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The paper deals with the invariance principle for sums of independent 
identically distributed random variables. First it compares the different possibil- 
ities of posing the problem. The sharpest results of this theory are presented with 
a sketch of their proofs. At the end of the paper some unsolved problems are 
given. 

I 

1. POSING THE PROBLEM 

We begin with two examples. 

Let X1 , Xs ,... be independent identically distributed random variables 

(i.i.d.r.v.‘s), EX, = 0, EX, s = 1. Denote their partial sums by S, = &r Xi , 

R = 1, 2 )...) n. 

EXAMPLE a. Define 
1 

01 ---ax&. n= n112 k9n 

It can be proved that 

lim P(a, < x) = 2 /s’ h e-*z/2 dx 

ifx 3 0, and 0 otherwise. 

EXAMPLE b. Define Ig,, = l/n times the number of k’s for which Sk > 0. 
It can be proved that 

$u% P(& < x) = 1 arcsin x1j2, O~x~l. 

Both of these results have a proof consisting of the following two steps. 
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Step 1. These results hold if P(X, = 1) = P(X, = - 1) = $. 

Step 2. If there is a sequence of i.i.d.r.v.‘s, EXi = 0, EX12 = 1, for which 
these results hold, then they hold for any sequence of i.i.d.r.v.‘s with expectation 
0 and variance 1. 

This means that the partial sums of independent random variables behave, 
in some sense, very similarly to each other. The above examples are only special 
cases of a more general law. Roughly speaking the following statement holds 
true: The limit distribution of any “reasonable” functional of the sequence 

s, 7 s, ,*.*> S, is independent of the initial distribution of Xi . 
We state this result in a more precise form. Theorems of this type are called 

functional limit theorems or (weak) invariance principles. The word “weak” 
refers to the fact that we deal with convergence in distribution, i.e., with weak 
convergence. 

Let us remark that it is the central limit theorem, which is behind the weak 
invariance principle. The sequence S, , S, ,..., S, behaves as if it were a sequence 
of normal random variables. One may be interested also in the strong laws 
(laws holding with probability 1, e.g., the law of large numbers, the law of 
iterated logarithm) of probability theory. Here again the same phenomenon 
appears. The limit of the partial sums does not depend on the initial distribution. 
Theorems explaining this phenomenon are called strong invariance principles. 

2. THE NOTION OF WEAK CONVERGENCE IN METRIC SPACFS 

Let us be given a separable metric space (X, p) and a sequence of probability 
measures p0 , pi , p2 , . . . on the Bore1 sets of X. We want to find a good definition 
of convergence for the sequence pi , i = 1,2,..., which is a generalization of the 
notion “convergence of distribution functions on the real line.” 

THEOREM 2.1. Dejinitions 1, 2a, 2b, and 3 given below are equivalent to each 
other. 

DEFINITION 1. lim,,, pn = CL,, if and only if for every bounded continuous 
functionf(X) on X we have 

(i.e., in the language of functional analysis the p,‘s, as elements of the conjugate 
space of C(X), tend weakly to ps). 



INVARIANCE PRINCIPLE 489 

DEFINITION 2a. lim,,, pfi = CL,, if and only if for every open set G, G C X 
we have 

1$&f p,(G) = p,(G). 

DEFINITION 2b. lim,,, CL,, = CL,, if and only if for every closed set F, 
FCXwe have 

lim SUP Al,@) 2 EL@). 
n-m 

DEFINITION 3. lim,,, pn = p,, if and only if for every subset A of X whose 
boundary has 0 p-l0 measure, we have 

Fact. Let X be the real line Al. Define F,(x) = t~~([--co, x)). t.~~ + p,, if 
and only ifF,(x) --+ F,(x) for every point of continuity ofFa( 

The following result is very important for us. Let (X, pr) and (Y, pJ be two 
separable metric spaces and 9: X -+ Y a continuous mapping. Let a sequence 
pn , n = 0, 1, 2 )..., of probability measures be given on X, pfl --f p,, . The 
mapping 9 induces a sequence of probability ‘measures on Y in a natural way, 

v,(A) = /L&C: 9x E A) for every Bore1 set A C Y, n = 0, 1,2 ,... . 

THEOREM (2.2). We -have lim,,, v, = v,, . Spec$cally, choosing Y = RI, 
we obtain that gtien any tontinuaus functional 9 on X, lim pn = p0 implies that 
for F,(u) = pi (,%jc < u), n = 0, 1,2 ,..., F, -+ F,, in distribution. 

Remark. In the above theorem the condition about the continuity of 9 can 
be somewhat weakened. It is enough to assume that 9 is continuous with 
probability 1 with respect to the measure p,, . 

Finally we give a metrization of the weak convergence. We define the so-called 
Prochorov distance. 

DEFINITION. Let TV and v be two probability measures on a metric space 
(X, p). Their Prochorov distance p+, v) is pp(p, v) = inf{r : p(A’) + E > v(A) 
for every closed set A>, where A< = {x : p(x, A) < E}. 

Let us remark that, at first sight, it cannot be seen that pp is a metric, let alone 
that it metricizes the weak convergence. 

THEOREM (2.3). If X is a separable metric space, then so is the space of 
probability measures on X with the Prochorov distance as metric. pP(p% , p,,) + 0 
zf and only if l.~~ -+ pLo . If X is complete, so is the space of probability measures with 
the Prochorov, distance. 
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3. THE WEAK INVARIANCE PRINCIPLE 

First we need some definitions 

De$nition of the Wiener Process 

Let a stochastic process W(t, w), 0 < t < T be given on a probability space 
space (Q, -91, P). It is called a (standard) Wiener process on the interval [0, T] if 

(a) for any n and 0 < t, < t, < ... < t < T the random vector \ n\ 
( W(tJ, W(Q,..., W(Q) is normally distributed, 

(b) EW(t) = 0, EW(t,) W(a) = min(t, , tz) for every 0 < t, t, , t, < T 

(c) for every w, W(., w) is a continuous function on the interval [0, T]. 

Having a random variable 4 in a probability space (Q, JZ!, P) which takes its 
values in a metric space X, we can speak of the distribution of 5. This is a proba- 
bility measure p on the Bore1 sets of X defined by the relation 

p(A) = P(6 E A) for every Bore1 set A. 

A Wiener process on the interval [0, T] can be considered as a random variable 
taking values in the space CIO, T] (The space of continuous functions on [0, T] 
with the supremum norm.) 

Dejnition of the Wiener Measure 

Wiener process on [0, l] is a random variable taking ‘values in C[O, I]. Its 
distribution is called the Wiener measure, and is denoted by pw . 

Let X1 , Xs ,...i X, be i.i.d.r.v.‘s, &X1 = 0, EXrp = 1. Set Sk = &Xi, 
k = 1, 2,..., n, and define a random polygon S,(t), 0 < t < 1 in the following 
way: 

&I (i) = $ Sk 9 k = 1, 2 ,..., n (S, = 0), 

S,(t) = n [(t - i) S, (y) + (q - t) S$)] if i 5 t 5 ‘+ . 

S%(t) can be considered as a random variable taking values in C[O, 1 J. Denote 
its distribution by p,, . 

THEOREM (3.1). (The weak invarianceprincipk.) 

$yb = Iho* 

Theorems (3.1) and (2.2) together explain why we get the same limit distri- 
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bution for a lot of functionals of the sequence (S, , Ss ,..., S,). In Example a of 
the first section we get our invariance upon choosing the functional 

In Example b one would choose the functional 

s-i+(t) 7 qt: x(t) > 0) (h means the Lebesgue measure). 

This functional is not continuous at the points x E CIO, 11, where 

A(t: x(t) = 0) > 0. 

But it is not difKcult to see that the set of points of dicontinuity has 0 Wiener 
measure, therefore the remark after Theorem (2.2) can be applied in this case. 

