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cussion incomplete, and in my opinion to give a complete proof first a more
profound foundation of the theory of vector valued Gaussian stationary
random fields has to be worked out. This was done in my paper [4] which
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Péter Major
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1. Formulation of the results

Let us consider a d-dimensional vector valued Gaussian stationary random field
X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν , where Z
ν denotes the lattice points with

integer coordinates in the ν-dimensional Euclidean space R
ν , and a function

H(x1, . . . , xd) of d variables. We define with their help the random variables
Y (p) = H(X1(p), . . . , Xd(p)) for all p ∈ Z

ν . Let us introduce for all N = 1, 2, . . .
the normalized sum

SN = A−1
N

∑

p∈BN

Y (p)

with an appropriate norming constant AN > 0, where

BN = {p = (p1, . . . , pν) : 0 ≤ pk < N for all 1 ≤ k ≤ ν}. (1)

We prove a non-Gaussian limit theorem for these normalized sums SN with
an appropriate norming constant AN if this vector valued Gaussian stationary

∗

1

http://www.i-journals.org/ps
mailto:major@renyi.hu
http://www.renyi.hu/~major
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random fieldX(p), p ∈ Z
ν , and functionH(x1, . . . , xd) satisfy certain conditions.

In [2] we proved such limit theorems for non-linear functionals of scalar valued
stationary Gaussian random fields, and now we are looking for their natural
multivariate version.

A. M. Arcones formulated such a result in Theorem 6 of paper [1], but I found
his discussion unsatisfactory. He applied several notions and results which were
not worked out. More precisely, there were analogous definitions and results
in scalar valued models, but in the vector valued case their elaboration was
missing. My goal in this paper was to give a precise formulation and proof of
Arcones’ result.

The first step of this program was to work out the theory of vector valued
Gaussian stationary random fields, to present the most important notions and
results. This was done in my work [4]. Here I show how one can get the desired
limit theorems for non-linear functionals of vector valued Gaussian stationary
random fields with its help. The work [4] enabled me to adapt the proof of [2]
in the study of the multivariate version of the result in that paper.

Remark: It was professor Herold Dehling who asked me to clarify the proof
of Theorem 6 in Arcones’ paper [1]. The goal of this work together with the
preliminary paper [4] was to answer Dehling’s question. It turned out that to
settle this problem first the theory of vector valued stationary Gaussian random
fields has to be worked out. This theory is similar to the theory of the scalar
valued Gaussian random fields, but there are also some essential differences
between them. Hence the theory of vector valued stationary Gaussian random
fields cannot be considered as a simple generalization of the theory in the scalar
valued case. I am grateful to Professor Dehling for calling my attention to this
problem.

I start the discussion with a short overview of the results in [4] we need in
our investigation.

We are working with d-dimensional vector valued Gaussian stationary ran-
dom fields X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν , where Z
ν denotes the lattice

points with integer coordinates in the ν-dimensional Euclidean space R
ν with

expectation EXj(0) = 0 for all 1 ≤ j ≤ d. The distribution of such random
fields is determined by the covariance function rj,j′(p) = EXj(0)Xj′(p) =
EXj(m)Xj′(m + p), 1 ≤ j, j′ ≤ d, m, p ∈ Z

ν . Our first result in [4] was
the representation of the functions rj,j′(p) as the Fourier transform rj,j′(p) =
∫

ei(p,x)Gj,j′( dx), of the coordinates of a positive semidefinite matrix valued
measure G = (Gj,j′), 1 ≤ j, j′ ≤ d, on the torus [−π, π)ν . (For a more detailed
discussion of this result see Section 2 in [4].) Then we defined in Section 3 a
vector valued random spectral measure ZG = (ZG,1, . . . , ZG,d) corresponding
to a matrix valued spectral measure G together with a random integral with
respect to it in such a way that the formula Xj(p) =

∫

ei(p,x)ZG,j( dx), p ∈ Z
ν ,

1 ≤ j ≤ d, defines a d-dimensional stationary random field with matrix valued
spectral measure G. In Section 4 of [4] we constructed so-called generalized vec-
tor valued Gaussian stationary random fields, and proved results analogous to
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the results of Sections 2 and 3 in [4] for them. In particular, we defined the vector
valued random spectral measures corresponding to the matrix valued spectral
measure of a generalized vector valued Gaussian stationary random field. We
need these results, because we define the limit in our limit theorems by means of
multiple Wiener–Itô integrals with respect to a vector valued random spectral
measure corresponding to the matrix valued spectral measure of a generalized
vector valued Gaussian stationary random field.

Our goal in the subsequent part of work [4] was to give a good representation
of those random variables with finite second moments which are measurable
with respect to the σ-algebra generated by the random variables of the under-
lying vector valued random field together with the shift transformation acting
on them, because this gives a great help in the study of the limit theorems we
are interested in. With such an aim we defined multiple Wiener–Itô integrals
with respect to the coordinates of vector valued random spectral measures in
Section 5, and studied non-linear functionals of vector valued stationary ran-
dom fields with their help. In Section 6 we proved a technical result, called the
diagram formula, about the calculation of the product of two multiple Wiener–
Itô integrals. We needed this result to express Wick polynomials of the random
variables in our vector valued Gaussian stationary random fields. The definition
of Wick polynomials, which are the natural multivariate generalizations of Her-
mite polynomials, was recalled in Section 7 together with their most important
properties. Section 7 of [4] also contains the formula about the expression of
Wick polynomials by means of multiple Wiener–Itô integrals and an important
formula about the calculation of the shift transformations of random variables
given in the form of multiple Wiener–Itô integrals. This enabled us to reformu-
late our limit problems to a problem about limit theorems for the distribution of
a sequence of sums of multiple Wiener–Itô integrals. To investigate such prob-
lems we proved a result in Section 8 of [4] which plays an important role in the
investigation of this paper. We recalled it in Proposition 2A of this work.

First I formulate the conditions I impose on the stationary field X(p), p ∈ Z
ν ,

and function H(x1, . . . , xd) I am working with in this paper, and formulate the
main result. I present the proof in the next section. In the proof I shall refer
to [3] instead of [2], where the results I need in the proof are worked out in more
detail.

In our results we impose a condition on the behaviour of the covariance
function rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Z

ν , of the vector valued
Gaussian stationary random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν . In the
corresponding result for scalar valued stationary random fields we worked with
random variables of expectation zero, and we imposed a condition which meant
that for large values p the covariance function r(p) = EX(0)X(p) behaves like
|p|−αL(p) multiplied by a function depending on the direction p

|p| of the vec-

tor p. Here L(·) is a slowly varying function at infinity. In the case of vector
valued stationary random fields we impose the natural multivariate version of
this condition. Namely, we demand that EXj(p) = 0 for all 1 ≤ j ≤ d, p ∈ Z

ν ,
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and the covariance function rj,j′(p) = EXj(0)Xj′(p) satisfies the relation

lim
T→∞

sup
p : p∈Zν , |p|≥T

∣

∣

∣rj,j′(p)− aj,j′(
p
|p| )|p|

−αL(|p|)
∣

∣

∣

|p|−αL(|p|)
= 0 (2)

for all 1 ≤ j, j′ ≤ d, where 0 < α < ν, L(t), t ≥ 1, is a real valued function,
slowly varying at infinity, bounded in all finite intervals, and aj,j′(t) is a real
valued continuous function on the unit sphere Sν−1 = {x : x ∈ R

ν , |x| = 1},
and the identity aj′,j(x) = aj,j′(−x) holds for all x ∈ Sν−1 and 1 ≤ j, j′ ≤ d.

Remark. I show that there are interesting vector valued Gaussian stationary
random fields which satisfy condition (2). We can construct random fields with
such a distribution by defining their matrix valued spectral measures in the fol-
lowing way. We get a correlation function satisfying condition (2) with the help
of a matrix valued spectral measure whose coordinates Gj.j′ , 1 ≤ j, j′ ≤ d, have
a density function of the form gj,j′(u) = |u|α−νbj,j′(

u
|u| )h(u) with respect to the

Lebesgue measure on the torus, u ∈ [−π, π)ν , where bj,j′(·) is a non-negative
smooth function on the unit sphere {u : u ∈ R

ν , |u| = 1}, and h(u) is a non-
negative, smooth and even function on the torus [−π, π)ν which does not disap-
pear at the origin. The functions bj,j′(·) must satisfy some additional conditions
to guarantee that G = (Gj,j′), 1 ≤ j, j′ ≤ d, is a matrix valued spectral mea-
sure. We get a good covariance matrix by defining rj,j′(p) =

∫

ei(p,x)gj,j′(x) dx,
and this function satisfies relation (1.2). Results of this type are studied in the
theory of generalized functions.

