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Abstract. In this paper we study Dyson’s classical r-component hi-
erarchical model with a Hamiltonian function which has a continuous
O(r)-symmetry, r ≥ 2. This is a one-dimensional ferromagnetic model
with a long range interaction potential U(i, j) = −l(d(i, j))d−2(i, j),
where d(i, j) denotes the hierarchical distance. We are interested in the
case when ln = l(2n), n = 1, 2, . . ., is an increasing sequence, with a sub-
exponential growth as n → ∞. For a class of free measures, we prove
a conjecture of Dyson. This conjecture states that the convergence of
the series l−1

1 + l−1
2 + . . . is a necessary and sufficient condition of the

existence of phase transition in the model under consideration, and the
spontaneous magnetization vanishes at the critical point, i.e., there is
no Thouless’ effect. We find, however, that the distribution of the nor-
malized mean spin at the critical temperature Tc tends to the uniform
distribution on the unit sphere in R

r as the volume tends to infinity,
a phenomenon which resembles the Thouless effect. We prove that the
limit distribution of the normalized mean spin is Gaussian for T > Tc,
and it is non-Gaussian for T ≤ Tc. We also show that the density of
the limit distribution of the normalized mean spin for T ≤ Tc is a nice
analytic function which can be found from the unique solution of a non-
linear fixed point integral equation. Finally, we determine some critical
asymptotics and show that the divergence of the correlation length and
magnetic susceptibility is super-polynomial as T → Tc.
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1. Introduction. Formulation of the Main Results.

In this paper we investigate Dyson’s hierarchical vector-valued model with
continuous symmetry. The model consists of spin variables σ(j) ∈ R

r, j ∈
N = {1, 2, . . . }, where r ≥ 2. We define the hierarchical distance d(·, ·) on N

as

d(j, k) = 2n(j,k)−1 for j 6= k

with

n(j, k) = {minn : there is an integer l such that (l − 1)2n < j, k ≤ l2n}
if j 6= k,

and d(j, j) = 0. The Hamiltonian of the ferromagnetic Dyson’s hierarchical
r-component model in the volume Vn = {1, 2, . . . , 2n} is

Hn(σ) = −
∑

1≤j<k≤2n

l(d(j, k))

d2(j, k)
σ(j)σ(k), (1.1)

where σ(j)σ(k) denotes a scalar product in R
r, and l(t) is a positive func-

tion. In this paper we will be interested in the case when l(t) is a positive
increasing function such that

lim
t→∞

l(t) = ∞; lim
t→∞

l(t)

tε
= 0, for all ε > 0.

Since the hierarchical distance d(j, k) for j 6= k takes the values 2n, n =
0, 1, 2, . . ., only, we consider the function l(t) for t = 2n only and define

ln = l(2n).

Let ν(dx) be a probability measure on R
r. Then the Gibbs measure in Vn

at a temperature T > 0 with free boundary conditions and the free measure
ν(dx) is defined as

µn(dx;T ) = Z−1
n (T ) exp {−βHn(x)}

2n∏

j=1

ν(dxj), β = T−1.

We will assume that the free measure ν(dx) is invariant with respect to
the group O(r) of orthogonal transformations, i.e., ν(UA) = ν(A) for all
U ∈ O(r) and all Borel sets A ∈ B(Rr). Then the Gibbs measure µn(dx;T )
is O(r)-invariant as well,

µn(UA1, . . . , UA2n ;T ) = µn(A1, . . . , A2n ;T ), for all U ∈ O(r),

Aj ∈ B(Rr), j = 1, . . . , 2n.

In [Dys2], Dyson proved the following theorem (see also [Dys3]). Assume
that r = 3, and ν(dx) is a uniform measure on the unit sphere in R

3. This
is the classical Heisenberg hierarchical model.
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Theorem 1.1. (see [Dys2]). The classical Heisenberg hierarchical model
has a phase transition if

B =
∞∑

n=1

l−1
n <∞. (1.2)

It has a long-range order so long as β > B.

Dyson also formulated the following conjecture (see [Dys2]): “It also
seems likely that for sequences ln which are positive and increasing with
n the condition (1.2) is necessary for a phase transition in Heisenberg hier-
archical models.” The goal of this paper is to prove Dyson’s conjecture for a
class of hierarchical models and to study the limit distribution of the normal-
ized mean spin both below and above the critical temperature if condition
(1.2) holds. Dyson’s proof is a clever application of correlation inequalities.
Our approach is based on an analytical study of the renormalization group
transformation for the hierarchical models.

The renormalization group (RG) approach to the Dyson hierarchical mod-
els was initiated in the works of Bleher and Sinai [BS1]–[BS3] (see also the
monograph [Sin] and the review [Ble], and references therein). The Dyson
hierarchical models are of a great interest because for this model the RG
transformation reduces to a nonlinear integral equation, and this allows a
study of critical phenomena unavailable in other models. The works of
Bleher and Sinai were concerned with the critical phenomena and phase
transitions in the scalar Dyson hierarchical models. They were extended to
the study of critical phenomena and phase transitions in the vector Dyson
hierarchical models with continuous symmetry in the works of Bleher and
Major [BM1]–[BM5]. The present paper is a continuation of the works
[BM1]–[BM5].

We apply a perturbation technique which works if the free measure ν(dx)
is a small perturbation of the Gaussian measure. Hence, we cannot treat
the case when ν(dx) is a uniform measure on the unit sphere. On the other
hand, we will consider arbitrary spin dimension r ≥ 2. We will focus on free
measures ν(dx), which have a density function p(x) on R

r such that p(x) is
close, in an appropriate sense, to the density function

p0(x) = C(κ) exp

{
−|x|2

2
− κ

|x|4
4

}
(1.3)

with a sufficiently small parameter κ > 0. Precise conditions on p(x) are
given below. We also will assume some regularity conditions about the
sequence ln = l(2n) (see below).

We are investigating the following question. Let pn(x, T ) denote the den-

sity function of the mean spin 2−n
2n∑
j=1

σ(j), where (σ(1), . . . , σ(2n)) is a

µn(T )-distributed random vector. Because of the rotational invariance of
the model, the function pn(x, T ) is a function of |x|. We are interested in
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the limit behaviour of the function pn(x, T ) as n→ ∞, with an appropriate
normalization. In our papers [BM1]–[BM5] this problem was considered for
the Hamiltonian

Hn(σ) = −
∑

1≤j<k≤2n

1

dα(j, k)
σ(j)σ(k),

where 1 < α < 2. Observe that if α ≤ 1 then the thermodynamic limit of
the model does not exist, and if α ≥ 2 then there is no phase transition,
hence the range 1 < α < 2 is natural. We distinguished in [BM1]–[BM5] the
three cases for α:

(i) 1 < α < 3/2, (ii) α = 3/2, and (iii) 3/2 < α < 2.

The difference between these cases appears in the asymptotic behavior
of pn(x, T ) at small T . When T is small the spontaneous magnetization
M(T ) is positive, and the function pn(x, T ) is concentrated in a narrow
spherical shell near the sphere |x| =M(T ). The question is what the width
of this shell is and what the limiting shape of pn(x, T ) is like along the
radius after an appropriate rescaling. In case (i), the width is of the order

of 2−n/2 and the limit shape of pn(x, T ) is Gaussian (see [BM1]). In case
(ii), there is a logarithmic correction in the asymptotics of the width, but
the limit shape is still Gaussian (see [BM4]). In case (iii), the width of

the shell has a nonstandard asymptotics of the order of 2−n(2−α), and the
limit shape of pn(x, T ) along the radius (after a rescaling) is a non-Gaussian
function which is a solution of a nonlinear integral equation (see [BM3] and
the review [BM2]). In the present paper we are interested in the marginal
potential l(d(j, k))/d2(j, k), with an extra factor l(t) of a sub-polynomial
growth.

Before formulating the main results we would like to discuss the impor-
tance of Dyson’s condition (1.2). In the case of the Ising hierarchical model
(r = 1), Dyson proved in [Dys2] that there exists a “weakest” interaction
function l(t) for which the hierarchical model (1.1) has a phase transition.
This function is l(t) = log log t, which corresponds to ln = logn. Dyson has
proved that if

lim
n→∞

ln
log n

= 0,

then the spontaneous magnetization is equal to zero for all temperatures
T > 0. On the other hand, if

ln
log n

> ε for all n > 0 with some ε > 0,

then the spontaneous magnetization is positive at sufficiently low tempera-
tures T > 0. In the borderline model, when

ln = J log n, J > 0,

Dyson proved that the spontaneous magnetization M(T ) has a jump at the
critical temperature Tc. The existence of the jump for the 1D Ising model



A THOULESS-LIKE EFFECT 5

with long-range interaction was first predicted by Thouless (see [Tho], and
also the works [YA] of Anderson, Yuval and [Ham] of Hamann and references
therein) for the translationally invariant Ising model with the interaction

H(σ) = −
∑

j,k

σ(j)σ(k)

(j − k)2
. (1.4)

This phenomenon (the jump ofM(T ) at T = Tc) is called the Thouless effect.
The existence of a phase transition in the ferromagnetic one-dimensional
Ising model with 1/(j − k)2 interaction energy was proved by Fröhlich and
Spencer in [FS]. A rigorous proof of the existence of the Thouless effect
in the Ising model with the inverse square interaction (1.4) was given by
Aizenman, J. Chayes, L. Chayes, and Newman [ACCN]. Simon proved in
[Sim] the absence of continuous symmetry breaking in the one-dimensional
r-component Heisenberg model with the interaction (1.4), in the case when
r ≥ 2.

Dyson formulated a general heuristic principle in [Dys2] which tells us
when one should expect the Thouless effect in a 1D long-range ferromagnetic
model: It should occur for the “weakest” interaction (if it exists) for which a
phase transition appears. Dyson wrote that in the hierarchical model “in the
Ising case, there exists a borderline model ln = logn which is the ‘weakest’
ferromagnet for which a transition occurs, and this borderline model shows
a Thouless effect. In the Heisenberg case there exists no borderline model,
since there is no ‘most slowly converging’ series (1.2). Thus we do not expect
to find a Thouless effect in any one-dimensional Heisenberg hierarchical
ferromagnet.” This conjecture of Dyson, about the absence of a Thouless
effect in the Heisenberg case, plays a very essential role in our investigation.
We show that in the class of the r-component hierarchical models under
consideration, the spontaneous magnetization M(T ) approaches zero as T
approaches the critical temperature, i.e., there is no Thouless effect. On the
other hand, we observe a phenomenon which resembles the Thouless effect:
at T = Tc the rescaled distribution

M̄ r
n(Tc)pn(Mn(Tc)x, Tc) dx, M̄n(T ) =

(∫

Rr

|x|2pn(x, T ) dx
)1/2

,

approaches, as n→ ∞, a uniform measure on the unit sphere in R
r, r ≥ 2.

Thus, although the spontaneous magnetization M(Tc) = lim
n→∞

M̄n(Tc) is

equal to zero at the critical point, the distribution of the normalized mean
spin converges to a uniform measure on the unit sphere. This is a “remnant”
of the spontaneous magnetization at the critical temperature Tc.

To formulate our results we will need some conditions on the sequence
ln = l(2n). We need different conditions on ln in different theorems. We
formulate the conditions we shall later apply.
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Conditions on the sequence ln, n = 0, 1, 2, . . . . Let us introduce the
notation

cn =
ln
ln−1

, n = 0, 1, . . . , with l−1 = 1.

Condition 1.

l0 = 1; 1 ≤ cn ≤ 1.01 for all n; lim
n→∞

cn = 1. (1.5)

Remark. The requirement l0 = 1 is not a real condition, it can be reached
by a rescaling of the temperature. We use it just for a normalization.

Condition 2.

lim
n→∞

ln

∞∑

j=n

l−1
j = ∞.

Moreover, the above condition is uniform in the following sense: For all
ε > 0 there are some numbers K(ε) > 0 and L(ε) > 0 such that

ln

n+K(ε)∑

j=n

l−1
j ≥ ε−1

for all n > L(ε).

Condition 3.

sup
1<n<∞

n∑

k=1


lk

n∑

j=k

l−1
j




−2

<∞.

Condition 4.
∞∑

n=1

l−1
j > 400κ−1.

Condition 5.

ln
ln+k

> η̄ for all n = 0, 1, 2, . . . , and all k = 1, . . . , L.

The numbers κ, η̄ > 0, and L ∈ N in these conditions will be chosen
later. An example of sequences ln satisfying Conditions 1–5 is given in the
following proposition.

Proposition 1.2. The sequence

ln = (1 + an)λ, a > 0, λ > 1, (1.6)

satisfies Conditions 2 and 3 for all a > 0 and λ > 1. There exists a number
a0 = a0(λ) > 0 such that this sequence satisfies Condition 1 for all 0 < a <
a0, a number a1 = a1(κ, λ) > 0 such that this sequence satisfies Condition 4
for all 0 < a < a1, and finally there exists a number a2 = a2(η̄, L) > 0 such
that this sequence satisfies Condition 5 for all 0 < a < a2.
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Thus, for all λ > 1 there exists a number

a3 = a3(λ, κ, η̄, L) = min{a0(λ), a1(κ, λ), a2(η̄, L)} > 0

such that for all 0 < a < a3, the sequence (1.6) satisfy Conditions 1—5. We
prove Proposition 1.2 in Appendix B below. Now we describe the class of
initial densities we shall consider.

Class of initial densities. We say that a probability density p(x) on R
r

belongs to the class Pκ if

p(x) = C(1 + ε(|x|2)) exp
(
−|x|2

2
− κ

|x|4
4

)
, (1.7)

where C > 0 is a norming factor, and

‖ε(t)‖C4(R1) < 0.01. (1.8)

Now we formulate our main results. We denote by pn(x, T ) the distri-
bution of the mean spin 2−n[σ(1) + · · · + σ(2n)] with respect to the Gibbs
measure µn(dx;T ) and put

M̄n(T ) =

(∫

Rr

|x|2pn(x, T ) dx
)1/2

. (1.9)

By p̃n(x, T ) we denote the rescaled density function

p̃n(x, T ) = M̄ r
n(T )pn(M̄n(T )x, T ) (1.10)

and by ν̃n,T (dx) the corresponding probability distribution

ν̃n,T (dx) = p̃n(x, T ) dx. (1.11)

Formulation of the main results. We fix a sufficiently small positive
number η which will be the same through the whole paper. For instance,
η = 10−100 is a good choice. Define the following number N = N(η):

N = min{n : ln > η−1}. (1.12)

Assume that an arbitrary number η̄ in the interval 0 < η̄ ≤ η is fixed. (The
number η̄ appears in Condition 5).

Theorem 1.3. (Necessity of Dyson’s condition). Let us consider the case
when

∞∑

n=1

l−1
n = ∞.

Then there exists a number κ0 = κ0(N) such that for all 0 < κ < κ0 the
following statements hold.

Assume that the density p(x) = ν(dx)
dx belongs to the class Pκ and the

sequence {ln, n ≥ 0} satisfies Conditions 1–3. Then there exists a constant
L = L(η̄, κ) such that if the sequence {ln, n ≥ 0} satisfies Condition 5, then
for all T > 0, there exists the limit

lim
n→∞

2nM̄2
n(T ) = χ(T ) > 0. (1.13)



8 PAVEL BLEHER AND PÉTER MAJOR

In particular, the spontaneous magnetization satisfies the relation

M(T ) = lim
n→∞

M̄n(T ) = 0.

In addition, the distribution ν̃n,T (dx) tends weakly to the r-dimensional stan-
dard normal distribution as n→ ∞.

To formulate our results for the case when the Dyson condition (1.2)
holds, we define a function p̄n(t, T ) by the formula

pn(x, T ) = Cn(T )
−1p̄n(|x|, T ), (1.14)

for t = |x| > 0 and p̄n(t, T ) = 0 for t < 0. The norming constant Cn(T ) is
chosen in such a way that p̄n(t, T ) is a probability density function, i.e.

∫ ∞

0
p̄n(t, T ) dt = 1.

We will call p̄n(t, T ) the probability density of the mean spin distribution
along the radius.

In Parts 2 and 3 we will describe the limit behaviour of an appropriate
rescaling of the probability density p̄n(t, T ) for T = Tc and T < Tc. Then we
will formulate a Corollary which gives a good asymptotics for the norming
constants Cn(T ) in (1.14). In such a way we get a good asymptotics for the
probability density functions pn(x, T ) for T ≤ Tc. To do this we introduce
the notations

M̂n(T ) =

∫ ∞

−∞
tp̄n(t, T ) dt,

Vn(T ) =

(∫ ∞

−∞
(t− M̂n(T ))

2p̄n(t, T ) dt

)1/2

,

(1.15)

and the rescaled probability density

πn(t, T ) = Vn(T )p̄n

(
M̂n(T ) + Vn(T ) t, T

)
(1.16)

which can be rewritte in an equivalent form as

p̄n(t, T ) =
1

Vn(T )
πn

(
t− M̂n(T )

Vn(T )
, T

)
. (1.17)

Observe that, in general, M̂n(T ) and M̄n(T ), which is defined in (1.9), are
different, but as we will see later,

lim
n→∞

[M̂n(T )− M̄n(T )] = 0.

Our aim is to prove that in the case when the Dyson condition (1.2) holds,
there exists a critical temperature Tc such that the spontaneous magnetiza-
tion M(T ) = lim

n→∞
M̂n(T ) is positive for T < Tc and it is zero for T ≥ Tc.

For T < Tc the density function p̄n(t, T ) is concentrated near the point

t = M̂n(T ), and the function πn(t, T ) represents a rescaled distribution of
p̄n(t, T ) near this point. We want to prove that πn(t, T ) tends to a limit π(t)
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as n→ ∞. It turns out that this limit does exist, and the limit function π(t)
is a nice analytic function, although it is non-Gaussian. The function π(t)
is expressed in terms of a solution of a nonlinear fixed point equation, and
the next proposition concerns the existence of such a solution. Introduce
the space of probability densities p(t) on the line

A =

{
p(t) :

∫ ∞

−∞
eε|t|p(t) dt <∞ for some ε = ε(p(t)) > 0

}
.

Consider also the subspace A0 ⊂ A,

A0 =

{
p(t) : p(t) ∈ A,

∫ ∞

−∞
tp(t) dt = 0

}
.

Proposition 1.4. There exists a unique probability density function g ∈ A0

which satisfies the following fixed point equation:

g(t) =
2

π
r−1
2

∫

u∈R1,v∈Rr−1

e−|v|2g

(
t− r − 1

4
− u+

|v|2
2

)

× g

(
t− r − 1

4
+ u+

|v|2
2

)
du dv.

(1.18)

The density g(t) can be extended to an entire function on the complex plane,
and for real t it satisfies the estimate

0 < g(t) < Cε exp{−(2− ε)|t|}, for all ε > 0. (1.19)

For a proof of Proposition 1.4 see the proof of Lemmas 12 and 13 in
[BM3]. It is worth noticing that the Fourier transform of g,

g̃(ξ) =

∫ ∞

−∞
eiξtg(t) dt,

solves the equation

g̃(ξ) =
e

iξ(r−1)
4 g̃2( ξ2)(

1 + iξ
2

) r−1
2

. (1.20)

Using the probability density g(t) of Proposition 1.4, we introduce a prob-
ability density π(t) on the line of the form

π(t) = ce−2bt/3g(bt− a), (1.21)

where the numbers b > 0, c > 0, and a are chosen in such a way that
∫ ∞

−∞
π(t) dt = 1,

∫ ∞

−∞
t π(t) dt = 0,

∫ ∞

−∞
t2π(t) dt = 1. (1.22)
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Observe that such a, b, c exist and are unique. Indeed, after the change of
variable u = bt− a, the second equation in (1.22) gives a as

a = −
∫∞
−∞ ue−2u/3g(u) du∫∞
−∞ e−2u/3g(u) du

. (1.23)

Then the first and third equations determine b and c uniquely from the
system, 




c

b

∫ ∞

−∞
e−2(u+a)/3g(u) du = 1,

c

b3

∫ ∞

−∞
(u+ a)2e−2(u+a)/3g(u) du = 1.

(1.24)

Estimate (1.19) secures the convergence of the integrals in (1.23) and (1.24).
Now we formulate

Theorem 1.5. Assume that
∞∑

n=1

l−1
n <∞. (1.25)

Then there exists a number κ0 = κ0(N), where N is defined in (1.12), such
that for all 0 < κ < κ0 the following statements hold.

Assume that the density p(x) = ν(dx)
dx belongs to the class Pκ, and the

sequence {ln, n ≥ 0} satisfies Conditions 1–4. Then there exists a constant
L = L(η̄, κ) such that if the sequence {ln, n ≥ 0} satisfies Condition 5, then
there exists a critical temperature Tc > 0 with the following properties:

(1) If T > Tc then

lim
n→∞

2nM̄2
n(T ) = χ(T ) > 0, (1.26)

and the distribution ν̃n,T (dx) tends weakly, as n → ∞, to the r-
dimensional standard normal distribution. The function χ(T ) in
(1.26) satisfies the following estimates near the critical point: There
exists a temperature T0 > Tc and numbers C2 > C1 > 0 such that
for all T0 > T > Tc there exists a number n̄(T ) such that

C1

∞∑

k=n̄(T )

l−1
k < T − Tc ≤ C2

∞∑

k=n̄(T )

l−1
k ,

C1
2n̄(T )

ln̄(T )
< χ(T ) < C2

2n̄(T )

ln̄(T )
.

(1.27)

(The number ξ(T ) = 2n̄(T ) is the correlation length.)
(2) At T = Tc, lim

n→∞
Mn(Tc) = 0 (there is no Thouless’ effect), and

moreover

lim
n→∞

L−1
n Mn(Tc) = 1, (1.28)
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where Mn(T ) is defined in (2.12), and

Ln =


r − 1

6

∞∑

j=n

l−1
j




1/2

. (1.29)

(Condition (1.25) implies that lim
n→∞

Ln = 0.)

Let us define the rescaled version ρn(t) of the probability density
function p̄n(t, Tc) as

ρn(t) =
M̂n(Tc)

dn
p̄n

(
M̂n(Tc)

(
1 +

t

dn

)
, Tc

)
, (1.30)

where M̂n(T ) is defined in (1.15), and

dn =
(r − 1)ln

2b

∞∑

k=n

l−1
k . (1.31)

(Observe that lim
n→∞

dn = ∞ by Condition 2 on {ln}.) The function

ρn(t) is defined on the half-line [−dn,∞). Then

lim
n→∞

‖ρn(t)− π(t)‖ = 0, (1.32)

where the probability density π(t) is defined in equations (1.21),
(1.22) and

‖f(t)‖ =
2∑

j=0

sup
t≥−dn

{
e|t|/3

∣∣∣∣
djf(t)

dtj

∣∣∣∣
}

(1.33)

(3) If T < Tc, then the numbers M̂n(T ) and Vn(T ) defined in formula
(1.15) satisfy the following relations: The limit

lim
n→∞

M̂n(T ) =M(T ) > 0 (1.34)

exists, and

C1|T − Tc|1/2 < M(T ) < C2|T − Tc|1/2. (1.35)

In addition,

lim
n→∞

lnVn(T ) = γ(T ) =
bT

3M(T )
> 0 (1.36)

with the number b appeared in formula (1.21), and

lim
n→∞

‖πn(t, T )− π(t)‖ = 0 (1.37)

where the probability densities πn(t, T ) and π(t) are defined in equa-
tions (1.16) and (1.21), (1.22), respectively, and ‖f(t)‖ is defined in

(1.33), with dn = M̂n(T )
Vn(T ) .
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Theorems 1.3 and 1.5 are the central results of the present paper. Let us
make some remarks about Theorem 1.5. Relations (1.26) and (1.28) imply
that

M(T ) = lim
n→∞

M̂n(T ) = 0, for all T ≥ Tc,

i.e. the spontaneous magnetization M(T ) vanishes at T ≥ Tc. Relation
(1.35) implies that

lim
T→T−

c

M(T ) = 0,

with the classical critical exponent 1/2 for the magnetization.
The number n̄(T ) in (1.27) is very important for our investigation in the

subsequent sections. It shows how many iterations of the recursive equation
(renormalization group transformation) is needed to reach the “high tem-
perature region” (see Section 3 below for precise definitions). The quantity

ξ(T ) = 2n̄(T ) is the correlation length. Usually the correlation length has a
power-like asymptotics ξ(T ) ≍ |T − Tc|−ν as T → Tc where ν is the critical
exponent of the correlation length (see, e.g., [Fish] or [WK]). It follows from
(1.27) that in the case under consideration, ξ(T ) grows super-polynomially
as T → T+

c . For instance, if ln is a sequence determined by equation (1.6)

then ξ(T ) grows like exp
[
C0(T − Tc)

1/(λ−1)
]
. Similarly, (1.27) implies that

the magnetic susceptibility χ(T ) diverges super-polynomially as T → T+
c .