Applying the functional fls to S,,(t), we get a result slightly different from that 
in Example b of the first section. To obtain the original result we define a random 
polygon S:(t), slightly dierent from S,,(t), in the following way: 

If sign S, + sign S,,, ,’ S*,(t) = &(t) for f < t < F . 

If sign S, # sign Sk+i 

. 1 

j s$) =$sqQ-q =o 

or Sk = 0 or Sx+r = 0 s$g) &A& 

and S:(t) is defjned’by linear interpolation in the intervals (K/n, (2K + 1)/(2ro)) 
ad ((2 .+- !MW, (k + W+ 

The distribution of S,*(t) tends also to the Wiener measure. (One can see it 
quite easily, e.g., by applying Theorem (4.3).) 

On the other hand 

&S:(t) = i times the number of k’s for which S, = 0 

Let us remark that we actually got a little more than we wanted to get in the 
first section. We know a priori that the sequence g&(t), n = 1,2,... has a 
limit distribution, and it agrees with the distribution of SW(t). 

In this section we dealt with weak convergence in CIO, 11. We finish it with a 
result that explains what weak convergence in CIO, l] means. 

THEOREM (3.2). Let X,,(t, w), 0 < t < 1 be a sequence of ~anabm processes 
with contimums trajectories. The dist&z&ns of the processes X,,(t, w) as measures 
on C[O, l] tend weaMy to the distribution of Xo(t, w) if and only if 
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(a) for every k and 0 < t, < t, < ... < t, < 1 the random vectors 
(X,(t,),..., Xn(tlz)) tend in distribution to the random vector (X,,(t,),..,, X,,(Q) as 
71+ co, 

(b) for every f > 0 

lim sup P( sup / X,(t,) - LYn(tl)l > 6) = 0. 
6+0 n It,-f,!<8 

4. THE CONNECTION BETWEEN DIFFERENT TYPES OF CONVERGENCE 

How to Measure Speed of Convergence in the Invariance Principle 7 

The following diagram shows the connection among different types of con- 
vergence: 

Convergence with probability 1 

4 
Convergence in probability 

i 
Weak Convergence of the distributions. 

On the other hand the following result holds. 

THEOREM (4.1). Let CL+, , n = 0, 1, 2,... be probability measures on a separable 
metric space X. Let lim,,, pll = pO. Then one can construct a probability space 
@, &, P) and random variables 5, , n = 0, 1, 2. . . taking values in X in suqh a 
way that the distribution of [, is pm , n = 0, 1, 2,... and lim,+,m s‘,(w) = f,,(w) 
with probability 1. 

The convergence in probability can be metricized in the following way: 

If [ and v are two random variables taking values on (X, p), their distance may 
be defined as 

f,(f, 4 = inf(e : P(p(f, 77) > 4 < 4. 

Then pS metricizes convergence in probability. 
The next theorem brings into connection the Prochorov distance and pS . 

THEOREM (4.2). If the random variable 5 has distribution p, 71 has distribution Y, 
and P(p([, 7) > ti) < /3, then we have p(A”) + p > v(A) for any closed set A. 
(Aa is dejned as A” = (x : p(x, A) < a)). 

On the other hand, ift~ and v are two probability measures on a separable metric 
space X such that p( Aa) + /3 > v(A) f or any closed set A, then there exists, for 
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every E > 0, a probability space (Q, JZ?, P) and two random variables 6 and 77 with 
distributions p and v on it in such a way that 

If the space X is complete, this relation holds even with E = 0. 

Theorem (4.2) yields, as a special case, that 

P%, 4 = inf 45, 4, .$ has distr. CL, 7 has distr. v. 

Because of Theorem (4.1) and the diagram at the beginning of this section, 
Theorem (3.1) is equivalent to the following 

THEOREM (4.3). One can construct a probability space (52, A?, P) and processes 
S-(t) and FVJt), n = 1,2,... on it in such a way that w,,(t) is a Wiener process on 
[0, 11, $(t) is a random polygon whose distribution agrees with that of S,(t) for 
every n, and 

lim P (;;Fl I s,(t) - @&>I > ~1 = 0 for every E > 0. 
n-02 . 

( wn(t) may be the same W(t)for every n). 

Let us remark that Theorem (4.3) is also equivalent to the following 

THEOREM (4.3’). Let F(x) be a distribution function, 

I xdF(x) = 0, 
I 

x2 dF(x) = 1. 

There exist tvo sequences of i.i.d.r.v’s x1 , X, ,..., X,, and YI , Yz ,..:, Y,, with 
distribution fun&on F(x) resp. 4(x) (f rom now on d(x) denotes the standard normal 
distribution function) in such a way that the partial sums S, = &, Xi and 
Tk = & Yi , k = 1, 2 ,..., n satisfy the relation 

p sup I Sk - TI, I 
k/2 for every E > 0. 

kfn 

To show the equivalence between Theorem (4.3) and Theorem (4.3’) one has 
to observe that over the Tk’s a Wiener process W(t) on the interval [0, rz] can be 
spanned (i.e., one can construct a Wiener process W(t), 0 < t < rz, such that 
W(k) = Tk for k = 1, 2,..., n if the probability space is rich enough) and that 

supk<n SUPit-ki<l 1 w(t> - W(k)i . IS relatively small. Now if we are interested 
in the speed of convergence in the invariance principle, then it is natural to ask 
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(preserving the notations of Theorem (4.3’)) for which sequences (an , ,L$J can 
the relation 

<p n 

be satisfied with an appropriate construction. Theorem (4.2) indicates that this 
question is closely related to the determination of the Prochorov distance between 
the Wiener measure and the distribution of A’,(t). 

Finally, the problem of the strong invariance principle can be formulated in the 

following way: For which sequences CL, , rz = 1, 2,. . . can the relation 

or 

with probability 1, 

lim sup I Sn - Tn I 
%a 

bounded with probability 1, 

be satisfied ? 

5. THE FIRST ESTIMATES OF SPEED OF THE CONWZRGENCE IN THE 
INVARIANCE PRINCIPLE: ESTIMATES FROM BELOW 

The following result was proven, by V. Strassen. 

THEOREM (5.1). Let F(x) be a distribution.~tbn 

s xdF(x) = 0, 1 x2 dF(x) = 1. 

There exist two sequences of i.i.d.r.v.‘s Xl , X2 ,... and Yl , Yz ,..., thefirst om with 
distribution F(x), the second one with distribution function C&X) in such a way that 
the pmtial sums S, = Cy-, Xi , T,, = & Yi sat@ the +&&on 

Sn - T, 
(n log log n)“” - O 

with probability 1. 

This result shows that the validity of the law of iterated logarithms for the 
sequence T, implies the same also for the sequence S,, . Actually Strassk used 
this result in order to prove a sharpened form of the law of iterkd logarithm. 

Later he proved that if s Xe dF(x) < 00 (i.e., the fourth moment e+ts) then 
a construction satisfying 

lim sup I S, - Tn I 
n”*(log n)l’*(log log .)I’4 

<K with probability I 
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is possible. (K is chosen appropriately.) In these constructions the so-called 
Skorochod embedding was used. 

It turned out that these constructions cannot give a better approximation even 
if we impose some new restrictions onF(x). Thus the question arose whether the 
last mentioned result is sharp. 

A bound from below resulted from the solution of the so-called “stochastic 
geyser problem.” The problem is the following one: Let an infinite sequence of 
random variables S, + e1 , S, + 6s ,... be given, where S, , S, ,... are the 
partial sums of i.i.d.r.v.‘s with some distribution function F(x), c1 , es ,... (called 
error terms). are arbitrary random variables satisfying lim,,, c/f(n) = 0 a.s. 
with some deterministic functionf(n). Question: is it possible to determine the 
unknown distribution function F(x) with probability one by the sequence 
s, + Ql , s, + 62 ,**- ? 

The following result was proven: 

THEOREM (5.2). If Jetz dF(x) < m in some neighborhood of the origin (i.e., 
for 1 t 1 < to some to) undf(n) = log n, the answer is a@native. 

