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Summary: In this paper a multivariate version of Hoeffding’s inequality is
proved about the tail distribution of homogeneous polynomials of Rademacher
functions with an optimal constant in the exponent of the upper bound. The
proof is based on an estimate about the moments of homogeneous polynomials
of Rademacher functions which can be considered as an improvement of Borell’s
inequality in a most important special case.

1. Introduction. Formulation of the main result.

This paper contains a multivariate version of Hoeffding’s inequality. Hoeffding’s in-
equality has the following form. (see e. g. [3], Proposition 1.3.5.)

Theorem A. (Hoeffding’s inequality). Let ε1, . . . , εn be independent random vari-
ables, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, and let a1, . . . , an be arbitrary real

numbers. Put Z =
n
∑

j=1

ajεj and V 2 =
n
∑

j=1

a2
j . Then

P (Z > u) ≤ exp

{

− u2

2V 2

}

for all u > 0. (1.1)

To formulate its multivariate version first some notations will be introduced.

Let us fix two positive integers k and n, n ≥ k, and some real numbers a(j1, . . . , jk)
for all sets of arguments {j1, . . . , jk} such that 1 ≤ jl ≤ n, 1 ≤ l ≤ k, and jl 6= jl′

if l 6= l′ in such a way that the numbers a(j1, . . . , jk) are symmetric functions of their
arguments, i.e. a(j1, . . . , jk) = a(jπ(1), . . . , jπ(k)) for all permutations π ∈ Πk of the set
{1, . . . , k}.

Let us define with the help of the above real numbers and a sequence of independent
random variables ε1, . . . , εn, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, the random
variable

Z =
∑

(j1,...,jk): 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

a(j1, . . . , jk)εj1 · · · εjk
(1.2)

and the number

V 2 =
∑

(j1,...,jk): 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

a2(j1, . . . , jk). (1.3)

The following result will be proved.
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Theorem 1. (The multivariate version of Hoeffding’s inequality). The random
variable Z defined in formula (1.2) satisfies the inequality

P (|Z| > u) ≤ A exp

{

−1

2

( u

V

)2/k
}

for all u ≥ 0 (1.4)

with the constant V defined in (1.3) and some constants A > 0 depending only on the
parameter k in the expression Z.

I make some comments about this result.

The condition that the coefficients a(j1, . . . , jk) are symmetric functions of their
variables does not mean a real restriction, since by replacing all coefficients a(j1, . . . , jk)
by aSym(j1, . . . , jk) = 1

k!

∑

π∈Πk

a(jπ(1), . . . , jπ(k)) in formula (1.2), where Πk denotes the

set of all permutations of the set {1, . . . , k} we do not change the random variable Z.
Beside this, the above symmetrization of the coefficients in formula (1.2) decreases the
number V introduced in formula (1.3).

The identities EZ = 0, EZ2 = k!V 2 hold. Thus Theorem 1 yields an estimate
on the tail behaviour of a homogeneous polynomial of order k of independent random
variables ε1, . . . , εj , P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, with the help of the
variance of this polynomial. Such an estimate may be useful in the study of degenerate
U -statistics. Thus for instance in paper [10] a weaker form of Theorem 1 played an
important role. In Lemma 2 of that paper such a weaker version of the estimate (1.4)
was proved, where the constant 1

2 in the exponent at its right-hand side was replaced

by the number k
2e(k!)1/k . This estimate, which is a fairly simple consequence of Borell’s

inequality was satisfactory in that paper. (Borell’s inequality together with its relation
to the problem of this paper will be discussed in Section 3.) However, the question arose
whether it can be improved. In particular, I was interested in the question whether such
an estimate holds which a comparison with the Gaussian case suggests. In the case k = 1
it is natural to compare the tail behaviour of Z with that of V η, where η is a random
variable with standard normal distribution. Theorem A gives an estimate suggested by
such a comparison.

If Z is a homogeneous random polynomial of order k defined in (1.2), then it
is natural to compare its tail distribution with that of V Hk(η), where η has standard
normal distribution, and Hk(·) is the k-th Hermite polynomial with leading coefficient 1.
Theorem 1 yields an estimate suggested by such a comparison. The next example shows
that this estimate is sharp. It also explains, why it is natural to compare the random
variable Z with V Hk(η).

Define for all n = k, k + 1, . . . the random variables Z = Zn by means of for-
mula (1.2) with the coefficients

a(j1, . . . , jk) = an(j1, . . . , jk) =
V

√

n(n − 1) · · · (n − k + 1)
.