Next we have to formulate a good condition on the function H(x1, . . . , xd). In
scalar valued models first the special case H(x) = Hk(x) was considered, where
Hk(x) denotes the k-th Hermite polynomial with leading coefficient 1. Then it
was shown that our limit problem with a function H(x) whose expansion in the
Hermite polynomials has the formH(x) =

∑∞
l=k clHl(x) with starting index k in

the summation can be simply reduced to the special case when H(x) = Hk(x).
We shall prove a similar result in the multivariate case. In this case the Wick
polynomials take the role of the Hermite polynomials. But we shall work with
Wick polynomials only in an implicit way. We shall choose such models where
the Wick polynomials can be simply calculated. We shall consider such vector
valued Gaussian stationary random fields X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν ,
whose covariance function satisfies besides condition (2) also the relation

EX2
j (0) = 1 for all 1 ≤ j ≤ d, and EXj(0)Xj′(0) = 0 if j 6= j′, 1 ≤ j, j′ ≤ d.

(3)
First I show that this new condition does not mean a real restriction of our
problem.

Let X(p) = (X1(p), . . . , Xd(p)), p ∈ Z
ν , be a vector valued Gaussian station-

ary random field with expectation EXj(p) = 0, p ∈ Z
ν , 1 ≤ j ≤ d, and take the
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random variables X1(0), . . . , Xd(0) in it. We can choose an appropriate num-

ber 1 ≤ d′ ≤ d, and d′ random variables X ′
j(0) =

∑d
l=1 cj,lXl(0), 1 ≤ j ≤ d′,

with appropriate coefficients cj,l, 1 ≤ j ≤ d′, 1 ≤ l ≤ d in such a way that
they have the following properties. EX ′

j(0)X
′
j′(0) = δj,j′ , 1 ≤ j, j′ ≤ d′, where

δj,j′ = 0 if j 6= j′, and δj,j = 1, and also the random variables Xj(0) can be
expressed as the linear combination of the random variables X ′

l(0), 1 ≤ l ≤ d′,

i.e. Xj(0) =
∑d′

l=1 dj,lX
′
l(0) for all 1 ≤ j ≤ d with appropriate coefficients dj,l.

Let us define the vector valued random field X ′(p) = (X ′
1(p), . . . , X

′
d′(p)) as

X ′
j(p) =

∑d
l=1 cj,lXl(p), 1 ≤ j ≤ d′, with the same coefficients cj,l which ap-

peared in the definition of X ′
j(0) for all p ∈ Z

ν . Then it is not difficult to see that
X ′(p), p ∈ Z

ν , is a d′-dimensional Gaussian stationary random field whose ele-
ments have expectation zero, and it satisfies relation (3) (with parameter d′ in-
stead of d.) Moreover, if the covariance function of the original random fieldX(p)
satisfied relation (2), then this new random field also satisfies this condition with
appropriate new functions a′j,j′(

p
|p| ). Besides, it is not difficult to find such a func-

tion H ′(x1, . . . , xd′) for which H ′(X ′
1(p), . . . , X

′
d′(p)) = H(X1(p), . . . , Xd(p)) for

all p ∈ Z
ν . This means that with the introduction of this new random field

X ′(p) = (X ′
1(p) . . . , X

′
d′(p)) we can reformulate our problem in such a way that

our vector valued stationary Gaussian random field satisfies both relations (2)
and (3). We shall work with such a new d′-dimensional random field X ′(p) and
function H ′(x1, . . . , xd′), only we shall omit the sign prime everywhere.

First we consider the case when our function H(x1, . . . , xd) depends on a
previously fixed constant k, and it has the form

H(x1, . . . , xd) = H(0)(x1, . . . , xd) (4)

=
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd
Hk1

(x1) · · ·Hkd
(xd)

with some coefficients ck1,...,kd
where Hk(·) denotes the k-th Hermite polynomial

with leading coefficient 1.
In scalar valued models we have proved a non-central limit theorem if H(x) =

Hk(x), k ≥ 2, and the covariance function r(n) = EX0Xn satisfies condition (2)
with 0 < α < ν

k in the special case d = 1. This result was formulated in The-
orem 8.2 of [3]. In this result the limit was described with the help of a k-fold
Wiener–Itô integral with respect to an appropriate random spectral measure.
This random spectral measure corresponds to that spectral measure which ap-
peared in Lemma 8.1 of [3] as the limit of a sequence consisting of appropriately
normalized versions of the spectral measure of a stationary random field X(p),
p ∈ Z

ν , which satisfies condition (2)in the case d = 1. I shall prove a multivari-
ate version of Theorem 8.2 of [3]. But to do this first I present a multivariate
version of Lemma 8.1 in [3].

This generalization of Lemma 8.1 in [3] describes the limit behaviour of the
matrix valued spectral measure of a vector valued random field whose covariance
function satisfies formula (2). This limit behaviour is described with the help of
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an appropriate spectral measure which is the spectral measure of a vector valued
generalized stationary random field. This new spectral measure and a random
spectral measure corresponding to it appears in the definition of th Wiener–Itô
integrals that describe the limit in the multivariate version of the limit theorem
in Theorem 8.2 of [3].

Given a vector valued stationary random field X(p) = (X1(p), . . . , Xd(p)),
p ∈ Z

ν , with expectation zero and covariance function rj,j′(p) = EXj(0)Xj′(p)
that satisfies relation (2) let us consider its matrix valued spectral measure
(Gj,j′), 1 ≤ j, j′ ≤ d, on the torus [−π, π)ν . (The existence of this matrix valued
spectral measure, and its characterization was proved e.g. in Theorem 2.2 of [4].)
Take its rescaled version

G
(N)
j,j′ (A) =

Nα

L(N)
Gj,j′

(

A

N

)

, A ∈ Bν , N = 1, 2, . . . , 1 ≤ j, j′ ≤ d, (5)

concentrated on [−Nπ,Nπ)ν for all N = 1, 2, . . . , where Bν denotes the σ-
algebra of the Borel measurable sets on R

ν . In the next Proposition I formulate

a result which states that these complex measures G
(N)
j,j′ have a vague limit. This

result also describes some properties of this limit. Before formulating it I recall
the definition of vague limit.

Definition of vague convergence of complex measures on R
ν with lo-

cally finite total variation. Let G(N), N = 1, 2, . . . , be a sequence of complex
measures on R

ν with locally finite total variation. We say that the sequence
G(N) vaguely converges to a complex measure G(0) on R

ν with locally finite
total variation if

lim
N→∞

∫

f(x)G(N)( dx) =

∫

f(x)G(0)( dx)

for all continuous functions f on R
ν with a bounded support.

The definition of complex measures with locally finite total variation together
with the notion of vector valued Gaussian stationary generalized random fields
and their matrix valued spectral measures was introduced in Section 4 of [4].
In the next result I formulate the multivariate version of Lemma 8.1 in [3] with
their help.

Proposition 1.1. Let G = (Gj,j′) be the matrix valued spectral measure of a
d-dimensional vector valued stationary random field whose covariance function
rj,j′(p) satisfies relation (2) with some parameter 0 < α < ν. Then for all pairs

1 ≤ j, j′ ≤ d the sequence of complex measures G
(N)
j,j′ defined in (5) with the help

of the complex measure Gj,j′ tends vaguely to a complex measure G
(0)
j,j′ on R

ν

with locally finite total variation. These complex measures G
(0)
j,j′ , 1 ≤ j, j′ ≤ d,
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have the homogeneity property

G
(0)
j,j′(A) = t−αG

(0)
j,j′(tA) for all bounded A ∈ Bν , 1 ≤ j, j′ ≤ d, and t > 0.

(6)

The complex measure G
(0)
j,j′ with locally finite variation is determined by the

number 0 < α < ν and the function aj,j′(·) on the unit sphere Sν−1 introduced
in formula (2).

There exists a vector valued Gaussian stationary generalized random field

on R
ν with that matrix valued spectral measure (G

(0)
j,j′), 1 ≤ j, j′ ≤ d, whose

coordinates are the above defined complex measures G
(0)
j,j′ , 1 ≤ j, j′ ≤ d.

Remark. The statement of Proposition 1.1 about the measures Gj,j is actually
contained in Lemma 8.1 of [3]. On the other hand, Proposition 1.1 states a
similar result on the rescaled versions of the complex measures Gj,j′ also in the
case j 6= j′. The main problem in the proof of this statement is that in this case
Gj,j′ need not be a (real valued, positive) measure. On the other hand, it is the
element of a matrix valued positive definite (spectral) measure, and this fact
plays an important role in the proof of Proposition 1.1.

It was proved in [4] that to each matrix valued spectral measure corresponds
a vector valued random spectral measure such that the Fourier transform of this
random spectral measure defines a Gaussian stationary random field whose spec-
tral measure equals this spectral measure. We can define multiple Wiener–Itô
integrals with respect to the coordinates of this vector valued random spectral
measure. This enables to formulate the multivariate version of Theorem 8.2 in [3]
in the following Theorem 1.2A. This is a limit theorem where the limit is defined
by means of a sum of multiple Wiener–Itô integrals with respect to the coordi-
nates of a vector valued random spectral measure ZG(0) = (ZG(0),1, . . . , ZG(0),d)

which corresponds to the matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d,

defined in Proposition 1.1.