Let us now change the problem a little. Let us assume that we know that 
s, 9 $2 ,-a* are the partial sums of i.i.d.r.v.‘s either with a known distribution 
function F(x) or with distribution function 4(z). We want to decide, with the 
help of the sequence S, + Ed, S, + E= ,..., which one of the two cases happened. 
With a slight modification of the proof of Theorem (5.2) one gets that this 
problem can be solved with probability 1 if lim sup 1 en I/(log n) Q c (c depends 
on F(x)). 

This result has the following. consequence: 

If s, , s, ,... are the partial sums of i.i.d.r.v.‘s with distribution function F(x), 
T, , Ts ,... are the partial-sums of i.i.d.r.v.‘s with distribution function+(x), then 

1 lim sup I sn - Tn I > 2c 
log n 

with probability 1. 

/. 
Indeed, defining E,, = (S,, - T&Z, we cannot decide whether we have the 
sequence S, - Ed) S, - l 1 ,... or Tl + ci , T, + zs ,... . Therefore 

lim sup 1 4 //(log n) > c 

must hold with probability 1. 
It the tail behavior of the distribution function F(x) is not very nice then the 

following argument, due to L. Breiman, gives a better lower bound. ’ 

THEUREM (5.3). Let Xl , X, ,... be i.i.d.r.w.‘s with distribution function 

F(x); y, 9 yz ,*-- i.i.d.r.v.‘s with distribution frmctbn 4(x), 

( s, - f x, ) T,, = 2 Yi, n = 1, 2,... . 
i-1 i=l 
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Assume that 

where K, is a monotone numerical sequence, lim sup K,/(log n) > 0. Then we hawe 

I S, - T, ( > + for infinitely many n’s with probability 1. 

Proof of Theorem (5.3). We have 

p1xn/ >KJ= 03 

therefore, by the Borel-Cantelli lemma, 1 S,, - S,-, 1 = / X, 1 > K, infinitely 
often with probability 1. On the other hand 1 T, - TSml 1 = 1 Y, 1 < K,/2 for 
almost every n with probability 1. If both 1 S, - S,-, 1 > K,, and 1 T,, - T,-, 1 < 
K,J2, then either 1 S, - T, I > K,/4 or I S,-, - T,-, I > K,,/4, and this 
proves the statement. 

Let us remark that the relation 

n;l P(l Xl I > q= m 

is a moment type condition. For K, = nil+, r > 0 it is equivalent to E ( Xl /? = co. 
It holds with K,, = c log n for every c > 0 if and only if E(exp 1 I Xi I) = cc 
for every t # 0. 

Let us now return to the “most regular case,” to the case when E exp(tX,) < co 
for j t j < t,, . We know that in this case, for an appropriate construction, 

/ S, - T, / = O(n1/4(log n)‘i2(log log r.~)l/~) with probability 1. 

On the other hand 

lim sup Sn - Tn > c 
log n 

with probability 1 

holds always for appropriate c > 0. One would like to know which is the real 
bound. 

The first partial answer was given by Csijrgd and RCvesz. They proved that 
under some conditions, the most important of which is EX13 = 0, a construction 
satisfying 

1 S, - T, 1 = 0(&(6-c)), E > 0 is arbitrarily small 
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is possible. In that construction they exploited the Edgeworth expansion of the 

central limit theorem. This states that 

P(S, < n1’2x) = 4(x) + & $f (1 - x”) & e-za’2 + 0 (i), 

where pa = EXi3. This specifically means that 1 P(S, < n1/2x) - $(x)1 has 
typically the magnitude O(l/n1/2), but if the third moment of Xi agrees with 
that of a standard normal random variable, it is only 0(1/n). 

Now again the question arises, whether this result is sharp, whether the 
condition ZZX,‘j = 0 is essential. The counterpart of this problem is the following 
one: For whichf(n) can the third moment of F(x) be estimated by the sequence 

s, + 61 1 s2 + c2 9.e. in the stochastic geyser problem ? 
This question was investigated, but an estimate of the third moment was 

obtained only in the case f(n) > log n. One has the feeling: Either the third 
moment ofF(x) can be estimated also in the casef(n) = log rz, or a construction 

satisfying 1 S, - T, 1 = o(n116) or even more can be found. The second case 
turned out to be true. 

6. SHARP ESTIMATES FOR THE SPEED OF CONVERGENCE IN THE 
INVARIANCE PRINCIPLE 

Roughly speaking the results of this section state the following: The estimates 
from below given in the previous section are sharp. First we deal with the case 
when the moment-generating function exists. 

THEOREM (6.1). If Jx dF(x) = 0, Jx2 dF(x) = 1, J exp(tx) dF(x) <co for 
some ] t / < t,, , then a sequence of i.i.d.r.er.‘s X, , X, ,... with distribution function 
F(x) and another one Yl , Y, ,... with distribution function d(x) can be constructed 
in such a way that 

where 

lim sup I Sn - T, I < c 
log n 

with probability 1, 

s, = f Xi) T,, = i Yi, 
i-1 i=l 

c is an appropriate constant. 

This theorem is a consequence of the following more general theorem, 
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THEOREM (6.2). Under the conditions of Theorem (6.1) the Xi’s and 1,‘s can 
be constmcted in such a way that 

P(yn; / S, - Tk ] > Clog n + x) < Kc-Ax, 

where C, K, X depend only on F(x). 

Theorem (6.1) explains why no estimate was found for the third moment with 
the help of S, + or , S, + l a ,... in the case f (n) > log n. The fact that a distribu- 
tion function F(x), j x3 dF(x) # 0 can be found in such a way that 

lim sup I  Sn -  Tn I  <c 

log 71 
with probability 1 

(c actually can be arbitrarily small) explains this. 
Theorem (5.3) h s ows that the existence of the moment-generating function is 

an essential condition in Theorem (6.1). I f  the moment-generating function 
does not exist, the next theorem describes the situation. 

First some notation: Let H(x), x > 0 be a monotone continuous function 
satisfying the relations: 

(1) E&X)/X2+” is monotone increasing for some 6 > 0 and x > x,, . 

(2) log H(x)/x is monotone decreasing for x > x0 . 

Define K, by the equation H(K,) = n. 

THEOREM (6.3). If jx dF(x) = 0, Jxa dF(x) = 1, JH(I x I) dF(x) <co, 
then the i.i.d.r.v.‘s Xi with distribution function F(x) and Yi with distribution function 
+(x) can be constructed in such a way that 

P lim sup 
( 

1 sn - TV8 1 2 c K = 1 
n 1 

for appropriate c. 

In order to compare Theorem (6.3) with Theorem (5.3) let us remark that 

.P(lxlPW -=c co is equivalent to the relation 

c P(I & I > Km) -=c ~0. 

In the case H(x) = x’, r > 2, Theorem (6.3) yields, as a special case, the following 

THEOREM (6.4). If Jx dF(x) = 0, Jx” dF(x) = 1, J I x Ir dF(x) < 03 for 

some r > 2, then a construction satisfying lim S,, - T&W = 0 with probability 1 
is possible. 
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To see how Theorem (6.3) implies Theorem (6.4), it is enough to observe that 
if J 1 x(+ dF(x) < co, then J 1 x \rf(l x I) G(X) < co for an appropriate function 
f(x),f(~) -+ co. So we can apply Theorem (6.3) with H(x) = 1 x I?~(x). 

The weak invariance principle counterpart of Theorem (6.3) is the following 

THEOREM (6.5). Under the conditions of Theorem (6.3) for every x, K,, < x < 
C,(n log n1f2 there exist two finite sequences X, , X2 ,..., X, and Yl , Yz ,..., Y,, 
such that 

where Cl , C, , and a are positive constants depending only on F(x). 

