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1. Introduction.

First I briefly describe the main subject of this work. Fix a positive integer n, consider
n independent and identically distributed random variables ξ1, . . . , ξn on a measurable
space (X,X ) with some distribution µ and take their empirical distribution µn together
with its normalization

√
n(µn − µ). Beside this, take a function f(x1, . . . , xk) of k

variables on the k-fold product (Xk,X k) of the space (X,X ), introduce the k-th power
of the normalized empirical measure

√
n(µn−µ) on (Xk,X k), and define the integral of

the function f with respect to this signed product measure. This integral is a random
variable, and we want to give a good estimate on its tail distribution. More precisely, we
take the integrals not on the whole space, the diagonals xs = xs′ , 1 ≤ s, s′ ≤ k, s 6= s′,
of the space Xk are omitted from the domain of integration. Such a modification of the
integral seems to be natural.

We shall also be interested in the following generalized version of the above problem.
Let us have a nice class of functions F of k variables on the product space (Xk,X k),
and consider the integrals of all functions in this class with respect to the k-fold di-
rect product of our normalized empirical measure. Give a good estimate on the tail
distribution of the supremum of these integrals.

It may be asked why the above problems deserve a closer study. I found them im-
portant, because they may help in solving some essential problems in probability theory
and mathematical statistics. I met such problems when I tried to adapt the method of
proof about the Gaussian limit behaviour of the maximum likelihood estimate to some
similar but more difficult questions. In the original problem the asymptotic behaviour
of the solution of the so-called maximum likelihood equation has to be investigated. The
study of this problem is hard in its original form. But by applying an appropriate Taylor
expansion of the function that appears in this equation and throwing away its higher
order terms we get an approximation whose behaviour can be simply understood. So
to describe the limit behaviour of the maximum likelihood estimate it suffices to show
that this approximation causes only a negligible error.

One would try to apply a similar procedure in more difficult situations. I met some
non-parametric maximum likelihood problems, for instance the description of the limit
behaviour of the so-called Kaplan–Meyer product limit estimate when such an approach
could be applied. But in these problems it was harder to justify that the simplifying
approximation causes only a negligible error. To show this, the solution of the above
mentioned problems was needed. In the non-parametric maximum likelihood estimate
problems I met, the estimation of multiple (random) integrals played a role similar to
the estimation of the coefficients in the Taylor expansion in the study of maximum
likelihood estimates. Although I could apply this approach only in some special cases,
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I believe that it works in very general situations. But it demands some further work to
show this.

The above formulated problems about random integrals are interesting and non-
trivial even in the special case k = 1. Their solution leads to some interesting and
non-trivial generalization of the fundamental theorem of the mathematical statistics
about the difference of the empirical and real distribution of a large sample.

These problems have a natural counterpart about the behaviour of so-called U -
statistics, a fairly popular subject in probability theory. The investigation of multiple
random integrals and U -statistics are closely related, and it turned out that it is useful
to consider them simultaneously.

Let us try to get some feeling about what kind of results can be expected in these
problems. For a large sample size n the normalized empirical measure

√
n(µn − µ)

behaves similarly to a Gaussian random measure. This suggests that in the problems we
are interested in similar results should hold as in the problems about multiple Gaussian
integrals, called Wiener–Itô integrals in the literature. We may expect that the tail
behaviour of the distribution of a k-fold random integral with respect to a normalized
empirical measure is similar to that of the k-th power of a Gaussian random variable
with expectation zero and an appropriate variance. Beside this, a similar estimate
should hold for the supremum of multiple random integrals of a class of functions with
respect to a normalized empirical measure or with respect to a Gaussian random measure
under not too restrictive conditions. We may also hope that the methods of the theory
of multiple Gaussian integrals can be adapted to the investigation of our problems.

The above consideration supplies a fairly good description of the situation, but it
does not take into account a very essential difference between the behaviour of mul-
tiple Gaussian integrals and multiple integrals with respect to a normalized empirical
measure. If the variance of a multiple integral with respect to a normalized empiri-
cal measure is very small, what turns out to be equivalent to a very small L2-norm
of the function we are integrating, then the behaviour of this integral is different from
that of a multiple Gaussian integral with the same kernel function. In this case the
effect of some irregularities of the normalized empirical distribution turns out to be
non-negligible, and no good Gaussian approximation holds any longer. This case must
be better understood, and some new methods have to be worked out to handle it.

The precise formulation of the results will be given in the main part of the work.
Beside their proof I also tried to explain the main ideas behind them and the notions
introduced in their investigation. This work contains some new results, and also the
proof of some already rather classical theorems is presented. The results about Gaussian
random variables and their non-linear functionals, in particular multiple integrals with
respect to a Gaussian field, have a most important role in the study of the present
work. Hence they will be discussed in detail together with some counterparts about
multiple random integrals with respect to a normalized empirical measure and some
results about U -statistics.

The proofs apply results from different parts of the probability theory. Papers
investigating similar results refer to works dealing with quite different subjects, and
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this makes their reading rather hard. To overcome this difficulty I tried to work out the
details and to present a self-contained discussion even at the price of a longer text. Thus
I wrote down (in the main text or in the Appendix) the proof of many interesting and
basic results, like results about Vapnik–Červonenkis classes, about U -statistics and their
decomposition to sums of so-called degenerate U -statistics, about so-called decoupled
U -statistics and their relation to ordinary U -statistics, the diagram formula about the
product of Wiener–Itô integrals, their counterpart about the product of degenerate U -
statistics, etc. I tried to give such an exposition where different parts of the problem
are explained independently of each other, and they can be understood in themselves.

An earlier version of this work was explained at the probability seminar of the
University Debrecen (Hungary).

2. Motivation of the investigation. Discussion of some problems.

Here I try to show by means of some examples why the solution of the problems men-
tioned in the introduction may be useful in the study of some important problems of
the probability theory. I try to give a good picture about the main ideas, but I do not
work out all details. Actually, the elaboration of some details omitted would demand
hard work. But as the discussion of this section is quite independent of the rest of the
paper, these omissions cause no problem in understanding the subsequent part.

I start with a short discussion of the maximum likelihood estimate in the simplest
case. The following problem is considered. Let us have a class of density functions
f(x, ϑ) on the real line depending on a parameter ϑ ∈ R1, and observe a sequence of
independent random variables ξ1(ω), . . . , ξn(ω) with a density function f(x, ϑ0), where
ϑ0 is an unknown parameter we want to estimate with the help of the above sequence
of random variables.

The maximum likelihood method suggests the following approach. Choose that
value ϑ̂n = ϑ̂n(ξ1, . . . , ξn) as the estimate of the parameter ϑ0 where the density function
of the random vector (ξ1, . . . , ξn), i.e. the product

n∏

k=1

f(ξk, ϑ) = exp

{
n∑

k=1

log f(ξk, ϑ)

}

takes its maximum. This point can be found as the solution of the so-called maximum
likelihood equation

n∑

k=1

∂

∂ϑ
log f(ξk, ϑ) = 0. (2.1)

We are interested in the asymptotic behaviour of the random variable ϑ̂n − ϑ0, where
ϑ̂n is the (appropriate) solution of the equation (2.1).

The direct study of this equation is rather hard, but a Taylor expansion of the
expression at the left-hand side of (2.1) around the (unknown) point ϑ0 yields a good

and simple approximation of ϑ̂n, and it enables us to describe the asymptotic behaviour
of ϑ̂n − ϑ0.
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This Taylor expansion yields that

n∑

k=1

∂

∂ϑ
log f(ξk, ϑ̂n) =

n∑

k=1

∂
∂ϑf(ξk, ϑ0)

f(ξk, ϑ0)

+ (ϑ̂n − ϑ0)

(
n∑

k=1

(
∂2

∂ϑ2 f(ξk, ϑ0)

f(ξk, ϑ0)
−
(

∂
∂ϑf(ξk, ϑ0)

)2

f2(ξk, ϑ̄0)

))
+ O

(
n(ϑ̂n − ϑ0)2

)

=

n∑

k=1

(
ηk + ζk(ϑ̂n − ϑ0)

)
+ O

(
n(ϑ̂n − ϑ0)2

)
, (2.2)

where

ηk =
∂

∂ϑf(ξk, ϑ0)

f(ξk, ϑ0)
and ζk =

∂2

∂ϑ2 f(ξk, ϑ0)

f(ξk, ϑ0)
−
(

∂
∂ϑf(ξk, ϑ0)

)2

f2(ξk, ϑ̄0)

for k = 1, . . . , n. We want to understand the asymptotic behaviour of the (random)
expression on the right-hand side of (2.2). The relation

Eηk =

∫ ∂
∂ϑf(x, ϑ0)

f(x, ϑ0)
f(x, ϑ0) dx =

∂

∂ϑ

∫
f(x, ϑ0) dx = 0

holds, since
∫

f(x, ϑ) dx = 1 for all ϑ, and a differentiation of this relation gives the last

identity. Similarly, Eη2
k = −Eζk =

∫ ( ∂
∂ϑ f(x,ϑ0))

2

f(x,ϑ0)
dx > 0, k = 1, . . . , n. Hence by the

central limit theorem χn = 1√
n

n∑
k=1

ηk is asymptotically normal with expectation zero

and variance I2 =
∫ ( ∂

∂ϑ f(x,ϑ0))
2

f(x,ϑ0)
dx > 0. In the statistics literature this number I is

called the Fisher information. By the laws of large numbers 1
n

n∑
k=1

ζk ∼ −I2.

Thus relation (2.2) suggests the approximation ϑ̃n = −

n∑
k=1

ηk

n∑
k=1

ζk

of the maximum-

likelihood estimate ϑ̂n, and
√

n(ϑ̃n − ϑ0) is asymptotically normal with expectation
zero and variance 1

I2 . The random variable ϑ̃n is not a solution of the equation (2.1),

the value of the expression at the left-hand side is of order O(n(ϑ̃n − ϑ0)2) = O(1) in
this point. On the other hand, the derivative of the function at the left-hand side is
large in this point, it is greater than const. n with some const. > 0. This implies that
the maximum-likelihood equation has a solution ϑ̂n such that ϑ̂n − ϑ̃n = O

(
1
n

)
. Hence√

n(ϑ̂n − ϑ0) and
√

n(ϑ̃n − ϑ0) have the same asymptotic limit behaviour.

The previous method can be summarized in the following way: Take a simpler
linearized version of the expression we want to estimate by means of an appropriate
Taylor expansion, describe the limit distribution of this linearized version and show
that the linearization causes only a negligible error.
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We want to show that such a method also works in more difficult situations. But
in some cases it is harder to show that the error committed by a replacement of the
original expression by a simpler linearized version is negligible, and to show this the
solution of the problems mentioned in the introduction is needed. The discussion of the
following problem, called the Kaplan–Meyer method for the estimation of the empirical
distribution function with the help of censored data shows such an example.

The following problem is considered. Let (Xi, Zi), i = 1, . . . , n, be a sequence
of independent, identically distributed random vectors such that the components Xi

and Zi are also independent with some unknown distribution functions F (x) and G(x).
We want to estimate the distribution function F of the random variables Xi, but we
cannot observe the variables Xi, only the random variables Yi = min(Xi, Zi) and δi =
I(Xi ≤ Zi). In other words, we want to solve the following problem. There are certain
objects whose lifetime Xi are independent and F distributed. But we cannot observe
this lifetime Xi, because after a time Zi the observation must be stopped. We also
know whether the real lifetime Xi or the censoring variable Zi was observed. We
make n independent experiments and want to estimate with their help the distribution
function F .

Kaplan and Meyer, on the basis of some maximum-likelihood estimation type con-
siderations, proposed the following so-called product limit estimator Sn(u) to estimate
the unknown survival function S(u) = 1 − F (u):

1 − Fn(u) = Sn(u) =





n∏

i=1

(
N(Yi)

N(Yi) + 1

)I(Yi≤u,δi=1)

if u ≤ max(Y1, . . . , Yn)

0 if u ≥ max(Y1, . . . , Yn), δn = 1,

undefined if u ≥ max(Y1, . . . , Yn), δn = 0,
(2.3)

where

N(t) = #{Yi, Yi > t, 1 ≤ i ≤ n} =

n∑

i=1

I(Yi > t).

We want to show that the above estimate (2.3) is really good. For this goal we
shall approximate the random variables Sn(u) by some appropriate random variables.
To do this first we introduce some notations.

Put
H(u) = P (Yi ≤ u) = 1 − H̄(u),

H̃(u) = P (Yi ≤ u, δi = 1), ˜̃H(u) = P (Yi ≤ u, δi = 0)
(2.4)

and

Hn(u) =
1

n

n∑

i=1

I(Yi ≤ u)

H̃n(u) =
1

n

n∑

i=1

I(Yi ≤ u, δi = 1), ˜̃Hn(u) =
1

n

n∑

i=1

I(Yi ≤ u, δi = 0).

(2.5)
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Clearly H(u) = H̃(u) + ˜̃H(u) and Hn(u) = H̃n(u) + ˜̃Hn(u). We shall estimate Fn(u)−
F (u) for u ∈ (−∞, T ] if

1 − H(T ) > δ with some fixed δ > 0. (2.6)

Condition (2.6) implies that there are more than δ
2n sample points Yj larger than T

with probability almost 1. The complementary event has only an exponentially small
probability. This observation helps to show in the subsequent calculations that some
events have negligibly small probability.

We introduce the so-called cumulative hazard function and its empirical version

Λ(u) = − log(1 − F (u)), Λn(u) = − log(1 − Fn(u)). (2.7)

Since Fn(u) − F (u) = exp(−Λ(u)) (1 − exp(Λ(u) − Λn(u))) a simple Taylor expansion
yields

Fn(u) − F (u) = (1 − F (u)) (Λn(u) − Λ(u)) + R1(u), (2.8)

and it is easy to see that R1(u) = O
(
Λ(u) − Λn(u))2

)
. It follows from the subsequent

estimations that Λ(u) − Λn(u) = O(n−1/2), thus nR1(u) = O(1). Hence it is enough to
investigate the term Λn(u). We shall show that Λn(u) has an expansion with Λ(u) as
the main term plus n−1/2 times a term which is a linear functional of an appropriate
normalized empirical distribution function plus an error term of order O(n−1).

From (2.3) it is obvious that

Λn(u) = −
n∑

i=1

I(Yi ≤ u, δi = 1) log

(
1 − 1

1 + N(Yi)

)
.

It is not difficult to get rid of the unpleasant logarithmic function in this formula by
means of the relation − log(1 − x) = x + O(x2) for small x. It yields that

Λn(u) =
n∑

i=1

I(Yi ≤ u, δi = 1)

N(Yi)
+ R2(u) = Λ̃n(u) + R2(u), (2.9)

and the error term nR2(u) is exponentially small.

The expression Λ̃n(u) is still inappropriate for our purposes. Since the denominators

N(Yi) =
n∑

j=1

I(Yj > Yi) are dependent for different indices i we cannot see directly the

limit behaviour of Λ̃n(u).

We try to approximate Λ̃n(u) by a simpler expression. A natural approach would
be to approximate the terms N(Yi) in it by their conditional expectation (n−1)H̄(Yi) =
(n − 1)(1 − H(Yi)) = E(N(Yi)|Yi). This is a too rough ‘first order’ approximation, but
the following ‘second order approximation’ will be sufficient for our goals. Put

N(Yi) =
n∑

j=1

I(Yj > Yi) = nH̄(Yi)


1 +

n∑
j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)
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and express the terms 1
N(Yi)

in the sum defining Λ̃n by means of the relation 1
1+z =

∞∑
k=0

(−1)kzk = 1 − z + ε(z) with the choice z =

n∑
j=1

I(Yj>Yi)−nH̄(Yi)

nH̄(Yi)
. As |ε(z)| < 2z2 for

|z| < 1
2 we get that

Λ̃n(u) =
n∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)


1 +

∞∑

k=1


−

n∑
j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)




k


=

n∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)


1 −

n∑
j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)


+ R3(u)

(2.10)

= 2A(u) − B(u) + R3(u),

where

A(u) = A(n, u) =
n∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)

and

B(u) = B(n, u) =
n∑

i=1

n∑

j=1

I(Yi ≤ u, δi = 1)I(Yj > Yi)

n2H̄2(Yi)
.

It can be proved by means of standard methods that nR3(u) is exponentially small.
Thus relations (2.9) and (2.10) yield that

Λn(u) = 2A(u) − B(u) + negligible error. (2.11)

This means that to solve our problem the asymptotic behaviour of the random
variables A(u) and B(u) has to be given. We can get a better insight to this problem by
rewriting the sum A(u) as an integral and the double sum B(u) as a two-fold integral
with respect to empirical measures. Then these integrals can be rewritten as sums
of random integrals with respect to normalized empirical measures and deterministic
measures. Such an approach yields a representation of Λn(u) in the form of a sum whose
terms can be well understood.

Let us write

A(u) =

∫ +∞

−∞

I(y ≤ u)

1 − H(y)
dH̃n(y),

B(u) =

∫ +∞

−∞

∫ +∞

−∞

I(y ≤ u)I(x > y)

(1 − H(y))
2 dHn(x)dH̃n(y).
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To rewrite the term B(u) in a form better for our purposes observe that

Hn(x)H̃n(y) = H(x)H̃(y) + H(x)(H̃n(y) − H̃(y)) + (Hn(x) − H(x))H̃(y)

+ (Hn(x) − H(x))(H̃n(y) − H̃(y)).

Hence it can be written in the form B(u) = B1(u) + B2(u) + B3(u) + B4(u), where

B1(u) =

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 dH(x) dH̃(y) ,

B2(u) =
1√
n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 dH(x) d

(√
n(H̃n(y) − H̃(y))

)
,

B3(u) =
1√
n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 d
(√

n (Hn(x) − H(x))
)

dH̃(y) ,

B4(u) =
1

n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 d
(√

n (Hn(x) − H(x))
)

d
(√

n(H̃n(y) − H̃(y))
)

.

In the above decomposition of B(u) the term B1 is a deterministic function, B2, B3

are linear functionals of normalized empirical processes and B4 is a nonlinear functional
of normalized empirical processes. The deterministic term B1(u) can be calculated
explicitly. Indeed,

B1(u) =

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 dH(x)dH̃(y) =

∫ u

−∞

dH̃(y)

1 − H(y)
.

Then the relations H̃(u) =
∫ u

−∞ (1 − G(t)) dF (t) and 1 − H = (1 − F )(1 − G) imply
that

B1(u) =

∫ u

−∞

dF (y)

1 − F (y)
= − log(1 − F (u)) = Λ(u). (2.12)

Observe that

A(u) =

∫ u

−∞

d H̃n(y)

1 − H(y)

=

∫ u

−∞

dH̃(y)

1 − H(y)
+

1√
n

∫ u

−∞

d
(√

n(H̃n(y) − H̃(y))
)

1 − H(y)

= B1(u) + B2(u).

(2.13)

From relations (2.11), (2.12) and (2.13) it follows that

Λn(u) − Λ(u) = B2(u) − B3(u) − B4(u) + negligible error. (2.14)
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Integration of B2 and B3 with respect to the variable x and then integration by parts
in the expression B2 yields that

B2(u) =
1√
n

∫ u

−∞

d
(√

n(H̃n(y) − H̃(y))
)

1 − H(y)

=

√
n
(
H̃n(u) − H̃(u)

)

√
n(1 − H(u))

− 1√
n

∫ u

−∞

√
n(H̃n(y) − H̃(y))

(1 − H(y))
2 dH(y)

B3(u) =
1√
n

∫ u

−∞

√
n (H(y) − Hn(y))

(1 − H(y))
2 dH̃(y).

With the help of the above expressions for B2 and B3, (2.14) can be rewritten as

√
n (Λn(u) − Λ(u)) =

√
n
(
H̃n(u) − H̃(u)

)

1 − H(u)
−
∫ u

−∞

√
n(H̃n(y) − H̃(y))

(1 − H(y))
2 dH(y)

+

∫ u

−∞

√
n (Hn(y) − H(y))

(1 − H(y))
2 dH̃(y)

−√
nB4(u) + negligible error.

(2.15)

Formula (2.15) almost agrees with the statement we wanted to prove. Here the normal-
ized error

√
n (Λn(u) − Λ(u)) is expressed as a sum of linear functionals of normalized

empirical measures plus some negligible error terms plus the error term
√

nB4(u). So
to get a complete proof it is enough to show that

√
nB4(u) also yields a negligible error.

But B4(u) is a double integral of a bounded function (here we apply again formula (2.6))
with respect to a normalized empirical measure. Hence to bound this term we need a
good estimate of multiple stochastic integrals (with multiplicity 2), and this is just the
problem formulated in the introduction. The estimate we need here follows from Theo-
rem 8.1 of the present work. Let us remark that the problem discussed here corresponds
to the estimation of the coefficient of the second term in the Taylor expansion considered
in the study of the maximum likelihood estimation. One may worry a little bit how to
bound B4(u) with the help of estimations of double stochastic integrals, since in the
definition of B4(u) integration is taken with respect to different normalized empirical
processes in the two coordinates. But this is a not too difficult technical problem. It can
be simply overcome for instance by rewriting the integral as a double integral with re-

spect to the empirical process
(√

n (Hn(x) − H(x)) ,
√

n
(
H̃n(y) − H̃(y)

))
in the space

R2.

By working out the details of the above calculation we get that the linear functional
B2(u)−B3(u) of normalized empirical processes yields a good estimate on the expression√

n(Λn(u) − Λ(u)) for a fixed parameter u. But we want to prove somewhat more, we
want to get an estimate uniform in the parameter u, i.e. to show that even the random
variable sup

u≤T
|√n(Λn(u) − Λ(u)) − B2(u) + B3(u)| is small. This can be done by making
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estimates uniform in the parameter u in all steps of the above calculation. There appears
only one difficulty when trying to carry out this program. Namely, we need an estimate
on sup

u
|B4(u)|, i.e. we have to bound the supremum of multiple random integrals with

respect to a normalized random measure for a nice class of kernel functions. This can
be done, but at this point the second problem mentioned in the introduction appears.
This difficulty can be overcome by means of Theorem 8.2 of this work.

Thus the limit behaviour of the Kaplan–Meyer estimate can be described by means
of an appropriate expansion. The steps of the calculation leading to such an expansion
are fairly standard, the only hard part is the solution of the problems mentioned in the
introduction. It can be expected that such a method also works in a much more general
situation.

I finish this section with a remark of Richard Gill he made in a personal conversation
after my talk on this subject at a conference. He told that this approach had given a
complete proof about the limit behaviour of this estimate, but it had exploited the
explicit formula given in the Kaplan–Meyer estimate. He missed the application of an
argument based on the non-parametric maximum likelihood character of this estimate.
This was a completely justified remark, since if we do not restrict our attention to
this problem, but try to generalize it to general non-parametric maximum likelihood
estimates, then we have to understand how the maximum likelihood character can be
exploited. I believe that this can be done, but it demands further studies.

3. Some estimates about sums of independent random variables.

We need some results about the distribution of sums of independent random variables
bounded by a constant with probability one. Later only the results about sums of inde-
pendent and identically distributed variables will be interesting for us. But since they
can be generalized without any effort to sums of not necessarily identically distributed
random variables the condition about identical distribution of the summands will be
dropped. We are interested in the question when these estimates give such a good
bound as the central limit theorem suggests, and what can be told otherwise.

More explicitly, the following problem will be considered: Let X1, . . . , Xn be inde-
pendent random variables, EXj = 0, Var Xj = σ2

j , 1 ≤ j ≤ n, and take the random

sum Sn =
n∑

j=1

Xj and its variance Var Sn = V 2
n =

n∑
j=1

σ2
j . We want to get a good bound

on the probability P (Sn > uVn). The central limit theorem suggests that under general
conditions an upper bound of the order 1−Φ(u) should hold for this probability, where
Φ(u) denotes the standard normal distribution function. Since the standard normal dis-

tribution function satisfies the inequality
(

1
u − 1

u3

)
e−u2/2
√

2π
< 1 − Φ(u) < 1

u
e−u2/2
√

2π
for all

u > 0 it is natural to ask when the probability P (Sn > uVn) is comparable with the value

e−u2/2. More generally, we shall call an upper bound of the form P (Sn > uVn) ≤ e−Cu2

with some constant C > 0 a Gaussian type estimate.

First I formulate Bernstein’s inequality which tells for which values u the probability
P (Sn > uVn) has a Gaussian type estimate. It supplies such an estimate if u ≤ const. Vn.
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On the other hand, for u ≥ const. Vn it yields a much weaker estimate. I also present
an example which shows that in this case only a very weak improvement of Bernstein’s
inequality is possible. I also discuss another result, called Bennett’s inequality, which
shows that such an improvement is possible. The main difficulties we meet in this work
are closely related to the weakness of the estimates we have for the probability of the
event P (Sn > uVn) if u ≫ const. Vn.

In the usual formulation of Bernstein’s inequality a real number M is introduced,
and it is assumed that the terms in the sum we investigate are bounded by this number.
But since the problem can be simply reduced to the special case M = 1 I shall consider
only this special case.

Theorem 3.1. (Bernstein’s inequality). Let X1, . . . , Xn be independent random
variables, P (|Xj | ≤ 1) = 1, EXj = 0, 1 ≤ j ≤ n. Put σ2

j = EX2
j , 1 ≤ j ≤ n,

Sn =
n∑

j=1

Xj and V 2
n = Var Sn =

n∑
j=1

σ2
j . Then

P (Sn > uVn) ≤ exp



− u2

2
(

1 + 1
3

u
Vn

)



 for all u > 0. (3.1)

Proof of Theorem 3.1. Let us give a good bound on the exponential moments EetSn

for appropriate parameters t > 0. Since EXj = 0 and E|Xk+2
j | ≤ σ2 for k ≥ 0 we can

write EetXj =
∞∑

k=0

tk

k! EXk
j ≤ 1 +

t2σ2
j

2

(
1 +

∞∑
k=1

2tk

(k+2)!

)
≤ 1 +

t2σ2
j

2

(
1 +

∞∑
k=1

3−ktk
)

=

1+
t2σ2

j

2
1

1− t
3

≤ exp
{

t2σ2
j

2
1

1− t
3

}
if 0 ≤ t < 3. Hence EetSn =

n∏
j=1

EetXj ≤ exp
{

t2V 2
n

2
1

1− t
3

}

for 0 ≤ t < 3.

The above relation implies that

P (Sn > uVn) = P (etSn > etuVn) ≤ EetSne−tuVn ≤ exp

{
t2V 2

n

2

1

1 − t
3

− tuVn

}

if 0 ≤ t < 3. Choose the number t in this inequality as the solution of the equation
t2V 2

n
1

1− t
3

= tuVn, i.e. put t = u
Vn+ u

3
. Then 0 ≤ t < 3, and we get that P (Sn > uVn) ≤

e−tuVn/2 = exp

{
− u2

2(1+ 1
3

u
Vn

)

}
.

If the random variables X1, . . . , Xn satisfy the conditions of Bernstein’s inequality,
then also the random variables −X1, . . . ,−Xn satisfy them. By applying the above

result in both cases we get that P (|Sn| > uVn) ≤ 2 exp

{
− u2

2(1+ 1
3

u
Vn

)

}
under the condi-

tions of Bernstein’s inequality.

By Bernstein’s inequality for all ε > 0 there is some number α(ε) > 0 such that

in the case u
Vn

< α(ε) P (Sn > uVn) ≤ e−(1−ε)u2/2. Beside this, for all fixed numbers
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A > 0 there is some constant C = C(A) > 0 such that in the case u
Vn

< A the inequality

P (Sn > uVn) ≤ e−Cu2

holds. This can be interpreted as a Gaussian type estimate for
the probability P (Sn > uVn) if u ≤ const. Vn.

On the other hand, if u
Vn

is very large, then Bernstein’s inequality yields a much
worse estimate. The question arises whether in this case Berstein’s inequality can be
replaced by a better, more useful result. Next we present Theorem 3.2, the so-called
Bennett’s inequality which provides a slight improvement of Bernstein’s inequality. But
if u

Vn
is very large, then also Bennett’s inequality provides a much weaker estimate on

the probability P (Sn > uVn) than the bound suggested by a Gaussian comparison.
On the other hand, we shall give an example that shows that (without imposing some
additional conditions) no real improvement of this estimate is possible.

Theorem 3.2. (Bennett’s inequality). Let X1, . . . , Xn be independent random
variables, P (|Xj | ≤ 1) = 1, EXj = 0, 1 ≤ j ≤ n. Put σ2

j = EX2
j , 1 ≤ j ≤ n,

Sn =
n∑

j=1

Xj and V 2
n = Var Sn =

n∑
j=1

σ2
j . Then

P (Sn > u) ≤ exp

{
−V 2

n

[(
1 +

u

V 2
n

)
log

(
1 +

u

V 2
n

)
− u

V 2
n

]}
for all u > 0. (3.2)

As a consequence, for all ε > 0 there exists some B = B(ε) > 0 such that

P (Sn > u) ≤ exp

{
−(1 − ε)u log

u

V 2
n

}
if u > BV 2

n , (3.3)

and there exists some positive constant K > 0 such that

P (Sn > u) ≤ exp

{
−Ku log

u

V 2
n

}
if u > 2V 2

n . (3.4)

Proof of Theorem 3.2. We have

EetXj =
∞∑

k=0

tk

k!
EXk

j ≤ 1 + σ2
j

∞∑

k=2

tk

k!
= 1 + σ2

j

(
et − 1 − t

)
≤ eσ2

j (et−1−t), 1 ≤ j ≤ n,

and EetSn ≤ eV 2
n (et−1−t) for all t ≥ 0. Hence P (Sn > u) ≤ e−tuEetSn ≤ e−tu+V 2

n (et−1−t)

for all t ≥ 0. We get relation (3.2) from this inequality with the choice t = log
(

1 + u
V 2

n

)
.

(This is the place of minimum of the function −tu + V 2
n (et − 1 − t) for fixed u in the

parameter t.)

Relation (3.2) and the observation lim
v→∞

(v+1) log(v+1)−v
v log v = 1 with the choice v = u

V 2
n

imply formula (3.3). Because of relation (3.3) to prove formula (3.4) it is enough to check
it for 2 ≤ u

V 2
n

≤ B with some sufficiently large constant B > 0. In this case relation
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(3.4) follows directly from formula (3.2). This can be seen for instance by observing

that the expression
V 2

n

[(
1+ u

V 2
n

)
log

(
1+ u

V 2
n

)
− u

V 2
n

]

u log u

V 2
n

is a continuous and positive function

of the variable u
V 2

n
in the interval 2 ≤ u

V 2
n

≤ B, hence its minimum in this interval is

strictly positive.

Let us make a short comparison between Bernstein’s and Bennett’s inequality. Both
results yield an estimate on the probability P (Sn > u), and their proofs are very similar.
They are based on an estimate of the moment generating functions Rj(t) = EetXj of
the summands Xj , but Bennett’s inequality yields a better estimate. It may be worth
mentioning that the estimate given for Rj(t) = EetXj in the proof of Bennett’s in-
equality agrees with the moment generating function Eet(Yj−EYj) of the normalization
Yj −EYj of a Poissonian random variable Yj with parameter Var Xj . As a consequence,
we get, by using the standard method of estimating tail-distributions by means of the
moment generating functions such an estimate for the probability P (Sn > u) which
is comparable with the probability P (Tn − ETn > u), where Tn is a Poissonian ran-
dom variable with parameter Vn = Var Sn. It can be told that Bernstein’s inequality
yields a Gaussian and Bennett’s inequality a Poissonian type estimate for the sums of
independent, bounded random variables.

Next we present Example 3.3 which shows that Bennett’s inequality yields a sharp
estimate also in the case u ≫ V 2

n when Bernstein’s inequality yields a weak bound.
But Bennett’s inequality provides only a small improvement which has only a limited
importance. This may be the reason why Bernstein’s inequality which yields a more
transparent estimate is more popular.

Example 3.3. (Sums of independent random variables with bad tail distri-
bution for large values). Let us fix some positive integer n, real numbers u and σ2

such that 0 < σ2 ≤ 1
8 , n > 4u ≥ 6 and u > 4nσ2. Let σ̄2 be that solution of the

equation x2 − x + σ2 = 0 which is smaller than 1
2 . Take a sequence of independent

and identically distributed random variables X̄1, . . . , X̄n such that P (X̄j = 1) = σ̄2,
P (X̄j = 0) = 1 − σ̄2 for all 1 ≤ j ≤ n. Put Xj = X̄j − EX̄j = Xj − σ̄2, 1 ≤ j ≤ n,

Sn =
n∑

j=1

Xj and V 2
n = nσ2. Then P (|X1| ≤ 1) = 1, EX1 = 0, Var X1 = σ2, hence

ESn = 0, and Var Sn = V 2
n . Beside this

P (Sn ≥ u) > exp

{
−Bu log

u

V 2
n

}

with some appropriate constant B > 0 not depending on n, σ and u.

Proof of Example 3.3. Simple calculation shows that EXj = 0, Var Xj = σ̄2 − σ̄4 = σ2,
P (|Xj | ≤ 1) = 0, and also the inequality σ2 ≤ σ̄2 ≤ 3

2σ2 holds. To see the upper bound
in the last inequality observe that σ̄2 ≤ 1

3 , i.e. 1− σ̄2 ≥ 2
3 , hence σ2 = σ̄2(1− σ̄2) ≥ 2

3 σ̄2.
In the proof of the inequality of Example 3.3 we can restrict our attention to the case
when u is an integer, because in the general case we can apply the inequality with
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ū = [u] + 1 instead of u, where [u] denotes the integer part of u, and since u ≤ ū ≤ 2u,
the application of the result in this case supplies the desired inequality with a possibly
worse constant B > 0.

Put S̄n =
n∑

j=1

X̄j . We can write P (Sn ≥ u) = P (S̄n ≥ u + nσ̄2) ≥ P (S̄n ≥ 2u) ≥

P (S̄n = 2u) =
(

n
2u

)
σ̄4u(1 − σ̄2)(n−2u) ≥ (nσ̄2

2u )2u(1 − σ̄2)(n−2u), since u ≥ nσ̄2, and

n ≥ 2u. On the other hand (1 − σ̄2)(n−2u) ≥ e−2σ̄2(n−2u) ≥ e−2nσ̄2 ≥ e−u, hence

P (Sn ≥ u) ≥ exp
{
−2u log

( u

nσ̄2

)
− 2u log 2 − u

}

= exp

{
−2u log

( u

nσ2

)
− 2u log

σ̄2

σ2
− 2u log 2 − u

}

≥ exp

{
−100u log

(
u

V 2
n

)}
.

Example 3.3 is proved.

In the case u > 4V 2
n Bernstein’s inequality yields the estimate P (Sn > u) ≤ e−αu

with some universal constant α > 0, and the above example shows that at most an
additional logarithmic factor K log u

V 2
n

can be expected in the exponent of the upper

bound in an improvement of this estimate. Bennett’s inequality shows that such an
improvement is really possible.

I finish this section with another estimate due to Hoeffding which will be later
useful in some symmetrization arguments.

Theorem 3.4. (Hoeffding’s inequality). Let ε1, . . . , εn be independent random
variables, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, and let a1, . . . , an be arbitrary real

numbers. Put V =
n∑

j=1

ajεj. Then

P (V > u) ≤ exp

{
− u2

2
∑n

j=1 a2
j

}
for all u > 0. (3.5)

Remark 1: Clearly EV = 0 and Var V =
n∑

j=1

a2
j , hence Hoeffding’s inequality yields

such an estimate for P (V > u) which the central limit theorem suggests. This estimate
holds for all real numbers a1, . . . , an and u > 0.

Remark 2: The Rademacher functions rk(x), k = 1, 2, . . . , defined by the formulas
rk(x) = 1 if (2j − 1)2−k ≤ x < 2j2−k and rk(x) = −1 if 2(j − 1)2−k ≤ x < (2j − 1)2−k,
1 ≤ j ≤ 2k−1, for all k = 1, 2, . . . , can be considered as random variables on the
probability space Ω = [0, 1] with the Borel σ-algebra and the Lebesgue measure as
probability measure on the interval [0, 1]. They are independent random variables with
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the same distribution as the random variables ε1, . . . , εn considered in Theorem 3.4.
Therefore results about such sequences of random variables whose distributions agree
with those in Theorem 3.4 are also called sometimes results about Rademacher functions
in the literature. At some points we will also apply this terminology.

Proof of Theorem 3.4. Let us give a good bound on the exponential moment EetV for

all t > 0. The identity EetV =
n∏

j=1

Eetajεj =
n∏

j=1

(eajt+e−ajt)
2 holds, and

(eajt+e−ajt)
2 =

∞∑
k=0

a2k
j

(2k)! t
2k ≤

∞∑
k=0

(ajt)2k

2kk!
= ea2

j t2/2, since (2k)! ≥ 2kk! for all k ≥ 0. This implies

that EetV ≤ exp

{
t2

2

n∑
j=1

a2
j

}
. Hence P (V > u) ≤ exp

{
−tu + t2

2

n∑
j=1

a2
j

}
, and we get

relation (3.5) with the choice t = u

(
n∑

j=1

a2
j

)−1

.

4. On the supremum of a nice class of partial sums.

This section contains an estimate about the supremum of a nice class of normalized sums
of independent and identically distributed random variables together with an analogous
result about the supremum of an appropriate class of random one-fold integrals with
respect to a normalized empirical measure. The second result deals with a one-variate
version of the problem about the estimation of multiple integrals with respect to a
normalized empirical measure. Thie problem was mentioned in the introduction. Some
natural questions related to these results will be also discussed. It will be examined
how restrictive their conditions are. In particular, we are interested in the question
how the condition about the countable cardinality of the class of random variables
can be weakened. A natural Gaussian counterpart of the supremum problems about
random one-fold integrals will be also considered. Most proofs will be postponed to
later sections.

To formulate these results first a notion will be introduced that plays a most im-
portant role in the sequel.

Definition of Lp-dense classes of functions. Let a measurable space (Y,Y) be given
together with a set G of Y measurable real valued functions on this space. The class of
functions G is called an Lp-dense class of functions, 1 ≤ p < ∞, with parameter D and
exponent L if for all numbers 0 < ε ≤ 1 and probability measures ν on the space (Y,Y)
there exists a finite ε-dense subset Gε,ν = {g1, . . . , gm} ⊂ G in the space Lp(Y,Y, ν) with
m ≤ Dε−L elements, i.e. there exists such a set Gε,ν ⊂ G with m ≤ Dε−L elements for
which inf

gj∈Gε,ν

∫
|g − gj |p dν < εp for all functions g ∈ G. (Here the set Gε,ν may depend

on the measure ν, but its cardinality is bounded by a number depending only on ε.)

In most results of this work the above defined Lp-dense classes will be considered
only for the parameter p = 2. But at some points it will be useful to work also with Lp-
dense classes with a different parameter p. Hence to avoid some repetitions I introduced
the above definition for a general parameter p.
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The following estimate will be proved.

Theorem 4.1. (Estimate on the supremum of a class of partial sums).
Let us consider a sequence of independent and identically distributed random variables
ξ1, . . . , ξn, n ≥ 2, with values in a measurable space (X,X ) and with some distribu-
tion µ. Beside this, let a countable and L2-dense class of functions F with some pa-
rameter D ≥ 1 and exponent L ≥ 1 be given on the space (X,X ) which satisfies the
conditions

‖f‖∞ = sup
x∈X

|f(x)| ≤ 1, for all f ∈ F (4.1)

‖f‖2
2 =

∫
f2(x)µ( dx) ≤ σ2 for all f ∈ F (4.2)

with some constant 0 < σ ≤ 1, and

∫
f(x)µ( dx) = 0 for all f ∈ F . (4.3)

Define the normalized partial sums Sn(f) = 1√
n

n∑
k=1

f(ξk) for all f ∈ F .

There exist some universal constants C > 0, α > 0 and M > 0 such that the
supremum of the normalized random sums Sn(f), f ∈ F , satisfies the inequality

P

(
sup
f∈F

|Sn(f)| ≥ u

)
≤ C exp

{
−α

(u

σ

)2
}

for those numbers u

for which
√

nσ2 ≥ u ≥ Mσ(L3/4 log1/2 2
σ + (log D)3/4),

(4.4)

where the numbers D and L in formula (4.4) agree with the parameter and exponent of
the L2-dense class F .

The condition
√

nσ2 ≥ u ≥ Mσ(L3/4 log1/2 2
σ + D3/4) about the number u in

formula (4.4) is natural. I discuss this after the formulation of Theorem 4.2 which can
be considered as the Gaussian counterpart of Theorem 4.1. I also formulate a result in
Example 4.3 which can be considered as part of this discussion.

The condition about the countable cardinality of F can be weakened with the help
of the notion of countable approximability introduced below. For the sake of later
applications I define it in a more general form than needed in this section.

Definition of countably approximable classes of random variables. Let us
have a class of random variables U(f), f ∈ F , indexed by a class of functions f ∈
F on a measurable space (Y,Y). This class of random variables is called countably
approximable if there is a countable subset F ′ ⊂ F such that for all numbers u > 0 the
sets A(u) = {ω: sup

f∈F
|U(f)(ω)| ≥ u} and B(u) = {ω: sup

f∈F ′

|U(f)(ω)| ≥ u} satisfy the

identity P (A(u) \ B(u)) = 0.
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Clearly, B(u) ⊂ A(u). In the above definition it was demanded that for all u > 0
the set B(u) should be almost as large as A(u). The following corollary of Theorem 4.1
holds.

Corollary of Theorem 4.1. Let a class of functions F satisfy the conditions of
Theorem 4.1 with the only exception that instead of the condition about the countable
cardinality of F it is assumed that the class of random variables Sn(f), f ∈ F , is
countably approximable. Then the random variables Sn(f), f ∈ F , satisfy relation (4.4).

This corollary can be simply proved, only Theorem 4.1 has to be applied for the
class F ′. To do this it has to be checked that if F is an L2-dense class with some
parameter D and exponent L, and F ′ ⊂ F , then F ′ is also an L2-dense class with the
same exponent L, only with a possibly different parameter D′.

To prove this statement let us choose for all numbers 0 < ε ≤ 1 and probability

measures ν on (Y,Y) some functions f1, . . . , fm ∈ F with m ≤ D
(

ε
2

)−L
elements, such

that the sets Dj =
{

f :
∫
|f − fj |2 dν ≤

(
ε
2

)2}
satisfy the relation

m⋃
j=1

Dj = Y . For all

sets Dj for which Dj ∩ F ′ is non-empty choose a function f ′
j ∈ Dj ∩ F ′. In such a

way we get a collection of functions f ′
j from the class F ′ containing at most 2LDε−L

elements which satisfies the condition imposed for L2-dense classes with exponent L
and parameter 2LD for this number ε and measure ν.

Next I formulate in Theorem 4.1′ a result about the supremum of the integral of a
class of functions with respect to a normalized empirical distribution. It can be consid-
ered as a simple version of Theorem 4.1. I formulated this result, because Theorems 4.1
and 4.1′ are special cases of their multivariate counterparts about the supremum of
so-called U -statistics and multiple integrals with respect to a normalized empirical dis-
tribution function discussed in Section 8. These results are also closely related, but the
explanation of their relation demands some work.

Given a sequence of independent µ distributed random variables ξ1, . . . , ξn taking
values in (X,X ) let us introduce their empirical distribution on (X,X ) as

µn(A)(ω) =
1

n
# {j: 1 ≤ j ≤ n, ξj(ω) ∈ A} , A ∈ X , (4.5)

and define for all measurable and µ integrable functions f the (random) integral

Jn(f) = Jn,1(f) =
√

n

∫
f(x)(µn( dx) − µ( dx)). (4.6)

Clearly Jn(f) = 1√
n

n∑
j=1

(f(ξj)−Ef(ξj)) = Sn(f̄) with f̄(x) = f(x)−
∫

f(x)µ( dx).

It is not difficult to see that sup
x∈X

|f̄(x)| ≤ 2 if sup
x∈X

|f(x)| ≤ 1,
∫

f̄(x)µ( dx) = 0,
∫

f̄2(x)µ( dx) ≤
∫

f2(x)µ( dx), and if F is an L2-dense class of functions with pa-
rameter D and exponent L, then the class of functions F̄ consisting of the functions
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f̄(x) = f(x) −
∫

f(x)µ( dx), f ∈ F , is an L2-dense class of functions with parameter

2LD and exponent L, since
∫

(f̄ − ḡ)2 dµ ≤ ε if f, g ∈ F , and
∫

(f − g)2 dµ ≤
(

ε
2

)2
.

Hence Theorem 4.1 implies the following result.

Theorem 4.1′. (Estimate on the supremum of random integrals with respect
to a normalized empirical measure). Let us have a sequence of independent and
identically distributed random variables ξ1, . . . , ξn, n ≥ 2, with distribution µ on a
measurable space (X,X ) together with some class of functions F on this space which
satisfies the conditions of Theorem 4.1 with the possible exception of condition (4.3). The
estimate (4.4) remains valid if the random sums Sn(f) are replaced in it by the random
integrals Jn(f) defined in (4.6). Moreover, similarly to the corollary of Theorem 4.1, the
condition about the countable cardinality of the set F can be replaced by the condition
that the class of random variables Jn(f), f ∈ F , is countably approximable.

All finite dimensional distributions of the set of random variables Sn(f), f ∈ F ,
considered in Theorem 4.1 converge to those of a Gaussian random field Z(f), f ∈ F ,
with expectation EZ(f) = 0 and correlation EZ(f)Z(g) =

∫
f(x)g(x)µ( dx), f, g ∈ F

as n → ∞. Here, and in the subsequent part of the paper a collection of random
variables indexed by some set of parameters will be called a Gaussian random field if
for all finite subsets of these parameters the random variables indexed by this finite set
are jointly Gaussian. We shall also define so-called linear Gaussian random fields. They
consist of jointly Gaussian random variables Z(f), f ∈ G, indexed by a linear space
f ∈ G which satisfy the relation Z(af + bg) = aZ(f) + bZ(g) for all real numbers a and
b and f, g ∈ G.

Let us consider a linear Gaussian random field Z(f), f ∈ G, where the set of
indices G = Gµ consists of the functions f square integrable with respect to a σ-finite
measure µ, and take an appropriate restriction of this field to some parameter set
F ⊂ G. In the next Theorem 4.2 we shall present a natural Gaussian counterpart
of Theorem 4.1 by means of an appropriate choice of F . Let me also remark that
in Section 10 multiple Wiener–Itô integrals of functions of k variables with respect to
a white noise will be defined for all k ≥ 1. In the special case k = 1 the Wiener–Itô
integrals for an appropriate class of functions f ∈ F yield a model for which Theorem 4.2
is applicable. Before formulating this result let us introduce the following definition
which is a version of the definition of Lp-dense functions.

Definition of Lp-dense classes of functions with respect to a measure µ. Let
a measurable space (X,X ) be given together with a measure µ on the σ-algebra X and
a set F of X measurable real valued functions on this space. The set of functions F is
called an Lp-dense class of functions, 1 ≤ p < ∞, with respect to the measure µ with
parameter D and exponent L if for all numbers 0 < ε ≤ 1 there exists a finite ε-dense
subset Fε = {f1, . . . , fm} ⊂ F in the space Lp(X,X , µ) with m ≤ Dε−L elements, i.e.
such a set Fε ⊂ F with m ≤ Dε−L elements for which inf

fj∈Fε

∫
|f − fj |p dµ < εp for all

functions f ∈ F .

Theorem 4.2. (Estimate on the supremum of a class of Gaussian random
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variables). Let a probability measure µ be given on a measurable space (X,X ) together
with a linear Gaussian random field Z(f), f ∈ G, such that EZ(f) = 0, EZ(f)Z(g) =∫

f(x)g(x)µ( dx), f, g ∈ G, where G is the space of square integrable functions with
respect to this measure µ. Let F ⊂ G be a countable and L2-dense class of functions
with respect to the measure µ with some exponent L ≥ 1 and parameter D ≥ 1 which
also satisfies condition (4.2) with some 0 < σ ≤ 1.

Then there exist some universal constants C > 0 and M > 0 (for instance C = 4
and M = 16 is a good choice) such that the inequality

P

(
sup
f∈F

|Z(f)| ≥ u

)
≤ C(D + 1) exp

{
− 1

256

(u

σ

)2
}

if u ≥ ML1/2σ log1/2 2

σ
(4.7)

holds with the parameter D and exponent L introduced in this theorem.

The exponent at the right-hand side of inequality (4.7) does not contain the best
possible universal constant. One could choose the coefficient 1−ε

2 with arbitrary small
ε > 0 instead of the coefficient 1

256 in the exponent at the right-hand side of (4.7) if the
universal constants C > 0 and M > 0 are chosen sufficiently large in this inequality.
Actually, later in Theorem 8.6 such an estimate will be proved which can be considered

as the multivariate generalization of Theorem 4.2 with the exponent − (1−ε)u2

2σ2 .

The condition about the countable cardinality of the set F in Theorem 4.2 could
be weakened similarly to Theorem 4.1. But I omit the discussion of this question, since
Theorem 4.2 was only introduced for the sake of a comparison between the Gaussian and
non-Gaussian case. An essential difference between Theorems 4.1 and 4.2 is that the
class of functions F considered in Theorem 4.1 had to be L2-dense, while in Theorem 4.2
a weaker version of this property was needed. In that result it was demanded that there
exists a subset of F of relatively small cardinality which is dense in the L2(µ) norm.
In the L2-density property imposed in Theorem 4.1 a similar property was demanded
for all probability measures ν. The appearance of such a property may be unexpected.
But as we shall see, the proof of Theorem 4.1 contains a conditioning argument where
a lot of new conditional measures appear, and the L2-density property is needed to
work with all of them. One would also like to know some results that enable us to
check when this condition holds. In the next section a notion popular in probability
theory, the Vapnik–Červonenkis classes will be introduced, and it will be shown that a
Vapnik–Červonenkis class of functions bounded by 1 is L2-dense.

Another difference between Theorems 4.1 and 4.2 is that the conditions of for-
mula (4.4) contain the upper bound

√
nσ2 > u, and no such condition was imposed in

formula (4.7). The appearance of this condition in Theorem 4.1 can be explained by
comparing this result with those of Section 3. As we have seen, we do not loose much
information if we restrict our attention to the case u ≤ const. V 2

n = const. nσ2 in Bern-
stein’s inequality (if sums of independent and identically distributed random variables
are considered). Theorem 4.1 gives an almost as good estimate for the supremum of
normalized partial sums under appropriate conditions for the class F of functions we con-
sider in this theorem, as Bernstein’s inequality yields for the normalized partial sums of
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independent and identically distributed random variables with variance bounded by σ2.
But we could prove the estimate of Theorem 4.1 only under the condition

√
nσ2 > u.

We shall show in Example 4.3 discussed below that in the case
√

nσ2 > u only a weaker
estimate holds. It has also a natural reason why condition (4.1) about the supremum
of the functions f ∈ F appeared in Theorems 4.1 and 4.1′, and no such condition was
needed in Theorem 4.2.

The lower bounds for the level u were imposed in formulas (4.4) and (4.7) because
of a similar reason. To understand why such a condition is needed in formula (4.7) let
us consider the following example. Take a Wiener process W (t), 0 ≤ t ≤ 1, define for
all 0 ≤ s < t ≤ 1 the functions fs,t(·) on the interval [0, 1] as fs,t(u) = 1 if s ≤ u ≤ t,
fs,t(u) = 0 if 0 ≤ u < s or t < u ≤ 1, and introduce for all σ > 0 the following class
of functions Fσ. Fσ = {fs,t: 0 ≤ s < t ≤ 1, t − s ≤ σ2, s and t are rational numbers.}.

The integral Z(f) =
∫ 1

0
f(x)W ( dx) can be defined for all square integrable functions f

on the interval [0, 1], and this yields a linear Gaussian random field on the space of square
integrable functions. In the special case f = fs,t we have Z(fs,t) =

∫
fs,t(u)W ( du) =

W (t) − W (s). It is not difficult to see that the Gaussian random field Z(f), f ∈
Fσ, satisfies the conditions of Theorem 4.2 with the number σ in formula (4.2). It

is natural to expect that P

(
sup

f∈Fσ

Z(f) > u

)
≤ e−const. (u/σ)2 . However, this relation

does not hold if u = u(σ) < (1 − ε)
√

2σ log1/2 1
σ with some ε > 0. In such cases

P

(
sup

f∈Fσ

Z(f) > u

)
→ 1, as σ → 0. This can be proved relatively simply with the help

of the estimate P (Z(fs,t) > u(σ)) ≥ const. σ1−ε if |t − s| = σ2 and the independence
of the random integrals Z(fs,t) if the functions fs,t are indexed by such pairs (s, t) for
which the intervals (s, t) are disjoint. This means that in this example formula (4.7)

holds only under the condition u ≥ Mσ log1/2 1
σ with M =

√
2.