Theorem 1.2A. Fix some integer k ≥ 1, and let X(p) = (X1(p), . . . , Xd(p)),
p ∈ Z

ν , be a vector valued Gaussian stationary random field whose covariance
function rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Z

ν , satisfies relation (2)
with some 0 < α < ν

k and relation (3). Let H(x1, . . . , xd) be a function of the
form given in (4) with the parameter k we have fixed in the formulation of this
result. Define the random variables Y (p) = H(X1(p), . . . , Xd(p)) for all p ∈ Z

ν

together with their normalized partial sums

SN =
1

Nν−kα/2L(N)k/2

∑

p∈BN

Y (p),

where the set BN was defined in (1). These random variables SN , N = 1, 2, . . . ,
satisfy the following limit theorem.

Let ZG(0) = (ZG(0),1, . . . , ZG(0),d) be a vector valued random spectral measure

which corresponds to the matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d,
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defined in Proposition 1.1 with the help of the matrix valued spectral measure
G = (Gj,j′), corresponding the covariance function rj,j′(p) we are working with.
Then the sum of multiple Wiener–Itô integrals

S0 =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫ ν
∏

l=1

ei(x
(l)
1 +···+x

(l)

k
) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

(7)

ZG(0),j(1|k1,...,kd)( dx1) . . . ZG(0),j(k|k1,...,kd)( dxk)

exists, where we use the notation xp = (x
(1)
p , . . . , x

(ν)
p ), p = 1, . . . , k, and we

define the indices j(s|k1, . . . , kd), 1 ≤ s ≤ k, as j(s|k1, . . . , kd) = r if
∑s−1

u=1 ku <

r ≤
∑s

u=1 ku, 1 ≤ s ≤ k. (For s = 1 we apply the notation
∑0

u=1 ku = 0 in the
definition of j(1|k1, . . . , kd).) The normalized sums SN converge in distribution
to the random variable S0 defined in (7) as N → ∞.

I explain the indexation of the terms ZG(0),j(s|k1,...,kd)( dxs) in formula (7)
in a simpler way. In the first k1 variables x1, . . . , xk1

we wrote ZG(0),1( dxs),
1 ≤ s ≤ k1, in the next k2 terms we wrote ZG(0),2( dxs), k1 + 1 ≤ s ≤ k1 + k2,
and so on. In the last kd terms we wrote ZG(0),d( dxs), k1+· · ·+kd−1+1 ≤ s ≤ k.

In Theorem 1.2A we described the limit of A−1
N

∑

p∈BN
H(X1(p), . . . , Xd(p))

if the expansion of the functions H(x1, . . . , xd) in the product of Hermite poly-
nomials contains only polynomials of order k. The next Theorem 1.2B which
is the multivariate version of Theorem 8.2′ in [3] states that a result similar
to Theorem 1.2A holds if the expansion of the function H(x1, . . . , xd) in the
product of Hermite polynomials may also contain polynomials of higher order.

Theorem 1.2B. Let us consider the same vector valued Gaussian stationary
random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν , as in Theorem 1.2A together
with a function of the form H(x1, . . . , xd) = H(0)(x1, . . . , xd)+H

(1)(x1, . . . , xd),
where H(0)(x1, . . . , xd) was defined in (4), and

H(1)(x1, . . . , xd) =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd≥k+1

ck1,...,kd
Hk1

(x1) · · ·Hkd
(xd) (8)

with coefficients ck1,...,kd
such that

∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd≥k+1

c2k1,...,kd

k1! · · · kd!
<∞. (9)

Define the random variables Y (p) = H(X1(p), . . . , Xd(p)) for all p ∈ Z
ν and

their normalized partial sums

SN =
1

Nν−kα/2L(N)k/2

∑

p∈BN

Y (p), N = 1, 2, . . . ,
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with this function H(x1, . . . , xd). The random variables SN converge in distri-
bution to the random variable S0 defined in formula (7) as N → ∞.

Actually condition (9) in Theorem 1.2B means that

EH(1)2(X1(0), . . . , Xd(0)) <∞.

Finally I mention that Arcones formulated a more general result. To present it,
more precisely its generalization when we are working with stationary random
fields parametrized by the lattice points of Zν with ν ≥ 1, let us define the
following parameter sets for all N = 1, 2, . . . and t = (t1, . . . , tν), 0 ≤ tl ≤ 1, for
all 1 ≤ l ≤ ν.

BN (t) = BN (t1, . . . , tν) = {p = (p1, . . . , pν) : 0 ≤ pl < Ntl for all 1 ≤ l ≤ ν}.
(10)

With this notation I formulate the following result.

Theorem 1.3. Let us consider the same vector valued Gaussian stationary
random field X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν , and function H(x1, . . . , xd) as
in Theorem 1.2B. Define the random variables Yp = H(X1(p), . . . , Xd(p)) for
all p ∈ Z

ν and the random fields

SN (t) =
1

Nν−kα/2L(N)k/2

∑

p∈BN (t)

Y (p) (11)

with parameter set t = (t1, . . . , tν), 0 < tl ≤ 1, 1 ≤ l ≤ ν, for all N =
1, 2, . . . , where the set BN (t) was defined in (10). The finite dimensional distri-
butions of the random fields SN (t) converge to that of the random field S0(t),
t = (t1, . . . , tν), 0 ≤ tl ≤ 1, 1 ≤ l ≤ ν, defined by the formula

S0(t) =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫ ν
∏

l=1

eitl(x
(l)
1 +···+x

(l)

k
) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

(12)

ZG(0),j(1|k1,...,kd)( dx1) . . . ZG(0),j(k|k1,...,kd)( dxk)

if the limit N → ∞ is taken. Similarly to Theorem 1.2A we use the notation

xp = (x
(1)
p , . . . , x

(ν)
p ), p = 1, . . . , k, and the indices j(s|k1, . . . , kd), 1 ≤ s ≤ k,

are defined as in formula (7).

Let us observe that the kernel function in the Wiener–Itô integrals expressing
S0(t) equals ϕt(x1 + · · ·+ xk), where ϕt(u), u ∈ R

ν , is the Fourier transform of
the Lebesgue measure on the rectangle [0, t1]× · · · × [0, tν ]. The integral in (12)
is taken on the whole space. (The formulation of Arcones’ result at this point is
erroneous.)

We have formulated Theorem 1.3 in the form as Arcones did, but actually we
could have formulated it in a slightly more general way. We could have defined
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the sets BN (t) in (10), the random variables SN (t), N = 1, 2, . . . , in (11) and
S0(t) in (12) for all t = (t1, . . . , tν) ∈ [0,∞)ν and not only for t = (t1, . . . , tν) ∈
[0, 1]ν . We could have proved, similarly to the proof of Theorem 1.3, that the
finite dimensional distributions of the random fields SN (t) converge to the finite
dimensional distributions of the random field S0(t) as N → ∞ also in this more
general case. We can also say that the random field S0(t), t ∈ [0,∞)ν , is self-

similar with parameter ν− kα/2, i.e S0(ut)
∆
= uν−kα/2S0(t) for all u > 0, where

∆
= means that the finite dimensional distributions of the two random fields agree.

One can prove the self-similarity property of the random field S0(t), t ∈
[0,∞)ν , by exploiting that G(0)(uA) = uαG(0)(A) for the spectral measure G(0)

for all u > 0 and measurable sets A ⊂ R
ν by formula (1.6) in Proposition 1.1,

and this implies that

(ZG(0),1(uA1), . . . , ZG(0),d(uAd))
∆
= (uα/2ZG(0),1(A1), . . . , u

α/2ZG(0),d(Ad))

for all u > 0 and measurable sets A1 ∈ R
ν , . . . , Ad ∈ R

ν . We still have to exploit
that the kernel functions

ft(x1, . . . , xd) =

ν
∏

l=1

eitl(x
(l)
1 +···+x

(l)

k
) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

in the Wiener–Itô integrals in (1.12) (with the notation t = (t1, . . . , tν)) have
the property

fut(x1, . . . , xk) = uνft(ux1, . . . , uxk)

for all u > 0, t ∈ [0,∞)ν , xj ∈ R
ν , 1 ≤ j ≤ k. The self-similarity property of

the random field S0(t), t ∈ [0,∞)ν , can be proved with the help of the above
observations.

2. Proof of the results

Let us consider the proof of Theorem 1.2A. A most important point in it is to
find a good representation of the normalized random sums SN appearing in this
result.

