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Here I give a short survey about some problems on multiple random
integrals and U -statistics together with some other questions which occur
during their study in a natural way. I write down the main results, discuss
their background together with some pictures and mathematical ideas
which explain them better.

1. Introduction. Formulation of the problems.

To formulate the problems first I introduce some notations.

Let ξ1, . . . , ξn be a sequence of independent and identically distributed random
variables with some probability distribution µ on a measurable space (X,X ) and
let µn,

µn(A) =
1

n
#{j : ξj ∈ A, 1 ≤ j ≤ n}, A ∈ X ,

denote its empirical distribution. Let a measurable function f(x1, . . . , xk) of k-
variables be given on the product space (Xk,X k). Take the k-fold direct product
of the normalized version

√
n(µn − µ) of this empirical measure µn and consider

the integral of the function f with respect to it. More explicitly, the (random)
integral

Jn,k(f) =
nk/2

k!

∫ ′

f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dxk)),

where the prime in
∫ ′

means that the diagonals xj = xl, 1 ≤ j < l ≤ k,

are omitted from the domain of integration
(1.1)

will be considered.

The following two problems will be studied in this note:

Problem A). Give a good estimate on the probabilities P (Jn,k(f) > u) under
appropriate conditions on the function f .

(The omission of the diagonals xj = xl, j 6= l, from the domain of integration
turned out to be natural in possible applications.)

The second, more general problem is the following one.

Problem B). Let a nice class F of functions f(x1, . . . , xk) be given on the space

(Xk,X k). Give a good estimate on the probabilities P

(

sup
f∈F

Jn,k(f) > u

)

,

where Jn,k(f) denotes the integral of the function f defined in formula (1.1).
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It turned out useful to study these two problems together with their U -statistic
analogues. To formulate them first I recall the definition of U -statistics.

The definition of U-statistics. Let a sequence ξ1, . . . , ξn of independent and
identically distributed random variables be given with values in some measurable
space (X,X ) together with a function f(x1, . . . , xk) on the k-fold product space
(Xk,X k) with some k ≤ n. The expression

In,k(f) =
1

k!

∑

1≤js≤n, s=1,...,k
js 6=js′ if s6=s′

f (ξj1 , . . . , ξjk
) (1.2)

is called a U -statistic of order k with kernel function f .

I formulated the following versions of the above two problems.

Problem A′). Give a good estimate on the probabilities P (n−k/2In,k(f) > u)
under appropriate conditions on the function f .

Problem B′). Let a nice class F of functions f(x1, . . . , xk) be given on a (prod-
uct) space (Xk,X k) together with a sequence of independent and identically
distributed random variables ξ1, . . . , ξn with values in (X,X ). Give a good es-

timate on the probabilities P

(

sup
f∈F

n−k/2In,k(f) > u

)

, where In,k(f) denotes

the U -statistic of order k with kernel function f defined in formula (1.2).

It may be useful to remark that a U -statistic of order k with the kernel
function f can be rewritten as

In,k(f) =
nk

k!

∫ ′

f(x1, . . . , xk)µn( dx1) . . . µn( dxk),

where µn is the empirical distribution of the sequence ξ1, . . . , ξn. This shows that
the essential difference between the random integrals introduced in formula (1.1)
and the U -statistics is that in the random integrals Jn,k(f) integration is taken with
respect to the ‘normalized’ measures µn − µ, while in the integral representation
of the U -statistics In,k(f) with respect to the ‘non-normalized’ measures µn.

I met the above problems when tried to adapt a simple method applied in
the study of the asymptotic behaviour of maximum likelihood estimates to the
investigation of harder problems. In the study of maximum likelihood estimates
the root of the so-called maximum likelihood equation has to be well estimated.
This can be done by means of a good approximation of the function in the maxi-
mum likelihood equation which is obtained with the help of its Taylor expansion if
the high order terms of this expansion are omitted. It has to be shown that such
an approximation causes only a negligibly small error. But this can be proved
relatively simply.
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I tried to apply a similar method in the study of some so-called non-parametric
maximum likelihood estimation problems. Such a problem arises for instance if
we want to estimate an unknown distribution function by means of some partial
information. In the study of the error of such an estimate in a fixed point a
version of the Taylor expansion can be applied together with the omission of the
higher order terms. But in this case it is much harder to show that such an
approximation causes only a negligibly small error. To prove this a good solution
of Problem A is needed. If we want to bound the error of the estimation in all
points simultaneously, then we need a good solution of Problem B.

In the investigation of general non-parametric estimation problems several
additional difficulties have to be overcome, but the solution of Problems A and B
is especially important. Beside this, these problems are related to a better under-
standing of some fundamental probabilistic phenomena. Hence I found useful a
detailed study of the above questions.

2. An overview of the problems. The study of the one-variate case.

Before a detailed discussion it is worth thinking over what kind of results can
be expected. Let us observe that the normalized signed measures

√
n(µn − µ)

converge to a Gaussian field as n → ∞. Hence it is natural to expect that under
very general conditions such results hold both in the solution of Problem A and
Problem B which their Gaussian counterparts suggest. But we have to understand
the answer to the following two questions.