There is a classical result about the modulus of continuity of Wiener processes, and
actually this result helped us to find the previous example. It is also worth mentioning
that there are some concentration inequalities, see Ledoux [28] and Talagrand [51],
which state that under very general conditions the distribution of the supremum of a
class of partial sums of independent random variables or of the elements of a Gaussian
random field is strongly concentrated around the expected value of this supremum.
(Talagrand’s result in this direction is also formulated in Theorem 18.1 of this lecture
note.) These results imply that the problems discussed in Theorems 4.1 and 4.2 can be
reduced to a good estimate of the expected value E sup

f∈F
|Sn(f)| and E sup

f∈F
|Z(f)| of the

supremum considered in these results. However, the estimation of the expected value
of these suprema is not much simpler than the original problem.

Theorem 4.2 implies that under its conditions E sup
f∈F

|Z(f)| ≤ const. σ log1/2 2
σ with

an appropriate multiplying constant depending on the parameter D and exponent L of
the class of functions F . In the case of Theorem 4.1 a similar estimate holds, but un-
der more restrictive conditions. We also have to impose that

√
nσ2 ≥ const. σ log1/2 2

σ
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with a sufficiently large constant. This condition is needed to guarantee that the set
of numbers u satisfying condition (4.4) is not empty. If this condition is violated, then
Theorem 4.1 supplies a weaker estimate which we get by replacing σ by an appropri-
ate σ̄ > σ, and by applying Theorem 4.1 with this number σ̄.

One may ask whether the above estimate about the expected value of supremum of
normalized partial sums may hold without the condition

√
nσ2 ≥ const. σ log1/2 2

σ . We
show an example which gives a negative answer to this question. Since here we discuss
a rather particular problem which is outside of our main interest in this work I give
a rather sketchy explanation of this example. I present this example together with a
Poissonian counterpart of it which may help explain why such a result holds.

Example 4.3. (Supremum of partial sums with bad tail behaviour). Let
ξ1, . . . , ξn be a sequence of independent random variables with uniform distribution in the
interval [0, 1]. Choose a sequence of real numbers, εn, n = 3, 4, . . . , such that εn → 0 as

n → ∞, and 1
2 ≥ εn ≥ n−δ with a sufficiently small number δ > 0. Put σn = εn

√
log n

n ,

and define the set of functions f̄j,n(·) and fj,n(·) on the interval [0, 1] by the formulas
f̄j,n(x) = 1 if (j − 1)σ2

n ≤ x < jσ2
n, f̄j,n(x) = 0 otherwise, and fj,n(x) = f̄j,n(x) − σ2

n,

n = 3, 4, . . . , 1 ≤ j ≤ 1
σ2

n
. Put Fn = {fj,n(·): 1 ≤ j ≤ 1

σ2
n
}, and un = A

log 1
εn

log n√
n

with a

sufficiently small A > 0. Then

lim
n→∞

P

(
sup

f∈Fn

Sn(f) > un

)
= 1.

This example has the following Poissonian counterpart.

Example 4.3′. (A Poissonian counterpart of Example 4.3). Let P̄n(x) be a
Poisson process on the interval [0, 1] with parameter n and Pn(x) = 1√

n
[P̄n(x) − nx],

0 ≤ x ≤ 1. Consider the same sequences of numbers εn, σn and un as in Example 4.3,
and define the random variables Zn,j = Pn(jσ2

n) − Pn((j − 1)σ2
n) for all n = 3, 4, . . .

and 1 ≤ j ≤ 1
σ2

n
. Then

lim
n→∞

P

(
sup

1≤j≤ 1
σn

(Zn,j − Zn,j−1) > un

)
= 1.

The classes of functions Fn in Example 4.3 are L2-dense classes of functions with
some exponent L and parameter D not depending on the parameter n and the choice
of the numbers σn. It can be seen that even the class of function F = {f : f(x) =
1, if s ≤ x < t, f(x) = 0 otherwise.} consisting of functions defined on the inter-
val [0, 1] is an L2-dense class with some exponent L and parameter D. This follows
from the results discussed in the later part of this work (mainly Theorem 5.2), but it
can be proved directly that this statement holds e.g. with L = 1 and D = 8. The
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classes of functions Fn also satisfy conditions (4.1), (4.2) and (4.3) of Theorem 4.1
with σ2 = σ̄2

n = σ2
n − σ4

n, lim
n→∞

σ̄n

σn
= 1, and the number un satisfies the second condi-

tion un ≥ Mσ̄n(L3/4σ̄n(log1/2 2
σ̄n

+ (log D)3/4) in (4.4) for sufficiently large n. But it

does not satisfy the first condition
√

nσ̄2
n ≥ un of (4.4), and as a consequence Theo-

rem 4.1 cannot be applied in this case. On the other hand, some calculation shows that
un ≥ ( 2

1+4δ )1/2 A
εn log 1

εn

σn log1/2 2
σ n

. Hence lim inf
n→∞

εn log 1
εn

· 1
σ̄n log1/2 2

σ̄n

E sup
f∈Fn

Sn(f) >

0 in this case. As εn log 1
εn

→ 0 as n → ∞, this means that the expected value
of the supremum of the random sums considered in Example 4.3 does not satisfy
the estimate lim sup

n→∞
1

σ̄n log1/2 2
σ̄n

E sup
f∈Fn

Sn(f) < ∞ suggested by Theorem 4.1. Ob-

serve that
√

nσ̄2
n ∼ const. εnσ̄n log1/2 2

σ̄n
in this case, since

√
nσ̄2

n ∼ ε2
n

log n√
n

, and

σ̄n log1/2 2
σ̄n

∼ const. εn
log n√

n
.

The proof of Examples 4.3 and 4.3′. First we prove the statement of Example 4.3′. As
the random variables Zn,j are independent for a fixed number n, and their number is
less than n1+3δ ≤ n2−δ if δ ≤ 1

4 , it is enough to show that P (Zn,j > un) ≥ 1
n2 if n ≥ n0

with some threshold index n0 = n0(A, δ). Put ūn = [
√

nun +nσ2
n] +1, where [·] denotes

integer part. Then P (Zn,j > un) ≥ P (P̄n(σ2
n) ≥ ūn) ≥ P (P̄n(σ2

n) = ūn). On the other

hand, ūn ∼ ( A
log 1

εn

+ ε2
n) log n < 2A

log 1
εn

log n, hence P (P̄n(σ2
n) = ūn) =

(nσ2
n)ūn

ūn! e−nσ2
n >

(
nσ2

n·e
ūn

)ūne−nσ2
n ≥ exp

{
−2ūn log ūn

nσ2
n

}
≥ e−3ūn log 1

εn ≥ n−2.

The statement of Example 4.3 can be deduced from Example 4.3′ by applying
Poissonian approximation. Let us apply the result of Example 4.3′ for a Poisson process
P̄n/2 with parameter n

2 and with such a number ε̄n/2 with which the value of σn/2 equals
the previously defined σn. Then ε̄n/2 ∼ εn√

2
, and the number of sample points of P̄n/2 is

less than n with probability almost 1. Attaching additional sample points to get exactly
n sample points we can get the result of Example 4.3. I omit the details.

In formulas (4.4) and (4.7) we formulated such a condition for the validity of The-

orem 4.1 and Theorem 4.2 which contains a large multiplying constant of σ log1/2 2
σ

in the lower bound for the number u if we deal with such an L2 class of functions F
which has a large exponent L. At a heuristic level it is clear that in such a case a large
multiplying constant appears. On the other hand, I did not try to find the best possible
coefficients in the lower bound in relations (4.4) and (4.7).

In Theorem 4.1 (and in its version 4.1′) it was demanded that the class of func-
tions F should be countable. Later this condition was replaced by a weaker one about
countable approximability. By restricting our attention to countable or countably ap-
proximable classes we could avoid some unpleasant measure theoretical problems which
would have arisen if we had worked with the supremum of non-countable number of
random variables which may be non-measurable. There are some papers where possibly
non-measurable models are also considered with the help of some rather deep results
of the analysis and measure theory. Actually, the problem we met here is the natural
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analog of an important problem in the theory of the stochastic processes about the
smoothness property of the trajectories of an appropriate version of a stochastic process
which we can get by exploiting our freedom to change all random variables on a set of
probability zero.

The study of the problem in this work is simpler in one respect. Here the set of
random variables Sn(f)(ω) or Jn(f)(ω), f ∈ F , are constructed directly with the help
of the underlying random variables ξ1(ω), . . . , ξn(ω) for all ω ∈ Ω separately. We are
interested in when the sets of random variables constructed in this way are countably
approximable, i.e. we are not looking for a possibly different, better version of them
with the same finite dimensional distributions. The next simple Lemma 4.4 yields a
sufficient condition for countable approximability. Its condition can be interpreted as
a smoothness type condition for the trajectories of a stochastic process indexed by the
functions f ∈ F .

Lemma 4.4. Let a class of random variables U(f), f ∈ F , indexed by some set F of
functions be given on a space (Y,Y). If there exists a countable subset F ′ ⊂ F of the set
F such that the sets A(u) = {ω: sup

f∈F
|U(f)(ω)| ≥ u} and B(u) = {ω: sup

f∈F ′

|U(f)(ω)| ≥

u} introduced for all u > 0 in the definition of countable approximability satisfy the
relation A(u) ⊂ B(u − ε) for all u > ε > 0, then the class of random variables U(f),
f ∈ F , is countably approximable.

The above property holds if for all f ∈ F , ε > 0 and ω ∈ Ω there exists a function
f̄ = f̄(f, ε, ω) ∈ F ′ such that |U(f̄)(ω)| ≥ |U(f)(ω)| − ε.

Proof of Lemma 4.4. If A(u) ⊂ B(u − ε) for all ε > 0, then P ∗(A(U) \ B(u)) ≤
lim
ε→0

P (B(u−ε)\B(u)) = 0, where P ∗(X) denotes the outer measure of a not necessarily

measurable set X ⊂ Ω, since
⋂

ε→0
B(u− ε) = B(u), and this is what we had to prove. If

ω ∈ A(u), then for all ε > 0 there exists some f = f(ω) ∈ F such that |U(f)(ω)| > u− ε
2 .

If there exists some f̄ = f̄(f, ε
2 , ω), f ∈ F ′ such that |U(f̄)(ω)| ≥ |Uf(ω)| − ε

2 , then
|U(f̄)(ω)| > u − ε, and ω ∈ B(u − ε). This means that A(u) ⊂ B(u − ε).

The question about countable approximability also appears in the case of multiple
random integrals with respect to a normalized empirical measure. To avoid some rep-
etition we prove a result which also covers such cases. For this goal first we introduce
the notion of multiple integrals with respect to a normalized empirical measure.

Given a measurable function f(x1, . . . , xk) on the k-fold product space (Xk,X k)
and a sequence of independent random variables ξ1, . . . , ξn with some distribution µ on
the space (X,X ) we define the integral Jn,k(f) of the function f with respect to the
k-fold product of the normalized version of the empirical measure µn introduced in (4.5)
by the formula

Jn,k(f) =
nk/2

k!

∫ ′
f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dxk)),

where the prime in
∫ ′

means that the diagonals xj = xl, 1 ≤ j < l ≤ k,

are omitted from the domain of integration. (4.8)
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In the case k ≥ 2 it will be assumed that the probability measure µ has no atoms.

Lemma 4.4 enables us to prove that certain classes of random integrals Jn,k(f),
f ∈ F , defined with the help of some set of functions f ∈ F of k variables are count-
ably approximable. I present an example of a class of such random integrals which is
important in certain applications.

Let us consider the case when X = Rs, the s-dimensional Euclidean space with
some s ≥ 1. For two vectors u = (u(1), . . . , u(s)) ∈ Rs, v = (v(1), . . . , v(s)) ∈ Rs such
that u < v, i.e. u(j) < v(j) for all 1 ≤ j ≤ s let B(u, v) denote the s-dimensional rectangle
B(u, v) = {z: u < z < v}. Let us fix some function f(x1, . . . , xk) of k variables such
that sup |f(x1, . . . , xk)| ≤ 1, on the space (Xk,X k) = (Rks,Bks), where Bt denotes the
Borel σ-algebra on the Euclidean space Rt, together with some probability measure µ
on (Rs,Bs). For all pairs of vectors (u1, . . . , uk), (v1, . . . , vk) such that uj , vj ∈ Rs and
uj ≤ vj , 1 ≤ j ≤ k, let us define the function fu1,...,uk,v1,...,vk

which equals the function f
on the rectangle (u1, v1) × · · · × (uk, vk), and it is zero outside of this rectangle. Let us
call a class of functions F consisting of functions of the form fu1,...,uk,v1,...,vk

closed if
it has the following property. If fu1,...,uk,v1,...,vk

∈ F for some vectors (u1, . . . , uk) and
(v1, . . . , vk), and uj ≤ ūj < v̄j ≤ vj , 1 ≤ j ≤ k, then fū1,...,ūk,v̄1,...,v̄k

∈ F . In Lemma 4.5
it will be proved that the random integrals introduced in formula (4.8) of functions from
a closed class F constitute a countably approximable class.

Lemma 4.5. Let us have a function f on the Euclidean space Rks such that the |f | ≤ 1
in all points, and consider a closed class F of functions of the form fu1,...,uk,v1,...,vk

∈
(Rsk,Bsk), uj , vj ∈ Rs, uj ≤ vj, 1 ≤ j ≤ k, introduced in the previous paragraph with
the help of this function f . Let us take n independent and identically distributed random
variables ξ1, . . . , ξn with some distribution µ and values in the space (Rs,Bs). Let µn

denote the empirical distribution of this sequence. Then the class of random integrals
Jn,k(fu1,...,uk,v1,...,vk

) defined in formula (4.8) with functions fu1,...,uk,v1,...,vk
∈ F is

countably approximable.

Proof of Lemma 4.5. We shall prove that the definition of countable approximabil-
ity is satisfied in this model if the class of functions F ′ consists of those functions
fu1,...,uk,v1,...,vk

, uj ≤ vj , 1 ≤ j ≤ k, for which all coordinates of the vectors uj and vj

are rational numbers.

Given some function fu1,...,uk,v1,...,vk
, a real number 0 < ε < 1 and ω ∈ Ω let us

choose a function fū1,...,ūk,v̄1,...,v̄k
∈ F ′ determined with some vectors ūj = ūj(ε, ω),

v̄j = v̄j(ε, ω) 1 ≤ j ≤ k, with rational coordinates uj ≤ ūj < v̄j ≤ vj such that the sets
Kj = B(uj , vj) \ B(ūj , v̄j) satisfy the relations µ(Kj) ≤ ε2−2k+1n−k/2, and ξl(ω) /∈ Kj

for all j = 1, . . . , k and l = 1, . . . , n. Let us show that

|Jn,k(fū1,...,ūk,v̄1,...,v̄k
)(ω) − Jn,k(fu1,...,uk,v1,...,vk

)(ω)| ≤ ε. (4.9)

Then lemma 4.4 (with the choice U(f) = Jn,k(f)) and relation (4.9) imply Lemma 4.5.

Relation (4.9) holds, since the difference of integrals at its left-hand side can be
written as the sum of the 2k − 1 integrals of the function f with respect to the k-fold
product of the measure

√
n(µn −µ) on the domains D1 × · · · ×Dk with the omission of
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the diagonals xj = xj̄ , 1 ≤ j, ̄ ≤ k, j 6= ̄, where Dj is either the set Kj or B(uj , vj) and
Dj = Kj for at least one index j. It is enough to show that the absolute value of all these
integrals is less than ε2−k. This follows from the observations that |f(x1, . . . , xk)| ≤ 1,√

n(µn − µ)(Kj) = −√
nµ(Kj), µ(Kj) ≤ ε2−2k+1n−k/2, and the total variation of the

signed measure
√

n(µn − µ) (restricted to the set B(uj , vj)) is less than 2
√

n.

In Lemma 4.5 we have shown with the help of Lemma 4.4 about an important
class of functions that it is countably approximable. There are other interesting classes
of functions about which it can be proved with the help of Lemma 4.4 that they are
countably approximable, but here we shall not discuss this problem.

Let us discuss the relation of the results in this section to an important result,
the so-called fundamental theorem of the mathematical statistics. In that problem a
sequence of independent random variables ξ1(ω), . . . , ξn(ω) is considered with distribu-
tion function F (x), the empirical distribution function Fn(x) = Fn(x, ω) = 1

n#{j: 1 ≤
j ≤ n, ξj(ω) < x} is introduced, and the difference Fn(x) − F (x) is considered. This
result states that sup

x
|Fn(x) − F (x)| tends to zero with probability one.

Observe that sup
x

|Fn(x)−F (x)| = n−1/2 sup
f∈F

|Jn(f)|, where F consists of the func-

tions fx(·), x ∈ R1, defined by the relation fx(u) = 1 if u < x, and fx(u) = 0 if

u ≥ x. Theorem 4.1′ yields an estimate for the probabilities P

(
sup
f∈F

|Jn(f)| > u

)
.

We have seen that the above class of functions F is countably approximable. The
results of the next section imply that this class of functions is also L2-dense. Oth-
erwise it is not difficult to check this property directly. Hence we can apply The-
orem 4.1′ to the above defined class of functions with σ = 1, and it yields that

P

(
n−1/2 sup

f∈F
|Jn(f)| > u

)
≤ e−Cnu2

if 1 ≥ u ≥ C̄n−1/2 with some universal constants

C > 0 and C̄ > 0. (The condition 1 ≥ u can actually be dropped.) The application of
this estimate for the numbers ε > 0 together with the Borel–Cantelli lemma imply the
fundamental theorem of the mathematical statistics.

In short, the results of this section yield more information about the closeness the
empirical distribution function Fn and distribution function F than the fundamental
theorem of the mathematical statistics. Moreover, since these results can also be applied
for other classes of functions, they yield useful information about the closeness of the
probability measure µ and the empirical measure µn.
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5. Vapnik–Červonenkis classes and L2-dense classes of functions.

In this section the most important notions and results will be presented about Vapnik–
Červonenkis classes, and it will be explained how they help to show in some important
cases that certain classes of functions are L2-dense. The classes of L2-dense classes
played an important role in the study of the previous section. The results of this
section may help to find interesting classes of functions with this property. Some of the
results formulated in this section will be proved in Appendix A.

First I recall the following notions.

Definition of Vapnik-Červonenkis classes of sets and functions. Let a set X
be given, and let us select a class D of subsets of this set X. We call D a Vapnik–
Červonenkis class if there exist two real numbers B and K such that for all positive
integers n and subsets S(n) = {x1, . . . , xn} ⊂ X of cardinality n of the set X the
collection of sets of the form S(n) ∩ D, D ∈ D, contains no more than BnK subsets
of S(n). We shall call B the parameter and K the exponent of this Vapnik–Červonenkis
class.

A class of real valued functions F on a space (Y,Y) is called a Vapnik–Červonenkis
class if the collection of graphs of these functions is a Vapnik–Červonenkis class, i.e. if
the sets A(f) = {(y, t): y ∈ Y, min(0, f(y)) ≤ t ≤ max(0, f(y))}, f ∈ F , constitute a
Vapnik–Červonenkis class of subsets of the product space X = Y × R1.

The following result which was first proved by Sauer is of fundamental importance
in the theory of Vapnik–Červonenkis classes. This result provides a relatively simple
condition for a class D of subsets of a set X to be a Vapnik–Červonenkis class. Its proof
is given in Appendix A. Before its formulation I introduce some terminology which
seems to be wide spread and generally accepted in the literature.

Definition of shattering of a set. Let a set S and a class E of subsets of S be given.
A finite set F ⊂ S is called shattered by the class E if all its subsets H ⊂ F can be
written in the form H = E ∩ F with some element E ∈ E of the class of sets of E.

Theorem 5.1. (Sauer’s lemma). Let a finite set S = S(n) consisting of n elements be
given together with a class E of subsets of S. If E shatters no subset of S of cardinality k,
then E contains at most

(
n
0

)
+
(
n
1

)
+ · · · +

(
n

k−1

)
subsets of S.

The estimate of Sauer’s lemma is sharp. Indeed, if E contains all subsets of S of
cardinality less than or equal to k−1, then it shatters no subset of a set F of cardinality
k (a set F of cardinality k cannot be written in the form E ∩F , E ∈ E), and E contains(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

k−1

)
subsets of S. Sauer’s lemma states, that this is an extreme case.

Any class of subsets E of S with cardinality greater than
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

k−1

)
shatters

at least one subset of S with cardinality k.

Let us have a set X and a class of subsets D of it. One may be interested in when D
is a Vapnik–Červonenkis class. Sauer’s lemma gives a useful condition for it. Namely, it
implies that if there exists a positive integer k such that the class D shatters no subset
of X of cardinality k, then D is a Vapnik–Červonenkis class. Indeed, let us take some
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number n ≥ k, fix an arbitrary set S(n) = {x1, . . . , xn} ⊂ X of cardinality n, and
introduce the class of subsets E = E(S(n)) = {S(n) ∩ D: D ⊂ D}. If D shatters no
subset of X of cardinality k, then E shatters no subset of S(n) of cardinality k. Hence
by Sauer’s lemma the class E contains at most

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

k−1

)
elements. Let me

remark that it is also proved that
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

k−1

)
≤ 1.5 nk−1

(k−1)! if n ≥ k + 1. This

estimate gives a bound on the parameter and exponent of a Vapnik–Červonenkis class
which satisfies the above condition.

Moreover, Theorem 5.1 also has the following consequence. Take an (infinite) set
X and a class of its subsets D. There are two possibilities. Either there is some set
S(n) ⊂ X of cardinality n for all integers n such that E(S(n)) contains all subsets
of S(n), i.e. D shatters this set, or sup

S: S⊂X, |S|=n

|E(S)| tends to infinity at most in a

polynomial order as n → ∞, where |S| and |E(S)| denote the cardinality of S and E(S).

The following Theorem 5.2, an important result of Richard Dudley, states that a
Vapnik–Červonenkis class of functions bounded by 1 is an L1-dense class of functions.

Theorem 5.2. (A relation between the L1-dense class and Vapnik–Červonen-
kis class property). Let f(y), f ∈ F , be a Vapnik–Červonenkis class of real valued
functions on some measurable space (Y,Y) such that sup

y∈Y
|f(y)| ≤ 1 for all f ∈ F .

Then F is an L1-dense class of functions on (Y,Y). More explicitly, if F is a Vapnik–
Červonenkis class with parameter B ≥ 1 and exponent K > 0, then it is an L1-dense
class with exponent L = 2K and parameter D = CB2(4K)2K with some universal
constant C > 0.

Proof of Theorem 5.2. Let us fix some probability measure ν on (Y,Y) and a real
number 0 < ε ≤ 1. We are going to show that any finite set D(ε, ν) = {f1, . . . , fM} ⊂ F
such that

∫
|fj − fk| dν ≥ ε if j 6= k, fj , fk ∈ D(ε, ν) has cardinality M ≤ Dε−L with

some D > 0 and L > 0. This implies that F is an L1-dense class with parameter D and
exponent L. Indeed, let us take a maximal subset D̄(ε, ν) = {f1, . . . , fM} ⊂ F such that
the L1(ν) distance of any two functions in this subset is at least ε. Maximality means
in this context that no function fM+1 ∈ F can be attached to D̄(ε, ν) without violating
this condition. Thus the inequality M ≤ Dε−L means that D̄(ε, ν) is an ε-dense subset
of F in the space L1(Y,Y, ν) with no more than Dε−L elements.

In the estimation of the cardinality M of a (finite) set D(ε, ν) = {f1, . . . , fM}
with the property

∫
|fj − fk| dν ≥ ε if j 6= k the Vapnik–Červonenkis class property

of F is exploited in the following way. Let us choose relatively few p points (yl, tl),
yl ∈ Y , −1 ≤ tl ≤ 1, 1 ≤ l ≤ p, in the space (Y × [−1, 1]) in such a way that the
set S0(p) = {(yl, tl), 1 ≤ l ≤ p} and graphs A(fj) = {(y, t): y ∈ Y, min(0, fj(y)) ≤
t ≤ max(0, fj(y))}, fj ∈ D(ε, ν) ⊂ F have the property that all sets A(fj) ∩ S0(p),
1 ≤ j ≤ M , are different. Then the Vapnik–Červonenkis class property of F implies
that M ≤ BpK . Hence if there exists a set S0(p) with the above property and with a
relatively small number p, then this yields a useful estimate on M . Such a set S0(p)
will be given by means of the following random construction.
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Let us choose the p points (yl, tl), 1 ≤ l ≤ p, of the (random) set S0(p) indepen-
dently of each other in such a way that the coordinate yl is chosen with distribution ν on
(Y,Y) and the coordinate tl with uniform distribution on the interval [−1, 1] indepen-
dently of yl. (The number p will be chosen later.) Let us fix some indices 1 ≤ j, k ≤ M ,
and estimate the probability that the sets A(fj) ∩ S0(p) and A(fk) ∩ S0(p) agree,
where A(f) denotes the graph of the function f . Consider the symmetric difference
A(fj)∆A(fk) of the sets A(fj) and A(fk). The sets A(fj) ∩ S0(p) and A(fk) ∩ S0(p)
agree if and only if (yl, tl) /∈ A(fj)∆A(fk) for all (yl, tl) ∈ S0(p). Let us observe
that for a fixed l the estimate P ((yl, tl) ∈ A(fj)∆A(fk)) = 1

2 (ν × λ)(A(fj)∆A(fk)) =
1
2

∫
|fj − fk| dν ≥ ε

2 hold, where λ denotes the Lebesgue measure. This implies that
the probability that the (random) sets A(fj) ∩ S0(p) and A(fk) ∩ S0(p) agree can
be bounded from above by

(
1 − ε

2

)p ≤ e−pε/2. Hence the probability that all sets

A(fj) ∩ S0(p) are different is greater than 1 −
(
M
2

)
e−pε/2 ≥ 1 − M2

2 e−pε/2. Choose p

such that 7
4epε/2 > e(p+1)ε/2 > M2 ≥ epε/2. Then the above probability is greater than

1
8 , and there exists some set S0(p) with the desired property.

The inequalities M ≤ BpK and M2 ≥ epε/2 imply that M ≥ eεM1/K/4B1/K

, i.e.
log M1/K

M1/K ≥ ε
4KB1/K . As log M1/K

M1/K ≤ CM−1/2K for M ≥ 1 with some universal constant
C > 0, this estimate implies that Theorem 5.2 holds with the exponent L and parameter
D given in its formulation.

Let us observe that if F is an L1-dense class of functions on a measure space (Y,Y)
with some exponent L and parameter D, and also the inequality sup

y∈Y
|f(y)| ≤ 1 holds

for all f ∈ F , then F is an L2-dense class of functions with exponent 2L and parameter
D2L. Indeed, if we fix some probability measure ν on (Y,Y) together with a number

0 < ε ≤ 1, and D(ε, ν) = {f1, . . . , fM} is an ε2

2 -dense set of F in the space L1(Y,Y, ν),
M ≤ 2LDε−2L, then for all function f ∈ F some function fj ∈ D(ε, ν) can be chosen in
such a way that

∫
(f −fj)2 dν ≤ 2

∫
|f −fj | dν ≤ ε2. This implies that F is an L2-dense

class with the given exponent and parameter.

It is not easy to check whether a collection of subsets D of a set X is a Vapnik–
Červonenkis class even with the help of Theorem 5.1. Therefore the following Theo-
rem 5.3 which enables us to construct many non-trivial Vapnik–Červonenkis classes is
of special interest. Its proof is given in Appendix A.

Theorem 5.3. (A way to construct Vapnik–Červonenkis classes). Let us con-
sider a k-dimensional subspace Gk of the linear space of real valued functions defined
on a set X, and define the level-set A(g) = {x: x ∈ X, g(x) ≥ 0} for all functions
g ∈ Gk. Take the class of subsets D = {A(g): g ∈ Gk} of the set X consisting of the
above introduced level sets. No subset S = S(k + 1) ⊂ X of cardinality k + 1 is shattered
by D. Hence by Theorem 5.1 D is a Vapnik–Červonenkis class of subsets of X.

Theorem 5.3 enables us to construct many interesting Vapnik–Červonenkis classes.
Thus for instance the class of all half-spaces in a Euclidean space, the class of all
ellipses in the plane, or more generally the level sets of k-order algebraic functions with
a fixed number k constitute a Vapnik–Červonenkis class. It can be proved that if C
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and D are Vapnik–Červonenkis classes of subsets of a set S, then also their intersection
C ∩ D = {C ∩ D: C ∈ C, D ∈ D}, their union C ∪ D = {C ∪ D: C ∈ C, D ∈ D} and
complementary sets Cc = {S \C: C ∈ C} are Vapnik–Červonenkis classes. These results
are less important for us, and their proofs will be omitted. We are interested in Vapnik–
Červonenkis classes not for their own sake. We are going to study L2-dense classes
of functions, and Vapnik–Červonenkis classes make possible to find some examples.
Indeed, Theorem 5.2 implies that if D is a Vapnik–Červonenkis class of subsets of a set
S, then their indicator functions constitute an L1-dense, hence also an L2-dense class
of functions. Then the results of Lemma 5.4 formulated below enable us to construct
new L2-dense class of functions.

Lemma 5.4. (Some useful properties of L2-dense classes). Let G be an L2-dense
class of functions on some space (Y,Y) whose absolute values are bounded by one, and let
f be a function on (Y,Y) also with absolute value bounded by one. Then f ·G = {f ·g: g ∈
G} is also an L2-dense class of functions. Let G1 and G2 be two L2-dense classes of
functions on some space (Y,Y) whose absolute values are bounded by one. Then the
classes of functions G1 +G2 = {g1 +g2: g1 ∈ G1, g2 ∈ G2}, G1 ·G2 = {g1g2: g1 ∈ G1, g2 ∈
G2}, min(G1,G2) = {min(g1, g2): g1 ∈ G1, g2 ∈ G2}, max(G1,G2) = {max(g1, g2): g1 ∈
G1, g2 ∈ G2} are also L2-dense. If G is an L2-dense class of functions, and G′ ⊂ G,
then G′ is also an L2-dense class.

The proof of Lemma 5.4 is rather straightforward. One has to observe for instance that
if g1, ḡ1 ∈ G1, g2, ḡ2 ∈ G2 then |min(g1, g2)−min(ḡ1, ḡ2)| ≤ |g1− ḡ1)|+ |g2− ḡ2|, hence if
g1,1, . . . , g1,M1 is an ε

2 -dense subset of G1 and g2,1, . . . , g2,M2 is an ε
2 -dense subset of G2 in

the space L2(Y,Y, ν) with some probability measure ν, then the functions min(g1,j , g2,k),
1 ≤ j ≤ M1, 1 ≤ k ≤ M2 constitute an ε-dense subset of min(G1,G2) in L2(Y,Y, ν).
The last statement of Lemma 5.4 was proved after the Corollary of Theorem 4.1. The
details are left to the reader.

The above result enable us to construct some L2 dense class of functions. We give
an example for it in the following Example 5.5 which is a consequence of Theorem 5.2
and Lemma 5.4.

Example 5.5. Take m measurable functions fj(x), 1 ≤ j ≤ m, functions on a measur-
able space (X,X ) which have the property sup

x∈X
|fj(x)| ≤ 1 for all 1 ≤ j ≤ m. Let D be a

Vapnik-Červonenkis class consisting of measurable subsets of the set X. Define for all
pairs fj, 1 ≤ j ≤ m, and D ∈ D the function fj,D(·) as fj,D(x) = fj(x) if x ∈ D, and
fj,D(x) = 0 if x /∈ D, i.e. fj,D(·) is the restriction of the function fj(·) to the set D.
The set of functions fj,D, 1 ≤ j ≤ m, D ∈ D, is an L2-dense class of functions.

Beside this, Theorem 5.3 helps us to construct Vapnik-Červonenkis classes of sets.
Let me also remark that it follows from the result of this section that the random
variables considered in Lemma 4.5 are not only countably approximable, but the class
of functions fu1,...,uk,v1,...,vk

appearing in their definition is L2-dense.
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6. The proof of Theorems 4.1 and 4.2 on the supremum of random sums.

In this section we prove Theorem 4.2, an estimate about the tail distribution of the
supremum of an appropriate class of Gaussian random variables with the help of a
method, called the chaining argument. We also investigate the proof of Theorem 4.1
which can be considered as a version of Theorem 4.2 about the supremum of partial sums
of independent and identically distributed random variables. The chaining argument is
not a strong enough method to prove Theorem 4.1, but it enables us to prove a weakened
form of it formulated in Proposition 6.1. This result turned out to be useful in the proof
of Theorem 4.1. It enables us to reduce the proof of Theorem 4.1 to a simpler statement
formulated in Proposition 6.2. In this section we prove Proposition 6.1, formulate
Proposition 6.2, and reduce the proof of Theorem 4.1 with the help of Proposition 6.1
to this result. The proof of Proposition 6.2 which demands different arguments is
postponed to the next section. Before presenting the proofs of this section I briefly
describe the chaining argument.

Let us consider a countable class of functions F on a probabality space (X,X , µ)
which is L2-dense with respect to the probability measure µ. Let us have either a
class of Gaussian random variables Z(f) with zero expectation such that EZ(f)Z(g) =
∫

f(x)g(x)µ( dx), f, g ∈ F , or a set of normalized partial sums Sn(f) = 1√
n

n∑
j=1

f(ξj),

f ∈ F , where ξ1, . . . , ξn is a sequence of independent µ distributed random variables
with values in the space (X,X ), and assume that Ef(ξj) = 0 for all f ∈ F . We want

to get a good estimate on the probability P

(
sup
f∈F

Z(f) > u

)
or P

(
sup
f∈F

Sn(f) > u

)
if

the class of functions F has some nice properties. The chaining argument suggests to
prove such an estimate in the following way.

Let us try to find an appropriate sequence of subset F1 ⊂ F2 ⊂ · · · ⊂ F such

that
∞⋃

N=1

FN = F , FN is such a set of functions from F with relatively few elements for

which inf
f∈FN

∫
(f− f̄)2 dµ ≤ δN with an appropriately chosen number δN for all functions

f̄ ∈ F , and let us give a good estimate on the probability P

(
sup

f∈FN

Z(f) > uN

)
or

P

(
sup

f∈FN

Sn(f) > uN

)
for all N = 1, 2, . . . with an appropriately chosen monotone

increasing sequence uN such that lim
N→∞

uN = u.

We can get a relatively good estimate under appropriate conditions for the class
of functions F by choosing the classes of functions FN and numbers δN and uN in an
appropriate way. We try to bound the difference of the probabilities

P

(
sup

f∈FN+1

Z(f) > uN+1

)
− P

(
sup

f∈FN

Z(f) > uN

)

or of the analogous difference if Z(f) is replaced by Sn(f). For the sake of completeness
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define this difference also in the case N = 1 with the choice F0 = ∅, when the second
probability in this difference equals zero.

This probability can be estimated in a natural way by taking for all functions
fjN+1

∈ FN+1 a function fjN
∈ FN which is close to it, more explicitly

∫
(fjN+1

−
fjN

)2 dµ ≤ δ2
N , and calculating the probability that the difference of the random vari-

ables corresponding to these two functions is greater than uN+1 −uN . We can estimate
these probabilities with the help of some results which give a relatively good bound on
the tail distribution of Z(g) or Sn(g) if

∫
g2 dµ is small. The sum of all such probabilities

gives an upper bound for the above considered difference of probabilities. Then we get

an estimate for the probability P

(
sup

f∈FN

Z(f) > uN

)
for all N = 1, 2, . . . , by summing

up the above estimate, and we get a bound on the probability we are interested in by
taking the limit N → ∞. This method is called the chaining argument. It got this
name, because we estimate the contribution of a random variable corresponding to a
function fjN+1

∈ FN+1 to the bound of the probability we investigate by taking the ran-
dom variable corresponding to a function fjN

∈ FN close to it, then we choose another
random variable corresponding to a function fjN−1

∈ FN−1 close to this function, and
so on we take a chain of subsequent functions and the random variables corresponding
to them.

First we show how this method supplies the proof of Theorem 4.2. Then we turn
to the investigation of Theorem 4.1. In the study of this problem the above method
does not work well, because if two functions are very close to each other in the L2(µ)-
norm, then the Bernstein inequality (or an improvement of it) supplies a much weaker
estimate for the difference of the partial sums corresponding to these two functions
than the bound suggested by the central limit theorem. On the other hand, we shall
prove a weaker version of Theorem 4.1 in Proposition 6.1 with the help of the chaining
argument. This result will be also useful for us.

Proof of Theorem 4.2. Let us list the elements of F as {f0, f1, . . . } = F , and choose
for all p = 0, 1, 2, . . . a set of functions Fp = {fa(1,p), . . . , fa(mp,p)} ⊂ F with mp ≤
(D + 1) 22pLσ−L elements in such a way that inf

1≤j≤mp

∫
(f − fa(j,p))

2 dµ ≤ 2−4pσ2 for all

f ∈ F , and let fp ∈ Fp. For all indices a(j, p) of the functions in Fp, p = 1, 2, . . . , define
a predecessor a(j′, p − 1) from the indices of the set of functions Fp−1 in such a way
that the functions fa(j,p) and fa(j′,p−1)) satisfy the relation

∫
(f(j,p) − f(j′,p−1))

2 dµ ≤
2−4(p−1)σ2. With the help of the behaviour of the standard normal distribution function
we can write the estimates

P (A(j, p)) = P
(
|Z(fa(j,p)) − Z(fa(j′,p−1))| ≥ 2−(1+p)u

)
≤ 2 exp

{
− 2−2(p+1)u2

2 · 2−4(p−1)σ2

}

= 2 exp

{
− 22pu2

128σ2

}
1 ≤ j ≤ mp, p = 1, 2, . . . ,

and

P (B(j)) = P
(
|Z(fa(j,0))| ≥

u

2

)
≤ exp

{
− u2

8σ2

}
, 1 ≤ j ≤ m0.
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The above estimates together with the relation
∞⋃

p=0
Fp = F which implies that

{|Z(f)| ≥ u} ⊂
∞⋃

p=1

mp⋃
j=1

A(j, p) ∪
m0⋃
s=1

B(s) for all f ∈ F yield that

P

(
sup
f∈F

|Z(f)| ≥ u

)
≤ P




∞⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1

B(s)




≤
∞∑

p=1

mp∑

j=1

P (A(j, p)) +

m0∑

s=1

P (B(s))

≤
∞∑

p=1

2(D + 1)22pLσ−L exp

{
− 22pu2

128σ2

}
+ 2(D + 1)σ−L exp

{
− u2

8σ2

}
.

If u ≥ ML1/2σ log1/2 2
σ with M ≥ 16 (and L ≥ 1 and 0 < σ ≤ 1), then

22pLσ−L exp

{
− 22pu2

256σ2

}
≤ 22pLσ−L

(σ

2

)22pM2L/256

≤ 2−pL ≤ 2−p

for all p = 0, 1 . . . , hence the previous inequality implies that

P

(
sup
f∈F

|Z(f)| ≥ u

)
≤ 2(D + 1)

∞∑

p=0

2−p exp

{
− 22pu2

256σ2

}
= 4(D + 1) exp

{
− u2

256σ2

}
.

Theorem 4.2 is proved.

With an appropriate choice of the bound of the integrals in the definition of the
sets Fp in the proof of Theorem 4.2 and some additional calculation it can be proved
that the coefficient 1

256 in the exponent of the right-hand side (4.7) can be replaced by
1−ε
2 with arbitrary small ε > 0 if the remaining (universal) constants in this estimate

are chosen sufficiently large.

The proof of Theorem 4.2 was based on a sufficiently good estimate on the proba-
bilities P (|Z(f) − Z(g)| > u) for pairs of functions f, g ∈ F and numbers u > 0. In the
case of Theorem 4.1 only a weaker bound can be given for the corresponding probabil-
ities. There is no good estimate on the tail distribution of the difference Sn(f) − Sn(g)
if its variance is small. As a consequence, the chaining argument supplies only a weaker
result in this case. This result, where the tail distribution of the supremum of the
normalized random sums Sn(f) is estimated on a relatively dense subset of the class of
functions f ∈ F in the L2(µ) norm will be given in Proposition 6.1. Another result will
be formulated in Proposition 6.2 whose proof is postponed to the next section. It will
be shown that Theorem 4.1 follows from Propositions 6.1 and 6.2.

Before the formulation of Proposition 6.1 I recall an estimate which is a simple

consequence of Bernstein’s inequality. If Sn(f) = 1√
n

n∑
j=1

f(ξj) is the normalized sum of
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independent, identically random variables, P (|f(ξ1)| ≤ 1) = 1, Ef(ξ1) = 0, Ef(ξ1)2 ≤
σ2, then there exists some constant α > 0 such that

P (|Sn(f)| > u) ≤ 2e−αu2/σ2

if 0 < u <
√

nσ2. (6.1)

Proposition 6.1. Let us have a countable L2-dense class of functions F with parameter
D ≥ 1 and exponent L ≥ 1 on a measurable space (X,X ) whose elements satisfy rela-
tions (4.1), (4.2) and (4.3) with some probability measure µ on (X,X ) and real number
0 < σ ≤ 1. Take a sequence of independent, µ-distributed random variables ξ1, . . . , ξn,

n ≥ 2, and define the normalized random sums Sn(f) = 1√
n

n∑
l=1

f(ξl), for all f ∈ F . Let

us fix some number Ā ≥ 1. There exists some number M = M(Ā) such that with these
parameters Ā and M = M(Ā) ≥ 1 the following relations hold.

For all numbers u > 0 such that nσ2 ≥
(

u
σ

)2 ≥ M(L log 2
σ + log D) a number

σ̄ = σ̄(u), 0 ≤ σ̄ ≤ σ ≤ 1, and a collection of functions Fσ̄ = {f1, . . . , fm} ⊂ F
with m ≤ Dσ̄−L elements can be chosen in such a way that the sets Dj = {f : f ∈
F ,
∫
|f − fj |2 dµ ≤ σ̄2}, 1 ≤ j ≤ m, satisfy the relation

m⋃
j=1

Dj = F , and the normalized

random sums Sn(f), f ∈ Fσ̄, n ≥ 2, satisfy the inequality

P

(
sup

f∈Fσ̄

|Sn(f)| ≥ u

Ā

)
≤ 4 exp

{
−α

( u

10Āσ

)2
}

if nσ2 ≥ ( u
σ )2 ≥ M(L log 2

σ + log D)

(6.2)
with the constants α in formula (6.1) and the exponent L and parameter D of the

L2-dense class F , and also the inequality 1
16 ( u

Āσ̄
)2 ≥ nσ̄2 ≥ 1

64

(
u

Āσ

)2
holds with the

number σ̄ = σ̄(u). If the number u satisfies also the inequality

nσ2 ≥
(u

σ

)2

≥ M

(
L3/2 log

2

σ
+ (log D)3/2

)
(6.3)

with a sufficiently large number M = M(Ā), then the relation nσ̄2 ≥ L log n + log D
holds, too.

Proposition 6.1 helps to reduce the proof of Theorem 4.1 to the case when the L2-
norm of the functions in the class F is bounded by a relatively small number σ̄. In more
detail, the proof of Theorem 4.1 can be reduced to a good estimate on the distribution
of the supremum of random variables sup

f∈Dj

|Sn(f − fj)| for all classes Dj , 1 ≤ j ≤ m,

by means of Proposition 6.1. We also have to know that the number m of the classes
Dj is not too large. Beside this, we need some estimates on the number σ̄ which is the
upper bound of the L2-norm of the functions f − fj , f ∈ Dj . To get such bounds for σ̄
that we need in the applications of Proposition 6.1 we introduced a large parameter Ā
in the formulation of Proposition 6.1 and imposed a condition with a sufficiently large
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number M = M(Ā) in formula (6.3). This condition reappears in Theorem 4.1 in the
conditions of the estimate (4.4).

Let me remark that one of the inequalities the number σ̄ introduced in Proposi-
tion 6.1 satisfies has the consequence u > const.

√
nσ̄2 with an appropriate constant,

and we want to estimate the probability P

(
sup
f∈F

Sn(f)| > u

)
with this number u and

a class of functions F whose L2 norm is bounded by σ̄. Formula (6.1), that will be
applied in the proof of Proposition 6.1 holds under the condition u <

√
nσ2, which is

an inequality in the opposite direction. Hence to complete the proof of Theorem 4.1
with the help of Proposition 6.1 we need a result whose proof demands an essentially
different method. Proposition 6.2 formulated below is such a result. I shall show that
Theorem 4.1 is a consequence of Propositions 6.1 and 6.2. Proposition 6.1 is proved
at the end of this section, while the proof of Proposition 6.2 is postponed to the next
section.

Proposition 6.2. Let us have a probability measure µ on a measurable space (X,X )
together with a sequence of independent and µ distributed random variables ξ1, . . . , ξn,
n ≥ 2, and a countable, L2-dense class of functions f = f(x) on (X,X ) with some
parameter D ≥ 1 and exponent L ≥ 1 which satisfies conditions (4.1), (4.2) and (4.3)
with some 0 < σ ≤ 1 such that the inequality nσ2 > L log n + log D holds. Then there
exists a threshold index A0 ≥ 5 such that the normalized random sums Sn(f), f ∈ F ,
introduced in Theorem 4.1 satisfy the inequality

P

(
sup
f∈F

|Sn(f)| ≥ An1/2σ2

)
≤ e−A1/2nσ2/2 if A ≥ A0. (6.4)

I did not try to find optimal parameters in formula (6.4). Even the coefficient −A1/2

in the exponent at its right-hand side could be improved. The result of Proposition 6.2
is similar to that of Theorem 4.1. Both of them give an estimate on a probability of

the form P

(
sup
f∈F

|Sn(f)| ≥ u

)
with some class of functions F . The essential difference

between them is that in Theorem 4.1 this probability is considered for u ≤ n1/2σ2

while in Proposition 6.2 the case u = An1/2σ2 with A ≥ A0 is taken, where A0 is a
sufficiently large positive number. Let us observe that in this case no good Gaussian type
estimate can be given for the probabilities P (Sn(f) ≥ u), f ∈ F . In this case Bernstein’s

inequality yields the bound P (Sn(f) > An1/2σ2) = P

(
n∑

l=1

f(ξl) > uVn

)
< e−const. Anσ2

with u = A
√

nσ and Vn =
√

nσ for each single function f ∈ F which takes part in the
supremum of formula (6.4). The estimate (6.4) yields a slightly weaker estimate for the
supremum of such random variables, since it contains the coefficient A1/2 instead of A
in the exponent of the estimate at the right-hand side. But also such a bound will be
sufficient for us.
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In Proposition 6.2 such a situation is considered when the irregularities of the
summands provide a non-negligible contribution to the probabilities P (|Sn(f)| ≥ u),
and the chaining argument applied in the proof of Theorem 4.2 does not give a good
estimate on the probability at the left-hand side of (6.4). This is the reason why we
separated the proof of Theorem 4.1 to two different statements given in Proposition 6.1
and 6.2.

In the proof of Theorem 4.1 Proposition 6.1 will be applied with a sufficiently
large number Ā ≥ 1 and an appropriate number M = M(Ā) appearing in the for-
mulation of this result. Proposition 6.2 will be applied for the set of functions F =

Fj =
{

g−fj

2 : g ∈ Dj

}
and number σ = σ̄, with the number σ̄, functions fj and sets of

functions Dj introduced in Proposition 6.1 and with the parameter A0 appearing in the
formulation of Proposition 6.2. We can write

P

(
sup
f∈F

|Sn(f)| ≥ u

)
≤ P

(
sup

f∈Fσ̄

|Sn(f)| ≥ u

Ā

)
(6.5)

+
m∑

j=1

P

(
sup
g∈Dj

∣∣∣∣Sn

(
fj − g

2

)∣∣∣∣ ≥
(

1

2
− 1

2Ā

)
u

)
,

where m is the cardinality of the set of functions Fσ̄ appearing in Proposition 6.1,
which is bounded by m ≤ Dσ̄−L. We want to choose the number Ā in such a way
that the inequality (1

2 − 1
2Ā

)u ≥ A0
√

nσ̄2 holds, since this enables us to estimate the
second term in (6.5) by Proposition 6.2 with the choice A = A0. This inequality
is equivalent to nσ̄2 ≤ ( 1

2A0
− 1

2A0Ā
)2( u

σ̄ )2. On the other hand, ( u
4Āσ̄

)2 ≥ nσ̄2 by

Proposition 6.1, hence the desired inequality holds if 1
2A0

− 1
2A0Ā

≥ 1
4Ā

. Hence with the

choice Ā = max(1, A0+2
2 ) and a sufficiently large M = M(Ā) we can bound both terms

at the right-hand side of (6.5) with Propositions (6.1) and (6.2) respectively.

With such a choice of Ā we can write by Proposition 6.2

P

(
sup
g∈Dj

∣∣∣∣Sn

(
fj − g

2

)∣∣∣∣ ≥
(

1

2
− 1

2Ā

)
u

)
≤ P

(
sup
g∈Dj

∣∣∣∣Sn

(
fj − g

2

)∣∣∣∣ ≥ A0

√
nσ̄2

)

≤ e−A
1/2
0 nσ̄2/2 for all 1 ≤ j ≤ m.

(Observe that the set of functions
fj−g

2 , g ∈ Dj , is an L2-dense class with parameter
D and exponent L.) Hence Proposition 6.1 together with the bound m ≤ Dσ̄−L and
formula 6.5 imply that

P

(
sup
f∈F

|Sn(f)| ≥ u

)
≤ 4 exp

{
−α

( u

10Āσ

)2
}

+ Dσ̄−Le−A
1/2
0 nσ̄2/2. (6.6)

To get the estimate in Theorem 4.1 from inequality (6.6) we show that the inequality
nσ̄2 ≥ L log n + log D (with L ≥ 1, D ≥ 1 and n ≥ 2) which is valid under the
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conditions of Proposition 6.1 implies that Dσ̄−L ≤ enσ̄2

. Indeed, we have to show that

log D + L log 1
σ̄ ≤ nσ̄2. But we have nσ̄2 ≥ L log n ≥ log n, hence 1

σ̄ ≤
√

n
log n ≤ n, thus

log 1
σ̄ ≤ log n, and log D + L log 1

σ̄ log D + L log n ≤ nσ̄2, as we claimed.

This inequality together with the inequality nσ̄2 ≥ 1
64 ( u

Āσ
)2, proved in Proposi-

tion 6.1 imply that

Dσ̄−Le−A
1/2
0 nσ̄2/2 ≤ exp

{
−
(

A
1/2
0

2
− 1

)
nσ̄2

}
≤ exp

{
− (A

1/2
0 − 2)

128Ā2

(u

σ

)2
}

.

Hence relation (6.6) yields that

P

(
sup
f∈F

|Sn(f)| ≥ u

)
≤ 4 exp

{
− α

100Ā2

(u

σ

)2
}

+ exp

{
− (A

1/2
0 − 2)

128Ā2

(u

σ

)2
}

,

and because of the relation A0 ≥ 5 this estimate implies Theorem 4.1. Let me re-
mark that the condition

√
nσ2 ≥ u ≥ Mσ(L3/4 log1/2 2

σ + (log D)3/4) appears in for-
mula (4.4) because of condition (6.3) imposed in Proposition 6.1. (The parameter M
in formula (4.4) can be chosen as the double of the parameter M in (6.3).)

I finish this section with the proof of Proposition 6.1.