Relation (1.36) shows that the mean square deviation of the mean spin
along the radius behaves, when n→ ∞, as

Vn(T ) ∼
bT

3M(T )ln
, T < Tc,

so that it goes to zero very slowly as n→ ∞ (comparing with the standard

behavior of C2−n/2). In fact, it goes to zero sub-polynomially with respect
to the number of spins 2n. And according to (1.31), at T = Tc the scaled
mean square deviation of the mean spin along the radius, d−1

n , goes to zero
even slower, than at T < Tc, namely,

d−1
n ∼ 2b

r − 1

(
ln

∞∑

k=n

l−1
k

)−1

, T = Tc.

On the other hand, observe that by (1.32) and (1.37) the limit distribution
density π(t) of the normalized mean spin along the radius is the same for
all T < Tc and for T = Tc as well.

Let us say some words about our methods. The questions we investi-
gate in this paper lead to a problem of the following type: We have a
starting probability density function p0(x, T ) which depends on a parame-
ter T , the temperature, and we apply the powers of an appropriately defined
nonlinear operator Q to it. This operator Q is the renormalization group
operator. We want to describe the behavior of the sequence of functions
pn(x, T ) = Qnp0(x, T ), n = 1, 2, . . . . In particular, we want to under-
stand how the behavior of this sequence of functions pn(x, T ), n = 1, 2, . . . ,
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depends on the parameter T . Our investigation shows that if the function
pn(x, T ) is essentially concentrated around the origin, then a negligible error
is committed when pn+1(x, T ) = Qpn(x, T ) is replaced by the convolution
of the function pn(x, T ) with itself, and this is the case for all n if the pa-
rameter T is large. The replacement of the operator Q by the convolution
is called the high temperature approximation.

On the other hand, if the function pn(x, T ) is essentially concentrated
in a narrow shell far from the origin, and this is the case for all n if the
parameter T is small, then another good approximation of the function
pn+1(x, T ) = Qnpn(x, T ) is possible. This is called the low temperature
approximation. The high temperature approximation actually means the
application of the standard methods of classical probability theory. The low
temperature approximation applied in this paper is a natural modification of
the methods in our paper [BM3] where a similar problem was investigated.
But in the present paper we have to make a more careful and detailed anal-
ysis. The reason for it is that while in [BM3] it was enough to investigate
only very low temperatures T , now we have to follow carefully when the high
and when the low temperature approximation is applicable. Moreover, —
and this is a most important part of this paper, — to describe the behavior
of the functions pn(·, T ) for all temperatures T we have to follow the be-
havior of these functions also in the case when neither the high nor the low
temperature approximation is applicable. This is the so called intermediate
region. (See Section 3 for precise definitions.)

We study the intermediate region in Section 5. There we show that if the
function pn(x, T ) “is not very far from the origin”, namely, the low temper-
ature approximation is not applicable for it, then the functions pn+k(x, T )
are getting closer and closer to the origin as the index n + k is increasing.
Moreover, after finitely many steps k the high temperature approximation
is already applicable, and the number of steps k we need to get into this
situation can be bounded by a constant independent of the parameter T .
The proof given in Section 5 contains arguments essentially different from
the rest of the paper. Here we heavily exploit that the numbers cn = ln

ln−1

are very close to one. Informally speaking, the sequence of numbers cn − 1
behaves like a small parameter, and this “small parameter” enables us to
handle our model near the critical temperature.

The setup of the rest of the paper is the following. In Section 2 we give an
analytic reformulation of the problem and connect Dyson’s condition (1.2)
with an approximate recursive formula for some quantitiesMn(T ) related to
the spontaneous magnetization (see (2.20) below). In Section 3 we introduce
a notion of low and high temperature regions together with an intermediate
region. Then we formulate the basic auxiliary theorems about the char-
acterization of these regions. In Sections 4, 5, and 6 we prove the main
estimates concerning the low temperature region, the intermediate region,
and the high temperature region, respectively. In Section 7 we prove the
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convergence of the recursive iterations to the fixed point for all T < Tc. Fi-
nally, in Section 8 we prove Theorem 3.4 concerning some asymptotics near
the critical point Tc and derive Theorems 1.3 and 1.5 from the auxiliary
theorems.

2. Analytic Reformulation of the Problem. Strategy of the

Proof.

The hierarchical structure of the Hamiltonian (1.1) leads to the following
recursive equation for the density functions pn(x, T ) (see, e.g., Appendix A
to the paper [BM3]):

pn+1(x, T ) = Cn(T )

∫

Rr

exp

(
ln
T
(x2 − u2)

)
pn(x− u, T )pn(x+ u, T ) du,

(2.1)
for n ≥ 0, where p0(x, T ) = p0(x) is defined in (1.7),

ln = l(2n),

and Cn(T ) is an appropriate norming constant which turns pn+1(x, T ) into
a density function. We are interested in the asymptotic behaviour of the
functions pn(x, T ) as n→ ∞. For the sake of simplicity we will assume that
ε(t) = 0 in (1.7), so that p0(x) coincides with (1.3). All the proofs below
are easily extended to the case of nonzero ε(t) satisfying estimate (1.8).

Define

cn =
ln
ln−1

, n = 0, 1, . . . with l−1 = 1, (2.2)

An = 1 +
∞∑

j=1

cn+1

2
· · · cn+j

2
= 1 + l−1

n

∞∑

j=1

2−jln+j , n = 0, 1, . . . . (2.3)

Then

ln =
n∏

j=0

cj , n ≥ 0, (2.4)

and

lnAn = ln +
ln+1An+1

2
. (2.5)

Indeed, by (2.3),

lnAn = ln +
∞∑

j=1

2−jln+j =
∞∑

j=0

2−jln+j ,

hence

lnAn − ln =
∞∑

j=1

2−jln+j =
1

2

∞∑

j=0

2−jln+1+j =
ln+1An+1

2
, (2.6)

and (2.5) follows.
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Define

qn(x, T ) = Λn(T )
−1 exp

(
Anlnx

2

2

)
pn(

√
T x, T ), (2.7)

where Λn(T ) > 0 is a norming constant such that
∫

Rr

qn(x, T ) dx = 1.

Let

c(n) = (1 +An) ln, n = 0, 1, 2, . . . (2.8)

Then it follows from equations (2.1) and (2.5) that

qn+1(x, T ) =
1

Zn(T )

∫

Rr

e−c(n)u2
qn(x− u, T )qn(x+ u, T ) du. (2.9)

Also, by (1.3),

q0(x, T ) =
1

Z0(T )
exp

{
(c0A0 − T )

|x|2
2

− κT 2 |x|4
4

}
. (2.10)

The norming constants Zn(T ) in the previous formulas are determined by
the condition that ∫

Rr

qn(x, T ) dx = 1.

Thus, the functions qn(x, T ) are defined recursively by formulas (2.9) and
(2.10). Our goal is to derive an asymptotics of the functions qn(x, T ) as
n → ∞. Then the asymptotics of the functions pn(x, T ) can be found by
means of formula (2.7). The advantage of the functions qn(x, T ) is that their
recursive equation (2.9) does not depend on T .

The method of paper [BM3] can be adapted in the study of the low
temperature approximation. We shall follow this approach. Due to the
rotational symmetry of the Hamiltonian (1.1), the function qn(x, T ) depends
only on |x|. Define the function q̄n(t, T ), t ∈ R

1, n = 0, 1, 2, . . . , such that

qn(x, T ) = Cn(T ) q̄n(|x|, T ), (2.11)

with a norming constant Cn(T ) such that
∫ ∞

0
q̄n(t, T ) dt = 1.

We will define

q̄n(t, T ) = 0 for t < 0.

Put also

Mn(T ) =

∫ ∞

0
t q̄n(t, T ) dt, n = 0, 1, . . . , (2.12)

and define the rescaled probability density functions

fn(t, T ) =
1

c(n)
q̄n

(
Mn(T ) +

t

c(n)
, T

)
, t ∈ R

1, n = 0, 1, . . . . (2.13)
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Then

q̄n(t, T ) = c(n)fn

(
c(n)(t−Mn(T )), T

)
, (2.14)

and ∫ ∞

−∞
fn(t, T ) dt = 1,

∫ ∞

−∞
tfn(t, T ) dt = 0.

The order parameter Mn(T ) in (2.12) is very convenient for the asymptotic
recursive analysis. Later we will relate it to the parameters M̄n(T ) and

M̂n(T ) introduced in formulae (1.9) and (1.15), respectively.
A low temperature approximation can be applied in the case whenMn(T )

is relatively large, comparing with the size of the neighborhood of Mn(T ) in
which the function fn(t, T ) is essentially concentrated. In this case we follow
the behaviour of the pair (fn(t, T ),Mn(T )). To describe this procedure

introduce the notation c = {c(n), n = 0, 1, . . . }. The rotational invariance
of the function qn(·, T ) suggests the definition of the operator

Q̄c
n,Mf(t) =

∫

u∈R1,v∈Rr−1

exp

{
− u2

c(n)
− v2

}

× f


c(n)



√(

M +
t

c(n+1)
+

u

c(n)

)2

+
v2

c(n)
−M






× f


c(n)



√(

M +
t

c(n+1)
− u

c(n)

)2

+
v2

c(n)
−M




 du dv.

Formula (2.9) together with the definition of the function fn(t, T ) yields that

q̄n+1

(
Mn(T ) +

t

c(n+1)
, T

)
=
c(n+1)

Zn(T )
Q̄c

n,Mn(T )fn(t, T )

with

Zn(T ) =

∫ ∞

−c(n+1)Mn(T )
Q̄c

n,Mn(T )fn(t, T ) dt.

The norming constant Zn(T ) is determined by the condition
∫ ∞

0
q̄n+1(t, T ) dt = 1.

Define also

mn(T ) = mn(fn(t, T )) =
1

Zn(T )

∫ ∞

−c(n+1)Mn(T )
t Q̄c

n,Mn(T )fn(t, T ) dt (2.15)

and

Qc
n,Mn(T )fn(t, T ) =

1

Zn(T )
Q̄c

n,Mn(T )fn(t+mn(T ), T ).

Then

fn+1(t, T ) = Qc
n,Mn(T )fn(t, T ) and Mn+1(T ) =Mn(T )+

mn(T )

c(n+1)
. (2.16)
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To formulate a good approximation of the operator Qc
n,Mn(T ), let us in-

troduce the numbers

c̄n =
c(n)

c(n−1)
=

(1 +An)ln
(1 +An−1)ln−1

, n = 1, 2, . . . . (2.17)

The arguments of the function f in the definition of the operator Q̄c
n,M ,

ℓc,±n,M (t, u,v) = c(n)



√(

M +
t

c(n+1)
± u

c(n)

)2

+
v2

c(n)
−M


 , (2.18)

can be well approximated by a simpler expression because of the estimate
∣∣∣∣ℓ

c,±
n,M (t, u,v)−

(
t

c̄n+1
± u+

v2

2M

)∣∣∣∣ ≤ 100

( |v|4
c(n)M3

+
t2 + u2

c(n)M

)

which holds for |t| < 1
4c

(n+1)M , |u| < 1
4c

(n)M and v2 < c(n)M2. This
estimate suggests that for low temperatures T , when Mn(T ) is not small,
the operator Q̄c

n,Mn(T ) can be well approximated by the operator T̄c
n,Mn(T )

defined as

T̄c
n,Mn(T )f(t, T ) =

∫

u∈R1,v∈Rr−1

e−v2
f

(
t

c̄n+1
+ u+

v2

2Mn(T )
, T

)

× f

(
t

c̄n+1
− u+

v2

2Mn(T )
, T

)
du dv.

(2.19)

The elaboration of the above indicated method will be called the low tem-
perature approximation. It works well when Mn(T ) is much larger than the
range where the function fn(t, T ) is essentially concentrated. For n = 0 the
starting value M0(T ) at very low temperatures T > 0 is very large. In this
case the low temperature expansion can be applied. As we shall see later,
the approximation of Q̄c

n,Mn(T ) by Tc̄
n,Mn(T ) yields that

Mn+1(T ) ∼Mn(T )−
r − 1

4c(n)Mn(T )
, (2.20)

which, in turn, implies that

M2
n+1(T ) ∼M2

n(T )−
r − 1

2c(n)
. (2.21)

It follows from (2.3) and (1.5) that

2 ≤ An ≤ 2.03, lim
n→∞

An = 2, (2.22)

hence if Condition 1 is satisfied, then not only lim
n→∞

cn = 1, but also lim
n→∞

c̄n =

1, and by (2.8),

3 ≤ c(n)

ln
≤ 3.03, lim

n→∞
c(n)

ln
= 3. (2.23)
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This allows us to rewrite (2.21) as

M2
n+1(T ) ∼M2

n(T )−
r − 1

6ln
(2.24)

This formula underlines the importance of the Dyson condition (1.2).
Namely, if the series

B =
∞∑

n=1

l−1
n (2.25)

converges then Mn(T ) remains large for all n if T > 0 is small. Indeed,
assume that T < c0A0/2. Then it follows from (2.10) that M2

0 (T ) >
C(κT 2)−1, hence by (2.24), neglecting the error term,

M2
n(T ) ≥M2

0 (T )−
r − 1

6

∞∑

n=0

l−1
n ≥ C(κT 2)−1 − C1 ≫ 1

for all n if T > 0 is small, which was stated. On the other hand, if the series
(2.25) diverges, then for some n, Mn(T ) becomes small, and the approxima-
tion (2.20) becomes inapplicable.

The low temperature approximation can be applied when Mn(T ) is not
small. When Mn(T ) is small a different approximation is natural. If the
function qn(x, T ) is essentially concentrated in a ball whose radius is much

less than
(
c(n)
)−1/2

, then a small error is committed if the kernel function

e−c(n)u2
in formula (2.9) is omitted. This means that the formula express-

ing qn+1(x) by qn(x) can be well approximated through the convolution
qn+1(x) = qn ∗ qn(x). This approximation will be called the high tempera-
ture approximation. If the high temperature approximation can be applied
for qn(x, T ), then the function qn+1(x, T ) is even more strongly concentrated
around zero. Hence, as a detailed analysis will show, if at a temperature T
it can be applied for a certain n0, then it can be applied for all n ≥ n0.

Finally, there are such pairs (n, T ) for which the function qn(x, T ) can be
studied neither by the low nor by the high temperature approximation. We
call the set of such pairs an intermediate region. We shall prove that if the
sequence c(n) sufficiently slowly tends to infinity and the function qn(x, T )
is out of the region where the low temperature approximation is applicable,
then the density function qn+1(x, T ) will be more strongly concentrated
around zero than the function qn(x, T ). Moreover, in finitely many steps the
function qn+k(x, T ) will be so strongly concentrated around zero that after
this step the high temperature approximation is applicable. It is important
that the number of steps k needed to get into the high temperature region
can be bounded independently of the parameter T .

The main part of the paper consists of an elaboration of the above heuris-
tic argument.
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3. Formulation of Auxiliary Theorems.

To describe the region where the low temperature approximation will be
applied we define some sequences βn(T ) which depend on the temperature T .
Define recursively,

βN (T ) =

(
c(N)

)2

2N
,

βn+1(T ) =

(
c̄2n+1

2
+

√
βn(T )

c(n)

)
βn(T ) +

10

M2
n(T )

for n ≥ N,

(3.1)

where the number N is defined in (1.12), c̄n in (2.17) and Mn(T ) in (2.12).
As it will be seen later, these numbers measure how strongly the functions
fn(x, T ) are concentrated around zero. We define the low temperature re-
gion, where low temperature approximation will be applied.

Definition of the low temperature region. A pair (n, T ) is in the low
temperature region if the following properties (1) and (2) hold.

(1) 0 < T ≤ c0A0/2, where A0 was defined in (2.3).
(2) Either 0 ≤ n ≤ N with the number N introduced in (1.12) or n > N

and βn−1(T )

c(n−1) ≤ η with the number η appearing also in (1.12).

The temperature T is in the low temperature region if the pair (n, T ) is in
the low temperature region for all numbers n. Let us remark that by (2.4)

and (1.5)

1 ≤ ln =
n∏

j=1

cj ≤ 1.01n,

hence by (2.23),

3 ≤ c(n) ≤ 3.03 · 1.01n. (3.2)

Therefore, by (3.1),

βN (T )

c(N)
=
c(N)

2N
≤ 1

c(N)
≤ η (3.3)

hence the pair (N + 1, T ) is in the low temperature region if T ≤ c0A0/2.
Since βn+1(T ) ≥ 10

M2
n(T )

the pair (n, T ) can get out of the low temperature

region only if Mn(T ) becomes very small.
To define the high temperature region introduce the notations

hn(x, T ) =
(
c(n)
)−r/2

qn

(
x√
c(n)

, T

)
,

D2
n(T ) =

∫

Rr

x2hn(x, T ) dx.

(3.4)

where the function qn(x, T ) is defined in (2.7). Let us also introduce the
probability measure Hn,T ,
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Hn,T (A) =

∫

A

hn(x, T ) dx, A ⊂ R
r, (3.5)

on R
r.

Definition of the high temperature region. A pair (n, T ) is in the

high temperature region if D2
n(T ) < e−1/η2 with the number η in formula

(1.12), where D2
n(T ) is defined in (3.4). The temperature T is in the high

temperature region if there exists a threshold index n0(T ) such that (n, T ) is
in the high temperature region for all n ≥ n0(T ).

It may happen that a pair (n, T ) belongs neither to the low nor to the high
temperature region. Then we say that (n, T ) belongs to the intermediate
region. Let us remark that we introduced two numbers N and η in formula
(1.12), and in the formulation of the subsequent results N and η will denote
these numbers. The following result is very important for us.

Theorem 3.1. There exists a number κ0 = κ0(N) such that for all 0 <
κ < κ0 (where κ appears in formula (1.3)) and 0 < η̄ < η there is a number
L = L(η̄, κ) for which the following is true. Assume that Conditions 1 and 5
(with η̄ and this number L = L(η̄, κ)) hold. We consider such temperatures
T for which there are numbers n such that the pair (n, T ) does not belong
to the low temperature region. Let n̄(T ) ≥ 0 be the smallest number n with
this property.

If the pair (n̄(T ), T ) does not belong to the high temperature region (which
means that (n̄(T ), T ) is in the intermediate region), then there exist some
numbers K = K(η̄, κ) > 0, η̃ = η̃(η̄, κ) > 0, and k = k(η̄, κ) ∈ N such that

D2
n̄(T )(T ) < K, η̃ < D2

n̄(T )+k(T ) < e−1/η2 .

This implies in particular that the pair (n̄(T )+k, T ) with this index k belongs
to the high temperature region.

We shall also prove the following corollary of Theorem 3.1. (See the
Remark after the proof of Lemma 6.1.)

Corollary. Under the conditions of Theorem 3.1 all temperatures T > 0
belong either to the low or to the high temperature region. If the Dyson
condition (1.2) holds, then all sufficiently low temperatures belong to the low
and all sufficiently high temperatures to the high temperature region. If the
Dyson condition (1.2) is violated, then all temperatures T > 0 belong to the
high temperature region.

The next theorem concerns the low temperature region.

Theorem 3.2. There exists a number κ0 = κ0(N) such that for all 0 <
κ < κ0 the following is true. Assume that the Dyson condition (1.2) and
Conditions 1 and 2 hold. Assume that the temperature T is in the low
temperature region. Then the numbers Mn(T ) defined in (2.12) have a limit,

lim
n→∞

Mn(T ) =M∞(T ), (3.6)
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and

lim
n→∞

M2
n(T )−M2

∞(T )

r−1
2

∞∑
k=n

1
c(k)

= 1. (3.7)

In addition,

lim
n→∞

∥∥∥∥
1

Mn(T )
fn

(
t

Mn(T )
, T

)
− g (t)

∥∥∥∥ = 0, (3.8)

where

‖f(t)‖ =
2∑

j=0

sup
t≥−c(n)Mn(T )

e|t|
∣∣∣∣
djf(t)

d tj

∣∣∣∣ , (3.9)

fn(t, T ) is introduced in (2.13), and the probability density g(t) is defined as
a solution of the fixed point equation (1.18).

Part (3) of Theorem 1.5, with the exception of estimate (1.35), follows
from Theorem 3.2 and the additional relation M∞(T ) > 0 if T < Tc which
follows from the results in Theorem 3.4 formulated at the end of this section.
Indeed, we can express the function pn(x, T ) in terms of fn(t, T ). Namely,
by (2.7), (2.11), and (2.14)

pn(x, T ) = L−1
n (T ) exp

(
−Anln|x|2

2T

)

× fn

(
c(n)√
T

(
|x| −

√
T Mn(T )

)
, T

) (3.10)

with an approriate norming constant Ln(T ). Let us write that |x|2 =(√
T Mn(T ) + |x| −

√
T Mn(T )

)2
, hence

exp

(
−Anln|x|2

2T

)
= exp

{
−Anln

2T

[
TM2

n(T )

+2
√
T Mn(T )(|x| −

√
T Mn(T )) + (|x| −

√
T Mn(T ))

2
]}
,

and substitute it into (3.10). This leads to the equation

pn(x, T ) = L̃−1
n (T )f̃n

(
|x| − M̃n(T )

Ṽn(T )
, T

)
(3.11)

with an appropriate norming constant L̃n(T ), where

M̃n(T ) =
√
T Mn(T ), Ṽn(T ) =

√
T

c(n)Mn(T )
,

f̃n(t, T ) = fn

(
t

Mn(T )
, T

)
exp

(
−Anlnt

c(n)
− εn(t, T )

)
,

εn(t, T ) =
Anlnt

2

2(c(n))2M2
n(T )

.



22 PAVEL BLEHER AND PÉTER MAJOR

Observe that by (2.22) and (2.23)

lim
n→∞

Anln

c(n)
=

2

3
, lim

n→∞
Anln

2(c(n))2M2
n(T )

= 0,

hence (3.8) implies that there is some C0 > 0 such that

lim
n→∞

∥∥∥∥
1

Mn(T )
f̃n(t, T )− C0g (t) e

−2t/3

∥∥∥∥
′
= 0,

where

‖f(t)‖′ =
2∑

j=0

sup
t≥−c(n)M2

n(T )

e|t|/3
∣∣∣∣
djf(t)

d tj

∣∣∣∣ .

This also implies that there exist some real number a and C ′ > 0 such that

lim
n→∞

∥∥∥∥
1

Mn(T )
f̃n(t− a, T )− C ′g (t− a) e−2t/3

∥∥∥∥
′
= 0, (3.12)

with such numbers a and C ′ > 0 for which the relations
∫ ∞

∞
C ′g(t− a)e−2t/3 dt = 1 and

∫ ∞

∞
C ′tg(t− a)e−2t/3 dt = 0

hold.
Let us define for all b > 0 the function π(t|b) = C ′bg(bt − a)e−2bt/3 dt.

These functions satisy the relations
∫ ∞

∞
C ′bπ(t|b) dt = 1 and

∫ ∞

∞
C ′btπ(t|b) dt = 0.

Moreover, the number b > 0 can be chosen in such a way that the identity
∫ ∞

∞
C ′bt2π(t|b) dt = b−2

∫ ∞

∞
C ′b(bt)2π(t|b) dt

= b−2

∫ ∞

∞
C ′t2g(t− a)e2t/3 dt = 1

also holds. Let us define the function π(t) = π(t|b) with this parameter b.
In such a way we constructed a function π(t) that satisfies relations (1.21)
and (1.22). Moreover, if we define the functions

π̃n(t, T ) = Cn(T )f̃n(bt− a, T ) (3.13)

with these numbers a and b and with such a norming constant Cn(T ) for
which ∫ ∞

−∞
π̃n(t, T ) dt = 1,

then these functions satisfy the relation

lim
n→∞

‖π̃n(t)− π(t)‖′ = 0 (3.14)
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because of relations (3.12). Because of (3.14) we also have
∫∞
−∞ π̃n(t, T ) dt =

1, lim
n→∞

∫∞
−∞ tπ̃n(t, T ) dt = 0, lim

n→∞

∫∞
−∞ t2π̃n(t, T ) dt = 1, and because of

(3.11) and (3.13)

π̃n(t, T ) = C ′
n(T )

−1p̄n((bt− a)ṼN (T ) + M̃n(T ), T )

= bṼn(T )p̄n(bt− a)ṼN (T ) + M̃n(T ), T ).