1.) What kind of estimates do the Gaussian counterparts of these problems sug-
gest?

2.) What does the expression ‘under very general conditions’ mean?

To clarify the above questions it is useful to study first Problem A in the case
k = 1 when the distribution of sums of independent random variables has to be
bounded. Such a bound is given in the following classical result called Bernstein’s
inequality.

Bernstein’s inequality. Let ξ1, . . . , ξn be independent random variables which
satisfy the relations P (|ξj | ≤ 1) = 1 and Eξj = 0, 1 ≤ j ≤ n. Let us introduce

the notation σ2
j = Eξ2

j , 1 ≤ j ≤ n, Sn =
n
∑

j=1

ξj and V 2
n = VarSn =

n
∑

j=1

σ2
j . The

inequality

P (Sn > u) ≤ exp







− u2

2V 2
n

(

1 + u
3V 2

n

)







(2.1)

holds for all numbers u > 0.

Bernstein’s inequality yields an estimate on the distribution of sums of inde-
pendent random variables suggested by the central limit theorem, although the
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coefficient 1 + u
3V 2

n
in the denominator of the upper bound slightly modifies the

picture. In the next remark the effect of this factor is considered in different cases.

a) If u ≤ εV 2
n with some small number ε > 0, then P (Sn > u) ≤ e−(1−ε)u2/2V 2

n .
This is almost such a good estimate as the estimate obtained by a formal
application of the central limit theorem.

b) If u ≤ 3V 2
n , then P (Sn > u) ≤ e−const. u2/2V 2

n . This is a bound similar to that
suggested by the central limit theorem, only it has a worse constant in the
exponent.

c) If u ≫ V 2
n , then

P (Sn > u) ≤ e−u. (2.2)

This is a very bad bound. In particular, it does not depend on the variance
of the sum.

The question arises whether Bernstein’s inequality can be improved in the
‘bad case’ u ≫ V 2

n . To this question a positive answer can be given. Bennett’s
inequality formulated below yields a slight improvement of Bernstein’s inequality
in this case.

Bennett’s inequality. Let ξ1, . . . , ξn be a sequence of independent random vari-
ables which satisfy the relations P (|ξj | ≤ 1) = 1 and EXj = 0, 1 ≤ j ≤ n. Put

σ2
j = Eξ2

j , 1 ≤ j ≤ n, Sn =
n
∑

j=1

ξj and V 2
n = VarSn =

n
∑

j=1

σ2
j . Then the inequality

P (Sn > u) ≤ exp

{

−V 2
n

[(

1 +
u

V 2
n

)

log

(

1 +
u

V 2
n

)

− u

V 2
n

]}

holds for all numbers u > 0.

Hence there exists a constant B = B(ε) > 0 for all ε > 0 such that

P (Sn > u) ≤ exp

{

−(1 − ε)u log
u

V 2
n

}

if u > BV 2
n ,

and there exists a number K > 0 such that

P (Sn > u) ≤ exp

{

−Ku log
u

V 2
n

}

if u ≥ 3V 2
n . (2.3)

Formula (2.3) yields a slight improvement of formula (2.2), but even this
bound is very far from the estimate suggested by the central limit theorem. On
the other hand, as the next example shows, this estimate cannot be improved.

Lower bound for the distribution of sums of independent random vari-

ables in an appropriate example. Let us fix a positive integer n together with
two positive numbers u and σ2 which satisfy the relations 0 < σ2 ≤ 1

8 , n > 3u ≥ 6
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and u > 3nσ2. Let us introduce the quantity V 2
n = nσ2, and consider a sequence

of independent and identically distributed random variables ξ1, . . . , ξn such that

P (ξj = 1) = P (ξj = −1) = σ2

2 and P (ξj = 0) = 1 − σ2. Put Sn =
n
∑

j=1

ξj. In this

example ESn = 0, Var Sn = V 2
n , and

P (Sn ≥ u) > exp

{

−Ku log
u

V 2
n

}

(2.4)

with some appropriate number K > 0.

In formula (2.4) that probability is bounded from below in a special case
which is bounded from above in (2.3). These two estimates are very similar. The
only difference between them is that they may contain a different constant K > 0.
The above results can be summarized in the following way.

For small numbers u > 0 the probability P (Sn > u) satisfies a good estimate
suggested by the central limit theorem. Such a situation holds if u ≤ εV 2

n . This
probability satisfies a slightly weaker estimate for not too large numbers u (if
εV 2

n ≤ u ≤ CV 2
n with some fixed number C > 0), and it satisfies only very weak

estimates for large numbers u (if u ≫ V 2
n ).

3. Some results useful in the study of the general case.

In the solution of Problem A) in the general case k ≥ 1 similar results hold as in
the special case k = 1 discussed before. To understand their similarity better it is
useful to study first the following two questions.