Let us now turn to the case when no more than the existence of two moments is 
assumed. Theorems (4.3’) and (5.1) speak of these cases. Theorem (5.3) and the 
fact that it turned out to be sharp in many cases would suggest that a construction 
satisfying 

1 S, - T, 1 = o(tW) with probability 1 

should exist. But this is not true. It can be shown that the result 

1 S,, - T, I = o((n log log n)lla) 

cannot be improved. 

with probability 1 

Thus it might appear that Breiman’s argument does not yield a sharp result 
in this case. However, this is only because we put the question in an improper -~ 
way. 

The following theorem generally holds true. 

THEOREM (6.6). Let J x dF(x) = 0, J x2 dF(x) = 1. There exists a sequence of 
i.i.d.r.v.‘s Xl , X2 ,... with distribution function F(x) and a sequence of independent 
normal random variables Y, , Yz ,.., . EY,, = 0, 

EYn2 = Î :::, x2 dF(x) - [ j;Il: x dF(x)]‘, n = 1, 2,... 

in such a way that the partial sums S,, = xrzl X, , T,, = zel Yi , n = 1,2 ,... 
satkfy the relation 

lim I S, - T, I = 0 
n1/2 with probability 1. 

Theorems (4.3’) and (5.1) are easy consequences of this result. Theorem (6.6) 
also explains why the relation 1 S, - T,, 1 = o((n log log n)l12) cannot be 
improved in the case when the T,,‘s are sums of independent standard normal 
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random variables. At the first sight it may seem unnatural to approximate random 
variables with expectation 0 and variance 1 with nonstandard normal random 
variables. But the following argument may illuminate such a procedure. 

Define 

x;, = x, if IX,] <7z*la 

=o if / X, / > n112 

and SL = Cr=, Xl . Then C P(X, # XA) < co, and therefore X,, = Xk for 
almost every 71 with probability 1. This means that / S,, - 5’; j < K(w) with 
probability 1. Therefore we may approximate the Sk’s instead of the &‘s in 
Theorem (6.6). But doing so, it is natural to couple Xk with a Y, whose first 
two moments agree with that of Xk . Naturally EXL may differ from zero. On 
the other hand EX; is very near to 0, therefore Y, can be substituted by 
Y, - EY, in Theorem (6.6). But changing the variance of Y, back to 1 may 
violate Theorem (6.6). 

7. THE INVARIANCE PRINCIPLE FOR THE EMPIRICAL DISTRIBUTION FUNCTION 

The subject of this section is somewhat different from the previous ones. 
But the proofs and results are similar, and the importance of this subject in 
mathematical statistics may justify why we discuss it. 

First we define the, empirical distribution function. Let XI , X, ,..., X,, be 
independent random variables uniformly distributed on the interval [0, 11, i.e., 
P(X, < t) = t for 0 < t < 1. The empiricadistribution function is 

where 
&k(t) = 1 if X,<t 

=o if X, > t. 

Let W(t) be a Wiener process on the interval [0, 11. We call the process B(t) = 
w(t) - t?V(l) a Brownian bridge. Let us observe that W(1) and the process 
B(t) = W(t) - tIV(1) are independent of each other. (Since we deal with 
normaI random variables, it is enough to check that W(1) and E’(t) - tJV(l) 
0 < t < 1 are uncorrelated.) 

A Brownian bridge has the following properties. 

(l) (B(t,), B(t!2),*-, B(fk)) is a normally distributed random vector for 
any K, 0 < t < t, < ... < t, < 1. 

(2) EB(t) = 0, EB(tJ B(t,) = tI(l - tz) for any 0 < t $ 1, 0 < t, < 
t, < 1. 

(3) The trajectories of B(t) are continuous functions for every W. 
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If a process B(t), 0 < t < 1 satisfies (l), (2), and (3) and 6 is a standard normal 
random variable, independent of B(t), then IV(t) = B(t) + t[ is a Wiener process, 
and B(t) = W(t) - M(l). 

Let us now return to the empirical distribution function F,(t). 
We consider the process @[F,(t) - t], 0 < t < 1. It can be seen that this 

process is asymptotically Gaussian, with expectation 0 and with the same 
covariance structure as that of B(t). Therefore it is natural to expect that this 
process is near to an appropriate Brownian bridge B(t). In fact the following 
statement holds true: 

THEOREM (7.1). If the probability space is rich enough, there exists a Brownian 
bridge B,(t) in such a way that 

P( sup [@ 1 n”2(Fn(t) - t) - B,(t)1 > Clog n + X) < Ke-“* 
o<ts1 

for all x, where C, K, h are positive absolue constants. 

Roughly speaking this result means that 

1 nlla[F,(t) - t] - B,(t)\ = O((log n)/n”“). 

An argument similar to the proof of Theorem (5.2), may show that this result is 
sharp. 

One would like to formulate an invariance principle for the empirical distribu- 
tion function also in the language of measures, as it was done for sums of inde- 
pendent random variables. Here some minor difficulties arise. As F,(X) is not a 
continuous function, we cannot speak of the distribution of &“(F,(t) - t) in 
the space CIO, 11. There are two possibilities for getting rid of this inconvenience. 
One can either slightly change the definition ofF,(t) to get a continuous function, 
or define a more general function space than the space C[O, l] and speak of 
convergence of measures in this space. (In the literature generally the second 
possibility is chosen, and the so-called D-space is defined with the Skorochod 
metric.) 

But since the invariance principle for the empirical distribution function 
formulated in the language of measures has no such consequence which cannot 
already be seen directly from Theorem (7.1), we do not discuss it here. 

We show an application of Theorem (7.1). Define 

and 

Yn = ?P osqJl 1 F,(t) - t 1 . 

13% = n 
s 

‘[F,(t) - t12 dt. 
0 

683/8/4-z 
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THEOREM (7.2). Both yn and 6, have limit distributions as n - cc. The 
limit distribution of yn agrees with the distribution of ~up~<~<r 1 B(t)], and the 
limit distribution of 6, with the distribution of Ji B2(t) dt. 

yn is called the Kolmogorov-Smirnov and 6, is called the von Mises statistics. 
Their limit distributions can be explicitly given and they are tabulated in every 
collection of statistical tables. 

Finally we give a result in which we approximate the sequence Fl(t), F,(t),... 
with Brownian bridges whose joint structure is similar to that of the sequence 
W), F,(t),... . 

THEOREM (7.3). Let X, , X, , . . . be an infinite sequence of i.i.d.r.v.‘s with 
urnform distribution on [0, I]. Let us define the empirical distribution functions 

W), I,,... as we did at the beginning of this section. There exists a sequence of 
independent Brownian bridges B,(t), B,(t),... in such a way that 

P( sup sup 1 l@‘,(t) - t) - i Bj(t)l > (C log n + X) log n) -=c Ke-Ax 
14k<n osta j=l 

for all x and n, where C, K, h are positive absolute constants. Especially we have 

P(1. im sup sup I @‘&) - tl - ZSI W)l 
n OS61 loga n 

<C)=l 

for appropriate C. 

It is not known whether log n can be written instead of log2 n in the last 
formula and whether the previous formula can be similarly improved or not. 

The meaning of Theorem (7.3) may be probably more understandable with 
the help of the following remark. 

Define U*(t) = Ik(t) - t. Then the Uk(t)‘s are independent for different 
K’s, their covariance structure agrees with that of B(t) and 

rP2[Fn(t) - t] - ,$” B,(t) = i vi(t) - 5 B,(t). 
j-1 i=l 

II 

8. How Is A GOOD APPROXIMATION OF THE PARTIAL SUMS MADE? 

a. The quantile transform. Our aim is the following: Given a sequence of 
partial sums of i.i.d.r.v.‘s S, , S, ,... in a sufIiciently rich probability space we 
want to approximate it with a sequence of normal random variables TI , T, ,... . 
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We often approximate the Tn’s with the S,,‘S, or construct the sequence S, and 
T, at the same time instead of solving the original problem. But having solved 
these modified problems we can easily solve also the original one. All we need to 
do is to complete the sequence S,, to two sequences S, , T,, with a prescribed 
joint distribution. Some standard theorems in measure theory like the existence 
of conditional distribution functions, the Tulcea-Ionescu theorem enable us to 
carry out this completition. 