Proof of Proposition 6.1. Let us list the members of F , as f1, f2, . . . , and choose for all
p = 0, 1, 2, . . . a set Fp = {fa(1,p), . . . , fa(mp,p)} ⊂ F with mp ≤ D 22pLσ−L elements in
such a way that inf

1≤j≤mp

∫
(f −fa(j,p))

2 dµ ≤ 2−4pσ2 for all f ∈ F . For all indices a(j, p),

p = 1, 2, . . . , 1 ≤ j ≤ mp, choose a predecessor a(j′, p− 1), j′ = j′(j, p), 1 ≤ j′ ≤ mp−1,
in such a way that the functions fa(j,p) and fa(j′,p−1) satisfy the relation

∫
|fa(j,p) −

fa(j′,p−1)|2 dµ ≤ σ22−4(p−1). Then we have
∫ ( fa(j,p)−fa(j′,p−1)

2

)2

dµ ≤ 4σ22−4p and

sup
xj∈X, 1≤j≤k

∣∣∣ fa(j,p)(x1,...,xk)−fa(j′,p−1)(x1,...,xk)

2

∣∣∣ ≤ 1. Relation (6.1) yields that

P (A(j, p)) = P

(
1

2
|Sn(fa(j,p) − fa(j′,p−1))| ≥

2−(1+p)u

2Ā

)
≤ 2 exp

{
−α

(
2pu

8Āσ

)2
}

if nσ2 ≥ 26p
( u

16Āσ

)2

, 1 ≤ j ≤ mp, p = 1, 2, . . . , (6.7)

and

P (B(s)) = P
(
|Sn(fs,0)| ≥ u

2Ā

)
≤ 2 exp

{
−α

( u

2Āσ

)2
}

, 1 ≤ s ≤ m0,

if nσ2 ≥
( u

2Āσ

)2

.

(6.8)

Choose an integer number R = R(u), R ≥ 1, by the inequality 26(R+1)
(

u
16Āσ

)2
>

nσ2 ≥ 26R
(

u
16Āσ

)2
, define σ̄2 = 2−4Rσ2 and Fσ̄ = FR. (As nσ2 ≥

(
u
σ

)2
and Ā ≥ 1
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by our conditions, there exists such a number R ≥ 1. The number R was chosen as
the largest number p for which the second relation of formula (6.7) holds.) Then the
cardinality m of the set Fσ̄ equals mR ≤ D22RLσ−L = Dσ̄−L, and the sets Dj are

Dj = {f : f ∈ F ,
∫

(fa(j,R) − f)2 dµ ≤ 2−4Rσ2}, 1 ≤ j ≤ mR, hence
m⋃

j=1

Dj = F .

Beside this, with our choice of the number R inequalities (6.7) and (6.8) can be applied
for 1 ≤ p ≤ R. Hence the definition of the predecessor of an index (j, p) implies that{

ω: sup
f∈Fσ̄

|Sn(f)(ω)| ≥ u
Ā

}
⊂

R⋃
p=1

mp⋃
j=1

A(j, p) ∪
m0⋃
s=1

B(s), and

P

(
sup

f∈Fσ̄

|Sn(f)| ≥ u

Ā

)
≤ P




R⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1

B(s)




≤
R∑

p=1

mp∑

j=1

P (A(j, p)) +

m0∑

s=1

P (B(s)) ≤
∞∑

p=1

2D 22pLσ−L exp

{
−α

(
2pu

8Āσ

)2
}

+ 2Dσ−L exp

{
−α

( u

2Āσ

)2
}

.

If the relation (u
σ )2 ≥ M(L log 2

σ + log D) holds with a sufficiently large constant M
(depending on Ā), and σ ≤ 1, then the inequalities

D22pLσ−L exp

{
−α

(
2pu

8Āσ

)2
}

≤ 2−p exp

{
−α

(
2pu

10Āσ

)2
}

hold for all p = 1, 2, . . . , and

Dσ−L exp

{
−α

( u

2Āσ

)2
}

≤ exp

{
−α

( u

10Āσ

)2
}

.

Hence the previous estimate implies that

P

(
sup

f∈Fσ̄

|Sn(f)| ≥ u

Ā

)
≤

∞∑

p=1

2 · 2−p exp

{
−α

(
2pu

10Āσ

)2
}

+ 2 exp

{
−α

( u

10Āσ

)2
}

≤ 4 exp

{
−α

( u

10Āσ

)2
}

,

and relation (6.2) holds.

As σ2 = 24Rσ̄2 the inequality

2−4R · 26R

256

( u

Āσ

)2

≤ nσ̄2 = 2−4Rnσ2 ≤ 2−4R · 26(R+1)

256

( u

Āσ

)2

=
1

4
· 2−2R

( u

Āσ̄

)2
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holds, and this implies (together with the relation R ≥ 1) that

1

64

( u

Āσ

)2

≤ nσ̄2 ≤ 1

16

( u

Āσ̄

)2

,

as we have claimed. It remained to show that under the condition (6.3) nσ̄2 ≥ L log n+
log D.

This inequality clearly holds under the conditions of Proposition 6.1 if σ ≤ n−1/3,
since in this case log 2

σ ≥ log n
3 , and nσ̄2 ≥ 1

64 ( u
Āσ

)2 ≥ 1
64Ā2 M(L3/2 log 2

σ +(log D)3/2) ≥
1

192Ā2 M(L3/2 log n + (log D)3/2) ≥ L log n + log D if M ≥ M0(Ā) with a sufficiently

large number M0(Ā).

If σ ≥ n−1/3, we can exploit that the inequality 26R
(

u
Āσ

)2 ≤ 256nσ2 holds because

of the definition of the number R. It can be rewritten as 2−4R ≥ 2−16/3

[(
u

Āσ

)2

nσ2

]2/3

.

Hence nσ̄2 = 2−4Rnσ2 ≥ 2−16/3

Ā4/3 (nσ2)1/3
(

u
σ

)4/3
. As log 2

σ ≥ log 2 > 1
2 the inequalities

nσ2 ≥ n1/3 and (u
σ )2 ≥ M(L3/2 log 2

σ + (log D)3/2) ≥ M
2 (L3/2 + (log D)3/2) hold. They

yield that

nσ̄2 ≥ Ā−4/3

50
(nσ2)1/3

(u

σ

)4/3

≥ Ā−4/3

50
n1/9

(
M

2

)2/3

(L3/2 + (log D)3/2)2/3

≥ M2/3n1/9(L + log D)

100Ā4/3
≥ L log n + log D

if M = M(Ā) is chosen sufficiently large.
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7. The completion of the proof of Theorem 4.1.

This section contains the proof of Proposition 6.2 with the help of a symmetrization
argument which completes the proof of Theorem 4.1. By symmetrization argument I
mean the reduction of the investigation of sums of the form

∑
f(ξj) to sums of the

form
∑

εjf(xj), where εj are independent random variables, independent also of the
random variables ξj , and P (εj = 1) = P (εj = −1) = 1

2 . First a symmetrization lemma
is proved, and then with the help of this result and a conditioning argument the proof
of Proposition 6.2 is reduced to the estimation of a probability which can be bounded
by means of the Hoeffding inequality formulated in Theorem 3.4. Such an approach
makes possible to prove Proposition 6.2.

First I formulate the symmetrization lemma we shall apply.

Lemma 7.1. (Symmetrization Lemma). Let Zn and Z̄n, n = 1, 2, . . . , be two
sequences of random variables independent of each other, and let the random variables
Z̄n, n = 1, 2, . . . , satisfy the inequality

P (|Z̄n| ≤ α) ≥ β for all n = 1, 2, . . . (7.1)

with some numbers α ≥ 0 and β ≥ 0. Then

P

(
sup

1≤n<∞
|Zn| > u + α

)
≤ 1

β
P

(
sup

1≤n<∞
|Zn − Z̄n| > u

)
for all u > 0.

Proof of Lemma 7.1. Put τ = min{n: |Zn| > u + α} if there exists such an index n,
and τ = 0 otherwise. Then the event {τ = n} is independent of the sequence of random
variables Z̄1, Z̄2, . . . for all n = 1, 2, . . . , and because of this independence

P ({τ = n}) ≤ 1

β
P ({τ = n} ∩ {|Z̄n| ≤ α}) ≤ 1

β
P ({τ = n} ∩ {|Zn − Z̄n| > u})

for all n = 1, 2, . . . . Hence

P

(
sup

1≤n<∞
|Zn| > u + α

)
=

∞∑

l=1

P (τ = l) ≤ 1

β

∞∑

l=1

P ({τ = l} ∩ {|Zl − Z̄l| > u})

≤ 1

β

∞∑

l=1

P ({τ = l} ∩ sup
1≤n<∞

|Zn − Z̄n| > u}) ≤ 1

β
P

(
sup

1≤n<∞
|Zn − Z̄n| > u

)
.

Lemma 7.1 is proved.

We shall apply the following consequence Lemma 7.2 of the symmetrization lemma.

Lemma 7.2. Let us fix a countable class of functions F on a measurable space (X,X )
together with a real number 0 < σ < 1. Consider a sequence of independent and
identically distributed random variables ξ1, . . . , ξn with values in the space (X,X ) such
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that Ef(ξ1) = 0, Ef2(ξ1) ≤ σ2 for all f ∈ F together with another sequence ε1, . . . , εn

of independent random variables with distribution P (εj = 1) = P (εj = −1) = 1
2 ,

1 ≤ j ≤ n, independent also of the random sequence ξ1, . . . , ξn. Then

P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

f(ξj)

∣∣∣∣∣∣
≥ An1/2σ2




≤ 4P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

εjf(ξj)

∣∣∣∣∣∣
≥ A

3
n1/2σ2


 if A ≥ 3

√
2√

nσ
.

(7.2)

Proof of Lemma 7.2. Let us construct an independent copy ξ̄1, . . . , ξ̄n of the sequence
ξ1, . . . , ξn in such a way that all three sequences ξ1, . . . , ξn, ξ̄1, . . . , ξ̄n and ε1, . . . , εn

are independent. Define the random variables Sn(f) = 1√
n

n∑
j=1

f(ξj) and S̄n(f) =

1√
n

n∑
j=1

f(ξ̄j) for all f ∈ F . The inequality

P

(
sup
f∈F

|Sn(f)| > A
√

nσ2

)
≤ 2P

(
sup
f∈F

|Sn(f) − S̄n(f)| >
2

3
A
√

nσ2

)
. (7.3)

follows from Lemma 7.1 if it is applied for the countable set of random variables Zn(f) =
Sn(f) and Z̄n(f) = S̄n(f), f ∈ F , and the numbers u = 2

3A
√

nσ2 and α = 1
3A

√
nσ2,

since the random fields Sn(f) and S̄n(f) are independent, and P (|S̄n(f)| ≤ α) > 1
2 for

all f ∈ F . Indeed, α = 1
3A

√
nσ2 ≥

√
2σ, ES̄n(f)2 ≤ σ2, thus Chebishev’s inequality

implies that P (|S̄n(f)| ≤ α) ≥ P (|S̄n(f)| ≤
√

2σ) ≥ 1
2 for all f ∈ F .

Let us observe that the random field

Sn(f) − S̄n(f) =
1√
n

n∑

j=1

(
f(ξj) − f(ξ̄j)

)
, f ∈ F , (7.4)

and its randomization

1√
n

n∑

j=1

εj

(
f(ξj) − f(ξ̄j)

)
, f ∈ F , (7.4′)

have the same distribution. Indeed, even the conditional distribution of (7.4′) under the
condition that the values of the εj-s are prescribed agrees with the distribution of (7.4)
for all possible values of the εj-s. This follows from the observation that the distribution
of the random field (7.4) does not change if we exchange the random variables ξj and
ξ̄j for those indices j for which εj = −1 and do not change them for those indices j
for which εj = 1. On the other hand, the distribution of the random field obtained in
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such a way agrees with the conditional distribution of the random field defined in (7.4′)
under the condition that the values of the random variables εj are prescribed.

The above relation together with formula (7.3) imply that

P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

f(ξj)

∣∣∣∣∣∣
≥ An1/2σ2




≤ 2P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

εj

[
f(ξj) − f̄(ξj)

]
∣∣∣∣∣∣
≥ 2

3
An1/2σ2




≤ 2P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

εjf(ξj)

∣∣∣∣∣∣
≥ A

3
n1/2σ2




+ 2P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

εjf(ξ̄j)

∣∣∣∣∣∣
≥ A

3
n1/2σ2




= 4P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

εjf(ξj)

∣∣∣∣∣∣
≥ A

3
n1/2σ2


 .

Lemma 7.2 is proved.

Let me briefly explain the method of proof of Proposition 6.2. A probability of the

form P

(
n−1/2 sup

f∈F

∣∣∣∣∣
n∑

j=1

f(ξj)

∣∣∣∣∣ > u

)
has to be estimated. Lemma 7.2 enables us to re-

place this problem by the estimation of the probability P

(
n−1/2 sup

f∈F

∣∣∣∣∣
n∑

j=1

εjf(ξj)

∣∣∣∣∣ >
u
3

)

with some independent random variables εj , P (εj = 1) = P (εj = −1) = 1
2 , j = 1, . . . , n,

which are also independent of the random variables ξj . We shall bound the conditional
probability of the event appearing in this modified problem under the condition that
the values of the random variables ξj have prescribed values. This can be done with the
help of Hoeffding’s inequality formulated in Theorem 3.4 and the L2-density property
of the class of functions F we consider. We hope to get a sharp estimate in such a way
which is similar to the result we got in the study of the Gaussian counterpart of this
problem, because Hoeffding’s inequality yields always a Gaussian type upper bound for
the tail distribution of the random sum we are studying.

Nevertheless, there appears a problem when we try to apply such an approach.
To get a good estimate on the conditional tail distribution of the supremum of the
random sums we are studying with the help of Hoeffding’s inequality we need a good
estimate on the conditional variances of the random sums we are studying, i.e. on the

tail distribution of sup
f∈F

1
n

n∑
j=1

f2(ξj). This problem is similar to the original one, and it

is not simpler.
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But a more detailed study shows that our approach to get a good estimate with the
help of Hoeffding’s inequality works. In comparing our original problem with the new,
complementary problem we have to understand at which level we need a good estimate
on the tail distribution of the supremum in the complementary problem to get a good
tail distribution estimate at level u in the original problem. A detailed study shows that
to bound the probability in the original problem with parameter u we have to estimate

the probability P

(
n−1/2 sup

f∈F ′

∣∣∣∣∣
n∑

j=1

f(ξj)

∣∣∣∣∣ > u1+α

)
with some new nice, appropriately

defined L2-dense class of bounded functions F ′ and some number α > 0. We shall
exploit that the number u is replaced by a larger number u1+α in the new problem.
Let us also observe that if the sum of bounded random variables is considered, then
for very large values u the probability we investigate equals zero. On the basis of these
observations an appropriate backward induction procedure can be worked out. In its

n-th step we give a good upper bound on the probability P

(
n−1/2 sup

f∈F

∣∣∣∣∣
n∑

j=1

f(ξj)

∣∣∣∣∣ > u

)

if u ≥ Tn with an appropriately chosen number Tn, and try to diminish the number Tn

in each step of this induction procedure. We can prove Proposition 6.2 as a consequence
of the result we get by means of this backward induction procedure. To work out the
details we introduce the following notion.

Definition of good tail behaviour for a class of normalized random sums.
Let us have some measurable space (X,X ) and a probability measure µ on it together
with some integer n ≥ 2 and real number σ > 0. Consider some class F of functions
f(x) on the space (X,X ), and take a sequence of independent and µ distributed random
variables ξ1, . . . , ξn with values in the space (X,X ). Define the normalized random sums

Sn(f) = 1√
n

n∑
j=1

f(ξj), f ∈ F . Given some real number T > 0 we say that the set of

normalized random sums Sn(f), f ∈ F , has a good tail behaviour at level T (with
parameters n and σ2 which will be fixed in the sequel) if the inequality

P

(
sup
f∈F

|Sn(f)| ≥ A
√

nσ2

)
≤ exp

{
−A1/2nσ2

}
(7.5)

holds for all numbers A > T .

Now I formulate Proposition 7.3 and show that Proposition 6.2 follows from it.

Proposition 7.3. Let us fix a positive integer n ≥ 2, a real number 0 < σ ≤ 1 and a
probability measure µ on a measurable space (X,X ) together with some numbers L ≥ 1
and D ≥ 1 such that nσ2 ≥ L log n + log D. Let us consider those countable L2-dense
classes F of functions f = f(x) on the space (X,X ) with exponent L and parameter D
for which all functions f ∈ F satisfy the conditions sup

x∈X
|f(x)| ≤ 1

4 ,
∫

f(x)µ( dx) = 0

and
∫

f2(x)µ( dx) ≤ σ2.
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Let a number T > 1 be such that for all classes of functions F which satisfy the above

conditions the set of normalized random sums Sn(f) = 1√
n

n∑
j=1

f(ξj), f ∈ F , defined with

the help of a sequence of independent µ distributed random variables ξ1, . . . , ξn have a
good tail behaviour at level T 4/3. There is a universal constant Ā0 such that if T ≥ Ā0,
then the set of the above defined normalized sums, Sn(f), f ∈ F , have a good tail
behaviour for all such classes of functions F not only at level T 4/3 but also at level T .

Proposition 6.2 simply follows from Proposition 7.3. To show this let us first observe
that a class of normalized random sums Sn(f), f ∈ F , has a good tail behaviour at level
T0 = 1

4σ2 if this class of functions F satisfies the conditions of Proposition 7.3. Indeed,

in this case P

(
sup
f∈F

|Sn(f)| ≥ A
√

nσ2

)
≤ P

(
sup
f∈F

|Sn(f)| >
√

n
4

)
= 0 for all A > T0.

Then the repetitive application of Proposition 7.3 yields that a class of random sums

Sn(f), f ∈ F , has a good tail behaviour at all levels T ≥ T
(3/4)j

0 with an index j such

that T
(3/4)j

0 ≥ Ā0 if the class of functions F satisfies the conditions of Proposition 7.3.

Hence it has a good tail behaviour for T = Ā
4/3
0 . If a class of functions f ∈ F satisfies the

conditions of Proposition 6.2, then the class of functions F̄ =
{

f̄ = f
4 : f ∈ F

}
satisfies

the conditions of Proposition 7.3, with the same parameters σ, L and D. (Actually some
of the inequalities that must hold for the elements of a class of functions F satisfying
the conditions of Proposition 7.3 are valid with smaller parameters. But we did not
change these parameters to satisfy also the condition nσ2 ≥ L log n + log D.) Hence

the class of functions Sn(f̄), f̄ ∈ F̄ , has a good tail behaviour at level T = Ā
4/3
0 . This

implies that the original class of functions F satisfies formula (6.4) in Proposition 6.2,
and this is what we had to show.

Proof of Proposition 7.3. Fix a class of functions F which satisfies the conditions of
Proposition 7.3 together with two independent sequences ξ1, . . . , ξn and ε1, . . . , εn of
independent random variables, where ξj is µ-distributed, P (εj = 1) = P (εj = −1) = 1

2 ,
1 ≤ j ≤ n, and investigate the conditional probability

P (f,A|ξ1, . . . , ξn) = P


 1√

n

∣∣∣∣∣∣

n∑

j=1

εjf(ξj)

∣∣∣∣∣∣
≥ A

6

√
nσ2

∣∣∣∣∣∣
ξ1, . . . , ξn




for all functions f ∈ F , A > T and values (ξ1, . . . , ξn) in the condition. By the Hoeffding
inequality formulated in Theorem 3.4

P (f,A|ξ1, . . . , ξn) ≤ 2 exp

{
−

1
36A2nσ4

2S̄2(f, ξ1, . . . , ξn)

}
(7.6)

with

S̄2(f, x1, . . . , xn) =
1

n

n∑

j=1

f2(xj), f ∈ F .
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Let us introduce the set

H = H(A) =

{
(x1, . . . , xn): sup

f∈F
S̄2(f, x1, . . . , xn) ≥

(
1 + A4/3

)
σ2

}
. (7.7)

I claim that
P ((ξ1, . . . , ξn) ∈ H) ≤ e−A2/3nσ2

if A > T. (7.8)

(The set H plays the role of the small exceptional set, where we cannot provide a good
estimate for P (f,A|ξ1, . . . , ξn) for some f ∈ F .)

To prove relation (7.8) let us consider the functions f̄ = f̄(f), f̄(x) = f2(x) −∫
f2(x)µ( dx), and introduce the class of functions F̄ = {f̄(f): f ∈ F}. Let us show that

the class of functions F̄ satisfies the conditions of Proposition 7.3, hence the estimate
(7.5) holds for the class of functions F̄ if A > T 4/3.

The relation
∫

f̄(x)µ( dx) = 0 clearly holds. The condition sup |f̄(x)| ≤ 1
8 < 1

4 also

holds if sup |f(x)| ≤ 1
4 , and

∫
f̄2(x)µ( dx) ≤

∫
f4(x)µ( dx) ≤ 1

16

∫
f2(x) µ( dx) ≤ σ2

16 <
σ2 if f ∈ F . It remained to show that F̄ is an L2-dense class with exponent L and
parameter D. For this goal we need a good estimate on

∫
(f̄(x) − ḡ(x))2ρ( dx), where

f̄ , ḡ ∈ F̄ , and ρ is an arbitrary probability measure.

Observe that
∫

(f̄(x) − ḡ(x))2ρ( dx) ≤ 2
∫

(f2(x) − g2(x))2ρ( dx) + 2
∫

(f2(x) −
g2(x))2µ( dx) ≤ 2(sup(|f(x)| + |g(x)|)2

(∫
(f(x) − g(x))2(ρ( dx) + µ( dx)

)
≤
∫

(f(x) −
g(x))2ρ̄( dx) for all f, g ∈ F , f̄ = f̄(f), ḡ = ḡ(g) and probability measure ρ, where
ρ̄ = ρ+µ

2 . This means that if {f1, . . . , fm} is an ε-dense subset of F in the space
L2(X,X , ρ̄), then {f̄1, . . . , f̄m} is an ε-dense subset of F̄ in the space L2(X,X , ρ), and
not only F , but also F̄ is an L2-dense class with exponent L and parameter D.

An application of the conditions of Proposition 7.3 for the number A4/3 > T 4/3

and the class of functions F̄ yields that

P ((ξ1, . . . , ξn) ∈ H) = P


sup

f∈F


 1

n

n∑

j=1

f̄(f)(ξj) +
1

n

n∑

j=1

Ef2(ξj)


 ≥

(
1 + A4/3

)
σ2




≤ P


sup

f̄∈F̄

1√
n

n∑

j=1

f̄(ξj) ≥ A4/3n1/2σ2


 ≤ e−A2/3nσ2

,

i.e. relation (7.8) holds.

By formula (7.6) and the definition of the set H given in (7.7) the estimate

P (f,A|ξ1, . . . , ξn) ≤ 2e−A2/3nσ2/144 if (ξ1, . . . , ξn) /∈ H (7.9)

holds for all f ∈ F and A > T ≥ 1. (Here we used the estimate 1 + A4/3 ≤ 2A4/3.) Let
us introduce the conditional probability

P (F , A|ξ1, . . . , ξn) = P


 sup

f∈F

1√
n

∣∣∣∣∣∣

n∑

j=1

εjf(ξj)

∣∣∣∣∣∣
≥ A

3

√
nσ2

∣∣∣∣∣∣
ξ1, . . . , ξn
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for all (ξ1, . . . , ξn) and A > T . We shall estimate this conditional probability with the
help of relation (7.9) if (ξ1, . . . , ξn) /∈ H.

Given a vector x(n) = (x1, . . . , xn) ∈ Xn, let us introduce the measure ν =
ν(x1, . . . , xn) = ν(x(n)) on (X,X ) which is concentrated in the coordinates of the
vector x(n) = (x1, . . . , xn), and ν({xj}) = 1

n for all points xj , j = 1, . . . , n. If

∫
f2(u)ν( du) ≤ δ2 for a function f , then

∣∣∣∣∣
1√
n

n∑
j=1

εjf(xj)

∣∣∣∣∣ ≤ n1/2
∫
|f(u)|ν( du) ≤ n1/2δ.

As a consequence, we can write that

∣∣∣∣∣∣
1√
n

n∑

j=1

εjf(xj) − 1√
n

n∑

j=1

εjg(xj)

∣∣∣∣∣∣
≤ A

6

√
nσ2 if

∫
(f(u) − g(u))2 dν(u) ≤

(
Aσ2

6

)2

.

(7.10)

Let us list the elements of the (countable) set F as F = {f1, f2, . . . }, fix a num-

ber δ = Aσ2

6 , and choose for all vectors x(n) = (x1, . . . , xn) ∈ Xn a sequence of in-

dices p1(x(n)), . . . , pm(x(n)) taking positive integer values with m = max(1, Dδ−L) =
max(1, D( 6

Aσ2 )L) elements in such a way that inf
1≤l≤m

∫
(f(u)−fpl(x(n))(u))2 dν(x(n))(u) ≤

δ2 for all f ∈ F and x(n) ∈ Xn with the above defined measure ν(x(n)) on the space
(X,X ). This is possible because of the L2-dense property of the class of functions F .
(This is the point where the L2-dense property of the class of functions F is exploited in
its full strength.) In a complete proof of Theorem 7.3 we still have to show that we can
choose the indices pj(x(n)), 1 ≤ j ≤ m, as measurable functions of their argument x(n)

on the space (Xn,Xn). We shall show this in Lemma 7.4 at the end of the proof.

Put ξ(n)(ω) = (ξ1(ω), . . . , ξn(ω)). Because of relation (7.10), the choice of the
number δ and the property of the functions fpl(x(n))(·) we have



ω: sup

f∈F

1√
n

∣∣∣∣∣∣

n∑

j=1

εj(ω)f(ξj(ω))

∣∣∣∣∣∣
≥ A

3

√
nσ2





⊂
m⋃

l=1



ω:

1√
n

∣∣∣∣∣∣

n∑

j=1

εj(ω)fpl(ξ(n)(ω))(ξj(ω))

∣∣∣∣∣∣
≥ A

6

√
nσ2



 .

This relation together with inequality (7.9) yield that

P (F , A|ξ1, . . . , ξn) ≤
m∑

l=1

P (fpl(ξ(n)), A|ξ1, . . . , ξn)

≤ 2 max

(
1, D

(
6

Aσ2

)L
)

e−A2/3nσ2/144

if (ξ1, . . . , ξn) /∈ H and A > T.
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If A ≥ Ā0 with a sufficiently large constant Ā0, then this inequality together with
Lemma 7.2 and the estimate (7.8) imply that

P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

f(ξj)

∣∣∣∣∣∣
≥ An1/2σ2


 ≤ 4P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

εjf(ξj)

∣∣∣∣∣∣
≥ A

3
n1/2σ2




≤ max

(
4, 8D

(
6

Aσ2

)L
)

e−A2/3nσ2/144 + 4e−A2/3nσ2

if A > T.

(7.11)
By the conditions of Proposition 7.3 the inequalities nσ2 ≥ L log n + log D hold with
some L ≥ 1, D ≥ 1 and n ≥ 2. This implies that nσ2 ≥ L log 2 ≥ 1

2 , ( 6
Aσ2 )L ≤

( n
2nσ2 )L ≤ nL = eL log n ≤ enσ2

if A ≥ Ā0 with some sufficiently large constant Ā0 > 0,

and 2D = elog 2+log D ≤ e3nσ2

. Hence the first term at the right-hand side of (7.11) can
be bounded by

max

(
4, 8D

(
6

Aσ2

)L
)

e−A2/3nσ2/144 ≤ e−A2/3nσ2/144 · 4e4nσ2 ≤ 1

2
e−A1/2nσ2

if A ≥ Ā0 with a sufficiently large Ā0. The second term at the right-hand side of (7.11)

can also be bounded as 4e−A2/3nσ2 ≤ 1
2e−A1/2nσ2

with an appropriate choice of the
number Ā0.

By the above calculation formula (7.11) yields the inequality

P


 1√

n
sup
f∈F

∣∣∣∣∣∣

n∑

j=1

f(ξj)

∣∣∣∣∣∣
≥ An1/2σ2


 ≤ e−A1/2nσ2

if A > T , and the constant Ā0 is chosen sufficiently large.

To complete the proof of Proposition 7.3 we still prove the following Lemma 7.4 to-
gether with some of its generalizations needed in the proof of Propositions 15.3 and 15.4.
The latter results are those multivariate versions of Proposition 7.3 that we need in the
proof of the multivariate version of Proposition 6.2. We formulated them not in their
most general possible form, but in the way as we need them in this work.

Lemma 7.4. Let F = {f1, f2, . . . } be a countable and L2-dense class of functions
with some exponent L > 0 and parameter D ≥ 1 on a measurable space (X,X ). Fix
some positive integer n, and define for all x(n) = (x1, . . . , xn) ∈ Xn the probability
measure ν(x(n)) = ν(x1, . . . , xn) on the space (X,X ) by the formula ν(x(n))(xj) = 1

n ,
1 ≤ j ≤ n. For a number 0 ≤ ε ≤ 1 put m = m(ε) = [Dε−L], where [·] denotes
integer part. For all 0 ≤ ε ≤ 1 there exists m = m(ε) measurable functions pl(x

(n)),
1 ≤ l ≤ m, on the measurable space (Xn,Xn) with positive integer values in such a way
that inf

1≤l≤m

∫
(f(u) − fpl(x(n))(u))2ν(x(n))( du) ≤ ε2 for all x(n) ∈ Xn and f ∈ F .
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In the proof of Proposition 15.3 we need the following result. Let F = {f1, f2, . . . }
be a countable and L2-dense class of functions with some exponent L > 0 and parame-
ter D ≥ 1 on the k-fold product (Xk,X k) of a measurable space (X,X ) with some k ≥ 1.

Fix some positive integer n, and define for all vectors x(n) = (x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤

k) ∈ Xkn, where x
(j)
l ∈ X for all j and l the probability measure ρ(x(n)) on the space

(Xk,X k) by the formula ρ(x(n))(x
(j)
lj

, 1 ≤ j ≤ k, 1 ≤ lj ≤ n) = 1
nk for all sequences

(x
(1)
l1

, . . . , x
(k)
lk

) , 1 ≤ j ≤ k, 1 ≤ lj ≤ n, with coordinates of the elements of the vector

x(n) = (x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k). For all 0 ≤ ε ≤ 1 there exist m = m(ε) = [Dε−L]

measurable functions pr(x(n)), 1 ≤ r ≤ m, on the measurable space (Xkn,X kn) with
positive integer values in such a way that inf

1≤r≤m

∫
(f(u)−fpr(x(n))(u))2ρ(x(n))( du) ≤ ε2

for all x(n) ∈ Xkn and f ∈ F .

In the proof of Proposition 15.4 we need the following result. Let F = {f1, f2, . . . }
be a countable and L2-dense class of functions with some exponent L > 0 and parame-
ter D ≥ 1 on the product space (Xk × Y,X k × Y) with some measurable spaces (X,X )
and (Y,Y) and integer k ≥ 1. Fix some positive integer n, and define for all vectors

x(n) = (x
(j,1)
l , x

(j,−1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) ∈ X2kn, where x

(j,±1)
l ∈ X for all j and l a

probability measure α(x(n)) in the space (Xk×Y,X k×Y) in the following way. Fix some

probability measure ρ on the space (Y,Y) and two ±1 sequences ε
(k)
1 = (ε1,1, . . . , εk,1)

and ε
(k)
2 = (ε1,2, . . . , εk,2) of length k. Define with their help first the following proba-

bility measures α1(x(n)) = α1(x(n), ε
(k)
1 , ε

(k)
2 , ρ) and α2(x(n)) = α2(x(n), ε

(k)
1 , ε

(k)
2 , ρ) on

(Xk × Y,X k ×Y) for all x(n) ∈ X 2kn. Let α1(x(n))({x(1,ε1,1)
l1

}× · · · × {x(k,εk,1)
lk

}×B) =
ρ(B)
nk and α2(x(n))({x(1,ε1,2)

l1
} × · · · × {x(k,εk,2)

lk
} × B) = ρ(B)

nk with 1 ≤ lj ≤ n for

all 1 ≤ j ≤ k and B ∈ Y if x
(j,εj,1)
lj

and x
(j,εj,2)
lj

are the appropriate coordinates

of the vector x(n) ∈ X2kn. Put α(x(n)) = α1(x
(n))+α2(x

(n))
2 . For all 0 ≤ ε ≤ 1

there exist m = m(ε) = [Dε−L] measurable functions pr(x(n)), 1 ≤ r ≤ m, on
the measurable space (X2kn,X 2kn) with positive integer values in such a way that

inf
1≤r≤m

∫
(f(u) − fpr(x(n))(u))2α(x(n))( du) ≤ ε2 for all x(n) ∈ X2kn and f ∈ F .

Proof of Lemma 7.4. Fix some 0 < ε ≤ 1, put the number m = m(ε) introduced in
the lemma, and let us list the set of all vectors (j1, . . . , jm) of length m with positive
integer coordinates in some way. Define for all of these vectors (j1, . . . , jm) the set
B(j1, . . . , jm) ⊂ Xn in the following way. We have x(n) = (x1, . . . , xn) ∈ B(j1, . . . , jm)
if and only if inf

1≤r≤m

∫
(f(u) − fjr (u))2 dν(x(n))(u) ≤ ε2 for all f ∈ F . Then all sets

B(j1, . . . , jm) are measurable, and
⋃

(j1,...,jm)

B(j1, . . . , jm) = Xn because F is an L2-

dense class of functions with exponent L and parameter D. Given a point x(n) =
(x1, . . . , xn) let us choose the first vector (j1, . . . , jm) = (j1(x(n)), . . . , jm(x(n))) in our
list of vectors for which x(n) ∈ B(j1, . . . , jm), and define pl(x

(n)) = jl(x
(n)) for all

1 ≤ l ≤ m with this vector (j1, . . . , jm). Then the functions pl(x
(n)) are measurable, and

the functions fpl(x(n)), 1 ≤ l ≤ m, defined with their help together with the probability

47



measures ν(x(n)) satisfy the inequality demanded in the first statement of Lemma 7.4.

The proof of the remaining two statements is almost the same. We only have to
modify the definition of the sets B(j1, . . . , jm) in a natural way. The space of arguments
x(n) are the spaces Xkn and X2kn in these two cases, and we have to integrate with
respect to the measures ρ(x(n)) in the space Xk and with respect to the measures α(x(n))
in the space Xk × Y respectively. The sets B(j1, . . . , jm) are measurable also in these
cases, and the rest of the proof can be applied without any change.

8. Formulation of the main results of this work.

Former sections of this work contain estimates about the tail distribution of normalized
sums of independent, identically distributed random variables and about the tail dis-
tribution of the supremum of appropriate classes of such random sums. We have also
formulated some estimates about the tail distribution of the integral of a (determinis-
tic) function or of the supremum of an appropriate class of functions with respect to a
normalized empirical distribution. These two kinds of problems are closely related. To
understand them better we have also considered their natural Gaussian counterpart.

In this section we formulate the natural multivariate versions of these results. They
will be proved in the subsequent part of this work. To formulate them we have to
introduce some new notions. In the subsequent sections I discuss some new problems
which help to work out some methods that enable us to prove the results of this section.
I finish this section with a short overview about the content of the remaining part of
this work. I shall also briefly indicate why it helps us to prove the results of this section.

I start this section with the formulation of two results, Theorems 8.1 and 8.2 to-
gether with some of their simple consequences which yield a sharp estimate about the tail
distribution of a multiple random integral with respect to a normalized empirical distri-
bution and about the analogous problem when the tail distribution of the supremum of
such integrals is considered. These results are the natural versions of the corresponding
one-variate results about the tail behaviour of an integral or of the supremum of a class
of integrals with respect to a normalized empirical distribution. They can be formu-
lated with the help of the notions introduced before, in particular with the help of the
notion of multiple random integrals with respect to a normalized empirical distribution
function introduced in formula (4.8).

To formulate the following two results, Theorems 8.3 and 8.4 and their conse-
quences, which are the natural multivariate versions of the results about the tail distri-
bution of partial sums of independent random variables, and of the supremum of such
sums we have to make some preparation. First we introduce the so-called U -statistics
which can be considered as the natural multivariate generalizations of the sum of in-
dependent and identically distributed random variables. Moreover, we had a good
estimation about the tail distribution of sums of independent random variables only if
the summands had expectation zero, and we have to find the natural multivariate ver-
sion of this notion. Hence we define the so-called degenerate U -statistics which can be
considered as the natural multivariate counterpart of sums of independent and identi-
cally distributed random variables with zero expectation. Theorems 8.3 and 8.4 contain
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estimates about the tail-distribution of degenerate U -statistics and of the supremum of
such expressions.

In Theorems 8.5 and 8.6 we formulate the Gaussian counterparts of the above
results. They deal with multiple Wiener-Itô integrals with respect to a so-called white
noise. The notion of multiple Wiener–Itô integrals and their properties needed to have
a good understanding of these results will be explained in a later section. Still two
results are discussed in this section. They are Examples 8.7 and 8.8, which state that
the estimates of Theorems 8.5 and 8.3 are in a certain sense sharp.

To formulate the first two results of this section let us consider a sequence of
independent and identically distributed random variables ξ1, . . . , ξn with values in a
measurable space (X,X ). Let µ denote the distribution of the random variables ξj , and
introduce the empirical distribution of the sequence ξ1, . . . , ξn defined in (4.5). Given
a measurable function f(x1, . . . , xk) on the k-fold product space (Xk,X k) consider its
integral Jn,k(f) with respect to the k-fold product of the normalized empirical measure√

n(µn − µ) defined in formula (4.8). In the definition of this integral the diagonals
xj = xl, 1 ≤ j < l ≤ k, were omitted from the domain of integration. The following
Theorem 8.1 can be considered as the multiple integral version of Bernstein’s inequality
formulated in Theorem 3.1.

Theorem 8.1. (Estimate on the tail distribution of a multiple random integral
with respect to a normalized empirical distribution). Let us take a measurable
function f(x1, . . . , xk) on the k-fold product (Xk,X k) of a measurable space (X,X ) with
some k ≥ 1 together with a non-atomic probability measure µ on (X,X ) and a sequence
of independent and identically distributed random variables ξ1, . . . , ξn with distribution µ
on (X,X ). Let the function f satisfy the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, (8.1)

and

‖f‖2
2 =

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 (8.2)

with some constant 0 < σ ≤ 1. There exist some constants C = Ck > 0 and α = αk > 0,
such that the random integral Jn,k(f) defined by formulas (4.5) and (4.8) satisfies the
inequality

P (|Jn,k(f)| > u) ≤ C max
(
e−α(u/σ)2/k

, e−α(nu2)1/(k+1)
)

(8.3)

for all u > 0. The constants C = Ck > 0 and α = αk > 0 in formula (8.3) depend only
on the parameter k.

Theorem 8.1 can be reformulated in the following equivalent form.

Theorem 8.1′. Under the conditions of Theorem 8.1

P (|Jn,k(f)| > u) ≤ Ce−α(u/σ)2/k

for all 0 < u ≤ nk/2σk+1 (8.3′)
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with a number σ, 0 ≤ σ ≤ 1, satisfying relation in (8.2) and some universal constants
C = Ck > 0, α = αk > 0, depending only on the multiplicity k of the integral Jn,k(f).

Theorem 8.1 clearly implies Theorem 8.1′, since in the case u ≤ nk/2σk+1 the
first term is larger than the second one in the maximum at the right-hand side of for-
mula (8.3). On the other hand, Theorem 8.1′ implies Theorem 8.1 also if u > nk/2σk+1.

Indeed, in this case Theorem 8.1′ can be applied with σ̄ =
(
un−k/2

)1/(k+1) ≥ σ if u ≤
nk/2, hence also condition 0 < σ̄ ≤ 1 is satisfied. This yields that P (|Jn,k(f)| > u) ≤
C exp

{
−α

(
u
σ̄

)2/k
}

= C exp
{
−α(nu2)1/(k+1)

}
if nk/2 ≥ u > nk/2σk+1, and rela-

tion (8.3) holds in this case. If u > nk/2, then P (|Jn,k(f)| > u) = 0, and relation (8.3)
holds again.

Theorem 8.1 or Theorem 8.1′ state that the tail distribution P (|Jn,k(f)| > u)
of the k-fold random integral Jn,k(f) can be bounded similarly to the probability
P (|const. σηk| > u), where η is a random variable with standard normal distribution
and the number 0 ≤ σ ≤ 1 satisfies relation (8.2), provided that the level u we consider
is less than nk/2σk+1. As we shall see later (see Corollary 1 of Theorem 9.4), the value
of the number σ2 in formula (8.2) is closely related to the variance of Jn,k(f). At the
end of this section an example is given which shows that the condition u ≤ nk/2σk+1 is
really needed in Theorem 8.1′.

The next result, Theorem 8.2, is the generalization of Theorem 4.1′ for multiple
random integrals with respect to a normalized empirical measure. In its formulation
the notions of L2-dense classes and countably approximability introduced in Section 4
are applied.

Theorem 8.2. (Estimate on the supremum of multiple random integrals
with respect to an empirical distribution). Let us have a non-atomic probability
measure µ on a measurable space (X,X ) together with a countable and L2-dense class F
of functions f = f(x1, . . . , xk) of k variables with some parameter D ≥ 1 and exponent
L ≥ 1 on the product space (Xk,X k) which satisfies the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, for all f ∈ F (8.4)

and

‖f‖2
2 = Ef2(ξ1, . . . , ξk) =

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 for all f ∈ F

(8.5)
with some constant 0 < σ ≤ 1. There exist some constants C = C(k) > 0, α = α(k) > 0
and M = M(k) > 0 depending only on the parameter k such that the supremum of the
random integrals Jn,k(f), f ∈ F , defined by formula (4.8) satisfies the inequality

P

(
sup
f∈F

|Jn,k(f)| ≥ u

)
≤ C exp

{
−α

(u

σ

)2/k
}

for those numbers u

for which nσ2 ≥
(u

σ

)2/k

≥ M(L3/2 log
2

σ
+ (log D)3/2),

(8.6)
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where the numbers D and L agree with the parameter and exponent of the L2-dense
class F .

The condition about the countable cardinality of the class F can be replaced by
the weaker condition that the class of random variables Jn,k(f), f ∈ F , is countably
approximable.

The condition given for the number u in formula (8.6) appears in Theorem 8.2
for a similar reason as the analogous condition formulated in (4.4) in its one-variate
counterpart, Theorem 4.1. The lower bound is needed, since we have a good estimate
in formula (8.6) only for u ≥ E sup

f∈F
|Jn,k(f)|. The upper bound appears, since we have

a good estimate in Theorem 8.1′ only for 0 < u < nk/2σk+1. If a pair of numbers (u, σ)
does not satisfy condition (8.6), than we may try to get an estimate by increasing the
number σ or decreasing the number u.

To formulate such a version of Theorems 8.1 and 8.2 which corresponds to the
results about sums of independent random variables in the case k = 1 the following
notions will be introduced.

Definition of U-statistics. Let us consider a function f = f(x1, . . . , xk) on the
k-th power (Xk,X k) of a space (X,X ) together with a sequence of independent and
identically distributed random variables ξ1, . . . , ξn, n ≥ k, which take their values in
this space (X,X ). The expression

In,k(f) =
1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k,

lj 6=lj′ if j 6=j′

f (ξl1 , . . . , ξlk) (8.7)

is called a U -statistic of order k with the sequence ξ1, . . . , ξn, and kernel function f .

Remark. In later calculations sometimes we shall work with U -statistics with kernel
functions of the form f(xu1 , . . . , xuk

) instead of f(x1, . . . , xk), where {u1, . . . , uk} is an
arbitrary set with different elements. The U -statistic with such a kernel function will
also be defined, and it equals the U -statistic with the original kernel function f defined
in (8.7), i.e.

In,k(f(xu1 , . . . , xuk
)) = In,k(f(x1, . . . , xk)). (8.7′)

(Observe that if we define the function fπ(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)) for all per-
mutations π of the set {1, . . . , k}, then In,k(fπ) = In,k(f), hence the above definition is
legitimate.) Such a definition is natural, and it simplifies the notation in some calcula-
tions. A similar convention will be introduced about Wiener–Itô integrals in Section 10.

Some special U -statistics, called degenerate U -statistics, will be also introduced.
They can be considered as the natural multivariate version of sums of identically dis-
tributed random variables with expectation zero. Degenerate U -statistics will be defined
together with canonical kernel functions, because these notions are closely related.
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Definition of degenerate U-statistics. A U -statistic In,k(f) of order k with a se-
quence of independent and identically distributed random variables ξ1, . . . , ξn is called
degenerate if its kernel function f(x1, . . . , xk) satisfies the relation

E(f(ξ1, . . . , ξk)|ξ1 = x1, . . . , ξj−1 = xj−1, ξj+1 = xj+1, . . . , ξk = xk) = 0

for all 1 ≤ j ≤ k and xs ∈ X, s 6= j.

Definition of a canonical kernel function. A function f(x1, . . . , xk) taking values
in the k-fold product of a measurable space (X,X ) is called a canonical function with
respect to a probability measure µ on (X,X ) if
∫

f(x1, . . . , xj−1, u, xj+1, . . . , xk)µ( du) = 0 for all 1 ≤ j ≤ k and xs ∈ X, s 6= j.

(8.8)

For the sake of more convenient notations in the future we shall speak also of U -
statistics of order zero. We shall write In,0(c) = c for any constant c, and In,0(c) will
be called a degenerate U -statistic of order zero. A constant will be considered as a
canonical function with zero arguments.

It is clear that a U -statistic In,k(f) with kernel function f and independent µ-
distributed random variables ξ1, . . . , ξn is degenerate if and only if its kernel function is
canonical with respect to the probability measure µ. Let us also observe that

In,k(f) = In,k(Sym f) (8.9)

for all functions of k variables.

The next two results, Theorems 8.3 and 8.4, deal with degenerate U -statistics. The-
orem 8.3 is the U -statistic version of Theorem 8.1 and Theorem 8.4 is the U -statistic
version of Theorem 8.2. Actually Theorem 8.3 yields a sharper estimate than Theo-
rems 8.1, because it contains more explicit and better universal constants. I shall return
to this point later.

Theorem 8.3. (Estimate on the tail distribution of a degenerate U-statistic).
Let us have a measurable function f(x1, . . . , xk) on the k-fold product (Xk,X k), k ≥ 1,
of a measurable space (X,X ) together with a probability measure µ on (X,X ) and a
sequence of independent and identically distributed random variables ξ1, . . . , ξn, n ≥ k,
with distribution µ on (X,X ). Let us consider the U -statistic In,k(f) of order k with
this sequence of random variables ξ1, . . . , ξn. Assume that this U -statistic is degenerate,
i.e. its kernel function f(x1, . . . , xk) is canonical with respect to the measure µ. Let us
also assume that the function f satisfies conditions (8.1) and (8.2) with some number
0 < σ ≤ 1. Then there exist some constants A = A(k) > 0 and B = B(k) > 0 depending
only on the order k of the U -statistic In,k(f) such that

P (k!n−k/2|In,k(f)| > u) ≤ A exp



− u2/k

2σ2/k
(

1 + B
(
un−k/2σ−(k+1)

)1/k
)



 (8.10)
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for all 0 ≤ u ≤ nk/2σk+1.

Let us also formulate the following simple corollary of Theorem 8.3.

Corollary of Theorem 8.3 Under the conditions of Theorem 8.3 there exist some
universal constants C = C(k) > 0 and α = α(k) > 0 that

P (k!n−k/2|In,k(f)| > u) ≤ C exp

{
−α

(u

σ

)2/k
}

for all 0 ≤ u ≤ nk/2σk+1. (8.10′)

The following estimate holds about the supremum of degenerate U -statistics.

Theorem 8.4. (Estimate on the supremum of degenerate U-statistics). Let
us have a probability measure µ on a measurable space (X,X ) together with a countable
and L2-dense class F of functions f = f(x1, . . . , xk) of k variables with some parameter
D ≥ 1 and exponent L ≥ 1 on the product space (Xk,X k) which satisfies conditions
(8.4) and (8.5) with some constant 0 < σ ≤ 1. Let us take a sequence of independent
µ distributed random variables ξ1, . . . , ξn, n ≥ k, and consider the U statistics In,k(f)
with these random variables and kernel functions f ∈ F . Let us assume that all these
U -statistics In,k(f), f ∈ F , are degenerate, or in an equivalent form, all functions
f ∈ F are canonical with respect to the measure µ. Then there exist some constants
C = C(k) > 0, α = α(k) > 0 and M = M(k) > 0 depending only on the parameter k
such that the inequality

P

(
sup
f∈F

n−k/2|In,k(f)| ≥ u

)
≤ C exp

{
−α

(u

σ

)2/k
}

holds for those numbers u

for which nσ2 ≥
(u

σ

)2/k

≥ M(L3/2 log
2

σ
+ (log D)3/2),

(8.11)
where the numbers D and L agree with the parameter and exponent of the L2-dense
class F .

The condition about the countable cardinality of the class F can be replaced by the
weaker condition that the class of random variables n−k/2In,k(f), f ∈ F , is countably
approximable.

Next I formulate a Gaussian counterpart of the above results. To do this I need
some notions that will be introduced in Section 10. In that section the white noise with a
reference measure µ will be defined. It is an appropriate set of jointly Gaussian random
variables indexed by those measurable sets A ∈ X of a measure space (X,X , µ) with
a σ-finite measure µ for which µ(A) < ∞. Its distribution depends on the measure µ
which will be called the reference measure of the white noise.

In Section 10 it will be also shown that given a white noise µW with a non-atomic
σ-additive reference measure µ on a measurable space (X,X ) and a measurable function
f(x1, . . . , xk) of k variables on the product space (Xk,X k) such that

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 < ∞ (8.12)
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a k-fold Wiener-Itô integral of the function f with respect to the white noise µW

Zµ,k(f) =
1

k!

∫
f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk) (8.13)

can be defined, and the main properties of this integral will be proved there. It will be
seen that Wiener-Itô integrals have a similar relation to degenerate U -statistics and mul-
tiple integrals with respect to normalized empirical measures as normally distributed
random variables have to partial sums of independent random variables. Hence it is
useful to find the analogs of the previous estimates of this section about the tail dis-
tribution of Wiener-Itô integrals. The subsequent Theorems 8.5 and 8.6 contain such
results.

Theorem 8.5. (Estimate on the tail distribution of a multiple Wiener–Itô
integral). Let us fix a measurable space (X,X ) together with a σ-finite non-atomic
measure µ on it, and let µW be a white noise with reference measure µ on (X,X ). If
f(x1, . . . , xk) is a measurable function on (Xk,X k) which satisfies relation (8.12) with
some 0 < σ < ∞, then

P (k!|Zµ,k(f)| > u) ≤ C exp

{
−1

2

(u

σ

)2/k
}

(8.14)

for all u > 0 with some constants C = C(k) depending only on k.

Theorem 8.6. (Estimate on the supremum of Wiener–Itô integrals). Let F
be a countable class of functions of k variables defined on the k-fold product (Xk,X k)
of a measurable space (X,X ) such that

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 with some 0 < σ ≤ 1 for all f ∈ F

with some non-atomic σ-additive measure µ on (X,X ). Let us also assume that F is
an L2-dense class of functions in the space (Xk,X k) with respect to the measure µk

with some exponent L ≥ 1 and parameter D ≥ 1, where µk is the k-fold product of the
measure µ. (The classes of L2-dense classes with respect to a measure were defined in
Section 4.)

Take a white noise µW on (X,X ) with reference measure µ, and define the Wiener–
Itô integrals Zµ,k(f) for all f ∈ F . Fix some 0 < ε ≤ 1. The inequality

P

(
sup
f∈F

k!|Zµ,k(f)| > u

)
≤ CD exp

{
−1

2

(
(1 − ε)u

σ

)2/k
}

(8.15)

holds with some universal constants C = C(k) > 0, M = M(k) > 0 for those numbers u

for which u ≥ MLk/2 1
ε logk/2 2

ε · σ logk/2 2
σ .

Formula (8.15) yields an almost as good estimate for the supremum of Wiener–Itô
integrals with the choice of a small ε > 0 as formula (8.14) for a single Wiener–Itô
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integral. But the lower bound imposed on the number u in the estimate (8.15) depends
on ε, and for a small number ε > 0 it is large.

The subsequent result presented in Example 8.7 may help to understand why The-
orems 8.3 and 8.5 are sharp. Its proof and the discussion of the question about the
sharpness of Theorems 8.3 and 8.5 will be postponed to Section 13.

Example 8.7. (A converse estimate to Theorem 8.5). Let us have a σ-finite
measure µ on some measure space (X,X ) together with a white noise µW on (X,X )
with counting measure µ. Let f0(x) be a real valued function on (X,X ) such that∫

f0(x)2µ( dx) = 1, and take the function f(x1, . . . , xk) = σf0(x1) · · · f0(xk) with some
number σ > 0 together with the Wiener–Itô integral Zµ,k(f) introduced in formula
(8.13).