Question 1. In the case k = 1 the sum of independent random variables with zero
expectation was considered. What kind of normalization corresponds to this zero
expectation in the case k ≥ 2?

Question 2. In the case k = 1 the central limit theorem and the behaviour of the
normal distribution function were in the background of the estimates. What kind
of limit theorem and estimation do take their part in the case k ≥ 2?

Discussion of the first question.

It is useful to consider first the second moment of the expressions we are investi-
gating. In the case k = 1 independent random variables of expectation zero are
summed up. In this case the identity

Var

(

n
∑

k=1

ξk

)

=
n
∑

k=1

Var ξk,

holds because of the identity Eξiξj = 0 for all pairs i 6= j.
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The multivariate version of this identity (in the case of U -statistics) would be
the identity

In,k(f) = Var









1

k!

∑

1≤js≤n, s=1,...,k,
js 6=js′ if s6=s′

f(ξj1 , . . . , ξjk
)









=
1

k!

∑

1≤js≤n, s=1,...,k,
js 6=js′ if s6=s′

Var f(ξj1 , . . . , ξjk
)

This identity holds if

Ef(ξj1 , . . . , ξjk
)f(ξj′

1
, . . . , ξj′

k
) = 0

for all pairs of k-tuples such that {j1, . . . , jk} 6= {j′1, . . . , j′k}. The above relation
holds for the degenerate U -statistics introduced below.

Definition of degenerate U-statistics. Take a U -statistic In,k(f) determined
by a sequence of independent and identically distributed random variables ξ1, . . . , ξn

with distribution µ and a kernel function f(x1, . . . , xk). This U -statistic is degen-
erate if

E(f(ξ1, . . . , ξk)|ξ1 = x1, . . . , ξj−1 = xj−1, ξj+1 = xj+1, . . . , ξk = xk) = 0

for all indices 1 ≤ j ≤ k and values xs ∈ X, s ∈ {1, . . . , k} \ {j}.

A U -statistic is degenerate if its kernel function is canonical, i.e. it satisfies
the following property.

Definition of canonical functions. A function f(x1, . . . , xk) defined on the
k-fold direct product (Xk,X k) is canonical with respect to a probability measure µ

on the space (X,X ) if
∫

f(x1, . . . , xj−1, u, xj+1, . . . , xk)µ( du) = 0

for all indices 1 ≤ j ≤ k and values xs ∈ X, s ∈ {1, . . . , k} \ {j}.

The notion of degenerate U -statistics is useful, because in some sense such
U -statistics behave so as sums of independent random variables with expectation
zero. Beside this, the study of general U -statistics can be reduced to the study of
degenerate U -statistics by means of the following Hoeffding-decomposition.

Hoeffding decomposition of general U-statistics. All U -statistics In,k(f) of
order k can be written in the form of a linear combination

In,k(f) =
k
∑

j=0

nk−jIn,j(fj) (3.1)
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of degenerate U -statistics In,j(fj). The (canonical) kernel functions fj (of j vari-
ables) of the degenerate U -statistics In,j(fj), 0 ≤ j ≤ k, can be calculated explicitly.
It can be shown that they satisfy the inequality

∫

f2
j (x1, . . . , xj)µ( dx1) . . . µ( dxj) ≤

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

for all indices 0 ≤ j ≤ k.

The problems about the behaviour of the multiple random integrals Jn,k(f)
defined in formula (1.1) can also be reduced to problems about the behaviour
of degenerate U -statistics by means of their appropriate decomposition. Such
expressions can be written as the linear combination

Jn,k(f) =

k
∑

j=0

c(n, j)n−j/2In,j(fj) (3.2)

of degenerate U -statistics with the same kernel functions fj which appear in for-
mula (3.1) and with some appropriate coefficients c(n, j) such that c(n, j) < K(j)
with some universal constant K(j). This has the consequence that while in typical
cases the terms with small index j (with index j = 1, if Ef(ξ1, . . . , ξk) = 0) are
the dominating terms in the Hoeffding expansion (3.1) of a U -statistic, all terms
have the same order of magnitude in the expansion (3.2) of a multiple random
integral Jn,k(f).

In the definition of the random integral Jn,k(f) integration is taken with
respect to the signed measure µn − µ, and this ‘normalization’ diminishes the
value of the integral. This diminishing effect is reflected in the relatively small
value of the coefficients c(n, j)n−j/2 in formula (3.2).

Discussion of the second problem.

The previous results suggest that in the study of U -statistics and multiple random
integrals the limit distributions of appropriately normalized degenerate U -statistics
take the role of normal distributions. The limit theorems about degenerate U -
statistics are known, and they can be formulated by means of multiple Wiener-
Itô integrals with respect to a white noise. To formulate them first I recall the
definition of white noise.