The first constructions were made with the help of the so-called Skorochod 
embedding. As it only rarely yields sharp results, and because the results obtained 
with its help can be generally derived otherwise, we do not discuss it. 

First we speak of the so-called quantile transformation which can yield sharp 
results in the case when we have few moments. (Generally if we have four or 
more moments it ceases to give sharp results.) 

First we discuss the following problem: 

Let F(x) and G(x) be two distribution functions on the real line. Let us con- 
struct two random variables 5 and r]. 5 with distribution function F(x), n with 
distribution function G(x), so that 1 5 - 11 j be small. 

Let us make some remarks: 

If 5 has distribution function F(x), and F(x) is strictly monotone, continuous, 
then (Y I= F(t) is uniformly distributed on [0, 11. On the other hand, if (Y is 
uniformly distributed on [0, l] and F-l(x) means the inverse of F(x) then 
5 =F-‘(or) has distribution functionF(x). In the general case one must be a little 
careful. IfP(x) has jumps, or if it is constant on an interval, then some problems 
arise. But these difficulties disappear upon introducing some slight modifications. 

Fact 1. Let OL be uniformly distributed on [0, 11. Define the inverse of the 
distribution function F(x) (we assume that the distribution functions are con- 
tinuous from the left) as 

F-‘(t) = sup(x:F(x) 5 t). 

Then F-l(a) has a distribution function F(x). 

Fact 2. Let 6 have distribution function F(x) and let E be a uniformly 
distributed tandom variable on [0, 11, independent of 5. Then 

01 = %3 = F(t) + 4W + 0) -F(5)] 

is uniformly distributed on [0, I]. 
Now let us have two distribution functions F(x) and G(x). We propose two 

ways of constructing random variables 5 and 7 with distribution functions F(x) 
and G(X). 
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First method of construction. Let a! be a uniformly distributed random variable 
on [0, 11. Define 

f = F-‘(a), ‘I = G-‘(a). 

Second method of construction. Let 5 have distribution function F(x). Given 
the random variable t (and possibly an E uniformly distributed on [0, I], and 
independent of t) we define 7 as 7 = G-@(f)). 

Both constructions are called quantile transformations. We do not distinguish 
between them. We identify these two constructions because they produce the 
same joint distribution of the variables 5 and 7, and actually this joint distribution 
is what we have to define. The next result shows an optimum property of the 
quantile transformation. 

THEOREM (8.1). Let F(x) and G(x) be two distribution functions 

s I x I dF(x) < ~0, s lxldG(x) < CO. 

Let f (x) be a convex function on the real line. Then we have 

inf E (f(f - 7)) = l’f(F-l(x) - G-l(x)) dx, 
0 

5 has distribution funct. CL, 71 has distribution funct. V. 

Since f(E - 7) 2 ~(5 - 7) + d 2 -c(l 5 1 + 1 q 1) + d with appropriate c 
and d, the (possibily infinite) expression Ef(t - 7) always has meaning. The 
expression on the right side is the value of Ef([ - 7) if we take the quantile 
transform. 

Proof of Theorem (8.1). Let us first consider the special case when the 
measures determined by F(x) and G(x) are concentrated on a finite set X = 
6% , x2 >....> x~}. Then the minimum is attained for some pair .$, , q. . Let us 
introduce the notation p(x, y) = P([, = x, r], = y); x, y E X. We may assume 
that the following property (x) holds: 

(x) For every xi > xi , yi > yj , xi , xj , yi , yi E X 

minEP(xi , yd, P(xi , rdl = 0 

Let us assume that contrary to our hypothesis there exist some xi > xj , yi > yj 
in such a way that 

P = min[P(x, , ri>, P&j , ri>l > 0. 
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Define the random variables [a , +j,, with the dollowing joint distribution $(x, JJ), 

X,YEX 

IT% Y) = P(X7 Y) otherwise. 

The distribution of & agrees with that of &, , the distribution of $, with that of 
~a. On the other hand 

w&l - %I) - f(Eo - dl 

= PM% - Yd + fc? - Yi) - f(% - Yd - f(Xi - Yin 

Because of convexity, the relations 

and 

xj -yyi 2 
xj - Yi 

d Yj - Xi 
xi--i 

NXi - Yi) + 6% - Yi>l = N% - Yd + 6% - Ydl 

imply that 

f(% - Yi) + fCx9 - Y3) d ftxi - Yj> + flxj - Yi>* 

Applying the last inequality we obtain that 

So if (x) does not hold for the pair (t,, , rlO) we can substitute it by the pair 
(& ,7j,,) in this way. 

Should the pair (&, , $,) still not satisfy (x), we can continue the above 
procedure. We get, in finitely many steps, to a pair (.$*, 7”) which satisfies (x), 
and the minimum is taken for this (I*, q*). 

But relation (x) determines the joint distribution of [ and r). Since the quantile 
transformation has the property (x), we proved Theorem (8.1) in this case. 

IfF(x) and G( x are concentrated in an interval [-U, u], we can approximate ) 
them with the distribution functions 

F,(x) = F (+), G,(x) = G (*), n = 1,2 ,.a. 

where [ ] means integer part. 
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Applying the already proved part of the theorem, and letting n to infinity 
we get that the result holds in this case too. 

Taking limit in u, in a similar way, we get that the result holds in general. 
The most interesting case of Theorem (8.1) is the casef(x) = i x i7, especially 

when r = 1 or Y = 2. Choosing f(x) = (x - Ef - I?T)~ we see that the 
quantile transformation minimizes the variance. The case r = I shows that the 
quantile transformation gives the so-called Wasserstein distance in the one- 
dimensional case. 

DEFINITION (Wasserstein distance). Let two probability measures p and v 
be given on the metric space (X, p). Their Wasserstein distance is 

5 has distr. CL, 71 has distr. V. 

COROLLARY TO THEOREM (8.1). On the real line with the usual metric the 
Wasserstein distance of the distributions F(x) and G(x) equals 

s 
l / F-‘(x) - G-l(x)/ dx. 

0 

In our applications of the quantile transform the role of F(x) is usually played 
byF,(x) = P(S, < &ax), where S, is the sum of n i.i.d.r.v.‘s with expectation 
0, and the role of G(x) is played by 4(x). By the central limit theorems 
1 F,(x) - +(x)1 is small, therefore the random variables F;‘(a) and $-l(a) (a is 
uniformly distributed random variable on [0, 11) are near each other. To estimate 
their distance we need an estimate of the speed of convergence in the central 
limit theorem. Let us emphasize that to get sharp results we must use non- 
uniform (depending on x) estimates for 1 F,(x) - #(x)l. The reason for this is 
the following: Since the derivative of d(x) is almost 0 at x if x is near infinity or 
minus infinity, thus F;‘(m) - $-l(a) may be very big at (Y near 0 or I, despite 
of the fact that ] F,,(x) - +( )I x is small. Thus we must exploit the fact that 
1 F,(x) - 4(x)) is much smaller at a large x than at an x near the origin. Otherwise 
estimating, e.g., the variance E[F;l(a) - $-l(a)]s we may get too weak results 
(the effect ofFi’ - d-l( ) f 01 or 01 near 0 or 1 would be too roughly estimated). 

Let us now briefly describe how two sequences S, , S2 ,... and Tl , T2 ,... of 
partial sums of i.i.d.r.v.‘s with distribution function F(x) and d(x) are obtained 
with the help of the quantile transform. Naturally we want that 

sup I S, - Tn I be small. 