Let X(p) = (X1(p), . . . , Xd(p)), p ∈ Z
ν , be a vector valued Gaussian sta-

tionary random field whose covariance function rj,j′(p) = EXj(0)Xj′(p), 1 ≤
j, j′ ≤ d, p ∈ Z

ν , satisfies relation (2) with some parameter 0 < α < ν
k and re-

lation (3). Let G = (Gj,j′), 1 ≤ j, j′ ≤ d, be the matrix valued spectral measure
of this stationary random field, and let us consider that vector valued random
spectral measure ZG = (ZG,1, . . . , ZG,d) corresponding to this spectral measure
for which Xj(p) =

∫

ei(p,x)ZG,j( dx) for all p ∈ Z
ν and 1 ≤ j ≤ d.

Because of relation (3) the random variable Y (0) = H(X1(0), . . . , Xd(0)) de-
fined with the function H(x1, . . . , xd) = H(0)(x1, . . . , xd) introduced in (4) is a
Wick polynomial of order k of the random variables X1(0), . . . , Xd(0), (see Sec-
tion 7 in [4]). This Wick polynomial can be rewritten because of the multivariate
version of Itô’s formula (see Corollary of Theorem 7.2 in [4]) and the identity
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Xj(0) =
∫

I1(y)ZG,j( dy), 1 ≤ j ≤ d, where I1(y) denotes the indicator func-
tion of the torus [−π, π)ν , as a sum of k-fold multiple Wiener–Itô integrals with
respect to the vector valued random spectral measure ZG = (ZG,1, . . . , ZG,d).
Let us remark that by Lemma 8B of [3] condition (2) implies that the diagonal
elements Gj,j , 1 ≤ j ≤ d, of the matrix valued spectral measure G = (Gj,j′),
1 ≤ j, j′ ≤ d, are non-atomic. Hence we can define the multiple Wiener–Itô
integrals with respect to the coordinates of the vector valued random spectral
measure ZG = (ZG,1, . . . , ZG,d). The above considerations yield the identity

Y0 = H(X1(0), . . . , Xd(0)) = H(0)(X1(0), . . . , Xd(0))

=
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

: ck1,...,kd
X1(0)

k1 · · ·Xd(0)
kd :

=
∑

(k1,...,kd), kj≥0 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫

I1(y1) . . . I1(yk)

d
∏

j=1





k1+···+kj
∏

t=k1+···+kj−1+1

ZG,j( dyt)



 ,

where for j = 1 we define
k1+···+kj
∏

t=k1+···+kj−1+1

ZG,j( dyt) =
k1
∏

t=1
ZG,1( dyt), and if

kj = 0 for some 1 ≤ j ≤ d, then we drop the term
k1+···+kj
∏

t=k1+···+kj−1+1

ZG,j( dyt)

from this expression. (Here :P (X1(0), . . . , Xd(0)) : denotes the Wick polyno-
mial corresponding to P (X1(0), . . . , Xd(0)), where P (x1, . . . , xd) is a homoge-
neous polynomial.)

Since Y (p) = TpY (0) with the shift transformation Tp for all p ∈ Z
ν , the

previous identity and Proposition 7.4 in [4] yield the formula

Y (p) = TpY (0)

=
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

ck1,...,kd

∫

ei(p,y1+···+yk)
d
∏

j=1





k1+···+kj
∏

t=k1+···+kj−1+1

ZG,j( dyt)





for all p ∈ Z
ν . We get by summing up this formula for all p ∈ BN that

SN =
1

Nν−kα/2L(N)k/2

∑

(k1,...,kd), kj≥0, 1≤j≤d
k1+···+kd=k

ck1,...,kd

∫ ν
∏

l=1

ei(N(y
(l)
1 +···+y

(l)

k
) − 1

ei((y
(l)
1 +···+y

(l)

k
) − 1

d
∏

j=1





k1+···+kj
∏

t=k1+···+kj−1+1

ZG,j( dyt)



 ,

where we write y = (y(1), . . . , y(ν)) for all y ∈ [−π, π)ν .
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We rewrite the above sum of Wiener–Itô integrals with the change of variables
xs = Nys, 1 ≤ s ≤ k, in the form

SN =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫

fNk1,...,kd
(x1, . . . , xk)

d
∏

j=1





k1+···+kj
∏

t=k1+···+kj−1+1

ZG(N),j( dxt)



 , (13)

where

fNk1,...,kd
(x1, . . . , xk) = ck1,...,kd

ν
∏

l=1

ei((x
(l)
1 +···+x

(l)

k
) − 1

N(ei((x
(l)
1 +···+x

(l)

k
)/N − 1)

(14)

is a function on [−Nπ,Nπ)ν , and ZG(N),j(A) = Nα/2

L(N)1/2
ZG,j(

A
N ) for all mea-

surable sets A ⊂ [−Nπ,Nπ)ν and j = 1, . . . , d. Here we use the notation

xs = (x
(1)
s , . . . , x

(ν)
s ) for all 1 ≤ s ≤ k for a set of vectors (x1, . . . , xk), xs ∈ R

ν

for all 1 ≤ s ≤ k. Let us observe that (ZG(N),1, . . . , ZG(N),d) is a vector val-
ued random spectral measure on the torus [−Nπ,Nπ)ν corresponding to the

matrix valued spectral measure G(N) = (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, on the torus

[−Nπ,Nπ)ν), defined by the formula G
(N)
j,j′ (A) =

Nα

L(N)Gj,j′(
A
N ), 1 ≤ j, j′ ≤ d,

for all measurable sets A ⊂ [−Nπ,Nπ)ν , where G = (Gj,j′), 1 ≤ j, j′ ≤ d, is the
matrix valued spectral measure of the original vector valued stationary random
field X(p) = (X1(p), . . . , Xd(p)), p ∈ Z

ν .
In formulas (13) and (14) we gave a useful representation of the normal-

ized random sum SN investigated in Theorem 1.2A in the form of a sum of
k-fold multiple Wiener–Itô integrals. Let us observe that the kernel functions
fNk1,...,kd

(x1, . . . , xk) of these Wiener–Itô integrals satisfy the relation

lim
N→∞

fNk1,...,kd
(x1, . . . , xk) = f0k1,...,kd

(x1, . . . , xk) (15)

for all indices k1, . . . , kd such that kj ≥ 0, 1 ≤ j ≤ d, and k1 + · · ·+ kd = k with
the function

f0k1,...,kd
(x1, . . . , xk) = ck1,...,kd

ν
∏

l=1

ei((x
(l)
1 +···+x

(l)

k
) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

(16)

defined on R
kν , and this convergence is uniform in all bounded subsets of Rkν .

On the other hand, Proposition 1.1 states that the matrix valued spectral

measures G(N) = (G
(N)
j,j′ ) converge to a matrix valued spectral measure G(0) =

(G
(0)
j,j′) on R

ν , and in (13) we integrate with respect to a vector valued random

spectral measure corresponding to the matrix spectral measure (G
(N)
j,j′ ), 1 ≤
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j, j′ ≤ N . Hence it is natural to expect that the random variables SN converge
in distribution to the random variable

S0 =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫

f0k1,...,kd
(x1, . . . , xk)

d
∏

j=1





k1+···+kj
∏

t=k1+···+kj−1+1

ZG(0),j( dxt)



 , (17)

where (ZG(0),1, . . . , ZG(0),d) is a vector valued random spectral measure on R
ν

corresponding to the matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d. This

is actually the statement of Theorem 1.2A with a slightly different notation.

First I prove Proposition 1.1, and then Theorem 1.2A by justifying the above
heuristic argument with the help of Proposition 2A presented later, which is a
reformulation of Proposition 8.1 in [4].

Proof of Proposition 1.1. Let us remark that for the diagonal elements Gj,j ,

1 ≤ j ≤ d, of the matrix valued spectral measure G the measures G
(N)
j,j converge

vaguely to a locally finite measure G
(0)
j,j which satisfies relation (6). This follows

from Lemma 8.1 of [3]. Simply we have to apply this lemma for the measures
Gj,j .

In the case of the non-diagonal elements Gj,j′ , j 6= j′, this argument does
not work in itself, because a complex measure Gj,j′ with finite total variation
may be not a measure. In this case we exploit that G is a positive semidefinite
matrix valued measure, hence the 2× 2 matrix

G(A|j, j′) =

(

Gj,j(A), Gj,j′(A)
Gj′,j(A), Gj′,j′(A)

)

is positive semidefinite for all pairs 1 ≤ j, j′ ≤ d, j 6= j′, and measurable
sets A ⊂ R

ν . Hence the quadratic forms (1, 1)G(A|j, j′)(1, 1)∗ = Gj,j(A) +
Gj′,j′(A)+Gj,j′(A)+Gj′,j(A) and (1, i)G(A|j, j′)(1,−i)∗ = Gj,j(A)+Gj′,j′(A)−
i[Gj,j′(A)−Gj′,j(A)] are non-negative numbers for all measurable sets A ⊂ R

ν .
This implies that the set-functions Rj,j′(·) and Sj,j′(·) defined as Rj,j′(A) =
Gj,j(A) +Gj′,j′(A) +Gj,j′(A) +Gj′,j(A) and Sj,j′(A) = Gj,j(A) +Gj′,j′(A)−
i[Gj,j′(A) − Gj′,j(A)] for all measurable sets A are finite measures. Moreover,
they satisfy relation (2) (with a new function aj,j′(·)). Hence Lemma 8.2 of [3]
can be applied for them. This fact together with the property Gj′,j(A) =

Gj,j′(A) and the result about the behaviour of G
(N)
j,j and G

(N)
j′,j′ imply that the

sequence G
(N)
j,j′ vaguely converges to a complex measure G

(0)
j,j′ with locally finite

total variation which satisfies relation (6). (A similar argument was applied in
the proof of Proposition 8.1 in [4].)