The notion of white noise. Let a measure µ be given on some measurable space
(X,X ). A system of jointly Gaussian random variables indexed by the measurable
sets A ⊂ X such that µ(A) < ∞ is a white noise with reference measure µ if

EµW (A)µW (B) = µ(A ∩ B) and EµW (A) = 0

for all measurable sets A,B ⊂ X such that µ(A) < ∞ and µ(B) < ∞.
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If a white noise µW is given with some reference measure µ together with a
function f(x1, . . . , xk) square integrable with respect to the k-fold product µk of
the measure µ, then the k-fold Wiener–Itô integral

Zµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk) (3.3)

of this function f with respect to the white noise µW can be defined in a natural
way. (First this integral is defined for simple so-called step functions which take
a constant value on finitely many rectangles, and disappear outside them. Then
the integral can be extended to general functions by means of an appropriate
L2-isomorphism.)

The following result holds.

Limit distribution theorem for degenerate U-statistics. Let us consider
such a sequence In,k(f), n = k, k + 1, . . . , of degenerate U -statistics which is
determined by a sequence of independent and identically distributed random vari-
ables ξ1, ξ2, . . . , on a measurable space (X,X ) with distribution µ and a (canonical)
function f(x1, . . . , xk) square integrable with respect to the measure µk. The nor-
malized degenerate U -statistics n−k/2In,k(f) converge in distribution to the k-fold
Wiener–Itô integral

Zµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)

of the function f with respect to a white noise µW with the reference measure µ

which agrees with the distribution of the random variables ξj as n → ∞.

A heuristic explanation of the previous result.

If In,k(f) is a degenerate U -statistics, then the identity

n−k/2In,k(f) =
nk/2

k!

∫ ′

f(x1, . . . , xk)µn( dx1) . . . µn( dxk)

=
nk/2

k!

∫ ′

f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dx1))

holds, where µn denotes the empirical distribution of the sequence ξ1, . . . , ξn. Be-
side this, the normalized empirical distributions

√
n(µn(·)−µ(·)) have a Gaussian

limit as n → ∞. This suggests a limiting procedure, and as more detailed con-
siderations show (see e.g. [1]) the normalized empirical measures

√
n(µn(·)−µ(·))

can be replaced by the white noise µW (·) in the limit process. The proof consists
of the justification of this heuristic argument.

It is natural to extend the problems formulated in the introduction with their
appropriate counterpart about Wiener–Itô integrals. Their solution indicates what
kind of results can be expected in the original problems.
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Let us consider the Wiener–Itô integral Zµ,k(f) of a function f(x1, . . . , xk) of
k variables with respect to a white noise µW with reference measure µ introduced
in formula (3.3) and study the following problems.

Problem A′′). Let us give a good estimate on the probability P (Zµ,k(f) > u)
for all numbers u > 0.

Problem B′′). Let a nice class F of functions f(x1, . . . , xk) of k variables
be given. Take the Wiener–Itô integral Zµ,k(f) of all functions f ∈ F
with respect to a white noise µW . Give a good estimate on the distri-
bution of the supremum of these random integrals, i.e. on the probability

P

(

sup
f∈F

Zµ,k(f) > u

)

for all numbers u > 0.

4. Results about the distribution of random integrals and U-statistics.

It is worth considering first Problem A′′) about the estimation of Wiener–Itô
integrals. I present a result in this direction.

Estimation about the tail distribution of Wiener–Itô integrals. Let
a white noise µW be given with reference measure µ together with a function
f(x1, . . . , xk) of k variables on a measurable space (X,X ) such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2

with some number σ2 < ∞. The Wiener–Itô integral

Zµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)

introduced in formula (3.3) satisfies the inequality

P (k!|Zµ,k(f)| > u) ≤ C exp

{

−1

2

(u

σ

)2/k
}

for all numbers u > 0 with some constant C = C(k) > 0 depending only on the
multiplicity k of the integral.

The next example shows that the above estimate is sharp.

Lower bound on the tail distribution of a special Wiener–Itô integral.

Let a σ-finite measure µ be given on a measurable space (X,X ) together with a
white noise µW on (X,X ) with this reference measure µ. Let f0(x) be a real valued
function on the space (X,X ) such that

∫

f0(x)2µ( dx) = 1. Let us introduce the
function f(x1, . . . , xk) = σf0(x1) · · · f0(xk) with some number σ > 0, and consider
the Wiener–Itô integral Zµ,k(f) introduced in formula (3.3). Then the identity

∫

f(x1, . . . , xk)2 µ( dx1) . . . µ( dxk) = σ2
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holds, and the Wiener–Itô integral Zµ,k(f) satisfies the inequality

P (k!|Zµ,k(f)| > u) ≥ C̄
(

u
σ

)1/k
+ 1

exp

{

−1

2

(u

σ

)2/k
}

for all numbers u > 0 with some appropriate constant C̄ > 0.