We choose an appropriate numerical sequence of integers 0 = no < n1 < 
n2 -c ... < nk < .--. We construct the random variables (SaL - S, 
T nk - TnkJ, h = 1, Z... with the help of the quantile transform (Se0 = T*, =“-d,: 
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We may assume that the pairs of random variables (Snk - S,,-, , TBb - T,,-,) 
are independent. Now, since the random variables SnL , T,,, , k = 1,2,... are 
already given, they can be completed to two sequences of random variables 
s, , s, 3e.m and Tl , T, ,... in an arbitrary way. Now to estimate 

sup I SI, - T, I 
k&a 

one has to investigate the following two expressions: 

(4 sup I c @& - SolgJ - (T,, - Tn,Jlz 

(b) sup sup I S, - S,-, I 
k na-~<n<nr 

and sup sup 
k nk--l<“<nk 

I T- - C1ml Ia 

With a good choice of the sequence nk , the expressions in (a) and (b) have the 
same magnitude. Generally it is worth combining the above method with 
truncation of the summands at the beginning of the construction. The right level 
of truncation is suggested by Breiman’s argument. 

Let us now make a very rough calculation that may suggest what the magnitude 
of approximation with this method is like. We assume that the summands have 
many moments. First we estimate the variance. 

ak = E[(Sa, - sn,-,) - P”nk - T,,-J12, 

(lk = o(1). 

One cannot expect a better result, since for the distribution function 
Kk-nk,(4 = Wnk - &ml < (nk - nk-I)l’aX) the inequality 

holds for a typical x. (Unless we have some special conditions.) 
By the Kolmogorov inequality 

On the other hand, 

j”<“kFl n,;~~,+l t & - hj 1 = Obk - nk-l)l’s) 
. 

if the sequence nk - nkel is monotone and tends to infinity fast enough. An 
analogous result holds for the T’s for typical w’s. 

So the good choice of nk is nk = k2, and 

is obtained. 

;I.I.I / Sk - Tk 1 = O(n1’4) 



508 PfiTER MAJOR 

In an exact calculation some log factor also appears. At any rate the above 
calculation indicates that to get better results than O(n1i4), a new technique must 
be worked out. This is described in the next section. 

9. How Is A GOOD APPROXIMATION OF THE PARTIAL SUMS MADE ? 

b. The conditional pantile transform. It is enough to discuss the following 
problem: Given an integer n, (for the sake of convenience we assume that 
n = 2”) and a sequence Tl , T, ,..., T, of partial sums of independent standard 
normal random variables, construct a finite sequence S, , S, ,..., S, of partial 
sums of .i.i.d.r.v.‘s with distribution functionF(x), s x dF(x) = 0, jxz C@(X) = 1 
in such a way that 

p’“,;f 1 Sk - Tk 1 > 3) 
\ 

be small for x > 0. 
We start the construction with the construction of S, . It can be done simply 

using the quantile transform 

where F,,(x) = P(S,, < n112x). 
The next task is to construct Sn12 . Now the joint distribution of S,,,, and S,, is 

prescribed, and S, is already given. Thus on the set S,, = y, the conditional 
distribution P(S,,,, < x j S, = y) is prescribed. That is the reason why we 
have to work with conditional distributions from now on. 

For technical reasons we construct first the random variable 2S,,,, - S, 
instead of Sniz . Let us observe that 2S,,,, - S,, and S, are uncorrelated, and 
their joint distribution is asymptotically normal. Therefore it is natural to expect 
that the conditional distribution P(2S,,,, - S, < x 1 S, = y) is asymptotically 
normal with variance n. And in fact, the following result holds true. 

THEOREM (9.1). If J’exp(tx) dF(x) < 00 fos 1 t 1 < to, then 

P(& > nu2*) = [l - +(x)] exp [ 0 (%)I, 

P(S, < -n”“x) = 4(-x) exp [0 (*)I 

for 0 < x < l rN2. 



INVARIANCE PRINCIPLE 509 

If, in addition, F(x) has an integrable characteristic function then 

P(2S,,, - S, > n112x 1 S, = n112y) 

= P - 4691 exp (0 ( X3+X21YI+lyI+l 
n1/2 ))j 

P(2&,, - s, < --42x 1 s, = nl’“y) 

= &xl exp (0 ( 
~3+x21YI+IYI+1 

&2 )I 

for 0 < x < En112, 1 y 1 < l z1/2. O(e) is uniform in x andy. 

Let us assume for a while that the conditions for Theorem (9.1) are satisfied. 
We define 2S,,, - S, in the following way: 

where G,,(x I y) = P(2&,, - S, < n1j2x I S, = n1j2y) and G;‘(x j y) means 
the inverse of the conditional distribution function G,(x I y) in parameter x with 

fixed y. (We define the inverse in the general case, as we did in Section 8.) 

w’2wd2 - T,,) is independent of T,, , and therefore also of S#12, which 
is a function of T,, . 

Thus it is easy to see that the so defined 2S,,, - S, has the prescribed 
conditional distribution with respect to the condition S, = n112y. Now A’,,, is 
defined as S,,,, = Q(2S,,,, - S,) + &3,, , and we obtain that the pair (S,,,, , S,) 
has the prescribed joint distribution. 

The next step is to construct S,,,, and SQ,~J~ - S,,, . It can be done in the 

same way. First we define the variables 2S,,, - A’,,,, and 2(Sts,r)n - Sn12) - 

G% - S2bJ as 

G;;:, ($ (g (2Tn/4 - %a)) / (g)“” 4 

and 

G;;:, ($ ((i)“’ MTw4)n - Tn,2) - (Tn - T4 1 (;)1’2 (S, - S,,,)). 

Similarly to the argument about S, , one obtains that both pairs (S,,, , Sn,2) 

and W(wa)n - Sn,2 9 S, - S,,,) have the right joint distributions. We claim 
that these pairs are independent, which implies that even the quadruple 

(%4 > %a,2 7 Sb/r)n 3 S,) has the right distribution. To see this, observe that the 

pairs (h2, sn - 5h21 and VW, - T,I~, Wwn - Tni2) - (Tn - Tmd) 
are independent. It is so because S,,,2 and S, are the functions of T+, and Tn12 . 
So the random variables S,,, , S, - A’,,,, ,2T,,, - Tn,2 , ~(Tc,,~,,, - T,,12) - 
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(T, - T,,J are independent. Since the pair (S,,,, , Sn,a) is a function of the 
first and third variables while the pair (SC~,~),~ - Sn,s , S, - S,,,) is that of the 

second and fourth ones, they are independent as we claimed. 
In the next step we define the variables St(a~+i),sln - S(lcll)n , k = 0, 1, 2, 3 

in the same way, and we go on till every Sj is defined. The procedure ends in 
log n steps, and at the end we obtain a sequence S, , S, ,..., S, with appropriate 
joint distribution. 

Because of Theorem (9.1) G;‘(4(x) j y) N X. This relation will imply that 

S, N Tk . A detailed calculation shows that roughly speaking the quantity 
SI, - Tk grows up only with constant in every step of the’ construction. The 
construction finishes in log n steps, and this may explain why the result 

is obtained. 
The proof of the fact that supk~% 1 S, - TI, [ is small in this construction 

heavily depends on Theorem (9.1). So the question arises: What happens if the 
characteristic function of F(x) is not integrable ? One would hope that Theorem 
(9.1) holds also without this condition. This hope is however illusory. There are 

examples which show that the existence of the moment-generating function in 
itself does not guarantee the validity of Theorem (9.1). 

The second part of Theorem (9.1) was proved by the integration of the con- 
ditional density function. The conditional density function can be expressed by 
the original densities, and thus the central limit theorem for density functions 
yields a good asymptotic for it. 