Then the relation
∫

f(x1, . . . , xk)2 µ( dx1) . . . µ( dxk) = σ2 holds, and the Wiener–
Itô integral Zµ,k(f) satisfies the inequality

P (k!|Zµ,k(f)| > u) ≥ C̄
(

u
σ

)1/k
+ 1

exp

{
−1

2

(u

σ

)2/k
}

for all u > 0 (8.16)

with some constant C̄ > 0.

The above results show that multiple integrals with respect to a normalized em-
pirical measure or degenerate U -statistics satisfy some estimates similar to those about
multiple Wiener–Itô integrals, but they hold under more restrictive conditions. The
difference between the estimates in these problems is similar to the difference between
the corresponding results in Section 4 whose reason was explained there. Hence they
will be only briefly discussed here. The estimates of Theorem 8.1 and 8.3 are similar
to that of Theorem 8.5. Moreover, for 0 ≤ u ≤ εnk/2σk+1 with a small number ε > 0
Theorem 8.3 yields an almost as good estimate about degenerate U -statistics as Theo-
rem 8.5 yields for a Wiener–Itô integral with the same kernel function f and underlying
measure µ. Example 8.7 shows that the constant in the exponent of formula (8.14) can-
not be improved, at least there is no possibility of an improvement if only the L2-norm
of the kernel function f is known. Some results discussed later indicate that neither the
estimate of Theorem 8.3 can be improved.

The main difference between Theorem 8.5 and the results of Theorem 8.1 or 8.3
is that in the latter case the kernel function f must satisfy not only an L2 but also an
L∞ norm type condition, and the estimates of these results are formulated under the
additional condition u ≤ nk/2σk+1. It can be shown that the condition about the L∞
norm of the kernel function cannot be dropped from the conditions of these theorems,
and a version of Example 3.3 will be presented in Example 8.8 which shows that in the
case u ≫ nk/2σk+1 the left-hand side of (8.10) may satisfy only a much weaker estimate.
This estimate will be given only for k = 2, but with some work it can be generalized for
general indices k.

Theorems 8.2, 8.4 and 8.6 show that for the tail distribution of the supremum of a
not too large class of degenerate U -statistics or multiple integrals a similar upper bound
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can be given as for the tail distribution of a single degenerate U -statistic or multiple
integral, only the universal constants may be worse in the new estimates. However, they
hold only under the additional condition that the level at which the tail distribution
of the supremum is estimated is not too low. A similar phenomenon appeared already
in the results of Section 4. Moreover, such a restriction had to be imposed in the
formulation of the results here and in Section 4 for the same reason.

In Theorem 8.2 and 8.4 an L2-dense class of kernel functions was considered, and
this meant that the class of random integrals or U -statistics we consider in this result is
not too large. In Theorem 8.6 a similar, but weaker condition was imposed on the class
of kernel functions. They had to satisfy a similar condition, but only for the reference
measure µ of the white noise appearing in the Wiener–Itô integral. A similar difference
appears in the comparison of Theorems 4.1 or 4.1′ with Theorem 4.2, and this difference
has the same reason in the two cases.

I still present the proof of the following Example 8.8 which is a multivariate version
of Example 3.3. For the sake of simplicity I restrict my attention to the case k = 2.

Example 8.8. (A converse estimate to Theorem 8.3). Let us take a sequence
of independent and identically distributed random variables ξ1, . . . , ξn with values in the
plane X = R2 such that ξj = (ηj,1, ηj,2), ηj,1 and ηj,2 are independent random variables
with the following distributions. The distribution of ηj,1 is defined with the help of a
parameter σ2, 0 < σ2 ≤ 1

8 , in the same way as the distribution of the random variables
Xj in Example 3.3, i.e. ηj,1 = η̄j,1 −Eη̄j,1 with P (η̄j,1 = 1) = σ̄2, P (η̄j,1 = 0) = 1− σ̄2,
where σ̄2 is that solution of the equation x2 − x + σ2 = 0, which is smaller than 1

2 . The
distribution of the random variables is given by the formula P (ηj,2 = 1) = P (ηj,2 =
−1) = 1

2 for all 1 ≤ j ≤ n. Introduce the function f(x, y) = f((x1, x2), (y1, y2)) =
x1y2 + x2y1, x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2 if (x, y) is in the support of the
distribution of (ξ1, ξ2, i.e. if x1 and y1 take the values 1 − σ̄2 or −σ̄2 and x2 and y2

take the values ±1. Put f(x, y) = 0 otherwise. Define the U -statistic

In,2(f) =
1

2

∑

1≤j,k≤n, j 6=k

f(ξj , ξk) =
1

2

∑

1≤j,k≤n, j 6=k

(ηj,1ηk,2 + ηk,1ηj,2)

of order 2 with the above kernel function f and sequence of independent random variables
ξ1, . . . , ξn. Then In,2(f) is a degenerate U -statistic, | sup f(x, y)| ≤ 1 and Ef2(ξj , ξj) =
σ2.

If u ≥ B1nσ3 with some appropriate constant B1 > 2, B̄−1
2 n ≥ u ≥ B̄2n

−1/2 with
a sufficiently large fixed number B̄2 > 0 and 1

4 ≥ σ2 ≥ 1
n2 , and n is a sufficiently large

number, then the estimate

P (n−1In,2(f) > u) ≥ exp
{
−Bn1/3u2/3 log

( u

nσ3

)}
(8.17)

holds with some B > 0.

Remark: In Theorem 8.3 we got the estimate P (n−1In,2(f) > u) ≤ e−αu/σ for the
above defined degenerate U -statistic In,2(f) if 0 ≤ u ≤ nσ3. In the particular case
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u = nσ3 we have the estimate P (n−1In,2(f) > nσ3) ≤ e−αnσ2

. On the other hand, the
above example shows that in the case u ≫ nσ3 we can get only a weaker estimate. It
is worth looking at the estimate (8.17) with fixed parameters n and u and to observe
the dependence of the upper bound on the variance σ2 of In,2(f). In the case σ2 =

u2/3n−2/3 we have the upper bound e−αn1/3u2/3

. Example 8.8 shows that in the case
σ2 ≪ u2/3n−2/3 we can get only a relatively small improvement of this estimate. A
similar picture appears as in Example 3.3 in the case k = 1.

It is simple to check that the U -statistic introduced in the above example is de-
generate because of the independence of the random variables ηj,1 and ηj,2 and the
identity Eηj,1 = Eηj,2 = 0. Beside this, Ef(ξj , ξj)2 = σ2. In the proof of the esti-
mate (8.17) the results of Section 3, in particular Example 3.3 can be applied for the
sequence ηj,1, j = 1, 2, . . . , n. Beside this, the following result known from the the-
ory of large deviations will be applied. If X1, . . . , Xn are independent and identically
distributed random variables, P (X1 = 1) = P (X1 = −1) = 1

2 , then for any number
0 ≤ α < 1 there exists some numbers C1 = C1(α) > 0 and C2 = C2(α) > 0 such that

P

(
n∑

j=1

Xj > u

)
≥ C1e

−C2u2/n for all 0 ≤ u ≤ αn.

Proof of Example 8.8. The inequality

P (n−1In,2(f) > u) ≥ P






n∑

j=1

ηj,1






n∑

j=1

ηj,2


 > 4nu


− P




n∑

j=1

ηj,1ηj,2 > 2nu




(8.18)
holds. Because of the independence of the random variables ηj,1 and ηj,2 the first
probability at the right-hand side of (8.18) can be bounded from below by bounding the
multiplicative terms in it with v1 = 4n1/3u2/3 and v2 = n2/3u1/3. The first term will
be estimated by means of Example 3.3. This estimate can be applied with the choice
y = v1, since the relation v1 ≥ 4nσ2 holds if u ≥ B1nσ3 with B1 > 1, and the remaining
conditions 0 ≤ σ2 ≤ 1

8 and n ≥ 4v1 ≥ 6 also hold under the conditions of Example 8.8.
The second term can be bounded with the help of the large-deviation result mentioned
after the remark, since v2 ≤ 1

2n if u ≤ B̄−1
2 n with a sufficiently large B̄2 > 0. In such a

way we get the estimate

P






n∑

j=1

ηj,1






n∑

j=1

ηj,2


 > 4nu


 ≥ P




n∑

j=1

ηj,1 > v1


P




n∑

j=1

ηj,2 > v2




≥ C exp

{
−B1v1 log

( v1

nσ2

)
− B2

v2
2

n

}
≥ C exp

{
−B3n

1/3u2/3 log
( u

nσ3

)}

with appropriate constants B1 > 1, B2 > 0 and B3 > 0. On the other hand, by applying
Bennett’s inequality, more precisely its consequence given in formula (3.4) for the sum
of the random variables Xj = ηj,1ηj,2 at level nu instead of level u we get the following
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upper bound for the second term at the right-hand side of (8.18).

P




n∑

j=1

ηj,1ηj,2 > 2nu


 ≤ exp

{
−Knu log

u

σ2

}

≤ exp
{
−2B4n

1/3u2/3 log
( u

nσ3

)}
,

since Eηj,1ηj,2 = 0, Eη2
j,1η

2
j,2 = σ2, nu ≥ B1n

2σ3 ≥ 2nσ2 because of the conditions
B1 > 2 and nσ ≥ 1. Hence the estimate (3.4) (with parameter nu) can be applied
in this case. Beside this, the constant B4 can be chosen sufficiently large in the last
inequality if the number n or the bound B̄2 in Example 8.8 us chosen sufficiently large.
This means that this term is negligible small. The above estimates imply the statement
of Example 8.8.

Let me remark that under some mild additional restrictions the estimate (8.17)

can be slightly improved, the term log can be replaced by log2/3 in the exponent of the
right-hand side of (8.17). To get such an improvement some additional calculation is

needed where the numbers v1 and v2 are replaced by v̄1 = 4n1/3u2/3 log−1/3
(

u
nσ3

)
and

v̄2 = n2/3u1/3 log1/3
(

u
nσ3

)
.

At the end of this section I present a short overview about the content of the
remaining part of this work.

In our proofs we needed some results about U -statistics, and this is the main topic
of Section 9. One of the results discussed here is the so-called Hoeffding decomposition
of U -statistics to the linear combination of degenerate U -statistics of different order.
We also needed some additional results which explain how some properties (e.g. a
bound on the L2 and L∞ norm of a kernel function, the L2-density property of a
class F of kernel function) is inherited if we turn from the original U -statistics to the
degenerate U -statistics appearing in their Hoeffding decomposition. Section 9 contains
some results in this direction. Another important result in it is Theorem 9.4 which yields
a decomposition of multiple integrals with respect to a normalized empirical distribution
to the linear combination of degenerate U -statistics. This result is very similar to the
Hoeffding decomposition of U -statistics. The main difference between them is that in
the decomposition of multiple integrals much smaller coefficients appear. Theorem 9.4
makes possible to reduce the proof of Theorems 8.1 and 8.2 to the corresponding results
in Theorems 8.3 and 8.4 about degenerate U -statistics.

The definition and the main properties of Wiener–Itô integrals needed in the proof
of Theorems 8.5 and 8.6 are presented in Section 10. It also contains a result, called
the diagram formula for Wiener–Itô integrals which plays an important role in our
considerations. Beside this we proved a limit theorem, where we expressed the limit of
normalized degenerate U -statistics with the help of multiple Wiener–Itô integrals. This
result may explain why it is natural to consider Theorem 8.5 as the natural Gaussian
counterpart of Theorem 8.5, and Theorem 8.6 as the natural Gaussian counterpart of
Theorem 8.6.
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We could prove Bernstein’s and Bennett inequality by means of a good estimation
of the exponential moments of the partial sums we were investigating. In the proof
of their multivariate versions, in Theorems 8.3 and 8.5 this method does not work,
because the exponential moments we have to bound in these cases may be infinite.
On the other hand, we could prove these results by means of a good estimate on the
high moments of the random variables whose tail distribution we wanted to estimate.
In the proof of Theorem 8.5 when the moments of multiple Wiener–Itô integrals have
to be bounded this can be done with the help of the diagram formula for Wiener–Itô
integrals. In Sections 11 and 12 we proved that there is a version of the diagram formula
for degenerate U -statistics, and this enables us to estimate the moments needed in the
proof of Theorem 8.3. In Section 13 we proved Theorems 8.3, 8.5 and a multivariate
version of the Hoeffding inequality. At the end of this section we still discussed some
results which state that in certain cases when we have, beside the upper bound of
their L2 and L∞ norm some additional information about the behaviour of the kernel
function f in Theorems 8.3 or 8.5, then the estimates of these results can be improved.

Section 14 contains the natural multivariate versions of the results in Section 6. In
Section 6 Theorem 4.2 is proved about the supremum of Gaussian random variables with
the help of the chaining argument. In Section 14 its multivariate version, Theorem 8.6
is proved with the help of the chaining argument. The chaining argument is not strong
enough to prove Theorem 4.1. But as it is shown in Section 6, it enables us to prove a
result formulated in Proposition 6.1, and to reduce the proof of Theorem 4.1 with its
help to a simpler result formulated in Proposition 6.2. One of the results of Section 14,
Proposition 14.1 is a multivariate version of Proposition 6.1. We showed that the proof
of Theorem 8.4 can be reduced with its help to the proof of a result formulated in
Proposition 14.2, which can be considered a multivariate version of Proposition 6.2.
Section 14 contains still another result. It turned out that it is simpler to work with
so-called decoupled U -statistics introduced in this section than with usual U -statistics,
because they have more independence properties. In Proposition 14.2′ a version of
Proposition 14.2 is formulated about degenerate U -statistics, and it is shown with the
help of a result of de la Peña and Montgomery–Smith that the proof of Proposition 14.2,
and thus of Theorem 8.4 can be reduced to the proof of Proposition 14.2′.

Proposition 14.2′ is proved similarly to its one-variate version, Proposition 6.2. The
strategy of the proof is explained in Section 15. The main difference between the proof
of the two propositions is that since the independence properties exploited in the proof
of Proposition 6.2 hold only in a weaker form in the present case, we have to apply a
more refined and more difficult argument. In particular, we have to apply instead of
the symmetrization lemma, Lemma 7.1, a more general version of it, Lemma 15.2. It is
hard to check its conditions when we try to apply it in the problems arising in the proof
of Proposition 14.2′. This is the reason why we had to prove this result with the help of
two inductive propositions, formulated in Proposition 15.3 and 15.4, while in the proof
of Proposition 6.2 it was enough to prove one such result, presented in Proposition 7.3.
We discuss the details of the problems and the strategy of the proof in Section 15. The
proof of Propositions 15.3 and 15.4 is given in Sections 16 and 17. Section 16 contains
the symmetrization arguments needed for us, and the proof is completed with its help
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in Section 17.

Finally in Section 18 we give an overview of this work, and explain its relation to
some similar researches. The proof of some results is given in the Appendix.

9. Some results about U-statistics.

This section contains the proof of the Hoeffding decomposition theorem, an important
result about U -statistics. It states that all U -statistics can be represented as a sum
of degenerate U -statistics of different order. This representation can be considered as
the natural multivariate version of the decomposition of a random variable as the sum
of a random variable with expectation zero plus a constant (which can be interpreted
as a random variable of zero variable). Some important properties of the Hoeffding
decomposition will also be proved. The properties of the kernel function of a U -statistic
will be compared to those of the kernel functions of the U -statistics in its Hoeffding
decomposition.

If the Hoeffding decomposition of a U -statistic is taken, then the L2 and L∞-norms
of the kernel functions appearing in the U -statistics of the Hoeffding decomposition will
be bounded by means of the corresponding norm of the kernel function of the original
U -statistic. It will be also shown that if we take a class of U -statistics with an L2-
dense class of kernel functions (and the same sequence of independent and identically
distributed random variables in the definition of each U -statistic), and we make the
Hoeffding decomposition of all U -statistics in this class, then the kernel functions of
the degenerate U -statistics appearing in these Hoeffding decompositions also constitute
an L2-dense class. Another important result of this section is Theorem 9.4. It yields
a decomposition of a k-fold random integral with respect to a normalized empirical
measure to the linear combination of degenerate U -statistics. This result makes possible
to derive Theorem 8.1 from Theorem 8.3 and Theorem 8.2 from Theorem 8.4, and it is
also useful in the proof of Theorems 8.3 and 8.4.

Let us first consider the Hoeffding’s decomposition. In the special case k = 1 it

states that the sum Sn =
n∑

j=1

ξj of independent and identically distributed random

variables can be rewritten as Sn =
n∑

j=1

(ξj − Eξj) +

(
n∑

j=1

Eξj

)
, i.e. as the sum of

independent random variables with zero expectation plus a constant. We introduced
the convention that a constant is the kernel function of a degenerate U -statistic of order
zero, and In,0(c) = c for a U -statistic of order zero. I wrote down the above trivial
formula, because Hoeffding’s decomposition is actually its adaptation to a more general
situation. To understand this let us first see how to adapt the above construction to
the case k = 2.

In this case a sum of the form 2In,2(f) =
∑

1≤j,k≤n,j 6=k

f(ξj , ξk) has to be consid-

ered. Write f(ξj , ξk) = [f(ξj , ξk)−E(f(ξj , ξk)|ξk)]+E(f(ξj , ξk)|ξk) = f1(ξj , ξk)+ f̄1(ξk)
with f1(ξj , ξk) = f(ξj , ξk) − E(f(ξj , ξk)|ξk), and f̄1(ξk) = E(f(ξj , ξk)|ξk) to make the
conditional expectation of f1(ξj , ξk) with respect to ξk equal zero. Repeating this pro-
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cedure for the first coordinate we define f2(ξj , ξk) = f1(ξj , ξk) − E(f1(ξj , ξk)|ξj) and
f̄2(ξj) = E(f1(ξj , ξk)|ξj). Let us also write f̄1(ξk) = [f̄1(ξk) − Ef̄1(ξk)] + Ef̄1(ξk) and
f̄2(ξj) = [f̄2(ξj) − Ef̄2(ξj)] + Ef̄2(ξj). Simple calculation shows that 2In,2(f2) is a de-
generate U -statistics of order 2, and the identity 2In,2(f) = 2In,2(f2)+In,1((n−1)(f̄1−
Ef̄1))+In,1((n−1)((f̄2−Ef̄2))+n(n−1)E(f̄1 + f̄2) yields the decomposition of In,2(f)
into a sum of degenerate U -statistics of different orders.

Hoeffding’s decomposition can be obtained by working out the details of the above
argument in the general case. But it is simpler to calculate the appropriate conditional
expectations with the help of the kernel functions of the U -statistics. To carry out
such a program in the study of U -statistics of order k the following notations will be
introduced.

Let us consider the k-fold product (Xk,X k, µk) of a measure space (X,X , µ) with
some probability measure µ, and define for all integrable functions f(x1, . . . , xk) and
indices 1 ≤ j ≤ k the projection Pjf of the function f to its j-th coordinate as

(Pjf)(x1, . . . , xj−1, xj+1, . . . , xk) =

∫
f(x1, . . . , xk)µ( dxj), 1 ≤ j ≤ k. (9.1)

Let us also define the operators Qj = I − Pj i.e. Qjf = f − Pjf for all integrable
functions on f on the space (Xk,X k, µk), 1 ≤ j ≤ k. In the definition (9.1) Pjf is a
function not depending on the coordinate xj , but in the definition of Qj we introduce the
fictive coordinate xj to make the expression Qjf = f − Pjf meaningful. The following
result holds.

Theorem 9.1. (The Hoeffding decomposition). Let f(x1, . . . , xk) be an integrable
function on the k-fold product space (Xk,X k, µk) of a space (X,X , µ) with a probability
measure µ. It has such a decomposition

f =
∑

V ⊂{1,...,k}
fV , with fV (xj , j ∈ V ) =


 ∏

j∈{1,...,k}\V

Pj

∏

j∈V

Qj


 f(x1, . . . , xk)

(9.2)
for which all functions fV , V ⊂ {1, . . . , k}, in (9.2) are canonical with respect to the
probability measure µ, and the function fV depends on the arguments xj, j ∈ V .

Let ξ1, . . . , ξn be a sequence of independent µ distributed random variables, and
consider the U -statistics In,k(f) and In,|V |(fV ) corresponding to the kernel functions f ,
fV defined in (9.2) and random variables ξ1, . . . , ξn. Then

k!In,k(f) =
∑

V ⊂{1,...,k}
(n − |V |)(n − |V | − 1) · · · (n − k + 1)|V |!In,|V |(fV ) (9.3)

is a representation of In,k(f) as a sum of degenerate U -statistics, where |V | denotes the
cardinality of the set V . (The product (n − |V |)(n − |V | − 1) · · · (n − k + 1) is defined
as 1 for V = {1, . . . , k}, i.e. if |V | = k.) This representation is called the Hoeffding
decomposition of In,k(f).
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Proof of Theorem 9.1. Write f =
k∏

j=1

(Pj +Qj)f . By carrying out the multiplications in

this identity and applying the commutativity of the operators Pj and Qj for different in-
dices j we get formula (9.2). To show that the functions fV in formula (9.2) are canonical
let us observe that this property can be rewritten in the form PjfV ≡ 0 (in all coordi-
nates xs, s ∈ V \ {j} if j ∈ V ). Since Pj = P 2

j , and the identity PjQj = Pj − P 2
j = 0

holds for all j ∈ {1, . . . , k} this relation follows from the above mentioned commutativ-

ity of the operators Pj and Qj , as PjfV =

(
∏

s∈{1,...,k}\V

Ps

∏
s∈V \{j}

Qs

)
PjQjf = 0. By

applying identity (9.2) for all terms f(ξj1 , . . . , ξjk
) in the sum defining the U -statistic

In,k(f) and then summing them up we get relation (9.3).

In the Hoeffding decomposition we rewrote a general U -statistic in the form of a
linear combination of degenerate U -statistics. In many applications of this result we still
we have to know how the properties of the kernel function f of the original U -statistic
are reflected in the properties of the kernel functions fV of the degenerate U -statistics
taking part in the Hoeffding composition. In particular, we need a good estimate on
the L2 and L∞ norm of the functions fV by means of the corresponding norm of the
function f . Moreover, if we want to prove estimates on the tail distribution of the
supremum of U -statistics In,k(f) for a nice class of kernel functions f ∈ F which is an
L2-dense class of functions with some exponent L and parameter D, then we may need
a similar estimate on the class of kernel functions fV , f ∈ F , with some V ∈ {1, . . . , k}
appearing in the Hoeffding decomposition of these functions. We have to show that this
class of functions is also L2-dense, and we also need a good bound on the exponent and
parameter of this L2-dense class. The next result formulates such a statement.

Theorem 9.2. (Some properties of the Hoeffding decomposition). Let us con-
sider a square integrable function f(x1, . . . , xk) on the k-fold product space (Xk,X k, µk)
and take its decomposition defined in formula (9.2). The inequalities

∫
f2

V (xj , j ∈ V )
∏

j∈V

µ( dxj) ≤
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) (9.4)

and
sup

xj , j∈V
|fV (xj , j ∈ V )| ≤ 2|V | sup

xj , 1≤j≤k
|f(x1, . . . , xk)| (9.4′)

hold for all V ⊂ {1, . . . , k}. (In particular, f2
∅ ≤

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) for

V = ∅.)
Let us consider an L2-dense class F of functions with some parameter D ≥ 1 and

exponent L ≥ 0 on the space (Xk,X k), take the decomposition (9.2) of all functions f ∈
F , and define the classes of functions FV = {2−|V |fV : f ∈ F} for all V ⊂ {1, . . . , k}
with the functions fV taking part in this decomposition. These classes of functions FV

are also L2-dense with the same parameter D and exponent L for all V ⊂ {1, . . . , k}.
Theorem 9.2 will be proved as a consequence of Proposition 9.3 presented below.

To formulate it first some notations will be introduced:
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Let us consider the product (Y × Z,Y × Z) of two measurable spaces (Y,Y) and
(Z,Z) together with a probability measure µ on (Z,Z) and the operator

Pf(y) = Pµf(y) =

∫
f(y, z)µ( dz), y ∈ Y, z ∈ Z (9.5)

defined for those y ∈ Y for which the above integral is finite. Let I denote the identity
operator on the space of functions on Y × Z, i.e. let If(y, z) = f(y, z), and introduce
the operator Q = Qµ = I − P = I − Pµ

Qµf(y, z) = (I − Pµ)f(y, z) = f(y, z) − Pµf(y, z) = f(y, z) −
∫

f(y, z)µ( dz), (9.6)

defined for those points (y, z) ∈ Y × Z whose first coordinate y is such that the ex-
pression Pµf(y) is meaningful. (Here, and in the sequel a function g(y) defined on the
space (Y,Y) will be sometimes identified with the function ḡ(y, z) = g(y) on the space
(Y × Z,Y × Z) which actually does not depend on the coordinate z.) The following
result holds:

Proposition 9.3. Let us consider the direct product (Y × Z,Y × Z) of two measure
spaces (Y,Y) and (Z,Z) together with a probability measure µ on the space (Z,Z).
Take the transformations Pµ and Qµ defined in formulas (9.5) and (9.6). Given any
probability measure ρ on the space (Y,Y) consider the product measure ρ × µ on (Y ×
Z,Y×Z). Then the transformations Pµ and Qµ, as maps from the space L2(Y ×Z,Y×
Z, µ× ρ) to L2(Y,Y, ρ) and L2(Y ×Z,Y ×Z, ρ×µ) respectively, have a norm less than
or equal to 1, i.e. ∫

Pµf(y)2ρ( dy) ≤
∫

f(y, z)2ρ( dy)µ( dz), (9.7)

and ∫
Qµf(y, z)2ρ( dy)µ( dz) ≤

∫
f(y, z)2ρ( dy)µ( dz) (9.8)

for all functions f ∈ L2(Y × Z,Y × Z, ρ × µ).

If F is an L2-dense class of functions f(y, z) in the product space (Y ×Z,Y ×Z),
with some parameter D ≥ 1 and exponent L ≥ 0, then also the classes Fµ = {Pµf, f ∈
F} and Gµ = { 1

2Qµf = 1
2 (f−Pµf), f ∈ F} are L2-dense classes with the same exponent

L and parameter D in the spaces (Y,Y) and (Y × Z,Y × Z) respectively.

The following corollary of Proposition 9.3 is formally more general, but it is a simple
consequence of this result. Actually we shall need this corollary.

Corollary of Proposition 9.3. Let us consider the product (Y1×Z×Y2,Y1×Z×Y2)
of three measurable spaces (Y1,Y1), (Z,Z) and (Y2,Y2) with a probability measure µ
on the space (Z,Z) and a probability measure ρ on Y1 × Y2,Y1 × Y2), and define the
transformations

Pµf(y1, y2) =

∫
f(y1, z, y2)µ( dz), y1 ∈ Y1, z ∈ Z, y2 ∈ Y2 (9.5′)
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and

Qµf(y1, z, y2) = (I − Pµ)f(y1, z, y2) = f(y1, z, y2) − Pµf(y1, z, y2)

= f(y1, z, y2) −
∫

f(y1, z, y2)µ( dz), y1 ∈ Y1, z ∈ Z, y2 ∈ Y2

(9.6′)

for the measurable functions f on the space Y1 × Z × Y2 integrable with respect the
measure µ × ρ. Then

∫
Pµf(y1, y2)2ρ( dy1, dy2) ≤

∫
f(y, z)2(ρ × µ)( dy1, dz, dy2), (9.7′)

for all probability measures ρ on (Y1 × Y2,Y1 × Y2), where ρ × µ is the product of the
probability measure ρ on (Y1 × Y2,Y1 × Y2) and µ on (Z,Z), Also the inequality

∫
Qµf(y1, z, y2)2ρ( dy1, dy2)µ( dz) ≤

∫
f(y1, z, y2)2ρ( dy1, dy2)µ( dz) (9.8′)

holds for all functions f ∈ L2(Y × Z,Y × Z, ρ × µ).

If F is an L2-dense class of functions f(y1, z, y2) in the product space (Y1 × Z ×
Y2,Y1 ×Z ×Y2), with some parameter D ≥ 1 and exponent L ≥ 0, then also the classes
Fµ = {Pµf, f ∈ F} and Gµ = { 1

2Qµf = 1
2 (f −Pµf), f ∈ F} are L2-dense classes with

exponent L and parameter D in the spaces (Y1×Y2,Y1×Y2) and (Y1×Z×Y2,Y1×Z×Y2)
respectively.

This corollary is a simple consequence of Proposition 9.3 if we apply it with (Y,Y) =
(Y1×Y2,Y1×Y2) and take the natural mapping f((y1, y2), z) → f(y1, z, y2) of a function
from the space (Y × Z,Y × Z) to a function on (Y1 × Z × Y2,Y1 × Z × Y2). Beside
this, we apply that measure on (Y1 × Z × Y2,Y1 × Z × Y2) which is the image of the
product measure ρ × µ with respect to the map induced by the above transformation
on the space of measures.

Proposition 9.3, more precisely its corollary implies Theorem 9.2, since it implies
that the operators Ps, Qs, 1 ≤ s ≤ k, applied in Theorem 9.2 do not increase the L2(µ)
norm of a function f , and it is also clear that the norm of Ps is bounded by 1 the norm
of Qs = I − Ps is bounded by 2 as an operator from L∞ spaces to L∞ spaces. The
corollary of Proposition 9.3 also implies that if F is an L2-dense class of functions with
parameter D and exponent L, then the same property holds for the classes of functions
FPs = {Psf : f ∈ F} and FQs = { 1

2Qsf : f ∈ F}, 1 ≤ s ≤ k. These relations together

with the identity fV =

(
∏

s∈{1,...,k}\V

Ps

∏
s∈V

Qs

)
f imply Theorem 9.2.

Proof of Proposition 9.3. The Schwarz inequality yields that Pµ(f)2 ≤
∫

f(y, z)2µ( dz),
and integrating this inequality with respect to the probability measure ρ( dy) we get
inequality (9.7). Also the inequality

∫
Qµf(y, z)2ρ( dy)µ( dz) =

∫
[f(y, z) − Pµf(y, z)]2ρ( dy)µ( dz)

≤
∫

f(y, z)2ρ( dy)µ( dz)

64



holds, and this is relation (9.8). This follows for instance from the observation that the
functions f(y, z) − Pµf(y, z) and Pµf(y, z) are orthogonal in the space L2(Y × Z,Y ×
Z, ρ × µ).

Let us consider an arbitrary probability measure ρ on the space (Y,Y). To prove
that Fµ is an L2-dense class with parameter D and exponent L if the same relation
holds for F we have to find for all 0 < ε ≤ 1 a set {f1, . . . , fm} ⊂ Fµ, 1 ≤ j ≤ m
with m ≤ Dε−L elements, such that inf

1≤j≤m

∫
(fj − f)2 dρ ≤ ε2 for all f ∈ Fµ. But a

similar property holds for F in the space Y × Z with the probability measure ρ × µ.
This property together with the L2 contraction property of Pµ formulated in (9.7) imply
that Fµ is an L2-dense class.

To prove that Gµ is also L2-dense with parameter D and exponent L under the same
condition we have to find for all numbers 0 < ε ≤ 1 and probability measures ρ on Y ×Z
a subset {g1, . . . , gm} ⊂ Gµ with m ≤ Dε−L elements such that inf

1≤j≤m

∫
(gj−g)2 dρ ≤ ε2

for all g ∈ Gµ.

To show this let us consider the probability measure ρ̃ = 1
2 (ρ + ρ̄ × µ) on (Y ×

Z,Y × Z), where ρ̄ is the projection of the measure ρ to (Y,Y), i.e. ρ̄(A) = ρ(A × Z)
for all A ∈ Y, take a class of function F0(ε, ρ̃) = {f1, . . . , fm} ⊂ F with m ≤ Dε−L

elements such that inf
1≤j≤m

∫
(fj − f)2 dρ̃ ≤ ε2 for all f ∈ F , and put {g1, . . . , gm} =

{ 1
2Qµf1, . . . ,

1
2Qµfm}. All functions g ∈ Gµ can be written in the form g = 1

2Qµf with
some f ∈ F , and there exists some function fj ∈ F0(ε, ρ̃) such that

∫
(f − fm)2 dρ̃ ≤ ε2.

Hence to complete the proof of Proposition 9.3 it is enough to show that
∫

1
4 (Qµf −

Qµf̄)2 dρ ≤
∫

(f − f̄)2 dρ̃ for all pairs f, f̄ ∈ F . This inequality holds, since
∫

1
4 (Qµf −

Qµf̄)2 dρ ≤
∫

1
2 (f − f̄)2 dρ +

∫
1
2 (Pµf − Pµf̄)2 dρ, and

∫
(Pµf − Pµf̄)2 dρ =

∫
(Pµf −

Pµf̄)2 dρ̄ ≤
∫

(f−f̄)2 d(ρ̄×µ) by formula 9.7. The above relations imply that
∫

1
4 (Qµf−

Qµf̄)2 dρ ≤
∫

(f − f̄)2 1
2d (ρ + ρ̄ × µ) =

∫
(f − f̄)2d ρ̃ as we have claimed.

Now we shall discuss the relation between Theorem 8.1′ and Theorem 8.3 and
between Theorem 8.2 and Theorem 8.4. First we show that Theorem 8.1 (or Theo-
rem 8.1′) is equivalent to the estimate (8.10′) in the corollary of Theorem 8.3 which
is slightly weaker than the estimate (8.10) of Theorem 8.3. We also claim that The-
orems 8.2 and 8.4 are equivalent. Both in Theorem 8.2 and in Theorem 8.4 we can
restrict our attention to the case when the class of functions F is countable, since the
case of countably approximable classes can be simply reduced to this situation. Let us
remark that integration with respect to the measure µn−µ in the definition (4.8) of the
integral Jn,k(f) yields some kind of normalization which is missing in the definition of
the U -statistics In,k(f). This is the cause why degenerate U -statistics had to be con-
sidered in Theorems 8.3 and 8.4. The deduction of the corollary of Theorem 8.3 from
Theorems 8.1′ or of Theorem 8.4 from Theorem 8.2 is fairly simple if the underlying
probability measure µ is non-atomic, since in this case the identity In,k(f) = Jn,k(f)
holds for a canonical function with respect to the measure µ. Let us remark that the
non-atomic property of the measure µ is needed in this argument not only because of
the conditions of Theorems 8.1′ and 8.2, but since in the proof of the above identity we
need the identity

∫
f(x1, . . . , xk)µ( dxj) ≡ 0 in the case when the domain of integration
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is not the whole space X but the set X \ {x1, . . . , xj−1, xj+1, . . . , xk}.

The case of possibly atomic measures µ can be simply reduced to the case of non-
atomic measures by means of the following enlargement of the space (X,X , µ). Let us in-
troduce the product space (X̄, X̄ , µ̄) = (X,X , µ)×([0, 1],B, λ), where B is the σ-algebra
and λ is the Lebesgue measure on [0, 1]. Define the function f̄((x1, u1), . . . , (xk, uk)) =
f(x1, . . . , xk) in this enlarged space. Then In,k(f) = In,k(f̄), the measure µ̄ = µ × λ
is non-atomic, and f̄ is canonical with respect to µ̄ if f is canonical with respect to µ.
Hence the corollary of Theorem 8.3 and Theorem 8.4 can be derived from Theorems 8.1′

and 8.2 respectively by proving them first for their counterpart in the above constructed
enlarged space with the above defined functions.

Also Theorems 8.1′ and 8.2 can be derived from Theorems 8.3 and 8.4 respectively,
but this is a much harder problem. To do this let us observe that a random integral
Jn,k(f) can be written as a sum of U -statistics of different order, and it can also be
expressed as a sum of degenerate U -statistics if Hoeffding’s decomposition is applied for
each U -statistic in this sum. We show that the coefficients of the degenerate U -statistics
in the above representation have relatively small coefficients. This result is formulated
in the following Theorem 9.4. To make its content more understandable I shall describe
it in the special case of two-fold random integrals in a more explicit form in Corollary 2
of Theorem 9.4 at the end of this section.

Theorem 9.4. (Decomposition of a multiple random integral with respect
to a normalized empirical measure to a linear combination of degenerate
U-statistics). Let a non-atomic measure µ be given on a measurable space (X,X )
together with a sequence of independent, µ-distributed random variables ξ1, . . . , ξn. Take
a function f(x1, . . . , xk) of k variables on the space (Xk,X k) such that

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞

and consider the empirical distribution function µn of the sequence ξ1, . . . , ξn introduced
in (4.5) together with the k-fold random integral Jn,k(f) of the function f defined in
(4.8). The identity

Jn,k(f) =
∑

V ⊂{1,...,k}
C(n, k, V )n−|V |/2In,|V |(fV ) (9.9)

holds with the set of (canonical) functions fV (xj , j ∈ V ) (with respect to the measure
µ) defined in formula (9.2) together with some real numbers C(n, k, V ), V ⊂ {1, . . . , k},
where In,|V |(fV ) denotes the (degenerate) U -statistic of order |V | with the random vari-
ables ξ1, . . . , ξn and kernel function fV . The constants C(n, k, V ) in formula (9.9)
satisfy the inequality |C(n, k, V )| ≤ C(k) with some constant C(k) depending only on
the order k of the integral Jn,k(f). The relations lim

n→∞
C(n, k, V ) = C(k, V ) hold with

some appropriate constant such that 0 ≤ |C(k, V )| < ∞, and C(n, k, {1, . . . , k}) = 1 for
V = {1, . . . , k}.
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Remark: Some considerations show that the coefficients C(n, k, V ) in formula (9.9)
depend only on the cardinality |V | of the set V , i.e. C(n, k, V ) = C(n, k, |V |) can be
written. This fact will be not applied in this work.

Theorems 8.1′ and 8.2 can be simply derived from Theorems 8.3 and 8.4 respectively
with the help of Theorem 9.4. Indeed, to get Theorem 8.1′ observe that formula (9.9)
implies the inequality

P (|Jn,k(f)| > u) ≤
∑

V ⊂{1,...,k}
P

(
n−|V |/2|In,|V |(fV )| >

u

2kC(k)

)
(9.10)

with a constant C(k) satisfying the inequality C(n, k, |V |) ≤ C(k) for all coefficients
C(n, k, |V |) in (9.9). Hence Theorem 8.1′ follows from Theorem 8.3 and relations (9.4)
and (9.4′) in Theorem 9.2 by which the L2-norm of the functions fV is bounded by
the L2-norm of the function f and the L∞-norm of fV is bounded by the 2|V |-times
the L∞-norm or f . It is enough to estimate each term at the right-hand side of (9.10)
by means of Theorem 8.3. It can be assumed that 2kC(k) > 1. Let us first assume
that also the inequality u

2kC(k)σ
≥ 1 holds. In this case formula (8.3′) in Theorem 8.1′

can be obtained by means of the estimation of each term at the right-hand side of

(9.10). Observe that exp

{
−α

(
u

2kC(k)σ

)2/s
}

≤ exp

{
−α

(
u

2kC(k)σ

)2/k
}

for all s ≤ k

if u
2kC(k)σ

≥ 1. In the other case, if u
2kC(k)σ

≤ 1, formula (8.3′) holds again with a

sufficiently large C > 0, because in this case its right-hand side is greater than 1.

Theorem 8.2 can be similarly derived from Theorem 8.4 by observing that re-
lation (9.10) remains valid if |Jn,k(f)| is replaced by sup

f∈F
|Jn,k(f)| and |In,|V |(fV )| by

sup
fV ∈FV

|In,|V |(fV )| in it, and we have the right to choose the constant M in formula (8.6)

of Theorem 8.2 sufficiently large. The only difference in the argument is that beside
formulas (9.4) and (9.4′) the last statement of Theorem 9.2 also has to be applied in
this case. It tells that if F is an L2-dense class of functions on a space (Xk,X k), then
the classes of functions FV = {2−|V |fV : f ∈ F} are also L2-dense classes of functions
for all V ⊂ {1, . . . , k} with the same exponent and parameter.

Next I make some comments about the content of Theorem 9.4. The expression
Jn,k(f) was defined as a k-fold random integral, where the diagonals were omitted from
the domain of integration. We have integrated with respect to the signed measure
µn −µ, which means some kind of normalization. Thus it is not surprising that the tail
distribution behaviour of Jn,k(f) is similar to that of degenerate U -statistics. Theo-
rem 9.4 has such a consequence. Formula (9.9) expresses the random integral Jn,k(f) as
a linear combination of degenerate U -statistics of different order. This is similar to the
Hoeffding decomposition of the U -statistic In,k(f) where the same kernel functions fV

appear. But the coefficients C(n, k, |V |)n−|V |/2 of the terms In,|V |(fV ) in the expansion
(9.9) are small. On the other hand, they do not have to disappear. In particular, the
expansion (9.9) may contain a non-zero constant term. In such a case the expected
value EJn,k(f) is not equal to zero. But even in this case it can be bounded by a finite
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number not depending on the sample size n. Next I show an example for such a random
integral Jn,2(f) where EJn,2(f) 6= 0.

Let us choose a sequence of independent random variables ξ1, . . . , ξn with uni-
form distribution on the unit interval, let µn denote its empirical distribution, let
f = f(x, y) denote the indicator function of the unit square, i.e. let f(x, y) = 1 if
0 ≤ x, y ≤ 1, and f(x, y) = 0 otherwise. Let us consider the random integral 2Jn,2(f) =
n
∫

x6=y
f(x, y)(µn( dx) − dx)(µn( dy) − dy), and calculate its expected value E2Jn,2(f).

By adjusting the diagonal x = y to the domain of integration and taking out the contri-

bution obtained in this way we get that E2Jn,2(f) = nE(
∫ 1

0
(µn( dx) − µ( dx))

2 − n2 ·
1

n2 = −1. (The last term is the integral of the function f(x, y) on the diagonal x = y
with respect to the product measure µn × µn which equals (µn − µ) × (µn − µ) on the
diagonal.)

Now I turn to the proof of Theorem 9.4.

Proof of Theorem 9.4. Let us first introduce the (random) probability measures µ(l),
1 ≤ l ≤ n, concentrated in the (single) sample points ξl, i.e. let µ(l)(A) = 1 if ξl ∈ A,

and µ(l)(A) = 0 if ξl /∈ A, A ∈ A, 1 ≤ l ≤ n. Then µn − µ = 1
n

n∑
l=1

(
µ(l) − µ

)
, and

formula (4.8) can be rewritten as

Jn,k(f) =
1

nk/2k!

∑

(l1,...,lk): 1≤lj≤n, 1≤j≤k,

∫ ′
f(x1, . . . , xk) (9.11)

(
µ(l1)( dx1) − µ( dx1)

)
. . .
(
µ(lk)( dxk) − µ( dxk)

)
.

To rearrange the above sum in a way more appropriate for us let us introduce the class
of all partitions P = Pk of the set {1, 2, . . . , k}. For a partition P = {R1, . . . , Ru}
u⋃

j=1

Rj = {1, . . . , k}, Rj ∩ Rl = ∅, 1 ≤ j < l ≤ u, the sets Rj , 1 ≤ j ≤ u, will be called

the components of the partition P . Given a sequence (l1, . . . , lk), 1 ≤ lj ≤ n, 1 ≤ j ≤ k,
of length k let PH(l1, . . . , lk) denote that partition of the set {1, . . . , k} in which two
points s and t, 1 ≤ s, t ≤ k, belong to the same component of this partition if and only
if ls = lt. For a partition P ∈ Pk let us define the set H(P ) = Hn(P ) consisting of
sequences (l1, . . . , lk) with 1 ≤ lj ≤ n for all 1 ≤ j ≤ k as H(P ) = {(l1, . . . , lk): 1 ≤
lj ≤ n, 1 ≤ j ≤ k, PH(l1, . . . , lk) = P}.

Let us rewrite formula (9.11) in the form

Jn,k(f) =
1

nk/2k!

∑

P∈P

∑

(l1,...,lk): (l1,...,lk)∈H(P )

∫ ′
f(x1, . . . , xk) (9.12)

(
µ(l1)( dx1) − µ( dx1)

)
. . .
(
µ(lk)( dxk) − µ( dxk)

)
.

Let us remember that the diagonals xs = xt, s 6= t, were omitted from the domain
of integration in the formula defining Jn,k(f). This implies that if ls = lt for some s 6= t,
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then the measure µ(ls)( dxs)µ(lt)( dxt) has zero measure in the domain of integration. We
have to understand the cancellation effects caused because of this fact. It will be shown
that because of these cancellations the expression in formula (9.12) can be rewritten as a
linear combination of degenerate U -statistics with not too large coefficients. Beside this,
it will be seen from the calculations that the same degenerate U -statistics In,|V |(fV )
appear in the representation of Jn,k(f) as in formula (9.2). This is a natural approach,
but the detailed proof demands some rather unpleasant calculation.

Let us fix some partition P ∈ P and investigate the integrals in the internal sum
at the right-hand side of (9.12) corresponding to the sequences (l1, . . . , lk) ∈ H(P ).
For the sake of a better understanding let us first consider such a partition P ∈ P
which has a component of the form {1, . . . , s} with some s ≥ 2. The products of
measures by which we have to integrate in this case contain a part of length s of the
form

(
µ(l)(dx1) − µ(dx1)

)
. . .
(
µ(l)(dxs) − µ(dxs)

)
This part of the product measure can

be rewritten in the domain of integration as
s∑

j=1

(−1)s−1µ( dx1) . . . µ( dxj−1)µ(l)( dxj)µ( dxj+1) . . . µ( dxs) + (−1)sµ(dx1) . . . µ(dxs)

=

s∑

j=1

(−1)s−1µ( dx1) . . . µ( dxj−1)(µ(l)( dxj) − µ( dxl))µ( dxj+1) . . . µ( dxs)

+ (−1)s−1(s − 1)µ(dx1) . . . µ(dxs). (9.13)

Here we have exploited that all other terms of this product disappear in the domain
of integration which does not contain the diagonals. Let us also observe that the term
(−1)s−1(s − 1)µ(dx1) . . . µ(dxj) appears n-times if we sum up for all 1 ≤ l ≤ n. We
have assumed that s ≥ 2, since the case s = 1 is slightly different. In this case only the
term µ(l)(dx1) − µ( dx1) appears, i.e. have to put no additional term consisting only of
(deterministic) measures µ.

More generally, let us fix some partition P = {R1, . . . , Ru}, consider the integral
corresponding to a sequence (l1, . . . , lk) ∈ H(P ) in the internal sum of (9.12), and let us
rewrite it as the sum of integrals with respect to product measures with components of
the form µ(ls)( dxs)−µ( dxs) or µ( dxs), where all measures µ(ls) appearing in a product
measure are different. Such a representation can be given, similarly to the calculation
leading to relation (9.13), only the notations will be more complicated. To write down
what we get first we define a set T (P ) whose elements are certain subsets of {1, . . . , k}
depending on the partition P = {R1, . . . , Ru} together with a subset T̄ (P ) of it. The
elements of the set T (P ) are those sets {j1, . . . , ju′} ⊂ {1, . . . , k}, u′ ≤ u, which contain
zero or one element from each component Rj , 1 ≤ j ≤ u, of the partition P . Let
T̄ (P ) ⊂ T (P ) consist of those sets V = {j1, . . . , ju′} ∈ T (P ) which satisfy the following
additional condition: If some component Rt = {bt}, 1 ≤ t ≤ u, of the partition P
consists of only one point, then all sets V ∈ T̄ (P ) ⊂ T (P ) contain this point bt. With
the help of the above quantities we can write in the case (l1, . . . , lk) ∈ H(P ), similarly
to the calculation in (9.13), that
∫ ′

f(x1, . . . , xk)
(
µ(l1)( dx1) − µ( dx1)

)
. . .
(
µ(lk)( dxk) − µ( dxk)

)
(9.14)
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=
∑

V ∈T̄ (P )

α(V, P )

∫
f(x1, . . . , xk)

∏

j∈V

(
µ(lj)( dxj) − µ( dxj)

) ∏

j′∈{1,...,k}\V

µ( dxj′)

with some appropriate finite constants α(V, P ). These constants could be calculated
explicitly, but it is enough for us to know that they depend only on the partition P
and the set V ∈ T̄ (P ). On the other hand, it is important to observe that a term with
non-zero coefficient α(V, P ) appears at the right-hand side of (9.14) only for V ∈ T̄ (P ).
This was the reason for the introduction of the sets T̄ (P ). To understand relation (9.14)
observe that if Rt = {bt} is a one-point component of the the partition P , then only
the term µ(lbt )( dxbt)−µ( dxbt) appears as a component depending on bt in the product
of measures at the right-hand side of (9.14), and a component of the form µ( dxbt) is
missing. Hence a product

∏
j′∈{1,...,k}\V

µ( dxj′) cannot appear at the right-hand side of

(9.14) if V /∈ T̄ (P ).

Let me remark that at the right-hand side of (9.14)
∫

was written and not
∫ ′

, i.e.
the diagonal was not omitted from the domain of integration. This is allowed, since
the measure µ is non-atomic, and this also has the consequence that the sample points
ξ1, . . . , ξn are different with probability 1.

Formula (9.14) can be rewritten, by expressing its right-hand side with the help of
the random variables ξl instead of the measures µ(l) as

∫ ′
f(x1, . . . , xk)

(
µ(l1)( dx1) − µ( dx1)

)
. . .
(
µ(lk)( dxk) − µ( dxk)

)

(9.15)

=
∑

V ∈T̄ (P )

α(V, P )


 ∏

j′∈{1,...,k}\V

Pµ,j′

∏

j∈V

Qµ,j


 f(ξlj , j ∈ V )

if (l1, . . . , lk) ∈ H(P ). Here Qµ,j = I − Pµ,j is the operator Qµ defined in (9.6′), with
the choice Y1 which is the product of the first j − 1 components of Xk, Z is the j-th
component and Y2 is the product of the last k − j components of the product space
Xk. The operator Pµ,j′ is the operator Pµ defined in (9.5′) with the choice of Y1 as the
product of the first j′−1, Z the j-th component and Y2 as the product of the last k− j′

components of the space Xk. To see why formula (9.15) holds we have to understand
that integration with respect to

(
µ(lj)( dxj) − µ( dxj)

)
means the application of the

operator Qµ,j and then putting the value ξlj in the argument xj , while integration
with respect to µ( dxj′) means the application of the operator Pµ,j′ . Beside this, the
operators Qµ,j and Pµ,j′ are exchangeable.

Fix some partition P ∈ Pk, a set V ∈ T̄ (P ) and sum up the expressions at the
right-hand side of (9.15) with this set V for all sequences (l1, . . . , lk) ∈ H(P ). We get
that

α(V, P )
∑

(l1,...,lk)∈H(P )


 ∏

j′∈{1,...,k}\V

Pµ,j′

∏

j∈V

Qµ,j


 f(ξlj , j ∈ V ) = ᾱ(V, P, k, n)In,|V |(fV )

(9.16)
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where In,|V |(fv) is the U -statistic of order |V | with the kernel function

fV (xj , j ∈ V ) =


 ∏

j′∈{1,...,k}\V

Pµ,j′

∏

j∈V

Qµ,j


 f (9.17)

with that function on f(x1, . . . , xk) which is considered in Theorem 9.4 and some appro-
priate coefficients ᾱ(V, P, k, n) at the right-hand side of (9.16). These coefficients could
be explicitly calculated. We do not need an explicit formula for ᾱ(V, P, k, n), but we shall
need the inequality |ᾱ(V, P, k, n)| ≤ D(k)nβ(P,V ), where β(P, V ) = u−|V | is the number
of those components Rj , 1 ≤ j ≤ u, of the partition P for which Rj ∩ V = ∅, (here
u denotes the number of components in the partition P ), and the constant D(k) < ∞
depends only on the multiplicity k of the integral Jn,k(f).