(The normalization constant in the second identity of the last formula is
determined by the fact that both p̄n(t, T ) and π̃nt, T ) are probability density
functions).

Hence
∫ ∞

−∞
tπ̃n(t, T ) dt = bṼn(T )

∫ ∞

−∞
tp̄n(bt− a)ṼN (T ) + M̃n(T ), T ) dt

=

∫ ∞

−∞

t− M̃n(T ) + aṼn(T )

bṼn(T )
p̄n(t, T ) dt (3.15)

=
M̄n(T )− M̃n(T ) + aṼn(T )

bṼn(T )
→ 0 as n→ ∞,

and
∫ ∞

−∞
t2π̃n(t, T ) dt = bṼn(T )

∫ ∞

−∞
t2p̄n(bt− a)ṼN (T ) + M̃n(T ), T ) dt

=

∫ ∞

−∞

(
(t− M̄n(T )) + (M̄n(T )− M̃n(T ) + aṼn(T ))

bṼn(T )

)2

p̄n(t, T ) dt

=
V 2
n (T ) +

(
(M̄n(T )− M̃n(T )) + aṼn(T )

)2

b2Ṽ 2
n (T )

→ 1 as n→ ∞. (3.16)

Relations (3.15) and (3.16) together with Theorem 3.2, the inequqailty

M∞(T ) > 0 and the definition of the quantities M̃n(T ) and Ṽn(T ) im-

ply relations (1.34) and (1.36). Indeed, by Theorem 3.2 lim
n→∞

M̃n(T ) =

M(T ) with M(T ) =
√
TM∞(T ), and since Ṽn(T ) → 0 as n → ∞ rela-

tion (3.15) implies that lim
n→∞

(M̄n(T ) − M̃n(T )) = 0. Formula (1.34) fol-

lows from these relations with the above defined number M(T ). Relations

(3.15) and (3.16) together imply that lim
n→∞

Vn(T )

Ṽn(T )
= b. On the other hand,

lim
n→∞

lnṼn(T ) lim
n→∞

c(n)

3
T

c(n)
√
TMn(T )

= T
3M(T ) . These relations imply (1.36).

Finally to prove relation (1.37) let us observe how the functions πn(t, T )
and π̃n(t, T ) can be expressed with the help of the function p̄n(t, T ). Besides,
both are probability density functions, and the integrals

∫∞
−∞ tπ̃n(t, T ) dt

and
∫∞
−∞ t2π̃n(t, T ) dt tend to zero and 1 as n→ ∞, while the correponding

integrals for πn(t, T ) are equal exactly to these limit values for all parameters
n. This implies that the identity πn(t, T ) = (1 + εn)π̃n((1 + εn)t + δn, T )
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with such numbers εn = εn(T ) and δn = δn(T ) for which lim
n→∞

εn = 0, and

lim
n→∞

δn = 0. It can be proved with the help of this observation that relation

(3.14) remains valid if we replace the functions π̃n(t, T ) by πn(t, T ) in it,
and this means that formula (1.37) is valid.

Now we formulate a theorem about the high temperature region. Put

h̃n(x, T ) = 2−rn/2qn

(
2−n/2x, T

)
=

(
c(n)

2n

)r/2

hn

(√
c(n)

2n
x, T

)
, (3.17)

and define the probability measures

H̃n,T (A) =

∫

A

h̃n(x, T ) dx, A ⊂ R
r (3.18)

on R
r.

Theorem 3.3. There exists a number κ0 = κ0(N) such that for all 0 < κ <
κ0 and 0 < η̄ < η there exists a number L = L(η̄, κ) such that the following
is true. Assume that Conditions 1 and 5 (with η̄ and this L = L(η̄.κ)) hold,

and T is in the high temperature region. Then the measures H̃n,T defined
in (3.18) converge weakly to the normal distribution on R

r with expectation
zero and covariance matrix σ2(T )I with some σ2(T ) > 0, where I denotes
the identity matrix.

If T belongs to the high temperature region, but the pair n = (0, T ) does
not belong to it, (i.e. the temperature T is not too high), then the inequality

C1
2n̄(T )

c(n̄(T ))
≤ σ2(T ) ≤ C2

2n̄(T )

c(n̄(T ))
(3.19)

also holds with some C2 > C1 > 0, where n̄(T ) is defined in Theorem 3.1.

Remark. Not only the convergence of the measures H̃n,T but also the con-

vergence of their density functions h̃n(x, T ) could be proved. But the proof
of the convergence of the distribution is simpler, and it is also sufficient for
our purposes.

Corollary. Let H̄n,T denote the probability measure on R
r with the density

function

2−rn/2T rpn(2
−n/2

√
Tx, T ).

Under the conditions of Theorem 3.3 the measures H̄n,T have the same

Gaussian limit as the measures H̃n,T defined in Theorem 3.3 as n→ ∞.

Our last theorem concerns the critical point. We want to show that there
is a critical temperature Tc such that above it all temperatures belong to the
high and below it all temperatures belong to the low temperature region.
We also want to describe the situation in the neighborhood of the critical
temperature in more detail. In Theorem 3.4 we state such a result.

Theorem 3.4. There exists a number κ0 = κ0(N) such that for all 0 <
κ < κ0 there exists a number L = L(η̄, κ) such that the following is true.
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Assume that Conditions 1–4 are satisfied. Then for a fixed n the set of
temperatures T for which (n, T ) belongs to the low temperature region forms
an interval (0, Tn], and the sequence Tn, n = 1, 2, . . . , is monotone decreasing
in n. Define the critical temperature Tc as the limit, Tc = lim

n→∞
Tn. Then

c0A0/4 > Tc > 0. The function M∞(T ) = lim
n→∞

Mn(T ) exists in the interval

(0, Tc], and for a fixed n the function Mn(T ) is strictly decreasing on the
interval (0, Tn]. The relation M∞(Tc) = 0 holds. If Tc + ε > T > Tc with
some ε > 0, then the inequality

C1

∞∑

k=n̄(T )

1

c(k)
< T − Tc < C2

∞∑

k=n̄(T )

1

c(k)
(3.20)

holds with some appropriate numbers C2 > C1 > 0, where n̄(T ) is defined
in Theorem 3.1. If Tc − ε < T < Tc with a sufficiently small ε > 0, then

C1(Tc − T )1/2 < M∞(T ) < C2(Tc − T )1/2. (3.21)

4. Basic Estimates in the Low Temperature Region.

In this section we give some basic estimates on the function fn(x, T ) and
its derivatives (with respect to the variable x) if the pair (n, T ) is in the
low temperature region. These estimates state in particular, that in the
definition of the functions fn(x, T ) the right scaling was chosen. With the
scaling in formula (2.13) the function fn(x, T ) is essentially concentrated in
a finite interval whose size depends only on Mn(T ). Both the results and
proofs are closely related to those of Sections 3—6 in paper [BM3].

First we consider the case of small indices 0 ≤ n ≤ N , where the num-
ber N defined in (1.12) (cf. Section 4 in [BM3]), and we begin with n = 0.
Assume that T < c0A0/2 and κ > 0 is small (exact conditions on the small-
ness of κ will be given later). In this case the function q̄0(x, T ) has its
maximum in the points M̄0(T ) (see (2.10)), where

M̄0(T ) =

(
A0c0 − T

κT 2

)1/2

(4.1)

is a large number. From (2.10) we obtain that

1

c(0)
q̄0

(
M̄0(T ) +

x

c(0)
, T
)

(4.2)

=
1

Z0(T )
exp

{
− (A0c0 − T )

( x

c(0)

)2(
1 +

x

2c(0)M̄0(T )

)2
}
,
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where

Z0(T ) =

∫ ∞

−M̄0(T )
exp



−(A0c0 − T )

( x

c(0)

)2
(
1 +

x

2c(0)M̂0(T )

)2


 dx.

(4.3)
It can be proved by means of the identity

c(0)(M0(T )− M̄0(T )) (4.4)

=

∫∞
−c(0)M̄0(T ) x exp

{
−(c0A0 − T )

(
x

c(0)

)2 (
1 + x

2c(0)M̄0(T )

)2}
dx

∫∞
−c(0)M̄0(T ) exp

{
−(A0c0 − T )

(
x

c(0)

)2 (
1 + x

2c(0)M̄0(T )

)2}
dx

that
∣∣M0(T )− M̄0(T )

∣∣ ≤ const.

M0(T )
≤ const.

√
κT, (4.5)

where M0(T ) is defined (2.12). This shows that M̄0(T ) is a very good
approximation to M0(T ). Straightforward calculation yields with the help
of formulas (4.1) and (4.3) that

∣∣∣∣∣Z0(T )−
c(0)

√
π√

(A0c0 − T )

∣∣∣∣∣ ≤ const.
√
κT, (4.6)

and from (4.1)–(4.6) we obtain that

∣∣∣∣
∂j

∂xj

(
f0(x, T )−

√
A0c0 − T

c(0)
√
π

exp

{
−(A0c0 − T )

( x
c0

)2})∣∣∣∣ (4.7)

≤ const.κ1/4e−2|x|/c(0) if |x| < log κ−1, j = 0, 1, 2,

and
∣∣∣∣
∂j

∂xj
f0(x, T )

∣∣∣∣ ≤ C exp

{
−(A0c0 − T )

4c(0)

∣∣∣∣2x+
x2

c(0)M2
0 (T )

∣∣∣∣
}

for x ≥ −c(0)M0(T ), j = 0, 1, 2. (4.8)

A relatively small error is committed if Mn is very large and the arguments
ℓ±n,Mn

(x, u, v) (defined in formula (2.18)) of the function fn in the operator

Q̄c
n,Mfn are replaced by x ± u. Exploiting this fact one can prove, using

a natural adaptation of the proof of Proposition 1 of paper [BM3], the
following

Proposition 4.1. There exists a number κ0 = κ0(N) such that if

(i) 0 < κ < κ0, and
(ii) 0 < T ≤ c0A0/2,
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then the relations∣∣∣∣
∂j

∂xj

(
fn(x, T )−

√
A0c0 − T√

π

2n

c(n)
exp

{
−2n(A0c0 − T )

( x

c(n)

)2})∣∣∣∣

≤ B(n)κ1/4e−2n+1|x|/c(n)
, if |x| < 2−n log κ−1, j = 0, 1, 2,∣∣∣∣

∂j

∂xj
fn(x, T )

∣∣∣∣ ≤ B(n) exp

{
−(A0c0 − T )

4

2n

c(n)

∣∣∣∣2x+
x2

c(n)M2
n(T )

∣∣∣∣
}

for x ≥ −c(n)Mn(T ), j = 0, 1, 2,

and

|Mn(T )− M̄0(T )| ≤ B(n)
√
κT (4.9)

hold for all 0 ≤ n ≤ N with the function M̄0(T ) defined in (4.1) and a
function B(n) which depends neither on T nor on κ.

We formulate and prove, similarly to paper [BM3], certain inductive hy-
potheses about the behaviour of the functions fn(x, T ) for n ≥ N if the
pair (n, T ) is in the low temperature region. In the formulation of these
hypotheses we apply the sequence βn(T ) defined in (3.1) and the sequence
αn(T ) defined as

αN (T ) = 1
200

(c(N))2

2N
,

αn+1(T ) =

(
c̄2n+1

2 −
√

βn(T )

c(n)

)
αn(T ) +

10−12

M2
n(T )

for n ≥ N.
(4.10)

To formulate the inductive hypotheses we also introduce a regularization of
the functions fn(x, T ).

Definition of the regularization of the functions fn(x, T ). Let us
fix a C∞-function ϕ(x), −∞ < x < ∞, such that ϕ(x) = 1 for |x| ≤ 1,
0 ≤ ϕ(x) ≤ 1 if 1 ≤ x ≤ 2 and ϕ(x) = 0 for |x| ≥ 2. Then the regularization
of the function fn(x, T ) is

ϕn(fn(x, T )) = Anϕ

(
x+Bn

100
√
c(n)

)
fn(x+Bn, T ),

with norming constants An and Bn such that
∫ ∞

−∞
ϕn(fn(x, T )) dx = 1,

∫ ∞

−∞
xϕn(fn(x, T )) dx = 0.

Now we formulate the inductive hypotheses.

Hypothesis I(n).
∣∣∣∣
∂jfn(x, T )

∂xj

∣∣∣∣ ≤ C

βn(T )(j+1)/2
exp

{
− 1√

βn(T )

∣∣∣∣2x+
x2

c(n)Mn(T )

∣∣∣∣

}

for j = 0, 1, 2, x ≥ −c(n)Mn(T ),

with a universal constant C > 0. One could choose, e.g., C = 1020.
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Hypothesis J(n).

|ϕ̃nfn(t+ is, T )| ≤ eβn(T )s2

1 + αn(T )t2
if |s| ≤ 2√

βn+1(T )
,

where

ϕ̃nfn(t+ is, T ) =

∫
ei(t+is)xϕ(fn(x, T )) dx.

Corollary of Proposition 4.1. Under the conditions of Proposition 4.1,
the inductive hypotheses I(n) and J(n) hold for n = N with a universal
constant C > 0 in hypothesis I(n). (For instance, one can choose C = 105.)

Before formulating the main result of this Section, we introduce the oper-
ators Tn. They are appropriate scaling of the operators T̄c

n,Mn(T ) defined in

formula (2.19), but these operators will be applied only for the regulariza-
tion of the functions fn(x, T ) and not for the functions fn(x, T ) themselves.
Put

Tnϕn(fn(x, T )) =
2

c̄n+1π
r−1
2

∫

u∈R1,v∈Rr−1

e−v2

× ϕn

(
fn

(
x

c̄n+1
− r − 1

4Mn(T )
+ u+

v2

2Mn(T )
, T

))

× ϕn

(
fn

(
x

c̄n+1
− r − 1

4Mn(T )
− u+

v2

2Mn(T )
, T

))
du dv,

(4.11)

with the constants c̄n defined in (2.17) and the number V (Sr−2) introduced
in Proposition 1.4. The main result of this section is the following

Proposition 4.2. There exists κ0 = κ0(N) > 0 such that if

(i) the inductive hypotheses I(n) and J(n) hold for the function fn(x, T ),
(ii) 0 < κ < κ0, (κ appears in formula (1.3)), and
(iii) the pairs (m,T ) belong to the low temperature region for all

0 ≤ m ≤ n,

then the inductive hypotheses I(n + 1) and J(n + 1) hold for the function
fn+1(x, T ). Also there exist universal constants C1, K1, K2 and K3 such
that the following estimates hold:

(a)

Mn+1(T ) =Mn(T )−
r − 1

4c(n)Mn(T )
+
γn(T )

c(n)
,

where |γn(T )| ≤ C1
βn+1(T )

c(n+1)

√
βn+1(T )

(4.12)

(b)

1 ≤ βn+1(T )

αn+1(T )
≤ K1, (4.13)
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(c) For x > −c(n+1)Mn+1(T ) and j = 0, 1, 2,

∣∣∣∣
∂j

∂xj
[fn+1(x, T )−Tnϕn(fn(x, T ))]

∣∣∣∣ ≤
K2C

4

β
(j+1)/2
n+1 (T )

βn(T )

c(n)

×
[
exp

{
− 1√

βn+1(T )

∣∣∣∣2x+
x2

c(n+1)Mn+1(T )

∣∣∣∣

}

+ exp

{
− 2|x|√

βn+1(T )

}]
.

(4.14)

(d) For x ∈ R
1 and j = 0, 1, 2, 3, 4,

∣∣∣∣
∂j

∂xj
Tnϕn(fn(x, T ))

∣∣∣∣ ≤
K3C

2

β
(j+1)/2
n+1 (T )

exp

{
− 2|x|√

βn+1(T )

}
. (4.15)

The proof of Proposition 4.2 is based on the observation that the operator
Tn approximates the operator Qc

n,Mn(T ) very well, and it has a relatively

simple structure. Namely, it can be written by writing the vectors v ∈ R
r−1

in formula (4.11) in spherical coordinates in the form

Tnϕn(fn(x, T )) =
4

c̄n+1Γ(
r−1
2 )

∫ ∞

0
wr−2e−w2

ϕn(fn) ∗ ϕn(fn)

(
2x

c̄n+1
+

w2

Mn(T )
− r − 1

2Mn(T )
, T

)
dw,

where w = |v|. Then we get with the substitution w2

Mn(T ) = u that

Tnϕn(fn(x, T )) =
2

c̄n+1Γ(
r−1
2 )

∫ ∞

0
Mn(T )(Mn(T )u)

(r−3)/2e−Mn(T )u

ϕn(fn) ∗ ϕn(fn)

(
2x

c̄n+1
+ u− r − 1

2Mn(T )
, T

)
du

=
2

c̄n+1
ϕn(fn) ∗ ϕn(fn) ∗ k−Mn(T )

(
2x

c̄n+1
− r − 1

2Mn(T )

)
, (4.16)

where ∗ denotes convolution, k−Mn(T )(x) = kMn(T )(−x), and kMn(T )(x) =

Mn(T )k (Mn(T )x) with k(x) = 1√
πx
e−x k(x) = x(r−3)/2e−x

Γ( r−1
2

)
for x > 0, and

k(x) = 0 for x ≤ 0.
The operator Tn has a certain contraction property which can be ex-

pressed in the Fourier space. the Fourier transform of T̃nϕ̃n(fn(ξ, T )) can
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be expressed with the help of formula (4.16). One gets that

T̃nϕ̃n(fn(ξ, T ))

= exp

{
i
(r − 1)c̄n+1

4Mn(T )
ξ

}
k̃

(
− c̄n+1ξ

2Mn(T )

)[
ϕ̃n

(
fn

( c̄n+1

2
ξ, T

))]2
,

=
exp

{
i (r−1)c̄n+1

4Mn(T ) ξ
}

(
1 + i c̄n+1ξ

2Mn(T )

)(r−1)/2

[
ϕ̃n

(
fn

( c̄n+1

2
ξ, T

))]2
. (4.17)

In this calculation we have exploited that k(x) is the density function of
the gamma distribution with parameter r−1

2 , whose characteristic function

equals (1− iξ)−(r−1)/2. It follows from formula (4.17) that Tnϕn(fn(x, T ))
is the density function of a random variable with expectation zero.

The proof of Proposition 4.2 is a natural adaptation of the proof of the
corresponding result (of Proposition 3) in paper [BM3]. Hence we only
explain the main points and the necessary modifications.

Because of the inductive property I(n) fn(x, T ) is essentially concentrated

in a neighbourhood of the origin of size
√
βn(T ), and if (n, T ) is in the low

temperature domain and η > 0 is chosen sufficiently small, then |x|
100

√
c(n)

≤
η
10 for |x| ≤

√
βn(T ), and the function fn(x, T ) (disregarding the scaling

with the numbers An and Bn) is not changing in the typical region by
the regularization of the function fn(x, T ). This is the reason why such a
regularization works well.

The proof of Proposition 4.2 contains several estimates. First we list those
results whose proof apply the bound on fn(x, T ) formulated in the Inductive
hypothesis I(n). One can bound the differences

∂j

∂xj
(Q̄c

n,Mn(T )fn(x, T )− Q̄c
n,Mn(T )ϕn(fn(x, T ))) (Lemma 4 in [BM3]),

∂j

∂xj
(Q̄c

n,Mn(T )ϕn(fn(x, T ))− T̄c
n,Mn(T )ϕn(fn(x, T ))) (Lemma 5 in [BM3]),

with the help of Property I(n) similarly to paper [BM3]. The absolute value
of these expressions can be bounded for all ε > 0 by

βn

c(n)
C1(ε)C

2

β
(j+1)/2
n (T )

exp

{
− 2(1− ε)

c̄n+1

√
βn(T )

∣∣∣∣2x+
x2

c(n+1)Mn(T )

∣∣∣∣

}

with some appropriate constant C1(ε) > 0 if fn(x, T ) satisfies Condition
I(n).

The main difference between these estimates and the analogous results
in paper [BM3] is that the upper bounds given for the above expressions

contain a small multiplying factor βn(T )

c(n) . In paper [BM3] the multiplying

factors 2−n and 1/c(n) appear instead of this term. In the proof of this paper
we had to make some modifications, because while in paper [BM3] only very
low temperatures were considered when Mn(T ) is strongly separated from
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zero, now we want to give an upper bound under the weaker condition
formulated in the definition of the low temperature region. The proofs are
very similar. The only essential difference is that in the present case the
typical region, where a good asymptotic approximation must be given is

chosen as the interval |x| < 10
√
c(n), i.e. it does not depend on the value of

Mn(T ).
Also the expression Q̄c

n,Mn(T )fn(x, T ) can be bounded together with their

first two derivatives with the help of Property I(n) in the same way as
in Lemma 3 of paper [BM3]. But this estimate is useful only for large
x. It can be proved, similarly to the proof of the corresponding result in
paper [BM3] (lemma 7) that the scaling constants which appear in the for-
mulas expressing Qc

n,Mn(T ) through Q̄c
n,Mn(T ) and Tn through T̄c

n,Mn(T ) are

very close to each other. Here again the multiplying factor βn(T )

c(n) appears

in the error term instead of the multiplying factor 1/c(n) in paper [BM3].
This Lemma 7 in [BM3] is a technical result which expresses the difference
of the functions T̄c

n,Mn(T )F1(x) and T̄c
n,Mn(T )F2(x) together with its deriva-

tives if we have a control on the difference of the original functions F1(x) and
F2(x). We gain such kind of information from the inductive hypothesis I(n).
They give a good control on the difference fn+1(x, T ) − Tnϕn(fn(x, t)).
The consequences of these results are formulated in Proposition 2 in pa-
per [BM3]. These results also imply an estimate on the Fourier transforms

ϕ̃n+1(fn+1(ξ, T )) − T̃nϕ̃n(fn(ξ, T ))) and T̃nϕ̃n(fn(ξ, T )) and also on their
analytic continuation. This is done in lemma 8 in paper [[BM3]. Now again
the analogous result holds under the conditions of the present paper with

the difference that the term c−n must be replaced βn(T )

c(n) . The estimate ob-

tained for T̃nϕ̃n(fn(ξ, T )) in such a way is relatively weak, it is useful only
for large ξ.

The above results are not sufficient to prove Proposition 4.2. In particu-
lar, they do not explain why the right scaling was chosen in the definition
of the function fn(x, T ). Their role is to bound the error which is com-
mitted when Qc

n,Mn(T )fn(x, T ) is replaced by Tnϕ(fn(x, T )). The function

Tnϕn(fn(x, T )) together with its derivatives and Fourier transform can be
well bounded by means of formula (4.17) and the inverse Fourier transform.
In the estimations leading to such bounds the inductive hypothesis J(n)
plays a crucial role. The proof of Lemma 9 in paper [BM3] can be adapted
to the present case without any essential difficulty. But, the parameters αn,
βn and c must be replaced by αn(T ), βn(T ) and c̄n+1 in the present case.

Proposition 4.2 can be proved similarly to its analog, Proposition 3 in
paper [BM3]. The notation must be adapted to the notation of the present

paper. Besides, the small coefficient c−n/2 appearing in the proof of Propo-

sition 3 in [BM3] must be replaced by
√

βn(T )

c(n) . There is one point where a

really new argument is needed in the proof. This argument requires a more
detailed discussion. It is the proof of relation (4.13), i.e. of the fact that
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αn(T ) and βn(T ) have the same order of magnitude. Their ratio must be
bounded by a number independent of η. The proof of the analogous result
in paper [BM3] exploited the fact that in the model of that paper the se-

quence c(n) tended to infinity exponentially fast. In the present case this
property does not hold any longer, hence a different argument is needed.
The validity of relation (4.13) has a different cause for relatively small and
large indices n.

For large n it can be shown that both βn(T ) and αn(T ) have the same
order of magnitude as M−2

n (T ), and for large n these relations imply (4.13).
If n is relatively small and M0(T ) is large, then M

−2
n (T ) is much less than

αn(T ) and βn(T ). In this case the above indicated argument does not work,
but it can be proved that for such indices n the numbers βn(T ) are decreasing
exponentially fast, and the proof of relation (4.13) for such n is based on
this fact.

To distinguish between small and large indices n define the number

N1(T ) =

{
minn : n ≥ N, and βn+1(T ) ≤

100

M2
n(T )

}
,

(N1(T ) = ∞ if there is no such n). (4.18)

where the number N was defined in formula (1.12). We shall later see that
N1(T ) <∞ for all 0 < T ≤ c0A0/2.

First we prove relation (4.13) under the additional condition n ≤ N1(T ).

In this case βm+1(T ) ≤ c2m+1

2 βm(T ) + βm(T )
10 for m ≤ n, and because of

Condition 1

βm+1(T ) ≤
2

3
βm(T ) if m ≤ N1(T ) (4.19)

for all N ≤ m ≤ n.