Therefore the following idea seems natural. Take a sequence of i.i.d.r.v.‘s 

l l 7 $2 ,a-., % with normal distribution J!?E~ = 0, and Eqa is small. Define the 
random variables 01~ = CF=, ei, k = 1, 2,..., n, and try to construct first a 
sequence S, + a,, k = I,2 ,..., n near the sequence Tk, k = 1,2 ,..., n. (The 
a’s and S’s are independent.) I f  &i2 is sufficiently small, then the closeness of the 
sequences S, + 01~ and T, implies the closeness of the Sk’s and Tk’s. We apply 
the same construction that was described above. As X1 + c+ has smooth density 
function, one may expect that Theorem (9.1) holds for its distribution and there- 
fore a good construction can be obtained. 

This construction does not always work but it gives a good approximation in 
several cases when the original one does not give the same. Namely the condition 
about the existence of integrable characteristic function can be substituted with 
the following weaker one: The distribution function F(x) can be written in the 
form F(x) = p&(x) + (1 - p) F2(x), where F,(x) and Fa(x) are distribution 
functions, p > 0, and F,(x) has density function. (If F(x) has integrable charac- 
teristic function, then it has continuous bounded density.) 

I f  the random variables Xi , X, ,... are bounded with probability 1, then there 
exists a modification of the conditional quantile transformation that yields a 
good approximation of the partial sums S, = J&i Xi. 
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Let us now describe this construction. 
We assume that we are given the random variables Tl , Tz ,..., T,, and the set 

of random variables {X1, X, ,..., X,}. We assume that S, = CEzl X, is the 
quantile transform of T,, . We may moreover assume that {X1 ,..., X,} is inde- 
pendent of the random variables 2( T(2k+1)2,-~) - Tk2,) - ( T(k+1)2j - Tk2,),j = 2, 
3 ,..., m, k = 0, 1,“‘) n/2j - 1. In fact, we may define first the random variables 

X 1 ,-*-I X,, and T,, , then, independently of them, 2T,,, - T,, , then, indepen- 
dently of all the previous random variables, 2T,,, - T,,,, and 2( T(,,,), - T,,,J - 
(T, - T,,,), etc. 

We want to redefine the order of the random variables X, , X, ,..., X, , i.e., to 
make a random permutation of the indices in such a way, that the partial sums of 
these random variables be close to the appropriate Tk’s. Of course, we must be 
careful that our variables have the prescribed joint distribution. 

Let us first remark that the density functionf(x, ,..., x& of 

P(X, = x1 ,..., x, = x,) 

is invariant under any permutation of the set {x1 ,..., xK}. 
In the first step we tell which ones of our variables have an index less than or 

equal to 42; that is, we define the sets A, = {X1(w),..., X,,,(w)} and A, = 

KI/2+1(~)Yv XT&(w)b w e must satisfy the following condition: 

P(Vl 9”‘) X9%,,) = (Xi, ,..., %Ti,,J I (Xl ,..‘, X92) = @l I..., %I) = 1 n /( ) 42 

for any set {x1 ,..., x,} and for any of its subsets {xxi, ,..., xi,} with 42 elements. 
Doing so, we guarantee that the joint distribution of (X1 ,..., Xn,z} and 

Ka,,+, ,.**t X,) will be the prescribed one. On the other hand we want that 

2&,, - S, = C Xi - c Xi be near 2T,,,, - T,, . 
X$A, X/zAa 

We choose sets A, and A, with an adaptation of the quantile transform 
techniques to this case. 

Let us define for every subset H = {il ,..., &} of the set I = (1, 2 ,..., n} 
containing n/2 elements the number U,(w) = xiEH X,(U) - &1--H X,(w). Let 

us put them into increasing order 

If  two sums are equal, we order them at random. We define the disjoint intervals 

by the equalities 
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I f  l/n112(2T,,, - T,) E I,C , we choose the X+‘s with indices in Hk as the set A, , 

and the Xi’s with indices in I - Hk as the set A, . It is clear that we choose 
every subset of {X, ,..., X,} with n/2 elements with equal probability to A, . 

I f  the distribution P(U,J = P(U,z) = ..* = P(U,.) = l/p is close to the 

normal distribution for arbitrary (Xi(w),..., XJw)}, then 2S,,, - S, will be 

near to 2T,,, - T,, . 
In the next step we may halve A, and A, in the same way, and we may go on 

till we have completely defined the new permutation. 
The following theorem helps us to prove that the above construction gives a 

good approximation. 

THEOREM (9.2). We are given 2N real numbers xl , x2 ,..., xSN satisf$ng 

max j xi / < K and 2 = 1 (xi - x)~ > cN, 

Consider a random permutation rr of the indices i, where each permutation of the 
numbers 1, 2,..., 2N is chosen with the same probability. Define the random sum 

lJ = &T(l) + ... + X,(N)) - k(,,,) + ... + X,(2,))* 

We have 

P( U > x(N)‘/“) = (1 - 4 (F x)) exp [ 0 ($&l-)1 

P( U < -x(N)lj2) = $ (- F x) exp [ 0 (w)] 

for all 0 < x < l (N)lj2 with 0( .) unzyorm in x. E depends only on K and c. 

Let us briefly indicate why such a theorem holds. If  we take pairs (?, , Xi,), 

(Xi, > Xi4)‘...’ (%,N-, ? xiN1) in every possible way, and consider the expressron 

where c1 , e2 ,..., cN are i.i.d.r.v.‘s P(Q = 1) = P(Q = -1) = 8 then U is the 
average of such expressions. On the other hand, every such expression is asymp- 
totically normal. Their variances are different for different pairings, but typically 
close to cr, therefore the distribution of U, which is the mixture of these distribu- 
tions, is also asymptotically normal. 

We described how a construction satisfying Theorem (6.2) can be obtained in 
the cases when either F(x) has an absolute continuous component, or F(x) is 
concentrated on a finite interval. 

The general case can be reduced to these two special situations with the help 
of the following simple theorem. 
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THEOREM (9.3). Give-n the distribution functions Fl(x),F,(x) and G,(x), 

G,(x) let Sf), S.f) ,... req. Tf), Tc) ,... be thepartial sums of i.i.d.r.v.‘s with distribu- 
tion fumtionsFi(x) resp. G,(x), i = 1,2. For any 0 < p < 1 there are two sequmces 
s, , s, ,‘., and TI , T, ,... which are the partial sums of i.i.d.r.v.‘s with distribution 
function pF,(x) + (1 - p) F,(x) resp. pG,(x) + (I - p) G,(x) and satisfy the 
inequality 

P(sup 1 S, - Tk I > a + b) I P(suf I St) - Tt) 1 > a) 
k&a 

+ I'(:! I Sf) - 7-t' I > b) 

for all a 3 0, b > 0, and n. 

I f  F(x) has no moment-generating function, then essentially the same con- 

struction works combined with some truncation. As the central limit theorem 
holds only in a smaller range in this case, we get a weaker approximation. The 
construction satisfying Theorem (7.1) can be done very similarly. 

We have a Brownian bridge B(t), and we have to put n points on the interval 
[0, l] in an appropriate way. We decide, with the help of B(4), how many of 
them to put in [0, )) and [+, 11, then, with the help of 2B()) - B(S) and 

2W) - W) - WI, h ow many of them to put on the intervals [0, t), 
[), 4), [$, Q), [$, I], etc. till we arrive at sufficiently small intervals. 

10. HISTORY OF THE PROBLEM: COMMENTS 

It was first observed by Erdiis and Kac [l 1, 121 that functionals of sums of 
independent random variables have a limit distribution independent of the 
initial distribution, and that this can be directly proved. Another great impact on 
the theory of invariance principle was made by a paper of Doob [9]. Doob 
showed that the standardized empirical distribution function behaves similarly 
to the Brownian bridge. Later Donsker [8] justified this approach. These 
results gave the idea to work out the theory of invariance principle which was 
done by Prochorov [17], Skorochod [18], and others. This was done in the terms 
of probability measures. A very nice and readable work in this subject is 
Billingsley’s book [4]. 

