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Abstract

In this paper a multivariate version of Hoeffding’s inequality is proved about the tail distri-
bution of homogeneous polynomials of Rademacher functions with an optimal constant in the
exponent of the upper bound. The proof is based on an estimate about the moments of ho-
mogeneous polynomials of Rademacher functions which can be considered as an improvement
of Borell’s inequality in a most important special case.

1 Introduction. Formulation of the main result.

This paper contains a multivariate version of Hoeffding’s inequality. Hoeffding’s inequality has
the following form. (see e. g. [3], Proposition 1.3.5.)

Theorem A. (Hoeffding’s inequality). Let ε1, . . . , εn be independent random variables,
P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, and let a1, . . . , an be arbitrary real numbers. Put

Z =
n
∑

j=1

ajεj and V 2 =
n
∑

j=1

a2
j . Then

P (Z > u) ≤ exp

{

− u2

2V 2

}

for all u > 0. (1)

To formulate its multivariate version first some notations will be introduced.

Let us fix two positive integers k and n, n ≥ k, and some real numbers a(j1, . . . , jk) for all
sets of arguments {j1, . . . , jk} such that 1 ≤ jl ≤ n, 1 ≤ l ≤ k, and jl 6= jl′ if l 6= l′ in
such a way that the numbers a(j1, . . . , jk) are symmetric functions of their arguments, i.e.
a(j1, . . . , jk) = a(jπ(1), . . . , jπ(k)) for all permutations π ∈ Πk of the set {1, . . . , k}.

1RESEARCH SUPPORTED BY OTKA NR. T061052

1



2 Electronic Communications in Probability

Let us define with the help of the above real numbers and a sequence of independent random
variables ε1, . . . , εn, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, the random variable

Z =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

a(j1, . . . , jk)εj1 · · · εjk
(2)

and the number

V 2 =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

a2(j1, . . . , jk). (3)

The following result will be proved.

Theorem 1. (The multivariate version of Hoeffding’s inequality). The random vari-
able Z defined in formula (2) satisfies the inequality

P (|Z| > u) ≤ A exp

{

−1

2

( u

V

)2/k
}

for all u ≥ 0 (4)

with the constant V defined in (3) and some constants A > 0 depending only on the parameter
k in the expression Z.

I make some comments about this result.

The condition that the coefficients a(j1, . . . , jk) are symmetric functions of their variables does
not mean a real restriction, since by replacing all coefficients a(j1, . . . , jk) by aSym(j1, . . . , jk) =
1
k!

∑

π∈Πk

a(jπ(1), . . . , jπ(k)) in formula (2), where Πk denotes the set of all permutations of the

set {1, . . . , k} we do not change the random variable Z. Beside this, the above symmetrization
of the coefficients in formula (2) decreases the number V introduced in formula (3).

The identities EZ = 0, EZ2 = k!V 2 hold. Thus Theorem 1 yields an estimate on the tail
behaviour of a homogeneous polynomial of order k of independent random variables ε1, . . . , εj ,
P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, with the help of the variance of this polynomial.
Such an estimate may be useful in the study of degenerate U -statistics. Thus for instance in
paper [10] a weaker form of Theorem 1 played an important role. In Lemma 2 of that paper
such a weaker version of the estimate (4) was proved, where the constant 1

2 in the exponent

at its right-hand side was replaced by the number k
2e(k!)1/k . This estimate, which is a fairly

simple consequence of Borell’s inequality was satisfactory in that paper. (Borell’s inequality
together with its relation to the problem of this paper will be discussed in Section 3.) However,
the question arose whether it can be improved. In particular, I was interested in the question
whether such an estimate holds which a comparison with the Gaussian case suggests. In the
case k = 1 it is natural to compare the tail behaviour of Z with that of V η, where η is a
random variable with standard normal distribution. Theorem A gives an estimate suggested
by such a comparison.

If Z is a homogeneous random polynomial of order k defined in (2), then it is natural to
compare its tail distribution with that of V Hk(η), where η has standard normal distribution,
and Hk(·) is the k-th Hermite polynomial with leading coefficient 1. Theorem 1 yields an
estimate suggested by such a comparison. The next example shows that this estimate is
sharp. It also explains, why it is natural to compare the random variable Z with V Hk(η).
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Define for all n = k, k + 1, . . . the random variables Z = Zn by means of formula (2) with the
coefficients

a(j1, . . . , jk) = an(j1, . . . , jk) =
V

√

n(n − 1) · · · (n − k + 1)
.