Hence
√

βm+1(T )

c(m+1) ≤ 5
6

√
βm(T )

c(m) ,
√

βm(T )

c(m) ≤
(
5
6

)m−N
√

βN (T )

c(N) ,

1 ≤ βm+1(T )

αm+1(T )
≤ max




c2m+1
2

+

√

βm(T )

c(m)

c2m+1
2

−
√

βm(T )

c(m)

· βm(T )
αm(T ) , 10

13




≤ max

(
exp

{
5
√

βm(T )

c(m)

}
· βm(T )
αm(T ) , 10

13

)

for N ≤ m ≤ n, and

βn+1(T )

αn+1(T )
≤ max

(
βN (T )

αN (T )
, 1013

)
exp

{
5

n∑

m=N

√
βm(T )

cm(T )

}
≤ K.

The above argument together with the observation that βN (T ) ≫ M−2
N (T )

if the parameter t > 0 in (1.3) is sufficiently small and T ≤ c0A0/2 imply
that N < N1(T ), and the pair (n, T ) is in the low temperature region for all
n ≤ N1(T ). The latter property follows from the fact that by formula (4.19)

the sequence βn(T )

c(n) is monotone decreasing for N ≤ n ≤ N1(T ).
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In the case n > N1(T ) we can prove by induction with respect to n
together with the inductive proof of Proposition 4.2 that

βn+1(T ) ≤ 100

M2
n(T )

if n ≥ N1(T ).

and (n, T ) is in the low temperature region. (4.20)

By applying formula (4.20) for n−1 and the fact that (n, T ) is in the low
temperature region we get that the term γn−1(T ) in formula (4.12) can be
bounded as

|γn−1(T )| ≤
βn(T )

c(n)

√
βn(T ) ≤ η

10

Mn−1(T )
≤ 1

8C1Mn−1(T )
(4.21)

with the same number C1 which appears in (4.12) if the number η > 0
was chosen sufficiently small. Then formula (4.12) implies that Mn(T ) ≤
Mn+1(T ). Hence we get by applying again formula (4.20) with n − 1 that
Mn(T ) < Mn−1(T ), and

βn+1(T ) ≤
2

3
βn(T ) +

10

M2
n(T )

≤ 200

3M2
n−1(T )

+
10

M2
n(T )

≤ 100

M2
n(T )

.

This means that formula (4.20) also holds for n. Relation (4.20) together
with the definition of the sequence αn(T ) imply that for n ≥ N1(T )

αn+1(T ) ≥
10−12

M2
n(T )

≥ 10−14βn(T ),

i.e. formula (4.13) is also valid for n > N1(T ) if (n, T ) is in the low tempera-
ture domain. With the help of this argument Proposition 4.2 can be proved
by an adaptation of the proof of the corresponding result in [BM3].

We formulate and prove a lemma which describes some properties of the
numbers βn(T ) in the cases when n ≤ N1(T ) or n ≥ N1(T ). Several parts
of it were already proved in the previous arguments.

Lemma 4.3. Let 0 < T ≤ c0A0/2. If the parameter κ > 0 in formula (1.3)
is sufficiently small, then the following statements are valid:

(1) The number N1(T ) defined in (4.18) is finite, and N1(T ) > N .
(2) The pair (N1(T ), T ) is in the low temperature region.
(3) The relations (4.19), (4.20) hold.
(4) If n ≥ N1(T ) and (n, T ) is in the low temperature region then

Mn(T )−
3

8c(n)Mn(T )
≤Mn+1(T ) ≤Mn(T )−

1

8c(n)Mn(T )
. (4.22)

(5) If N ≤ n ≤ N1(T ) then

Mn(T )−
1

4c(n)Mn(T )
− η

(
2

3

)(n−N)/2

≤Mn+1(T )

≤Mn(T )−
1

4c(n)Mn(T )
+ η

(
2

3

)(n−N)/2

.

(4.23)
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(6) We have that

N1(T )−N ≤ 10 log(1/κT 2). (4.24)

(7) If Mn(T ) < 10 then n ≥ N1(T ).

Proof of Lemma 4.3. Formulas (4.19) and (4.20) were already proved in the
previous argument, and since (N,T ) is in the low temperature region, i.e.
βN (T ) ≥ ηcN , relation (4.19) implies that (n, T ) is in the low temperature
region for all N ≤ n ≤ N1(T ). Formula (4.22) follows from formula (4.21)
with the replacement of n − 1 by n and formula (4.12). By relation (4.19)

βn(T ) ≤
(
2
3

)n−N
if N ≤ n ≤ N1(T ). Hence it follows from (4.12) that

Mn+1(T ) ≤Mn(T )+
βn+1(T )

c(n)

√
βn+1(T )

c(n)
≤Mn(T )+η

(
2

3

)(n−N)/2

, (4.25)

and even relation (4.23) holds in this case.
Relation (4.25) and the estimate obtained for βn(T ) imply that M2

n(T ) ≤
(MN (T ) + 1)2 ≤ 2M2

N (T ) and βn+1(T )M
2
n(T ) ≤ 2M2

N (T )
(
2
3

)n−N
if n ≤

N1(T ). This relation together with the definition of the index N1(T ) de-

fined in (4.18) imply that 2M2
N (T )

(
2
3

)n−N ≥ 100 if n < N1(T ). Applying

the last formula for n = N1(T ) − 1 we get that (N1(T ) − 1 − N)) log 3
2 ≤

log
M2

N (T )
50 . Since M2

N (T ) ∼ const. 1
κT 2 this relation implies that N1(T ) is fi-

nite, and moreover it satisfies (4.24). Finally, if the inequalitiesMn(T ) ≤ 10
and n < N1(T ) held simultaneously, then the inequality M2

n(T )βn+1(T ) ≤
100

(
2
3

)n−N ≤ 100 would also hold. This relation contradicts to the assump-
tion n < N1(T ). Hence also the last statement of Lemma 4.3 holds. �

The previous results enable us to describe the different behaviour of the
model in the cases when the Dyson condition (1.2) is satisfied and when it
is not. This will be done in Lemma 4.4. It shows that if (1.2) is not satisfied
then for all T there is a pair (n, T ) which does not belong to the low temper-
ature region, while if (1.2) is satisfied, then all sufficiently low temperatures
T belong to the low temperature region. In the latter case the asymptotic
behaviour of the spontaneous magnetization Mn(T ) can be described for
large n. The description of the behaviour of the function qn(x, T ) in the
case when T does not belong to the low temperature region needs further
investigation, and this will be done in Sections 5 and 6. A more detailed
investigation of the case when T belongs to the low temperature region will
be done in Section 7. We finish this section with the proof of a result about
the behaviour of the magnetizationMn(T ) at low temperatures T > 0 which
will be useful in the subsequent part of the paper.

Lemma 4.4. Let 0 < T ≤ c0A0/2, and let the parameter κ > 0 be suf-
ficiently small. If the Dyson condition (1.2) is not satisfied, then for all
T > 0 there is some n = n(T ) for which (n, T ) does not belong to the low
temperature region. If, on the other hand, condition (1.2) is satisfied, then
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T belongs to the low temperature region for sufficiently small T > 0. In this
case relation (3.6) and, under the additional Condition 2, also relation (3.7)
hold.

Proof of Lemma 4.4. It follows from formulas (4.22) and (4.23) that

− 1

c(n)
≤M2

n+1(T )−M2
n(T ) ≤ − 1

8c(n)
(4.26)

if n ≥ N1(T ) and the pair (n, T ) is in the low temperature region, and

− 1

2c(n)
− 10

(
2

3

)n−N

(MN (T ) + 1) ≤M2
n+1(T )−M2

n(T )

≤ − 1

2c(n)
+ 10

(
2

3

)n−N

(MN (T ) + 1)

(4.27)

if N ≤ n ≤ N1(T ). Formula (4.26) can be obtained by taking square in

formula (4.22) and observing that c(n)Mn(T )
2 > 10η−1. Formula (4.27) can

be deduced similarly from (4.23) by observing first that the right-hand side
of (4.23) implies that Mn(T ) ≤MN (T ) + 1 for N ≤ n ≤ N1(T ).

Formulas (4.26) and (4.27) imply that if a temperature T > 0 is in the
low temperature region, then

n∑

k=N

1

c(n)
≤ 8(M2

N (T )−M2
n(T ))+30(MN (T )+1) ≤ 8M2

N (T )+30(MN (T )+1)

for all n ≥ N , where the number N is defined in (1.12). Since the right-hand
side of the last formula does not depend on n, this implies that (1.2) holds.

In the other direction, if (1.2) holds, then since by Proposition 4.1

lim
T→∞

M0(T ) = lim
T→∞

MN (T ) = ∞,

there is some number T̄ ≤ c0A0/2 such that for all temperatures 0 < T ≤ T̄

M2
N (T ) > 8

∞∑
n=N

1
c(n) +30Mn(T )+31. If T > 0 satisfies the above inequality,

then the left-hand side of the inequalities (4.26) and (4.27) imply that if the
pair (n, T ) is in the low temperature domain and n ≥ N1(T ), then

M2
n(T ) > M2

N (T )− 8
n∑

n=N

1

c(n)
30(Mn(T ) + 1)) ≥ 1.

Hence M2
n(T ) > 1 for all n, and T is in the low temperature region.

Let T > 0 be in the low temperature region. If n > m > N1(T ), then by
(4.26)

∣∣M2
n(T )−M2

m(T )
∣∣ ≤

n∑

k=m

1

c(k)
.

Since in this case Condition 1 holds, the last relation implies that M2
n(T ),

n = 1, 2, . . . , is a Cauchy sequence, and relation (3.6) holds. We claim that
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if Condition 2 also holds, then for any ε > 0

−r − 1 + ε

2c(n)
≤M2

n+1(T )−M2
n(T ) ≤ −r − 1− ε

2c(n)
(4.28)

if n ≥ n(ε). Relation (3.7) is a consequence of (4.28). Relation (4.28) can be
deduced from (4.12) and (4.20) if we show that for any temperature T > 0
in the low temperature region

lim
n→∞

βn(T )

c(n)
= 0. (4.29)

Relation (4.29) holds under Condition 2, since by (4.26) in this case for all
n > N1(T ),

M2
n(T ) ≥ lim

k→∞

(
M2

n(T )−M2
k (T )

)
≥ 1

8

∞∑

k=n

1

c(k)
,

and

βn(T )

c(n)
≤ 100

M2
n−1(T )c

(n)
≤ 800

(
c(n)

∞∑

k=n−1

1

c(k)

)−1

.

Under Condition 2 the last expression tends to zero as n→ ∞. This implies
formula (4.28). Lemma 4.4 is proved. �

5. Estimates in the Intermediate Region. The proof of

Theorem 3.1.

In this section we give some estimates on qn(x, T ) when the pair (n, T )
belongs neither to the low nor to the high temperature region and prove
Theorem 3.1 with their help.

Let us consider the number n̄ = n̄(T ) introduced in the formulation of
Theorem 3.1, namely

n̄(T ) = min{n : D2
n(T ) < e−1/η2}.

In Lemmas 5.1 and 5.2 we shall prove some estimates about a scaled ver-
sion of the function qn̄(T )(x, T ), where qn(x, T ) was defined in (2.7). In
Lemma 5.1 the case T ≤ c0A0, and in Lemma 5.2 the case T ≥ c0A0 will be
considered. Lemmas 5.1 and 5.2 yield some estimates on the tail-behaviour
of a scaled version of the function qn̄(T )(x, T ). This will be needed to start an
inductive procedure for all n ≥ n̄(T ) which state that the functions qn(x, T )
become more and more strongly concentrated around zero as the index n
is increasing. This procedure is based on Lemmas 5.3 and 5.4. The role
of Lemma 5.3 is to give an appropriate lower bound for the norming con-
stant Zn(T ) in the definition of the function qn(x, T ). Then in Lemma 5.4
we prove some contraction property of the operator which maps an ap-
propriate scaled version of the distribution function with density function
const. q̄n−1(|x|, T ) to an appropriate scaled version of the distribution func-
tion with density const. q̄n(|x|, T ), x ∈ R

r. The proof of Lemma 5.4 will
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exploit the rotation symmetry of the model. Theorem 3.1 will be proved by
means of these lemmas.

To formulate these results we introduce some notations. Let us introduce
the functions

ĥn(x, T ) =
(
c(n̄(T ))

)−r/2
qn

(
x√
cn̄(T )

, T

)
, x ∈ R

r, (5.1)

and measures

Ĥn,T (A) =

∫

A

ĥn(x, T ) dx, A ⊂ R
r, (5.2)

in the space R
r. Define also the function

Ĥn,T (R) = Ĥn,T ({x : |x| ≥ R}) for R ≥ 0. (5.3)

The functions ĥn,T and measures Ĥn,T are similar to the functions hn,T and
measures Hn,T defined in (3.4) and (3.5). The only difference is that the

scaling of qn(x, T ) in (5.2) and (5.3) is made by means of c(n̄(T )) instead of

c(n). If Condition 5 is satisfied with a sufficiently small η̄ and sufficiently
large L(η̄, T ), and n− n̄(T ) is not too large, then the approximation of c(n)

by c(n̄(T )) is sufficiently good for our purposes. Hence it will be enough to
have a good control on the measure Ĥn,T . In Lemma 5.3 we give a bound
on it for large |x| and in Lemma 5.4 we prove an estimate which enables to

bound Ĥn,T (R) for small R too.
With the help of these results we can prove that starting from n̄ = n̄(T )

after finitely many steps k the pair (n̄ + k, T ) is in the high temperature
region. Moreover, this number k can be bounded from above independently
of the temperature T . First we formulate Lemma 5.1.

Lemma 5.1. Under the conditions of Proposition 4.2, the function
hn̄(T )(x, T ) defined in (3.4) satisfies the inequality

hn̄(T )(x, T ) ≤ exp

{
K

η
− |x|2

10

}
if T ≤ c0A0/2 (5.4)

with an appropriate K > 0. For T ≤ c0A0/2 the pair (n̄(T ), T ) does not
belong to the high temperature region, and there exists some η̃ = η̃(η) such

that the function Ĥn,T (·) defined in (5.3) satisfies the inequality

Ĥn̄(T ),T

(
η̃−1
)
≤ 1/2, if T ≤ c0A0/2, (5.5)

i.e. for T ≤ c0A0/2 there is a ball with its center in the origin whose radius

depends only on η, and whose Ĥn̄(T ),T measure is greater than 1/2.

Proof of Lemma 5.1. Let us introduce the function

h̄n(x, T ) =
1√
c(n)

q̄n

(
x√
c(n)

, T

)
, x ≥ 0

with the function q̄n introduced in (2.11). Observe that
∫ ∞

0
h̄n(x, T ) dx = 1.
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Let us apply Proposition 4.2 with the choice n = n̄(T )−1. Since hypothesis
I(n) holds for n = n̄, we obtain that

fn̄(T )(x, T ) ≤ K

β
1/2
n̄(T )−1(T )

exp



− 1√

βn̄(T )(T )

∣∣∣∣∣2x+
x2

c(n̄(T ))Mn̄(T )(T )

∣∣∣∣∣





if x > −c(n̄(T ))Mn̄(T )(T )

with some universal constant K > 0. It follows from this relation that the

function h̄n̄(T )(x, T ) =
√
c(n̄(T ))fn̄(T )

(√
c(n̄(T ))x− c(n̄(T ))Mn(T )), T

)
satis-

fies the inequality

h̄n̄(T )(x, T ) ≤ K

(
c(n̄(T ))

βn̄(T )−1(T )

)1/2

exp





1√
βn̄(T )(T )

(
c(n̄(T ))Mn̄(T )(T )−

x2

Mn̄(T )(T )

)
 .

The inequalities βn̄(T )(T ) > ηc(n̄(T )) and βn̄(T )−1(T ) ≤ ηc(n̄(T )−1) hold.

Lemma 4.3 implies that the fractions
βn̄(T )(T )

βn̄(T )−1(T ) ,
Mn̄(T )(T )

Mn̄(T )−1(T ) and

βn̄(T )(T )Mn̄(T )(T )
2 are separated both from zero and infinity, hence

c(n̄(T ))

βn̄(T )−1(T )
≤ const.

η
,

c(n̄(T ))Mn̄(T )(T )√
βn̄(T )(T )

≤ const.

η

and
1

Mn̄(T )(T )
√
βn̄(T )(T )

≥ 1

20
.

These inequalities together with the last relation imply that

h̄n̄(T )(x, T ) ≤ eK̄/ηe−x2/20 x ≥ 0, (5.6)

with an appropriate K̄ > 0. Since

hn̄(T )(x, T ) = C(T )h̄n̄(T )(|x|, T ), x ∈ R
r, (5.7)

with an appropriate number C(T ) > 0, estimate (5.4) can be deduced from
(5.6) if we give a good upper bound for the constant C(T ) in (5.7). Observe
that because of (5.7)

C(T )−1 =

∫

Rr

h̄n̄(T )(|x|, T ) dx = Vol(Sr−1)

∫ ∞

0
xr−1h̄n̄(T )(x, T ) dx, (5.8)
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hence

C(T )−1 = Vol(Sr−1)

∫ ∞

0
xr−1h̄n̄(T )(x, T ) dx

≥ Vol(Sr−1)Rr−1

(
1−

∫ R

0
h̄n̄(T )(x, T ) dx

)

for any R > 0. On the other hand, by formula (5.6)

∫ R

0
h̄n̄(T )(x, T ) dx ≤ 1

2

if 0 < T ≤ c0A0/2 and R ≤ e−K/η with a sufficiently large K > 0. Hence

C(T )−1 ≥ 1
2Vol(S

r−1)e−K(r−1). This means that C(T ) ≤ eKr/η in (5.7),
and inequality (5.4) follows from (5.6).

We shall prove that n̄(T ) does not belong to the high temperature region
with the help of the following estimate on D2

n̄(T )(T ). In its proof we shall

apply formula (5.8).

D2
n̄(T )(T ) =

∫

Rr

|x|2hn̄(T )(x, T ) dx = Vol(Sr−1)

∫ ∞

0
xr+1hn̄(T )(x, T ) dx

= C(T )Vol(Sr−1)

∫ ∞

0
xr+1h̄n̄(T )(x, T ) dx

≥ C(T )Vol(Sr−1)

(∫ ∞

0
xr−1h̄n̄(T )(x, T ) dx

)(r+1/(r−1)

=

(∫ ∞

0
xr−1h̄n̄(T )(x, T ) dx

)2/(r−1)

≥
(∫ ∞

0
xh̄n̄(T )(x, T ) dx

)2

=
(
Mn̄(T )

√
c(n̄(T ))

)2
.

Since M2
n ≥ 10

βn+1
if n ≥ N + 1, N + 1 is in the low temperature region if

T ≤ c0A0/2, (see (3.3) and the subsequent sentence in our discussion), and
Mn̄(T )

Mn̄(T )−1
≤ const., hence

D2
n̄(T )(T ) ≥M2

n̄(T )c
(n̄(T )) ≥ const.

c(n̄(T ))

βn̄(T )
≥ const.

η
.

This implies that n̄(t) is not in the high temperature region. �

In the next Lemma 5.2 we shall formulate some properties of the function
hn(x, T ) defined in (3.4) in the case n = 0. For the sake of a better discussion
we define the function h̄n(x, T ), x ≥ 0, by the formula h̄n(x, T ) = hn(|x|, T ),
and from now on h̄n(x, T ) means this function. (It differs slightly from
the function h̄n(x, T ) applied in the proof of Lemma 5.1 where a different
norming constant was applied.)
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If T ≥ c0A0/2, then n̄(T ) = 0, and

h̄n̄(T )(|x|, T ) = const. q0

(
(c(0)−1/2x, T

)
,

where q0(x, T ) is defined in (2.10). Hence

h̄n̄(T )(x, T ) =
1

Z0(T )
exp

{(
A0c0 − T

c(0)

)
x2

2
− κT 2 x4

4(c(0))2

}
if T ≥ c0A0/2

(5.9)
with the norming constant (for the function hn̄(T )(x, T ))

Z0(T ) = Vol(Sr−1)

∫ ∞

0
xr−1 exp

{(
A0c0 − T

c(0)

)
x2

2
− κT 2 x4

4(c(0))2

}
dx.

(5.10)
Using formulas (5.9) and (5.10), we will prove the following

Lemma 5.2. There is a constant κ0 = κ0(N) > 0 such that if 0 < κ < κ0,
Condition 1 is satisfied, and T ≥ c0A0/2, then n̄(T ) = 0, and

h̄n̄(T )(x, T ) ≤ const.T r/2 exp

{
1

κ
− T

2c(0)
x2
}

if T ≥ c0A0

2
. (5.11)

h̄n̄(T )(x, T ) ≤ const.T r/2 exp

{
Tx2

2c(0)

}
if T ≥ c0A0

2
. (5.12)

h̄n̄(T )(x, T ) ≤ const. e−Tx2/4 if T ≥ 10A0, and x ≥ T−1/3. (5.13)

The const. in formulas (5.11)—(5.13) depend only on the dimension r of
the model.

The pair (n̄(T ), T ) belongs to the high temperature region if T is very

large, e.g. if T ≥ e−1/η9 , and it does not belong to it if T > 0 is relatively
small, e.g. if T ≤ η−100. If (n̄(T ), T ) does not belong to the high temperature
region, then the function hn̄(T )(x, T ) defined in formula (3.4) satisfies the
inequality

hn̄(T )(x, T ) ≤ exp{K(η, κ)− α|x|2} (5.14)

with a constant α = α(η) > 0 and an appropriate number K(η, κ) depending
only on κ and η. In this case there is a constant B = B(η, κ) > 0 in such a

way that the quantity Ĥn̄(T ),T (·) defined in (5.3) satisfies the inequality

Ĥn̄(T ),T (B) ≤ 1

2
. (5.15)

This means that if the pair (n̄(T ), T ) is not in the high temperature region

(and T ≥ c0A0/2), then there is a radius B = B(η, κ) such that the Ĥn̄(T ),T

measure of the ball {x : |x| ≤ B(η, κ)} is bigger than 1/2.
If (n̄(T ), T ) = (0, T ) is in the high temperature region, then

Ĥn̄(T ),T (x) ≤ K1e
−K2η2x2

for all x > 0 (5.16)

with some universal constants K1 > 0 and K2 > 0.
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Proof of Lemma 5.2. First we estimate the norming factor Z0(T ) from
below. Let us observe that

A0c0 − T

c(0)
x2

2
− κT 2 x4

4(c(0))2
≥ −Tx2

(
1

2c(0)
+

1

4(c(0))2

)
≥ −10Tx2,

if κTx2 ≤ 1 and Condition 1 holds. Hence

Z0(T ) ≥ Vol (Sr−1)

∫ 1/
√
κT

0
xr−1e−10Tx2

dx (5.17)

= Vol (Sr−1)

∫ 1/
√
κ

0

xr−1e−10x2

T r/2
dx ≥ const.T−r/2.

Now, if T ≥ c0A0/2, then

A0c0 − T

c(0)
x2

2
− κT 2 x4

4(c(0))2
≤ −1

2

Tx2

c(0)
+ max

x : x≥0

(
Tx2

c(0)
− κ

4

(
Tx2

c(0)

)2
)

= − T

2c(0)
x2 +

1

κ
,

and combining this with (5.17), we obtain (5.11). The estimate A0c0−T
c(0)

x2

2 −
κT 2 x4

4(c(0))2
≤ Tx2

2c(0)
yields (5.12).

If T ≥ 10A0, then

A0c0 − T

c(0)
x2

2
− κT 2 x4

4(c(0))2
≤ −T

3
x2 ≤ −T

4
x2 − T 1/3

12
, for |x| ≥ T−1/3,

which together with (5.17) imply inequality (5.13).

Furthermore, (5.13) implies that if T > e−1/η9 , then the pair (0, T ) be-
longs to the high temperature region. Indeed, if we estimate the integral
expressing D2

0(T ), then by this relation the contribution of the domain

{x : |x| ≥ T−1/3} to this integral is very small. On the other hand, the

contribution of the domain {x : |x| ≤ T−1/3} is less than T−2/3 which is
also very small in this case. To see that for T < η−100 the pair (0, T ) does
not belong to the high temperature domain it is enough to observe that in
this case by formula (5.12) the H0,T measure of the ball {x : |x| ≤ η100} is

less than const.T r/2η100r ≤ 1/2. Hence in this case D2
0(T ) ≥ 1

2η
200. (We

get this estimate by restricting the integral expressing D2
0(T ) to the domain

{x : |x| ≥ η100}). This means that T is not in the high temperature region.
Inequality (5.11) together with the fact that if the pair (0, T ) does not

belong to the high temperature region then T ≤ e−1/η9 imply relations (5.14)
and (5.15).