To show that |ᾱ(V, P, k, n)| ≤ D(k)nβ(P,V ) let us observe that if we fix the coordi-
nates lj , j ∈ V , in an arbitrary way and sum up the expression at left-hand side of (9.16)
for the remaining indices lj′ , j′ /∈ V , then we get the term depending on the variables
ξlj , j ∈ V , in the sum defining the U -statistic In,|V |(fV ) multiplied by ᾱ(V, P, k, n).
Hence to get a good estimate on ᾱ(V, P, k, n) the number of the vectors (lj , j /∈ V ) tak-
ing part in the summation at the left-hand side of (9.16) has to be well bounded. For
this aim let us consider the class of vectors (l1, . . . , lk) ∈ H(P ). Two coordinates lj′ and
lj′′ must agree if their indices j′ and j′′ belong to the same component of the partition
P . Beside this, if the number j is contained in such a component Rt of the partition P
for which Rt ∩ V 6= ∅, then the coordinate lj of these vectors is fixed. Hence the value
lj′ of those non-fixed coordinates whose indices j′ belong to the same component Rt

of the partition P agree and only such components Rt have to be considered for which
Rt ∩ V = ∅. This yields the upper bound nβ(P,V ) for the number of possible choices of
the indices lj′ , j′ /∈ V . A more careful consideration shows that the finite limit

C(k, V, P ) = lim
n→∞

n−β(P,V )ᾱ(V, P, k, n), |C(k, V, P )| < ∞, (9.18)

also exists.

We get by applying relations (9.12) and (9.15) and summing up relation (9.16) first
for all V ∈ T̄ (P ) for a partition P ∈ Pk and then for all P ∈ P that the identity

Jn,k(f) =
∑

V ⊂{1,2,...,k}
n−|V |/2C(n, k, V )

1

k!

∑

1≤lj≤n,

lj 6=lj′ if j 6=j′ for j∈V

fV (ξlj , j ∈ V ) (9.19)

holds with the functions fV (xj , j ∈ V ) defined in (9.17) for all V ⊂ {1, . . . , k} and
some appropriate coefficients C(n, k, V ). We shall show that these coefficients satisfy
the inequality |C(n, k, V )| ≤ C(k) with some constant C(k) > 0. Beside this, it is
not difficult to see that the identity C(n, k, {1, . . . , k}) = 1 holds. To see the estimate
|C(n, k, V )| ≤ C(k) observe that n−|V |/2C(n, k, |V |) can be written as a sum of finitely
many terms, (their number is less than a number depending only on k) such that all
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of them can be bounded by a number of the form |ᾱ(V,P,k,n)|
nk/2k!

≤ D(k)n−k/2+β(P,V ) with
some partition P and the number β(P, V ) introduced after formula (9.16) with some

P ∈ Pk and V ∈ T̄ (P ). Hence it is enough to show that −k
2 + β(P, V ) ≤ − |V |

2 , i.e.

β(P, V ) ≤ k−|V |
2 if V ∈ T̄ (P ). This relation clearly holds, since β(P, V ) is the number

of components of such a partition of a set with less than or equal to k − |V | elements
whose components have at least 2 elements.

Relation (9.19) can be rewritten as Jn,k(f) =
∑

V ⊂{1,2,...,k}
C(n, k, V )n−|V |/2In,|V |(fV ),

where In,|V |(fV ) is the U -statistic with the random variables ξ1, . . . , ξn and the kernel
function fV defined in (9.17). This kernel function agrees with the function fV defined
in (9.2). We have also seen that the coefficients C(n, k, V ) satisfy the inequality stated
in Theorem 9.4. Relation (9.18) together with the bound on the terms β(P, V ) also imply
that the finite limits lim

n→∞
C(n, k, V ) = C(k, V ) also exist. Theorem 9.4 is proved.

Two corollaries of Theorem 9.4 will be formulated. The first one explains the
content of conditions (8.2) and (8.5) in Theorems 8.1—8.4.

Corollary 1 of Theorem 9.4. If In,k(f) is a degenerate U -statistic of order k with
some kernel function f , then

E
(
n−k/2In,k(f)

)2

=
n(n − 1) · · · (n − k + 1)

k!nk

∫
Sym f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

≤ 1

k!

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk), (9.20)

where µ is the distribution of the random variables taking part in the definition of the U -
statistic In,k(f), and Sym f is the symmetrization of the function f . The k-fold multiple
random integral Jk,n(f) with an arbitrary square integrable kernel function f satisfies
the inequality

EJn,k(f)2 ≤ C̄(k)

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

with some constant C̄(k) depending only on the order k of the integral Jn,k(f).

Proof of Corollary 1 of Theorem 9.4. The identity

E(n−k/2In,k(f))2 =
1

(k!)2nk

∑ ′
Ef(ξl1 , . . . , ξlk)f(ξl′1

, . . . , ξl′
k
) (9.21)

holds, where the prime in
∑′

means that summation is taken for such pairs of k-tuples
(l1, . . . , lk), (l′1, . . . , l

′
k), 1 ≤ lj , l

′
j ≤ n, for which lj 6= lj′ and l′j 6= l′j′ if j 6= j′. The

degeneracy of the U -statistic In,k(f) implies that Ef(ξl1 , . . . , ξlk)f(ξl′1
, . . . , ξl′

k
) = 0 if

the two sets {l1, . . . , lk} and {l′1, . . . , l′k} differ. This can be seen by taking such an index
lj from the first k-tuple which does not appear in the second one, and by observing that
the conditional expectation of the product we consider equals zero by the degeneracy
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condition of the U -statistic under the condition that the value of all random variables
except that of ξlj is fixed in this product. On the other hand,

Ef(ξl1 , . . . , ξlk)f(ξl′1
, . . . , ξl′

k
) =

∫
f(x1, . . . , xk)f(xπ(1), . . . , xπ(k))µ( dx1) . . . µ( dxk)

if (l′1, . . . , l
′
k) = (π(l1), . . . , π(lk)) with some (π(1), . . . , π(k)) ∈ Πk, where Πk denotes

the set of all permutations of the set {1, . . . , k}. By summing up the above identities for
all pairs (l1, . . . , lk) and (l′1, . . . , l

′
k) and by applying formula (9.21) we get the identity

at the left-hand side of formula (9.20). The second relation in (9.20) is obvious.

The bound for Jn,k(f) follows from Theorem 9.4, formula (9.4) in Theorem 9.2 by
which the L2-norm of the functions fV is not greater than the L2-norm of the function f
and the bound that formula (9.20) yields for the second moment of the degenerate U -
statistics n−|V |/2In,|V |(fV ) appearing in the expansion (9.9).

In Corollary 2 the decomposition (9.9) of a random integral Jn,2(f) of order 2 is
described in an explicit form.

Corollary 2 of Theorem 9.4. Let the random integral Jn,2(f) satisfy the conditions
of Theorem 9.4. In this case formula (9.9) can be written in the following explicit form:

2Jn,2(f) =
2

n
In,2(f{1,2}) − 1

n
In,1(f{1}) − 1

n
In,1(f{2}) − f∅ (9.9′)

with the functions

f{1,2}(x, y) = f(x, y) −
∫

f(x, y)µ( dx) −
∫

f(x, y)µ( dy) +

∫
f(x, y)µ( dx)µ( dy),

f{1}(x) =

∫
f(x, y)µ( dy) −

∫
f(x, y)µ( dx)µ( dy),

f{2}(y) =

∫
f(x, y)µ( dx) −

∫
f(x, y)µ( dx)µ( dy), and

f∅ =

∫
f(x, y)µ( dx)µ( dy).
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10. Multiple Wiener–Itô integrals and their properties.

In this section I present the definition of multiple Wiener–Itô integrals and some of their
most important properties needed in the proof of the results formulated in Section 8.
First the notion of the white noise with some reference measure will be introduced,
then multiple Wiener–Itô integrals with respect to a white noise with some non-atomic
reference measure will be defined. A most important result in the theory of multiple
Wiener–Itô integrals is the so-called diagram formula presented in Theorem 10.2A. It
enables us to write the product of two Wiener–Itô integrals in the form of a sum of
Wiener–Itô integrals. The proof of the diagram formula is given in Appendix B.

Another interesting result about Wiener-Itô integrals, formulated at the end of this
section in Theorem 10.5 states that the class of random variables which can be written
in the form of a sum of Wiener–Itô integrals of different order is sufficiently rich. All
random variables with finite second moment which are measurable with respect to the
σ-algebra generated by the (Gaussian) random variables appearing in the underlying
white noise in the construction of multiple Wiener–Itô integrals can be written in such a
form. This result explains why it is natural to expect a result like the diagram formula.
The product of two Wiener–Itô integrals is also measurable with respect to the σ-algebra
generated by the random variables in the underlying white noise, hence if we know that
such a product is square integrable, then Theorem 10.5 implies that it can be written
as the sum of multiple Wiener–Itô integrals of different order. The diagram formula
is especially useful for us, because it yields an explicit representation of a product of
Wiener–Itô integrals in the form of a sum of Wiener–Itô integrals. I shall also give a
heuristic explanation of the diagram formula which may indicate why it has the form
appearing in Theorem 10.2A. It also helps to find the analogue of the diagram formula
for (random) integrals with respect to the product of normalized empirical measures.
Such a result will be useful later.

Once the diagram formula is proved, it is not difficult to generalize it to the product
of finitely many Wiener–Itô integrals. This generalization, formulated in Theorem 10.2,
will also be called the diagram formula. It has an important corollary about the cal-
culation of the moments of Wiener–Itô integrals. Theorem 8.5 can be proved relatively
simply by means of this corollary.

I shall give the proof of two other results about Wiener–Itô integrals in Appendix C.
The first one, Theorem 10.3, is called Itô’s formula for Wiener–Itô integrals, and it
explains the relation between multiple Wiener-Itô integrals and Hermite polynomials
of Gaussian random variables. This result is a relatively simple consequence of the
diagram formula and some basic recursive relations about Hermite polynomials.

The other result proved in Appendix C, Theorem 10.4, is a limit theorem about
a sequences of appropriately normalized degenerate U -statistics. Here the limit is pre-
sented in the form of a multiple Wiener–Itô integral. This result is interesting for us,
because it helps to compare Theorems 8.3 and 8.1 with their one-variate counterpart,
Bernstein’s inequality. In the one-variate case Bernstein’s inequality provides a compari-
son of the distribution of sums of independent random variables and normal distribution
functions, i.e. the limit distribution in the central limit theorem. Theorem 8.3 yields
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a similar result about degenerate U -statistics. Its comparison with Theorem 8.5 and
the limit theorem proved in Appendix C about the limit distribution of degenerate U -
statistics show that degenerate U -statistics satisfy an estimate similar to Bernstein’s
inequality. The upper bound in it is similar to the estimate on the tail-distribution of
the limit distribution of normalized degenerate U -statistics, which equals the distribu-
tion of an appropriate multiple Wiener–Itô integral. Theorem 8.1 which is an estimate
of multiple integrals with respect to a normalized empirical distribution also has such
an interpretation.

My Lecture Note [29] contains a rather detailed description of Wiener–Itô integrals.
But in that work the emphasis was put on the study of a slightly different version of it.
The original version of this integral introduced in [24] was also only briefly discussed
there, not all details were worked out. In particular, the diagram formula needed in
this work was formulated and proved only for modified Wiener–Itô integrals. I shall
discuss the difference between these random integrals together with the question why a
modified version of Wiener–Itô integrals was discussed in [29] at the end of the section.

To define multiple Wiener–Itô integrals first the notion of a white noise has to be
introduced. This is done in the following definition.

Definition of a white noise with some reference measure. Let us have a σ-finite
measure µ on a measurable space (X,X ). A white noise with reference measure µ is
a Gaussian random field µW = {µW (A): A ∈ X , µ(A) < ∞}, i.e. a set of jointly
Gaussian random variables indexed by the above sets A, which satisfies the relations
EµW (A) = 0 and EµW (A)µW (B) = µ(A ∩ B).

It is worth making some comments about this definition.

Remark: In the definition of a white noise sometimes also the property µW (A ∪ B) =
µW (A) + µW (B) with probability 1 if A ∩ B = ∅, and µ(A) < ∞, µ(B) < ∞ is
mentioned. But this condition can be omitted, because it follows from the remaining
properties of the white noise. Indeed, simple calculation shows that E(µW (A ∪ B) −
µW (A) − µW (B))2 = 0 if A ∩ B = ∅, hence µW (A ∪ B) − µW (A) − µW (B) = 0 with
probability 1 in this case. It also can be observed that if some sets A1, . . . , Ak ∈ X ,
µ(Aj) < ∞, 1 ≤ j ≤ k, are disjoint, then the random variables µW (Aj), 1 ≤ j ≤ k, are
independent because of the uncorrelatedness of these jointly Gaussian random variables.

It is not difficult to see that for an arbitrary reference measure µ on a space (X,X )
a white noise µW with this reference measure really exists. This follows simply from
Kolmogorov’s fundamental theorem, by which if the finite dimensional distributions of
a random field are prescribed in a consistent way, then there exists a random field with
these finite dimensional distributions.

Now I turn to the definition of multiple Wiener–Itô integrals with respect to a
white noise with some reference measure. First I introduce the class of functions whose
Wiener–Itô integrals with respect to a white noise µW with a non-atomic reference
measure µ will be defined.

Let us consider a measurable space (X,X ), a non-atomic σ-finite measure µ on it
and a white noise µW on (X,X ) with reference measure µ. Let us define the classes
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of functions Hµ,k, k = 1, 2, . . . , consisting of functions of k variables on (X,X ) by the
formula

Hµ,k =

{
f(x1, . . . , xk): f(x1, . . . , xk) is an X k measurable, real valued

function on Xk, and

∫
f2(x1, . . . , xk)µ( dx1) . . . , µ( dxk) < ∞

}
.

(10.1)

We shall call a σ-finite measure µ on a measurable space (X,X ) non-atomic if for all sets

A ∈ X such that µ(A) < ∞ and numbers ε > 0 there is a finite partition A =
N⋃

s=1
Bs of

the set A with the property µ(Bs) < ε for all 1 ≤ s ≤ N . There is a formally weaker
definition of a non-atomic measures by which a σ-finite measure µ is non-atomic if for
all measurable sets A such that 0 < µ(A) < ∞ there exists a B ⊂ A with the property
0 < µ(B) < µ(A). But these two definitions of non-atomic measures are actually
equivalent, although this equivalence is far from trivial. I do not discuss this problem
here, since it is a little bit outside from the direction of the present work. In our further
considerations we shall work with the first definition of non-atomic measures.

The k-fold Wiener-Itô integrals of the functions f ∈ Hµ,k with respect to the white
noise µW will be defined in a rather standard way. First they will be defined for some
simple functions, called elementary functions, then it will be shown that the integral
for this elementary functions have an L2 contraction property which makes possible to
extend it to the class of functions in Hµ,k.

Let us first introduce the following class of elementary functions H̄µ,k of k variables.
A function f(x1, . . . , xk) on (Xk,X k) belongs to H̄µ,k if there exist finitely many disjoint
measurable subsets A1, . . . , AM , 1 ≤ M < ∞, of the set X (i.e. Aj ∩ Aj′ = ∅ if j 6= j′)
such that µ(Aj) < ∞ for all 1 ≤ j ≤ M , and the function f has the form

f(x1, . . . , xk) =





c(j1, . . . , jk) if (x1, . . . , xk) ∈ Aj1 × · · · × Ajk

with some indices (j1, . . . , jk), 1 ≤ js ≤ M, 1 ≤ s ≤ k,

such that all numbers j1, . . . , jk are different

0 if (x1, . . . , xk) /∈
⋃

(j1,...,jk): 1≤js≤M, 1≤s≤k,
and all j1,...,jk are different.

Aj1 × · · · × Ajk

(10.2)
with some real numbers c(j1, . . . , jk), 1 ≤ js ≤ M , 1 ≤ s ≤ k, if all j1, . . . , jk are
different numbers. This means that the function f is constant on all k-dimensional
rectangles Aj1 × · · · × Ajk

with different, non-intersecting edges, and it equals zero on
the complementary set of the union of these rectangles. The property that the support
of the function f is on the union of rectangles with non-intersecting edges is sometimes
interpreted so that the diagonals are omitted from the domain of integration of Wiener–
Itô integrals.

The Wiener-Itô integral of an elementary function f(x1, . . . , xk) of the form (10.2)
with respect to a white noise µW with the (non-atomic) reference measure µ is defined
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by the formula

∫
f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)

=
∑

1≤js≤M, 1≤s≤k
all j1,...,jk are different

c(j1, . . . , jk)µW (Aj1) · · ·µW (Ajk
). (10.3)

(The representation of the function f in (10.2) is not unique, the sets Aj can be divided
to smaller disjoint sets, but its Wiener–Itô integral defined in (10.3) does not depend
on its representation.) The notation

Zµ,k(f) =
1

k!

∫
f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk), (10.4)

will be used in the sequel, and the expression Zµ,k(f) will be called the normalized
Wiener–Itô integral of the function f . Such a terminology will be applied also for the
Wiener–Itô integrals of all functions f ∈ Hµ,k to be defined later.

If f is an elementary function in H̄µ,k defined in (10.2), then its normalized Wiener–
Itô integral defined in (10.3) and (10.4) satisfies the relations

Ek!Zµ,k(f) = 0,

E(k!Zµ,k(f))2 =
∑

(j1,...,jk): 1≤js≤M, 1≤s≤k,
and all j1,...,jk are different.

∑

π∈Πk

c(j1, . . . , jk)c(jπ(1), . . . , jπ(k))

EµW (Aj1) · · ·µW (Ajk
)µW (Ajπ(1)

) · · ·µW (Ajπ(k)
)

= k!

∫
Sym f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

≤ k!

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk),

(10.5)

with Sym f(x1, . . . , xk) = 1
k!

∑
π∈Πk

f(xπ(1), . . . , xπ(k)), where Πk denotes the set of all

permutations π = {π(1), . . . , π(k)} of the set {1, . . . , k}.

The identities written down in (10.5) can be simply checked. The first relation
follows from the identity EµW (Aj1) · · ·µW (Ajk

) = 0 for disjoint sets Aj1 , . . . , Ajk
, which

holds, since the expectation of the product of independent random variables with zero
expectation is taken. The second identity follows similarly from the identity

EµW (Aj1) · · ·µW (Ajk
)µW (Aj′

1
) · · ·µW (Aj′

k
) = 0

if the sets of indices {j1, . . . , jk} and {j′1, . . . , j′k} are different,

EµW (Aj1) · · ·µW (Ajk
)µW (Aj′

1
) · · ·µW (Aj′

k
) = µ(Aj1) · · ·µ(Ajk

)

if {j1, . . . , jk} = {j′1, . . . , j′k} i.e. if j′1 = jπ(1), . . . , j
′
k = jπ(k)

with some permutation π ∈ Πk,
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which holds because of the facts that the µW measure of disjoint sets are independent
with expectation zero, and EµW (A)2 = µ(A). The remaining relations in (10.5) can be
simply checked.

It is not difficult to check that

EZµ,k(f)Zµ,k′(g) = 0 (10.6)

for all functions f ∈ H̄µ,k and g ∈ H̄µ,k′ if k 6= k′, and

Zµ,k(f) = Zµ,k(Sym f) (10.7)

for all functions f ∈ H̄µ,k.

The definition of Wiener–Itô integrals can be extended to general functions f ∈
Hµ,k with the help of the estimate (10.5). But to carry out this extension we still
have to know that the class of functions H̄µ,k is a dense subset of the class Hµ,k in the
Hilbert space L2(Xk,X k, µk), where µk is the k-th power of the reference measure µ
of the white noise µW . I briefly explain how this property of H̄µ,k can be proved. The
non-atomic property of the measure µ is exploited at this point.

To prove this statement it is enough to show that the indicator function of any
product set A1 × · · · × Ak such that µ(Aj) < ∞, 1 ≤ j ≤ k, but the sets A1, . . . , Ak

may be non-disjoint is in the L2(µk) closure of H̄µ,k. In the proof of this statement it
will be exploited that since µ is a non-atomic measure, the sets Aj can be represented
for all ε > 0 and 1 ≤ j ≤ k as a finite union Aj =

⋃
s

Bj,s of disjoint sets Bj,s with the

property µ(Bj,s) < ε. By means of these relations the product A1 × · · · × Ak can be
written in the form

A1 × · · · × Ak =
⋃

s1,...,sk

B1,s1 × · · · × Bk,sk
(10.8)

with some sets Bj,sj such that µ(Bj,sj ) < ε for all sets in this union. Moreover, we
may assume, by refining the partitions of the sets Aj if this is necessary that any two
sets Bj,sj and Bj′,s′

j′
in this representation are either disjoint, or they agree. Take such

a representation of A1 × · · · × Ak, and consider the set we obtain by omitting those
products B1,s1 × · · · × Bk,sk

from the union at the right-hand side of (10.8) for which
Bi,si = Bj,sj for some 1 ≤ i < j ≤ k. The indicator function of the remaining set is
in the class H̄µ,k. Hence it is enough to show that the distance between this indicator
function and the indicator function of the set A1 × · · · × Ak is less than const. ε in the
L2(µk) norm with some const. which may depend on the sets A1, . . . , Ak, but not on ε.
Indeed, by letting ε tend to zero we get from this relation that the indicator function
of the set A1 × A2 × · · · × Ak is in the closure of H̄µ,k in the L2(µk) norm.

Hence to prove the desired property of H̄µ,k it is enough to prove the following
statement. Take the representation (10.8) of A1 × · · · × Ak (which depends on ε) and
an arbitrary pair of integers i and j such that 1 ≤ i < j ≤ k. Then the sum of the
measures µk(B1,s1 × · · · ×Bk,sk

) of those sets B1,s1 × · · · ×Bk,sk
at the right-hand side
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of (10.8) for which Bi,si = Bj,sj is less than const. ε. To prove such an estimate observe
that the µk measure of such a set can be bounded by the µk−1 measure of the set we
obtain by omitting the i-th term from the product defining it in the following way:

µk(B1,s1 × · · · × Bk,sk
) ≤ εµk−1(B1,s1 × · · · × Bi−1,si−1 × Bi+1,si+1 × · · · × Bk,sk

).

Let us sum up this inequality for all such sets B1,s1 × · · · ×Bk,sk
at the right-hand side

of (10.8) for which Bi,si = Bj,sj . The left-hand side of the inequality we get in such
a way equals the quantity we want to estimate. The expression at its right-hand side
is less than ε

∏
1≤s≤k, s 6=i

µ(As), since ε-times the µk−1 measure of such disjoint sets are

summed up in it which are contained in the set A1 × · · · × Ai−1 × Ai+1 × · · · × Ak. In
such a way we get the estimate we wanted to prove.

Knowing that H̄µ,k is a dense subset of Hµ,k in L2(µk) norm we can finish the
definition of k-fold Wiener–itô integrals in the standard way. Given any function f ∈
Hµ,k, a sequence of functions fn ∈ H̄µ,k, n = 1, 2, . . . , can be defined in such a way that∫
|f(x1, . . . , xk) − fn(x1, . . . , xk)|2µ( dx1) . . . µ( dxk) → 0 as n → ∞. By relation (10.5)

the normalizations Zµ,k(fn) of the already defined Wiener–Itô integrals of the functions
fn, n = 1, 2, . . . , constitute a Cauchy sequence in the space of square integrable random
variables on the probability space, where the white noise is given. (Observe that the
difference of two functions from the class H̄µ,k also belongs to this class.) Hence the
limit lim

n→∞
Zµ,k(fn) exists in L2 norm, and this limit can be defined as the normalized

Wiener–Itô integral Zµ,k(f) of the function f . The definition of this limit does not
depend on the choice of the approximating functions fn, hence it is meaningful. It can
be seen that relations (10.5) and (10.6) remain valid for all functions f ∈ Hµ,k. The
following Theorem 10.1 describes the properties of multiple Wiener–Itô integrals. It
contains already proved results. The only still non-discussed part of this Theorem is
Property f) of Wiener–Itô integrals. But it is easy to check this property by observing
that one-fold Wiener–Itô integrals are (jointly) Gaussian, they are measurable with
respect to the σ-algebra generated by the white noise µW . Beside this, the random
variable µW (A) for a set A ∈ X , µ(A) < ∞, equals the (one-fold) Wiener–Itô integral
of the indicator function of the set A.

Theorem 10.1. (Some properties of multiple Wiener–Itô integrals). Let
a white noise µW be given with some non-atomic σ-additive reference measure on
a measurable space (X,X ). Then the k-fold Wiener–Itô integral of all functions in
the class Hµ,k introduced in formula (10.1) can be defined, and its normalized version
Zµ,k(f) = 1

k!

∫
f(x1, . . . , xk)µW ( dx1) . . . µW (dxk) satisfies the following relations:

a) Zµ,k(αf +βg) = αZµ,k(f)+βZµ,k(g) for all f, g ∈ Hµ,k and real numbers α and β.

b) If A1, . . . , Ak are disjoint sets, µ(Aj) < ∞, then the function fA1,...,Ak
defined by the

relation fA1,...,Ak
(x1, . . . , xk) = 1 if x1 ∈ A1, . . . , xk ∈ Ak, fA1,...,Ak

(x1, . . . , xk) =
0 otherwise, satisfies the identity

Zµ,k(fA1,...,Ak
(x1, . . . , xk)) =

1

k!
µW (A1) · · ·µW (Ak).
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c)

EZµ,k(f) = 0, and EZ2
µ,k(f) =

1

k!
‖Sym f‖2

2 ≤ 1

k!
‖f‖2

2

for all f ∈ Hµ,k, where ‖f‖2
2 =

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) is the square of

the L2 norm of a function f ∈ Hµ,k.

d) Relation (10.6) holds for all functions f ∈ Hµ,k and g ∈ Hµ,k′ if k 6= k′.

e) Relation (10.7) holds for all functions f ∈ Hµ,k.

f) The Wiener–Itô integrals Zµ,1(f) of order k = 1 are jointly Gaussian. The small-
est σ-algebra with respect to which they are all measurable agrees with the σ-algebra
generated by the random variables µW (A), A ∈ X , µ(A) < ∞, of the white noise.

We have defined Wiener–Itô integrals of order k for all k = 1, 2, . . . . For the sake
of completeness let us introduce the class Hµ,0 for k = 0 which consists of the real
constants (functions of zero variables), and put Zµ,0(c) = c. Because of relation (10.7)
we could have restricted our attention to Wiener–Itô integrals with symmetric kernel
functions. But it turned out more convenient to work also with Wiener–Itô integrals of
not necessarily symmetric functions.

Now I formulate the diagram formula for the product of two Wiener–Itô integrals.
For this goal some notations have to be introduced. To present the product of the
multiple Wiener–Itô integrals of two functions f(x1, . . . , xk) ∈ Hµ,k and g(x1, . . . , xl) ∈
Hµ,l in the form of sums of Wiener–Itô integrals a class of diagrams Γ = Γ(k, l) will
be defined. The diagrams γ ∈ Γ(k, l) have vertices (1, 1), . . . , (1, k) and (2, 1), . . . , (2, l),
and edges ((1, j1), (2, j′1)), . . . , ((1, js), (2, j′s)) with some 1 ≤ s ≤ min(k, l). The indices
j1, . . . , js in the definition of the edges are all different, and the same relation holds for
the indices j′1, . . . , j

′
s. All such diagrams γ belongs to Γ(k, l). The set of vertices of the

form (1, j), 1 ≤ j ≤ k, will be called the first row, and the set of vertices of the form
(2, j′), 1 ≤ j′ ≤ l, the second row of a diagram. We demanded that edges of a diagram
can connect only vertices of different rows, and at most one edge may start from each
vertex of a diagram.

Given a diagram γ ∈ Γ(k, l) with the set of edges

E(γ) = {(1, j1), (2, j′1)), . . . , ((1, js), (2, j′s)}

let V1(γ) = {(1, 1), . . . , (1, k)} \ {(1, j1), . . . , (1, js)} and V2(γ) = {(2, 1), . . . , (2, l)} \
{(2, j′1), . . . , (2, j′s)} denote the set of vertices in the first and in the second row of the di-
agram γ respectively from which no edge starts. Put αγ(1, j) = (2, j′) if ((1, j), (2, j′)) ∈
E(γ) and αγ(1, j) = (1, j) if the diagram γ contains no edge of the form ((1, j), (2, j′)) ∈
E(γ). In words, the function αγ(·) is defined on the vertices of the first row of the dia-
gram γ. It replaces a vertex to the vertex it is connected to by an edge of the diagram if
there is such a vertex, and it does not change those vertices from which no edge starts.
Put |γ| = k+ l−2s, i.e. |γ| equals the number of vertices in γ from which no edge starts.
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Given two functions f(x1, . . . , xk) ∈ Hµ,k and g(x1, . . . , xl) ∈ Hµ,l let us introduce their
product

F (x(1,1), . . . , x(1,k), x(2,1), . . . , x(2,l))

= Ff,g(x(1,1), . . . , x(1,k), x(2,1), . . . , x(2,l))

= f(x(1,1), . . . , x(1,k))g(x(2,1), . . . , x(2,l))

(10.9)

together with its modification

F̄γ(x(1,j), : (1, j) ∈ V1(γ), x(2,1) . . . , x(2,l))

= f(xαγ(1,1), . . . , xαγ(1,k))g(x(2,1), . . . , x(2,l)).
(10.9a)

(Here the function f(x1, . . . , xk) is replaced by f(x(1,1), . . . , x(1,k)) and the function
g(x1, . . . , xl) by g(x(2,1), . . . , x(2,l)).) With the help of the above introduced sets V1(γ),
V2(γ) and function αγ(·) let us introduce the functions Fγ = Fγ(f, g) as

Fγ(x(1,j), x(2,j′): (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ))

=

∫
F̄γ(xαγ(1,j): (1, j) ∈ V1(γ), x(2,1), . . . , x(2,l))

∏

(2,j)∈{(2,1),...,(2,l)}\V2(γ)

µ( dx(2,j))

(10.10)

for all diagrams γ ∈ Γ(k, l). In words: We take the product defined in (10.9), then if
the index (1, j) of a variable x(1,j) is connected with the index (2, j′) of some variable
x(2,j′) by an edge of the diagram γ, then we replace the variable x(1,j) by x(2,j′) in this
product. Finally we integrate the function obtained in such a way with respect to the
arguments with indices (2, j′1), . . . , (2, j′s), i.e. with those vertices of the second row of
the diagram γ from which en edge starts. It is clear that Fγ is a function of |γ| variables.
It depends on those coordinates whose indices are such vertices of γ from which no edge
starts.

For the sake of simpler notations we shall also consider Wiener–Itô integrals with
such kernel functions whose variables are more generally indexed. If the k-fold Wiener–
Itô integral with a kernel function f(x1, . . . , xk) is well-defined, then we shall say that
the Wiener–Itô integral with kernel function f(xu1 , . . . , xuk

), where {u1, . . . , uk} is an
arbitrary set with k different elements, is also well defined, and it equals the Wiener–Itô
integral with the original kernel function f(x1, . . . , xk). (We have right to make such a
convention since the value of a Wiener–Itô integral does not change if we permute the
indices of the variables of the kernel function in an arbitrary way.) In particular, we
shall speak about the Wiener–Itô integral of the function Fγ defined in (10.10) without
reindexing its variables x(1,j) and x(2,j′) ‘in the right way’. Now we can formulate the
diagram formula for the product of two Wiener–Itô integrals.

Theorem 10.2A. (The diagram formula for the product of two Wiener–
Itô integrals). Let a non-atomic σ-finite measure µ be given on a measurable space
(X,X ) together with a white noise µW with reference measure µ, and take two func-
tions f(x1, . . . , xk) ∈ Hµ,k and g(x1, . . . , xl) ∈ Hµ,l. (The classes of functions Hµ,k and
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Hµ,l were introduced in (10.1).) Let us consider the class of diagrams Γ(k, l) introduced
above together with the functions Fγ , γ ∈ Γ(k, l), defined by formulas (10.9), (10.9a)
and (10.10) with its help. They satisfy the inequality

‖Fγ‖2 ≤ ‖f‖2‖g‖2 for all γ ∈ Γ(k, l), (10.11)

where the L2 norm of a (generally indexed) function h(xu1 , . . . , xus) is defined as

‖h‖2
2 =

∫
h2(xu1 , . . . , xus)µ( dxu1) . . . µ dxus).

Beside this, the product Zµ,k(f)Zµ,l(g) of the normalized Wiener–Itô integrals of the
functions f and g (the notation Zµ,k was introduced in (10.4)) satisfies the identity

(k!Zµ,k(f))(l!Zµ,l(g)) =
∑

γ∈Γ(k,l)

|γ|!Zµ,|γ|(Fγ) =
∑

γ∈Γ(k,l)

|γ|!Zµ,|γ|(Sym Fγ). (10.12)

Theorem 10.2A will be proved in Appendix B. The following consideration yields
a heuristic explanation for it. Actually, it can also be considered as a sketch of proof.

In the theory of general Itô integrals when stochastic processes are integrated with
respect to a Wiener processes, one of the most basic results is Itô’s formula about
differentiation of functions of Itô integrals. It has a heuristic interpretation by means
of the informal ‘identity’ dW 2 = dt. In the case of general white noises this ‘identity’
can be generalized as µW ( dx)2 = µ( dx). We present a rather informal ‘proof’ of the
diagram formula on the basis of this ‘identity’ and the fact that the diagonals are omitted
from the domain of integration in the definition of Wiener–Itô integrals.

In this ‘proof’ we fix two numbers k ≥ 1 and l ≥ 1, and consider the product of
the Wiener–Itô integrals of the functions f and g of order k and l. This product is a
bilinear form of the functions f and g. Hence it is enough to check formula (10.12)
for a sufficiently rich class of functions. It is enough to consider functions of the form
f(x1, . . . , xk) = IA1(x1) · · · IAk

(xk) and g(x1, . . . , xl) = IB1(x1) · · · IBl
(xl) with disjoint

sets A1, . . . , Ak and disjoint sets B1, . . . , Bl, where IA(x) is the indicator function of a
set A. (Here we have exploited that the functions f and g disappear in the diagonals.)

Let us divide the sets Aj into the union of small disjoint sets D
(m)
j , 1 ≤ j ≤ k with

some fixed number 1 ≤ m ≤ M in such a way that µ(D
(m)
j ) ≤ ε with some fixed ε > 0,

and the sets Bj into the union of small disjoint sets F
(m)
j , 1 ≤ j ≤ l, with some fixed

number 1 ≤ m ≤ M , in such a way that µ(F
(m)
j ) ≤ ε with some fixed ε > 0. Beside

this, we also require that two sets D
(m)
j and F

(m′)
j′ should be either disjoint or they

should agree. (The sets D
(m)
j are disjoint for different indices, and the same relation

holds for the sets F
(m′)
j′ .)

Then the identity

k!Zµ,k(f) =
k∏

j=1

(
M∑

m=1

µW (D
(m)
j )

)
and l!Zµ,l(g) =

l∏

j′=1

(
M∑

m′=1

µW (F
(m′)
j′ )

)
,
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holds, and the product of these two Wiener–Itô integrals can be written in the form of
a sum by means of a term by term multiplication. Let us divide the terms of the sum
we get in such a way into classes indexed by the diagrams γ ∈ Γ(k, l) in the following

way: Each term in this sum is a product of the form
k∏

j=1

µW (D
(mj)
j )

l∏
j′=1

µW (F
(m′

j)

j′ ).

Let it belong to the class indexed by the diagram γ with edges ((1, j1), (2, j′1)), . . . , and

((1, js), (2, j′s)) if the elements in the pairs (D
mj1
j1

, F
mj′

1

j′
1

), . . . , (D
mjs
js

, F
mj′s

j′
s

) agree, and

otherwise all terms are different. Then letting ε → 0 (and taking partitions of the sets
Dj and Fj′ corresponding to the parameter ε) the sums of the terms in each class turn
to integrals, and our calculation suggests the identity

(k!Zµ,k(f))(l!Zµ,l(g)) =
∑

γ∈Γ(k,l)

Z̄γ (10.13)

with

Z̄γ =

∫
f(xαγ(1,1), . . . , xαγ(1,k))g(x(2,1), . . . , x(2,l))

µW ( dxαγ(1,1)) . . . µW ( dxαγ(1,k))µW ( dx(2,1)) . . . µW ( dx(2,l))

(10.13a)

with the function αγ(·) introduced before formula (10.9). The indices α(1, j) of the
arguments in (10.13a) mean that in the case αγ(1, j) = (2, j′) the argument x(1,j) has
to be replaced by x(2,j′). In particular, µW ( dxα(1,j))µW ( dx(2,j′)) = µW ( dx(2,j′))

2 =
µ( dx(2,j′)) in this case because of the ‘identity’ µW ( dx)2 = µ( dx). Hence the above
informal calculation yields the identity Z̄γ = |γ|!Zµ,|γ|(Fγ). Hence relations (10.13)
and (10.13a) imply formula (10.12).

A similar heuristic argument can be applied to get formulas for the product of
integrals of normalized empirical distributions or (normalized) Poisson fields, only the
starting formula µW ( dx)2 = µ( dx) changes in these cases, some additional terms appear
which modify the final result. I return to this question in the next section.

It is not difficult to generalize Theorem 10.2A with the help of some additional
notations to a diagram formula about the product of finitely many Wiener–Itô integrals.
Let us consider m ≥ 2 Wiener–Itô integrals kp!Zµ,kp(fp), of functions fp(x1, . . . , xkp) ∈
Hµ,kp , of order kp ≥ 1, 1 ≤ p ≤ m, and define a class of diagrams Γ = Γ(k1, . . . , km) in
the following way.

The diagrams γ ∈ Γ = Γ(k1, . . . , km) have vertices of the form (p, r), 1 ≤ p ≤ m,
1 ≤ r ≤ kp. The set of vertices {(p, r): 1 ≤ r ≤ kp} with a fixed number p will be
called the p-th row of the diagram γ. A diagram γ ∈ Γ = Γ(k1, . . . , km) may have
some edges. All edges of a diagram connect vertices from different rows, and from each
vertex there starts at most one edge. All diagrams satisfying these properties belong
to Γ(k1, . . . , km). If a diagram γ contains an edge of the form ((p1, r1), (p2, r2)) with
p1 < p2, then (p1, r1) will be called the upper and (p2, r2) the lower end point of this

edge. Let E(γ) = {((p
(u)
1 , r

(u)
1 ), (p

(u)
2 , r

(u)
2 )), p

(u)
1 < p

(u)
2 , 1 ≤ u ≤ s} denote the set of
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all edges of a diagram γ (the number of edges in γ was denoted by s = |E(γ)|), and let

us also introduce the sets V u(γ) = {((p
(u)
1 , r

(u)
1 ), 1 ≤ u ≤ s}, the set of all upper end

points and V b(γ) = {((p
(u)
2 , r

(u)
2 ), 1 ≤ u ≤ s}, the set of all lower end points of edges

in a diagram γ. Let V = V (γ) = {(p, r): 1 ≤ p ≤ m, 1 ≤ r ≤ kp} denote the set of all
vertices of γ, and let |γ| = k1 + · · · + km − 2|E(γ)| be equal to the number of vertices
in γ from which no edge starts. Vertices from which no edge starts will be called free
vertices in the sequel. Let us also define the function αγ(p, r) for a vertex (p, r) of the
diagram γ in the following way: αγ(p, r) = (p̄, r̄), if there is some pair of integers (p̄, r̄)
such that ((p, r), (p̄, r̄)) ∈ E(γ) and p < p̄, i.e. (p, r) ∈ V u(γ) and ((p, r), (p̄, r̄)) ∈ E(γ),
and put αγ(p, r) = (p, r) for (p, r) ∈ V (γ) \ V u(γ). In words, the function αγ(·) was
defined on the set of vertices V (γ) in such a way that it replaces an upper end point
of an edge with the lower end point of this edge, and it does not change the remaining
vertices of the diagram.

With the help of the above quantities the appropriate multivariate version of the
functions given in (10.9), (10.9a) and (10.10) can be defined. Put

F (x(p,r), : 1 ≤ p ≤ m, 1 ≤ r ≤ kp) = Ff1,...,fm(x(p,r), : 1 ≤ p ≤ m, 1 ≤ r ≤ kp)

=
m∏

p=1

fp(x(p,1), . . . , x(p,kp)),
(10.14)

F̄γ(x(p,r), : (p, r) ∈ V (γ) \ V u(γ)) =

m∏

p=1

fp(xαγ(p,1), . . . , xαγ(p,kp)), (10.14a)

and

Fγ(x(p,r): (p, r) ∈ V (γ) \ (V b(γ) ∪ V u(γ))

=

∫
F̄γ(x(p,r), : (p, r) ∈ V (γ) \ V b(γ))

∏

(p,r)∈V b(γ)

µ( dx(p,r)).
(10.15)

With the help of the above notations the diagram formula for the product of finitely
many Wiener–Itô integrals can be formulated.

Theorem 10.2. (The diagram formula for the product of finitely many
Wiener–Itô integrals). Let a non-atomic σ-finite measure µ be given on a mea-
surable space (X,X ) together with a white noise µW with reference measure µ. Take
m ≥ 2 functions fp(x1, . . . , xkp) ∈ Hµ,kp with some order kp ≥ 1, 1 ≤ p ≤ m. Let us
consider the class of diagrams Γ(k1, . . . , km) introduced above together with the functions
Fγ , γ ∈ Γ(k1, . . . , km), defined by formulas (10.14), (10.14a) and (10.15) with its help.
The L2-norm of these functions satisfies the inequality

‖Fγ‖2 ≤
m∏

p=1

‖fp‖2 for all γ ∈ Γ(k1, . . . , km). (10.16)
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Beside this, the product
m∏

p=1
Zµ,kp(fp) of the normalized Wiener–Itô integrals of the

functions fp, 1 ≤ p ≤ m, satisfies the identity

m∏

p=1

kp!Zµ,kp(fp) =
∑

γ∈Γ(k1,...,km)

|γ|!Zµ,|γ|(Fγ) =
∑

γ∈Γ(k1,...,km)

|γ|!Zµ,|γ|(Sym Fγ).

(10.17)

Theorem 10.2 can be relatively simply derived from Theorem 10.2A by means of
induction with respect the number of terms whose product we consider. We still have
to check that with the introduction of an appropriate notation Theorem 10.2A remains
valid also in the case when the function f is a constant.

Let us also consider the case when f = c and g ∈ Hµ,l. In this case we apply the
convention Zµ,0(c) = c, define the class of diagrams Γ(0, l) that consists only of one
diagram γ whose first row is empty, its second row contains the vertices (2, 1), . . . , (2, l),
and it has no edges. Beside this, we define Fγ(x(2,1), . . . , x(2,l)) = cg(x(2,1), . . . , x(2,l))
in this case. With such a convention Theorem 10.2A can be extended to the case of the
product of two Wiener–Itô integrals of order k ≥ 0 and l ≥ 1. Theorem 10.2 can be
derived from this slightly generalized result by induction.

By statement c) of Theorem 10.1 all Wiener–Itô integrals of order k ≥ 1 have
expectation zero. This fact together with Theorem 10.2 enable us to compute the
expectation of a product of Wiener–Itô integrals. Theorem 10.2 makes possible to
rewrite a product of Wiener–Itô integrals as a sum of Wiener–Itô integrals. Then its
expectation can be calculated by taking the expected value of each term and summing
them up. Only constant terms yield a non-zero contribution to this expectation. These
constant terms agree with the functions Fγ corresponding to diagrams with no free
vertices. The next corollary writes down the result we get in such a way.

Corollary of Theorem 10.2 about the expectation of a product of Wiener–
Itô integrals. Let a non-atomic σ-finite measure µ be given on a measurable space
(X,X ) together with a white noise µW with reference measure µ. Take m ≥ 2 functions
fp(x1, . . . , xkp) ∈ Hµ,kp , and consider their Wiener–Itô integrals Zµ,kp(fp), 1 ≤ p ≤ m.
The expectation of the product of these random variables satisfies the identity

E

(
m∏

p=1

kp!Zµ,kp(fp)

)
=

∑

γ∈Γ̄(k1,...,km)

Fγ , (10.18)

where Γ̄(k1, . . . , km) denotes the set of all such diagrams γ ∈ Γ(k1, . . . , km) which have
no free vertices, i.e. |γ| = 0. Such diagrams will be called closed in the sequel. (If
Γ̄(k1, . . . , km) is empty, then the sum at the right-hand side of (10.17) equals zero.) The
functions Fγ for γ ∈ Γ̄(k1, . . . , km) are constants, and they satisfy the inequality

|Fγ | ≤
m∏

p=1

‖fp‖2 for all γ ∈ Γ̄(k1, . . . , km). (10.19)
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Proof of the Corollary. Relation (10.18) is a straight consequence of formula (10.17),
part c) of Theorem 10.1 and the identity Zµ,0(Fγ) = Fγ , if |γ| = 0. Relation (10.19)
follows from (10.16).

The next result I formulate, Itô’s formula for multiple Wiener–Itô integrals, can also
be considered as a consequence of the diagram formula. It will be proved in Appendix C.

Theorem 10.3. (Itô’s formula for multiple Wiener–Itô integrals). Let a non-
atomic σ-finite measure µ be given on a measurable space (X,X ) together with a white
noise µW with reference measure µ. Let us take some real valued, orthonormal func-
tions ϕ1(x), . . . , ϕm(x) on the measure space (X,X , µ). Let Hk(u) denote the k-th
Hermite polynomial with leading coefficient 1. Take the one-fold Wiener–Itô integrals
ηp = Zµ,1(ϕp), 1 ≤ p ≤ m, and introduce the random variables Hkp(ηp), 1 ≤ p ≤ m,

with some integers kp ≥ 1, 1 ≤ p ≤ m. Put Kp =
p∑

j=1

kr, 1 ≤ p ≤ m, K0 = 0. Then

η1, . . . , ηm are independent, standard normal random variables, and the identity

m∏

p=1

Hkp(ηp) = Km!Zµ,Km




m∏

p=1




Kp∏

j=Kp−1+1

ϕp(xj)






= Km!Zµ,Km


Sym




m∏

p=1




Kp∏

j=Kp−1+1

ϕp(xj)








(10.20)

holds. In particular, for a single real valued function ϕ(x) such that
∫

ϕ2(x)µ( dx) = 1

Hk

(∫
ϕ(x)µW ( dx)

)
=

∫
ϕ(x1) · · ·ϕ(xk)µW ( dx1) . . . µW ( dxk). (10.21)

I also formulate a limit theorem about the distribution of normalized degenerate
U -statistics. The limit distribution in this result can be described by means of multiple
Wiener–Itô integrals. It will be proved in Appendix C.

Theorem 10.4. (Limit theorem about normalized degenerate U-statistics).
Let us consider a sequence of degenerate U -statistics In,k(f) of order k, n = k, k+1, . . . ,
defined in (8.7) with the help of a sequence of independent and identically distributed
random variables ξ1, ξ2, . . . taking values in a measurable space (X,X ) with a non-
atomic distribution µ and a kernel function f(x1, . . . , xk), canonical with respect to
the measure µ, defined on the k-fold product (Xk,X k) of the space (X,X ) for which∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞. Then the sequence of normalized U -statistics
n−k/2In,k(f) converges in distribution, as n → ∞, to the k-fold Wiener–Itô integral

Zµ,k(f) =
1

k!

∫
f(x1, . . . , xk)µW (dx1) . . . µW (dxk)
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with kernel function f(x1, . . . , xk) and a white noise µW with reference measure µ.

Remark. The limit behaviour of degenerate U -statistics In,k(f) with an atomic measure
µ which satisfy the remaining conditions of Theorem 10.4 can be described in the follow-
ing way. Take the probability space (U,U , λ), where U = [0, 1], U is the Borel σ-algebra
and λ is the Lebesgue measure on it. Introduce a sequence of independent random vari-
ables η1, η2, . . . with uniform distribution on the interval [0, 1], which is independent also
of the sequence ξ1, ξ2, . . . . Define the product space (X̃, X̃ , µ̃) = (X × U,X × U , µ × λ)
together with the function f̃(x̃1, . . . , x̃k) = f̃((x1, u1), . . . , (xk, uk)) = f(x1, . . . , xk) with
the notation x̃ = (x, u) ∈ X ×U , and ξ̃j = (ξj , ηj), j = 1, 2, . . . . Then In,k(f) = In,k(f̃)

(with the above defined function f̃ and µ̃ distributed random variables ξ̃j). Beside this,

Theorem 10.4 can be applied for the degenerate U -statistics In,k(f̃), n = 1, 2, . . . .

In the next result I give an interesting representation of the Hilbert space consisting
of the square integrable functions measurable with respect to a white noise µW . An
isomorphism will be given with the help of Wiener–Itô integrals between this Hilbert
space and the so-called Fock space to be defined below. To formulate this result first
some notations will be introduced.

Let H0
µ,k ⊂ Hµ,k denote the class of symmetric functions in the space Hµ,k,

k = 0, 1, 2, . . . , i.e. f ∈ Hµ,k is in its subspace H0
µ,k if and only if f(x1, . . . , xk) =

Sym f(x1, . . . , xk). Let us introduce for all k = 0, 1, 2, . . . the Hilbert space Gk consist-
ing of those random variables η (on the probability space where the white noise µW is
defined) which can be written in the form

η = Zµ,k(f) =
1

k!

∫
f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk) with some f ∈ H0

k,µ.

It follows from part a) and c) of Theorem 10.1 that the map f → Zµ,k(f) is a
linear transformation of H0

µ,k to Gk, and 1
k!‖f‖2

2 = EZ2
µ,k(f) for all f ∈ H0

µ,k, where
‖f‖2 denotes the usual L2-norm of the function f with respect to the k-fold power of
the measure µ. By the definition of Wiener–Itô integrals the set G1 consists of jointly
Gaussian random variables with expectation zero. The spaces Hµ,0 and G0 consist of the
real constants. Let us define the space Exp (Hµ) of infinite sequences f = (f0, f1, . . . ),

fk ∈ H0
µ,k, k = 0, 1, 2, . . . , such that ‖f‖2

2 =
∞∑

k=0

1
k!‖fk‖2

2 < ∞. The space Exp (Hµ)

with the natural addition and multiplication by a constant and the above introduced
norm ‖f‖2 for f ∈ Exp (Hµ) is a Hilbert space which is called the Fock space in the
literature.

Let G denote the class of random variables of the form

Z(f) =

∞∑

k=0

Zµ,k(fk), f = (f0, f1, f2, . . . ) ∈ Exp (Hµ).

The next result describes the structure of the space of random variables G. It is useful
for a better understanding of Wiener–Itô integrals, but it will be not used in the sequel.
In its proof I shall refer to some basic measure theoretical results.
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Theorem 10.5. (Isomorphism of the space of square integrable random vari-
ables measurable with respect to a white noise with a Fock space). Let a
non-atomic σ-finite measure µ be given on a measurable space (X,X ) together with
a white noise µW with reference measure µ. Let us consider the class of functions
H0

µ,k, k = 0, 1, 2, . . . , and Exp (Hµ) together with the spaces of random variables Gk,

k = 0, 1, 2, . . . , and G defined above. The transformation Z: Z(f) =
∞∑

k=0

Zµ,k(fk),

f = (f0, f1, f2, . . . ) ∈ Exp (Hµ), is a unitary transformation from the Hilbert spaces
Exp (Hµ) to G. The Hilbert space G consists of all random variables with finite second
moment, measurable with respect to the σ-algebra generated by the random variables
µW (A), A ∈ X , µ(A) < ∞. This σ-algebra agrees with the σ-algebra generated by the
random variables Zµ,1(f1), f1 ∈ H0

µ,1.

Proof of Theorem 10.5. Properties a) and c) in Theorem 10.1 imply that the transforma-
tion fk → Zµ,k(fk) is a linear transformation of H0

µ,k to Gk, and 1
k!‖fk‖2

2 = EZµ,k(f)2.

Beside this, EZµ,k(f)Zµ,k′(f ′
k′) = 0 if fk ∈ H0

µ,k, and f ′
k′ ∈ H0

µ,k′ with k 6= k′ by prop-
erties d) and c). (The latter property is needed to guarantee this relation also holds if

k = 0 or k′ = 0.) From these relations follows that the map Z: Z(f) =
∞∑

k=0

Zµ,k(fk),

f = (f0, f1, f2, . . . ) ∈ Exp (Hµ) is an isomorphism between the Hilbert spaces Exp (Hµ)
and G.