The integral σ2 =
∫

f(x1, . . . , xk)2 µ( dx1) . . . µ( dxk) in the above results
agrees with the variance of the random integral (k!)−1/2Zµ,k(f). Hence these
results can be interpreted so that

P (Zk,µ(f) > u) ≤ const. P (σηk > u)

for all numbers u > 0, where η is a standard normal random variable, and σ2 =
(k!)−1/2EZµ,k(f)2. Furthermore, this estimate is sharp. This sharpness means
that if we have no more information about the kernel function f than its L2 norm,
i.e. the variance of the Wiener–Itô integral determined by it, then we cannot
get a better estimate, than the above formulated inequality. On the other hand,
in some special cases a considerably better estimate can be proved under some
appropriate additional information about the behaviour of the kernel function f .
But this question, which does not appear in the statistical problems which gave
the motivation for the study of the problems considered in this note will be not
discussed here.

Similar, but slightly weaker estimates hold for degenerate U -statistics and
multiple random integrals with respect to normalized empirical distributions.

Estimate on the tail distribution of degenerate U-statistics. Let ξ1, . . . , ξn

be a sequence of independent and identically distributed random variables on a
measurable space (X,X ) with distribution µ. Take a function f(x1, . . . , xk) on
the space (Xk,X k) canonical with respect to the measure µ which satisfies the
conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1 (4.1)

‖f‖2
2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 (4.2)

with some number 0 < σ2 ≤ 1, and consider the (degenerate) U -statistic defined
in formula (1.2) with the help of these quantities. Then there exist some constants
A = A(k) > 0 and B = B(k) > 0 depending only on the order k of the U -statistic
such that the inequality

P (k!n−k/2|In,k(f)| > u) ≤ A exp







− u2/k

2σ2/k
(

1 + B
(

un−k/2σ−(k+1)
)1/k

)







(4.3)
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holds for all numbers 0 ≤ u ≤ nk/2σk+1.

The above estimate can be considered as a multivariate generalization of Bern-
stein’s inequality. For multiple integrals with respect to normalized empirical dis-
tributions the following similar estimate holds.

Estimate about the tail distribution of random integrals with respect to

normalized empirical distributions. Let a sequence ξ1, . . . , ξn of independent
and identically distributed random variables be given with distribution µ which take
their values in a measurable space (X,X ) together with a function f(x1, . . . , xk)
on the k-fold product space (Xk,X k) which satisfy relations (4.1) and (4.2) with
some constant 0 < σ ≤ 1. Then there exist some constants C = Ck > 0 and
α = αk > 0 depending only on the multiplicity k of the integral Jn,k(f) defined in
formula (1.1) such that the inequality

P (|Jn,k(f)| > u) ≤ C exp

{

−α
(u

σ

)2/k
}

for all numbers 0 < u ≤ nk/2σk+1

holds.

In the case k = 1 we have seen that the tail distribution P (n−1/2Sn > u) of
the normalized sum n−1/2Sn of n independent, identically distributed, bounded
random variables with expectation zero satisfies only a very weak estimate if u ≫
n1/2σ2, an estimate which is very far from the bound suggested by the central
limit theorem.

Similarly, in the case k ≥ 2 the tail distribution P (k!n−k/2In,k(f) > u) of de-
generate U -statistics satisfies a much weaker estimate than the bound suggested
by the behaviour of Wiener–Itô integrals if u ≫ nk/2σk+1. This means that the
previous estimates about the tail distribution of degenerate U -statistics and inte-
grals with respect to normalized empirical distributions are sharp also in that sense
that they give the domain where the sharp estimate suggested by the behaviour
of Wiener–Itô integrals holds.

For the sake of completeness I present such a degenerate U -statistic in the
case k = 2 whose tail-distribution satisfies only a much weaker estimate than
formula (4.3) if u ≫ nσ3.

Lower bound for the tail distribution of a special degenerate U-statistic

in the case k = 2. Let ξ1, . . . , ξn be a sequence of independent, identically dis-
tributed random variables with values on the two-dimensional Euclidean space.
Let ξj = (ηj,1, ηj,2), 1 ≤ j ≤ n, where ηj,1 and ηj,2 are independent random

variables, P (ηj,1 = 1) = P (ηj,1 = −1) = σ2

8 , and P (ηj,1 = 0) = 1 − σ2

4 ,
P (ηj,2 = 1) = P (ηj,2 = −1) = 1

2 for all indices 1 ≤ j ≤ n. Let us introduce
the function f(x, y) = f((x1, x2), (y1, y2)) = x1y2 + x2y1, x = (x1, x2) ∈ R2,
y = (y1, y2) ∈ R2, and define the U -statistic of order 2

In,2(f) =
∑

1≤j,k≤n, j 6=k

(ηj,1ηk,2 + ηk,1ηj,2)
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with this kernel function f and the independent random variables ξ1, . . . , ξn. The
expression In,2(f) is a degenerate U -statistic. Furthermore, if u ≥ B1nσ3 with
some appropriate constant B1 > 0, B−1

2 n ≥ u ≥ B2n
−2 with some sufficiently

large number B2 > 0, and 1
n ≤ σ ≤ 1, then the inequality

P (n−1In,2(f) > u) ≥ exp
{

−Bn1/3u2/3 log
( u

nσ3

)}

= exp

{

−B
u

σ

(

nσ3

u

)1/3

log
( u

nσ3

)

}

holds with some constant B > 0, which depends neither on the number n nor on
the parameter σ.