Lemma 8.1 in [3] (applied for the measures Gj,j , 1 ≤ j ≤ d) implies that

µ
(0)
j,j ( dx) =

∏ν
l=1

1−cos x(l)

(x(l))2
G

0)
j,j( dx) is a finite measure whose Fourier transform
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can be expressed by means of the parameter α and the function aj,j(x) on the
unit sphere Sν−1. This fact together with relation (6) imply that these quanti-

ties determine the distribution of the measure G
(0)
j,j . By refining this argument

one can prove that µ
(0)
j,j′( dx) =

∏ν
l=1

1−cos x(l)

(x(l))2
G

0)
j,j′( dx) is a complex measure

with finite total variation whose Fourier transform is determined by the param-
eter α and the function aj,j′(·) on the unit sphere Sν−1. Hence they determine

the distribution of the complex measure G
(0)
j,j′ . In a detailed proof the Fourier

transform of the complex measures µ
(0)
j,j′ should be written down. In Lemma 8.1

of [3] this is done for the corresponding formula. Here I omitted this part of the
proof, because actually this result is not needed in our investigation.

We have to show that (G
(0)
j,j′), 1 ≤ j, j′ ≤ d is a matrix valued spectral

measure on R
ν . (In Section 4 of [4] the matrix valued spectral measures on

R
ν are defined as the positive semidefinite matrix valued even measures on R

ν

with moderately increasing distribution at infinity.) In Lemma 8.2 of [4] it is
proved that they are positive semidefinite matrix valued even measures on R

ν ,

since their coordinates G
(0)
j,j′ are the vague limits of the coordinates G

(N)
j,j′ of the

matrix valued spectral measures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d as N → ∞. It follows

from relation (6) that they have moderately increasing distribution at infinity.
(This property is defined in formula (4.1) in [4].) Proposition 1.1 is proved.

To prove Theorem 1.2A I recall Proposition 8.1 of [4] in the following Propo-
sition 2A. It states that under certain conditions a sequence of sums of k-fold
Wiener–itô integrals converges in distribution to a sum of k-fold Wiener–Itô
integrals. Before formulating this result I recall that in Section 5 of [4], in
the definition of multiple Wiener–Itô integrals I have defined a real Hilbert
space Kk,j1,...,jk = Kk,j1,...,jk(Gj1,j1 , . . . , Gjk,jk) depending on the diagonal ele-
ments G1,1, . . . , Gd,d of a matrix valued spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d,
and a sequence of length k of integers (j1, . . . , jk) such that 1 ≤ js ≤ d for
all 1 ≤ s ≤ k. (In paper [4] I worked with Wiener–Itô integrals of order n,
while here I work with Wiener–Itô integrals of order k. Hence I use here a
slightly different notation.) I shall refer to this Hilbert space in the formula-
tion of our result. This Hilbert space appears in this result, because it contains
those functions f(x1, . . . , xk) for which we defined the k-fold Wiener–Itô in-
tegral

∫

f(x1, . . . , xk)ZG,j1( dx1) . . . ZG,jk( dxk) with respect to a vector valued
random spectral measure (ZG,1, . . . , ZG,d) corresponding to the matrix valued
spectral measure (Gj,j′), 1 ≤ j, j′ ≤ d.

We take for all N = 1, 2, . . . a sequence of matrix valued non-atomic spectral

measures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, on the torus [−ANπ,ANπ)

ν with a parame-
ter AN such that AN → ∞ as N → ∞. We also take some functions

hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk = Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

)

on the torus [−ANπ,ANπ)
ν for all sequences (j1, . . . , jk) such that 1 ≤ js ≤ d,

1 ≤ s ≤ k, and N = 1, 2, . . . . Besides, we fix for all N = 1, 2, . . . a vector valued
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random spectral measure (ZG(N),1, . . . , ZG(N),d) on the torus [−ANπ,ANπ)
ν cor-

responding to the matrix valued spectral measure (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, and we

define with the help of these quantities the sums of k-fold Wiener–Itô integrals

SN =
∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫

hNj1,...,jk(x1, . . . , xk)ZG(N),j1( dx1) . . . ZG(N),jk( dxk),

(18)
N = 1, 2, . . . . We want to find some good conditions under which these random
variables SN converge in distribution to a random variable S0 expressed in the
form of a sum of multiple Wiener–Itô integrals.

The following result supplies such conditions.

Proposition 2A. Let us consider the sums of k-fold Wiener–Itô integrals SN

defined in formula (18) with the help of certain vector valued random spectral
measures (ZG(N),1, . . . , ZG(N),d) corresponding to some non-atomic matrix val-

ued spectral measures (G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d defined on tori [−AN , AN )ν such

that AN → ∞ as N → ∞ and functions

hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

).

Let the coordinates G
(N)
j,j′ , 1 ≤ j, j′ ≤ d, of the matrix valued spectral measures

(G
(N)
j,j′ ), 1 ≤ j, j′ ≤ d, converge vaguely to the coordinates G

(0)
j,j′ of a non-atomic

matrix valued spectral measure (G
(0)
j,j′), 1 ≤ j, j′ ≤ d, on R

ν for all 1 ≤ j, j′ ≤ d
as N → ∞, and let (ZG(0),1, . . . , ZG(0),d) be a vector valued random spectral

measure on R
ν corresponding to the matrix valued spectral measure (G

(0)
j,j′), 1 ≤

j, j′ ≤ d. Let us also have some functions h0j1,...,jk for all 1 ≤ js ≤ d, 1 ≤
s ≤ k, such that these functions and matrix valued spectral measures satisfy the
following conditions.

(a) The functions h0j1,...,jk(x1, . . . , xk) are continuous on R
kν for all 1 ≤ js ≤

d, 1 ≤ s ≤ k, and for all T > 0 and indices 1 ≤ js ≤ d, 1 ≤ s ≤
k, the functions hNj1,...,jk(x1, . . . , xk) converge uniformly to the function

h0j1,...,jk(x1, . . . , xk) on the cube [−T, T ]kν as N → ∞.
(b) For all ε > 0 there is some T0 = T0(ε) > 0 such that

∫

Rkν\[−T,T ]kν

|hNj1,...,jk(x1, . . . , xk)|
2G

(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

(dxk) < ε2 (19)

for all 1 ≤ js ≤ d, 1 ≤ s ≤ k, and N = 1, 2 . . . if T > T0.

Then inequality (19) holds also for N = 0,

h0j1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk = Kk,j1,...,jk(G
(0)
j1,j1

, . . . G
(0)
jk,jk

),
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the sum of random integrals

S0 =
∑

(j1,...,jk)
1≤js≤d, for all 1≤s≤k

∫

h0j1,...,jk(x1, . . . , xk)ZG(0),j1( dx1) . . . ZG(0),jk( dxk).

(20)
exists, and the random variables SN defined in (18) converge to S0 in distribu-
tion as N → ∞.

I shall prove Theorem 1.2A with the help of Proposition 2A and the repre-
sentation of the random variables SN , N = 1, 2, . . . , in formulas (13) and (14). I
shall apply Proposition 2A with an appropriate choice of the random variables
SN , N = 1, 2, . . . , in formula (18) and of the random variable S0 in (20). In this
application I define the random variables SN in (18) and the random variable
S0 in (20) by rewriting first the random variables defined in (13) and (14) and
then the random variable defined in (16) and (17) in an appropriate way. I shall
rewrite them in such a special form of formulas (18) and (20) where the summa-
tion is going only for such sequences (j1, . . . , jk) whose elements js, 1 ≤ s ≤ k,
go up in increasing order from 1 to d, i.e. 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ d. Given a
sequence (j1, . . . , jk) with this property I define with its help the numbers

ks(j1, . . . jk) = the number of such elements jp

in the sequence j1, . . . , jk for which jp = s (21)

for all indices 1 ≤ s ≤ d.
I shall rewrite the sums in (13) and (17) with which I shall work by replacing

the indices of summation k1, . . . , kd in them by appropriately chosen indices
1 ≤ j1 ≤ · · · ≤ jk ≤ d. I choose these indices j1, . . . , jk in such a way that the
quantities ks = ks(j1, . . . , jk), 1 ≤ s ≤ d, defined in (21) agree with the original
sequence (k1, . . . , kd) in (13) or (17). I exploit that there is a natural one to
one correspondence between the sequences j1, . . . , jk such that 1 ≤ j1 ≤ · · · ≤
jk ≤ d and the sequences k1, . . . , kd of integers with the property ks ≥ 0 for
all 1 ≤ s ≤ d and k1 + · · · + kd = k. With the help of this correspondence the
random sums SN in (13) can be rewritten in the form