For the sake of simplicity let us assume that the random variables εj , j = 1, . . . , n,
in formula (1.2) are given in the form εj = h(ζj), 1 ≤ j ≤ n, where ζ1, . . . , ζn are
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independent random variables, uniformly distributed in the interval [0, 1], and h(x) =
−1 if 0 ≤ x < 1

2 , h(x) = 1 if 1
2 ≤ x ≤ 1. (Such a representation of the random variables

εj is useful for us, because it enables us to apply the subsequent limit theorem about
degenerate U -statistics of iid. random variables with non-atomic distribution.)

In this example

√
n(n−1)···(n−k+1)

k! Zn are degenerate U -statistics with kernel func-
tion f(x1, . . . , xk) = h(x1) . . . h(xk) and a sequence ζ1, . . . , ζn of iid. random variables
with uniform distribution on the interval [0, 1]. EZ2

n = k!V 2, and a limit theorem about
degenerate U -statistics (see e.g. [4]) implies that the random variables Zn converge in
distribution to the k-fold Wiener–Itô integral

Z(0) = V

∫

h(x1) . . . h(xk)W ( dx1) . . . W (dxk)

as n → ∞, where W (·) is a Wiener process on the interval [0, 1].

Moreover, the random variable Z(0) has a simpler representation. Namely, by Itô’s
formula for multiple Wiener–Itô integrals (see e.g. [7]) it can be written in the form
Z(0) = V Hk(η), where Hk(·) is the k-th Hermite polynomial with leading coefficient 1,
and η =

∫

h(x)W ( dx) is a random variable with standard normal distribution. Simple
calculation shows that there are some constants C > 0 and D > 0 such that P (Hk(η) >

u) ≥ Cu−1/ke−u2/k/2 if u > D. (Actually, this estimate is proved in [11].) Hence

lim
n→∞

P (Zn > u) = P
(

Hk(η) >
u

V

)

≥ C

(

V

u

)1/k

exp

{

−1

2

( u

V

)2/k
}

if
u

V
≥ D

with some appropriate constants C > 0 and D > 0. This inequality implies that the
estimate (1.4) is essentially sharp. It does not hold with a smaller constant in the
exponent at its right-hand side; this upper bound can be improved at least with a
pre-exponential factor.

Theorem 1 will be proved in Section 2. It is a fairly simple consequence of a good
estimate on the moments of the random variable Z formulated in Theorem 2. These
moments will be estimated by means of two lemmas. The first of them, Lemma 1,
enables us to bound the moments of Z by those of an appropriate polynomial of inde-
pendent standard Gaussian random variables. There is a diagram formula to calculate
the moments of polynomials of Gaussian random variables. This makes the estimation
of the moments of Gausian random variables relatively simple. This is done in Lemma 2.
Actually it turned out that it is simpler to rewrite these polynomials in the form of a
multiple Wiener–Itô integral and to apply the diagram formula for multiple Wiener–Itô
integrals. To make the explanation complete I give a more detailed description of the
diagram formula at the end of Section 2. In the final part of this work, in Section 3, I
try to explain the background of the proof of Theorem 1 in more detail. In particular, I
make some comments about the role of the Gaussian bounding of moments in Lemma 1
and compare the moment estimates obtained by means of the method of this paper with
the estimates supplied by Borell’s inequality.
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2. The proof of Theorem 1.

Theorem 1 will be obtained as a consequence of the following Theorem 2.

Theorem 2. The random variable Z defined in formula (1.2) satisfies the inequality

EZ2M ≤ 1 · 3 · 5 · · · (2kM − 1)V 2M for all M = 1, 2, . . . (2.1)

with the constant V defined in formula (1.3).

Theorem 2 will be proved with the help of two lemmas. To formulate them, first
the following random variable Z̄ will be introduced.

Z̄ =
∑

(j1,...,jk): 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

|a(j1, . . . , jk)|ηj1 · · · ηjk
, (2.2)

where η1, . . . , ηn are iid. random variables with standard normal distribution, and the
numbers a(j1, . . . , jk) agree with those in formula (1.2). Now we state

Lemma 1. The random variables Z and Z̄ defined in formulas (1.2) and (2.2) satisfy
the inequality

EZ2M ≤ EZ̄2M for all M = 1, 2, . . . . (2.3)

and

Lemma 2. The random variable Z̄ defined in formula (2.2) satisfies the inequality

EZ̄2M ≤ 1 · 3 · 5 · · · (2kM − 1)V 2M for all M = 1, 2, . . . (2.4)

with the constant V defined in formula (1.3).