For the sake of simplicity let us assume that the random variables εj , j = 1, . . . , n, in formula
(2) are given in the form εj = h(ζj), 1 ≤ j ≤ n, where ζ1, . . . , ζn are independent random
variables, uniformly distributed in the interval [0, 1], and h(x) = −1 if 0 ≤ x < 1

2 , h(x) = 1
if 1

2 ≤ x ≤ 1. (Such a representation of the random variables εj is useful for us, because it
enables us to apply the subsequent limit theorem about degenerate U -statistics of iid. random
variables with non-atomic distribution.)

In this example

√
n(n−1)···(n−k+1)

k! Zn are degenerate U -statistics with kernel function

f(x1, . . . , xk) = h(x1) . . . h(xk)

and a sequence ζ1, . . . , ζn of iid. random variables with uniform distribution on the interval
[0, 1]. EZ2

n = k!V 2, and a limit theorem about degenerate U -statistics (see e.g. [4]) implies
that the random variables Zn converge in distribution to the k-fold Wiener–Itô integral

Z(0) = V

∫

h(x1) . . . h(xk)W ( dx1) . . . W (dxk)

as n → ∞, where W (·) is a Wiener process on the interval [0, 1].
Moreover, the random variable Z(0) has a simpler representation. Namely, by Itô’s formula
for multiple Wiener–Itô integrals (see e.g. [6]) it can be written in the form Z (0) = V Hk(η),
where Hk(·) is the k-th Hermite polynomial with leading coefficient 1, and η =

∫

h(x)W ( dx)
is a random variable with standard normal distribution. Simple calculation shows that there

are some constants C > 0 and D > 0 such that P (Hk(η) > u) ≥ Cu−1/ke−u2/k/2 if u > D.
(Actually, this estimate is proved in [11].) Hence

lim
n→∞

P (Zn > u) = P
(

Hk(η) >
u

V

)

≥ C

(

V

u

)1/k

exp

{

−1

2

( u

V

)2/k
}

if
u

V
≥ D

with some appropriate constants C > 0 and D > 0. This inequality implies that the estimate
(4) is essentially sharp. It does not hold with a smaller constant in the exponent at its right-
hand side; this upper bound can be improved at least with a pre-exponential factor.

Theorem 1 will be proved in Section 2. It is a fairly simple consequence of a good estimate
on the moments of the random variable Z formulated in Theorem 2. These moments will
be estimated by means of two lemmas. The first of them, Lemma 1, enables us to bound
the moments of Z by those of an appropriate polynomial of independent standard Gaussian
random variables. There is a diagram formula to calculate the moments of polynomials of
Gaussian random variables. This makes the estimation of the moments of Gausian random
variables relatively simple. This is done in Lemma 2. Actually it turned out that it is simpler
to rewrite these polynomials in the form of a multiple Wiener–Itô integral and to apply the
diagram formula for multiple Wiener–Itô integrals. To make the explanation complete I give
a more detailed description of the diagram formula at the end of Section 2. In the final part
of this work, in Section 3, I try to explain the background of the proof of Theorem 1 in more
detail. In particular, I make some comments about the role of the Gaussian bounding of
moments in Lemma 1 and compare the moment estimates obtained by means of the method
of this paper with the estimates supplied by Borell’s inequality.
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2 The proof of Theorem 1.

Theorem 1 will be obtained as a consequence of the following Theorem 2.

Theorem 2. The random variable Z defined in formula (2) satisfies the inequality

EZ2M ≤ 1 · 3 · 5 · · · (2kM − 1)V 2M for all M = 1, 2, . . . (5)

with the constant V defined in formula (3).

Theorem 2 will be proved with the help of two lemmas. To formulate them, first the following
random variable Z̄ will be introduced.

Z̄ =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k
jl 6=jl′ if l 6=l′

|a(j1, . . . , jk)|ηj1 · · · ηjk
, (6)

where η1, . . . , ηn are iid. random variables with standard normal distribution, and the numbers
a(j1, . . . , jk) agree with those in formula (2). Now we state

Lemma 1. The random variables Z and Z̄ defined in formulas (2) and (6) satisfy the in-
equality

EZ2M ≤ EZ̄2M for all M = 1, 2, . . . . (7)

and

Lemma 2. The random variable Z̄ defined in formula (6) satisfies the inequality

EZ̄2M ≤ 1 · 3 · 5 · · · (2kM − 1)V 2M for all M = 1, 2, . . . (8)

with the constant V defined in formula (3).