Since T > η−100 if the pair (0, T ) is in the high temperature region,
relation (5.13) implies relation (5.16). Lemma 5.2 is proved. �
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To formulate Lemmas 5.3 and 5.4 we rewrite formula (2.9) for the func-

tions ĥn(x, T ) defined in (5.1). It has the form

ĥn+1(x, T ) =
1

Zn(T )

∫

Rr

exp

{
− c(n)

c(n̄(T ))
u2

}
ĥn(x− u, T )ĥn(x+ u, T ) du

(5.18)
with

Zn(T ) =

∫

Rr×Rr

exp

{
− c(n)

c(n̄(T ))
u2

}
ĥn(x− u, T )ĥn(x+ u, T ) du dx (5.19)

for all n ≥ n̄(T ).
Let us also introduce the moment generating function of the measures

Ĥn,T , defined in (5.2):

ϕn,T (u) =

∫

Rr

euxĥn,T (x) dx, u ∈ R
r,

where ux denotes scalar product. By studying the properties of the mo-
ment generating function ϕn,T (u), we get an upper bound for the function

Ĥn,T (R) for large values R. Namely, we have the following result:

Lemma 5.3. There exists some κ0 = κ0(N) such that for all 0 < κ < κ0
and 0 < η̄ < η (with the numbers N and η defined in (1.12)) the following
relations hold. If we have such a positive integer L for which Conditions 1
and 5 (with η̄ and this number L) are satisfied, then for all such temperatures
T > 0 for which the number n̄(T ) exists, and the pair(n̄(T ), T ) does not
belong to the high temperature region, the inequality

Ĥn̄(T )+l,T (R) ≤ e−2lαR2/5r if R ≥ D and 0 ≤ l ≤ L (5.20)

holds with appropriate constants α > 0 and D > 0, and also the norming
factor Zn(T ) in (5.19) can be estimated as

Zn̄(T )+l(T ) ≥ D1 for 0 ≤ l ≤ L (5.21)

with some constant D1 > 0. These constants can be chosen as some func-
tions of κ and η̄, i.e. α = α(κ, η̄), D = D(κ, η̄) > 0 and D1 = D1(κ, η̄) > 0.
This means in particular that they do not depend on the temperature T .

Proof of Lemma 5.3. It follows from formulas (5.4) and (5.14) that

ϕn̄(T ),T (u) ≤ exp

{
K0 +

u2

α

}
for all u ∈ R

r

with some K0 = K0(η, κ) > 100 and α = α(η) > 0. It can be seen by
induction with respect to l that

ϕn̄(T )+l,T (u) ≤ exp

{
2lKl +

u2

2lα

}
for all 0 ≤ l ≤ L and u ∈ R

r (5.22)
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with some K0 > 0 and

Kl = Kl−1 −
logZn̄(T )+l−1,T

2l
, 1 ≤ l ≤ L. (5.23)

Indeed, the function ĥn̄(T )+l+1,T (x, T ) is increased if the kernel term

exp
{
− c(n)

c(n̄(T ))u
2
}

is omitted from the integral in (5.18), and the integral

turns into the convolution 2ĥn̄(T )+l,T ∗ ĥn̄(T )+l,T (2x) after this change. By
computing this convolution with the help of the inductive hypothesis and
dividing it by Zn̄(T )+l+1 we get an upper bound for ϕn̄(T )+l+1,T (u). Formulas
(5.22) and (5.23) follow from these calculations. We will prove formulas
(5.20) and (5.21) from these relations by induction for l together with the
inductive hypothesis that

Kl ≤ B for all 0 ≤ l ≤ L (5.24)

with some constants B > 10 depending only on κ and η̄.
Observe that formula (5.22) with the choice of vectors of the form (u, 0),

u ∈ R
1, u > 0, 0 ∈ R

r−1. implies that the function Ĥn̄(T )+l,T (R) defined in
formulas (5.2) and (5.3) satisfies the inequality

Ĥn̄(T )+l,T (R) ≤ rĤn̄(T )+l,T

(
{x = (x1,x2) ∈ R

r, x1 >
R√
r

)

≤ r exp

{
−uR√

r
+ 2lKl +

u2

2lα

}

for all real numbers u. In particular,

Ĥn̄(T )+l,T (R) ≤ r exp

{
2l
(
Kl −

R2α

4r

)}
(5.25)

with the choice u = 2lRα
2
√
r
. Hence

Ĥn̄(T )+l,T

(√
4r(r + 1)B

α

)
≤ re−2lrB ≤ 1

2
(5.26)

with the number B > 0 appearing in (5.24). Formula (5.26) implies that

Ĥn̄(T )+l,T

({
x : x ∈ R

r, |x| ≤
√

4r(r + 1)B

α

})
≥ 1

2
.

For z ∈ R
r and u > 0 let K(z, u) = {x : x ∈ R

r, |x− z| ≤ u} denote the ball

with center z and radius u. Since the ball

{
x : x ∈ R

r, |x| ≤
√

4r(r+1)B
α

}

can be covered by C(r)B(αη̄)−1 balls of radius
√
η̄, where C(r) > 0 depends

only on r, there is a ball K (z,
√
η̄) of radius

√
η̄ whose Ĥn,T measure (this

measure was defined in (5.2)) is greater than αη̄
C(r)B . Hence

Ĥn̄(T )+l,T × Ĥn̄(T )+l,T

(
K(z,

√
η̄)×K(z,

√
η̄)
)
≥ α2η̄2

(C(r)B)2
,
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and because of Condition 5 the expression Zn(T ) defined in (5.19) can be
estimated for n = n̄(T ) + l as follows:

Zn̄(T )+l(T ) ≥ 2−r

∫

x∈K(z,
√
η̄),u∈K(z,

√
η̄)
exp

{
−c

(n̄(T )+l)

cn̄(T )

(x− u)2

4

}

× ĥn̄(T )+l,T (x)ĥn̄(T )+l,T (u) dx du

≥ e−5Ĥn̄(T )+l,T × Ĥn̄(T )+l,T

(
K
(
z,
√
η̄
)
×K

(
z,
√
η̄
))

≥ e−5 α2η̄2

(C(r)B)2
.

In the above estimation we have exploited that because of Condition 5 and

Condition 1 c(n̄(T )+l)

cn̄(T ) ≤ 5
η̄ , hence

c(n̄(T )+l)

cn̄(T )

(x−u)2

4 ≤ 5 if x ∈ K (z,
√
η̄) and

u ∈ K (z,
√
η̄).

The last relation implies (5.21) with D1 =
e−5α2η̄2

(C(r)B)2
, although we still have

to show that the number D1 (depending on B) can be bounded by a number
which does not depend on the parameter T . We show with the help of (5.21),

(5.23) and the inductive hypothesis (5.24) that Kl ≤ (1 − 2−(l+1))B if the
number B is chosen as B = max(2K0,K

∗), where K∗ is the larger solution

of the equation x = 2 log x2

D̄1
with D̄1 = e−5α2η̄2

C(r)2
. This means that B in

(5.24) can be chosen as a number not depending on T .
Indeed, this relation holds for l = 0, and if it holds for l − 1, then

Kl ≤ (1− 2−(l+1))B − 2−(l+1

(
B − 2 log

B2

D̄1

)
≤ (1− 2−(l+1))B

if B ≥ K∗.
This implies (5.21) (with the constant D1 not depending on T and the

validity of the inductive hypothesis (5.24) for 0 ≤ l ≤ L. Finally, relation
(5.20) follows from (5.24) and (5.25). Lemma 5.3 is proved. �

Formulas (5.18) and (5.19) can be rewritten for the function Ĥn,T (R)
defined in (5.3) as

Ĥn+1,T (R) =
2r

Zn(T )

∫

|x|≥R

∫

u∈Rr

exp

{
− c(n)

c(n̄(T ))
u2

}

× ĥn(x− u, T )ĥn(x+ u, T ) du dx

=
1

Zn(T )

∫

|x+u

2 |≥R

∫

u∈Rr

exp

{
− c(n)

c(n̄(T ))

(x− u)2

4

}

× Ĥn,T ( dx)Ĥn,T ( du)

(5.27)

with

Zn(T ) =

∫

x∈Rr

∫

u∈Rr

exp

{
− c(n)

c(n̄(T ))

(x− u)2

4

}
Ĥn,T ( dx)Ĥn,T ( du).
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for all R ≥ 0. We apply these formulas in the proof of the following
Lemma 5.4. The proof of Lemma 5.4 also exploits the rotational invari-
ance of the measure Ĥn,T .

Lemma 5.4. Let the conditions of Lemma 5.3 hold. Then there exist some
numbers δ = δ (η̄, D1) > 0 and M = M (η̄, D1) > 0 depending only on the
numbers D1 in formula (5.21) and η̄ in Condition 5 in such a way that

Ĥn̄(T )+l+1,T ((1− δ)R) ≤ 1

2
Ĥn̄(T )+l,T ((1− δ)R) +MĤn̄(T )+l,T (R))

for all R > 0 and 0 ≤ l ≤ L. (5.28)

Proof of Lemma 5.4. Observe that
{∣∣∣∣

x+ u

2

∣∣∣∣ ≥ (1− δ)R

}
⊂ {|x| ≥ R} ∪ {|u| ≥ R}

∪{|x| ≥ (1− δ)R, arg(x,u) ≤ α} ∪ {|u| ≤ (1− δ)R, arg(x,u) ≥ α}
for all R > 0 and 0 < δ < 1 with α = 2arccos(1 − δ). Indeed, if

∣∣x+u
2

∣∣ ≥
(1 − δ)R, then either |x| > R or |u| > R or both |x| and |u| is less than
R, but in this case either |x| > (1 − δ)R or |u| > (1 − δ)R, and the angle
between the vectors x and u must be small. On the other hand, because of
the rotational invariance of the measure Ĥn,T

Ĥn̄(T )+l,T × Ĥn̄(T )+l,T ({(x,y) : |x| ≥ (1− δ)R, arg(x,u) ≤ α})

≤ α

π
Ĥn̄(T )+l,T ({x : |x| ≥ (1− δ)R}) = α

π
Ĥn̄(T )+l,T ((1− δ)R).

The last two relations together with (5.27) and the inequality α
π ≤

√
δ imply

that

Ĥn̄(T )+l+1,T ((1− δ)R) (5.29)

≤ 1

Zn(T )

(
2
√
δĤn̄(T )+l,T ((1− δ)R) + 2Ĥn̄(T )+l,T (R)

)
.

Relation (5.28) follows from (5.29) and (5.21) if we choose δ > 0 so small

that the inequality 2
√
δ

D1
≤ 1

2 holds. Lemma 5.4 is proved. �

Next we prove Theorem 3.1 with the help of the previous results.

Proof of Theorem 3.1. First we give a good estimate on Hn̄(T )+l(R) if the
conditions of Lemma 5.3 hold with a sufficiently large L = L(κ, η̄) and l ≤ L
is sufficiently large. For this goal we introduce the following quantities.

Put P (j, l) = P (j, l, T ) = Ĥn̄(T )+l((1−δ)jD), j = 0, 1, . . . , 0 ≤ l ≤ L with
the number D appearing in (5.20) and δ in Lemma 5.4. Clearly, P (j, l) ≤ 1
for all j and l. By Lemma 5.4

P (j, l + 1) ≤ 1

2
P (j, l) +MP (j − 1, l), j ≥ 1, (5.30)
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and by relation (5.20) P (0, l) ≤ e−α2lD2/5r if l ≤ L. Hence there is a constant

k0 > 0 in such a way that P (0, k0 + l) ≤
(
2
3

)l
if k0 + l ≤ L. Because of this

relation, the inequality P (j, l) ≤ 1 and formula (5.30) there is a constant

k1 ≥ k0 in such a way that P (1, k1 + l) ≤ 1
3M

(
2
3

)l
and P (1, k1 + l) ≤

(
2
3

)l
if

k1+ l ≤ L. Similarly, there is a constant k2 such that P (2, k2+ l) ≤ 1
3M

(
2
3

)l
,

and P (2, k2 + l) ≤
(
2
3

)l
if k2 + l ≤ L. This procedure can be continued, and

we get a sequence k0 ≤ k1 ≤ k2 ≤ · · · in such a way that the inequality

P (p, kp + l) ≤
(
2
3

)l
holds if kp + l ≤ L. The numbers kp depend only on the

parameter κ in (1.3) and the number η̄ in Condition 5. The above procedure
can be continued till kp ≤ L. In such a way we have proved that for all fixed
j ≥ 0

Ĥn̄(T )+l ((1− δ)pD) ≤ C(p)

(
2

3

)l

,

if 0 ≤ l ≤ L. The above relation together with formula (5.20) imply that
if Condition 5 holds with a sufficiently large constant L = L(η̄, t), then an
integer k > 0 can be chosen independently of the parameter T in such a way
that

Ĥn̄(T )+l,T (R) ≤ 2 exp

{
−e

1/η3R2

η̄/5

}
for all R > 0 and k ≤ l ≤ L(η̄, t).

(5.31)
Indeed, by (5.20) relation (5.31) holds for R ≥ D if l ≥ k′0 with some
k′0 > 0 and by the previous inequality for all j = 1, 2, . . . it also holds for
(1 − δ)jD ≤ R < (1 − j)j−1D if l ≥ k′j with a sufficiently large k′j ≥.
On the other hand, it is enough to demand this inequality for finitely many

indices j, since relation (5.31) automatically holds if e1/η
3
R2

η̄/5 ≤ log 2.

Since the measure Hn,T defined in (3.5) satisfies the relation

Hn̄(T )+l,T {x : |x| > R} = Ĥn̄(T )+l,T



√

c(n̄(T ))

c(n̄(T )+l)
R


 ≤ Ĥn̄(T )+l,T

(√
η̄

5
R

)

relation (5.31) implies that

Hn̄(T )+l,T (R) ≤ 2 exp
{
−e1/η3R2

}
for all R > 0, and l∗ ≤ l ≤ L (5.32)

with some appropriate l∗ ≥ 0. Relation (5.32) implies in particular that

D2
n̄(T )+l(T ) < e−1/η2 , i.e. (n̄(T )) + l, T ) is in the high temperature region if

l∗ ≤ l ≤ L. The inequality D2
n̄(T )(T ) < K follows from (5.20) with l = 0.

To complete the proof of Theorem 3.1 we have to give a lower bound for
D2

n̄(T )+k(T ). Let us introduce the following notation: Given two positive

numbers R2 > R1 > 0 let K(R1, R2) = {x : x ∈ R
r, R1 ≤ |x| ≤ R2} denote

the annulus between the concentrical balls with center in the origin and
radii R1 and R2. We claim that for any 0 ≤ l ≤ L there exist some positive
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numbers R1(l) = R1(l, η̄, κ), R2(l) = R2(l, η̄, κ) and A(l) = A(l, η̄, κ) > 0
such that the measure of the annulus determined by these numbers satisfies
the inequality

Ĥn̄(T )+l,T (K(R1(l), R2(l)) ≥ A(l), 0 ≤ l ≤ L (5.33)

if the pair (n̄(T ), T ) does not belong to the high temperature region. Ob-

serve that the relation between the measures Ĥn̄(T )+l,T andHn̄(T )+l,T implies
that relation (5.33) also holds for Hn̄(T )+l,T (K(R1(k), R2(k)) (i.e. the func-

tion Ĥ(·) can be replaced by H(·) in formula (5.33)) if the radii R2(k) and
R1(k) > 0 are multiplied with an appropriate number. This implies that the
variance D2

n̄(T )+k,T can be bounded from below by a positive number which

depends only on k and η̄. Hence we can choose e.g. k = L = L(κ, η̄) as the
number k satisfying the properties demanded in Theorem 3.1.

We shall prove a slightly stronger statement than relation (5.33) which
will be useful in later applications. We shall prove that

Ĥn̄(T )+l,T


K


 1

2l
R1,

(√
3

2

)l

R2




 ≥ A(l), 0 ≤ l ≤ L. (5.34)

with some numbers R2 > R1 > 0 and A(l) > 0 if the pair (0, T ) does not
belong to the high temperature region. The numbers Rj can be chosen in
such a way that Rj = Rj(η, κ), j = 1, 2.

Let us first observe that relation (5.34) holds for l = 0 if n̄(T ) is not in the
high temperature region. This follows from relations (5.4) and (5.5) in the
case T ≤ c0A0/2 and from (5.11) and (5.15) if T ≥ c0A0/2, but (n̄(T ), T )
does not belong to the high temperature region. Indeed, formulas (5.5)
and (5.15) make possible to choose the number R2 in such a way that the
Hn̄(T ),T measure of the ball with center in the origin and radius R2 = R2(η)
is greater than 1/2. By formulas (5.4) and (5.11) we can choose the number
R1 = R1(η) in such a way that by cutting out from this ball the ball with
radius R2 and center in the origin the remaining annulus K(R1, R2) has a
measure greater than 1/4. In the case T ≥ c0A/2 we also exploited in the
above argument that T cannot be very large if (n̄(T ), T ) is not in the high

temperature region. By Lemma 5.2 T ≤ e−1/η9 in this case.
We claim that

Ĥn̄(T )+l+1,T

(
K

(
R̄1

2
,

√
3

2
R̄2

))
≥ B(R̄1, R̄2, η̄)Ĥn̄(T )+l,T (K(R̄1, R̄2))

2

(5.35)
for all 0 ≤ l ≤ L and R̄2 > R̄1 > 0 and an appropriate constant

B(R̄1, R̄2, η̄) > 0.

Relation (5.34) follows from (5.35) and the fact that it holds for l = 0.
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In the proof of relation (5.35) we exploit the relation

{
(u,x) : u ∈ R

r,x ∈ R
r,
R̄1

2
≤
∣∣∣∣
x+ u

2

∣∣∣∣ ≤
√
3

2
R̄2,

π

3
≤ arg (x,u) ≤ π

2

}

⊃
{
(u,x) : u ∈ R

r,x ∈ R
r, R̄1 ≤ |x|, |u| ≤ R̄2,

π

3
≤ arg (x,u) ≤ π

2

}
.

It follows from relation (5.19) that Zn̄(T )+l+1(T ) ≤ 1, since we get an upper

bound for it by omitting the kernel term exp
{
− c(n)

c(n̄(T ))u
2
}
from the integral

in (5.19). Hence the previous relation together with (5.27) and the rotational

invariance of the measure Ĥn̄(T )+l,T yield that

Ĥn̄(T )+l+1,T

(
K

(
R̄1

2
,

√
3

2
R̄2

))
=

1

Zn̄(T )+l+1(T )

∫ ∫
√

3
2
R̄2≥|x+u

2 |≥ R̄1
2
,x,u∈Rr

exp

{
−c

(n̄(T )+l)

c̄(n̄(T ))

(x− u)2

4

}
Ĥn̄(T )+l,T ( dx)Ĥn̄(T )+l,T ( du)

≥ e−R̄2
2/η̄

∫ ∫
√
3
2
R̄2≥|x+u

2 |≥ R̄1
2
, x,u∈R2,

π
3
≤arg(x,u)≤π

2

Ĥn̄(T )+l,T ( dx)Ĥn̄(T )+l,T ( du)

≥ e−R̄2
2/η̄

∫ ∫

R̄2≥|x|,|u|≥R̄1,
π
3
≤arg(x,u)≤π

2

Ĥn̄(T )+l,T ( dx)Ĥn̄(T )+l,T ( du)

= C(r)e−R̄2
2/η̄Ĥn̄(T )+l,T (K(R̄1, R̄2))

2

with an appropriate constant C(r) > 0. The last estimate implies relation

(5.35) with B(R̄1, R̄2, η̄) = C(r)e−R̄2
2/η̄. Theorem 3.1 is proved. �

6. Estimates in the High Temperature Region. The proof of

Theorem 3.3.

To study the behaviour of the function fn(x, T ) in the high temperature
region we need a starting index n = ñ(T ) for which a good estimate is
known about the tail behaviour of the measure Hñ(T ),T . We also need a

lower bound for the variance D2
n(T ) defined in (3.4) for n ≥ ñ(T ). This

requirement will be also taken into consideration in the definition of ñ(T ).
Let us first define the number

l0 = l0(T ) = min



l :

(√
3

2

)l

R2 ≤
η̄

10



 (6.1)

if the pair (0, T ) is not in the high temperature region, where η̄ appeared
in Condition 5, and the number R2 was introduced in formula (5.34). Now
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define

ñ(T ) =





0 if (0, T ) is in the high temperature region
n̄(T ) + l with the smallest l satisfying both (5.32) and the

inequality l ≥ l0 with l0 defined in (6.1)
if (0, T ) is not in the high temperature region.

(6.2)
It follows from the results of the previous section that for a temperature T

which is not in the low temperature region the inequality 0 ≤ ñ(T )− n̄(T ) ≤
L(η̄, t) holds if the number L in Condition 5 is chosen sufficiently large. The
measure Hñ(T ),T introduced in formula (3.5) is strongly concentrated around
the origin. Indeed, formulas (5.16) and (5.32) give a good estimate for the
Hñ(T ),T measure of the sets {x : |x| ≤ R} for all R ≥ 0.

Let us introduce the moments of the functions hñ(T )+l(x, T ) defined in
(3.4).

Mk(l, T ) =

∫

Rr

|x|khñ(T )+l(x, T ) dx l ≥ 0, k ≥ 1.

We shall estimate the moments M2(l, T ) and M4(l, T ). It follows from rela-
tions (5.16) and (5.32) that

M2(0, T ) ≤ η∗ and M4(0, T ) ≤ η∗ with η∗ = e−1/η2 (6.3)

for all T > 0 which is not in the low temperature region. To get lower
bounds for the second moments M2(l, T ) let us introduce the truncated
second moments

M2,tr.(l, T ) =M2,tr.

(
1

10
, l, T

)
=

∫

|x|≤ 1
10

|x|2hñ(T )+l(x, T ) dx.

It follows from (5.13) if (0, T ) is in the high temperature region and from
(5.34) and the definition of ñ(T ) if (0, T ) is not in the high temperature
region that

M2,tr.(0, T ) > 0, for all T ≥ c0A0/2

M2,tr.(0, T ) > η̃, if T ≥ c0A0/2 and (0, T ) is not in the

high temperature region (6.4)

with some η̃ = η̃(η̄, κ) > 0. First we shall boundM2(l, T ) andM4(l, T ) from
above in Lemma (6.1) for all l ≥ 0. Then the second moment M2(l, T ) will
be bounded from below in Lemma 6.2. These estimates enable us to prove
the central limit theorem for gñ(T )+l(x, T ) by means of the characteristic
function technique.

Simple calculation yields that

Mk(l + 1, T ) =
2r

Zl(T )

∫
e−u2 |x|khñ(T )+l

(
x√

c̄ñ(T )+l+1
− u, T

)

hñ(T )+l

(
x√

c̄ñ(T )+l+1
+ u, T

)
dx du (6.5)
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for all l ≥ 0 and k ≥ 1 with

Zl(T ) = 2r
∫
e−u2

hñ(T )+l

(
x√

c̄ñ(T )+l+1
− u, T

)

hñ(T )+l

(
x√

c̄ñ(T )+l+1
+ u, T

)
dx du (6.6)

with the constants c̄n, n = 1, 2, . . . defined in (2.17). These formulas will be
used in the proof of the following

Lemma 6.1. Under the conditions of Theorem 3.3 the inequalities

M2(l, T ) ≤ η∗
(
2

3

)l

, (6.7)

Zl(T ) ≥
(
c̄ñ(T )+l

)r/2
(
1− 8

√
η∗
(
5

6

)l
)
, (6.8)

M2(l + 1, T ) ≤
c̄ñ(T )+l+1

2

(
1 + 10

√
η∗
(
5

6

)l
)
M2(l, T ), (6.9)

M2(l, T ) ≤ 2 · 2−l c
(ñ(T )+l)

c(ñ(T ))
η∗ and M4(l, T ) ≤ 5 · 4−l

(
c(ñ(T )+l)

c(ñ(T ))

)2

η∗

(6.10)
hold for all l ≥ 0 with the same number η∗ which appears in (6.3).

Proof of Lemma 6.1. Relation (6.7) holds for l = 0 by relation (6.3). We
shall prove that if relation (6.7) holds for an integer l, then relations (6.8)
and (6.9) also hold for this l. Then we prove that if relations (6.7) and (6.9)
hold for some l, then relation (6.7) holds also for l + 1. These statements
imply relations (6.7), (6.8) and (6.9). We prove them with the help of the
following calculations.