SN =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫

fNk1(j1,...,jk),...,kd(j1,...,jk)
(x1, . . . , xk)

ZG(N),j1( dx1) . . . ZG(N),jk( dxk) (22)

for all N = 1, 2, . . . with the functions fNk1,...,kd
(x1, . . . , xk) defined in (14) and

the functions ks(j1, . . . , jk), 1 ≤ s ≤ d defined in (21). This means that rela-
tion (22) can be rewritten in the form

SN =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫

hNj1,...,jk(x1, . . . , xk)ZG(N),j1( dx1) . . . ZG(N),jk( dxk) (23)
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with
hNj1,...,jk(x1, . . . , xk) = fNk1(j1,...,jk),...,kd(j1,...,jk)

(x1, . . . , xk), (24)

where the functions ks(j1, . . . , jk), 1 ≤ s ≤ d, are defined in (21). Similarly, the
random sum S0 in (17) can be rewritten in the form

S0 =
∑

(j1,...,jk)
1≤j1≤···≤jk≤d

∫

f0k1(j1,...,jk),...,kd(j1,...,jk)
(x1, . . . , xk)

ZG(0),j1( dx1) . . . ZG(0),jk( dxk)

with the function f0k1,...,kd
(x1, . . . , xk) defined in (16) or in the following equiv-

alent form

S0 =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫

h0j1,...,jk(x1, . . . , xk)ZG(0),j1( dx1) . . . ZG(0),jk( dxk) (25)

with
h0j1,...,jk(x1, . . . , xk) = f0k1(j1,...,jk),...,kd(j1,...,jk)

(x1, . . . , xk). (26)

I shall apply Proposition 2A for the sequences SN , defined in (23), (14)
and (24) for N = 1, 2, . . . , and in (25), (16) and (26) for N = 0. I shall
integrate with respect to the coordinates of vector valued spectral measures
(ZG(N),1, . . . , ZG(N),d), N = 0, 1, 2, . . . , corresponding to the matrix valued spec-

tral measures (G
(N)
j.j′ ), 1 ≤ j, j′ ≤ d, N = 0, 1, 2, . . . , defined in formula (5) for

N ≥ 1 and in Proposition 1.1 for N = 0. In the proof of Theorem 1.2A I have
to show that the conditions of Proposition 2A are satisfied with such a choice.

It follows from Proposition 1.1 that the (non-atomic) complex measures G
(N)
j,j′

with finite total variation vaguely converge to the (non-atomic) complex measure

G
(0)
j,j′ with locally finite total variation as N → ∞ for all 1 ≤ j, j′ ≤ d. It is also

clear that hNj1,...,jk(x1, . . . , xk) ∈ Kk,j1,...,jk(G
(N)
j1,j1

, . . . , G
(N)
jk,jk

) for all 1 ≤ j1 ≤

· · · ≤ jk ≤ d and N = 1, 2, . . . with hNj1,...,jk(x1, . . . , xk) defined in (24).
It follows from (15), (24) and (26) that condition (a) of Proposition 2A holds

with the choice of the functions and measures we chose in the proof of Propo-
sition 1.2. We still have to prove relation (19) in condition (b). This will be
done with the help of the following Proposition 2.1. (Actually we shall prove in
Proposition 2.1 a slightly stronger result than we need.)

Proposition 2.1. Let us fix some integer k ≥ 1, and let (Gj,j′), 1 ≤ j, j′ ≤ d,
be the matrix valued spectral measure of a vector valued stationary field X(p) =
(X1(p), . . . , Xp(d)), p ∈ Z

ν , defined on the torus [−π, π)ν , whose correlation
function rj,j′(p) = EXj(0)Xj′(p), 1 ≤ j, j′ ≤ d, p ∈ Z

ν , satisfies relation (2)

with some 0 < α < 1
k . For all N = 1, 2, . . . , let us consider the measures G

(N)
j,j ,
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1 ≤ j ≤ d, defined in formula (5) together with the measures µ
(N)
j1,...,jk

defined

for all sets of indices j1, . . . , jk, 1 ≤ js ≤ d, 1 ≤ s ≤ k, on R
kν by the formula

µ
(N)
j1,...,jk

(A) =

∫

A

|hN (x1, . . . , xk)|
2G

(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk), A ∈ Bkν ,

(27)
with

hN (x1, . . . , xk) =
ν
∏

l=1

ei((x
(l)
1 +···+x

(l)

k
) − 1

N(ei((x
(l)
1 +···+x

(l)

k
)/N − 1)

, (28)

where we use the notation x = (x(1), . . . , x(ν)) for a vector x ∈ R
ν . The measures

µ
(N)
j1,...,jk

converge weakly to a finite measure µ
(0)
j1,...,jk

on R
kν .

Proof of Theorem 1.2A with the help of Proposition 2.1. It is enough to show that

the complex measures G
(N)
j,j′ , 1 ≤ j, j′ ≤ d, N = 0, 1, 2, . . . , defined in (5) and in

the result of Proposition 1.1 together with the functions hNj1,...,jk , 1 ≤ js,≤ d, for
all 1 ≤ s ≤ k and N = 0, 1, 2, . . . defined in (14), (23) and (24) for N = 1, 2, . . .
and in (16), (25) and (26) for N = 0 satisfy the conditions of Proposition 2A.
We have proved the validity of all these conditions expect formula (19) in
condition (b). But even this condition is simply follows from Proposition 2.1

which implies that the measures µ
(N)
j1,...,jk

, N = 1, 2, . . . , are tight for all indices

N = 1, 2, . . . . This fact together with the definition of the measures µ
(N)
j1,...,jk

and

the identity hNj1,...,jk(x1, . . . , xk) = ck1(j1,...,jk),...,kd(j1,...,jk)hN (x1, . . . , xk) imply
that relation (19) holds. Theorem 1.2A is proved.

It remained to prove Proposition 2.1.

Proof of Proposition 2.1. Most calculations needed in the proof of Proposition
2.1 were actually carried out in the proof of Theorem 8.2 of [3] with some slight
modifications. I shall omit the details of these calculations.

I compute for all N = 1, 2, . . . the Fourier transform

ϕ
(N)
j1,...,jd

(t1, . . . , tk) =

∫

ei((t1,x1)+···+(tk,xk))µ
(N)
j1,...,jk

( dx1, . . . , dxk)

of the measures µ
(N)
j1,...,jk

defined in (27), and give a good asymptotic formula
for them. More precisely, I do this only for such coordinates (t1, . . . , tk) of the

function ϕ
(N)
j1,...,jd

(t1, . . . , tk) which have the form tl =
pl

N with some pl ∈ Z
ν , l =

1, . . . , k. But even such a result will be sufficient for us. In the calculation of the

formula expressing ϕ
(N)
j1,...,jd

(t1, . . . , tk) I exploit that the function hN (x1, . . . , xk)
defined in (28) can be written in the form

hN (x1, . . . , xk) =
1

Nν

∑

u∈BN

exp

{

i
1

N
(u, x1 + · · ·+ xk)

}

.
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Hence

ϕ
(N)
j1,...,jd

(t1, . . . , tk) =
1

N2ν

∫

exp

{

i
1

N
((p1, x1) + · · ·+ (pk, xk))

}

∑

u∈BN

∑

v∈BN

exp

{

i

(

u− v

N
, x1 + · · ·+ xk

)}

G
(N)
j1,jk

( dx1) . . . G
(N)
jk,jk

( dxk)

=
1

N2ν−kαL(N)k

∑

u∈BN

∑

v∈BN

rj1,j1(u− v + p1) · · · rjk,jk(u− v + pk)

if tl =
pl

N with some pl ∈ Z
ν , 1 ≤ l ≤ k. This identity can be rewritten by taking

the summation at the right-hand side of the last formula first for such pairs of
(u, v) for which u− v = y with some fixed value y ∈ Z

ν and then for the lattice
points y ∈ Z

ν . By working with x = y
N instead of y we get that

ϕ
(N)
j1,...,jd

(t1, . . . , tk) =

∫

[−1,1]ν
f
(N)
j1,...,jk

(t1, . . . , tk, x)λN ( dx)

with

f
(N)
j1,...,jk

(t1, . . . , tk, x)

=

(

1−
|x(1)N |

N

)

· · ·

(

1−
|x(ν)N |

N

)

rj1,j1(N(x+ t1))

N−αL(N)
· · ·

rjk,jk(N(x+ tk))

N−αL(N)
,

where λN is the measure concentrated in the points of the form x = p
N with

such points p = (p1, . . . , p
ν) ∈ Z

ν for which −N < pl < N for all 1 ≤ l ≤ ν, and
λN (x) = N−ν for such points x.