It remained to show that G contains all random variables with finite second moment,
measurable with respect to the corresponding σ-algebra. Let gj(u), j = 1, 2, . . . , be an
orthonormal basis in H0

µ,1 = Hµ,1, and introduce the random variables ηj = Zµ,1(gj),
j = 1, 2, . . . . By Itô’s formula for Wiener–Itô integrals (Theorem 10.3) these random
variables are independent with standard normal distribution, and all expressions of the
form Hr1(ηj1) . . . Hrp(ηjp) with r1 + · · · + rp = k are in the space Gk, where Hr(·)
denotes the Hermite polynomial of order r with leading coefficient 1. To prove the
desired statement by means of these relations we still need the following results from
the classical analysis:

a) Hermite polynomials constitute a complete orthonormal system in the L2-space on
the real line with respect to the standard normal distribution. (This result will be
proved in Section C in Proposition C2.)

b) If a random variable ζ is measurable with respect to the σ-algebra generated by
some random variables η1, η2, . . . , then there exists a Borel measurable function
f(x1, x2, . . . ) on the infinite product of the real line (R∞,B∞) in such a way that
ζ = f(η1, η2, . . . ).

This means in our case that any random variable ζ measurable with respect to
the σ-algebra generated by the random variables ηj = Zµ,1(gj), j = 1, 2, . . . , can be
written in the form ζ = f(η1, η2, . . . ) with the above introduced independent, standard
normal random variables η1, η2, . . . . If ζ has finite second moment, then the function f
appearing in its representation is a function of finite L2-norm in the infinite product of
the real line with the infinite product of the standard normal distribution on it. Hence
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some classical results in analysis enable us to expand the function f with respect to
products of Hermite polynomials, and this also yields the identity

ζ =
∑

c(j1, r1, . . . , js, rs)Hr1(ηj1) · · ·Hrs(ηjs)

with some coefficients c(j1, r1, . . . , js, rs) such that

∑
c2(j1, r1, . . . , js, rs)‖Hr1(u)‖2 · · · ‖Hrs(u)‖2 < ∞.

(Actually it is known that ‖Hk(u)‖2 = k!, but here we do not need this knowledge.)

The above relations yield the desired representation of a random variable ζ with
finite second moment, if it is measurable with respect to the σ-algebra generated by the

random variables in G1. Indeed, the identity ζ =
∞∑

k=0

ζk holds with

ζk =
∑

r1+···+rs=k

c(j1, r1, . . . , js, rs)Hr1(ηj1) · · ·Hrs(ηjs),

and ζk ∈ Gk by Itô’s formula.

To complete the proof it is enough to remark that the σ-algebra generated by the
random variables η1, η2, . . . and µW (A), A ∈ X , µ(A) < ∞ agree, as it was stated in
part f) of Theorem 10.1.

The results about Wiener–Itô integrals discussed in this Section are useful in the
study of non-linear functionals of a set of jointly Gaussian random variables defined by
means of a white noise. In my Lecture Note [29] similar problems were discussed, but
in that work a slightly different version of Wiener–Itô integrals was introduced. The
reason for it was that the solution of the problems studied in [29] demanded different
methods.

In work [29] stationary Gaussian random fields were considered, and the main
problem studied there was the description of the limit distribution of certain sequences
of non-linear functionals of such Gaussian random fields. In a stationary Gaussian
random field a shift operator can be introduced. The shift of all random variables
measurable with respect to the underlying stationary Gaussian random field can be
defined. In [29] we needed a technique which helps in working with the shift operator.
Fourier analysis is a useful tool in the study of the shift operator. In the work [29] we
tried to unify the tools of multiple Wiener–Itô integrals and Fourier analysis. This led
to the definition of a slightly different version of Wiener–Itô integrals.

The idea behind this definition was the observation that not only the correlation
function of a stationary Gaussian field can be expressed by means of the Fourier trans-
form of its spectral measure, but also a random spectral measure can be constructed
whose Fourier transform expresses the stationary Gaussian process itself. After the in-
troduction of this random spectral measure a version of the multiple Wiener–Itô integral
can be defined with respect to it, and all square integrable random variables, measurable
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with respect to the σ-algebra generated by the underlying Gaussian stationary random
field can be expressed with its help. Moreover, it enables us to apply the methods
of multiple Wiener–Itô integrals and Fourier analysis simultaneously. In [29] such a
method was worked out. The modified Wiener–Itô integral introduced there shows a
behaviour similar to that of the original Wiener–Itô integral, only it has to be taken
into account that the random spectral measure behaves not like a white noise, but as
its ‘Fourier transform’. I omit the details. They can be found in [29].

The spaces Gk consisting of all k-fold Wiener–Itô integrals were introduced also
in [29], and this was done for a special reason. In that work the Hilbert space of square
integrable functions, measurable with respect to an underlying stationary Gaussian field
was studied together with the shift operator acting on this Gaussian field, which could
be extended to a unitary operators on this Hilbert space. It was useful to decompose
the Hilbert space we were working with to the direct sum of orthogonal subspaces,
invariant with respect to the shift operator. The spaces Gk were elements of such a
decomposition.

In the present work no shift operator was defined, and no limit theorem was studied
for non-linear functionals of a Gaussian field. Here the introduction of the spaces Gk

was useful because of a different reason. In the study of our problems we shall need
good estimates on the 2p-th moment of random variables, measurable with respect to
the underlying white noise for large numbers p. As it will be shown, the high moments
of the random variables in the spaces Gk with different indices k show an essentially
different behaviour. For a large number p the p-th moment of a random variable in Gk

behaves similarly to that of the k-th power ξk of a Gaussian random variable ξ with zero
expectation. An estimate of this type will be formulated in Proposition 13.1 or in its
consequence, in formula (13.2) and in a partial converse of this result, in Theorem 13.6.

11. The diagram formula for products of degenerate U-statistics.

There is a natural analog of the diagram formula for the products of Wiener–Itô integrals
both for the products of multiple integrals with respect to normalized empirical measures
and for the products of degenerate U -statistics. These two results are closely related.
They express the products of multiple random integrals or of degenerate U -statistics
as a sum of multiple random integrals or degenerate U -statistics respectively. In this
work the diagram formula for multiple integrals with respect to a normalized empirical
measure will be discussed only at an informal level, while a complete proof of the
analogous result about degenerate U -statistics will be given. The reason for such an
approach is that the diagram formula for the product of degenerate U -statistics is more
useful in the study of the problems discussed in this work.

We want to get good estimates about the high moments both of multiple random
integrals and of degenerate U -statistics. In the case of degenerate U -statistics the di-
agram formula yields an explicit formula for these moments. It expresses the product
whose expected value has to be calculated as a sum of degenerate U -statistics of differ-
ent order. Beside this the expected value of all degenerated U -statistics of order k ≥ 1
equals zero. Hence the expected value we are interested in equals the sum of the zero
order terms appearing in the diagram formula.
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The analogous problem about the moments of multiple integrals with respect to
a normalized empirical measure is more difficult. The diagram formula enables us to
express these moments as the sum of the expectation of multiple random integrals of
different order also in this case. But the expected value of random integrals of order
k ≥ 1 with respect to a normalized empirical distribution may be non-zero. It was shown
in an example presented before the proof of Theorem 9.4 that this is really possible.

First I give an informal description of the diagram formula for the product of
two random integrals with respect to a normalized empirical measure. Its analog, the
diagram formula for the product of two Wiener–Itô integrals can be described in an
informal way by means of formulas (10.13) and (10.13a) together with the ‘identity’
µW ( dx)2 = µ( dx) in their interpretation. The diagram formula for the product of
two multiple integrals with respect to a normalized empirical measure has a similar
representation. (Observe that in the definition of the random integral Jn,k(·) given in
formula (4.8) the diagonals are omitted from the domain of integration, similarly to the
case of Wiener–Itô integrals.) In this case such a version of formulas (10.13) and (10.13a)
can be applied, where the random integrals Zµ,k are replaced by Jn,k, and the white
noise measures µW are replaced by the normalized empirical measures νn =

√
n(µn−µ).

But the analog of the ‘identity’ µW ( dx)2 = µ( dx) needed in the interpretation of these
formulas has a different form. Namely, it states that νn( dx)2 = µ( dx) + 1√

n
νn( dx).

Let us ‘prove’ this new ‘identity’.

Take a small set ∆, i.e. a set ∆ such that µ(∆) is very small, write down the
identity νn(∆)2 = nµn(∆)2 + nµ(∆)2 − 2nµn(∆)µ(∆), and observe that only a second
order error is committed if the terms nµ(∆)2 and 2nµn(∆)µ(∆) are omitted at the right-
hand side of this identity. Moreover, also a second order error is committed if nµn(∆)2

is replaced by µn(∆), because it has second order small probability that there are at
least two sample points in the small set ∆. On the other hand, nµn(∆)2 = µn(∆)
if ∆ contains only zero or one sample point. The above considerations suggest that
νn( dx)2 = µn( dx) = µ( dx) + 1√

n
[
√

n(µn( dx) − µ( dx))] = µ( dx) + 1√
n
νn( dx). (This

means that in the ‘identity’ expressing the square νn( dx)2 of a normalized empirical
measure a correcting term 1√

n
νn( dx) appears. If the sample size n → ∞, then the

normalized empirical measure tends to a white noise with counting measure µ, and this
correcting term disappears.)

In paper [32] the diagram formula for the product of two multiple integrals with
respect to a normalized empirical measure is proved with a different notation. It says
that the identity suggested by the above heuristic argument really holds. This result
may also help in the proof of the diagram formula for degenerate U -statistics. But a
direct proof of this result seems to be simpler.

In the proof of the diagram formula for the product of two degenerate U -statistics
first we write this product as the sum of (not necessarily degenerate) U -statistics. Then
by applying Hoeffding’s decomposition for each term in this sum the product of two
degenerate U -statistics can also be written as a sum of degenerate U -statistics. Actually
we apply a slightly refined version of the Hoeffding decomposition where we exploit
that we took the product of two degenerated U -statistics. Such a calculation yields the
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diagram formula for the product of two degenerate U -statistics. With the help of a good
notation and some additional work also the product of several degenerate U -statistics
can be written as the sum of appropriate degenerate U -statistics. In such a way we get
the general form of the diagram formula for the product of degenerate U -statistics.

In this section I formulate the diagram formula for the product of two and finitely
many degenerate U -statistics together with an estimate about the L2-norm of the kernel
functions of the degenerate U -statistics appearing in the diagram formula, and a formula
about the expectation of products of degenerate U -statistics. To formulate these results
some new notations have to be introduced. The proofs of the results in this section are
postponed to the next section.

In the formulation of the diagram formula for the product of degenerate U -statistics
a more general class of diagrams have to be considered than in the case of multiple
Wiener–Itô integrals. We shall define these new diagrams under the name coloured
diagrams. Tthe kernel functions of the U -statistics appearing in the diagram formula
will be introduced with their help.

A class of coloured diagrams Γ(k1, . . . , km) will be defined whose vertices will be
the pairs (p, r), 1 ≤ p ≤ m, 1 ≤ r ≤ kp, and the set of vertices (p, r), 1 ≤ r ≤ kp, with
a fixed number p will be called the p-th row of the diagram. To define the coloured
diagrams of the class Γ(k1, . . . , km) first the notions of chain and coloured chain will be
introduced. A sequence β = {(p1, r1), . . . , (ps, rs)} with 1 ≤ p1 < p2 < · · · < ps ≤ m
and 1 ≤ ru ≤ kpu for all 1 ≤ u ≤ s will be called a chain. The number s of the
pairs (pu, ru) in this sequence, denoted by ℓ(β), will be called the length of the chain
β. Chains of length ℓ(β) = 1, i.e. chains consisting only of one element (p1, r1) are also
allowed. We shall define a function c(β) = ±1 which will be called the colour of the
chain β, and the pair (β, c(β)) will be called a coloured chain. We shall allow arbitrary
colouring c(β) = ±1 of a chain with the only restriction that a chain of length 1 can
only get the colour −1, i.e. c(β) = −1 if ℓ(β) = 1.

A coloured diagram γ ∈ Γ(k1, . . . , km), γ = {β(l1), . . . , β(ls)} is a partition of the
set {(p, r): 1 ≤ p ≤ m, 1 ≤ r ≤ kp} to the union of some coloured chains β(l1), . . . , β(ls),
i.e. each vertex (p, r) is the element of exactly one chain β(lj) ∈ γ. Beside this, each
chain β(lj) of a diagram γ has a colour cγ(β(lj)) = ±1. The set Γ(k1, . . . , km) consists
of all partitions of the set of vertices {(p, r), 1 ≤ p ≤ m, 1 ≤ r ≤ kp} to coloured chains,
where an arbitrary colouring of the chains with the numbers ±1 is allowed with the only
restriction that for a chain β ∈ γ of length ℓ(β) = 1 of a diagram γ ∈ Γ(k1, . . . , km)
cγ(β) = −1. In our notation we have introduced an indexation β(ls) = β(ls, γ), 1 ≤
l1 < l2 < · · · < ls, of the chains of a coloured diagram γ ∈ Γ(k1, . . . , km). Both the
number s and the indices l1, . . . , ls may depend on γ. Such a notation will be useful in
our later considerations. It also turned out useful to allow more general indexation of
these chains with numbers l1, . . . , ls and not only with the numbers 1, . . . , s.

We shall also introduce an enumeration of the vertices of a coloured diagram γ ∈
Γ(k1, . . . , km) with the help of the enumeration of its chains. Given a coloured diagram
γ = (β(l1), . . . , β(ls)) ∈ Γ(k1, . . . , km) we define the indices αγ(p, r) of a vertex (p, r)
of this diagram by the formula αγ(p, r) = lj if (p, r) ∈ β(lj). We shall divide the set
of indices {l1, . . . , ls} of the chains contained in a coloured diagram γ into two disjoint
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sets O(γ) = {lj : 1 ≤ j ≤ s, cγ(β(lj)) = −1}, called the set of open indices of the
diagram γ and C(γ) = {lj : 1 ≤ j ≤ s, cγ(β(lj)) = 1}, called the set of closed indices of
the diagram γ. We shall also list the elements of O(γ) in an increasing order, i.e. write
O(γ) = {l̄1, . . . , l̄|O(γ)|}, l̄1 < l̄2 < · · · < l̄|O(γ)|. (We shall denote the cardinality of a
finite set A by |A| in the sequel.) We defined the coloured diagrams and introduced their
open and closed indices, because, as we shall see, in the diagram formula such degenerate
U -statistics appear whose kernel functions are defined with the help of these coloured
diagrams, and the indices of the arguments of the kernel function corresponding to the
coloured diagram γ are closely related to the chains of γ with colour −1, hence to the
open indices of γ.

In the diagram formula we express the product
m∏

p=1
In,kp(fp) of degenerate U -

statistics with canonical kernel functions fp of kp variables as the sum of appropriate
degenerate U -statistics. The kernel functions of the degenerate U -statistics appearing
in this representation of the product of degenerate U -statistics will depend on the above
defined coloured diagrams γ, and they will be denoted by Fγ , γ ∈ Γ(k1, . . . , km). In the
definition of these functions Fγ we shall apply the operators introduced below.

Given a function h(xu1 , . . . , xur ) with coordinates in the space (X,X ) (the indices
u1, . . . , ur are all different, otherwise they can be chosen in an arbitrary way) and a
probability measure µ on the space (X,X ) let us introduce its transforms Puj h and
Quj h, 1 ≤ j ≤ r, by the formulas

(Puj h)(xul
: ul ∈ {u1, . . . , ur} \ {uj}) =

∫
h(xu1 , . . . , xur )µ( dxuj ), 1 ≤ j ≤ r, (11.1)

and

(Quj h)(xu1 , . . . , xur ) = h(xu1 , . . . , xur ) −
∫

h(xu1 , . . . , xur )µ( dxuj ), 1 ≤ j ≤ r.

(11.2)
(These formulas are very similar to the definition of the operators Pj and Qj introduced
in formula (9.1) before the proof of the Hoeffding decomposition.)

First we consider the product of two degenerate U -statistics, i.e. the case m = 2.
Let us have a measurable space (X,X ) with a probability measure µ on it together with
two measurable functions f1(x1, . . . , xk1) and f2(x1, . . . , xk2) of k1 and k2 variables on
this space which are canonical with respect to the measure µ. Let ξ1, ξ2, . . . be a
sequence of (X,X ) valued, independent and identically distributed random variables
with distribution µ. We want to express the product In,k1(f1)In,k2(f2) of degenerate
U -statistics defined with the help of the above random variables and kernel functions f1

and f2 as a sum of degenerate U -statistics. For this goal we introduce some notations.

Given two functions f1(x1, . . . , xk1) and f2(x1, . . . , xk2) and a coloured diagrams
γ ∈ Γ(k1, k2) consisting of s coloured chains β(l1), . . . , β(ls) we define the function

(f1 ◦ f2)γ(xl1 , . . . , xls) = f1(xαγ(1,1), . . . , xαγ(1,k1))f2(xαγ(2,1), . . . , xαγ(2,k2)), (11.3)
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where αγ(p, r) denotes the index of the vertex (p, r) of the diagram γ in their above
defined enumeration αγ . (In formula (11.3) all arguments of the functions f1 and f2

have different indices. But the indices αγ(1, j) and αγ(2, j′) may agree for some pairs
(j, j′). This happens if the vertices (1, j) and (2, j′) belong to the same chain β ∈ γ of
length 2.) Let us also define the function

(f1 ◦ f2)γ(xlp , lp ∈ O(γ)) =


 ∏

p∈C(γ)

Pp

∏

p∈O2(γ)

Qp


 (f1 ◦ f2)γ(xl1 , . . . , xls), (11.4)

with the operators Pp and Qp defined (with a different indexation) in formulas (11.1)
and (11.2), where C(γ) is the set of indices of the closed diagrams of γ, and O2(γ) ⊂
O(γ), defined as O2(γ) = {l: cγ(βl) = −1, and ℓ(β(l)) = 2}, is the set of indices of the
chains of γ with colour −1 and length 2. are the above defined sets of open and closed
indices of the diagram γ. The arguments of the function (f1 ◦ f2)γ are the indices of
the open vertices of the diagram γ. Let us also remark that the operators Pp and Qp

in formula (11.4) are exchangeable, hence it is not important in what order we apply
them.

The function Fγ(f1, f2) we apply in the formulation of the diagram formula in the
special case when the product of two degenerate U -statistics is considered is similar
to the function (f1 ◦ f2)γ introduced in (11.4). We need a small technical step for its
definition. We want to work with such a function whose variables are indexed with the
numbers 1, 2, . . . , |O(γ)| while the indices of the function f1 ◦ f2)γ are the elements of
the set O(γ) = {l̄1, . . . , l̄|O(γ)|}. Hence we define the function t = tγ on the set O(γ) by
the formula t(l̄j) = j, 1 ≤ j ≤ |O(γ)|, and introduce the function

Fγ(f1, f2)(x1, x2, . . . , x|O(γ)|) = (f1 ◦ f2)γ(xt(lp), lp ∈ O(γ)). (11.5)

Let me remark that for different enumerations β(l1), . . . , β(ls) of the chains of a coloured
diagram γ the function Fγ(f1, f2) we defined by formulas (11.1)–(11.5) may be slightly
different. One of them can be obtained by reindexing the variables x1, . . . , x|O(γ)| in
these functions. But the value of the U -statistic In,|O(n)|(Fγ(f1, f2)) does not depend
on the indexation of the variables in its kernel function, hence on the enumeration of
the chains of γ. For a similar reason the value of In,|O(n)|(Fγ(f1, f2)) depends only
on the cardinality of |O(γ)|, |O2(γ)| and |C(γ)| of the coloured diagram γ, and also a
reindexation of the arguments of f1 or f2 does not change the value of the U -statistic
In,|O(n)|(Fγ(f1, f2)).

Next I formulate the diagram formula for the product of two degenerate U -statistics
with the help of the above defined quantities.

Theorem 11.1. (The diagram formula for the product of two degenerate U-
statistics). Let a sequence of independent and identically distributed random variables
ξ1, ξ2, . . . be given with some distribution µ on a measurable space (X,X ) together with
two bounded canonical functions f1(x1, . . . , xk1) and f2(x1, . . . , xk2) with respect to the
probability measure µ on the product spaces (Xk1 ,X k1) and (Xk2 ,X k2) respectively.
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Let us take the class of coloured diagrams Γ(k1, k2) introduced above together with the
functions Fγ(f1, f2) defined in formulas (11.1)—(11.5).

For all γ ∈ Γ Fγ(f1, f2)γ is a canonical function with respect to the measure µ
with |O(γ)| arguments, where O(γ) and C(γ) denote the set of open and closed indices
of the diagram γ. The product of the degenerate U -statistics In,k1(f1) and In,k2(f2),
n ≥ max(k1, k2), defined in (8.7) can be expressed as

(n−k1/2k1!In,k1(f1))(n−k2/2k2!In,k2(f2))

=
∑′(n)

γ∈Γ(k1,k2)

|C(γ)|∏

j=1

(
n − s(γ) + j

n

)
n−W (γ)/2 · n−|O(γ)|/2|O(γ)|!In,|O(γ)|(Fγ(f1, f2))

(11.6)
with W (γ) = k1 + k2 − |O(γ)| − 2|C(γ)| and s(γ) = |O(γ)| + |C(γ)| (which equals the

number of coloured diagrams in γ), where
∑′(n)

means that summation is taken only
for such coloured diagrams γ ∈ Γ(k1, k2) which satisfy the inequality s(γ) ≤ n, and
|C(γ)|∏
j=1

equals 1 in the case |C(γ)| = 0. The term In,|O(γ)|(Fγ(f1, f2)) can be replaced by

In,|O(γ)|(SymFγ(f1, f2)) in formula (11.6).

Consider the L2-norm of the functions Fγ(f1, f2) defined by the formula

‖Fγ(f1, f2)‖2
2 = ‖(f1 ◦ f2)γ‖2

2 =

∫
(f1 ◦ f2)2γ(xlp , lp ∈ O(γ))

∏

lp∈O(γ)

µ( dxlp).

The inequality

‖Fγ(f1, f2)‖2 = ‖(f1 ◦ f2)γ‖2 ≤ ‖f1‖2‖f2‖2 if W (γ) = 0 (11.7)

holds for this norm. The condition W (γ) = 0 in formula (11.7) means that the diagram
γ ∈ Γ(k1, k2) has no chains β of length ℓ(β) = 2 with colour cγ(β) = −1. In the case of
a general diagram γ ∈ Γ(k1, k2) the inequality

‖Fγ(f1, f2)‖2 = ‖(f1 ◦ f2)γ‖2 ≤ 2W (γ) min(‖f1‖2, ‖f2‖2) (11.8)

holds if the L∞-norm of the functions f1 and f2 satisfies the inequalities ‖f1‖∞ ≤ 1
and ‖f2‖∞ ≤ 1. Relations (11.7) and (11.8) also hold for non-canonical functions f1

and f2.

Inequality (11.7) is actually a repetition of estimate (10.11) about the diagrams
appearing in the case of Wiener–Itô integrals. Inequality (11.8) yields a weaker bound
about the L2-norm ‖Fγ(f1, f2)‖2 = ‖(f1 ◦ f2)γ‖2 for a general diagram γ. In particular,
it depends not only on the L2-norm, but also on the L∞-norm of the functions f1

and f2. This is closely related to the fact that in the estimates on the distribution of
U -statistics, — unlike the case of Wiener–Itô integrals, — a condition is imposed not
only on the L2-norm of the kernel function f , but also on its L∞-norm. I return to this
question later.
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Remark 1. The expression W (γ) = k1 + k2 − |O(γ)| − 2|C(γ)| appearing in formu-
las (11.6), (11.7) and (11.8) has the following content. It equals the number of those
diagrams β(lj) ∈ γ for which ℓ(β(lj)) = 2, and cγ(β(lj)) = −1. Indeed, if W (γ) denotes
the number of such chains, and W̄ (γ) equals the number of chains β(lj) ∈ γ for which
ℓ(β(lj)) = 1 (and as a consequence cγ(β(lj)) = −1), then W (γ) + W̄ (γ) = |O(γ)|, and
2W (γ)+W̄ (γ)+2|C(γ)| = k1 +k2. These identities imply the statement of this remark.

Remark 2. The term In,|O(γ)|(Fγ(f1, f2)) appeared in the sum at the right-hand side
of (11.6) only if the condition s(γ) ≤ n was satisfied. This restriction in the summation
had a technical character, which has no great importance in our investigations. It is
related to the fact that a U -statistic In,k(f) exists only if n ≥ k. As a consequence,
some U -statistics disappear at the right-hand side of (11.6) if the sample size n of the U -
statistics is relatively small. The term In,|O(γ)|(Fγ(f1, f2)) appeared in (11.6) through

the Hoeffding decomposition of a U -statistic with kernel function (f1 ◦ f2)γ defined
in (11.3). This function has s(γ) arguments, and the U -statistic corresponding to it
appears in our calculations only if the sample size n is not smaller than this number.

Let us recall the convention introduced after the definition of canonical degenerate
U -statistics by which In,0(c) is a degenerate U -statistic of order zero, and In,0(c) = c for
a constant c. By applying this convention we write Fγ((f1, f2) = f1◦f2 in relation (11.6)
for those diagrams γ for which |O(γ)| = 0, i.e. cγ(β) = 1 for all chains β ∈ γ. We
shall introduce another convention which implies that Theorem 11.1 is valid also in the
degenerate case when the function fk1 = c with a constant c, and k1 = 0. In this case
Γ(k1, k2) consists of only one diagram γ containing the chains βj = {j} of length one
and colour cγ({j}) = −1, 1 ≤ j ≤ k2. We define I(Fγ(f1, f2)) = cf2 in this case. Beside
this, we have W (γ) = k1 + k2 − |O(γ)| − 2|C(γ)| = 0, |O(γ)| = k2, and |C(γ)| = 0.
Hence formula (11.6) remains valid also in the case k1 = 0. We have introduced this
convention because the following inductive argument leading to the proof of the diagram
formula for the product of degenerate U -statistics in the general case is valid under such
a convention.

Let us turn to the formulation of the general form of the diagram formula for the
product of degenerate U -statistics. First I define a function Fγ = Fγ(f1, . . . , fm) for each
coloured diagram γ ∈ Γ(k1, . . . , km) and collection of canonical functions (with respect
to a probability measure µ on a measurable space (X,X )) f1, . . . , fm with k1, . . . , and
km variables. These functions Fγ will be the kernel functions of the degenerate U -
statistics at the right-hand side of the diagram formula.

These functions Fγ will be defined by induction with respect to the number m
of the components in the product. For m = 2 we have already defined the function
Fγ(f1, f2). Let the functions Fγ(f1, . . . , fm−1) be defined for each coloured diagram
γ ∈ Γ(k1, . . . , km−1). To define Fγ(f1, . . . , fm) for a coloured diagram γ ∈ Γ(k1, . . . , km)
first we define the predecessor γpr = γpr(γ) ∈ Γ(k1, . . . , km−1) of γ. We shall define the
coloured diagram γpr together with an appropriate indexation of its element with the
help of the enumeration of the elements of γ. Roughly speaking, the elements of γpr

are the restrictions of the chains contained in γ to the first m − 1 rows of the diagram,
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i.e. to the set {(p, r): 1 ≤ p ≤ m − 1, 1 ≤ r ≤ kp}. But we must define also the colour
of these resticted chains.

To define precisely the predecessor γpr of γ let us divide first the chains of the
coloured diagram γ = {β(l1), . . . , β(ls)} ∈ Γ(k1, . . . , km) into two disjoint subsets γ =
γ1 ∪ γ2, defined as γ1 = {β(lj): β(lj) ∈ γ, β(lj) ∩ {(m, 1), . . . , (m, km)} 6= ∅} and
γ2 = {β(lj): β(lj) ∈ γ, β(lj) ∩ {(m, 1), . . . , (m, km)} = ∅}, i.e. a coloured chain β ∈ γ
belongs to γ1 if it contains a vertex from the last row {(m, 1), . . . , (m, km)} of the
diagram, and it belongs to γ2 if it does not contain such a vertex. We define with the
help of the chains β(lj) ∈ γ1 the chains βpr(lj) = β(lj) \ {(m, 1), . . . , (m, km)} and with
the help of the chains β(lj) ∈ γ2 the chains βpr(lj) = β(lj). (For those chains β(lj) ∈ γ1

which consist only of one vertex of the form (m, r), 1 ≤ r ≤ km, the corresponding chain
βpr(lj) would be the empty set. These empty sets are omitted from the set of chains
βpr(lj) ∈ γpr.) The set of all above defined chains βpr(lj) provides a partition of the set
of vertices {(p, r): 1 ≤ p ≤ m − 1, 1 ≤ r ≤ kp}. The diagram γpr will consist of these
chains βpr(lj). To complete the definition of the coloured diagram γpr we still have to
define the colour cγpr (βpr(lj)) of these chains.

We define the colour of these chains by the formulas cγpr (βpr(lj)) = −1 if β(lj) ∈ γ1,
and cγpr (βpr(lj)) = cγ(β(lj)) if β(lj) ∈ γ2. In such a way we defined the predecessor
γpr ∈ Γ(k1, . . . , km−1) of the diagram γ ∈ Γ(k1, . . . , km). Moreover we gave an indexa-
tion of the chains of γpr with the help of the indexation of the chains of γ.

With the help of the coloured diagram γpr ∈ Γ(k1, . . . , km−1) we can define the func-
tion Fγpr = Fγpr (f1, . . . , fm−1) which is a function of |O(γpr)| variables x1, . . . , x|O(γpr)|.
We shall define the function Fγ = Fγ(f1, . . . , fm) similarly to the definition of Fγ(f1, f2)
given by formulas (11.3), (11.4) and (11.5) in the case m = 2. In this case Fγpr plays
the role of the function f1 and fm the role of the function f2. To define the function
Fγ(f1, . . . , fm) we still have to define a coloured diagram γcl = γcl(γ) ∈ Γ(|O(γpr)|, km)
that we shall call the closing diagram of γ. The heuristic content of the diagram γcl

is that it contains the additional information we need to reconstruct the diagram
γ ∈ Γ(k1, . . . , km) if we know its predecessor γpr. We shall define it together with
an enumeration of its chains that depends on the enumeration of the chains of the
diagram γ.

To define the diagram γcl let us first consider the listing O(γpr) = {l̄1, . . . , l̄|O(γpr)|},

1 ≤ l̄1 < l̄2 < · · · < l|O(γpr|, of the indices of the open indices of the diagram γpr in
increasing order. Let us fix a vertex (1, j), 1 ≤ j ≤ |O(γpr)| in the first row of γcl. We
shall denote the chain of γcl containing this vertex by βcl(l̄j), i.e. this chain get the
index l̄j , and define it together with its colour in the following way. Let us consider the
(open) chain βpr(l̄j) together with its ‘continuation’ β(l̄j). Clearly, βpr(l̄j) ⊂ β(l̄j). If
β(l̄j) ∈ γ1, then β(l̄j) = βpr(l̄j) ∪ {(m, rj)} with some integer 1 ≤ rj ≤ km. In this case
we define the chain containing the vertex (1, j) as the diagram βcl(l̄j) = {(1, j), (2, rj)}
with this number rj , and it gets the colour cγcl

(βcl(l̄j)) = cγ(β(l̄j)). If β(l̄j) ∈ γ2,
then βpr(l̄j) = β(l̄j), and we define the chain containing the vertex (1, j) as the chain
βcl(l̄j) = {(1, j)} of length 1 and with colour cγcl

(βcl(l̄j)) = −1.

We still have to consider those vertices (2, r) of Γ(|O(γpr)|, km), 1 ≤ r ≤ km, for
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which there exists a chain β(lj(r)) ∈ γ such that β(lj(r)) = {m, r)}, because these are
the vertices of the set of vertices {(1, j): 1 ≤ j ≤ |O(γpr)| ∪ {(2, r): 1 ≤ r ≤ km}
which are not contained in the previously defined chains βcl(l̄j). To cover these vertices
with an (appropriately indexed) chain of γcl let us define the chains βcl(lj(r)) = {(2, r)}
with the colour cγcl

(βcl(lj(r))) = −1 for such vertices (2, r). The above defined coloured
chains provide a partition of the set {(1, j): 1 ≤ j ≤ |O(γpr)| ∪ {(2, r): 1 ≤ r ≤ km},
and they are the elements of the coloured diagram γcl.

We shall define the function Fγ(f1, . . . , fm) with the help of the above introduced
diagrams γpr and γcl in the following way. Put, similarly to formula (11.3),

(Fγpr (f1, . . . , fm−1) ◦ fm)
γ
(xl1 , . . . , xls)

= Fγcl
(xαγcl

(1,1), . . . , xαγcl
(1,|O(γpr)|))fm(xαγcl

(2,1), . . . , xαγpr (2,km)),
(11.9)

where s = s(γcl) is the number of the chains contained in γcl. The indices l1, l2 . . . , and
ls of the variables at the left-hand side of (11.9) agree with the indices of the chains of
the diagram γcl, and αγcl

(p, r) denotes the index of the vertex (p, r) of the diagram γcl

which is induced by the enumeration of the indices of the chains in γcl. Next we define
with the help of formula (11.9), similarly to the relation (11.4), the function

(Fγpr (f1, . . . , fm−1) ◦ fm)γ(xp, p ∈ O(γcl))

=


 ∏

p∈C(γcl)

Pp

∏

p∈O2(γcl)

Qp


 (Fγpr (f1, . . . , fm−1 ◦ fm)

γ
(xp, p ∈ O(γcl) ∪ C(γcl))

(11.10)
with the operators Pp and Qp defined (with a different indexation) in formulas (11.1)
and (11.2), where the sets O(γcl) and C(γcl) are the sets of open and closed indices of the
diagram γcl, and the set O2(γcl) (for a general diagram with two rows) was defined after
formula (11.4). The function (Fγpr (f1, . . . , fm−1)◦fm)γ depends only on the arguments
indexed by the open indices of the diagram γcl.

The function Fγ(f1, . . . , fm) will be defined by means of a reindexation of the
arguments of the function (Fγpr (f1, . . . , fm−1) ◦ fm)γ(xlp , lp ∈ O(γcl)) which will be
made to get a function with arguments x1, x2, . . . , x|O(γcl)|. It is defined, similarly to
formula (11.5), as

Fγ(f1, . . . , fm)(x1, x2, . . . , x|O(γcl)|) = (Fγpr (f1, . . . , fm−1) ◦ fm)γ(xt(lp), lp ∈ O(γcl)),
(11.11)

where the indices t(lp) are defined in the following way. We list the open indices of the
diagram γcl in an increasing order as O(γcl) = {l̄1, . . . , l̄|O(γcl)|}, l̄1 < l̄2 < · · · < l̄|O(γcl)|,
and define the function t(·) on the set O(γcl) as t(l̄p) = p for 1 ≤ p ≤ |O(γcl)|.

To complete the definition of the function Fγ(f1, . . . , fm) observe that |O(γcl)| =
|O(γ)|. (Even the sets O(γcl) and O(γ) agree with the enumeration of the chains of
these two diagrams we have chosen.) Hence we can write

Fγ(f1, . . . , fm)(x1, x2, . . . , x|O(γcl)|) = Fγ(f1, . . . , fm)(x1, x2, . . . , x|O(γ)|). (11.12)
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Let me remark, that, just as in the case m = 2, also in the case m ≥ 2 the value of the
U -statistic In,|O(γ)|(Fγ(f1, . . . , fm)) does not depend on the enumeration of the chains
of the coloured diagram γ.

To formulate the general form of the diagram formula for the product of degenerate
U -statistics we introduce some quantities which will be the version of the quantities
appearing in the coefficients of the right-hand side of (11.6) in Theorem 11.1. Put

W (γ) =
∑

lp∈O(γ)

(ℓ(β(lp)) − 1) +
∑

lp∈C(γ)

(ℓ(β(lp)) − 2), γ ∈ Γ(k1, . . . , km), (11.13)

where ℓ(β) denotes the length of the chain β.

To define the next quantity we need let us first introduce the following notation.
Given a chain β = {(p1, r1), . . . , (pl, rl)}, 1 ≤ p1 < p2 < · · · < pl ≤ m, in the set
{(p, r): 1 ≤ p ≤ m, 1 ≤ r ≤ kp} let us define its upper level u(β) = p1, and its deepest
level d(β) = lp. Let us define with their help for all diagrams γ ∈ Γ(k1, . . . , km) and
integers p, 1 ≤ p ≤ m, the sets B1(γ, p) = {β: β ∈ γ, cγ(β) = 1, d(β) = p}, and
B2(γ, p) = {β: β ∈ γ, cγ(β) = −1, d(β) ≤ p} ∪ {β: β ∈ γ, u(β) ≤ p, d(β) > p}, i.e.
B1(γ, p) consists of those chains β ∈ Γ which have colour 1, all their vertices are in the
first p rows of the diagram, and contain a vertex in the p-th row, while B2(γ, p) consists
of those chains β ∈ γ which have either colour −1, and all their vertices are in the
first p rows of the diagram, or they have (with an arbitrary colour) a vertex both in the
first p rows both in the remaining rows of the diagram. Put B1(γ, p) = |B1(γ, p)| and
B2(γ, p) = |B2(γ, p)|. With the help of these numbers we define

Jn(γ, p) =





B1(γ,p)∏

j=1

(
n − B1(γ, p) − B2(γ, p) + j

n

)
if B1(γ, p) ≥ 1

1 if B1(γ, p) = 0

(11.14)

for all 2 ≤ p ≤ m and diagrams γ ∈ Γ(k1, . . . , km).

Theorem 11.2 will be formulated with the help of the above notations.

Theorem 11.2. (The diagram formula for the product of several degener-
ate U-statistics). Let a sequence of independent and identically distributed random
variables ξ1, ξ2, . . . be given with some distribution µ on a measurable space (X,X ) to-
gether with m ≥ 2 bounded functions fp(x1, . . . , xkp) on the spaces (Xkp ,X kp), 1 ≤
p ≤ m, canonical with respect to the probability measure µ. Let us consider the class
of coloured diagrams Γ(k1, . . . , km) together with the functions Fγ = Fγ(f1, . . . , fm),
γ ∈ Γ(k1, . . . , km), defined in formulas (11.9)—(11.12) and the constants W (γ) and
Jn(γ, p), 1 ≤ p ≤ m, given in formulas (11.13) and (11.14).

The functions Fγ(f1, . . . , fm) are canonical with respect to the measure µ with
|O(γ)| variables, and the product of the degenerate U -statistics In,kp(fp), 1 ≤ p ≤ m,
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n ≥ max
1≤p≤m

kp, defined in (8.7) can be expressed as

m∏

p=1

n−kp/2kp!In,kp(fkp) =
∑′(n,m )

γ∈Γ(k1,...,km)

(
m∏

p=2

Jn(γ, p)

)
n−W (γ)/2

n−|O(γ)|/2|O(γ)|!In,|O(γ)|(Fγ(f1, . . . , fm)),

(11.15)

where
∑′(n, m)

means that summation is taken for those γ ∈ Γ(k1, . . . , km) which satisfy
the relation B1(γ, p) + B2(γ, p) ≤ n for all 2 ≤ p ≤ m with the quantities B1(γ, p) and
B2(γ, p) introduced before the definition of Jn(γ, p) in (11.14), and the expression W (γ)
was defined in (11.13). The terms In,|O(γ)|(Fγ(f1, . . . , fm)) at the right-hand side of
formula (11.15) can be replaced by In,|O(γ)|(Sym Fγ(f1, . . . , fm)).

In Theorem 11.2 the product of such degenerate U -statistics were considered, whose
kernel functions were bounded. This also implies that all functions Fγ appearing at the
right-hand side of (11.15) are well-defined (i.e. the integrals appearing in their definition
are convergent) and bounded. In the applications of Theorem 11.2 it is useful to have
more information about the behaviour of the functions Fγ . We shall need some good
bound on their L2-norm. Such a result is formulated in the following

Lemma 11.3. (Estimate about the L2-norm of the kernel functions of the
U-statistics appearing in the diagram formula). Let m functions fp(x1, . . . , xkp)
be given on the products (Xkp ,X kp) of some measurable space (X,X ), 1 ≤ p ≤ m, with
a probability measure µ on it, which satisfy inequalities (8.1) and (8.2) (if the index k is
replaced by the index kp in them), but these functions need not be canonical. Let us take
a coloured diagram γ ∈ Γ(k1, . . . , km), and consider the function Fγ(f1, . . . , fm) defined
by formulas (11.9)—(11.12). The L2-norm of the function Fγ(f1, . . . , fm) (with respect
to the power of the measure µ to the space where Fγ(f1, . . . , fm) is defined) satisfies the
inequality

‖Fγ(f1, . . . , fm)‖2 ≤ 2W (γ)
∏

p∈U(γ)

‖fp‖2,

where W (γ) is given in (11.13), and the set U(γ) ⊂ {1, . . . ,m} is defined in the following
way. Let us define for a coloured chain β = {(l1, r1), (l2, r2), . . . , (ls, rs)} ∈ γ with
1 ≤ l1 < · · · < ls ≤ m the set of its interior levels as and Int (β) = {l2, . . . , ls−1, ls}
if cγ(β) = −1 and Int (β) = {l2, . . . , ls−1} if cγ(β) = 1. Then we define U(γ) =

{1, . . . ,m} \
(
⋃

β∈γ

Int (β)

)
.

The last result of this section is a corollary of Theorem 11.2. In this corollary we give
an estimate on the expected value of product of degenerate U -statistics. To formulate
this result we introduce the following terminology. Let us call a (coloured) diagram
γ ∈ Γ(k1, . . . , km) closed if cγ(β) = 1 for all chains β ∈ γ. Let us denote the set of all
closed diagrams by Γ̄(k1, . . . , km). Observe that Fγ(f1, . . . , fm) is constant (a function of
zero variable) for all closed diagram γ ∈ Γ̄(k1, . . . , km), and In,|O(γ)|(Fγ(f1, . . . , fm)) =
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In,0(Fγ(f1, . . . , fm)) = Fγ(f1, . . . , fm) in this case. Now we formulate the following
result.

Corollary of Theorem 11.2 about the expectation of a product of degenerate
U-statistics. Let a finite sequence of functions fp(x1, . . . , xkp), 1 ≤ p ≤ m, be given on
the products (Xkp ,X kp) of some measurable space (X,X ) together with a sequence of
independent and identically distributed random variables with value in the space (X,X )
which satisfy the conditions of Theorem 11.2.

Let us apply the notation of Theorem 11.2 together with the notion of the above
introduced class of closed diagrams Γ̄(k1, . . . , km). The identity

E

(
m∏

p=1

kp!n−kp/2In,kp(fkp)

)
=
∑′(n,m )

γ∈Γ̄(k1,...,km)

(
m∏

p=1

Jn(γ, p)

)
n−W (γ)/2 · Fγ(f1, . . . , fm)

(11.16)
holds. This identity has the consequence

∣∣∣∣∣E
(

m∏

p=1

kp!n−kp/2In,kp(fkp)

)∣∣∣∣∣ ≤
∑

γ∈Γ̄(k1,...,km)

n−W (γ)/2|Fγ(f1, . . . , fm)|. (11.17)

Beside this, if ‖fp‖2 ≤ σ for all 1 ≤ p ≤ m, then the numbers Fγ(f1, . . . , fm) at the
right-hand side of (11.17) satisfy the inequality

|Fγ(f1, . . . , fm)| ≤ 2W (γ)σ|U(γ)| for all γ ∈ Γ̄(k1, . . . , km). (11.18)

In formula (11.18) the same number W (γ) and set U(γ) appear as in Lemma 11.3. The
only difference is that in the present case cγ(β) = 1 for all chains β ∈ γ which appear
in the definition of U(γ).

Remark: We have applied a different terminology for diagrams in this section and in
Section 10, where the theory of Wiener–Itô integrals was discussed. But there is a simple
relation between the terminology of these sections. If we take only those diagrams from
the diagrams considered in this section which contain only chains of length 1 or 2, and
beside this the chains of length 1 have colour −1, and the chains of length 2 have colour 1,
then we get the diagrams considered in the previous section. Moreover, the functions
Fγ = Fγ(f1, . . . , fm) are the same in the two cases. Hence formula (10.18) in the
Corollary of Theorem 10.2 and formula (11.17) in the Corollary of Theorem 11.2 make
possible to compare the moments of Wiener–Itô integrals and degenerate U -statistics.

The main difference between these estimates is that formula (11.17) contains some
additional terms. They are the contributions of those diagrams γ ∈ Γ̄(k1, . . . , km) which
contain chains β ∈ γ with length ℓ(β) > 2. These are those diagrams γ ∈ Γ̄(k1, . . . , km)
for which W (γ) > 1. The estimate (11.18) given for the terms Fγ corresponding to
such diagrams is weaker, than the estimate given for the terms Fγ with W (γ) = 0, since
|U(γ)| < m if W (γ) ≥ 1, while |U(γ)| = m, if W (γ) = 0. On the other hand, such
terms have a coefficient n−W (γ)/2 at the right-hand side of formula (11.17). A closer
study of these formulas may explain the relation between the estimates given for the
tail distribution of Wiener–Itô integrals and degenerate U -statistics.
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12. The proof of the diagram formula for U-statistics.

In this section the results of the previous section will be proved. First I prove its main
result, the diagram formula for the product of two degenerate U -statistics.

Proof of Theorem 11.1. In the first step of the proof the product k1!In,k1(f1)k2!In,k2(f2)
of two degenerate U -statistics will be rewritten as a sum of not necessarily degenerate
U -statistics. In this step a term by term multiplication is carried out for the product
k1!In,k1(f1)k2!In,k2(f2), and the terms of the sum obtained in such a way are put in
different classes indexed by the (non-coloured) diagrams with two rows of length k1

and k2. This step is very similar to the heuristic argument leading to formulas (10.13)
and (10.13a) in our explanation about the diagram formula for Wiener-Itô integrals.

To carry out this step of the proof consider all sets of pairs

{(u1, u
′
1), . . . , (ur, u

′
r)}, 1 ≤ r ≤ min(k1, k2),

with the following properties: 1 ≤ u1 < u2 < · · · < ur ≤ k1, the numbers u′
1, . . . , u

′
r are

different, and 1 ≤ u′
s ≤ k2, for all 1 ≤ s ≤ r. To a set of pairs {(u1, u

′
1), . . . , (ur, u

′
r)}

with these properties let us correspond the following diagram γ̄((u1, u
′
1), . . . , (ur, u

′
r)) ∈

Γ̄(k1, k2), where Γ̄(k1, k2) denotes the set of (non-coloured) diagrams with two rows
of length k1 and k2. The diagram γ̄((u1, u

′
1), . . . , (ur, u

′
r)) has two rows, {1, . . . , k1},

and {2, . . . , k2}, its chains of length 2 are the sets {(1, us), (2, u′
s)}, 1 ≤ s ≤ r, and

beside this it contains the chains {(1, r)}, r ∈ {1, . . . , k1} \ {u1, . . . , ur}, and {(2, r)},
r ∈ {1, . . . , k2}\{u′

1, . . . , u
′
r} of length 1. All (non-coloured) diagrams γ̄ ∈ Γ̄(k1, k2) can

be represented in the form γ̄ = γ̄((u1, u
′
1), . . . , (ur, u

′
r)) with the help of a set of pairs

{(u1, u
′
1), . . . , (ur, u

′
r)}, 1 ≤ r ≤ min(k1, k2), with the above properties in a unique way.

To make the notation in the subsequent discussion simpler we fix, similarly to the
case of coloured diagrams, an indexation of the chains of a diagram γ̄ ∈ Γ̄(k1, k2), and
we define with its help an indexation of the vertices of this diagram γ̄, too. Let us take
the following natural indexation. Consider the diagram γ̄ = γ̄((u1, u

′
1), . . . , (ur, u

′
r)) ∈

Γ̄(k1, k2) which has s(γ̄) = k1 + k2 − r chains. The chain β ∈ γ̄ containing the
vertex (1, j) gets the index j, i.e. (1, j) ∈ β(j) for 1 ≤ j ≤ k1. To define the in-
dex of the remaining chains of γ̄ which are chains of length 1 of the form (2, j) with
j ∈ {1, . . . , k2} \ {u′

1, . . . , u
′
r} let us take the list {l̄1, . . . , l̄k2−r}, 1 ≤ l̄1 < · · · < l̄k2−r, of

the elements of the set {1, . . . , k2} \ {u′
1, . . . , u

′
r} in an increasing order. Then we define

the indices of the remaining chains by the formula β(k2 + j) = {(2, l̄j)}), 1 ≤ j ≤ k2−r.
After this we define the indexation of the vertices of the diagram γ by the formula
αγ̄(p, r) = l with that index l for which (p, r) ∈ β(l). Let us also define the sets
V1 = V1(γ̄) = {1, . . . , k1 + k2 − r} \ {u1, . . . , ur} and V2 = V2(γ̄) = {u1, . . . , ur}, i.e. V1

is the set of indices of the chains of γ̄ of length 1, and V2 is the set of indices of the
chains of γ̄ of length 2.

Let us consider the product k1!In,k1(f1)k2!In,k2(f2), and rewrite it in the form of the
sum we get by carrying out a term by term multiplication in this expression. We put the
terms obtained in such a way into disjoint classes indexed by the diagrams γ̄ ∈ Γ̄(k1, k2)
in the following way: A product f1(ξj1 , . . . , ξjk1

)f2(ξj′
1
, . . . , ξj′

k2
) belongs to the class in-

dexed by the diagram γ̄((u1, u
′
1), . . . , (ur, u

′
r)) with the parameters (u1, u

′
1), . . . , (ur, u

′
r),
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1 ≤ r ≤ min(k1, k2), where 1 ≤ u1 < u2 < · · · < ur ≤ k1, the numbers u′
1, . . . , u

′
r are

different, and 1 ≤ u′
s ≤ k2, for all 1 ≤ s ≤ r if the indices j1, . . . , jk1 , j

′
1, . . . , j

′
k2

in the
arguments of the variables in f1(·) and f2(·) satisfy the relation jus = j′u′

s
, 1 ≤ s ≤ r,

and there is no more coincidence between the indices j1, . . . , jk1 , j
′
1, . . . , j

′
k2

.

It is not difficult to see by applying the above partition of the terms in the product
k1!In,k1(f1)k2!In,k2(f2), and exploiting that each diagram of Γ̄(k1, k2) can be written in
the form γ̄((u1, u

′
1), . . . , (ur, u

′
r)) in a unique way that the identity

n−k1/2k1!In,k1(f1)k2!n−k2/2In,k2(f2) =
∑′(n)

γ̄∈Γ̄(k1,k2)

n−(k1+k2)/2s(γ̄)!In,s(γ̄)((f1 ◦ f2)γ̄)

(12.1)
holds, where the functions (f1 ◦ f2)γ̄ are defined in formula (11.3), s(γ̄) = k1+k2−|V2(γ̄)|
denotes the number of chains in γ̄, (both chains of length 1 and 2) and the notation

∑′(n)

means that summation is taken only for such diagrams γ̄ ∈ Γ̄(k1, k2) for which n ≥ s(γ̄).
(Let me remark that although formula (11.3) was defined for coloured diagrams, the
colours of the chains played no role in it.)

Relation (12.1) is not appropriate for our purposes, since the functions (f1 ◦ f2)γ̄

in it may be non-canonical. To get the desired formula, Hoeffding’s decomposition will
be applied for the U -statistics In,s(γ̄)((f1 ◦ f2)γ̄) appearing at the right-hand side of
formula (12.1). This decomposition becomes slightly simpler because of some special
properties of the function (f1 ◦ f2)γ̄ related to the canonical property of the initial
functions f1 and f2.

To carry out this procedure let us observe that a function f(xu1 , . . . , xuk
) is canon-

ical if and only if Pusf(xu1 , . . . , xuk
) = 0 with the operator Pus defined in (11.1) for all

indices us, 1 ≤ s ≤ k. Beside this, the condition that the functions f1 and f2 are canon-
ical implies the relation Pv(f1 ◦ f2)γ̄ = 0 for v ∈ V1(γ̄) for all diagrams γ̄ ∈ Γ̄(k1, k2),
and this relation remains valid if the function (f1 ◦ f2)γ̄ is replaced by such functions
which we get by applying the product of some transforms Pv′ and Qv′ , v′ ∈ P2 for the
function (f1 ◦ f2)γ̄ with the transforms P and Q defined in formulas (11.1) and (11.2).