5. A brief explanation of the results.

It is worth showing that the high even order moments EIn,k(f)2M of a degenerate
U -statistic In,k(f) of order k satisfy such estimates as the moments Eη2kM of a
Gaussian random variable η with expectation zero and appropriate variance. Such
estimates (together with the Markov inequality) imply the inequalities we want
prove, and beside this there is a method which enables us to bound such moments.

Such moments can be estimated by means of the so-called diagram formula
about random integrals. This formula makes possible to express the moments we
are interested in as the sum of certain integrals defined with the help of some
diagrams. To give a good estimate on the moments we want to bound it has
to be shown that the “diagrams corresponding to the Gaussian effect” yield the
main contribution to them. In such a way we can get an explanation why the
tail distribution of degenerate U -statistics and random integrals satisfy such an
estimate which the behaviour of Wiener–Itô integrals (i.e. the Gaussian case)
suggests.

The explanation of the details in the estimation of multiple random integrals
or degenerate U -statistics of order k ≥ 2 demands the application of rather com-
plicated notations. This requires much work which cannot be done in a short
summary paper. Hence I omit its discussion. On the other hand, I consider a spe-
cial case of this problem, the estimation of the moments of sums of independent
random variables. This may explain very much also about the general case.

Let ξ1, . . . , ξn be a sequence of independent and identically distributed random
variables such that Eξ1 = 0, Var ξ1 = σ2, and let us estimate the even moments

of the sum Sn =
n
∑

j=1

ξj . The identity

ES2M
n =

∑

(j1,...,js,l1,...,ls)
j1+···+js=2M, ju≥2, for all indices 1≤u≤s

lu 6=lu′ if u 6=u′

Eξ
j1
l1
· · ·Eξ

js

ls
(5.1)
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holds.

Simple combinatorial considerations show that in the sum at the right-hand
side of the identity (5.1) most terms are indexed with such a vector

(j1, . . . , jM , l1, . . . , lM )

for which ju = 2 for all numbers 1 ≤ u ≤ M . The number of such terms equals
(

n
M

) (2M)!
2M ∼ nM (2M)!

2M M !
. Hence it is natural to expect that in typical cases ES2M

n ∼
(

nσ2
)M (2M)!

2M M !
. This consideration suggests the estimate

∑

1≤l1<l2<···<lM≤n

Eξ2
l1 · · ·Eξ2

lM =

(

n

M

)

(2M)!

2M
σ2M ∼ (2M)!

2MM !
(nσ2)M = Eη2M

for the quantity ES2M
n , where η is a Gaussian random variable with expectation

zero and variance Var Sn.

The above heuristic argument shows why we can expect such estimates for
the moments of sums of independent random variables as in the Gaussian case. In
nice cases this argument yields the right estimate.

But at working out the details some finer considerations have to be applied.
It is not enough to give a good estimate on the number of the terms of different
type, their magnitude has also to be taken into consideration. It is possible that
relatively few summands with relatively large values yield the main contribution
in the sum at the right-hand side of formula (5.1).

Let us consider for instance the following example. Let the terms of the sum

be of the following form: P (ξ1 = 1) = P (ξ1 = −1) = σ2

2 , P (ξ1 = 0) = 1 − σ2. If
σ2 is very small and the number M is large, then

n
∑

j=1

Eξ2M
j = nσ2 ≫

∑

1≤l1<l2<···<lM≤n

Eξ2
l1 · · ·Eξ2

lM ∼ (2M)!

2MM !
nMσ2M .

It can be seen by working out the details of the above example in the general
case that we can get a good estimate for high moments of sums of independent
random variables only if the variance of the summands is not too small, and not
too high moments are bounded. Similar considerations may also explain why we
can get good ‘Gaussian type’ estimates on the high moments of degenerate U -
statistics and random integrals only under the condition that their variance is not
too small.

13



6. Estimation of the supremum of random integrals and U-statistics.

Let us consider the random integrals of a class of functions with respect to a
normalized empirical distribution or a system of degenerate U -statistics defined
with the help of a class of kernel functions and a sequence of independent and
identically distributed random variables. We want to give a good estimate on
the supremum of such integrals or U -statistics. It can be expected that in nice
cases almost such a good estimate holds for this supremum as in the case when all
but one random integrals or U -statistics are omitted from this class, and only the
‘worst’ integral or U -statistic is preserved, that one for which the weakest estimate
holds. In the subsequent discussion such results will be given. To get them first
the definition of good classes of functions has to be found for which good and
substantial results hold.

It is useful to look for such classes of functions from which such a subclass
with relatively few functions can be selected which is dense in the original class in
an appropriate sense. The introduction of the following two notions proved to be
useful.

Definition of L2-dense classes of functions with respect to some measure.