Let us extend the definition of ϕ
(N)
j1,...,jd

(t1, . . . , tk) to (t1, . . . , tk) ∈ R
kν by

defining it as

ϕ
(N)
j1,...,jd

(t1, . . . , tk) = ϕ
(N)
j1,...,jd

(p1
N
, . . . ,

pk
N

)

, tl ∈ R
ν for all 1 ≤ l ≤ k,

if
p
(s)

l

N − 1
2N ≤ t

(s)
l <

p
(s)

l

N + 1
2N with pl = (p

(1)
l , . . . , p

(ν)
l ) ∈ Z

ν , 1 ≤ l ≤ k.

Let us extend similarly the definition of the function f
(N)
j1,...,jk

(t1, . . . , tk, x) to

(t1, . . . , tk, x) ∈ R
kν × [−1, 1]ν by means of the formula

f
(N)
j1,...,jk

(t1, . . . , tk, x)

=

(

1−
|q(1)N |

N

)

· · ·

(

1−
|q(ν)N |

N

)

rj1,j1(N(q + p1))

N−αL(N)
· · ·

rjk,jk(N(q + pk))

N−αL(N)
,

for tl ∈ R
ν , 1 ≤ l ≤ k, and x ∈ [−1, 1]ν , where

p
(s)

l

N − 1
2N ≤ t

(s)
l <

p
(s)

l

N + 1
2N ,

1 ≤ s ≤ ν, 1 ≤ l ≤ k, with pl = (p
(1)
l , . . . , p

(ν)
l ) ∈ Z

ν , 1 ≤ l ≤ k, and
q(s)

N − 1
2N ≤ x(s) < q(s)

N + 1
2N , 1 ≤ s ≤ ν with q = (q(1), . . . , q(ν)) ∈ Z

ν .
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It follows from relation (2) that for all parameters t1, . . . , tk and ε > 0

f
(N)
j1,...,jk

(t1, . . . , tk, x) → f
(0)
j1,...,jk

(t1, . . . , tk, x)

holds uniformly with the limit function

f
(0)
j1,...,jk

(t1, . . . , tk, x)

= (1− |x(1)|) . . . (1− |x(ν)|)
aj1,j1

(

x+t1
|x+t1|

)

|x+ t1|α
. . .

ajk,jk

(

x+tk
|x+tk|

)

|x+ tk|α

on the set x ∈ [−1, 1]ν \
k
⋃

l=1

{x : |x+ tl| > ε}.

Some additional calculation shows that

ϕ
(N)
j1,...,jk

(t1, . . . , tk) → ϕ
(0)
j1,...,jk

(t1, . . . , tk) =

∫

[−1,1]ν
f
(0)
j1,...,jk

(t1, . . . , tk, x) dx

(29)

as N → ∞ for all (t1, . . . , tk) ∈ R
kν , and ϕ

(0)
j1,...,jk

(t1, . . . , tk) is a continuous
function. This calculation was carried out in the proof of Theorem 8.2 in [3] (in
the calculations made after the end of the proof of Lemma 8.4), hence I omit it.

By a classical result of probability theory if the Fourier transforms of a se-
quence of finite measures on R

kν converge to a function continuous at the origin,
then the limit function is also the Fourier transform of a finite measure on R

kν ,
and the sequence of probability measures whose Fourier transforms were taken
converge to this measure. In the proof of Theorem 2.1 we cannot apply this

result, because we have a control on the Fourier transform of µ
(N)
j1,...,jk

only in
points of the form (t1, . . . , tk) with tl = pl

N with pl ∈ Z
ν , 1 ≤ l ≤ k. But

the measures µ
(N)
j1,...,jk

have the additional property that they are concentrated

in the cube [−Nπ,Nπ)kν . Lemma 8.4 of [3] contains such a result that en-
ables us to deduce from relation (29) (together with the continuity of the limit

function ϕ
(0)
j1,...,jk

(t1, . . . , tk)) and the above mentioned property of the measures

µ
(N)
j1,...,jk

the convergence of the measures µ
(N)
j1,...,jk

to a finite measure µ
(0)
j1,...,jk

.

We have also proved that this finite measure µ
(0)
j1,...,jk

, has the Fourier transform

ϕ(0)(t1, . . . , tk). Proposition 2.1 is proved.

I prove Theorem 1.2B by showing that if a function H(1)(·) satisfies (8) and
(9), and the Gaussian stationary process Z(p) = (X1(p), . . . , Xd(p)) satisfies (2)
and (3), then

1

Nν−kα/2L(N)k/2

∑

p∈BN

H(1)(X1(p), . . . , Xd(p)) ⇒ 0 as N → ∞, (30)

where ⇒ denotes convergence in probability. I shall prove that even the second
moments of the normalized sums in(30) tend to zero. The following Lemma 2B
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which agrees with Lemma 1 of [1] (only with a slightly different notation) helps
in the proof of this statement.

Lemma 2B. Let X1, . . . , Xd and Y1, . . . Yd be jointly Gaussian random vari-
ables with expectation zero such that EXjXj′ = EYjYj′ = δj,j′ , 1 ≤ j, j′ ≤ d,
and let rj,j′ = EXjYj′ , 1 ≤ j, j′ ≤ d. Take a number k ≥ 1 and a function
H(1)(x1, . . . , xd) satisfying relations (8) and (9). Assume that

ψ = max







 sup
1≤j≤d

d
∑

j′=1

|rj,j′ |



 ,



 sup
1≤j′≤d

d
∑

j=1

|rj,j′ |







 ≤ 1.

Then

|EH(1)(X1, . . . , Xd)H
(1)(Y1, . . . , Yd)| ≤ ψk+1EH(1)2(X1, . . . , Xd).

Proof of Theorem 1.2. It follows from relation (2) and Lemma 2B with the
choice Xj = Xj(p), Yj = Xj(q), 1 ≤ j ≤ d, that there exists some threshold
index n0 ≥ 1 and constant 0 < C <∞ such that

|EH(1)(X1(p), . . . Xd(p))H
(1)(X1(q), . . . , Xd(q))| ≤ C|p−q|−(k+1)αL(|p−q|)k+1

if |p− q| ≥ n0. On the other hand,

|EH(1)(X1(p), . . . Xd(p))H
(1)(X1(q), . . . , Xd(q))|

≤ EH(1)2(X1(0), . . . Xd(0)) ≤ C1

for all p, q ∈ Z
ν with some C1 <∞ by the Schwarz inequality and relation (9).

Hence
∣

∣

∣

∣

∣

∣

EH(1)(X1(p), . . . , Xd(p))





∑

q∈BN

H(1)(X1(q), . . . , Xd(q)





∣

∣

∣

∣

∣

∣

≤ C2(1 +Nν+ε−(k+1)α)

for all p ∈ BN and ε > 0 with an appropriate C2 = C2(ε) > 0, and since
ν − kα > 0

1

N2ν−kαL(N)k
E





∑

p∈BN

H(1)(X1(p), . . . , Xd(p))





2

→ 0 as N → ∞.

The last relation implies formula (30). Formula (30) together Theorem 1.2A
yield Theorem 1.2B. Theorem 1.2B is proved.

The proof of Theorem 1.3 is very similar to that of Theorems 1.2A and 1.2B,
hence I shall explain it briefly.
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It is enough to prove that for any positive integer K, parameters t1, . . . , tK ,
tp ∈ [0, 1]ν , 1 ≤ p ≤ K and real constants C1, . . . , CK the linear combinations
∑K

p=1 CpSN (tp) converge to
∑K

p=1 CpS0(tp) in distribution asN → ∞, since this
implies that the random vectors (SN (t1), . . . , SN (tK)) converge in distribution
to the random vector (S0(t1), . . . , S0(tK)) as N → ∞. Moreover, similarly to
the proof of Theorem 1.2B we can reduce the proof of the result to the case
when H(x1, . . . , xd) = H(0)(x1, . . . , xd) with a function H(0)(x1, . . . , xd) of the
form given in (4).

In the first step of the proof I write the linear combinations
∑K

p=1 CpSN (tp),
N = 0, 1, 2, . . . , in the form of a sum of k-fold Wiener-Itô integrals with respect
to the coordinates of an appropriate vector valued random spectral measure.
We can do this if we can write down the random variables SN (t) in the desired
form for all t ∈ [0, 1]ν . The random variables S0(t) are given in this form in (12).
In the case N = 1, 2, . . . we can find the right formulation of SN (t) similarly to
the method applied in the proof of Theorem 1.2A. We get similarly to the proof
of formulas (13) and (14) that

SN (t) =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫

fNk1,...,kd
(t, x1, . . . , xk)

d
∏

j=1





k1+···+kj
∏

t=k1+···+kj−1+1

ZG(N),j( dxt)





with

fNk1,...,kd
(t, x1, . . . , xk) = ck1,...,kd

ν
∏

l=1

exp
{

i ]t
(l)N [
N (x

(l)
1 + · · ·+ x

(l)
k )
}

− 1

N
(

exp
{

i 1
N (x

(l)
1 + · · ·+ x

(l)
k )
}

− 1
) ,

where t = (t(1), . . . , tν), the number ]t(l)N [ (in the definition of the function
fNk1,...,kd

(t, x1, . . . , xk)) is the smallest integer which is larger than t(l)N , and
ZG(N),j agrees with the spectral measure that appeared in (13) under the same
notation.