It follows from formulas (6.5) and (6.6) that

Mk(l + 1, T ) =

(
c̄ñ(T )+l+1

)r/2

Zl(T )

∫
exp

{
−(x− u)2

4

} ∣∣∣∣
x+ u

2

∣∣∣∣
k

(6.11)

(
c̄ñ(T )+l+1

)k/2
hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

≤
(
c̄ñ(T )+l+1

)(k+r)/2

2kZl(T )

∫
|x+ u|khñ(T )+l(x, T )hñ(T )+l (u, T ) dx du
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for all l ≥ 0 and k ≥ 1, and

Zl(T ) = (c̄ñ(T )+l+1)
r/2

∫
exp

{
−(x− u)2

2

}

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

≥ (c̄ñ(T )+l+1)
r/2e−4

√
M2(l,T )

∫

|x|≤M2(l,T )1/4, |u|≤M2(l,T )1/4

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

≥ (c̄ñ(T )+l+1)
r/2e−4

√
M2(l,T )

(
1− 2

∫

|x|≥M2(l,T )1/4
hñ(T )+l(x, T )dx

)

≥ (c̄ñ(T )+l+1)
r/2e−4

√
M2(l,T )

(
1− 2√

M2(l, T

∫

|x|≥M2(l,T )1/4
x2hñ(T )+l(x, T ) dx

)
.

Hence

Zl(T ) ≥ (c̄ñ(T )+l+1)
r/2e−4

√
M2(l,T )

(
1− 2

√
M2(l, T )

)
.

The last relation and formula (6.7) for l together imply that

Zl(T ) ≥ (c̄ñ(T )+l+1)
r/2
(
1− 5

√
M2(l, T )

)(
1− 2

√
M2(l, T )

)

≥ (c̄ñ(T )+l+1)
r/2
(
1− 8

√
M2(l, T )

)

≥ (c̄ñ(T )+l+1)
r/2

(
1− 8

√
η∗
(
5

6

)l
)
,

and this is relation (6.8) for the number l. Relation (6.11) for k = 2 and
formula (6.8) for l together yield that

M2(l + 1, T ) ≤
(c̄ñ(T )+l+1)

(2+r)/2

2Zl(T )
M2(l, T )

≤
c̄ñ(T )+l+1

2

(
1 + 10

√
η∗
(
5

6

)l
)
M2(l, T ),

and this is formula (6.9) for l. Finally, if η is chosen sufficiently small, then
formulas (6.7) and (6.9) for l imply (6.7) for l + 1. Thus formulas (6.7) —
(6.9) are proved.

The first relation in (6.10) follows from the first relation in (6.3) and (6.9).
Formula (6.11) with the choice k = 4, (6.8) and the first formula in (6.10)
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imply that

M4(l + 1, T ) ≤
(c̄ñ(T )+l+1)

(r+4)/2

8Zl(T )

(
3M2(l, T )

2 +M4(l, T )
)

≤ 1

8
c̄2ñ(T )+l+1

(
1 + 10

√
η∗
(
5

6

)l
)
(
3M2(l, T )

2 +M4(l, T )
)

≤ 2 · 4−l

(
c̄(ñ(T )+l+1)

c(ñ(T ))

)2

η∗2 +
M4(l, T )

6
.

The second relation in (6.10) follows by induction from the last inequality
and the second inequality in (6.3). Lemma 6.1 is proved. �

Remark. The Corollary formulated after Theorem 3.1 follows from The-
orem 3.1, formula (6.10) and Lemma 4.4. Indeed, if T is not in the low
temperature, then by Theorem 3.1 the pair (ñ(T ), T ) with the definition of
ñ(T ) given in (6.1) is in the high temperature domain. By formula (6.10)
all pairs (n, T ), n ≥ ñ(T ), are in the high temperature region, i.e. if T > 0 is
not in the low temperature region, then it is in the high temperature region.
The remaining statements of the Corollary are contained in Lemma 4.4.

In the next lemma we prove an estimate from below for M2(l, T ).

Lemma 6.2. Put

σ2(l, T ) = 2l
c(ñ(T ))

c(ñ(T )+l)
M2(l, T ), l ≥ 0.

Under the conditions of Theorem 3.3 the limit

σ̄2(T ) = lim
l→∞

σ2(l, T ) > 0

exists, and it is positive for all T > 0. If ñ(T ) 6= 0, i.e. if (0, T ) is not
in the high temperature region, then there exist two constants C2 > C1 > 0
depending only on the parameter η̃ in formula (6.4) in such a way that the
inequalities

C1 ≤ σ̄2(T ) ≤ C2 (6.12)

hold. The upper bound in (6.12) holds for all T > 0 which is not in the low
temperature region.

Proof of Lemma 6.2. The hard part of the proof is to show that σ2(l, T ) has
a non-negative lim inf. It follows simply from formula (6.6) that Zl(T ) ≤
(c̄ñ(T )+l+1)

r/2. A natural lower bound for M2(l, T ) can be obtained in the
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following way. By formula (6.5) and the upper bound for Zl(T )

M2(l + 1, T ) ≥ c̄ñ(T )+l+1

∫
e−(x−u)2/4

∣∣∣∣
x+ u

2

∣∣∣∣
2

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

=
c̄ñ(T )+l+1

4

(
2M2(l, T )−

∫
|x+ u|2

(
1− e−(x−y)2/4

)

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

)

≥
c̄ñ(T )+l+1

2

(
M2(l, T )−

∫
1

4
|x+ u|2|x− u|2

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

)

≥
c̄ñ(T )+l+1

2

(
M2(l, T )−

∫
1

2
(|x|4 + |u|4)

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

)

=
c̄ñ(T )+l+1

2
(M2(l, T )−M4(l, T )) . (6.13)

However, this estimate is useful only if we know that the right-hand side in
it is non-negative. We do not know such an estimate for small l, hence in
this case we apply a different argument. Clearly

M2(l, T ) ≥M2,tr.(l, T ),

where M2,tr.(l, T ) is the truncated moment. On the other hand, we get
by using an argument similar to the previous calculation and making the
observation

{
(x,u) : x ∈ R

r,u ∈ R
r, c̄ñ(T )+l+1

∣∣∣∣
x+ u

2

∣∣∣∣ ≤
1

10

}

⊃
{
(x,u) : x ∈ R

r,u ∈ R
2, |x| ≤ 1

10
, |u| ≤ 1

10
, arg (x,u) ⊂ I

}



54 PAVEL BLEHER AND PÉTER MAJOR

with I =
(
π
50 ,

49π
50

)
∪
(
51π
50 ,

99π
50

)
that

M2,tr.(l + 1, T ) ≥ c̄ñ(T )+l+1

∫

c̄ñ(T )+l+1|x+u

2 |≤ 1
10

e−(x−u)2/4

∣∣∣∣
x+ u

2

∣∣∣∣
2

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

≥ c̄ñ(T )+l+1e
−1/100

∫

|x|≤ 1
10

,|u|≤ 1
10

,arg (x,u)⊂I

∣∣∣∣
x+ u

2

∣∣∣∣
2

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

=
c̄ñ(T )+l+1

4
e−1/100

∫

|x|≤ 1
10

,|u|≤ 1
10

,arg (x,u)⊂I
(x2 + u2)

hñ(T )+l(x, T )hñ(T )+l (u, T ) dx du

= c̄ñ(T )+l+1e
−1/100 12

25
M2,tr.(l, T ) ≥

1

3
c̄ñ(T )+l+1M2,tr.(l, T ).

The last estimate implies that

σ2(l, T ) = 2l
c(ñ(T ))

c(ñ(T )+l)
M2(l, T ) ≥ 2l

c(ñ(T ))

c(ñ(T )+l)
M2,tr.(l, T ) ≥

(
2

3

)l

M2,tr.(0, T ).

(6.14)
On the other hand, it follows from (6.13) and the second inequality in (6.10)
that

σ2(l + 1, T ) ≥ σ2(l, T )− 2l+1 c(ñ(T ))

cñ(T )+l+1
M4(l, T ) (6.15)

≥ σ2(l, T )− 5η∗

2lcñ(T )+l+1

c(ñ(T )+l)

c(ñ(T ))
≥ σ2(l, T )− 50η∗

(
3

4

)l

.

Because of (6.14) and (6.4) an index l̄ ≥ 0 can be chosen in such a way that

σ2(l̄, T ) ≥ 1000η∗
(
3

4

)l̄

,

and if the pair (0, T ) is not in the high temperature region, then we may
choose l̄ so that l̄ ≤ K(η̄, κ) with some appropriate K(η̄, κ). Hence relation
(6.15) implies that

σ2(l̄ + l + 1, T )

σ2(l̄, T )
≥ σ2(l̄ + l, T )

σ2(l̄, T )
− 1

20

(
3

4

)l

.

This relation and the bound on σ2(l̄, T ) imply that lim inf
l→∞

σ2(l, T ) > 0, and

this lim inf can be bounded by a positive number which depends only on η̄
and κ if (0, T ) is not in the high temperature region. The analogous result
for lim sup follows from (6.9). To complete the proof it is enough to show
that the lim inf is actually lim. To prove this let us observe that for any ε > 0
and N > 0 there is some m > N such that σ2(m,T ) < lim inf

n→∞
σ2(n, T ) + ε.
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Then by formula (6.9)

σ2(n, T ) ≤ σ2(m,T )
n∏

l=m

(
1 + 10

√
η∗
(
5

6

)l
)

≤ lim inf
n→∞

σ2(n, T ) + 2ε, n > m

for any ε > 0 if N = N(ε) is chosen sufficiently large. Lemma 6.2 is
proven. �

To prove Theorem 3.3 let us introduce the characteristic functions

ϕn(s, T ) =

∫

Rr

eisxh̃n(x, T ) dx, s ∈ R
r

and moments

M̃k(n, T ) =

∫

Rr

|x|kh̃n(x, T ) dx,

where the function h̃(x, T ) was defined in (3.17). Clearly,

M̃k(n, T ) =

(
2n

c(n)

)k/2

Mk(n− ñ(T ), T ) if n ≥ ñ(T ).

In particular, M̃2(n, T ) = 2ñ(T )

c(ñ(T ))σ
2(n − ñ(T ), T ). We shall prove Theo-

rem 3.3 by means of the usual characteristic function technique. The fol-
lowing lemma plays a crucial role in the proof.

Lemma 6.3. Under the conditions of Theorem 3.3 the relation

lim
n→∞

c(ñ(T ))

2ñ(T )
M̃2(n, T ) = σ̄2(T ) (6.16)

holds with the constant σ̄2(T ) appearing in Lemma 6.2, and

lim
n→∞

sup
|s|≤A

∣∣∣∣∣logϕn (s, T ) +
2ñ(T )

c(ñ(T ))
σ̄2(T )

s2

2

∣∣∣∣∣→ 0 (6.17)

for all A > 0.

Proof of Lemma 6.3. Relation (6.16) follows from Lemma 6.2, and it follows

from the second relation in (6.10) that M̃4(n, T ) ≤ 5
(

2ñ(T )

c(ñ(T ))

)2
η∗. Hence

the characteristic function ϕ can be estimated as

∣∣∣∣ϕn(s, T )−
(
1− M̃2(n, T )

s2

2

)∣∣∣∣ ≤
(

2ñ(T )

c(ñ(T ))

)2

η∗|s|4 (6.18)

for n ≥ ñ(T ) and s ∈ R
r.

In the proof of formula (6.18) we exploit that
∫
(s,x)h̃n(x, T ) dx = 0 and∫

(s,x)3h̃n(x, T ) dx = 0 because of the rotational symmetry of h̃n(x, T ). The
coefficient of |s|4 in (6.18) is bounded by a constant (depending on T ), and
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the coefficient at |s|2 converges to the positive constant 2ñ(T )

c(ñ(T )) σ̄
2(T ). Hence

formula (6.18) implies that for any ε > 0,
∣∣∣∣∣logϕn (s, T ) +

2ñ(T )

c(ñ(T ))
σ̄2(T )

s2

2

∣∣∣∣∣ ≤ ε if n > n1 and |s| ≤ δ (6.19)

with some n1 = n1(ε, T ) and δ = δ(ε, T ). By a rescaled version of the
recursive formula (2.9) we can write

ϕn+1(
√
2s, T ) =

1

Zn(T )

∫
exp

{
is(x+ u)− c(n)(x− u)2

4 · 2n

}

h̃n(x, T )h̃n(u, T ) dx du

=
1

Zn(T )

[
ϕn (s, T )

2 −
∫
eis(x+u)

(
1− exp

{
−c

(n)(x− u)2

4 · 2n

})

h̃n(x, T )h̃n(u, T ) dx du

]

with

Zn(T ) =

∫
exp

{
−c

(n)(x− u)2

4 · 2n

}
h̃n(x, T )h̃n(u, T ) dx du.

The estimates∣∣∣∣∣

∫
eis(x+u)

(
1− exp

{
−c

(n)(x− u)2

4 · 2n

})
h̃n(x, T )h̃n(u, T ) dx du

∣∣∣∣∣

≤
∫
c(n)(x− u)2

4 · 2n h̃n(x, T )h̃n(u, T ) dx du =
c(n)

2 · 2n M̃2(n, T )

and similarly

1 ≥ Zn(T ) ≥ 1− c(n)

2 · 2n M̃2(n, T )

hold. Hence

ϕ2
n (s, T )−

c(n)

2 · 2n M̃2(n, T ) ≤ ϕn+1(
√
2s, T ) ≤ ϕ2

n (s, T ) +
c(n)

2·2n M̃2(n, T )

1− c(n)

2·2n M̃2(n, T )
.

The term c(n)

2n M̃2(n, T ) is much less than
(
2
3

)n
for large n. If we have a

positive lower bound on ϕn(s) then we get by fixing some K > 0 and taking
logarithm in the last relation that
∣∣∣logϕn+1

(√
2s, T

)
− 2 logϕn(s, T )

∣∣∣ ≤
(
2

3

)n

if n > n2 and ϕn(s, T ) ≥
1

K
(6.20)

with some n2 = n2(K,T ). Formula (6.17) can be deduced from (6.19) and

(6.20). Indeed, define an index k by the relation A ≤ δ2k/2 <
√
2A with

the numbers A and δ in (6.17) and (6.18). Put K = 2e−2ñ(T )σ̄2(T )A2/c(ñ(T ))
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and let ε ≤ 1
8K . Choose a number n3 such that

(
2
3

)n3 ≤ ε, and let us
consider such indices n for which n ≥ max(n1(ε, T ), n2(K,T ), n3). Then
simple induction yields that

∣∣∣∣∣ϕn+j(s, T ) +
2ñ(T )

c(ñ(T ))
σ̄2(T )

s2

2

∣∣∣∣∣ ≤ ε+ 3

(
2

3

)n
(
1−

(
2

3

)j+1
)

≤ 4ε

and |ϕn+j(s, T )| ≥
1

K

for j ≤ k and |s| ≤ δ2j/2. Since ε can be chosen arbitrary small in the last
relation, it implies (with j = k) relation (6.17). Lemma 6.3 is proved. �

Theorem 3.3 follows from Lemmas 6.2 and 6.3. Indeed, Lemma 6.3 implies
that the measures H̃n,T converge in distribution to the normal law with

expectation zero and covariance 2ñ(T )

c(ñ(T )) σ̄
2(T )I. The bounds obtained for

the variance follow from Lemma 6.2 and the observation that the difference
ñ(T )− n̄(T ) can be bounded by a number depending only on η̄ and κ.

Let us finally show that Corollary to Theorem 3.3 follows from Theo-
rem 3.3. By formulas (2.7), and (3.17) we can write

2−npn(2
−n/2

√
Tx, T ) = C(n) exp

{
− lnAn

2n+1
x2

}
h̃n(x, T ) (6.21)

with an appropriate norming constant C(n). Observe that the expressions
at both sides of this identity are density functions, the measures with density
function h̃n(x, T ) have a limit as n→ ∞, the term

{
− lnAn

2n+1x
2
}
is bounded,

and it tends to 1 uniformly in any compact set as n → ∞. These facts
imply that C(n) → 1 in (6.21), and the measures with density functions

2−npn(2
−n/2

√
Tx, T ) have the same limit as the measures with density func-

tions h̃n(x, T ). Hence the Corollary of Theorem 3.3 holds. �

7. Estimates in the Low Temperature Region. The proof of

Theorem 3.2.

The proof of Theorem 3.2 heavily exploits the results of Section 4. These
results show that the replacement of the operator Qn whose application
makes possible to compute the function fn+1(x, T ) by its linearization Tn

causes only a negligible error. Formula (4.17) enables one to investigate the
operator Tn in the Fourier space. In such a way good estimates can be
obtained for the Fourier transform of a regularized version of the function
fn+1(x, T ). The results of Theorem 3.2 can be proved by means of these
estimates with the help of inverse Fourier transformation.

It is simpler to work with an appropriately scaled version of the functions
fn(x, T ). Put

f̄n(x, T ) =
1

Mn(T )
fn

(
x

Mn(T )
, T

)
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and

ϕ̄n(fn(x, T )) =
1

Mn(T )
ϕn

(
fn

(
x

Mn(T )
, T

))
.

We defined the function ϕ̄n(fn(x, T )) by means of the definition of the reg-
ularization of the function fn(x, T ) introduced in Section 4.

Let us also introduce the functions

ψn+1(fn(x, T )) =
1

Mn(T )
Tnϕn

(
fn

(
x

Mn(T )
, T

))
.

The estimates of Proposition 4.2 and relation (4.17) can be rewritten for
these new functions. We shall rewrite formulas (4.14) and (4.15) only in the
case when n > N1(T ) with the number N1(T ) defined in formula (4.18), i.e.
in the case when βn(T ) and M

−1
n (T ) have the same order of magnitude. In

this case Mn(T )
√
βn+1(T ) ≤ 10,

∣∣∣∣
∂j

∂xj
(
f̄n+1(x, T )− ψn+1(fn(x, T ))

)∣∣∣∣

≤ K1
βn(T )

c(n)

[
exp

{
− 1

10

∣∣∣∣2x+
x2

c(n+1)

∣∣∣∣
}
+ exp

{
−|x|

5

}]

≤ K2
βn(T )

c(n)
e−|x|/10, x > −c(n+1)M2

n+1(T ), j = 0, 1, 2,

(7.1)

and ∣∣∣∣
∂j

∂xj
ψn+1(fn(x, T ))

∣∣∣∣ ≤ K3e
−|x|/5, x ∈ R

1, j = 0, 1, 2, 3, 4, (7.2)

with some universal constantsK1,K2 andK3. Formula (4.17) can be rewrit-
ten as

ψ̃n+1(fn(ξ, T )) = T̃nϕ̃n(fn(Mn(T )ξ, T ))

=
exp

{
i (r−1)c̄n+1

4 ξ
}

(
1 + i c̄n+1

2 ξ
)(r−1)/2

˜̄ϕ2
n

(
fn

( c̄n+1

2
ξ, T

))
.

(7.3)

We claim that under the conditions of Theorem 3.2,

lim
n→∞

sup
x≥−c(n)M2

n(T )

∣∣∣∣
∂j

∂xj
(
f̄n(x, T )− ϕ̄(fn(x, T ))

)∣∣∣∣ e
|x|/20 = 0,

j = 0, 1, 2.

(7.4)

Indeed, by relations (7.1) and (7.2)
∣∣∣∣
∂j

∂xj
f̄n(x, T )

∣∣∣∣ ≤ e−|x|/10, j = 0, 1, 2, if x ≥ −c(n)M2
n(T ), (7.5)

and ϕ̄n(fn(x, T )) is the appropriate scaling of the function

ϕ

(
x√

c(n)Mn(T )

)
fn

(
x√

c(n)Mn(T )

)
.
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Under the conditions of Theorem 3.2, formula (4.29) holds, which implies
that

lim
n→∞

√
c(n)Mn(T ) = ∞.

This fact together with (7.5) allow us to give a good bound on the difference

between the functions ϕ̄n(fn(x, T )) and ϕ
(

x√
c(n)Mn(T )

)
fn

(
x√

c(n)Mn(T )

)
.

Relation (7.4) can be deduced from this bound and formula (7.5).

It follows from Lemma 4.4 that lim
n→∞

Mn+1(T )
Mn(T ) = 1. Relations (7.1) and

(7.4) together with this fact imply that

lim
n→∞

sup
|x|<∞

∣∣∣∣
∂j

∂xj
(ψn(fn−1(x, T ))− ϕ̄n(fn(x, T )))

∣∣∣∣ e
|x|/20 = 0,

j = 0, 1, 2.

(7.6)

Now we prove, using an adaptation of the proof of Lemmas 14 and 15 in
[BM3], that the Fourier transforms of the functions ψn+1(fn(x, T )) converge
to the Fourier transform of the function g(x), and this convergence is uniform
in all compact domains. First we prove a modified version of this statement,
where ψn is replaced with ϕ̄n in a small neighbourhood of the origin. We
want to work with the functions log ˜̄ϕn(fn(ξ, T ))). To do this, observe first
that for n > N1(T ) there is some constant A > 0 such that all functions
˜̄ϕn+1(fn(ξ, T ))) are separated from zero in the interval |ξ| ≤ A. Indeed,

|1− ˜̄ϕn(fn(ξ, T )))| ≤
∫

|eixξ − 1|ϕ̄n(fn(x, T ))) dx

≤
∫

|ξ||x|ϕ̄n(fn(x, T ))) dx ≤ const. |ξ|.

Similarly,
∣∣∣∣
∂j

∂ξj
˜̄ϕn(fn(ξ, T ))

∣∣∣∣ ≤ C(j) for all j ≥ 0 and n ≥ N1(T ).

Hence a constant A > 0 can be chosen in such a way that

sup
|ξ|≤2A

max

(
|1− g̃(ξ)|, sup

n≥N1(T )
|1− ˜̄ϕn(fn(ξ, T ))|

)
≤ 1

2
.

These estimates imply that

sup sup
|ξ|≤A

∣∣∣∣
∂2

∂ξ2
log ˜̄ϕn(fn(ξ, T )))

∣∣∣∣ ≤ C(T ), (7.7)

with a constant C(T ) <∞ independent of n. We claim that

sup
|ξ|≤A

∣∣∣∣
∂2

∂ξ2
log ˜̄ϕn(fn(ξ, T )))−

d2

d2ξ
log g̃(ξ)

∣∣∣∣→ 0 as n→ ∞. (7.8)
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To prove (7.8) let us first observe that lim
n→∞

c̄n = 1 by Condition 1. By (7.6),

lim
n→∞

sup
|ξ|≤A

∣∣∣∣
∂2

∂ξ2

(
log ψ̃n+1(fn(ξ, T ))− log ˜̄ϕn+1(fn+1(ξ, T ))

)∣∣∣∣ = 0,

and because of the estimates obtained for the derivatives of ˜̄ϕn(ξ, T )∣∣∣∣
∂2

∂ξ2
log ˜̄ϕn(fn(ξ1, T )))−

∂2

∂ξ2
log ˜̄ϕn(fn(ξ2, T )))

∣∣∣∣ ≤ const. |ξ1 − ξ2|

if |ξ1| ≤ A and |ξ2| ≤ A

for all large indices n with a constant independent of n. Taking logarithm
and then differentiating twice in formulas (7.3) and (1.20) we get with the
help of the above observations that

sup
|ξ|≤A

∣∣∣∣
∂2

∂ξ2
log ˜̄ϕn+1(fn+1(ξ, T )))−

d2

d2ξ
log g̃(ξ)

∣∣∣∣

≤ 1

2
sup
|ξ|≤A

∣∣∣∣
∂2

∂ξ2
log ˜̄ϕn(fn(ξ, T )))−

d2

d2ξ
log g̃(ξ)

∣∣∣∣+ δn(T )

with some sequence lim
n→∞

δn(T ) = 0. This relation together with (7.7) imply

(7.8). Since

∂

∂ξ
log ˜̄ϕn(fn(ξ, T )))

∣∣∣∣
ξ=0

=
d

dξ
log g̃(ξ)

∣∣∣∣
ξ=0

= 0

and log ˜̄ϕn(fn(0, T ))) = log g̃(0) = 0,

relation (7.8) also implies that

lim
n→∞

sup
|ξ|≤A

| ˜̄ϕn(fn(ξ, T )))− g̃(ξ)| = 0. (7.9)

Moreover, relation (7.9) holds for all A > 0. This can be proved similarly to
the argument of Lemma 15 in [BM3]. One has to observe that because of
the structure of formulas (7.3) and (1.20), the relation c̄n → 1 as n → ∞,
the continuity of the function g̃(ξ) and the relation

lim
n→∞

sup
|ξ|<∞

∣∣∣ψ̃n+1(fn(ξ, T ))− ˜̄ϕn+1(fn+1(ξ, T )))
∣∣∣ = 0,

the validity of relation (7.9) in an interval |ξ| ≤ A also implies its validity
in the interval |ξ| ≤ (2 − ε)A for any ε > 0. In relation (7.9) the function
˜̄ϕn(fn(ξ, T ))) can be replaced by ψ̃n+1(fn(ξ, T )), i.e. the relation

lim
n→∞

sup
|ξ|≤A

∣∣∣ψ̃n+1(fn(ξ, T )))− g̃(ξ)
∣∣∣ = 0 (7.10)

holds for all A > 0. It can be proved from (7.10), by means of inverse Fourier
transformation, that

lim
n→∞

sup
|x|<∞

∣∣∣∣
∂j

∂xj
ψn+1(fn(x, T )))−

dj

dxj
g(x)

∣∣∣∣ = 0, j = 0, 1, 2. (7.11)
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To prove (7.11) we need, besides the estimate (7.10), some bound about

the decrease of the functions g̃(ξ) and ψ̃n+1(fn(ξ, T ))) as ξ → ±∞. The
estimate (1.19) gives a good bound for the Fourier transform of the function
g(x). We can get a good estimate for the Fourier transform of the function
ψn+1(fn(x, T )) with the help of the inductive hypothesis J(n) in Section 4
and relation (7.3). Rewriting the inductive hypothesis J(n) for the func-
tion ϕ̄n(fn(x, T )) we get with the help of some standard calculation that

the Fourier transform ψ̃n+1(fn(ξ, T )) decreases at infinity faster than |ξ|−4.
These estimates are sufficient for the proof of (7.11). Relations (7.11) and
(7.1) give an estimate on the function f̄n(x, T ) and its derivatives, which is
equivalent to (3.8). Theorem 3.2 is proved. �

8. Estimates Near the Critical Point. The proof of Theorems

3.4, 1.3, and 1.5.