Theorem 2 is a straightforward consequence of Lemmas 1 and 2. So to get this result it is
enough to prove Lemmas 1 and 2.

Proof of Lemma 1. We can write, by carrying out the multiplications in the expressions EZ2M

and EZ̄2M , by exploiting the additive and multiplicative properties of the expectation for sums
and products of independent random variables together with the identities Eε

2p+1
j = 0 and

Eη
2p+1
j = 0 for all p = 0, 1, . . . that

EZ2M =
∑

(j1,...,jl, m1,...,ml) :
1≤js≤n, ms≥1 for all 1≤s≤l with some k≤l≤kM,

m1+···+ml=kM

A(j1, . . . , jl,m1, . . . ,ml)Eε2m1
j1

· · ·Eε2ml
jl

(9)

and

EZ̄2M =
∑

(j1,...,jl, m1,...,ml) :
1≤js≤n, ms≥1 for all 1≤s≤l with some k≤l≤kM,

m1+···+ml=kM

B(j1, . . . , jl,m1, . . . ,ml)Eη2m1
j1

· · ·Eη2ml
jl

(10)

with some coefficients A(j1, . . . , jl,m1, . . . ,ml) and B(j1, . . . , jl,m1, . . . ,ml) such that

|A(j1, . . . , jl,m1, . . . ,ml)| ≤ B(j1, . . . , jl,m1, . . . ,ml). (11)
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The coefficients A(·, ·, ·) and B(·, ·, ·) could have been expressed in an explicit form, but we
do not need such a formula. What is important for us is that A(·, ·, ·) can be expressed as
the sum of certain terms, and B(·, ·, ·) as the sum of the absolute value of the same terms,
hence relation (11) holds. (There may be such indices (j1, . . . , jl,m1, . . . ,ml) for which the
sum defining A(·, ·, ·) and B(·, ·, ·) with these indices is empty. The value of an empty sum will
be defined as zero. As empty sums appear for some index in (9) and (10) simultaneously, their
appearance causes no problem.) Since Eε2m

j ≤ Eη2m
j for all parameters j and m, formulas (9),

(10) and (11) imply Lemma 1.

Proof of Lemma 2. I found simpler to construct an appropriate multiple Wiener–Itô integral
Z̃ whose distribution agrees with that of the random variable Z̄ defined in (6) and to estimate
its moment. To do this, let us consider a white noise W (·) on the unit interval [0, 1], i.e. let
us take a set of (jointly) Gaussian random variables W (A) indexed by the measurable sets
A ⊂ [0, 1] such that EW (A) = 0, EW (A)W (B) = λ(A ∩ B) with the Lebesgue measure λ on
the real line. (We also need the relation W (A ∪ B) = W (A) + W (B) with probability 1 if
A ∩ B = ∅, but this relation is the consequence of the previous ones. Indeed, they yield that
E(W (A∪B)−W (A)−W (B))2 = 0 if A∩B = ∅, and this implies the desired identity.) Let us
introduce the random variables ηj = n1/2W

([

j−1
n , j

n

))

, 1 ≤ j ≤ n, together with the function
f(t1, . . . , tk), with arguments 0 ≤ ts < 1 for all indices 1 ≤ s ≤ k, defined as

f(t1, . . . , tk) =















nk/2|a(j1, . . . , jk)| if ts ∈
[

js−1
n , js

n

)

, and js 6= js′ for s 6= s′,

1 ≤ js ≤ n, 1 ≤ s ≤ k

0 if ts ∈
[

js−1
n , js

n

)

, and js = js′ for some s 6= s′,

1 ≤ js ≤ n, 1 ≤ s ≤ k

and the k-fold Wiener–Itô integral

Z̃ =

∫

f(t1, . . . , tk)W ( dt1) . . . W ( dtk) (12)

of this (elementary) function f . (For the definition of Wiener–Itô integrals see e.g. [6] or [8].)
Observe that the above defined random variables η1, . . . , ηn are independent with standard
normal distribution. Hence the definition of the Wiener–Itô integral of elementary functions
and the definition of the function f imply that the distributions of the random integral Z̃ and
of the random variable Z̄ introduced in (6) agree. Beside this, the identity