It is not difficult to see that similarly to relations (15) and (16)

lim
N→∞

fNk1,...,kd
(t, x1, . . . , xk) = f0k1,...,kd

(t, x1, . . . , xk)

for all indices k1, . . . , kd such that kj ≥ 0, 1 ≤ j ≤ d, and k1 + · · ·+ kd = k with
the function

f0k1,...,kd
(t, x1, . . . , xk) = ck1,...,kd

ν
∏

l=1

eit
(l)(x

(l)
1 +···+x

(l)

k
) − 1

i(x
(l)
1 + · · ·+ x

(l)
k )

,

defined for (x1. . . . , xk) ∈ R
kν , and this convergence is uniform in all bounded

subsets of Rkν .
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With the help of the above considerations the proof of Theorem 1.3 can be
reduced, similarly to the proof of Theorem 1.2A, to the following statement. Fix
some numberK, real constants C1, . . . , CK and points t1, . . . tK with tp ∈ [0, 1]ν ,
1 ≤ p ≤ K together with some constants ck1,...,kd

with parameters kj ≥ 0,
1 ≤ j ≤ d, and k1 + · · ·+ kd = k as the coefficients in the sum (4). Let us define
with their help the random sums

SN =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫

(

K
∑

p=1

Cpck1,...,kd
fNk1,...,kd

(tp, x1, . . . , xk)

)

d
∏

j=1





k1+···+kj
∏

t=k1+···+kj−1+1

ZG(N),j( dxt)



 (31)

with the above defined functions g
(N)
k1,...,kd

(t, x1, . . . , xk) for all N = 1, 2, . . . , and

S0 =
∑

(k1,...,kd), kj≥0, 1≤j≤d,
k1+···+kd=k

∫

(

K
∑

p=1

Cpck1,...,kd
f0k1,...,kd

(tp, x1, . . . , xk)

)

d
∏

j=1





k1+···+kj
∏

t=k1+···+kj−1+1

ZG(0),j( dxt)



 (32)

with the previously defined function g0k1,...,kd
(t, x1, . . . , xk). I claim that the se-

quence of random variables SN defined in (31) converge in distribution to S0

defined in (32) as N → ∞.

This statement can be proved similarly to Theorem 1.2A with the help of
Proposition 2A. In this proof we rewrite the random variables SN , N = 1, 2, . . . ,
and S0 in a form in which we can apply Proposition 2A. We rewrite them as a
sum of multiple Wiener–Itô integrals indexed by sequences of integers j1, . . . , jk
such that 1 ≤ j1 ≤ · · · ≤ jk ≤ d. This can be done similarly to the reformulation
of formulas (13) and (17) in formulas (23), (24) and (25). (26) with the help of
the expressions ks(j1 . . . , jk) defined in (21). We rewrite (31) as

SN =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫

(

K
∑

p=1

Cpck1(j1,...,jk),...,kd(j1,...,jk)h
N
j1,...,jk

(tp, x1, . . . , xk)

)

ZG(N),j1( dx1) . . . ZG(N),jk( dxk) (33)

with

hNj1,...,jk(tp, x1, . . . , xk) = fNk1(j1,...,jk),...,kd(j1,...,jk)
(tp, x1, . . . , xk)
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for all N = 1, 2, . . . , and (32) as

S0 =
∑

(j1,...,jk),
1≤j1≤···≤jk≤d

∫

(

K
∑

p=1

Cpck1(j1,...,jk),...,kd(j,...,jk)h
0
j1,...,jk

(tp, x1, . . . , xk)

)

ZG(0),j1( dx1) . . . ZG(0),jk( dxk) (34)

with

h0j1,...,jk(tp, x1, . . . , xk) = f0k1(j1,...,jk),...,kd(j1,...,jk)
(tp, x1, . . . , xk)

where the functions ks(j1, . . . , jk), 1 ≤ s ≤ d, are defined in (21).
The random integrals in formulas (33) and (34) have kernel functions of the

form

hNj1...,jk(x1, . . . , xk) = hNj1...,jk,t1,...,tK (x1, . . . , xk) (35)

=

K
∑

p=1

Cpck1(j1,...,jk),...,kd(j1,...,jk)h
N
j1,...,jk

(tp, x1, . . . , xk)

for all N = 1, 2, . . . . Let us introduce the measures µN,j1,...,jk , N = 0, 1, 2, . . . ,
defined by the formula

µ
(N)
j1,...,jk

(A) = µ
(N)
j1,...,jk,t1,...,tK

(A) (36)

=

∫

A

|hN,j1,...,jK ,t1,...,tK (x1, . . . , xk)|
2G

(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk)

for all measurable sets A ∈ Bkν .
We want to show with the help of Proposition 2A that the random variables

SN , N = 1, 2, . . . , defined in (33) converge weakly to the random variable S0

defined in (34). This implies Theorem 1.3.
To prove this convergence we have to show that the functions hNj1,...,jk , n =

0, 1, 2, . . . , defined in (35) and the measures G
(N)
j,j′ , 1 ≤ j, j′ ≤ d, N = 0, 1, 2, . . . ,

satisfy the conditions of Proposition 2A. The main point is to prove relation (19)
in condition (b) of Proposition 2.1. To prove this we show that the measures

µ
(N)
j1,...,jk

, N = 1, 2, . . . , defined in (36) are tight, i.e. for all ε > 0 there exists a
T = T (ε, j1, . . . , jk, t1, . . . , tK) such that

µN
j1,...,jk,t1,...,tk

(Rkν \ [−T, T ]kν) < ε for all N = 1, 2, . . . .

Because of the Schwarz inequality and the definition of the functions
hNj1...,jk,t1,...,tK (x1, . . . , xk) the proof of this tightness property can be reduced
to the justification of the following inequality.

Let us define for all t = (t1, . . . , tν) ∈ [0, 1]ν , and N = 1, 2, . . . the measure
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µN,t on R
kν by the formula

µN,t(A) =

∫

A

∣

∣

∣

∣

∣

∣

ν
∏

l=1

exp
{

i ]t
(l)N [
N (x

(l)
1 + · · ·+ x

(l)
k )
}

− 1

N
(

exp
{

i 1
N (x

(l)
1 + · · ·+ x

(l)
k )
}

− 1
)

∣

∣

∣

∣

∣

∣

2

G
(N)
j1,j1

( dx1) . . . G
(N)
jk,jk

( dxk)

for all A ∈ Bkν . Then the inequality

µN,t(R
kν \ [−T, T ]kν) < ε

holds for all N = 1, 2, . . . , if T ≥ T0(ε, t) with an appropriate threshold index
T0(ε, t) > 0.

I claim that the measures µN,t converge weakly to a measure µ0,t on R
kν as

N → ∞. This convergence implies the above inequality. This convergence can
be proved similarly to Proposition 2.1. Namely we can write

ν
∏

l=1

exp
{

i ]t
(l)N [
N (x

(l)
1 + · · ·+ x

(l)
k )
}

− 1

N
(

exp
{

i 1
N (x

(l)
1 + · · ·+ x

(l)
k )
}

− 1
)

=
1

Nν

∑

u∈BN (t)

exp

{

i
1

N
(u, x1 + · · ·+ xk)

}

,

where BN (t) was defined in (10), and then we can calculate the Fourier trans-
form of the measure µN,t in all points of the form u = (u1, . . . , uk) with some
us = ps

N , ps ∈ Z
ν , 1 ≤ s ≤ k, similarly to the corresponding calculation in

Proposition 2.1. Then we can give a good asymptotic on this Fourier transform
with the help of relation (2), and this yields the proof of the above mentioned
convergence. Here again we apply a natural adaptation of the proof in Proposi-
tion 2.1. I omit the details of these calculations.

Thus we have proved that in our model condition (b) of Proposition 2A holds.
The proof of the remaining conditions is much simpler. Similarly to the proof
of Proposition 1.1 we can refer to Proposition 1.1 when we want to check that
the spectral measures GN

j,j′ satisfy the demanded convergence property. Finally,

it is not difficult to check that the functions hNj1,...,jk defined in (35) satisfy
condition A of Proposition 2A. Theorem 1.3 is proved.

Let me finally remark that some simple and natural modification in the proof
of Theorem 1.3 shows that this results also holds if the random variables S0(t)
in it are defined for all t ∈ [0,∞)ν , (in the way as it is explained at the end of
Section 1) and not only for t ∈ [0, 1]ν .
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