Let a measurable space be (Y,Y) be given together with a σ-finite measure ν and a
class G of Y-measurable, real valued functions on this space. This class of functions
G is called an L2-dense class with respect to ν with parameter D and exponent L if
for all numbers 1 ≥ ε > 0 there exists a subclass Gε = {g1, . . . , gm} ⊂ G in the space
L2(Y,Y, ν) consisting of m ≤ Dε−L elements such that inf

gj∈Gε

∫

|g − gj |2 dν < ε2

for all functions g ∈ G.

The other useful notion is the following one.

Definition of L2-dense classes of functions. Let us have a measurable space
(Y,Y) and a set G of Y-measurable, real valued functions on this space. We call G
an L2-dense class of functions with parameter D and exponent L if it is L2-dense
with parameter D and exponent L with respect to all probability measures ν on
(Y,Y).

It is useful to consider first Problem B′′) about the supremum of Wiener–Itô
integrals, then to describe the results on Problems B) and B′) about the supre-
mum of random integrals with respect to normalized empirical distribution and
degenerate U -statistics and to compare these results.

Estimate about the tail distribution of the supremum of Wiener–Itô

integrals. Let us consider a measurable space (X,X ) together with a σ-finite
non-atomic measure µ on it, and let µW be a white noise with reference measure
µ on (X,X ). Let F be a countable and L2-dense class of functions f(x1, . . . , xk)
on (Xk,X k) with some parameter D and exponent L with respect to the product
measure µk such that
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 with some 0 < σ ≤ 1 for all f ∈ F .
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Let us consider the multiple Wiener integrals Zµ,k(f) introduced in formula (3.3)
for all f ∈ F . The inequality

P

(

sup
f∈F

|Zµ,k(f)| > u

)

≤ C(D + 1) exp

{

−α
(u

σ

)2/k
}

holds with some universal constants C = C(k) > 0 and α = α(k) > 0 if

(u

σ

)2/k

≥ ML log
2

σ
(6.1)

with some appropriate constant M = M(k) > 0.

In the above result — disregarding the value of the universal constants appear-
ing in it — the same estimate is obtained about the tail distribution of Wiener–Itô
integrals (under appropriate conditions) as in the estimate about the tail distri-
bution of a single Wiener–Itô integral. The only essential difference between these
two results is that in the present case an additional condition formulated in for-
mula (6.1) had to be imposed. It is not difficult to present such an example which
shows that such a condition is really needed. But here I omit its description.

The next result is an estimate on the tail-distribution of the supremum of
random integrals Jn,k(f) defined in formula (1.1).

Estimate on the tail distribution of the supremum of multiple integrals

with respect to a normalized empirical distribution. Let us have a probabil-
ity measure µ on a measurable space (X,X ) together with a countable and L2-dense
class F of functions f = f(x1, . . . , xk) of k variables with some parameter D and
exponent L, L ≥ 1, on the product space (Xk,X k) such that

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1,

and

‖f‖2
2 = Ef2(ξ1, . . . , ξk) =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2

for all functions f ∈ F with some constant 0 < σ ≤ 1. Then there exist some
constants C = C(k) > 0, α = α(k) > 0 and M = M(k) > 0 depending only on
the parameter k such that the supremum of the random integrals Jn,k(f), f ∈ F ,
defined by formula (1.1) satisfies the inequality

P

(

sup
f∈F

|Jn,k(f)| ≥ u

)

≤ CD exp

{

−α
(u

σ

)2/k
}

,

provided that

nσ2 ≥
(u

σ

)2/k

≥ M(L + β)3/2 log
2

σ
,
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where β = max
(

log D
log n , 0

)

and the numbers D and L agree with the parameter and

exponent of the L2-dense class F .

A similar estimate holds for the supremum of degenerate U -statistics In,k(f),
f ∈ F . The only difference in comparison with the above result that in the case
of the supremum of U -statistics the additional condition has to be imposed that
the U -statistics In,k(f) must be degenerate.

An essential difference between the results about the estimation of the supre-
mum of Wiener–Itô integrals Zµ,k(f) and integrals with respect to normalized
empirical distribution Jn,k(f) is that in the first case the class of functions F had
to be L2-dense with respect to the product measure µk, while in the second case
a more restrictive condition was imposed. In the case of supremum of integrals
with respect to a normalized empirical distribution the class of functions F had to
satisfy the L2-property, i.e. it had to be L2-dense with respect to all probability
measures. The question arises what the cause of this difference is.

The supremum of Wiener–Itô integrals can be bounded by means of a simple
and natural method, the so-called ‘chaining argument’. In the case of the random
integrals Jn,k(f) this method is not strong enough to solve the problem, it only
yields some partial results. To get a complete solution some additional methods
have to be applied, and their application demands some additional restrictions.

The elaboration of the details would demand much work and the application
of methods essentially different from previous ones. Hence I shall present only a
brief sketch of the main ideas. The main emphasize will be put on the explanation
of the main problems and methods. First I briefly explain the ‘chaining argument’.

The ‘chaining argument’, and the boundary of this method.

