - S (#k) :# 0) relation (3.12) gives that/~(n) (rc)-~0, consequently the sequence p(") 
does not tend to the Haar measure in the weak-star topology. 

In case of a commutative group, formula (3.8) improves the result of the theorem. 
We have also proved, that the essential part in the inequality (3.8), l~(1 - S(Pk)) cannot 
be substituted by a smaller quantity. The question whether formula (3.8) holds for an 
arbitrary compact connected group, remains an open problem. 
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