Theorem 2 is a straightforward consequence of Lemmas 1 and 2. So to get this
result it is enough to prove Lemmas 1 and 2.

Proof of Lemma 1. We can write, by carrying out the multiplications in the expres-
sions EZ2M and EZ̄2M , by exploiting the additive and multiplicative properties of the
expectation for sums and products of independent random variables together with the
identities Eε

2p+1
j = 0 and Eη

2p+1
j = 0 for all p = 0, 1, . . . that

EZ2M =
∑

(j1,··· ,jl, m1,...,ml):
1≤js≤n, ms≥1 for all 1≤s≤l with some k≤l≤kM,

m1+···+ml=kM

A(j1, . . . , jl,m1, . . . ,ml)Eε2m1
j1

· · ·Eε2ml
jl

(2.5)
and

EZ̄2M =
∑

(j1,...,jl, m1,...,ml):
1≤js≤n, ms≥1 for all 1≤s≤l with some k≤l≤kM,

m1+···+ml=kM

B(j1, . . . , jl,m1, . . . ,ml)Eη2m1
j1

· · ·Eη2ml
jl

(2.6)
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with some coefficients A(j1, . . . , jl,m1, . . . ,ml) and B(j1, . . . , jl,m1, . . . ,ml) such that

|A(j1, . . . , jl,m1, . . . ,ml)| ≤ B(j1, . . . , jl,m1, . . . ,ml). (2.7)

The coefficients A(·, ·, ·) and B(·, ·, ·) could have been expressed in an explicit form, but
we do not need such a formula. What is important for us is that A(·, ·, ·) can be expressed
as the sum of certain terms, and B(·, ·, ·) as the sum of the absolute value of the same
terms, hence relation (2.7) holds. (There may be such indices (j1, . . . , jl,m1, . . . ,ml)
for which the sum defining A(·, ·, ·) and B(·, ·, ·) with these indices is empty. The value
of an empty sum will be defined as zero. As empty sums appear for some index in (2.5)
and (2.6) simultaneously, their appearance causes no problem.) Since Eε2m

j ≤ Eη2m
j

for all parameters j and m, formulas (2.5), (2.6) and (2.7) imply Lemma 1.

Proof of Lemma 2. I found simpler to construct an appropriate multiple Wiener–Itô
integral Z̃ whose distribution agrees with that of the random variable Z̄ defined in (2.2)
and to estimate its moment. To do this, let us consider a white noise W (·) on the unit
interval [0, 1], i.e. let us take a set of (jointly) Gaussian random variables W (A) indexed
by the measurable sets A ⊂ [0, 1] such that EW (A) = 0, EW (A)W (B) = λ(A ∩ B)
with the Lebesgue measure λ on the real line. (We also need the relation W (A ∪ B) =
W (A) + W (B) with probability 1 if A ∩ B = ∅, but this relation is the consequence
of the previous ones. Indeed, they yield that E(W (A ∪ B) − W (A) − W (B))2 = 0
if A ∩ B = ∅, and this implies the desired identity.) Let us introduce the random
variables ηj = n1/2W

([

j−1
n , j

n

))

, 1 ≤ j ≤ n, together with the function f(t1, . . . , tk),
with arguments 0 ≤ ts < 1 for all indices 1 ≤ s ≤ k, defined as

f(t1, . . . , tk) =



































nk/2|a(j1, . . . , jk)| if ts ∈
[

js − 1

n
,
js

n

)

, and js 6= js′ if s 6= s′,

1 ≤ js ≤ n, 1 ≤ s ≤ k

0 if ts ∈
[

js − 1

n
,
js

n

)

, and js = js′ for some s 6= s′,

1 ≤ js ≤ n, 1 ≤ s ≤ k

and the k-fold Wiener–Itô integral

Z̃ =

∫

f(t1, . . . , tk)W ( dt1) . . . W ( dtk) (2.8)

of this (elementary) function f . (For the definition of Wiener–Itô integrals see e.g. [6]
or [8].)

Observe that the above defined random variables η1, . . . , ηn are independent with
standard normal distribution. Hence the definition of the Wiener–Itô integral of ele-
mentary functions and the definition of the function f imply that the distributions of
the random integral Z̃ and of the random variable Z̄ introduced in (2.2) agree. Beside
this, the identity

∫

f2(t1, . . . , tk) dt1 . . . dtk = V 2 (2.9)

5



also holds with the number V defined in formula (1.3). Since the distribution of the ran-
dom variables Z̄ and Z̃ agree, formulas (2.8), (2.9) together with the following estimate
about the moments of Wiener–Itô integrals complete the proof of Lemma 2.