Our previous results suggest that M2
n+1(T ) ∼ M2

n(T ) − r−1
2c(n) , hence the

derivative dM2
n(T )
dT , as a function of n, changes very little if the pair (n, T ) is in

the low domain region (observe that c(n) does not depend on T ). Therefore,

it is natural to expect that dM2
∞(T )
dT is of constant order below the critical

value Tc, and M
2
∞(T )−M2

∞(Tc) ∼ const. (Tc−T ) for T < Tc. If Tn denotes
the smallest T for which the pair (n, T ) leaves the low temperature region
at the n-th step, then the following heuristic argument may suggest the
magnitude of Tn − Tn+1 for large n. Since both c(n)M2

n(Tn) ∼ η−1 and

c(n+1)M2
n+1(Tn+1) ∼ η−1, besides this M2

n(Tn+1) − M2
n+1(Tn+1) ∼ r−1

2c(n) ,

M2
n(Tn+1) −M2

n(Tn) ∼ r−1
2c(n) . On the other hand, M2

n(Tn+1) −M2
n(Tn) ∼

Tn+1 − Tn. This argument suggests that Tn+1 − Tn ∼ r−1
2c(n) and Tn − Tc ∼

∞∑
k=n

r−1
2c(k)

. In this section we justify these heuristic arguments. The proofs

are based on the following result:

Theorem 8.1. There exists κ0 = κ0(N) such that if (i) 0 < κ < κ0 in
formula (1.7), (ii) Conditions 1—4 are satisfied, (iii) 0 < T̄ < c0A0/2, and
(iv) the integer n ≥ 1 has the property that the pair (n, T̄ ) belongs to the low
temperature region, then for all 0 < T < T̄ the pair (n, T ) also belongs to
the low temperature region, and the following inequalities hold for T ≤ T̄ :

a.) If 0 ≤ n ≤ N , then

C1√
κT 2

< −dMn+1(T )

dT
<

C2√
κT 2

with some ∞ > C2 > C1 > 0.

b.) If n ≥ N , then

dMn+1(T )

dT
=
dMn(T )

dT

(
1 +

r − 1

4c(n)M2
n(T )

+
δn(T )

c(n)

)
,

where |δn(T )| ≤ C
βn+1(T )

c(n+1)
βn(T ) with some appropriate C > 0.
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We will prove Theorem 8.1 in Appendix A below with the help of Propo-
sition A which is proved also there. This result can be interpreted in an
informal way as the “differentiation” of the asymptotic identity (4.12). The
main difficulty in the proof of Proposition A is to bound the error caused by
the linear approximation of the operatorQn by Tn when differentiating with
respect to T . To overcome this difficulty we need a good control not only on
the functions fn(x, T ) but also on their derivatives ∂

∂T fn(x, T ). Hence we
have to work out the estimation of these derivatives. In particular, we have
to find the inductive hypotheses describing their behaviour. These are the
analogs of the inductive hypotheses I(n) and J(n) formulated in Section 4.
It demands fairly much work to work out the details, but after the formu-
lation and proof of these inductive hypotheses the proof of Proposition A is
simple.

Proof of Theorem 3.4. We prove with the help of Proposition A that if the
conditions of Theorem 3.4 hold, 0 < T̄ < c0A0/2 and the pair (n − 1, T̄ )
belongs to the low temperature region, then there exist some constants 0 <
C1 < C2 independent of T such that

C1

κT 3
< −dM

2
n(T )

dT
<

C2

κT 3
. (8.1)

for all 0 < T ≤ T̄ .
For 0 ≤ n ≤ N (n, T ) is in the low temperature region for 0 < T < c0A0/2.

In this case PropertiesK1(n)—K4(n) hold by Proposition A, and the validity
of (8.1) for n = 0 follows from relations (4.1), (4.5) and (A.1). Its validity
for 0 ≤ n ≤ N can be proved by induction with the help of Properties K1(n)
and K3(n), 1 ≤ n ≤ N .

To prove formula (8.1) for n > N first we show that

−dM
2
n(T )

dT
exp

{
−K

(
βn+1(T )

c(n)

)2
}

≤ −dM
2
n+1(T )

dT
(8.2)

≤ −dM
2
n(T )

dT
exp

{
K

(
βn+1(T )

c(n)

)2
}

for all T < T̄ and n ≥ N with an appropriate K > 0. Relation (8.2) is
a consequence of Part b) of Proposition A, formula (4.12), the inequality

βn+1(T )M
2
n(T ) ≥ 10 and the relation βn+1(T )

c(n) ≤ η if (n, T ) is in the low
temperature domain. Indeed, since

−dM
2
n+1(T )

dT
= −

(
1− mn(T )

c(n+1)Mn(T )

)(
1−

dmn(T )
dT

c(n+1) dMn(T )
dT

)
dM2

n(T )

dT
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these relations imply that

−
(
1− r − 1

4c(n+1)M2
n(T )

− C1
β
3/2
n+1(T )

c(n+1)2Mn(T )

)

(
1 +

r − 1

4c(n+1)M2
n(T )

− C
β2n+1(T )

(c(n+1))2

)
dM2

n(T )

dT

≤ −dM
2
n+1(T )

dT

≤ −
(
1− r − 1

4c(n+1)M2
n(T )

+ C1
β
3/2
n+1(T )

c(n+1)2Mn(T )

)

(
1 +

r − 1

4c(n+1)M2
n(T )

+ C
β2n+1(T )

c(n+1)2

)
dM2

n(T )

dT
.

In this calculation we have exploited that c(n+1)M2
n(T ) ≥ βn+1(T )

η M2
n(T ) ≫

1.
The left and right-hand side of this inequality can be bounded by

−
(
1±K

β2n+1(T )

c(n)
2

)
dM2

n(T )

dT
,

and formula (8.2) can be deduced from these relations.
For N ≤ n ≤ N1(T ) with the number N1(T ) defined in relation (4.18)

relation (8.1) follows from (8.2) and (4.19). Since by (4.20) βn+1M
2
n(T ) ≤

100 if n ≥ N1(T ) and the pair (n, T ) is in the low temperature domain, to
prove formula (8.1) with the help of (8.2) for n > N1(T ) it is enough to
show that

n∑

k=N1(T )

1
(
c(k)M2

k (T )
)2 ≤ L if n ≥ N1(T )

and (n, T ) is in the low temperature domain

with a constant L > 0 independent of T and n. Since M2
n(T ) ≥ 1

10βn+1(T ) ≥
1

10ηc(n) and M2
k (T ) =M2

n(T ) + (M2
k (T )−M2

n(T )) ≥ 1
10ηc(n) +

n−1∑
j=k

1
8c(j)

,

n∑

k=N1(T )

1
(
c(k)M2

k (T )
)2 ≤ const.

n∑

k=N1(T )

1
(
c(k)

n∑
j=k

1
c(j)

)2 ≤ L

because of Condition 3. Hence formula (8.1) holds.
It follows from (1.2), Condition 4, and the results of Section 4 that all

T > c0A0/4 belong to the high temperature region. Indeed, it follows from
formulas (4.26), (4.27), (4.1), (4.5) and (4.9), that if T > 0 is in the low
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temperature region, then

0 ≤M2
n(T ) ≤M2

N (T )− 30(MN (T ) + 1)−
∞∑

n=1

1

8c(n)
≤ 3

κT 2
−

∞∑

n=1

1

8c(n)

for all n ≥ N , and T ≤
( ∞∑

n=1

κ
24c(n)

)−1/2

. Hence Condition 4 implies that

T ≤ c0A0/4.
It follows from (8.2) that for a fixed n the function M2

n(T ) is strictly
monotone decreasing. Hence a simple induction with respect to n yields
that the function βn(T ) is a monotone increasing, continuous function of T
for all n > N . Put

Tn = sup{T : (T, n) is in the low temperature region}. (8.3)

The sequence Tn is monotone decreasing, hence the limit Tc = lim
n→∞

Tn exists,

and by Lemma 4.4 Tc > 0 under Dyson’s condition (1.2). We want to show
that

C1

∞∑

k=n

1

c(k)
≤ Tn − Tc ≤ C2

∞∑

k=n

1

c(k)
. (8.4)

Since we can handle the sequenceMn(T ) better than the sequence βn(T ) we
also introduce besides the sequence Tn defined in (8.3) the sequence T (n)

T (n) = sup

{
T : M2

n(T ) ≥
100

c(n)η

}
.

We will show that

Tn+K ≤ T (n) ≤ Tn (8.5)

for all sufficiently large n with an appropriate K > 0, and

C1

c(n)
≤ T (n)− T (n+ 1) ≤ C2

c(n)
(8.6)

with some appropriate C2 > C1 > 0 for all sufficiently large n. Because
of Condition 5 relation (8.4) follows from (8.5) and (8.6) together with the
relation lim

n→∞
Tn = Tc.

If T ≤ T (n), and m ≤ n then either m ≤ N1(T ) with the number N1(T )

defined in (4.18) or βm+1(T ) ≤ 100
M2

m(T )
≤ 100

M2
n(T )

≤ c(n)η. This implies that

for T ≤ T (n) the pair (m,T ) is in the low temperature region for all m ≤ n,
and T (n) ≤ Tn. This is the right-hand side of relation (8.5).

To prove its left-hand side observe that because of Condition 5 there is
some K such that

n+K−1∑

k=n

1

8c(n)
>

100

c(n)η

for all sufficiently large n with appropriate K > 0. We claim that for
T ≥ T (n) the pair (n + K,T ) is not in the low temperature region. This
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relation implies the left-hand side of (8.5). If (n + K,T ) were in the low
temperature region, then we would get with the help of formula (4.26) that

M2
n+K(T ) ≤M2

n(T )−
n+K−1∑

k=n

1

8c(n)
<

100

c(n)η
−

n+K∑

k=n

1

8c(n)
<

100

c(n)η
− 100

c(n)η
= 0,

and this is a contradiction.
To prove formula (8.6) let us first observe that because of the continuity

and strict monotonicity of the functionM2
n(T ), M

2
n(T (n)) =

100
c(n)η

. It follows

from the last statement of Lemma 4.3 and formula (8.1) that N1(T ) ≤ n for
all T (n) − ε < T < T (n) with an appropriately small ε > 0. (The number
N1(T ) was defined in (4.18).). Hence we get with the help of formula (8.1)
that for sufficiently large n and T (n)− ε < T < T (n)

100

c(n)η
− 2

c(n)
+ C̄1(T (n)− T ) ≤ 100

c(n+1)η
− 1

c(n)
+ C̄1(T (n)− T )

≤M2
n+1(T )

≤ 100

c(n)η
− 1

8c(n)
+ C̄2(T (n)− T )

≤ 100

ηc(n+1)
− 1

9c(n)
+ C̄2(T (n)− T )

with some appropriate constants C̄2 > C̄1 > 0. Hence the solution of the
equation M2

n+1(T ) =
100

c(n+1)η
satisfies the inequality K1 < c(n)(T − T (n)) <

K2 with appropriate constants K2 > K1 > 0. Since the solution of this
equation is T (n+ 1), this fact implies relation (8.6).

It is not difficult to see that Tc is in the low temperature region. Since
the inequality M2

n(Tc) = M2
n(T (n)) + (M2

n(Tc) − M2
n(T (N))) ≤ 100

c(n)η
+

const. (T (n) − Tc) holds for all large n because of (8.1), lim
n→∞

Mn(Tc) = 0.

Then relation (8.1) implies that

C1 (Tc − T )) ≤M2
n(Tc)−M2

n(T ) ≤ C2 (Tc − T )

with some positive constants C2 > C1 > 0 if Tc ≥ T ≥ Tc − ε. Letting
n tend to infinity in the last relation we get formula (3.21). Since formula
(8.4) is equivalent to (3.20) Theorem 3.4 is proved. �

Proof of Theorem 1.3. By Corollary of Theorem 3.1, if the Dyson condition
(1.2) is violated then all temperatures T > 0 belong to the high temperature
region. By Corollary of Theorem 3.3 relation (1.13) holds, and the measures
ν̃n,T (dx) tends to the standard normal distribution as n→ ∞. Theorem 1.3
is proved. �

Proof of Theorem 1.5.

Part 1). The convergence of ν̃n,T (dx) to the r-dimensional standard Gauss-
ian distribution and relation (1.26) follow from Corollary of Theorem 3.3.
The asymptotics (1.27) follows from (3.19) and (3.20).
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Part 2). Formula (1.28) follows from (3.7), and the convergence of ν̃n,Tc(dx)
to the uniform distribution on the sphere follows from Theorems 3.2 and
3.4. Namely, Theorem 3.4 tells us that the critical temperature Tc belongs
to the low temperature region. Then formula (3.8) proves that the probability
distribution ν̃n,Tc(dx) converges to the uniform distribution on the sphere.
As a matter of fact, (3.8) proves much more: it proves the convergence at
T = Tc of the distribution of normalized fluctuations of the mean spin along
the radius to a limit. Indeed, by (3.8),

lim
n→∞

∥∥∥∥
1

Mn(Tc)
fn

(
t

Mn(Tc)
, Tc

)
− g (t)

∥∥∥∥ = 0,

where

‖f(t)‖ =

2∑

j=0

sup
t≥−c(n)M2

n(T )

e|t|
∣∣∣∣
djf(t)

d tj

∣∣∣∣

and the probability density g(t) is defined as a solution of the fixed point
equation (1.18). By (2.13),

fn(t, Tc) =
1

c(n)
q̄n

(
Mn(Tc) +

t

c(n)
, Tc

)
,

hence

lim
n→∞

∥∥∥∥∥∥

q̄n

(
Mn(Tc) +

t
c(n)Mn(Tc)

, Tc

)

c(n)Mn(Tc)
− g (t)

∥∥∥∥∥∥
= 0.

To obtain a scaling limit of qn near Mn(Tc), let us rewrite the latter formula
as

lim
n→∞

∥∥∥∥∥∥

q̄n

(
Mn(Tc)

(
1 + t

c(n)M2
n(Tc)

)
, Tc

)

c(n)Mn(Tc)
− g (t)

∥∥∥∥∥∥
= 0. (8.7)

Let us evaluate the asymptotics of c(n)M2
n(Tc) as n→ ∞. By (3.7),

lim
n→∞

M2
n(Tc)∑∞

k=n
1

c(k)

=
r − 1

2
, (8.8)

since M∞(Tc) = 0. Define

λn = ln

∞∑

k=n

1

lk
. (8.9)

By Condition 2 on the sequence {ln},
lim
n→∞

λn = ∞. (8.10)

By (2.23)

lim
n→∞

c(n)

ln
= 3,
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hence

lim
n→∞

∑∞
k=n

1
c(k)∑∞

k=n
1
lk

=
1

3
,

and by (8.8), (8.9),

lim
n→∞

M2
n(Tc)∑∞
k=n

1
lk

= lim
n→∞

M2
n(Tc)ln
λn

=
r − 1

6
, (8.11)

which relation is equivalent to (1.28). Therefore,

lim
n→∞

c(n)M2
n(Tc)

λn
=
r − 1

2
.

Substituting this limit into (8.7), we obtain that

lim
n→∞

∥∥∥∥∥
2Mn(Tc)

(r − 1)λn
q̄n

(
Mn(Tc)

(
1 +

t
r−1
2 λn

)
, Tc

)
− g (t)

∥∥∥∥∥ = 0. (8.12)

This implies that the probability density Z̄n(Tc)
−1 q̄n(Mn(Tc)x, Tc) is local-

ized in a neighborhood of order λ−1
n of the point 1, and after the proper

scaling it converges to g (t) as n→ ∞.
Let us consider now the scaling limit of the probability density p̄n(x, Tc).

By equations (2.7) and (2.11),

p̄n(x, Tc) = Zn(Tc)
−1 exp

(
−AnlnT

−1
c x2

2

)
q̄n(T

−1/2
c x, Tc), x ≥ 0,

where Zn(Tc)
−1 is a norming factor, hence

p̄n(T
1/2
c Mn(Tc)x, Tc)

= Zn(Tc)
−1 exp

(
−AnlnM

2
n(Tc)x

2

2

)
q̄n(Mn(Tc)x, Tc).

Applying the same scaling as in (8.12), we obtain that

p̄n

(
T 1/2
c Mn(Tc)

(
1 +

t
r−1
2 λn

)
, Tc

)

= Zn(Tc)
−1 exp


−AnlnM

2
n(Tc)

2

(
1 +

t
r−1
2 λn

)2



× q̄n

(
Mn(Tc)

(
1 +

t
r−1
2 λn

)
, Tc

)
.

(8.13)
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Consider the expression in the exponent,

AnlnM
2
n(Tc)

2

(
1 +

t
r−1
2 λn

)2

=
AnlnM

2
n(Tc)

2
+

2AnlnM
2
n(Tc)t

(r − 1)λn

+
2AnlnM

2
n(Tc)t

2

(r − 1)2λ2n
.

(8.14)

By (8.11), (2.22) and (8.10)

lim
n→∞

2AnlnM
2
n(Tc)

(r − 1)λn
=

2

3
, lim

n→∞
2AnlnM

2
n(Tc)

(r − 1)2λ2n
= 0. (8.15)

The constant term in (8.14) is not important, because it changes in (8.13)
the norming constant only. Therefore, from (8.12)-(8.15) we obtain that

lim
n→∞

∥∥∥∥Z
′
n
−1
e(2/3)tp̄n

(
T 1/2
c Mn(Tc)

(
1 +

t
r−1
2 λn

)
, Tc

)
− g (t)

∥∥∥∥ = 0 (8.16)

This implies that

lim
n→∞

∥∥∥∥
2T

1/2
c Mn(Tc)

(r − 1)λn
p̄n

(
T 1/2
c Mn(Tc)

(
1 +

t
r−1
2 λn

)
, Tc

)

− Z−1e−(2/3)tg (t)

∥∥∥∥
′
= 0.

(8.17)

where Z−1e−(2/3)tg (t) is a probability density (this determines the constant
Z), and

‖f(t)‖′ =
2∑

j=0

sup
t≥− r−1

2
λn

e|t|/3
∣∣∣∣
djf(t)

d tj

∣∣∣∣ . (8.18)

Substituting t for (bt− a) in (8.17), we obtain that

lim
n→∞

∥∥∥∥
An

dn
p̄n

(
An

(
1 +

t

dn

))
− π(t)

∥∥∥∥
′
= 0. (8.19)

where An > 0 is some constant. Since
∫ ∞

−∞
t p̄n

(
M̂n(Tc)

(
1 +

t

dn

))
= 0,

∫ ∞

−∞
t π(t) dt = 0,

we can replace An by M̂n(Tc) in (8.19). This proves equation (1.32).

Part 3). The results of Part 3) of Theorem 3 were already proved with
the exception of relation (1.35) in the discussion after the formulation of
Theorem 3.2. But relation (1.35) is a direct consequence of relation (3.21)

proved in Theorem 3.4 and the identity M(T ) =
√
TM∞(T ) for T < Tc

which was also proved in the above discussion. Theorem 1.5 is proved. �
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Appendix A. The Proof of Theorem 8.1.

To prove Theorem 8.1 we need good estimates on the partial derivatives

gn(x, T ) =
∂

∂T
fn(x, T ),

of a scaled version of the functions qn(x, T ). This can be done similarly to
the estimation of the functions fn(x, T ), done in Section 4. First we give
estimates for the starting function g0(x, T ), then prove that similar estimates
hold for small indices n, more explicitly for n ≤ N with the index N defined
in (1.12). Then inductive hypotheses can be formulated and proved for the
functions gn(x, T ). In Section 4 we have introduced certain operators Q̄n,
their normalization Qn and the linearization of these operators denoted by
T̄n and Tn. The inductive hypotheses formulated there were closely related
to the properties of these operators. Now we want to work similarly. To
do this we have to introduce some new operators. We introduce certain
operators R̄n and Rn which are the derivatives of the operators Q̄n and
Qn with respect to the variable T . We also need their linear approximation
which we shall denote by Ūn and Un. We have to study the action of
these operators on the functions gn(x, T ) = ∂

∂T fn(x, T ) and their Fourier
transform.

An appropriate description of the asymptotic behaviour of the start-
ing functions f0(x, T ) and numbers M0(T ) were already given in formulas
(4.2) — (4.8). Some more calculation yields, with the help of some formulas
in Section 4, the following estimates for the derivatives of the magnetization
M0(T ) and the norming constant Z0(T ) if T < c0A0/2.

∣∣∣∣
d

dT

(
M0(T )− M̄0(T )

)∣∣∣∣ ≤ const.
√
κ.

C1√
κT 2

< −dM0(T )

dT
<

C2√
κT 2

with some ∞ > C2 > C1 > 0, (A.1)

and ∣∣∣∣
dZ0(T )

dT
−

√
π

2(A0 − T )3/2

∣∣∣∣ ≤ const.
√
κ.

The derivatives of the functions q̄0(x, T ) and f0(x, T ) satisfy the inequalities
∣∣∣∣
∂q̄0(x+M0(T ), T )

∂T
−

√
A0 − T√
π

(
x2 − 1

2(A0 − T )

)
e−(A0−T )x2

∣∣∣∣

≤ const.κ1/4, if |x| < log κ−1,

and
∣∣∣∣
∂q̄0(x+M0(T ), T )

∂T

∣∣∣∣ ≤ C exp

{
−(A0 − T )

4

∣∣∣∣2x+
x2

M2
0 (T )

∣∣∣∣
}

(A.2)

for x ≥ −M0(T ).
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We shall apply the notation

gn(x, T ) =
∂fn(x, T )

∂T
, n = 0, 1, . . . . (A.3)

Since f0(x, T ) = q0(x + M0(T ), T ) the previous estimates together with
the results of Section 4 yield a sufficiently good control on g0(x, T ). The
functions gn(x, T ), n = 1, 2, . . . , can be estimated inductively with respect
to the parameter n.

Put

R̄nfn(x, T ) =
∂

∂T
Q̄c

n,Mn(T )fn(x, T )

and

Rnfn(x, T ) =
∂

∂T
Qc

n,Mn(T )fn(x, T ) = gn+1(x, T ).