Beside this, the transforms Pv or Qv are exchangeable with the operators Pv′ or
Qv′ if v 6= v′, Pv +Qv) = I, where I denotes the identity operator, and PvQv = 0, since
PvQv = Pv − P 2

v = 0. The above relations make possible the following decomposition
of the function (f1 ◦ f2)γ̄ for all γ̄ ∈ Γ̄(k1, k2) to the sum of canonical functions (just as
it was done in the Hoeffding decomposition):

(f1 ◦ f2)γ̄ =
∏

v∈V2

(Pv + Qv)(f1 ◦ f2)γ̄

=
∑

A⊂V2


∏

v∈A

Pv

∏

v∈V2\A

Qv


 (f1 ◦ f2)γ̄ =

∑

γ∈Γ(γ̄)

(f1 ◦ f2)γ ,
(12.2)

where the function (f1 ◦ f2)γ is defined in formula (11.4), and Γ(γ̄) denotes the set of
those coloured diagrams γ ∈ Γ(k1, k2) which consist of those chains (with a colour ±1)
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as the non-coloured diagram γ̄. (Clearly, s(γ) = s(γ̄) for the number of chains of γ
and γ̄ if γ ∈ Γ(γ̄).) Indeed, given a set A ⊂ V2, we have (

∏
v∈A

Pv

∏
v∈V2\A

Qv)(f1 ◦ f2)γ̄ =

(f1◦f2)γ with that coloured diagram γ ∈ Γ(γ̄) whose chains with colour 1 are the chains
β(l) ∈ γ̄ with l ∈ A, and which contains the remaining chains β(l) ∈ γ̄ with colour −1.
Then we get relation (12.2) by summing up this identity for all A ⊂ V2. The function
(f1 ◦f2)γ corresponding to the coloured diagram obtained with the help of the set A has
|O(γ)| = k1 + k2 − |V2(γ̄)| − |A| variables, where |O(γ)| is the number of open indices
in γ.

Let us consider the functions Fγ(f1, f2), γ ∈ Γ(k1, k2), defined in (11.5) which
means a reindexation of the functions (f1 ◦ f2)γ to get functions with variables x1, . . . ,
x|O(γ)|. We claim that

n−(k1+k2)/2|O(γ̄)|!In,s̄(γ̄)

(
(f1 ◦ f2)γ̄

)

=
∑

γ∈Γ(γ̄)

n−(k1+k2)/2n|C(γ)|Jn(γ)|O(γ)|!In,|O(γ)| (Fγ(f1, f2)) (12.3)

with Jn(γ) = 1 if |C(γ)| = 0, and

Jn(γ) =

|C(γ)|∏

j=1

(
n − s(γ) + j

n

)
if |C(γ)| > 0. (12.4)

for all γ̄ ∈ Γ̄(k1, k2).

Since In,|O(γ)| (Fγ(f1, f2)) = In,|O(γ)| (f1 ◦ f2)γ) relation (12.3) follows from rela-
tion (12.2) just as formula (9.3) follows from formula (9.2) in the proof of the Hoeffding
decomposition. Let us understand why the coefficient n|C(γ)|Jn(γ) appears at the right-
hand side of (12.3).

This coefficient can be calculated in the following way. Take a general term (f1 ◦
f2)γ(ξjlu

, lu ∈ O(γ)) in the U -statistic |O(γ)|!In,|O(γ)|((f1 ◦ f2)γ), and calculate the

number of terms (f1 ◦ f2)γ̄(ξj′
1
, ξj′

2
. . . , ξj′

s(γ̄)
) in the U -statistic |O(γ̄)|!In,s̄(γ̄)((f1 ◦ f2)γ̄)

for which the sequence of indices (j′1, . . . , j
′
s(γ̄)) satisfies the relation j′lu = jlu for all lu ∈

O(γ). I claim that it equals n|C(γ)|Jn(γ). It can be seen that this number n|C(γ)|Jn(γ)
appears as the coefficient at right-hand side of (12.3).

Indeed, we have to calculate the number of such sequences j′1, j
′
2, . . . , j

′
s(γ̄) for which

the value j′lu = jlu is prescribed for the indices lu ∈ O(γ), and the other elements of
the sequence can take arbitrary integer value between 1 and n with the only restriction
that all elements of the sequence j′1, j

′
2, . . . , j

′
s(γ̄) must be different. The number of such

sequences equals (n−|O(γ)|)(n−|O(γ)|−1) · · · (n−|C(γ)|− |O(γ)|+1) = Jn(γ)n|C(γ)|.
(In this calculation we exploited the fact that |O(γ)| + |C(γ)| = s(γ).)

Let us observe that k1 + k2 − 2|C(γ)| = |O(γ)| + W (γ) with the number W (γ)
introduced in the formulation of Theorem 11.1. Hence

n−(k1+k2)/2n|C(γ)| = n−W (γ)/2n−|O(γ)|/2.
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Let us replace the left-hand side of the last identity by its right-hand side in (12.3), and
let us sum up the identity we get in such a way for all γ̄ ∈ Γ̄(k1, k2) such that s(γ̄) ≤ n.
The identity we get in such a way together with formulas (12.1) and (12.4) imply the
identity (11.6). Clearly, In,|O(γ)|(Fγ(f1, f2)) = In,|O(γ)|(SymFγ(f1, f2)), hence the term
In,|O(γ)|(Fγ(f1, f2)) can be replaced by In,|O(γ)|(SymFγ(f1, f2)) in formula (11.6). We
still have to prove inequalities (11.7) and (11.8).

Inequality (11.7), the estimate of the L2-norm of the function (f1 ◦ f2)γ follows
from the Schwarz inequality, and actually it agrees with inequality (10.11), proved at
the start of Appendix B. Hence its proof is omitted here.

To prove inequality (11.8) let us introduce, similarly to formula (11.2), the operators

Q̃uj h(xu1 , . . . , xur ) = h(xu1 , . . . , xur ) +

∫
h(xu1 , . . . , xur )µ( dxuj ), 1 ≤ j ≤ r, (12.5)

in the space of functions h(xu1 , . . . , xur ) with coordinates in the space (X,X ). (The
indices u1, . . . , ur are all different.) Observe that both the operators Q̃uj and the opera-
tors Puj defined in (11.1) are positive, i.e. these operators map a non-negative function

to a non-negative function. Beside this, Quj ≤ Q̃uj , and the norms of the operators
Q̃uj

2 and Puj are bounded by 1 both in the L1(µ), the L2(µ) and the supremum norm.

Let us define the function

( ˜f1 ◦ f2)γ(xj , j ∈ O(γ)) =


 ∏

j∈C(γ)

Pj

∏

j∈O2(γ)

Q̃j


 (f1 ◦ f2)γ(xj , j ∈ C(γ) ∪ O(γ))

(12.6)

with the notation of Section 11. The function ( ˜f1 ◦ f2)γ was defined with the help of

(f1 ◦ f2)γ similarly to (f1 ◦ f2)γ defined in (11.4), only the operators Qj were replaced

by Q̃j in its definition.

In the proof of (11.8) it may be assumed that ‖f1‖2 ≤ ‖f2‖2. The properties of the
operators Puj and Q̃uj listed above together with the condition sup |f2(x1, . . . , xk)| ≤ 1
imply that

|(f1 ◦ f2)γ | ≤ ( ˜|f1| ◦ |f2|)γ ≤ ( ˜|f1| ◦ 1)γ , (12.7)

where ‘≤’ means that the function at the right-hand side is greater than or equal to the
function at the left-hand side in all points, and the term 1 in (12.7) denotes the function
which equals identically 1. Because of the identity ‖Fγ(f1, f2)‖2 = ‖(f1 ◦ f2)γ‖2 and
relation (12.7) it is enough to show that

‖( ˜|f1| ◦ 1)γ‖2 =

∥∥∥∥∥∥


 ∏

j∈C(γ)

Pj

∏

j∈O2(γ)

Q̃j


 |f1(xαγ(1,1), . . . , xαγ(1,k1))|

∥∥∥∥∥∥
2

≤ 2W (γ)‖f1‖2

(12.8)
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to prove relation (11.8). But this inequality trivially holds, since the norm of all opera-
tors Pj in formula (12.8) is bounded by 1, the norm of all operators Q̃j is bounded by 2
in the L2(µ) norm, and |O2(γ)| = W (γ).

Proof of Theorem 11.2. Theorem 11.2 will be proved with the help of Theorem 11.1 by
induction with respect to the number of degenerate U -statistics kp!In,kp(fp), 1 ≤ p ≤ m.
Formula (11.15) holds for m = 2 by Theorem 11.1. To prove it for a general parameter m
let us first fix a coloured diagram γ̄ ∈ Γ(k1, . . . , km−1) and consider the set of diagrams
of m rows which are its ‘continuation’, i.e. let

Γ(γ̄) = {γ: γ ∈ Γ(k1, . . . , km), γpr = γ̄}.

(Here we work with the diagrams γpr and γcl introduced for a diagram γ ∈ Γ(k1, . . . , km)
in the previous section.) I claim that

n−|O(γ̄)|/2|O(γ̄)|!In,|O(γ̄)|(Fγ̄(f1, . . . , fm−1)) · n−km/2km!In,km(fm)

=
∑′(n)

γ∈Γ(γ̄)

|C(γcl)|∏

j=1

(
n − s(γcl) + j

n

)
n−W (γcl)/2

n−|O(γ)|/2|O(γ))|!In,|O(γ)|(Fγ(f1, . . . , fm)),

(12.9)

where
∑′(n)

means that summation is taken for such γ ∈ Γ(γ̄) for which s(γcl) ≤ n,

and
|C(γcl)|∏

j=1

equals 1, if |C(γcl)| = 0.

Relation (12.9) can be checked by applying Theorem 11.1 for the pair of functions
Fγ̄(f1, . . . , fm−1) and fm. To get it first we show that there is a mutual correspondence
between the coloured diagrams γ ∈ Γ(|O(γ̄)|, km) and the class of diagrams {γcl: γ ∈
Γ(γ̄)} in such a way that if γ ∈ Γ(γ̄) and γ′ ∈ Γ(|O(γ)|, km) correspond to each other,
then γ′ = γcl. We shall fix an enumeration of the chains of the diagram γ̄, and we
shall make such an enumeration of the chains of a diagram γ ∈ Γ(γ̄) for which the
enumeration of the chains of γ̄ and γpr agree. The correspondence between the above
mentioned two classes of diagrams depends on the enumeration of the chains of γ̄,
but this will cause no problem. To get it observe that for each γ ∈ Γ(γ̄) there is a
diagram γ′ = γcl ∈ Γ(|O(γ̄)|, km). On the other hand, I claim that for all diagrams
γ′ ∈ Γ(|O(γ̄)|, km) such a diagram γ(γ′) ∈ Γ(γ̄) can be found for which γ(γ′)cl = γ′.

This diagram γ(γ′) ∈ Γ(γ̄) will be defined in the following way. Let l̄1, l̄2, . . . , l̄|O(γ̄)|
be the indices of the chains of the diagram γ̄ with colour −1. The diagram γ(γ′) will
be defined so that the chains of colour 1 of γ̄ will be chains of colour 1 of γ(γ′), too.
If the vertex (1, j) of the diagram γ′ is contained in a chain of length 1, then the
diagram γ(γ′) contains the chain β(l̄j) with colour −1. If this vertex is contained in a
chain {(1, j), (2, rj)} ∈ γ′ of length 2, then γ(γ′) contains the diagram β(l̄j)∪ {(m, rj)}
with the same colour as the chain {(1, j), (2, rj)} has in γ′. Finally, if the vertex (2, r) is
contained in the chain {(2, r)} of length 1 in γ′, then {(m, r)} will be a chain of length 1
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of γ(γ′) with colour −1. In such a way we get such a diagram γ(γ′) ∈ Γ(γ̄) for which
γ(γ′)cl = γ′.

We get relation (12.9) by applying Theorem 11.1 for the product

n−|O(γ̄)|/2|O(γ̄)|!In,|O(γ̄)|(Fγ̄(f1, . . . , fm−1)) · n−km/2km!In,km(fm)

and writing all diagrams γ′ ∈ Γ(|O(γ)|, km) in the form γcl, where γcl is the closing
diagram of the diagram γ(γ′) ∈ Γ(γ̄) defined in the previous paragraph.

Relation (11.15) for the parameter m can be proved with the help of relation (12.9)
and the inductive assumption by which it holds for m − 1. Indeed, let us multiply

formula (12.9) by
m−1∏
p=2

Jn(γ̄, p)n−W (γ̄)/2, and sum up this identity for all such diagrams

γ̄ ∈ Γ(k1, . . . , km−1) for which B1(γ, p) + B2(γ̄, p) ≤ n for all 2 ≤ p ≤ m − 1. Then the
sum of the terms at the left-hand side equals the left-hand side of formula (11.15) for
parameter m.

I claim that the sum of the terms at the right-hand side equals the right-hand side of
formula (11.15) for parameter m. To see this it is enough to check that for all γ ∈ Γ(γ̄) we

have W (γ̄) + W (γcl) = W (γpr) + W (γcl) = W (γ),
m−1∏
p=2

Jn(γpr, p)
|C(γcl)|∏

j=1

(
n−s(γcl)+j

n

)
=

m∏
p=2

Jn(γ, p), where
|C(γcl)|∏

j=1

= 1 if |C(γcl)| = 0, and the relation B1(γ, p) + B2(γ, p) ≤ n

holds for all 2 ≤ p ≤ m if and only if B1(γpr, p) + B2(γpr, p) ≤ n for all 2 ≤ p ≤
m − 1, and s(γcl) ≤ n. But these relations can be simply checked. The identity
about the function W (·) can be checked by taking into account the definition of the
diagrams γpr and γcl, in particular the colouring of the chains in these diagrams. The
remaining relations can be proved with the help of the observation that for a diagram
γ ∈ Γ(k1, . . . , km) B1(γpr, p) = B1(γ, p) and B2(γpr, p) = B2(γ, p) for all 2 ≤ p ≤ m−1.
Beside this |C(γcl)| = B1(γ,m) and |O(γcl)| = B2(γ,m). Theorem 11.2 is proved.

Proof of Lemma 11.3. The proof is similar to that of formula (11.8) at the end of
Theorem 11.1. Let us define the functions F̃γ(f1, . . . , fp), γ ∈ Γ(k1, . . . , kp), recursively
for all 2 ≤ p ≤ m similarly to the definition of the functions Fγ(f1, . . . , fp) with the

difference that the operator Quj = I − Puj is replaced by Q̃uj = I + Puj in the new

definition. Then we have |Fγ(f1, . . . , fm)| ≤ F̃γ(|f1|, . . . , |fm|) in all points. Hence

‖Fγ(f1, . . . , fm)‖2 ≤ ‖F̃γ(f1, . . . , fm)‖2, and to prove Lemma 11.3 it is enough to show
that

‖F̃γ(|f1|, . . . , |fm|)‖2 ≤ 2W (γ)
∏

p∈U(γ)

‖fp‖2 if γ ∈ Γ(k1, . . . , km) (12.10)

with the same number W (γ) and set U(γ) which were considered in Lemma 11.3. Re-
lation (12.10) will be proved by induction with respect to m.

Relation (12.10) holds for m = 2. Indeed, if W (γ) = 0, then U(γ) = {1, 2}, we
have F̃γ = Fγ , and formula (11.7) supplies the estimate. If W (γ) ≥ 1, then U(γ) = {1},
and actually in the proof of relation (11.8) we proved this relation.

107



In the case m > 2 this inequality will be proved by induction with the help of the
identity (with the notation of formula (11.3)

‖F̃γ(|f1|, . . . , |fm|)‖2 =

∥∥∥∥


 ∏

p∈C(γcl)

Pp

∏

p∈O2(γcl)

Q̃p




(F̃γpr (|f1|, . . . , |fm−1|) ◦ |fm|)
γcl

(xp, p ∈ O(γcl) ∪ C(γcl))

∥∥∥∥
2

.

(12.11)

In the case W (γcl) = 0, i.e. if γcl contains no open chain of length 2 we have U(γ) =
U(γpr) ∪ {m}, W (γ) = W (γpr), and formula (2.11) contains no operator Q̃p. In this

case inequality (12.10) follows from the representation of ‖F̃γ(|f1|, . . . , |fm|)‖2 given
in (12.11), relation (11.7) and from the inductive hypothesis by which inequality (12.10)
holds for ‖(F̃γpr (|f1|, . . . , |fm−1|)‖2.

In the case W (γcl) > 0 we have U(γ) = U(γpr), W (γ) = W (γpr) + W (γcl), and
inequality (12.10) can be proved similarly to the case W (γcl) = 0 with the only difference
that in this case instead of (11.7) we have to apply that strengthened version of (11.8)
which is contained in formula (12.10) in the special case m = 2. Lemma 11.3 is proved.

The corollary of Theorem 11.2 is a simple consequence of Theorem 11.2 and Lem-
ma 11.3.

Proof of the corollary of Theorem 11.2. Observe that Fγ is a function of |O(γ)| ar-
guments. Hence a coloured diagram γ ∈ Γ(k1, . . . , km) is in the class of closed di-
agrams, i.e. γ ∈ Γ̄(k1, . . . , km) if and only if Fγ(f1, . . . , fm) is a constant. Thus
formula (11.16) is a simple consequence of relation (11.15) and the observation that
EIn,|O(γ)|(Fγ(f1, . . . , fm)) = 0 if |O(γ)| ≥ 1, i.e. if γ /∈ Γ̄(k1, . . . , km), and

In,|O(γ)|(Fγ(f1, . . . , fm)) = In,0(Fγ(f1, . . . , fm)) = Fγ(f1, . . . , fm)

if γ ∈ Γ̄(k1, . . . , km).

Relations (11.17) and (11.18) follow from relation (11.16) and Lemma 11.3.
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13. The proof of Theorems 8.3, 8.5 and Example 8.7.

This section contains the proof of the estimates on the distribution of a multiple Wiener–
Itô integral or degenerate U -statistic formulated in Theorems 8.5 and 8.3 together with
the proof of Example 8.7. Beside this, also a multivariate version of Hoeffding’s in-
equality (Theorem 3.4) will be proved here. The latter result is useful in the estimation
of the supremum of degenerate U -statistics. The estimate on the distribution of a
multiple random integral with respect to a normalized empirical distribution given in
Theorem 8.1 is omitted, because, as it was shown in Section 9, this result follows from
the estimate of Theorem 8.3 on degenerate U -statistics. This section will be finished
with a separate part Section 13 B, where the results proved in this section are discussed
together with the method of their proofs and some recent results.

The proof of Theorems 8.5 and 8.3 is based on a good estimate on high moments
of Wiener–Itô integrals and degenerate U -statistics. These estimates follow from the
corollaries of Theorems 10.2 and 11.2. Such an approach slightly differs from the clas-
sical proof in the one-variate case. The natural one-variate version of the problems
discussed here is an estimate about the tail distribution of a sum of independent ran-
dom variables. This estimate is generally proved with the help of a good bound on the
moment generating function of the sum. Such a method may not work in the multi-
variate case, because, as later calculations will show, there is no good estimate on the
moment-generating function estimate of U -statistics or multiple Wiener–Itô integrals
of order k ≥ 3. Actually, the moment-generating function of a Wiener–Itô integral of
order k ≥ 3 is always divergent, because the tail behaviour of such a random integral
is similar to that of the k-th power of a Gaussian random variable. On the other hand,
good bounds on the moments EZ2M of a random variable Z for all positive integers M
(or at least for a sufficiently rich class of parameters M) together with the application
of the Markov inequality for Z2M and an appropriate choice of the parameter M yield
a good estimate on the distribution of Z.

Propositions 13.1 and 13.2 give estimates on the moments of Wiener–Itô integrals
and degenerate U -statistics.

Proposition 13.1. (Estimate of the moments of Wiener–Itô integrals). Let
f(x1, . . . , xk) be a function of k variables on some measurable space (X,X ) that satis-
fies formula (8.12) with some σ-finite measure µ. Take the k-fold Wiener–Itô integral
Zµ,k(f) of this function with respect to a white noise µW with reference measure µ. The
inequality

E (k!|Zµ,k(f)|)2M ≤ 1 · 3 · 5 · · · (2kM − 1)σ2M for all M = 1, 2, . . . (13.1)

holds.

By Stirling’s formula Proposition 13.1 implies that

E(k!|Zµ,k(f)|)2M ≤ (2kM)!

2kM (kM)!
σ2M ≤ A

(
2

e

)kM

(kM)kMσ2M (13.2)
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for any A >
√

2 if M ≥ M0 = M0(A). Formula (13.2) can be considered as a sim-
pler, better applicable version of Proposition 13.1. It can be better compared with the
moment estimate on degenerate U -statistics given in (13.3).

Proposition 13.2 provides a similar, but weaker inequality for the moments of nor-
malized degenerate U -statistics.

Proposition 13.2. (Estimate on the moments of degenerate U-statistics).
Let us consider a degenerate U -statistic In,k(f) of order k with sample size n and with
a kernel function f satisfying relations (8.1) and (8.2) with some 0 < σ2 ≤ 1. Fix
a positive number η > 0. There exist some universal constants A = A(k) >

√
2,

C = C(k) > 0 and M0 = M0(k) ≥ 1 depending only on the order of the U -statistic
In,k(f) such that

E
(
n−k/2k!In,k(f)

)2M

≤ A (1 + C
√

η)
2kM

(
2

e

)kM

(kM)
kM

σ2M

for all integers M such that kM0 ≤ kM ≤ ηnσ2.

(13.3)

In formula (13.3) such a constant C = C(k) can be chosen which does not depend
on the order k of the U -statistic In,k(f). For instance C = 4 is an appropriate choice.

Theorem 13.2 yields a good estimate on E
(
n−k/2k!In,k(f)

)2M
with a fixed expo-

nent 2M with the choice η = kM
nσ2 . With such a choice of the number η formula (13.3)

yields an estimate on the moments E
(
n−k/2k!In,k(f)

)2M
comparable with the estimate

on the corresponding Wiener–Itô integral if M ≤ nσ2, while it yields a much weaker
estimate if M ≫ nσ2.

Now I turn to the proof of these propositions.

Proof of Proposition 13.1. Proposition 13.1 can be simply proved by means of the
Corollary of Theorem 10.2 with the choice m = 2M , and fp = f for all 1 ≤ p ≤ 2M .
Formulas (10.18) and (10.19) yield that

E
(
k!Zµ,k(f)2M

)
≤
(∫

f2(x1, . . . , xk)µ( dx1) . . . µ(dxk)

)M

|Γ2M (k)| ≤ |Γ2M (k)|σ2M ,

where |Γ2M (k)| denotes the number of closed diagrams γ in the class Γ̄(k, . . . , k︸ ︷︷ ︸
2M times

) intro-

duced in the corollary of Theorem 10.2. Thus to complete the proof of Proposition 13.1
it is enough to show that |Γ2M (k)| ≤ 1 · 3 · 5 · · · (2kM − 1). But this can easily be seen
with the help of the following observation. Let Γ̄2M (k) denote the class of all graphs
with vertices (l, j), 1 ≤ l ≤ 2M , 1 ≤ j ≤ k, such that from all vertices (l, j) exactly
one edge starts, all edges connect different vertices, but edges connecting vertices (l, j)
and (l, j′) with the same first coordinate l are also allowed. Let |Γ̄2M (k)| denote the
number of graphs in Γ̄2M (k). Then clearly |Γ2M (k)| ≤ |Γ̄2M (k)|. On the other hand,
|Γ̄2M (k)| = 1 · 3 · 5 · · · (2kM − 1). Indeed, let us list the vertices of the graphs from
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Γ̄2M (k) in an arbitrary way. Then the first vertex can be paired with another vertex in
2kM − 1 way, after this the first vertex from which no edge starts can be paired with
2kM − 3 vertices from which no edge starts. By following this procedure the next edge
can be chosen 2kM − 5 ways, and by continuing this calculation we get the desired
formula.

Proof of Proposition 13.2. Relation (13.3) will be proved by means of relations (11.17)
and (11.18) in the Corollary of Theorem 11.2 with the choice m = 2M and fp = f for all
1 ≤ p ≤ 2M . Let us take the class of closed coloured diagrams Γ(k,M) = Γ̄(k, . . . , k︸ ︷︷ ︸

2Mtimes

).

This will be partitioned into subclasses Γ(k,M, r), 1 ≤ r ≤ kM , where Γ(M,k, r)
contains those closed diagrams γ ∈ Γ(k,M) for which W (γ) = 2r. Let us recall that
W (γ) was defined in (11.13), and in the case of closed diagrams W (γ) =

∑
β∈γ

(ℓ(β) − 2).

For a diagram γ ∈ Γ(k,M), W (γ) is an even number, since W (γ)+2s(γ) = 2kM , where
s(γ) denotes the number of chains in γ.

First we prove an estimate about the cardinality of Γ(M,k, r). We claim that there
exist some constant A = A(k) > 0 and threshold index M0 = M0(k) depending only
the order k of the U -statistic In, k(f) for which

|Γ(k,M, r)| ≤ A

(
2kM

2r

)(
2

e

)kM

(kM)kM+r22r for all 0 ≤ r ≤ kM (13.4)

if A ≥ A0(k) and M ≥ M0(k).

To prove formula (13.4) we define a map T : γ → T (γ) from the set of dia-
grams γ ∈ Γ(k,M, r) to the set of paired diagrams in such a way that T (γ) 6= T (γ′)
if γ 6= γ′, and give a good bound on the number of paired diagrams T (γ), γ ∈
Γ(k,M, r), obtained in such a way. (We shall call a diagram γ a paired diagram,
if all of its chains have length 2, i.e. the have the form β = {(p, r), (p′, r′)} ∈ γ,
with p 6= p′.) To define the paired diagrams we shall work with first we introduce the
set W(γ) =

⋃
β∈γ

{(p2(β), q2(β)), . . . , (ps−1(β), qs−1(β))}, for all γ ∈ Γ(k,M, r), where

β = {(p1(β), q1(β)), . . . , (ps(β), qs(β))} with 1 ≤ p1(β) < p2(β) < · · · < ps(β) ≤ 2M for
all β ∈ γ, i.e. W(γ) is the set of vertices we get by omitting the first and last vertices of
all chains β ∈ γ, and then taking the union of the vertices of these diminished chains.
Observe that |W(γ)| = W (γ) for a closed diagram.

We take a copy (p, q, C) of all elements (p, q) ∈ W(γ) of a diagram γ ∈ Γ(k,M, r).
First we define the set of vertices V (T (γ)) of the paired diagram T (γ). It is a set of ver-
tices consisting of 2M rows, and its p-th row is {(p, 1), . . . , (p, kp)} ∪ {(p, q, C): (p, q) ∈
W(γ)} for all 1 ≤ p ≤ 2M . We have |V (T (γ)| = 2kM + |W(γ)| = 2kM + 2r. We define
the paired diagram T (γ) on the set V (T (γ)) in the following way. Given a chain β =
{(p1(β), q1(β)), . . . , (ps(β), qs(β))} ∈ γ, with 1 ≤ p1(β) < p2(β) < · · · < ps(β) ≤ 2M ,
we correspond to it the following sets of pairs (chains of length 2) in V (T (γ)):

{((p1(β), q1(β)), ((p2(β), q2(β), C)}, {((p2(β), q2(β)), ((p3(β), q3(β), C)}, . . . ,
{((ps−2(β), qs−2(β)), ((ps−1(β), qs−1(β), C)}, {((ps−1(β), qs−1(β)), ((ps(β), qs(β)}.
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(In the case ℓ(β) = 2, we map β to itself.) Defining these pairs of vertices for all β ∈ γ
we get the paired diagram T (γ) with the desired properties.

The number of the above defined sets V (T (γ)), γ ∈ Γ(k,M, r), is less than or equal
to
(
2kM
2r

)
, and each of these sets V (T (γ)) has 2kM + 2r vertices. Hence the number of

paired diagrams with vertices in a fixed set V (T (γ)) is bounded by 1·3··5·(2kM−2r−1).
The above considerations provide the bound

|Γ(k,M, r)| ≤
(

2kM

2r

)
1 · 3 · 5 · · · (2kM + 2r − 1) =

(
2kM

2r

)
(2kM + 2r)!

2kM+r(kM + r)!
. (13.5)

Stirling’s formula yields that (2kM+2r)!
2kM+r(kM+r)!

≤ A
(

2
e

)kM+r
(kM + r)kM+r with some con-

stant A >
√

2 if M ≥ M0 with some M0 = M0(A). Since r ≤ kM we can write

(kM + r)kM+r ≤ (kM)kM
(
1 + r

kM

)kM
(2kM)r ≤ (kM)kM+rer2r. The above calcula-

tion together with (13.5) imply inequality (13.4).

For a diagram γ ∈ Γ(k,M, r) we have W (γ) = 2r, and beside this the cardinality of
the set U(γ) defined in the formulation of Lemma 11.3 satisfies the inequality |U(γ)| ≥
2M − W (γ) = 2M − 2r. Hence by relation (11.18) n−W (γ)/2|Fγ | ≤ 22rn−rσ|U(γ)| ≤
22r
(
nσ2

)−r
σ2M ≤ ηr22r(kM)−rσ2M for γ ∈ Γ(k,M, r) if kM ≤ ηnσ2 and σ2 ≤ 1.

This estimate together with relation (11.17) imply that for kM ≤ ηnσ2

E
(
n−k/2k!In,k(fk)

)2M

≤
∑

γ∈Γ(k,M)

n−W (γ)/2 · |Fγ | ≤
kM∑

r=0

|Γ(k,M, r)|ηr22r(kM)−rσ2M .

Hence by formula (13.4)

E
(
n−k/2k!In,k(fk)

)2M

≤ A

(
2

e

)kM

(kM)kMσ2M
kM∑

r=0

(
2kM

2r

)
(4
√

η)
2r

≤ A

(
2

e

)kM

(kM)kMσ2M (1 + 4
√

η)
2kM

if kM0 ≤ kM ≤ ηnσ2. Thus we have proved Proposition 13.2 with C = 4.

It is not difficult to prove Theorem 8.5 with the help of Proposition 13.1.

Proof of Theorem 8.5. By formula (13.2) which is a consequence of Proposition 13.1
and the Markov inequality

P (|k!Zµ,k(f)| > u) ≤ E (k!Zµ,k(f))
2M

u2M
≤ A

(
2kMσ2/k

eu2/k

)kM

(13.6)

with some constant A >
√

2 if M ≥ M0 with some constant M0 = M0(A), and M is an
integer.
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Put M̄ = M̄(u) = 1
2k

(
u
σ

)2/k
, and M = M(u) = [M̄ ], where [x] denotes the integer

part of a real number x. Choose some number u0 such that 1
2k

(
u0

σ

)2/k ≥ M0 + 1. Then
relation (13.6) can be applied with M = M(u) for u ≥ u0, and it yields that

P (|k!Zµ,k(f)| > u) ≤ A

(
2kMσ2/k

eu2/k

)kM

≤ e−kM ≤ Aeke−kM̄

= Aek exp

{
−1

2

(u

σ

)2/k
}

if u ≥ u0.

(13.7)

Relation (13.7) means that relation (8.14) holds for u ≥ u0 with the pre-exponential
coefficient Aek. By enlarging this coefficient if it is needed it can be guaranteed that
relation (8.14) holds for all u > 0. Theorem 8.5 is proved.

Theorem 8.3 can be proved similarly by means of Proposition 13.2. Nevertheless,
the proof is technically more complicated, since in this case the optimal choice of the
parameter in the Markov inequality cannot be given in such a direct form as in the
proof of Theorem 8.5. In this case the Markov inequality is applied with an only almost
optimal choice of the parameter M .

Proof of Theorem 8.3. The Markov inequality and relation (13.3) with η = kM
nσ2 imply

that

P (k!n−k/2|In,k(f)| > u) ≤ E
(
k!n−k/2In,k(f)

)2M

u2M

≤ A


1

e
· 2kM

(
1 + C

√
kM√
nσ

)2 (σ

u

)2/k




kM (13.8)

for all integers M ≥ M0 with some M0 = M0(A).

Relation (8.10) will be proved with the help of estimate (13.8) first in the case
D ≤ u

σ ≤ nk/2σk with a sufficiently large constant D = D(k,C) > 0 depending on k
and the constant C in (13.8). To this end let us introduce the number M̄ by means of
the formula

kM̄ =
1

2

(u

σ

)2/k 1

1 + B
( u

σ )
1/k

√
nσ

=
1

2

(u

σ

)2/k 1

1 + B
(
un−k/2σ−(k+1)

)1/k

with a sufficiently large number B = B(C) > 0 and M = [M̄ ], where [x] means the
integer part of the number x.

Observe that
√

kM̄ ≤
(

u
σ

)1/k
,

√
kM̄√
nσ

≤
(
un−k/2σ−(k+1)

)1/k ≤ 1, and

(
1 + C

√
kM̄√
nσ

)2

≤ 1 + B

√
kM̄√
nσ

≤ 1 + B
(
un−k/2σ−(k+1)

)1/k

113



with a sufficiently large B = B(C) > 0 if u
σ ≤ nk/2σk. Hence

1

e
· 2kM

(
1 + C

√
kM√
nσ

)2 (σ

u

)2/k

≤ 1

e
· 2kM̄

(
1 + C

√
kM̄√
nσ

)2 (σ

u

)2/k

=
1

e
·

(
1 + C

√
kM̄√
nσ

)2

1 + B
(
un−k/2σ−(k+1)

)1/k
≤ 1

e

(13.9)

if u
σ ≤ nk/2σk. If the inequality D ≤ u

σ also holds with a sufficiently large D = D(B, k) >
0, then M ≥ M0, and the conditions of inequality (13.8) hold. This inequality together
with inequality (13.9) yield that

P (k!n−k/2|In,k(f)| > u) ≤ Ae−kM ≤ Aeke−kM̄

if D ≤ u
σ ≤ nk/2σk, i.e. inequality (8.10) holds in this case with a pre-exponential

constant Aek. In the case u
σ ≤ D the right-hand side of (8.10) is larger than 1 if we

choose the pre-exponential term A sufficiently large. Hence inequality (8.10) holds for
all 0 ≤ u

σ ≤ nk/2σk with a sufficiently large pre-exponential term A. Theorem 8.3 is
proved.

Example 8.7 is a relatively simple consequence of Itô’s formula for multiple Wiener–
Itô integrals.

Proof of Example 8.7. We may restrict our attention to the case k ≥ 2. Itô’s for-
mula for multiple Wiener-Itô integrals, more explicitly relation (10.21), implies that the
random variable k!Zµ,k(f) can be expressed as k!Zµ,k(f) = σHk

(∫
f0(x)µW ( dx)

)
=

σHk(η), where Hk(x) is the k-th Hermite polynomial with leading coefficient 1, and
η =

∫
f0(x)µW ( dx) is a standard normal random variable. Hence we get by exploiting

that the coefficient of xk−1 in the polynomial Hk(x) is zero that P (k!|Zµ,k(f)| > u) =
P (|Hk(η)| ≥ u

σ ) ≥ P
(
|ηk| − D|ηk−2| > u

σ

)
with a sufficiently large constant D > 0 if

u
σ > 1. There exist such positive constants A and B that

P
(
|ηk| − D|ηk−2| >

u

σ

)
≥ P

(
|ηk| >

u

σ
+ A

(u

σ

)(k−2)/k
)

if
u

σ
> B.

Hence

P (k!|Zµ,k(f)| > u) ≥ P

(
|η| >

(u

σ

)1/k
(

1 + A
(u

σ

)−2/k
))

≥
C̄ exp

{
−1

2

(
u
σ

)2/k
}

(
u
σ

)1/k
+ 1

with an appropriate C̄ > 0 if u
σ > B. Since P (k!|Zµ,k(f)| > 0) > 0, the above inequality

also holds for 0 ≤ u
σ ≤ B if the constant C̄ > 0 is chosen sufficiently small. This means

that relation (8.16) holds.
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Next we prove a multivariate version of Hoeffding’s inequality. Before its formula-
tion some notations will be introduced.

Let us fix two positive integers k and n and some real numbers a(j1, . . . , jk) for all
sequences of arguments {j1, . . . , jk} such that 1 ≤ jl ≤ n, 1 ≤ l ≤ k, and jl 6= jl′ if
l 6= l′.

With the help of the above real numbers a(·) and a sequence of independent random
variables ε1, . . . , εn, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, the random variable

V =
∑

(j1,...,jk): 1≤jl≤n for all 1≤l≤k,
jl 6=jl′ if l 6=l′

a(j1, . . . , jk)εj1 · · · εjk
(13.10)

and number
S2 =

∑

(j1,...,jk): 1≤jl≤n for all 1≤l≤k,
jl 6=jl′ if l 6=l′

a2(j1, . . . , jk). (13.11)

will be introduced.

With the help of the above notations the following result can be formulated.

Theorem 13.3. (The multivariate version of Hoeffding’s inequality). The
random variable V defined in formula (13.10) satisfies the inequality

P (|V | > u) ≤ C exp

{
−1

2

(u

S

)2/k
}

for all u ≥ 0 (13.12)

with the constant S defined in (13.11) and some constants C > 0 depending only on the
parameter k in the expression V .

Theorem 13.3 will be proved by means of two simple lemmas. Before their formu-
lation the random variable

Z =
∑

(j1,...,jk): 1≤jl≤n for all 1≤l≤k,
jl 6=jl′ if l 6=l′

|a(j1, . . . , jk)|ηj1 · · · ηjk
(13.13)

will be introduced, where η1, . . . , ηn are independent random variables with standard
normal distribution, and the numbers a(j1, . . . , jk) agree with those in formula (13.10).
The following lemmas will be proved.

Lemma 13.4. The random variables V and Z introduced in (13.10) and (13.13) satisfy
the inequality

EV 2M ≤ EZ2M for all M = 1, 2, . . . . (13.14)

Lemma 13.5. The random variable Z defined in formula (13.13) satisfies the inequality

EZ2M ≤ 1 · 3 · 5 · · · (2kM − 1)S2M for all M = 1, 2, . . . (13.15)
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with the constant S defined in formula (13.11).

Proof of Lemma 13.4. We can write, by carrying out the multiplications in the expres-
sions EV 2M and EZ2M , by exploiting the additive and multiplicative properties of the
expectation for sums and products of independent random variables together with the
identities Eε2k+1

j = 0 and Eη2k+1
j = 0 for all k = 0, 1, . . . that

EV 2M =
∑

(j1,...,jl, m1,...,ml):
1≤js≤n, ms≥1, 1≤s≤l, m1+···+ml=kM

A(j1, . . . , jl,m1, . . . ,ml)Eε2m1
j1

· · ·Eε2ml
jl

(13.16)

and

EZ2M =
∑

(j1,...,jl, m1,...,ml):
1≤js≤n, ms≥1, 1≤s≤l, m1+···+ml=kM

B(j1, . . . , jl,m1, . . . ,ml)Eη2m1
j1

· · ·Eη2ml
jl

(13.17)

with some coefficients A(j1, . . . , jl,m1, . . . ,ml) and B(j1, . . . , jl,m1, . . . ,ml) such that

|A(j1, . . . , jl,m1, . . . ,ml)| ≤ B(j1, . . . , jl,m1, . . . ,ml). (13.18)

The coefficients A(·, ·, ·) and B(·, ·, ·) could be expressed explicitly, but we do not need
such a formula. What is important for us is that A(·, ·, ·) can be expressed as the sum of
certain terms, and B(·, ·, ·) as the sum of the absolute value of the same terms. Hence
relation (13.18) holds. Since Eε2m

j ≤ Eη2m
j for all parameters j and m formulas (13.16),

(13.17) and (13.18) imply Lemma 13.4.

Proof of Lemma 13.5. Let us consider a white noise W (·) on the unit interval [0, 1]
with the Lebesgue measure λ on [0, 1] as its reference measure, i.e. let us take a set of
Gaussian random variables W (A) indexed by the measurable sets A ⊂ [0, 1] such that
EW (A) = 0, EW (A)W (B) = λ(A∩B) with the Lebesgue measure λ for all measurable
subsets of the interval [0, 1]. Let us introduce n orthonormal functions ϕ1(x), . . . , ϕn(x)
with respect to the Lebesgue measure on the interval [0, 1], and define the random
variables ηj =

∫
ϕj(x)W ( dx), 0 ≤ j ≤ n. Then η1, . . . , ηn are independent random

variables with standard normal distribution, hence we may assume that they appear
in the definition of the random variable Z in formula (13.13). Beside this, the identity
ηj1 · · · ηjk

=
∫

ϕj1(x1) · · ·ϕjk
(xk)W ( dx1) . . . W ( dxk) holds for all k-tuples (j1, . . . , jk),

such that 1 ≤ js ≤ n for all 1 ≤ s ≤ k, and the indices j1, . . . , js are different.
This identity follows from Itô’s formula for multiple Wiener–Itô integrals formulated in
formula (10.20) of Theorem 10.3.

Hence the random variable Z defined in (13.13) can be written in the form

Z =

∫
f(x1, . . . , xk)W ( dx1) . . . W ( dxk)

with the function

f(x1, . . . , xk) =
∑

(j1,...,jk): 1≤jl≤n for all 1≤l≤k,
jl 6=jl′ if l 6=l′

|a(j1, . . . , jk)|ϕj1(x1) · · ·ϕjk
(xk).
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Because of the orthogonality of the functions ϕj(x)

S2 =

∫

[0,1]k
f2(x1, . . . , xk) dx1 . . . dxk.

Lemma 13.5 is a straightforward consequence of the above relations and formula (13.1)
in Proposition 13.1.

Proof of Theorem 13.3. The proof of Theorem 13.3 with the help of Lemmas 13.4
and 13.5 is an almost word for word repetition of the proof of Theorem 8.5. By
Lemma 13.4 inequality (13.15) remains valid if the random variable Z is replaced by
the random variable V at its left-hand side. Hence the Stirling formula yields that

EV 2M ≤ EZ2M ≤ (2kM)!

2kM (kM)!
S2M ≤ C

(
2

e

)kM

(kM)kMS2M

for any C ≥
√

2 if M ≥ M0(A). As a consequence, by the Markov inequality the
estimate

P (|V | > u) ≤ EV 2M

u2M
≤ C

(
2kM

e

(
S

u

)2/k
)kM

(13.19)

holds for all C >
√

2 if M ≥ M0(C). Put kM̄ = kM̄(u) = 1
2

(
u
S

)2/k
and M = M(u) =

[M̄ ], where [x] denotes the integer part of the number x. Let us choose a threshold

number u0 by the identity 1
2k

(
u0

S

)2/k
= M0(C) + 1. Formula (13.19) can be applied

with M = M(u) for u ≥ u0, and it yields that

P (|V | > u) ≤ Ce−kM ≤ Ceke−kM̄ = Cek exp

{
−1

2

(u

S

)2/k
}

if u ≥ u0.

The last inequality means that relation (13.12) holds for u ≥ u0 if the constant C is
replaced by Cek in it. With the choice of a sufficiently large constant C relation (13.12)
holds for all u ≥ 0. Theorem 13.3 is proved.

13. B) A short discussion about the methods and results.

A comparison of Theorem 8.5 and Example 8.7 shows that the estimate (8.15) is sharp.
At least no essential improvement of this estimate is possible which holds for all Wiener–
Itô integrals with a kernel function f satisfying the conditions of Theorem 8.5. This
fact also indicates that the bounds (13.1) and (13.2) on high moments of Wiener–Itô
integrals are sharp. It is worth while comparing formula (13.2) with the estimate of
Proposition 13.2 on moments of degenerate U -statistics.

Let us consider a normalized k-fold degenerate U -statistic n−k/2k!In,k(f) with some
kernel function f and a µ-distributed sample of size n. Let us compare its moments with
those of a k-fold Wiener–Itô integral k!Zµ,k(f) with the same kernel function f with
respect to a white noise µW with reference measure µ. Let σ denote the L2-norm of the
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kernel function f . If M ≤ εnσ2 with a small number ε > 0, then Proposition 13.2 (with
an appropriate choice of the parameter η which is small in this case) provides an almost
as good bound on the 2M -th moment of the normalized U -statistic as Proposition 13.1
provides on the 2M -th moment of the corresponding Wiener–Itô integral. In the case
M ≤ Cnσ2 with some fixed (not necessarily small) number C > 0 the 2M -th moment
of the normalized U -statistic can be bounded by C(k)M times the natural estimate on
the 2M -th moment of the Wiener–Itô integral with some constant C(k) > 0 depending
only on the number C. This can be so interpreted that in this case the estimate on the
moments of the normalized U -statistic is weaker than the estimate on the moments of
the Wiener–Itô integral, but they are still comparable. Finally, in the case M ≫ nσ2

the estimate on the 2M -th moment of the normalized U -statistic is much worse than
the estimate on the 2M -th moment of the Wiener–Itô integral.

A similar picture arises if the distribution of the normalized degenerate U -statistic

Fn(u) = P (n−k/2k!|In,k(f)| > u)

is compared to the distribution of the Wiener–Itô integral

G(u) = P (k!|Zµ,k(f)| > u).

A comparison of Theorems 8.3 and 8.5 shows that for 0 ≤ u ≤ εnk/2σk+1 with a small
ε > 0 an almost as good estimate holds Fn(u) as for G(u). In the case 0 ≤ u ≤ nk/2σk+1

the behaviour of Fn(u) and G(u) is similar, only in the exponent of the estimate on
Fn(u) in formula (8.10) a worse constant appears. Finally, if u ≫ nk/2σk+1, then — as
Example 8.8 shows, at least in the case k = 2, — the (tail) distribution function Fn(u)
satisfies a much worse estimate than the function G(u). Thus a similar picture arises as
in the case when the estimate on the tail-distribution of normalized sums of independent
random variables, discussed in Section 3, is compared to the behaviour of the standard
normal distribution in the neighbourhood of infinity. To understand this similarity
better it is useful to recall Theorem 10.4, the limit theorem about normalized degenerate
U -statistics. Theorems 8.3 and 8.5 enable us to compare the tail behaviour of normalized
degenerate U -statistics with their limit presented in the form of multiple Wiener–Itô
integrals, while the one-variate versions of these results compare the distribution of sums
of independent random variables with their Gaussian limit.

The above results show that good bounds on the moments of degenerate U -statistics
and multiple Wiener–Itô also provide a good estimate on their distribution. To under-
stand the behaviour of high moments of degenerate U -statistics it is useful to have
a closer look at the simplest case k = 1, when the moments of sums of independent
random variables with expectation zero are considered.

Let us consider a sequence of independent and identically distributed random vari-

ables ξ1, . . . , ξn with expectation zero, take their sum Sn =
n∑

j=1

ξj , and let us try to

give a good estimate on the moments ES2M
n for all M = 1, 2, . . . . Because of the
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independence of the random variables ξj and the condition Eξj = 0 the identity

ES2M
n =

∑

(j1,...,js,l1,...,ls)
j1+···+js=2M, ju≥2, for all 1≤u≤s

lu 6=lu′ if u 6=u′

Eξj1
l1
· · ·Eξjs

ls
(13.20)

holds. Simple combinatorial considerations show that a dominating number of terms
at the right-hand side of (13.20) are indexed by a vector (j1, . . . , jM ; l1, . . . , lM ) such

that ju = 2 for all 1 ≤ u ≤ M , and the number of such vectors is equal to
(

n
M

) (2M)!
2M ∼

nM (2M)!
2M M !

. The last asymptotic relation holds if the number n of terms in the random
sum Sn is sufficiently large. The above considerations suggest that under not too re-

strictive conditions ES2M
n ∼

(
nσ2

)M (2M)!
2M M !

= Eη2M
nσ2 , where σ2 = Eξ2 is the variance

of the terms in the sum Sn, and ηu denotes a random variable with normal distribution
with expectation zero and variance u. The question arises when the above heuristic
argument gives a right estimate.

For the sake of simplicity let us restrict our attention to the case when the absolute
value of the random variables ξj is bounded by 1. Let us observe that even in this case
the above heuristic argument holds only under the condition that the variance σ2 of the
random variables ξj is not too small. Indeed, let us consider such random variables ξj , for

which P (ξj = 1) = P (ξj = −1) = σ2

2 , P (ξj = 0) = 1−σ2. Then these random variables
ξj have variance σ2, and the contribution of the terms Eξ2M

j , 1 ≤ j ≤ n, to the sum in

(13.20) equals nσ2. If σ2 is very small, then it may happen that nσ2 ≫
(
nσ2

)M (2M)!
2M M !

,
and the approximation given for ES2M

n in the previous paragraph does not hold any
longer. Hence the asymptotic relation for a very high moment ES2M

n suggested by the
above heuristic argument may only hold if the variance σ2 of the summands satisfies an
appropriate lower bound.

In the proof of Proposition 13.2 a similar picture appears in a hidden way. In
the calculation of the moments of a degenerate U -statistic the contribution of certain
(closed) diagrams, more precisely of some integrals defined with their help, has to be
estimated. Some of these diagrams (those in which all chains have length 2) appear also
in the calculation of the moments of multiple Wiener–Itô integrals. In the calculation of
the moments of sums of independent random variables the terms consisting of products
of second moments play such a role in the sum in formula (13.20) as the ‘nice’ diagrams
consisting of chains of length 2 play in the calculation of the moments of degenerate
U -statistics in formula (11.17). In nice cases the remaining diagrams do not give a
much greater contribution than these ‘nice’ diagrams, and we get an almost as good
bound for the moments of a normalized degenerate U -statistic as for the moments of
the corresponding multiple Wiener–Itô integral. The proof of Proposition 13.2 shows
that such a situation appears under very general conditions.

Let me also remark that there is an essential difference between the tail behaviour
of Wiener–Itô integrals and normalized degenerate U -statistics. A good estimate can
be given on the tail distribution of Wiener–Itô integrals which depends only on the
L2-norm of the kernel function, while in the case of normalized degenerate U -statistics
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the corresponding estimate depends not only on the L2-norm but also on the L∞ norm
of the kernel function. In Theorem 8.3 such an estimate is proved.

For k ≥ 2 the distribution of k-fold Wiener-Itô integrals are not determined by the
L2-norm of their kernel functions. This is an essential difference between Wiener–Itô
integrals of order k ≥ 2 and k = 1. In the case k = 1 a Wiener–Itô integral is a
Gaussian random variable with expectation zero, and its variance equals the square of
the L2-norm of its kernel function. Hence its distribution is completely determined by
the L2-norm of its kernel function. On the other hand, the distribution of a Wiener–Itô
integral of order k ≥ 2 is not determined by its variance. Theorem 8.5 yields a ‘worst
case’ estimate on the distribution of Wiener–Itô integrals if we have a bound on their
variance. In the statistical problems which provided the main motivation for this work
such estimates are needed, but it may be interesting to know what kind of estimates
are known about the distribution of a multiple Wiener–Itô integral or degenerate U -
statistic if we have some additional information about its kernel function. Some results
will be mentioned in this direction, but most technical details will be omitted from their
discussion.

H. P. Mc. Kean proved the following lower bound on the distribution of multiple
Wiener–Itô integrals. (See [29] or [42].)

Theorem 13.6. (Lower bound on the distribution of Wiener–Itô integrals).
All k-fold Wiener–Itô integrals Zµ,k(f) satisfy the inequality

P (|Zµ,k(f)| > u) > Ke−Au2/k

(13.21)

with some numbers K = K(f, µ) > 0 and A = A(f, µ) > 0.

The constant A in the exponent Au2/k of formula (13.21) is always finite, but Mc. Kean’s
proof yields no explicit upper bound on it. The following example shows that in certain
cases if we fix the constant K in relation (13.21), then this inequality holds only with a
very large constant A > 0 even if the variance of the Wiener–Itô integral equals 1.

Take a probability measure µ and a white noise µW with reference measure µ on
a measurable space (X,X ), and let ϕ1, ϕ2, . . . be a sequence of orthonormal functions
on (X,X ) with respect to this measure µ. Define for all L = 1, 2, . . . , the function

f(x1, . . . , xk) = fL(x1, . . . , xk) = (k!)1/2L−1/2
L∑

j=1

ϕj(x1) · · ·ϕj(xk) (13.22)

and the Wiener–Itô integral

Zµ,k(f) = Zµ,k(fL) =
1

k!

∫
fL(x1, . . . , xk)µW ( dx1) . . . µW ( dxk).

Then EZ2
µ,k(f) = 1, and the high moments of Zµ,k(f) can be well estimated. For a

large parameter L these moments are much smaller, than the quantities suggested by
Proposition 13.1. (The calculation leading to the estimation of the moments of Zµ,k(f)
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will be omitted.) These moment estimates also imply that if the parameter L is large,
then for not too large numbers u the probability P (|Zµ,k(f)| > u) has a much better
estimate than that given in Theorem 8.5. As a consequence, for a large number L and
fixed number K relation (13.21) may hold only with a very big number A > 0.