In this estimate a function f of k variables and a σ-finite measure µ on some
measurable space (X,X ) are considered which satisfy the inequality

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) = σ2 < ∞

with some σ2 < ∞. The moments of the k-fold Wiener–Itô integral

Jµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)

of the function f with respect to a white-noise µW with reference measure µ satisfy the
inequality

E (k!Jµ,k(f))
2M ≤ 1 · 3 · · · (2kM − 1)σ2M (2.10)

for all M = 1, 2, . . . . This result can be got relatively simply from the diagram formula
for the product of Wiener–Itô integrals, and it is actually proven in Proposition A
of paper [11]. It can be obtained as a straightforward consequence of the results in
Lemma 7.31 and Theorem 7.33 of the book [6]. For the sake of completeness I explain
this result at the end of this section.

After the proof of Theorem 2 with the help of the diagram formula it remained to
derive Theorem 1 from it.

Proof of Theorem 1. By the Stirling formula we get from the estimate of Theorem 2
that

EZ2M ≤ (2kM)!

2kM (kM)!
V 2M ≤ K

(

2

e

)kM

(kM)kMV 2M (2.11)

for any K >
√

2 if M ≥ M0(K). Hence the Markov inequality yields the estimate

P (Z > u) ≤ EZ2M

u2M
≤ K

(

2kM

e

(

V

u

)2/k
)kM

(2.12)

for all K >
√

2 if M ≥ M0(K). Put kM̄ = kM̄(u) = 1
2

(

u
V

)2/k
, and M = M(u) = [M̄ ],

where [x] denotes the integer part of the number x. Let us choose the number u0 as the

solution of the identity 1
2k

(

u0

V

)2/k
= M0(K) + 1. Formula (2.12) can be applied with

M = M(u) for u ≥ u0, and it yields that

P (Z > u) ≤ Ke−kM ≤ Keke−kM̄ = Kek exp

{

−1

2

( u

V

)2/k
}

if u ≥ u0. (2.13)

Formula (2.13) means that relation (1.4) holds for u ≥ u0 with the constant A = Kek.
Hence relation (1.4) holds with a sufficiently large constant A > 0 for all u ≥ 0.
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Estimation of the moments of a Wiener–Itô integral by means of the diagram
formula.

Let us have m real-valued functions fj(x1, . . . , xkj ), 1 ≤ j ≤ m, on a measurable space
(X,X , µ) with some σ-finite non-atomic measure µ such that

∫

f2
j (x1, . . . , xkj )µ( dx1) . . . µ( dxkj ) < ∞ for all 1 ≤ j ≤ m. (2.14)

A white noise µW with reference measure µ can be introduced on (X,X ). It is an
ensemble of jointly Gaussian random variables µW (A) indexed by the measurable sets
A ∈ X such that µ(A) < ∞ with the property EµW (A) = 0 and EµW (A)µW (B) =
µ(A ∩ B). Also the Wiener–Itô integrals

kj !Jµ,k(fj) =

∫

fj(x1, . . . , xkj )µW ( dx1) . . . µW ( dxkj )

of these functions with respect to the white noise µW can be defined if they satisfy
relation (2.14). The definition of these integrals is rather standard, (see e.g [6] or [8]).
First they are defined with respect to simple, so-called elementary functions in a natural
way, and then they are extended to general functions by means of an L2-isomorphism.
I omit the details.

A most important result in the theory of multiple Wiener–Itô integrals is the so-
called diagram formula, which expresses the product of multiple Wiener–Itô integrals in
the form of a sum of Wiener–Itô integrals of different order. (The number of variables
of the kernel function in a Wiener–Itô integral is called the order of this integral.) The
kernel functions of the integrals in the sum representation of a product of Wiener–Itô
integrals are defined by means of diagrams. This is the reason for the name ‘diagram
formula’.

All Wiener–Itô integrals of order k ≥ 1 have expectation zero, hence if the product
of Wiener–Itô integrals is written in the form of a sum of Wiener–Itô integrals, then the
expectation of the product can be calculated as the sum of the constant terms in its
sum representation. In the present paper only this consequence of the diagram formula
will be needed, hence only this result will be described.