Then
R̄nfn(x, T ) = R̄(1)

n fn(x, T ) + R̄(2)
n fn(x, T ) (A.4)

with

R̄(1)
n fn(x, T ) = 2

∫

u∈R1,v∈Rr−1

exp

{
− u2

c(n)
− v2

}
fn(ℓ

c,+
n,Mn(T )(x, u,v), T )

gn(ℓ
c,−
n,Mn(T )(x, u,v), T ) du dv,

where the functions gn(x, T ) and ℓ
c,±
n,Mn(T )(x, u,v), T ) were defined in (A.3)

and (2.18), and

R̄(2)
n fn(x, T ) = −2

∫

u∈R1,v∈Rr−1

exp

{
− u2

c(n)
− v2

}
fn(ℓ

c,+
n,Mn(T )(x, u,v), T )

hn(x, u,v, T )
∂

∂x
fn(ℓ

c,−
n,Mn(T )(x, u,v), T ) du dv

with

hn(x, u,v, T ) = −
∂ℓc,−n,Mn(T )(x, u,v)

∂T

=
M ′

n(T )v
2

√(
Mn(T ) +

x
c(n+1) − u

c(n)

)2
+ v2

c(n)

1√(
Mn(T ) +

x
c(n+1) − u

c(n)

)2
+ v2

c(n) +
(
Mn(T ) +

x
c(n+1) − u

c(n)

) .

The function gn+1(x, T ) can be expressed as

gn+1(x, T ) = Rnfn(x, T )

=
R̄nfn(x+mn(T ), T )

Zn(T )
+

∂
∂xQ̄nfn(x+mn(T ), T )

Zn(T )

dmn(T )

dT

−Q̄nfn(x+mn(T ), T )

Z2
n(T )

dZn(T )

dT
(A.5)
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with

Zn(T ) =

∫ ∞

−c(n)Mn(T )
Q̄nfn(x, T ) dx.

If the parameter κ > 0 in formula (2.10) is sufficiently small, then q̄0(x, T )
and the functions gn(x, T ), n ≤ N , can be estimated similarly to the proof
of Proposition 4.1 or Proposition 1 in [BM3]. Relation (A.7) formulated
below can be deduced from formula (A.2) similarly to the proof of Lemma 1
of that paper. Then an argument similar to the proof of Lemma 2 in [BM3]
enables one to prove formula (A.6) formulated below. In this argument one
can observe that a negligible error is committed if in the integrals appearing
in the definition of R̄nfn(x, T ) the arguments ℓc,±n,Mn(T )(x, u,v) defined in

formula (2.18) are replaced by x
cn+1

± u. Some calculation also shows that

we commit a negligible error by replacing Rnfn(x, T ) with R̄
(1)
n fn(x,T )
Zn(T ) . In

such a way we get that
∣∣∣∣gn(x, T )−

√
A0 − T√
π

2n/2

c(n)

(
x2 − 1

2(A0 − T )

c(n)
2

2n

)

exp

{
−(A0 − T )

2nx2

c(n)
2

}∣∣∣∣

≤ C(n)κ1/4 exp

{
−(A0 − T )

4

2n

c(n)

∣∣∣∣2x+
x2

M2
n(T )

∣∣∣∣
}

if |x| < 2−n log κ−1, (A.6)

|gn(x, T )| ≤ C(n) exp

{
−(A0 − T )

4

2n

c(n)

∣∣∣∣2x+
x2

M2
n(T )

∣∣∣∣
}

for x ≥ −Mn(T ),

(A.7)

|Mn(T )−M0(T )| ≤ C(n)κ1/2,

∣∣∣∣Zn(t)−
√
π√

A0 − t

∣∣∣∣ ≤ C(n)κ1/2

with some constant C(n) which may depend on n but not on the parameter
κ of the model.

The previous results are sufficient to handle the functions gn(x, T ) for
small indices n ≤ N . To work with indices n ≥ N we have to introduce,
similarly to the argument in Section 4, the regularization of the functions
gn(x, T ), the linearization Ūn and Un of the operators R̄n and Rn and to
describe their action in the Fourier space.

Define the regularization of the function gn(x, T ) as

ϕn(gn(x, T )) =
∂ϕn(fn(x, T ))

∂T
. (A.8)

We want to approximate the operator Rn with a simpler operator Un in
analogy with the approximation of Qn by Tn. Then we formulate and
prove some inductive hypothesis about the behaviour of the operators Rn

and Un.
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A natural approximation of the operators R̄n and Rn by some oper-
ators Ūn and Un can be obtained by differentiating T̄nϕ(fn(x, T )) and
Tnϕn(fn(x, T )) with respect to the variable T . These considerations sug-
gest the definition of the operators

Ūnϕn(fn(x, T )) = 2

∫

u∈R1,v∈Rr−1

e−v2
ϕn

(
fn

(
x

c̄n+1
+ u+

v2

2Mn(T )
, T

))

{
ϕn

(
gn

(
x

c̄n+1
− u+

v2

2Mn(T )
, T

))

−v2 M ′
n(T )

2Mn(T )2
∂

∂x
ϕn

(
fn

(
x

c̄n+1
− u+

v2

2Mn(T )
, T

))}
du dv

with the functions gn(x, T ) and ϕn(gn(x, T )) defined in (A.3) and (A.8) and

Unϕn(fn(x, T )) = U(1)
n ϕn(fn(x, T )) +U(2)

n ϕn(fn(x, T ))

with

U(1)
n ϕn(fn(x, T )) =

8

c̄n+1Γ(
r−1
2 )V (Sr−2)

∫

u∈R1,v∈Rr−1

e−v2
ϕn

(
fn

(
x

c̄n+1
+ u− r − 1

4Mn(T )
+

v2

2Mn(T )
, T

))

ϕn

(
gn

(
x

c̄n+1
− u− r − 1

4Mn(T )
+

v2

2Mn(T )
, T

))
du dv,

and

U(2)
n ϕn(fn(x, T )) =

8

c̄n+1Γ(
r−1
2 )V (Sr−2)

∫

u∈R1,v∈Rr−1

e−v2

(
(r − 1)M ′

n(T )

4M2
n(T )

− v2 M ′
n(T )

2Mn(T )2

)

ϕn

(
fn

(
x

c̄n+1
+ u− r − 1

4Mn(T )
+

v2

2Mn(T )
, T

))

∂

∂x
ϕn

(
fn

(
x

c̄n+1
− u− r − 1

4Mn(T )
+

v2

2Mn(T )
, T

))
du dv.

We can calculate the Fourier transform of the functions Ūnϕn(fn(x, T )),

U
(1)
n ϕn(fn(x, T )) and U

(2)
n ϕn(fn(x, T )) by expressing them with the help of

convolutions. This is similar to the proof of formula (4.17). In the calcula-
tions we exploit the following identity. As simple integration by parts shows
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∂̃
∂xϕn(fn(ξ)) =

∫
eiξx ∂

∂xϕn(fn(x)) dx = −iξϕ̃(fn(ξ)). Hence we get that

˜̄Unϕ̃n(fn(ξ, T ))

=
c̄n+1Γ(

r−1
2 )V (Sr−2)

2

ϕ̃n

(
fn
( c̄n+1

2 ξ, T
))

(
1 + i c̄n+1

2Mn(T )ξ
)(r−1)/2

ϕ̃n

(
gn

( c̄n+1

2
ξ, T

))

+i
c̄2n+1Γ(

r+1
2 )V (Sr−2)

8

M ′
n(T )

Mn(T )2
ξ

ϕ̃2
n

(
fn
( c̄n+1

2 ξ, T
))

(
1 + i c̄n+1

2Mn(T )ξ
)(r+1)/2

,

Ũ(1)
n ϕ̃n(fn(ξ, T )) (A.9)

= 2
exp

{
i (r−1)c̄n+1ξ

4Mn(T )

}

(
1 + i c̄n+1

2Mn(T )ξ
)(r−1)/2

ϕ̃n

(
fn

( c̄n+1

2
ξ, T

))
ϕ̃n

(
gn

( c̄n+1

2
ξ, T

))

and

Ũ(2)
n ϕ̃n(fn(ξ, T )) = −i c̄n+1(r − 1)M ′

n(T )

2Mn(T )2

exp
{
i (r−1)c̄n+1ξ

4Mn(T )

}

(
1 + i c̄n+1

2Mn(T )ξ
)(r−1)/2

ξ

ϕ̃2
n

(
fn

( c̄n+1

2
ξ, T

))(
1− 1

1 + i c̄n+1

2Mn(T )ξ

)
. (A.10)

The above relation can also be extended to a larger set of the variables ξ
in the complex plane by means of analytic continuation.

Now we formulate the inductive hypotheses we want to prove in the Ap-
pendix.

Property K1(n).

−dMn(T )

dT
> 0.

Property K2(n).

|gn(x, T )| =

∣∣∣∣
∂

∂T
fn(x, T )

∣∣∣∣

< K

∣∣∣∣
dMn(T )

dT

∣∣∣∣ exp
{
− 1√

βn(T )

∣∣∣∣2x+
x2

c(n)Mn(T )

∣∣∣∣

}

if x > −c(n)Mn(T )

with a universal constant K.
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Property K3(n).

|gn(x, T )−Un−1ϕn−1(fn−1(x, T ))|

< K

∣∣∣∣
dMn(T )

dT

∣∣∣∣
βn(T )

c(n)
exp

{
− 1.4√

βn(T )

∣∣∣∣2x+
x2

c(n)Mn(T )

∣∣∣∣

}

if x > −c(n)Mn(T )

with a universal constant K. The inequality remains valid if the function
gn(x, T ) is replaced by its regularization ϕn(gn(x, T )).

The following property K4(n) which gives a bound on the Fourier trans-
form of ϕn(gn(x, T )) is an analog of Property J(n).

Property K4(n).

|ϕ̃n(gn(−is, T )| =

∣∣∣∣
∫
esxϕn(gn(x, T ) dx

∣∣∣∣ ≤ β3/2n (T )s2
∣∣∣∣
dMn(T )

dT

∣∣∣∣ e
βn(T )s2

if |s| < 2√
βn+1(T )

.

In Property K4(n) we formulated a weaker estimate than in J(n). It is
enough to have a good bound on the moment generating function, i.e. on
the analytic continuation of the Fourier transform to the imaginary axis
together with the trivial estimate |ϕ̃n(gn(−is + t, T )| ≤ ϕ̃n(gn(−is, T ) for
all t.

The main result of the Appendix is the following Proposition A.

Proposition A. Let the properties K1(m), K2(m), K3(m) and K4(m) hold

in a neighbourhood of a parameter T together with the property βm(T )
cm ≤ η

(with the same small number η > 0 which appeared in the proof of Proposi-
tions 4.1 and 4.2) for all N ≤ m ≤ n, and let also the inductive hypotheses
I(n) and J(n) be also satisfied. Then the properties K1(n+ 1), K2(n+ 1),
K3(n+ 1) and K4(n+ 1) also hold for this parameter T . The expression

δn(T ) =
d

dT

(
mn(T )−

r − 1

4Mn(T )

)
=
dmn(T )

dT
+

r − 1

4M2
n(T )

dMn(T )

dT

satisfies the inequality

|δn(T )| ≤ C

∣∣∣∣
dMn(T )

dT

∣∣∣∣
βn+1(T )

c(n+1)
βn+1(T ) (A.11)

with an appropriate C > 0, where mn(T ) was defined in (2.15).

If we want to apply Proposition A, then first we have to show that prop-
erties K1(n), K2(n), K3(n) and K4(n) hold for n = N if T < c0A0/2.
This can be done with the help of an argument similar to the proof in the

Corollary of Lemma 1 in [BM3]. Property K1(N) holds since dMN (T )
dT hardly

differs from dM0(T )
dT . Property K2(N) can be proved by means of relations
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(A.6) and (A.7). In the proof of Property K3(N) still the following addi-
tional observation is needed. Relation (A.6) remains valid if the function
gN (x, T ) = RNfN−1(x, T ) is replaced by UNϕN−1(fN−1(x, T )) in this for-

mula. (The term dMn(T )
dT on the right-hand side of the inductive hypotheses

do not play an important role for n = N . It is strongly separated from zero
if T ≤ c0A0/2.)

Relation K4(N) can be proved again with the help of formulas (A.6),
(A.7) and the relations

∫
ϕn(gn(x, T )) dx =

∫
xϕn(gn(x, T )) dx = 0.

These relations imply that the value of the function ϕ̃n(gn(s, T ) and of its
first derivative is zero in the point s = 0. Hence it is enough to give a good
estimate of the second derivative of ϕ̃n(gn(s, T ).

Let us formulate the following Corollary of Proposition A.

Corollary. Under the Conditions of Theorem 3.4 the set of the points T
for which (n, T ) is in the low temperature region is an interval (0, Tn) for
all n ≥ 0. The inductive hypotheses K1(n), K2(n), K3(n) and K4(n) hold
for all T ∈ (0, Tn).

Proof of the Corollary. The Corollary simply follows from Proposition A by
means of induction with respect to n. In this induction we assume the state-
ment of the Corollary for a fixed n together with the assumption that βn(T )
is monotone increasing in the variable T for 0 < T < Tn. The Corollary and
the additional assumption hold for n = N with TN = c0A0/2. If properties
K1(n), K2(n), K3(n) and K4(n) hold for n, then because of Property K1(n)
the function Mn(T ) is monotone decreasing and βn+1(T ) is monotone in-
creasing in the variable T . Then Tn+1 = min(Tn,max(T : βn+1(T ) < η)),
and by Proposition A the statements of the Corollary hold for n+ 1. �

Before turning to the proof of Proposition A we prove Theorem 8.1 with
its help.

Proof of Theorem 8.1. The proof of Part a.) is contained in the previous
estimates of the Appendix. Part b.) can be obtained by differentiating the
second formula in (2.16), and applying formula (A.11). �

Proof of Proposition A. Some calculation yields that because of properties
K4(n), J(n) relations (A.9) and (A.10) the Fourier transforms

Ũ(1)
n ϕ̃n(fn(ξ, T )), Ũ(2)

n ϕ̃n(fn(ξ, T ))
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satisfy the inequalities
∣∣∣Ũ(1)

n ϕ̃n(fn(t+ is, T ))
∣∣∣

≤ 2

∣∣∣∣
dMn(T )

dT

∣∣∣∣
( c̄n+1

2
s
)2
βn(T )

3/2

exp

{(
c̄2n+1βn(T )

2
+

1

M2
n(T )

)
s2
}

1

1 + αn(T )t2

and ∣∣∣Ũ(2)
n ϕ̃n(fn(t+ is, T ))

∣∣∣

≤ c̄2n+1|M ′
n(T )|

8Mn(T )3
(s2 + t2) exp

{(
c̄2n+1βn(T )

2
+

1

M2
n(T )

)
s2
}

1

(1 + αn(T )t2)2
(
1− c̄n+1

2Mn(T )s
)

for |s| < 4

c̄n+1

√
βn+1(T )

.

The function ϕn(gn(x, T )) can be computed by means of the application
of the inverse Fourier transformation and by replacement of the domain of
integration from the real line to the line

{
z = i signx

2√
βn+1(T )

+ t, t ∈ R
1

}
.

We get, by applying the above estimates for the Fourier transforms Ũ
(1)
n

and Ũ
(2)
n and exploiting the relation M ′

n(T )
2Mn(T )3

≤ 1
200βn+1(T )

2 dMn(T )2

dT together

with the fact that the constants αn(T ) and βn(T ) introduced in the definition
of Properties I(n) and J(n) have the same order of magnitude that

|Unϕn(fn(x, T ))| ≤ −K1
dMn(T )

dT
e−2|x|βn+1(T )−1/2

(A.12)

≤ −K2
dMn(T )

dT
exp

{
− 1√

βn+1(T )

∣∣∣∣2x+
x2

c(n+1)Mn+1(T )

∣∣∣∣

}
.

The estimates obtained for Ũ
(1)
n and Ũ

(2)
n yield, with the choice t = 0 and

some calculation that

‖Ũnϕ̃n(fn(−is, T ))| ≤ − 9

10

dMn(T )

dT
βn+1(T )

3/2s2eβn+1(T )s2

if |s| < 2√
βn+2(T )

. (A.13)

(In the proof of Property K4(n+1) it will be important that the right-hand
side of (A.13) is less than the expression at the right-hand side of the formula
which defines Property K4(n+ 1).)
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We need a good estimate on the difference ofRnfn(x, T )−Unϕn(fn(x, T ))
and its Fourier transform. These expressions can be bounded similarly to
the proof of the corresponding inequalities in the proof of Proposition 3 in
paper [BM3]. One has to compare the difference of the corresponding terms
in the expressions Qnϕn(fn(x, T )) and Rnϕn(fn(x, T )). Some calculation
yields that

∣∣∣∣Zn(T )−
c̄n+1

√
π

2

∣∣∣∣ ≤
βn(T )

c(n)
,

∣∣∣∣mn(T ) +
1

4Mn(T )

∣∣∣∣ ≤
βn(T )

c(n)

√
βn(T ),

(A.14)

∣∣∣∣
dZn(T )

dT

∣∣∣∣ ≤ −Kβn(T )

c(n)
β1/2n (T )

dMn(T )

dT
, (A.15)

∣∣∣∣
d

dT

(
mn(T ) +

1

4Mn(T )

)∣∣∣∣ ≤ −Kβn+1(T )

c(n+1)
βn+1(T )

dMn(T )

dT
.

Relation (A.11) is a consequence of (A.15). Property K1(n + 1) can be
deduced from the above inequalities, since

−dMn+1(T )

dT
= −dMn(T )

dT
+

1

c(n+1)

dmn(T )

dT

≥ −dMn(T )

dT

(
1− 1

c(n+1)

(
1

4M2
n(T )

+K
β2n(T )

c(n)

))

≥ −1

2

dMn(T )

dT
.

Now we turn to the proof of Property K3(n+1). We do it by estimating
the errors we make by replacing the terms in the sum at the right-hand
side of (A.5) by their natural approximation if we replace Rnf(x, T ) by
Unϕn(fn(x, T )). (We also use formula (A.4) in that calculation.) We get,
by applying again inequalities (A.14) and (A.15) together with the estimates
obtained for fn(x, T ), similarly to the proof of the estimates in the lemmas
needed for the proof of Lemma 3 in [BM1] that

∣∣∣∣
Q̄nfn(x+mn(T ), T )

Z2
n(T )

dZn(T )

dT

∣∣∣∣

≤ K
βn(T )

c(n)

∣∣∣∣
dMn(T )

dT

∣∣∣∣ exp
{

−1.5√
βn(T )

∣∣∣∣2x+
x2

c(n)Mn(T )

∣∣∣∣

}

if x ≥ −c(n+1)Mn+1(T ),
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∣∣∣∣∣
∂
∂xQ̄nfn(x+mn(T ), T )

Zn(T )

dmn(T )

dT
− 8(r − 1)

c̄n+1Γ(
r−1
2 )V (Sr−2)

M ′
n(T )

4M2
n(T )

×
∫

u∈R1,v∈Rr−1

e−v2
ϕn

(
fn

(
x

c̄n+1
+ u− r − 1

4Mn(T )
+

v2

2Mn(T )
, T

))

∂

∂x
ϕn

(
fn

(
x

c̄n+1
− u− r − 1

4Mn(T )
+

v2

2Mn(T )
, T

))
du dv

∣∣∣∣∣

≤ K
βn(T )

c(n)

∣∣∣∣
dMn(T )

dT

∣∣∣∣ exp
{

−1.5√
βn(T )

∣∣∣∣2x+
x2

c(n)Mn(T )

∣∣∣∣

}

if x ≥ −c(n+1)Mn+1(T )

and∣∣∣∣∣
R̄

(2)
n fn(x+mn(T ), T )

Zn(T )
+

8

c̄n+1Γ(
r−1
2 )V (Sr−2)

M ′
n(T )

2M2
n(T )

×
∫

u∈R1,v∈Rr−1

v2e−v2
ϕn

(
fn

(
x

c̄n+1
+ u− r − 1

4Mn(T )
+

v2

2Mn(T )
, T

))

∂

∂x
ϕn

(
fn

(
x

c̄n+1
− u− r − 1

4Mn(T )
+

v2

2Mn(T )
, T

))
du dv

∣∣∣∣∣

≤ K
βn(T )

c(n)

∣∣∣∣
dMn(T )

dT

∣∣∣∣ exp
{
− 1.5√

βn(T )

∣∣∣∣2x+
x2

c(n)Mn(T )

∣∣∣∣

}

if x ≥ −c(n+1)Mn+1(T ).

To prove Property K3(n+ 1) we still need an estimate which compares the
terms

R̄
(1)
n fn(x+mn(T ), T )

Zn(T )
and U(1)

n ϕn(fn(x, T )).

We claim that∣∣∣∣∣
R̄

(1)
n fn(x+mn(T ), T )

Zn(T )
−U(1)

n ϕn(fn(x, T ))

∣∣∣∣∣ ≤ K
βn(T )

c(n)

∣∣∣∣
dMn(T )

dT

∣∣∣∣

exp

{
− 1.5√

βn(T )

∣∣∣∣2x+
x2

c(n)Mn(T )

∣∣∣∣

}
if x ≥ −c(n+1)Mn+1(T ).

This estimate can be proved by means of Property K3(n). With the help of
this relation it can be shown that a negligible error is committed if in the

integrals defining R̄
(1)
n fn(x +mn(T ), T ) and U1

nϕn(fn(x, T )) the functions
gn and ϕn(gn) are replaced by the function Unϕn−1(fn−1). After this re-
placement the proof of Theorem 3.2 can be adapted, since we can bound not
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only the function Unϕn−1(fn−1), but also its partial derivative with respect
to the variable x.

These estimates together imply Property K3(n+1), and some calculation
shows that a version of Property K3(n+1), where the function gn+1(x, T ) is
replaced by its regularization ϕn+1(gn+1(x, T )) is also valid. Since we gave
a good estimate on Unϕn(fn(x, T )) in (A.12), some calculation yields the
proof of Property K2(n+ 1). It remained to prove Property K4(n+ 1).

Because of (A.13) and (A.15) (The latter formula together with (2.15)
and (2.16) imply that formula (A.13) remain valid with a slightly bigger

coefficient if the term dMn(T )
dT is replaced by dMn+1(T )

dT in it), it is enough to

give a good bound on the difference ϕ̃n+1(gn+1(−is)) − Ũnϕ̃n(fn(−is)) to
prove property K4(n+ 1). This can be done in the following way:

By applying the modified property of K3(n + 1), where the function
gn+1(x) is replaced by ϕn+1gn+1(x) we get that

∣∣∣∣
∂2

∂s2

[
ϕ̃n+1(gn+1(−is, T ))− Ũnϕ̃n(fn(−is, T ))

]∣∣∣∣

≤ −
∫
x2
dMn

dT

βn+1(T )

c(n+1)
exp

{(
|t| − 2.8√

βn+1(T )

)
x

}
dx

≤ K
β
5/2
n+1(T )

c(n+1)

dM2
n

dT

if |s| ≤ 2√
βn+2(T )

.

Since

ϕ̃n+1(gn+1(0, T ))− Ũnϕ̃n(fn(0, T ))

=
∂

∂s

(
ϕ̃n+1(g̃n+1(−is, T )− Ũnϕ̃n(fn(−is, T )

)∣∣∣∣
s=0

= 0,

the last relation implies that
∣∣∣ϕ̃n+1(g̃n+1(−is, T )− Ũnϕ̃n(fn(−is, T )

∣∣∣ ≤ −Kβn+1(T )

c(n+1)
β
3/2
n+1

dMn(T )

dT
s2

if |s| ≤ 2√
βn+2(T )

. This estimate together with relation (A.13) imply Prop-

erty K4(n+1) if the number η which is an upper bound for βn+1(T )/c
(n+1)

is chosen sufficiently small. Proposition A is proved. �

Appendix B. The Proof of Proposition 1.2.

Condition 1. We have that for n ≥ 1,

1 < cn =

(
1 + an

1 + a(n− 1)

)λ

Observe that cn is decreasing and

lim
n→∞

cn = 1, cn ≤ c1 = (1 + a)λ
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This implies Condition 1.

Condition 2. We have that

(1 + an)λ
n+K∑

j=n

(1 + aj)−λ ≥ K(1 + an)λ

(1 + a(n+K))λ
→ K

as n→ ∞. This implies Condition 2.

Condition 3. For k ≤ n/2 we estimate

lk

n∑

j=k

l−1
j = (1+ak)λ

n∑

j=k

(1+aj)−λ ≥ C(1+ak)λ(1+ak)−λ+1 = C(1+ak)−1

and for k > n/2 and n ≥ j ≥ k we estimate

lkl
−1
j ≥ C0 > 0

hence

lk

n∑

j=k

l−1
j ≥ C0(n− k + 1)

Thus,

n∑

k=1


lk

n∑

j=k

l−1
j




−2

≤ C−2

n/2∑

k=1

(1 + ak)−2 + C−2
0

n∑

k=n/2

(n− k + 1)−2 ≤ C1

Condition 3 is checked.

Conditions 4 and 5 are obvious. �
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