∫

f2(t1, . . . , tk) dt1 . . . dtk = V 2 (13)

also holds with the number V defined in formula (3). Since the distribution of the random
variables Z̄ and Z̃ agree, formulas (12), (13) together with the following estimate about the
moments of Wiener–Itô integrals complete the proof of Lemma 2.
In this estimate a function f of k variables and a σ-finite measure µ on some measurable space
(X,X ) are considered which satisfy the inequality

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) = σ2 < ∞

with some σ2 < ∞. The moments of the k-fold Wiener–Itô integral

Jµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)
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of the function f with respect to a white-noise µW with reference measure µ satisfy the
inequality

E (k!Jµ,k(f))
2M ≤ 1 · 3 · · · (2kM − 1)σ2M (14)

for all M = 1, 2, . . .. This result can be got relatively simply from the diagram formula for the
product of Wiener–Itô integrals, and it is actually proven in Proposition A of paper [11]. It can
be obtained as a straightforward consequence of the results in Lemma 7.31 and Theorem 7.33
of the book [7]. For the sake of completeness I explain this result at the end of this section.

After the proof of Theorem 2 with the help of the diagram formula it remained to derive
Theorem 1 from it.

Proof of Theorem 1. By the Stirling formula we get from the estimate of Theorem 2 that

EZ2M ≤ (2kM)!

2kM (kM)!
V 2M ≤ K

(

2

e

)kM

(kM)kMV 2M (15)

for any K >
√

2 if M ≥ M0(K). Hence the Markov inequality yields the estimate

P (Z > u) ≤ EZ2M

u2M
≤ K

(

2kM

e

(

V

u

)2/k
)kM

(16)

for all K >
√

2 if M ≥ M0(K). Put kM̄ = kM̄(u) = 1
2

(

u
V

)2/k
, and M = M(u) = [M̄ ], where

[x] denotes the integer part of the number x. Let us choose the number u0 as the solution

of the identity 1
2k

(

u0

V

)2/k
= M0(K) + 1. Formula (16) can be applied with M = M(u) for

u ≥ u0, and it yields that

P (Z > u) ≤ Ke−kM ≤ Keke−kM̄ = Kek exp

{

−1

2

( u

V

)2/k
}

if u ≥ u0. (17)

Formula (17) means that relation (4) holds for u ≥ u0 with the constant A = Kek. Hence
relation (4) holds with a sufficiently large constant A > 0 for all u ≥ 0.

Estimation of the moments of a Wiener–Itô integral by means of the diagram
formula.

Let us have m real-valued functions fj(x1, . . . , xkj
), 1 ≤ j ≤ m, on a measurable space

(X,X , µ) with some σ-finite non-atomic measure µ such that

∫

f2
j (x1, . . . , xkj

)µ( dx1) . . . µ( dxkj
) < ∞ for all 1 ≤ j ≤ m. (18)

A white noise µW with reference measure µ can be introduced on (X,X ). It is an ensemble
of jointly Gaussian random variables µW (A) indexed by the measurable sets A ∈ X such
that µ(A) < ∞ with the property EµW (A) = 0 and EµW (A)µW (B) = µ(A ∩ B). Also the
Wiener–Itô integrals

kj !Jµ,k(fj) =

∫

fj(x1, . . . , xkj
)µW ( dx1) . . . µW ( dxkj

)

of these functions with respect to the white noise µW can be defined if they satisfy relation
(18). The definition of these integrals is rather standard, (see e.g [6] or [8]). First they are
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defined with respect to simple, so-called elementary functions in a natural way, and then they
are extended to general functions by means of an L2-isomorphism. I omit the details.

A most important result in the theory of multiple Wiener–Itô integrals is the so-called diagram
formula, which expresses the product of multiple Wiener–Itô integrals in the form of a sum of
Wiener–Itô integrals of different order. (The number of variables of the kernel function in a
Wiener–Itô integral is called the order of this integral.) The kernel functions of the integrals in
the sum representation of a product of Wiener–Itô integrals are defined by means of diagrams.
This is the reason for the name ‘diagram formula’.

All Wiener–Itô integrals of order k ≥ 1 have expectation zero, hence if the product of Wiener–
Itô integrals is written in the form of a sum of Wiener–Itô integrals, then the expectation of
the product can be calculated as the sum of the constant terms in its sum representation. In
the present paper only this consequence of the diagram formula will be needed, hence only
this result will be described.