This result will be formulated by means of the notion of (closed) diagrams. The class
of closed diagrams will be denoted by Γ = Γ(k1, . . . , km). A diagram γ ∈ Γ(k1, . . . , km)
consists of vertices of the form (j, l), 1 ≤ j ≤ m, 1 ≤ l ≤ kj , and edges ((j, l), (j′, l′)),
1 ≤ j, j′ ≤ m, 1 ≤ l ≤ kj , 1 ≤ l′ ≤ k′

j . The set of vertices of the form (j, l) with a fixed
number j is called the j-th row of the diagram. All edges ((j, l), (j ′, l′)) of a diagram
γ ∈ Γ connect vertices from different rows, i.e. j 6= j ′. It is also demanded that from
all vertices of a diagram γ there starts exactly one edge. The class Γ(k1, . . . , km) of
(closed) diagrams contains the diagrams γ with the above properties. If j < j ′ for an
edge ((j, l), (j′, l′)) ∈ γ, then (j, l) is called the upper and (j ′, l′) the lower end point
of this edge. Let U(γ) denote the upper and L(γ) the lower end points of a diagram
γ ∈ Γ(k1, . . . , km). Define the function αγ(j, l) = (j, l) if (j, l) is the upper end point
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and αγ(j, l) = (j′, l′) if (j, l) is the lower end point of an edge ((j, l), (j ′l′)) of a diagram
γ ∈ Γ(k1, . . . , km).

For the sake of simpler notations let us rewrite the functions fj with reindexed
variables in the form fj(xj,1, . . . , xj,kj ), 1 ≤ j ≤ m, and define the function

F (xj,l, 1 ≤ j ≤ m, 1 ≤ l ≤ kj) =
m
∏

j=1

fj(xj,1, . . . , xj,kj ).

Define with the help of the functions F and αγ the constants

Fγ =

∫

F (xαγ(j,l), 1 ≤ j ≤ m, 1 ≤ l ≤ kj)
∏

(j,l)∈U(γ)

µ( dxj,l) (2.15)

for all γ ∈ Γ(k1, . . . , km).

The expected value of the product of Wiener–Itô integrals kj !Jµ,k(fj), 1 ≤ j ≤ m,
can be expressed with the help of the above quantities Fγ . The following result holds.

Formula about the expected value of products of Wiener–Itô integrals. Let
us consider the Wiener–Itô integrals kj !Jµ,k(fj) of some functions fj, 1 ≤ j ≤ m,
satisfying relation (2.14). The expected value of this product satisfies the identity

E





m
∏

j=1

kj !Jµ,k(fj)



 =
∑

γ∈Γ(k1,...,km)

Fγ

with the numbers Fγ defined in (2.15). These numbers satisfy the inequality

F 2
γ ≤

m
∏

j=1

‖fj‖2 for all γ ∈ Γ(k1, . . . , km)

with the square of the L2-norm ‖fj‖2 =
∫

f2
j (x1, . . . , xkj )µ( dx1) . . . µ( dxkj ) of the func-

tions fj, 1 ≤ j ≤ m.

Let us consider the above result in the special case m = 2M and fj = f for all
1 ≤ j ≤ m with a square integrable function f of k variables. Let Γ(k,M) denote the
class of diagrams Γ(k1, . . . , km) in this case, and |Γ(k,M)| the number of diagrams it
contains. The above result yields the estimate

E (k!Jµ,k(f))
2M ≤ |Γ(k,M)|‖f‖2M . (2.16)

It is not difficult to see that |Γ(k,M)| ≤ 1 · 3 · 5 · · · (2kM − 1). Indeed, if we omit
the restriction that the edges of a diagram can connect only vertices from different
rows, then the number of diagrams with 2M rows and k vertices in each row equals
1 · 3 · 5 · · · (2kM − 1). Relation (2.16) together with this observation imply (2.10).

It is also worth mentioning that the estimate (2.16) is sharp in the following sense.
If f(x1, . . . , xk) = f(x1) · · · f(xk) with some square integrable function f , then relation
(2.16) holds with identity. In this case k!Jµ,k(f) equals const. Hk(η) with some standard
normal random variable η and the k-th Hermite polynomial Hk(·) because of Itô’s
formula for multiple Wiener–Itô integrals.
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3. Some remarks about the results.

The proof of Theorem 1 was based on an estimate of the (high) moments of the ho-
mogeneous random polynomial Z of Rademacher functions defined in (1.2). Although
bounds on the tail distribution of sums of independent random variables are generally
proved by means of a good estimate on the moment generating function, in the present
problem it was more natural to estimate the moments because of the following reason.