Theorem (4.1) was proved for a complete separable metric spaces by Skorochod 
[18] and Theorem (4.2) by Strassen [20]. Strassen applied the Banach-Hahn 
theorem. Later Dudley [lo] found an elegant and simple proof of these theorems. 
He showed that theorem (4.2) is an almost immediate consequence of a famous 
combinatorial result, the Kiinig-Hall theorem (often called the marriage 
problem). Let us remark that Skorochod’s original construction to Theorem (4.1) 
cannot be extended to noncomplete metric spaces. 

Theorem (5.1) was proven by Strassen [21], who applied it to prove the 
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following strengthened form of the law of iterated logarithm. Let -Yi , r\-, ,... be 
i.i.d.r.v.‘s EX, = 0, EX12 = 1. Define the random polygon S(t), 0 ,( t < co in 
the following way: S(0) = 0, S(K) = S, + ... -!- -‘r;, k = 1, 2,... and S(t) is 
defined by linear interpolation between the integers. Consider the sequence 
S%(t) = S(nt)/(2n log log n)1/2, n = 3, 4, 5; 0 < t < 1 as elements of the 
C[O, l] space. Strassen’s theorem states the following: 

The sequence &3(t), S,(t),... is relatively compact with the set of limit points H, 
H = {x(t): s; k(t)2 dt < 1, x(0) = 0, x(t) is absolutely continuous) with proba- 

bility 1. (This is meant in the CIO, I] p s ace with the usual supremum metric.) 

This topic later became quite popular. Much work was done to describe more 
general situations. We would refer to the works of Oodaira[l6] and Wichura [24]. 

The “stochastic geyser problem” was proposed by A. RCnyi and solved by 

Bartfai [I]. There is a tale connected to it, which explains the name of the 
problem. The tale goes like this: 

A shipwrecked man gets to an uninhabited island. There is a geyser on this 
island. The time intervals between subsequent outbursts are independent and 
identically distributed random variables. 

Our man devotes all his life to the observation of the geyser. Having no watch 
he cannot measure the exact time of the outbursts, but seeing the sun rise and 

set, he can count how many outbursts took place each day. He leaves the record 
of his long, long observations to posterity. Can we determine the distribution of 
the time intervals between subsequent outbursts with the help of it ? 

In a more formal way, the question is the following: Let S, denote the time of 
the Kth outburst. (It is the sume of K i.i.d.r.v.‘s.) Knowing the sequence S, + ck: , 

k = I, 2,...; l lc = (S,] - SI, ([ ] means integer part) can we determine the 
unknown distribution of S, ? 

Bartfai also recognized that the stochastic geyser problem is the converse of the 

problem about approximation of partial sums of i.i.d.r.v.‘s. Therefore he investi- 
gated the latter problem, too, to get an upper bound in the stochastic geyser 
problem. Using the quantile transform technique he got essentially O(n1/4) [2]. 
Then he made the brave remark that despite of this result, he believed, the 
result O(log n) in the geyser problem is sharp. 

There are several methods for solving the stochastic geyser problem. One 
common feature of all of them is that they are based on large deviation results. 
All the “estimates of classical type” fail to work. 

Theorem (5.3) was obtained by Breiman [6]. There seems to be some 
interesting philosophy behind this simple result. It is known that in many 
problems the sums of independent random variables do not behave so nicely if 
they have only few moments. The proof of Theorem (5.3) (and some other 
results too) would suggest that this bad behavior is caused by some individual 
terms that take up exceptionally big values. 

The approximation / S, - Tk / = ~(&l(~-~)) under the condition EX13 = 0 
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was obtained by RCvCsz and M. Csiirga [7]. They applied quantile transform 
techniques. 

Theorems (6.1), (6.2), (6.3), (6.4), (6.5) and also Theorems (7.1) and (7.3) 
were obtained in a paper consisting of two parts, written by Komlb, Major and 
Tusnady [13]. The case when the third moment does not exist was omitted 
because of some technical problems. This gap was filled by a paper of Major [14]. 
A result similar to Theorem (6.5) in the case when the third moment does not 
exist was proven earlier by Borovkov [5]. Theorem (6.6) was proved by’ 
Major [15]. 

The results of Sections 6 and 7 also yield an estimate about the speed of 
convergence of distribution of a functional applied to partial sums or empirical 
distribution function. In “nice” cases they give a rate of convergence 
O((log n)/nl/a). In many cases this is the best result available; all the same, the 
log n factor seems superficial. There must exist a theorem stating: For every 
“nice” functional 9 the distributions P(F&(t) < x) or P(Sn’l”[FJt) - t] < x) 
have a distance O(l/n1j2) from their limits. Probably there is even an Edgeworth 
type expansion for these distributions by the powers of l/n1/2. 

What this theorem should look like is not at all clear. All the same, this still 
undiscovered theorem may be the reason why all the “classical estimates” fail 
to solve the stochastic geyser problem. 

Another application of the results in Sections 6 and 7 may be the determination 
of the distribution of 9$&(t) and .&n1/2[F,(t) - 21; i.e., the case when also the 
functional is changing with n. If we have a good approximation S-(t) - IV(t) or 
?w[Fn(f) - t] N B(t) we may investigate the sequence &W(t) or 9J3(t) 
instead of the original problem. This idea was exploited by Bickel and Rosenblatt 
[3] in an investigation about density function estimates. Their method shows 
how useful it would be in many applications to find the multidimensional analog 
of Theorem (7.1). 

The exact formulation of this problem is the following: Let Xi , X2 ,..., X, be 
i.i.d.r.v.‘s uniformly distributed on the d-dimensional unit cube. Define the 
empirical distribution function F,(x, ,..., xd) = l/n (the number of Xi’s in the 
cube [0, x1) x ... x [O, xd)). There is an obvious candidate among the Gaussian 
processes B(t, ,..., fd) which one can approximate n112[F,(t, ,..., td) - tlt2 ... ta]. 
Question: What is the magnitude of 

sup [B(t, ,..-, td) - n1/2[F,(t, ,..., ta) - t,t, ,..., td]] 
tp...*t#j 

in the case of the optimal approximation I Tusnady [22] has proved, that in the 
case d = 2 an approximation with magnitude O(log2 n)/nrj2) is possible. It is not 
known whether log2 n can be substituted by log n. The case of d > 2 is even 
less known. Csorga and R&&z-using quantile transform techniques-proved 
that a construction yielding O(n-l/(z(k+r)) loga/ n) [7] (d is the dimension of the 
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space) is possible. But the real question is whether the order of magnitude in the 

optimal construction is O((log= n)/nllz) or a! >, 1, -4. < /I < 0. We know 

nothing about this problem. 
Another interesting and still unsolved problem is to prove the analog of 

Theorem (6.2) for independent non-identically distributed random variables. 
Let us give an example, that shows that there are cases when a simple adapta- 

tion of the present technique does not work. 
Let the sequence 01~ , c~a ,.,., 2 < di < 4, be real numbers linearly independent 

over the integers, i.e., let the relation Cy=i &a, = 0 (K,‘s are integers) imply 
that K1 = K, = .., = k, = 0. Let the random variable X, have the distribution 

P(X, = CQ”) = P(X, = -ak) = & , 
k 

P(X,:O)=l-&. 

Now if we know the value of the sum of independent random variables S, = 

Xl + ... + X, , then, because of the linear independence of the elk’s, we also 
know the values of X1 , X, ,..., X, . Thus the conditional quantile transform 
technique-at least in its original form-fails to work. 

Theorem (8.1) was proved in the special casef(x) = x2 by Bartfai [2] and in the 
casef(x) = j x 1 by Vallander [23]. Th e author of these notes learned about its 
general form from a lecture of Stout. As he had not seen the original proof, he 
does not know whether it differs from the present one. 

The quantile transform technique seems to be rather a folklore. It was 
discovered by many authors indepedently of each other. There was however a 
period, when it was (unjustly) neglected, and the Skorochod embedding was 
preferred instead. The conditional quantile transform technique was worked 
out in the paper of Komlos, Major, and Tusnidy [ 131. 
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