Let us apply the notation worked out in the formulation of the results about
the supremum of Wiener–Itô integrals. Let us take for all indices N = 1, 2, . . .

such a system of increasing subsets F1 ⊂ F2 ⊂ · · · ⊂ FN ⊂ · · · ⊂ F of the class of
functions F with relatively small cardinalities which satisfy the relation

inf
g∈FN

∫

(f(x1, . . . , xk) − g(x1, . . . , xk))
2
µ( dx1) . . . µ( dxk) ≤ 2−2Nσ2.

for all functions f ∈ F .

The probabilities

P

(

sup
g∈FN

Zµ,k(g) > u
(

1 − 2−N
)

)

can be well estimated by means of a recursion for N = 1, 2, . . . , since for all
functions g ∈ FN+1 there exists a function g′ ∈ FN (close to it) for which

∫

(g(x1, . . . , xk) − g′(x1, . . . , xk))
2
µ( dx1) . . . µ( dxk) ≤ 2−2Nσ2.
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Hence the probability

P (|Zµ,k(g) − Zµ,k(g′)| > 2−Nu) = P (|Zµ,k(g − g′)| > 2−Nu)

can be well estimated by means of the previous results about the tail distribution
Wiener–Itô integrals. By working out the details the result about the tail distri-
bution of the supremum of Wiener–Itô integrals can be relatively simply proved.

The above considered ‘chaining argument’ is not strong enough to estimate
the supremum of integrals with normalized empirical distribution or of degenerate
U -statistics. It only makes possible to reduce the problem to the case when the
expressions σ2(f) =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) are small for all functions
f ∈ F .

The ‘chaining argument’ is a weak method in the study of this problem for
the following reason.

There are only very weak estimates on probabilities of the form

P (In,k(f) > u) or P (Jµ,k(f) > u)

if σ2(f) is very small, and the number u is relatively large. This is the consequence
of the previously discussed fact that there cannot be given such a good estimate for
the tail distribution of degenerate U -statistics or random integrals with respect to
a normalized empirical distribution function with small variance as the Gaussian
comparison would suggest.

This difficulty can be overcome by means of a different method, by means of
a symmetrization argument. This method consists of reducing the estimation of a
probability of the type

P









1

k!
sup
f∈F

∑

1≤js≤n, s=1,...,k,
js 6=js′ if s6=s′

f(ξj1 , . . . , ξjk
) > u









to a probability of the type

P









1

k!
sup
f∈F

∑

1≤js≤n, s=1,...,k,
js 6=js′ if s6=s′

εj1 . . . εjk
f(ξj1 , . . . , ξjk

) > u









, (6.2)

where ε1, . . . , εn are independent random variables with distribution P (εj = 1) =
P (εj = −1) = 1

2 for all indices 1 ≤ j ≤ n. Beside this, they are also independent
of the random variables ξ1, . . . , ξn.

The probabilities in formula (6.2) can be well estimated by means of a ‘con-
ditioning argument’. In the application of this method the conditional probability
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of the investigated event has to be bounded under the condition ξ1 = x1, . . . ,
ξn = xn for all possible values x1, . . . , xn. There are good methods to estimate
such type of conditional probabilities, but they are not discussed here. On the
other hand, these methods work only if the class of functions F is L2-dense. This
is the reason why this property appears in this problem.

There is a point which should be emphasized even in this sketchy discussion of the
problems. In the study of the supremum of random integrals with respect to a
normalized empirical distribution or of degenerate U -statistics a different method
was applied in the estimation of random variables with relatively large and small
variance. In the case of relatively large variance the ‘chaining argument’ works,
while in the case of small variance an appropriate symmetrization argument was
applied. Behind the different approaches in these two cases there is a deeper
reason.

The ‘chaining argument’ works well only in the study of the supremum of
degenerate U -statistics or random integrals with respect to a normalized empiri-
cal measures with not too small variance; in the case when the U -statistics and
random integrals satisfy such estimates which their ‘Gaussian type limits’ suggest.
There can be defined some ‘irregular events’ whose appearance implies that the
U -statistics or random integrals take extremely large values. But in the case of
random variables with not too small variances the probability of such irregular
events is very small, and their effect can be disregarded. The case of U -statistics
or random integrals with a small variance is different. In this case the probabil-
ity of these irregularities (compared to the events of regular events) is relatively
large, and in the estimation of the probabilities we are interested in their effect is
dominant.

In the estimation of the tail distribution of the supremum of multiple integrals
a simultaneous application of the two above mentioned arguments is needed. The
‘chaining argument’ helps to reduce the problem to such a case when the supre-
mum of random variables with very small variance have to be bounded. In this
situation the effect of the irregularities is non-negligible, and we can estimate this
supremum ‘with non-Gaussian behaviour’ with the help of some symmetrization
type arguments.

In this work I tried to describe briefly the result of an important subject together
with the heuristic picture behind the results. A more detailed discussion of this
subject can be found in my work [1]. This work also contains a fairly detailed list
of references.
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