As the example discussed in Section 1 shows, if Z is a random polynomial of order k,

then the tail distribution P (Z > u) should behave for large numbers u as e−const. u−α(k)

with α(k) = 2
k . In the case k ≥ 3 a random variable with such a tail distribution has

no finite moment generating function. Hence the estimation of the moment generating
function does not work in such cases. On the other hand, a good estimate of the
(high) moments of the random variable Z is sufficient to prove Theorem 1. It has to be
shown that the high moments of Z are not greater than constant times the appropriate

moments of a random variable with tail distribution e−const. u−α(k)

. Here the same
constant is in the exponent as in the exponent of the upper bound in Theorem 1.

Theorem 2 contains a good estimate on all even moments of a homogeneous poly-
nomial of Rademacher functions of order k, and it can be considered as a Gaussian
type estimate. (It has the same order as the moments of a k-order Hermite polynomial
of a standard normal random variable multiplied with a constant.) The moments of
degenerate U -statistics were also studied. Proposition B of paper [11] contains a result
in this direction. It turned out that high moments of degenerate U -statistics show a
worse behaviour. Only their not too high moments satisfy a good ‘Gaussian type’ esti-
mate. This difference has a deeper cause. There are degenerate U -statistics which have
a relatively bad tail behaviour at high levels. Such examples can be found in Exam-
ple 2.4 for sums of independent random variables and in Example 4.5 for degenerate
U -statistics of order 2 in paper [9]. In such cases much worse moment estimates hold
than in Theorem 2.

Lemma 1 made possible to reduce the estimation of the moments (and as a conse-
quence the tail of distribution) of a homogeneous polynomial of Rademacher functions
to the estimation of the moments of a homogeneous polynomial of Gaussian random
variables. This result provided a good tail distribution estimate at all high levels. It
can be generalized to other polynomials of independent random variables with good
moment behaviour. On the other hand, general U -statistics may have a much worse tail
behaviour at high levels than the behaviour suggested by a Gaussian comparison. It
would be interesting to get a better understanding about the question when a U -statistic
has such a good tail behaviour at all levels which a Gaussian comparison suggests, and
when it has a relatively bad tail behaviour at very high level. At any rate, the fact that
homogeneous polynomials of Rademacher functions satisfy a good ‘Gaussian type’ esti-
mate at all levels u > 0 has an important consequence. This property was needed for the
application of an important symmetrization argument in paper [10]. This symmetriza-
tion argument made possible to get a good estimate on the supremum of degenerate
U -statistics also in such cases when other methods do not work.

There is another result, called Borell’s inequality, which makes possible to bound
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the high moments, and as a consequence the tail distribution of a homogeneous poly-
nomial of Rademacher functions. Actually, this estimate is a simple consequence of
the hypercontractive inequality for Rademacher functions proved by A. Bonami [1] and
L. Gross [5] independently of each other. It may be interesting to compare the estimates
provided by Borell’s inequality with those of the present paper.

Borell’s inequality, (see e.g. [2]) states the following estimate.

Theorem B. (Borell’s inequality). The moments of the random variable Z defined
in formula (1.2) satisfy the inequality

E|Z|p ≤
(

p − 1

q − 1

)kp/2

(E|Z|q)p/q
if 1 < q ≤ p < ∞.

Let us apply Borell’s inequality with the choice p = 2M and q = 2 for the ran-
dom variable Z defined in (1.2). It gives the bound EZ2M ≤ (2M − 1)kM (EZ2)M ≤
A(k)(2M)kM (k!)MV 2M with the constant A(k) = e−k/2. (The expression in the last
part of this inequality is slightly larger than the middle term, but this has no impor-
tance in the subsequent consideration.) On the other hand, Theorem 2, more precisely

its consequence relation (2.11), yields the bound EZ2M ≤ K(2M)kM
(

k
e

)kM
V 2M with

some appropriate constant K = K(k) > 0 not depending on M . It can be seen that

the inequality
(

k
e

)k
< k! holds for all integers k ≥ 1. This means that the estimate of

the present paper yields a const. ·αM -times smaller bound for the moment EZ2M than

the estimate given by Borell’s inequality, where α = 1
k!

(

k
e

)k
< 1. As a consequence,

Borell’s inequality can give the right type of estimate for the tail distribution of the ran-
dom variable Z, but it cannot give the optimal constant in the exponent. In such large
deviation type estimates the moment estimates based on the diagram formula seem to
work better.
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