This result will be formulated by means of the notion of (closed) diagrams. The class of closed
diagrams will be denoted by Γ = Γ(k1, . . . , km). A diagram γ ∈ Γ(k1, . . . , km) consists of
vertices of the form (j, l), 1 ≤ j ≤ m, 1 ≤ l ≤ kj , and edges ((j, l), (j′, l′)), 1 ≤ j, j′ ≤ m,
1 ≤ l ≤ kj , 1 ≤ l′ ≤ k′

j . The set of vertices of the form (j, l) with a fixed number j is called
the j-th row of the diagram. All edges ((j, l), (j ′, l′)) of a diagram γ ∈ Γ connect vertices from
different rows, i.e. j 6= j′. It is also demanded that from all vertices of a diagram γ there
starts exactly one edge. The class Γ(k1, . . . , km) of (closed) diagrams contains the diagrams
γ with the above properties. If j < j ′ for an edge ((j, l), (j′, l′)) ∈ γ, then (j, l) is called the
upper and (j′, l′) the lower end point of this edge. Let U(γ) denote the upper and L(γ) the
lower end points of a diagram γ ∈ Γ(k1, . . . , km). Define the function αγ(j, l) = (j, l) if (j, l) is
the upper end point and αγ(j, l) = (j′, l′) if (j, l) is the lower end point of an edge ((j, l), (j ′l′))
of a diagram γ ∈ Γ(k1, . . . , km).

For the sake of simpler notations let us rewrite the functions fj with reindexed variables in
the form fj(xj,1, . . . , xj,kj

), 1 ≤ j ≤ m, and define the function

F (xj,l, 1 ≤ j ≤ m, 1 ≤ l ≤ kj) =

m
∏

j=1

fj(xj,1, . . . , xj,kj
).

Define with the help of the functions F and αγ the constants

Fγ =

∫

F (xαγ(j,l), 1 ≤ j ≤ m, 1 ≤ l ≤ kj)
∏

(j,l)∈U(γ)

µ( dxj,l) (19)

for all γ ∈ Γ(k1, . . . , km).

The expected value of the product of Wiener–Itô integrals kj !Jµ,k(fj), 1 ≤ j ≤ m, can be
expressed with the help of the above quantities Fγ . The following result holds.

Formula about the expected value of products of Wiener–Itô integrals. Let us
consider the Wiener–Itô integrals kj !Jµ,k(fj) of some functions fj, 1 ≤ j ≤ m, satisfying
relation (18). The expected value of this product satisfies the identity

E





m
∏

j=1

kj !Jµ,k(fj)



 =
∑

γ∈Γ(k1,...,km)

Fγ
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with the numbers Fγ defined in (19). These numbers satisfy the inequality

F 2
γ ≤

m
∏

j=1

‖fj‖2 for all γ ∈ Γ(k1, . . . , km)

with the square of the L2-norm ‖fj‖2 =
∫

f2
j (x1, . . . , xkj

)µ( dx1) . . . µ( dxkj
) of the functions

fj, 1 ≤ j ≤ m.

Let us consider the above result in the special case m = 2M and fj = f for all 1 ≤ j ≤ m

with a square integrable function f of k variables. Let Γ(k,M) denote the class of diagrams
Γ(k1, . . . , km) in this case, and |Γ(k,M)| the number of diagrams it contains. The above result
yields the estimate

E (k!Jµ,k(f))
2M ≤ |Γ(k,M)|‖f‖2M . (20)

It is not difficult to see that |Γ(k,M)| ≤ 1 ·3 ·5 · · · (2kM −1). Indeed, if we omit the restriction
that the edges of a diagram can connect only vertices from different rows, then the number of
diagrams with 2M rows and k vertices in each row equals 1 · 3 · 5 · · · (2kM − 1). Relation (20)
together with this observation imply (14).
It is also worth mentioning that the estimate (20) is sharp in the following sense. If

f(x1, . . . , xk) = f(x1) · · · f(xk)

with some square integrable function f , then relation (20) holds with identity. In this case
k!Jµ,k(f) equals const. Hk(η) with some standard normal random variable η and the k-th
Hermite polynomial Hk(·) because of Itô’s formula for multiple Wiener–Itô integrals.

3 Some remarks about the results.

The proof of Theorem 1 was based on an estimate of the (high) moments of the homogeneous
random polynomial Z of Rademacher functions defined in (2). Although bounds on the tail
distribution of sums of independent random variables are generally proved by means of a good
estimate on the moment generating function, in the present problem it was more natural to
estimate the moments because of the following reason.
As the example discussed in Section 1 shows, if Z is a random polynomial of order k, then the

tail distribution P (Z > u) should behave for large numbers u as e−const. u−α(k)

with α(k) = 2
k .

In the case k ≥ 3 a random variable with such a tail distribution has no finite moment
generating function. Hence the estimation of the moment generating function does not work
in such cases. On the other hand, a good estimate of the (high) moments of the random
variable Z is sufficient to prove Theorem 1. It has to be shown that the high moments of Z

are not greater than constant times the appropriate moments of a random variable with tail

distribution e−const. u−α(k)

. Here the same constant is in the exponent as in the exponent of
the upper bound in Theorem 1.
Theorem 2 contains a good estimate on all even moments of a homogeneous polynomial of
Rademacher functions of order k, and it can be considered as a Gaussian type estimate. (It
has the same order as the moments of a k-order Hermite polynomial of a standard normal
random variable multiplied with a constant.) The moments of degenerate U -statistics were
also studied. Proposition B of paper [11] contains a result in this direction. It turned out
that high moments of degenerate U -statistics show a worse behaviour. Only their not too
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high moments satisfy a good ‘Gaussian type’ estimate. This difference has a deeper cause.
There are degenerate U -statistics which have a relatively bad tail behaviour at high levels.
Such examples can be found in Example 2.4 for sums of independent random variables and
in Example 4.5 for degenerate U -statistics of order 2 in paper [9]. In such cases much worse
moment estimates hold than in Theorem 2.
Lemma 1 made possible to reduce the estimation of the moments (and as a consequence the
tail of distribution) of a homogeneous polynomial of Rademacher functions to the estimation of
the moments of a homogeneous polynomial of Gaussian random variables. This result provided
a good tail distribution estimate at all high levels. It can be generalized to other polynomials
of independent random variables with good moment behaviour. On the other hand, general
U -statistics may have a much worse tail behaviour at high levels than the behaviour suggested
by a Gaussian comparison. It would be interesting to get a better understanding about the
question when a U -statistic has such a good tail behaviour at all levels which a Gaussian
comparison suggests, and when it has a relatively bad tail behaviour at very high level. At
any rate, the fact that homogeneous polynomials of Rademacher functions satisfy a good
‘Gaussian type’ estimate at all levels u > 0 has an important consequence. This property
was needed for the application of an important symmetrization argument in paper [10]. This
symmetrization argument made possible to get a good estimate on the supremum of degenerate
U -statistics also in such cases when other methods do not work.
There is another result, called Borell’s inequality, which makes possible to bound the high mo-
ments, and as a consequence the tail distribution of a homogeneous polynomial of Rademacher
functions. Actually, this estimate is a simple consequence of the hypercontractive inequality
for Rademacher functions proved by A. Bonami [1] and L. Gross [5] independently of each
other. It may be interesting to compare the estimates provided by Borell’s inequality with
those of the present paper.
Borell’s inequality, (see e.g. [2]) states the following estimate.

Theorem B. (Borell’s inequality). The moments of the random variable Z defined in
formula (2) satisfy the inequality

E|Z|p ≤
(

p − 1

q − 1

)kp/2

(E|Z|q)p/q
if 1 < q ≤ p < ∞.

Let us apply Borell’s inequality with the choice p = 2M and q = 2 for the random variable Z

defined in (2). It gives the bound EZ2M ≤ (2M − 1)kM (EZ2)M ≤ A(k)(2M)kM (k!)MV 2M

with the constant A(k) = e−k/2. (The expression in the last part of this inequality is slightly
larger than the middle term, but this has no importance in the subsequent consideration.)
On the other hand, Theorem 2, more precisely its consequence relation (15), yields the bound

EZ2M ≤ K(2M)kM
(

k
e

)kM
V 2M with some appropriate constant K = K(k) > 0 not depend-

ing on M . It can be seen that the inequality
(

k
e

)k
< k! holds for all integers k ≥ 1. This

means that the estimate of the present paper yields a const. · αM -times smaller bound for the

moment EZ2M than the estimate given by Borell’s inequality, where α = 1
k!

(

k
e

)k
< 1. As a

consequence, Borell’s inequality can give the right type of estimate for the tail distribution of
the random variable Z, but it cannot give the optimal constant in the exponent. In such large
deviation type estimates the moment estimates based on the diagram formula seem to work
better.
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