We can expect that if we take a Gaussian random polynomial P (ξ1, . . . , ξn) whose
arguments are Gaussian random variables ξ1, . . . , ξn, and which is the sum of many small
almost independent terms, then a similar picture arises as in the case of a Wiener–
Itô integral with kernel function (13.22) with a large parameter L. Such a random
polynomial has an almost Gaussian distribution by the central limit theorem, and we can
also expect that its not too high moments behave so as the corresponding moments of a
Gaussian random variable with expectation zero and the same variance as the Gaussian
random polynomial we consider. Such a bound on the moments has the consequence
that the estimate on the probability (P (ξ1, . . . , ξn) > u) given in Theorem 8.5 can be
improved if the number u is not too large. A similar picture arises if we consider Wiener–
Itô integrals whose kernel function satisfies some ‘almost independence’ properties. The
problem is to find the right properties under which we can get a good estimate that
exploits the almost independence property of a Gaussian random polynomial or of a
Wiener–Itô integral. The main result of R. Lata la’s paper [26] can be considered as a
response to this question. I describe this result below.

To formulate Lata la’s result some new notions have to be introduced. Given a finite
set A let P(A) denote the set of all its partitions. If a partition P = {B1, . . . , Bs} ∈
P(A) consists of s elements then we say that this partition has order s, and write
|P | = s. In the special case A = {1, . . . , k} the notation P(A) = Pk will be used.
Given a measurable space (X,X ) with a probability measure µ on it together with a
finite set B = {b1, . . . , bj} let us introduce the following notations. Take j different
copies (Xbr ,Xbr ) and µbr , 1 ≤ r ≤ j, of this measurable space and probability measure
indexed by the elements of the set B, and define their product (X(B),X (B), µ(B)) =(

j∏
r=1

Xbr ,
j∏

r=1
Xbr ,

j∏
r=1

µbr

)
. The points (xb1 , . . . , xbj ) ∈ X(B) will be denoted by x(B) ∈

X(B) in the sequel. With the help of the above notations I introduce the quantities
needed in the formulation of the following Theorem 13.7.

Let a function f = f(x1, . . . , xk) be given on the k-fold product (Xk,X k, µk)
of a measurable space (X,X ) with a probability measure µ. For all partitions P =
{B1, . . . , Bs} ∈ Pk of the set {1, . . . , k} consider the functions gr

(
x(Br)

)
on the space

X(Br), 1 ≤ r ≤ s, and define with their help the quantities

α(P ) = α(P, f, µ) = sup
g1,...,gs

∫
f(x1, . . . , xk)g1

(
x(B1)

)
· · · gs

(
x(Bs)

)
µ(dx1) . . . µ(dxk);

where supremum is taken for such functions g1, . . . , gs, gr: XBr → R1

for which

∫
g2

r

(
x(Br)

)
µ(Br)

(
dx(Br)

)
≤ 1 for all 1 ≤ r ≤ s,

(13.23)
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and put
αs = max

P∈Pk, |P |=s
α(P ), 1 ≤ s ≤ k. (13.24)

In Lata la’s estimation of Wiener–Itô integrals of order k the quantities αs, 1 ≤ s ≤ k,
play a similar role as the number σ2 in Theorem 8.5. Observe that in the case |P | = 1,
i.e. if P = {1, . . . , k} the identity α2(P ) =

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) holds,

which means that α1 = σ. The following estimate is valid for Wiener–Itô integrals of
general order.

Theorem 13.7. (Lata la’s estimate about the tail-distribution of Wiener–Itô
integrals). Let a k-fold Wiener–Itô integral Zµ,k(f), k ≥ 1, be defined with the help
of a white noise µW with a non-atomic reference measure µ and a kernel function f of
k-variable such that

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞. There is some universal

constant C(k) < ∞ depending only of the order k of the random integral such that the
inequalities

E(Zµ,k(f))2M ≤
(

C(k) max
1≤s≤k

(Ms/2αs)

)2M

, (13.25)

and

P (|Zµ,k(f)| > u) ≤ C(k) exp

{
− 1

C(k)
min

1≤s≤k

(
u

αs

)2/s
}

(13.26)

hold for all M = 1, 2, . . . and u > 0 with the quantities αs, defined in formulas (13.23)
and (13.24).

Inequality (13.26) is a simple consequence of (13.25). In the special case when αs ≤
M−(s−1)/2 for all 1 ≤ s ≤ k, then inequality (13.25) says that the moment EZµ,k(f)2M

has the same magnitude as the 2M -th moment of a standard Gaussian random variable
multiplied by a constant, and it implies a good estimate on P (|Zµ,k(f)| > u) given
in (13.26). Actually the result of Theorem 13.7 can be reduced to the special case
when αs ≤ M−(s−1)/2 for all 1 ≤ s ≤ k. Thus it can be interpreted so that if the
quantities αs of a k-fold Wiener–Itô integral are sufficiently small, then these ‘almost
independence’ conditions imply that the 2M -th moment of this integrals behaves like a
one-fold Wiener–Itô integral with the same variance.

Actually Lata la formulated his result in a different form, and he proved a slightly
weaker result. He considered Gaussian polynomials of the following form:

P (ξ
(s)
j , 1 ≤ j ≤ n, 1 ≤ s ≤ k) =

1

k!

∑

(j1,...,jk): 1≤js≤n, 1≤s≤k

a(j1, . . . , jk)ξ
(1)
j1

· · · ξ(k)
jk

,

(13.27)

where ξ
(s)
j , 1 ≤ j ≤ n and 1 ≤ s ≤ k, are independent standard normal random

variables. Lata la gave an estimate about the moments and tail-distribution of such
random polynomials.

The problem about the behaviour of such random polynomials can be reformulated
as a problem about the behaviour of Wiener–Itô integrals in the following way: Take a

122



measurable space (X,X ) with a non-atomic measure µ on it. Let Zµ be a white noise

with reference measure µ, let us choose a set of orthogonal functions h
(s)
j (x), 1 ≤ j ≤ n,

1 ≤ s ≤ k, on the space (X,X ) with respect to the measure µ, and define the function

f(x1, . . . , xk) =
1

k!

∑

(j1,...,jk): 1≤js≤n, 1≤s≤k

a(j1, . . . , jk)h
(1)
j1

(x1) · · ·h(k)
jk

(xk) (13.28)

together with the Wiener–Itô integral Zµ,k(f). Since the random integrals ξ̄
(s)
j =

∫
h

(s)
j (x)Zµ( dx), 1 ≤ j ≤ n, 1 ≤ s ≤ k, are independent, standard Gaussian random

variables, it is not difficult to see with the help of Itô’s formula (Theorem 10.3 in this

work) that the distributions of the random polynomial P (ξ
(s)
j , 1 ≤ j ≤ n, 1 ≤ s ≤ k)

and Zµ,k(f) agree. Here we reformulated Lata la’s estimates about random polynomials
of the form (13.27) to estimates about Wiener–Itô integrals with kernel function of the
form (13.28).

These estimates are equivalent to Lata la’s result if we restrict our attention to the
special class of Wiener–Itô integrals with kernel functions of the form (13.28). But
we have formulated our result for Wiener–Itô integrals with a general kernel function.
Lata la’s proof heavily exploits the special structure of the random polynomials given

in (13.27), the independence of the random variables ξ
(s)
j for different parameters s in

it. (It would be interesting to find a proof which does not exploit this property.) On the
other hand, this result can be generalized to the case discussed in Theorem 13.7. This
generalization can be proved by exploiting the theorem of de la Peña and Montgomery–
Smith about the comparison of U -statistics and decoupled U -statistics (formulated in
Theorem 14.3 of this work) and the properties of the Wiener–Itô integrals. I omit the
details of the proof.

Lata la also proved a converse estimate in [26] about random polynomials of Gaus-
sian random polynomials which shows that the estimates of Theorem 13.7 are sharp. We
formulate it in its original form, i.e. we restrict our attention to the case of Wiener–Itô
integrals with kernel functions of the form (13.28).

Theorem 13.8. (A lower bound about the tail distribution of Wiener–Itô
integrals). A random integral Zµ,k(f) with a kernel function of the form (13.28)
satisfies the inequalities

E(Zµ,k(f))2M ≥
(

C(k) max
1≤s≤k

(Ms/2αs)

)2M

,

and

P (|Zµ,k(f)| > u) ≥ 1

C(k)
exp

{
−C(k) min

1≤s≤k

(
u

αs

)2/s
}

for all M = 1, 2, . . . and u > 0 with some universal constant C(k) > 0 depending only on
the order k of the integral and the quantities αs, defined in formula (13.23) and (13.24).
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Let me finally remark that there is a counterpart of Theorem 13.7 about degenerate
U -statistics. Adamczak’w paper [1] contains such a result. Here we do not discuss it,
because this result is far from the main topic of this work. We only remark that some
new quantities have to be introduced to formulate it. The appearance of these conditions
is related to the fact that in an estimate about the tail-behaviour of a degenerate U -
statistic we need a bound not only on the L2-norm but also on the supremum norm
of the kernel function. In a sharp estimate the bound about the supremum of the
kernel function has to be replaced by a more complex system of conditions, just as the
condition about the L2-norm of the kernel function was replaced by a condition about
the quantities αs, 1 ≤ s ≤ k, defined in formulas (13.23) and (13.24) in Theorem 13.7.

14. Reduction of the main result in this work.

The main result of this work is Theorem 8.4 or its multiple integral version Theorem 8.2.
It was shown in Section 9 that Theorem 8.2 follows from Theorems 8.4. Hence it is
enough to prove Theorem 8.4. It may be useful to study this problem together with its
multiple Wiener–Itô integral version, Theorem 8.6.

Theorems 8.6 and 8.4 will be proved similarly to their one-variate versions, Theo-
rems 4.2 and 4.1. Theorem 8.6 will be proved with the help of Theorem 8.5 about the
estimation of the tail distribution of multiple Wiener–Itô integrals. A natural modifi-
cation of the chaining argument applied in the proof of Theorem 4.2 works also in this
case. No new difficulties arise. On the other hand, in the proof of Theorem 8.4 several
new difficulties have to be overcome. I start with the proof of Theorem 8.6.

Proof of Theorem 8.6. Fix a number 0 < ε < 1, and let us list the elements of the
countable set F as f1, f2, . . . . For all p = 0, 1, 2, . . . let us choose by exploiting the
conditions of Theorem 8.6 a set Fp = {fa(1,p), . . . , fa(mp,p)} ⊂ F of function with

mp ≤ 2D 2(2p+4)Lε−Lσ−L elements in such a way that inf
1≤j≤mp

∫
(f − fa(j,p))

2 dµ ≤
2−4p−8ε2σ2 for all f ∈ F , and beside this let fp ∈ Fp. For all indices a(j, p), p = 1, 2, . . . ,
1 ≤ j ≤ mp, choose a predecessor a(j′, p−1), j′ = j′(j, p), 1 ≤ j′ ≤ mp−1, in such a way
that the functions fa(j,p) and fa(j′,p−1) satisfy the relation

∫
|fa(j,p) − fa(j′,p−1)|2 dµ ≤

ε2σ22−4(p+1). Theorem 8.5 with the choice ū = ū(p) = 2−(p+1)εu and σ̄ = σ̄(p) =
2−2p−2εσ yields the estimates

P (A(j, p)) = P
(
k!|Zµ,k(fa(j,p) − fa(j′,p−1))| ≥ 2−(1+p)εu

)

≤ C exp

{
−1

2

(
2p+1u

σ

)2/k
}

, 1 ≤ j ≤ mp,
(14.1)

for all p = 1, 2, . . . , and

P (B(s)) = P
(
k!|Zµ,k(fa(0,s))| ≥

(
1 − ε

2

)
u
)
≤ C exp



−1

2

((
1 − ε

2

)
u

σ

)2/k


 ,

1 ≤ s ≤ m0.
(14.2)
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Since all f ∈ F is the element of at least one set Fp, p = 0, 1, 2, . . . , (fp ∈ Fp), the
definition of the predecessor of an index a(j, p) and of the events A(j, p) and B(s) in
formulas (14.1) and (14.2) together with the previous estimates imply that

P

(
sup
f∈F

k!|Zµ,k(f)| ≥ u

)
≤ P




∞⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1

B(s)




≤
∞∑

p=1

mp∑

j=1

P (A(j, p)) +

m0∑

s=1

P (B(s)) (14.3)

≤
∞∑

p=1

2CD2(2p+4)Lε−Lσ−L exp

{
−1

2

(
2p+1u

σ

)2/k
}

+ 21+4LCDε−Lσ−L exp



−1

2

((
1 − ε

2

)
u

σ

)2/k


 .

Standard calculation shows that if u ≥ MLk/2 1
ε logk/2 2

εσ logk/2 2
σ with a sufficiently

large constant M , then the inequalities

2(2p+4)Lε−Lσ−L exp

{
−1

2

(
2p+1u

σ

)2/k
}

≤ 2−p

{
−1

2

(
(1 − ε)u

σ

)2/k
}

hold for all p = 1, 2 . . . , and

24Lε−Lσ−L exp



−1

2

((
1 − ε

2

)
u

σ

)2/k


 ≤ exp

{
−1

2

(
(1 − ε) u

σ

)2/k
}

.

These inequalities together with relation (14.3) imply relation (8.15). Theorem 8.6
is proved.

The proof of Theorem 8.4 is harder. In this case the chaining argument in itself does
not supply the proof, since Theorem 8.3 gives a good estimate about the distribution
of a degenerate U -statistic only if it has a not too small variance. The same difficulty
appeared in the proof of Theorem 4.1, and the method applied in that case will be
adapted to the present situation.

A multivariate version of Proposition 6.1 will be proved in Proposition 14.1, and
another result which can be considered as a multidimensional version of Proposition 6.2
will be formulated in Proposition 14.2. It will be shown that Theorem 8.4 follows
from Propositions 14.1 and 14.2. Most steps of these proofs can be considered as a
simple repetition of the corresponding arguments in the proof of the results in Section 6.
Nevertheless, I wrote them down for the sake of completeness.

The result formulated in Proposition 14.1 can be proved in almost the same way
as its one-variate version, Proposition 6.1. The only essential difference is that now we
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have to apply a multivariate version of the Bernstein’s inequality. In the calculations
of the proof of Proposition 14.1 the term (u

σ )2/k shows a behaviour similar to the term
( u

σ )2 in Proposition 6.1. Theorem 14.1 contains the information we can get by applying
Theorem 8.3 together with the chaining argument. Its main content, inequality (14.4),
yields a good estimate on the supremum of degenerated U -statistics if it is taken for an
appropriate finite subclass Fσ̄ of the original class of kernel functions F . The class of
kernel functions Fσ̄ is a relatively dense subclass of F in the L2 norm. Proposition 14.1
also provides some useful estimates on the value of the parameter σ̄ which describes
how dense the class of functions Fσ̄ is in F .

Proposition 14.1. Let the k-fold power (Xk,X k) of a measurable space (X,X ) be given
together with some probability measure µ on (X,X ) and such a countable L2-dense class
F of functions f(x1, . . . , xk) of k variables on (Xk,X k) with some exponent L ≥ 1 and
parameter D ≥ 1 with the following properties. All functions f ∈ F are canonical with
respect to the measure µ, and they satisfy conditions (8.4) and (8.5) with some real
number 0 < σ ≤ 1. Take a sequence of independent µ-distributed random variables
ξ1, . . . , ξn, n ≥ max(k, 2), and consider the (degenerate) U -statistics In,k(f), f ∈ F ,
defined in formula (8.7), and fix some number Ā = Āk ≥ 2k.

There is a number M = M(Ā, k) such that for all numbers u > 0 for which the

inequality nσ2 ≥
(

u
σ

)2/k ≥ M(L log 2
σ + log D) holds, a number σ̄ = σ̄(u), 0 ≤ σ̄ ≤ σ ≤

1, and a collection of functions Fσ̄ = {f1, . . . , fm} ⊂ F with m ≤ Dσ̄−L elements can
be chosen in such a way that the sets Dj = {f : f ∈ F ,

∫
|f −fj |2 dµ ≤ σ̄2}, 1 ≤ j ≤ m,

satisfy the relation F =
m⋃

j=1

Dj, and for the (degenerate) U -statistics In,k(f), f ∈ Fσ̄(u)

the inequality

P

(
sup

f∈Fσ̄(u)

n−k/2|In,k(f)| ≥ u

Ā

)
≤ 2C exp

{
−α

( u

10Āσ

)2/k
}

(14.4)

if nσ2 ≥
(u

σ

)2/k

≥ M(L log
2

σ
+ log D)

holds with the constants α = α(k), C = C(k) appearing in formula (8.10′) of the
Corollary of Theorem 8.3 and the exponent L and parameter D of the L2-dense class

F . Beside this also the inequality 4
(

u
Āσ̄

)2/k ≥ nσ̄2 ≥ 1
64

(
u

Āσ

)2/k
holds for this number

σ̄ = σ̄(u). If the number u satisfies also the inequality

nσ2 ≥
(u

σ

)2/k

≥ M(L3/2 log
2

σ
+ (log D)3/2) (14.5)

with a sufficiently large number M = M(Ā, k), then the relation nσ̄2 ≥ L log n + log D
holds, too.

Proof of Proposition 14.1. Let us list the elements of the countable set F as f1, f2, . . . .
For all p = 0, 1, 2, . . . let us choose, by exploiting the L2-density property of the
class F , a set Fp = {fa(1,p), . . . , fa(mp,p)} ⊂ F with mp ≤ D 22pLσ−L elements in
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such a way that inf
1≤j≤mp

∫
(f − fa(j,p))

2 dµ ≤ 2−4pσ2 for all f ∈ F . For all indices

a(j, p), p = 1, 2, . . . , 1 ≤ j ≤ mp, choose a predecessor a(j′, p − 1), j′ = j′(j, p),
1 ≤ j′ ≤ mp−1, in such a way that the functions fa(j,p) and fa(j′,p−1) satisfy the relation
∫
|fa(j,p)−fa(j′,p−1)|2 dµ ≤ σ22−4(p−1). Then the inequalities

∫ ( fa(j,p)−fa(j′,p−1)

2

)2

dµ ≤
4σ22−4p and sup

xj∈X, 1≤j≤k

∣∣∣ fa(j,p)(x1,...,xk)−fa(j′,p−1)(x1,...,xk)

2

∣∣∣ ≤ 1 hold. The Corollary of

Theorem 8.3 yields that

P (A(j, p)) = P

(
n−k/2|In,k(fa(j,p) − fa(j′,p−1))| ≥

2−(1+p)u

Ā

)

≤ C exp

{
−α

(
2pu

8Āσ

)2/k
}

if 4nσ22−4p ≥
(

2pu

8Āσ

)2/k

,

1 ≤ j ≤ mp, p = 1, 2, . . . ,

(14.6)

and

P (B(s)) = P
(
n−k/2|In,k(f0,s)| ≥ u

2Ā

)
≤ C exp

{
−α

( u

2Āσ

)2/k
}

, 1 ≤ s ≤ m0,

if nσ2 ≥
( u

2Āσ

)2/k

. (14.7)

Introduce an integer R = R(u), R > 0, which satisfies the relations

2(4+2/k)(R+1)
( u

Āσ

)2/k

≥ 22+6/knσ2 ≥ 2(4+2/k)R
( u

Āσ

)2/k

,

and define σ̄2 = 2−4Rσ2 and Fσ̄ = FR (this is the class of functions Fp introduced at
the start of the proof with p = R). We defined the number R, analogously to the proof
of Theorem 6.1, as the largest number p for which the condition formulated in (14.6)

holds. As nσ2 ≥
(

u
σ

)2/k
, and Ā ≥ 2k by our conditions, there exists such a positive

integer R.) The cardinality m of the set Fσ̄ is clearly not greater than Dσ̄−L, and
m⋃

j=1

Dj = F . Beside this, the number R was chosen in such a way that the inequalities

(14.6) and (14.7) hold for 1 ≤ p ≤ R. Hence the definition of the predecessor of an
index a(j, p) implies that

P

(
sup

f∈Fσ̄

n−k/2|In,k(f)| ≥ u

Ā

)
≤ P




R⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1

B(s)




≤
R∑

p=1

mp∑

j=1

P (A(j, p)) +

m0∑

s=1

P (B(s)) ≤
∞∑

p=1

CD 22pLσ−L exp

{
−α

(
2pu

8Āσ

)2/k
}

+ CDσ−L exp

{
−α

( u

2Āσ

)2/k
}

.
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If the condition
(

u
σ

)2/k ≥ M(L log 2
σ + log D) holds with a sufficiently large constant M

(depending on Ā), then the inequalities

D22pLσ−L exp

{
−α

(
2pu

8Āσ

)2/k
}

≤ 2−p exp

{
−α

(
2pu

10Āσ

)2/k
}

hold for all p = 1, 2, . . . , and

Dσ−L exp

{
−α

( u

2Āσ

)2/k
}

≤ exp

{
−α

( u

10Āσ

)2/k
}

.

Hence the previous estimate implies that

P

(
sup

f∈Fσ̄

n−k/2|In,k(f)| ≥ u

Ā

)
≤

∞∑

p=1

C2−p exp

{
−α

(
2pu

10Āσ

)2/k
}

+ C exp

{
−α

( u

10Āσ

)2/k
}

≤ 2C exp

{
−α

( u

10Āσ

)2/k
}

,

and relation (14.4) holds.

The estimates

1

64

( u

Āσ

)2/k

≤ 2−2−6/k22k/R
( u

Āσ

)2/k

= 2−4R · 2(4+2/k)R−2−6/k
( u

Āσ

)2/k

≤ nσ̄2 = 2−4Rnσ2 ≤ 2−4R · 2(4+2/k)(R+1)−2−6/k
( u

Āσ

)2/k

= 22−4/k · 22R/k
( u

Āσ

)2/k

= 22−4/k · 2−2R/k
( u

Āσ̄

)2/k

≤ 4
( u

Āσ̄

)2/k

hold because of the relation R ≥ 1. This means that nσ̄2 has the upper and lower
bound formulated in Proposition 14.1. It remained to show that nσ̄2 ≥ L log n + D if
relation (14.5) holds.

This inequality clearly holds under the conditions of Proposition 14.1 if σ ≤ n−1/3,

since in this case log 2
σ ≥ log n

3 , and nσ̄2 ≥ 1
64

(
u

Āσ

)2/k ≥ 1
64 Ā−2/kM(L3/2 log 2

σ +

(log D)3/2)3/2 ≥ 1
192 Ā−2/kM(L3/2 log n + (log D)3/2) ≥ L log n + log D if M = M(Ā, k)

is sufficiently large.

If σ ≥ n−1/3, then the inequality 2(4+2/k)R
(

u
Āσ

)2/k ≤ 22+6/knσ2 can be applied.

This implies that 2−4R ≥ 2−4(2+6/k))/(4+2/k)

[(
u

Āσ

)2/k

nσ2

]4/(4+2/k)

, and

nσ̄2 = 2−4Rnσ2 ≥ 2−16/3

Ā4/3
(nσ2)1−γ

[(u

σ

)2/k
]γ

with γ =
4

4 + 2
k

≥ 2

3
.
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The inequalities nσ2 ≥ n1/3 and nσ2 ≥ ( u
σ )2/k ≥ M(L3/2 log 2

σ +(log D)3/2) ≥ M
2 (L3/2+

(log D)3/2) hold, (since log 2
σ ≥ 1

2 ). They yield that for sufficiently large M = M(Ā, k)

(nσ2)1−γ
[(

u
σ

)2/k
]γ

≥ (nσ2)1−γ
[(

u
σ

)2/k
]2/3

= (nσ2)1/(2k+1)
[(

u
σ

)2/k
]2/3

, and

nσ̄2 ≥ Ā−4/3

50
(nσ2)1/(2k+1)

[(u

σ

)2/k
]2/3

≥ Ā−4/3

50
n1/3(2k+1)

(
M

2

)2/3

(L3/2 + (log D)3/2)2/3 ≥ L log n + log D.

A multivariate analog of Proposition 6.2 is formulated in Proposition 14.2, and it
will be shown that Propositions 14.1 and 14.2 imply Theorem 8.4.

Proposition 14.2. Let a probability measure µ be given on a measurable space (X,X )
together with a sequence of independent and µ distributed random variables ξ1, . . . , ξn

and a countable L2-dense class F of canonical (with respect to the measure µ) kernel
functions f = f(x1, . . . , xk) with some parameter D ≥ 1 and exponent L ≥ 1 on the
product space (Xk,X k). Let all functions f ∈ F satisfy conditions (8.1) and (8.2)
with some 0 < σ ≤ 1 such that nσ2 > L log n + D. Let us consider the (degenerate)
U -statistics In,k(f) with the random sequence ξ1, . . . , ξn, n ≥ max(2, k), and kernel
functions f ∈ F . There exists a threshold index A0 = A0(k) > 0 and two numbers
C̄ = C̄(k) > 0 and γ = γ(k) > 0 depending only on the order k of the U -statistics such
that the degenerate U -statistics In,k(f), f ∈ F , satisfy the inequality

P

(
sup
f∈F

|n−k/2In,k(f)| ≥ Ank/2σk+1

)
≤ C̄e−γA1/2knσ2

if A ≥ A0. (14.8)

Proposition 14.2 yields an estimate for the tail distribution of the supremum of
degenerate U -statistics at level u ≥ A0n

k/2σk+1, i.e. in the case when Theorem 8.3 does
not give a good estimate on the tail-distribution of the single degenerate U -statistics
taking part in the supremum at the left-hand side of (14.8).

Formula (8.11) will be proved by means of Proposition 14.1 with an appropriate
choice of the parameter Ā in it and Proposition 14.2 with the choice σ = σ̄ = σ̄(u) and

the classes of functions Fj =
{

g−fj

2 : g ∈ Dj

}
with the number σ̄, functions fj and sets

of functions Dj , 1 ≤ j ≤ m, introduced in Proposition 14.1. Clearly,

P

(
sup
f∈F

n−k/2|In,k(f)| ≥ u

)
≤ P

(
sup

f∈Fσ̄

n−k/2|In,k(f)| ≥ u

Ā

)

+
m∑

j=1

P

(
sup
g∈Dj

n−k/2

∣∣∣∣In,k

(
fj − g

2

)∣∣∣∣ ≥
(

1

2
− 1

2Ā

)
u

)
,

(14.9)
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where m is the cardinality of the set of functions Fσ̄ appearing in Proposition 14.1. We
shall estimate the two terms of the sum at the right-hand side of (14.9) by means of
Propositions 14.1 and 14.2 with a good choice of the parameters Ā and the corresponding
M = M(Ā) in Proposition 14.1, and the parameter Ā0 = A ≥ A0 in Proposition 14.2.

We shall choose the parameter Ā0 ≥ A0 so that it satisfies also the relation

γĀ
1/2k
0 ≥ 2 with the number γ appearing in Proposition 14.2, hence we put Ā0 =

max(A0, ( 2
γ )2k). We want to define the parameter Ā in such a way that the num-

bers u satisfying the conditions of Proposition 14.1 also satisfy the relation (1
2 − 1

2Ā
)u ≥

Ā0n
k/2σ̄k+1 with the already fixed number Ā0. This inequality can be rewritten in

the form Ā
−2/k
0 ( 1

2 − 1
2Ā

)2/k( u
σ̄ )2/k ≥ nσ̄2. On the other hand, we have under the

conditions of Proposition 14.1 4( u
Āσ̄

)2/k ≥ nσ̄2. Hence the desired inequality holds if

Ā
−2/k
0 ( 1

2 − 1
2Ā

)2/k ≥ 4Ā−2/k, thus it holds with the choice Ā = 2k+1Ā0 + 1.

With such a choice of Ā (together with the corresponding M = M(Ā, k)) and Ā0

we can write

P

(
sup
g∈Dj

n−k/2

∣∣∣∣In,k

(
fj − g

2

)∣∣∣∣ ≥
(

1

2
− 1

2Ā

)
u

)

≤ P

(
sup
g∈Dj

n−k/2

∣∣∣∣In,k

(
fj − g

2

)∣∣∣∣ ≥ Ā0n
k/2σ̄k+1

)
≤ C̄e−γĀ

1/2k
0 nσ̄2

for all 1 ≤ j ≤ m. (Observe that the set of functions
fj−g

2 , g ∈ Dj , is an L2-dense class
with parameter D and exponent L.) Hence Proposition 14.1 (relation (14.4) together
with the inequality m ≤ Dσ̄−L) and formula (14.8) with A = Ā0 and relation (14.9)
imply that

P

(
sup
f∈F

n−k/2|In,k(f)| ≥ u

)
≤ 2C exp

{
−α

( u

10Āσ

)2/k
}

+ C̄Dσ̄−Le−γĀ
1/2k
0 nσ̄2

.

(14.10)

We show by repeating the corresponding argument in Section 6 that Dσ̄−L ≤ enσ̄2

.
Indeed, we have to show that log D + L log 1

σ̄ ≤ nσ̄2. But, as we have seen, the re-
lation nσ̄2 ≥ L log n + log D with L ≥ 1 and D ≥ 1 implies that nσ̄2 ≥ log n, hence
log 1

σ ≤ log n, and log D + L log 1
σ̄ ≤ log D + L log n ≤ nσ̄2. On the other hand,

γĀ
1/2k
0 ≥ 2 by the definition of the number Ā0, and by the estimates of Proposition 14.1

nσ̄2 ≥ 1
64

(
u

Āσ

)2/k
. The above relations imply that Dσ̄−Le−γĀ

1/2k
0 nσ̄2 ≤ e−γĀ

1/2k
0 nσ̄2/2 ≤

exp
{
− γ

128 Ā
1/2k
0 Ā−2/k

(
u
σ

)2/k
}

. Hence relation (14.10) yields that

P

(
sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ 2C exp

{
− α

(10Ā)2

(u

σ

)2/k
}

+ C̄ exp

{
− γ

128
Ā

1/2k
0 Ā−2/k

(u

σ

)2/k
}

,
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and this estimate implies Theorem 8.4.

To complete the proof of Theorem 8.4 we have to prove Proposition 14.2. It will be
proved, similarly to its one-variate version Proposition 6.2, by means of a symmetriza-
tion argument. We want to find its right formulation. It would be natural to formulate
it as a result about the supremum of degenerate U -statistics. However, we shall choose
a slightly different approach. There is a notion, called decoupled U -statistic. Decoupled
U -statistics behave similarly to U -statistics, but it is simpler to work with them, be-
cause they have more independence properties. It turned out to be useful to introduce
this notion and to apply a result of de la Peña and Montgomery–Smith which enables
us to reduce the estimation of U -statistics to the estimation of decoupled U -statistics,
and to work out the symmetrization argument for decoupled U -statistics.

Next we introduce the notion of decoupled U -statistics together with their ran-
domized version. We also formulate a result of de la Peña and Montgomery–Smith in
Theorem 14.3 which enables us to reduce Proposition 14.2 to a version of it, presented
in Proposition 14.2′. It states a result similar to Proposition 14.2 about decoupled
U -statistics. The proof of Proposition 14.2′ is the hardest part of the problem. In Sec-
tions 15, 16 and 17 we deal essentially with this problem. The result of de la Peña and
Montgomery–Smith will be proved in Appendix D.

Now we introduce the following notions.

The definition of decoupled and randomized decoupled U-statistics. Let us

have k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence ξ1, . . . , ξn of inde-

pendent and identically distributed random variables taking their values in a measurable
space (X,X ) together with a measurable function f(x1, . . . , xk) on the product space
(Xk,X k) with values in a separable Banach space. The decoupled U -statistic Īn,k(f)

determined by the random sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and kernel function f is

defined by the formula

Īn,k(f) =
1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k,

lj 6=lj′ if j 6=j′

f
(
ξ
(1)
l1

, . . . , ξ
(k)
lk

)
. (14.11)

Let us have beside the sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and function f(x1, . . . , xk)

a sequence of independent random variables ε = (ε1, . . . , εn), P (εl = 1) = P (εl =
−1) = 1

2 , 1 ≤ l ≤ n, which is independent also of the sequences of random variables

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. The randomized decoupled U -statistic Īn,k(f, ε) (depending on

the random sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, the kernel function f and the randomiz-

ing sequence ε1, . . . , εn) is defined by the formula

Īε
n,k(f) =

1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k,

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(
ξ
(1)
l1

, . . . , ξ
(k)
lk

)
. (14.12)
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A decoupled or randomized decoupled U -statistics (with real valued kernel function)
will be called degenerate if its kernel function is canonical. This terminology is in full
accordance with the definition of (usual) degenerate U -statistics.

A result of de la Peña and Montgomery–Smith will be formulated below. It gives an
upper bound for the tail distribution of a U -statistic by means of the tail distribution of
an appropriate decoupled U -statistic. It also has a generalization, where the supremum
of U -statistics is bounded by the supremum of decoupled U -statistics. It enables us to
reduce Proposition 14.2 to a version formulated Proposition 14.2′, which gives a bound
on the tail distribution of the supremum of decoupled U -statistics. It is simpler to prove
this result than the original one.

Before the formulation of the theorem of de la Peña and Montgomery–Smith I make
some remark about it. It considers more general U -statistics with kernel functions taking
values in a separable Banach space, and it compares the norm of Banach space valued U -
statistics and decoupled U -statistics. (Decoupled U -statistics were defined with general
Banach space valued kernel functions, and the definition of U -statistics can also be
generalized to separable Banach space valued kernel functions in a natural way.) This
result was formulated in such a general form for a special reason. This helped to derive
formula (14.14) of the subsequent theorem from formula (14.13). It can be exploited in
the proof of formula (14.14) that the constants in the estimate (14.13) do not depend
on the Banach space, where the kernel function f takes its values.

Theorem 14.3. (Theorem of de la Peña and Montgomery–Smith about the
comparison of U-statistics and decoupled U-statistics). Let us consider a se-
quence of independent and identically distributed random variables ξ1, . . . , ξn with values

in a measurable space (X,X ) together with k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k,

of this sequence. Let us also have a function f(x1, . . . , xk) on the k-fold product space
(Xk,X k) which takes its values in a separable Banach space B. Let us take the U -
statistic and decoupled U -statistic In,k(f) and Īn,k(f) with the help of the above random

sequences ξ1, . . . , ξn, ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and kernel function f . There exist some

constants C̄ = C̄(k) > 0 and γ = γ(k) > 0 depending only on the order k of the
U -statistic such that

P (‖In,k(f)‖ > u) ≤ C̄P
(
‖Īn,k(f)‖ > γu

)
(14.13)

for all u > 0. Here ‖ · ‖ denotes the norm in the Banach space B where the function f
takes its values.

More generally, if we have a countable sequence of functions fs, s = 1, 2, . . . , taking
their values in the same separable Banach-space, then

P

(
sup

1≤s<∞
‖In,k(fs)‖ > u

)
≤ C̄P

(
sup

1≤s<∞

∥∥Īn,k(fs)
∥∥ > γu

)
. (14.14)

Now I formulate the following version of Proposition 4.2.
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Proposition 14.2′. Let a probability measure µ be given on a measurable space (X,X )
together with a sequence of independent and µ distributed random variables ξ1, . . . , ξn,
n ≥ max(k, 2), and a countable L2-dense class F of canonical (with respect to the mea-
sure µ) kernel functions f = f(x1, . . . , xk) with some parameter D ≥ 1 and exponent
L ≥ 1 on the product space (Xk,X k). Let all functions f ∈ F satisfy conditions (8.1)
and (8.2) with some 0 < σ ≤ 1 such that nσ2 > L log n + log D. Let us take k indepen-

dent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the random sequence ξ1, . . . , ξn, and consider

the decoupled U -statistics Īn,k(f), f ∈ F , defined with their help in formula (14.11).

There exists a threshold index A0 = A0(k) > 0 depending only on the order k of the
decoupled U -statistics In,k(f), f ∈ F , such that the (degenerate) decoupled U -statistics
Īn,k(f), f ∈ F , satisfy the following version of inequality (14.8):

P

(
sup
f∈F

n−k/2|Īn,k(f)| ≥ Ank/2σk+1

)
≤ e−2−(1/2+1/2k)A1/2knσ2

if A ≥ A0. (14.15)

It is clear that Proposition 14.2′ and Theorem 14.3, more explicitly formula (14.14)
in it, imply Proposition 14.2. Hence the proof of Theorem 8.4 was reduced to Proposi-
tion 14.2′ in this section. The proof of Proposition 14.2′ is based on a symmetrization
argument. Its main ideas will be explained in the next section.

15. The strategy of the proof for the main result of this work.

In the previous section the proof of Theorem 8.4 was reduced to that of Proposition 14.2′.
Proposition 14.2′ is a multivariate version of Proposition 6.2, and its proof is based on
similar ideas. An important step in the proof of Theorem 6.2 was a symmetrization

argument in which we reduced the estimation of the probability P

(
sup
f∈F

n∑
j=1

f(ξj) > u

)

to that of the probability P

(
sup
f∈F

n∑
j=1

εjf(ξj) > u
3

)
, where ξ1, . . . , ξn is a sequence of

independent and identically distributed random variables, and εj , 1 ≤ j ≤ n, is a se-
quence of independent random variables with distribution P (εj = 1) = P (εj = −1) = 1

2 ,
independent of the sequence ξj . Let us understand how to formulate the corresponding
symmetrization argument in the proof of Proposition 14.2′ and how to prove it.

The symmetrization argument applied in the proof of Proposition 6.2 was based on
two observations. We took a copy ξ′1, . . . , ξ

′
n of the sequence ξ1, . . . , ξn, i.e. a sequence

of independent random variables which is independent also of the original sequence
ξ1, . . . , ξn, and has the same distribution. In the first step we compared the tail distri-

bution of the expression sup
f∈F

n∑
j=1

[f(ξj)−f(ξ′j)] with that of sup
f∈F

n∑
j=1

f(ξj). This was done

with the help of Lemma 7.1. In the second step, in Lemma 7.2, we proved a ‘randomiza-

tion argument’ which stated that the distribution of the random fields
n∑

j=1

[f(ξj)−f(ξ′j)]
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and
n∑

j=1

εj [f(ξj)− f(ξ′j)], f ∈ F , agree. The symmetrization argument was proved with

the help of these two observations.

In the proof of Proposition 14.2′ we would like to reduce the estimation of the
tail distribution of the supremum of decoupled U -statistics sup

f∈F
Īn,k(f) defined in for-

mula (14.11) to the estimation of the tail distribution of the supremum of randomized
decoupled U -statistics sup

f∈F
Īε
n,k(f) defined in formula (14.12) by means of a similar ar-

gument. To do this first we have to understand what kind of random fields should be

introduced instead of
n∑

j=1

[f(ξj) − f(ξ′j)], f ∈ F , in the new case. In formula (15.1) we

shall define such a random field. Its definition reminds a bit to the definition of Stieltjes
measures. In Lemma 15.1 we will show that a version of the ‘randomization argument’
of Lemma 7.2 can be applied when we working with this random field.

The adaptation of the first step of the symmetrization argument in the proof of
Proposition 6.2 to the present case is much harder. The proof of Proposition 6.2 was
based on the symmetrization lemma, Lemma 7.1, which does not work in the present
case. Hence we shall prove a generalization of this result in Lemma 15.2. The proof is
difficult even with the help of this result. The hardest part of the problem appears at
this point. I shall write about it after the formulation of Lemma 15.2.

To formulate Lemma 15.1 needed in our proof we introduce some notations.

Let Vk denote the set of all sequences (v(1), . . . , v(k)) of length k such that v(j) =
+1 or v(j) = −1 for all 1 ≤ j ≤ k. Let m(v), v = (v(1), . . . , v(k)) ∈ Vk, denote the
number of digits −1 in the sequence v. Let a (real valued) function f(x1, . . . , xk) of k
variables be given on a measurable space (X,X ) together with a sequence of independent
and identically distributed random variables ξ1, . . . , ξn with values in the space (X,X )

and 2k independent copies ξ
(j,1)
1 , . . . , ξ

(j,1)
n and ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, of this

sequence. Let us have beside them another sequence ε = (ε1, . . . , εn), P (εj = 1) =
P (εj = −1) = 1

2 , of independent random variables, also independent of all previously
introduced random variables. With the help of the above quantities we introduce the
random variables

Ĩn,k(f) =
1

k!

∑

v∈Vk

(−1)m(v)
∑

(l1,...,lk): 1≤lr≤n, r=1,...,k,
lr 6=lr′ if r 6=r′

f
(
ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)
(15.1)

and

Ĩε
n,k(f) =

1

k!

∑

v∈Vk

(−1)m(v)
∑

(l1,...,lk): 1≤lr≤n, r=1,...,k,
lr 6=lr′ if r 6=r′

εl1 · · · εlkf
(
ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

(15.2)
The number m(v) in the above formulas denotes the number of the digits −1 in the ±1

sequence v of length k, hence it counts how many random variables ξ
(j,1)
lj

, 1 ≤ j ≤ k, were
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replaced by the ‘secondary copy’ ξ
(j,−1)
lj

for a v ∈ Vk in the inner sum in formulas (15.1)

or (15.2).

The following result holds.

Lemma 15.1. Let us consider a (non-empty) class of functions F of k variables
f(x1, . . . , xk) on the space (Xk,X k) together with the random variables Ĩn,k(f) and

Ĩε
n,k(f) defined in formulas (15.1) and (15.2) for all f ∈ F . The distributions of the

random fields Ĩn,k(f), f ∈ F , and Ĩε
n,k(f), f ∈ F , agree.

Let me recall that we say that the distribution of two random fields X(f), f ∈ F ,
and Y (f), f ∈ F , agree if for any finite sets {f1, . . . , fp} ∈ F the distribution of the
random vectors (X(f1), . . . , X(fp)) and (Y (f1), . . . , Y (fp)) agree.

Proof of Lemma 15.1. I even claim that for any fixed sequence u = (u(1), . . . , u(n)),
u(l) = ±1, 1 ≤ l ≤ n, of length n, the conditional distribution of the field Ĩε

n,k(f), f ∈ F ,
under the condition (ε1, . . . , εn) = u = (u(1), . . . , u(n)) agrees with the distribution of
the field of Ĩn,k(f), f ∈ F .

Indeed, the random variables Ĩn,k(f), f ∈ F , defined in (15.1) are functions of a

random vector with coordinates (ξ
(j)
l , ξ̄

(j)
l ) = (ξ

(j,1)
l , ξ

(j,−1)
l ), 1 ≤ l ≤ n, 1 ≤ j ≤ k, and

the distribution of this random vector does not change if the coordinates (ξ
(j)
l , ξ̄

(j)
l ) =

(ξ
(j,1)
l , ξ

(j,−1)
l ) with such indices (l, j) for which u(l) = −1 (and the index j is arbitrary)

are replaced by (ξ̄
(j)
l , ξ

(j)
l ) = (ξ

(j,−1)
l , ξ

(j,1)
l ), and the coordinates (ξ

(j)
l , ξ̄

(j)
l ) with such

indices (l, j) for which u(l) = 1 are not changed. As a consequence, the distribution of

the random field Ĩn,k(f |u), f ∈ F , we get by replacing the original vector (ξ
(j)
l , ξ̄

(j)
l ), 1 ≤

l ≤ n, 1 ≤ j ≤ k, in the definition of the expression Ĩn,k(f) in (15.1) for all f ∈ F by this

modified vector depending on u has the same distribution as the random field Ĩn,k(f),

f ∈ F . On the other hand, I claim that the distribution of the random field Ĩn,k(f |u),

f ∈ F , agrees with the conditional distribution of the random field Ĩε
n,k(f), f ∈ F ,

defined in (15.2) under the condition that (ε1, . . . , εn) = u with u = (u(1), . . . , u(n)).

To prove the last statement let us observe that the conditional distribution of
the random field Ĩε

n,k(f), f ∈ F , under the condition (ε1, . . . , εn) = u is the same
as the distribution of the random field we obtain by putting ul = εl, 1 ≤ l ≤ n, in all
coordinates εl of the random variables Ĩε

n,k(f). On the other hand, the random variables
we get in such a way agree with the random variables appearing in the sum defining
Ĩn,k(f |u), only the terms in this sum are listed in a different order. Lemma 15.1 is
proved.

Next we prove the following generalization of Lemma 7.1.

Lemma 15.2. (Generalized version of the Symmetrization Lemma). Let Zp

and Z̄p, p = 1, 2, . . . , be two sequences of random variables on a probability space
(Ω,A, P ). Let a σ-algebra B ⊂ A be given on the probability space (Ω,A, P ) together
with a B-measurable set B and two numbers α > 0 and β > 0 such that the random
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variables Zp, p = 1, 2, . . . , are B measurable, and the inequality

P (|Z̄p| ≤ α|B)(ω) ≥ β for all p = 1, 2, . . . if ω ∈ B (15.3)

holds. Then

P

(
sup

1≤p<∞
|Zp| > α + u

)
≤ 1

β
P

(
sup

1≤p<∞
|Zp − Z̄p| > u

)
+ (1 − P (B)) for all u > 0.

(15.4)

Proof of Lemma 15.2. Put τ = min{p: |Zp| > α+u) if there exists such an index p ≥ 1,
and put τ = 0 otherwise. Then

P ({τ = p} ∩ B) ≤
∫

{τ=p}∩B

1

β
P (|Z̄p| ≤ α|B) dP =

1

β
P ({τ = p} ∩ {|Z̄p| ≤ α} ∩ B)

≤ 1

β
P ({τ = p} ∩ {|Zp − Z̄p| > u}) for all p = 1, 2, . . . .

Hence

P

(
sup

1≤p<∞
|Zp| > α + u

)
− (1 − P (B)) ≤ P

({
sup

1≤p<∞
|Zp| > α + u

}
∩ B

)

=

∞∑

p=1

P ({τ = p} ∩ B) ≤ 1

β

∞∑

p=1

P ({τ = p} ∩ {|Zp − Z̄p| > u})

≤ 1

β
P

(
sup

1≤p<∞
|Zp − Z̄p| > u

)
.

Lemma 15.2 is proved.

To find a symmetrization argument useful in the proof of Proposition 14.2′ we

want to bound the probability P

(
sup
f∈F

|Īn,k(f)| > u

)
by C · P

(
sup
f∈F

|Ĩn,k(f)| > cu

)

plus a negligible error term with some appropriate numbers C < ∞ and 0 < c < 1. The
random variables Īn,k(f) and Ĩn,k(f) appearing in these formulas were defined in (14.11)
and (15.1). (Actually we work with a slightly modified version of formula (14.11) where

the random variables ξ
(j)
l are replaced by the random variables ξ

(j,1)
l .) We shall prove the

above mentioned estimate with the help of Lemma 15.2. To find the random variables Zp

and Z̄p we want to work with in Lemma 15.2 let us list the elements of the class of
functions F as F = {f1, f2, . . . }. We shall apply Lemma 15.2 with the choice Zp =

Īn,k(fp) and Z̄p = Īn,k(fp) − Ĩn,k(fp), p = 1, 2, . . . , together with the σ-algebra B =

B(ξ
(j,1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k}.

Let us observe that Zp is a decoupled U -statistic depending on the random variables

ξ
(j,1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n, while Z̄p is a linear combination of decoupled U -statistics,
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whose arguments contain not only the random variables of the form ξ
(j,−1)
l , but also the

random variables of the form ξ
(j,1)
l . As a consequence, the random variables Zp and Z̄p

are not independent. This is the reason why we cannot apply Lemma 7.2 in the proof
of Proposition 14.2′.

We shall show that Lemma 15.2 with the choice of the above defined random
variables Zp and Z̄p and the σ-algebra B may help us to prove the estimates we need in
our considerations. To apply this lemma we have to show that condition (15.3) holds
with an appropriate pair of numbers (α, β) and a B measurable set B of probability
almost 1. To check this condition is a hard but solvable problem.

In Lemma 7.2 condition (7.1) played a role similar to the condition (15.3) in
Lemma 15.2. In that case we could check this condition by estimating the second
moment EZ̄2

n. In the present case we shall estimate the supremum sup
fp∈F

E(Z̄2
p |B) of

conditional second moments. In this formula Z̄p is a (complicated) random variable
depending on the function fp ∈ F . The estimation of the supremum of the conditional
second moments we want to work with is a hard problem, and the main difficulties of
our proof appear at this point.

The conditional second moments whose supremum we want to estimate can be
expressed as the integral of a random function that can be written down explicitly.
In such a way we get a problem similar to our original one about the estimation of
sup
f∈F

Īn,k(f). It turned out that these two problems can be handled similarly. We can

work out a symmetrization argument with the help of Lemma 15.2 in both cases, and
an inductive argument similar to Proposition 7.3 can be formulated and proved which
supplies the results we want to prove.

We shall prove Proposition 14.2′ as a consequence of two inductive propositions
formulated in Propositions 15.3 and 15.4. Here we apply an approach similar to the
proof of Proposition 6.2 with the help of Proposition 7.3. The main difference is that
now we have to prove two inductive propositions simultaneously, because we have to
bound the supremum of some conditional variances, which demands special attention.
To formulate these propositions first we introduce the notions of good tail behaviour
for a class of decoupled U -statistics and good tail behaviour for a class of integrals of
decoupled U -statistics.

Definition of good tail behaviour for a class of decoupled U-statistics. Let
some measurable space (X,X ) be given together with a probability measure µ on it. Let
us consider some countable class F of functions f(x1, . . . , xk) on the k-fold product
(Xk,X k) of the space (X,X ). Fix some positive integer n ≥ k and a positive number

0 < σ ≤ 1, and take k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence of inde-

pendent µ-distributed random variables ξ1, . . . , ξn. Let us introduce with the help of these
random variables the decoupled U -statistics Īn,k(f), f ∈ F , defined in formula (14.11).
Given some real number T > 0 we say that the set of decoupled U -statistics determined
by the class of functions F has a good tail behaviour at level T (with parameters n and
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σ2 which are fixed in the sequel) if

P

(
sup
f∈F

|n−k/2Īn,k(f)| ≥ Ank/2σk+1

)
≤ exp

{
−A1/2knσ2

}
for all A > T. (15.5)

Definition of good tail behaviour for a class of integrals of decoupled U-
statistics. Let us have a product space (Xk × Y,X k × Y) with some product measure
µk ×ρ, where (Xk,X k, µk) is the k-fold product of some probability space (X,X , µ), and
(Y,Y, ρ) is some other probability space. Fix some positive integer n ≥ k and a positive
number 0 < σ ≤ 1, and consider some countable class F of functions f(x1, . . . , xk, y) on

the product space (Xk×Y,X k×Y, µk×ρ). Take k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤

j ≤ k, of a sequence of independent, µ-distributed random variables ξ1, . . . , ξn. For all
f ∈ F and y ∈ Y let us define the decoupled U -statistics Īn,k(f, y) = Īn,k(fy) by means

of these random variables ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, the kernel function fy(x1, . . . , xk) =

f(x1, . . . , xk, y) and formula (14.11). Define with the help of these U -statistics Īn,k(f, y)
the random integrals

Hn,k(f) =

∫
Īn,k(f, y)2ρ( dy), f ∈ F . (15.6)

Choose some real number T > 0. We say that the set of random integrals Hn,k(f),
f ∈ F , has a good tail behaviour at level T (with parameters n and σ2 which we fix in
the sequel) if

P

(
sup
f∈F

n−kHn,k(f) ≥ A2nkσ2k+2

)
≤ exp

{
−A1/(2k+1)nσ2

}
for all A > T. (15.7)

Propositions 15.3 and 15.4 will be formulated with the help of the above notions.

Proposition 15.3. Let us fix a positive integer n ≥ max(k, 2), a real number 0 < σ ≤
2−(k+1), a probability measure µ on a measurable space (X,X ) together with two real
numbers L ≥ 1 and D ≥ 1 such that nσ2 ≥ L log n+log D. Let us consider those count-
able L2-dense class F of canonical kernel functions f = f(x1, . . . , xk) (with respect to the
measure µ) on the k-fold product space (Xk,X k) with exponent L and parameter D for
which all functions f ∈ F satisfy the inequalities sup

xj∈X,1≤j≤k
|f(x1, . . . , xk)| ≤ 2−(k+1)

and
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2.

There is some real number A0 = A0(k) > 1 such that if for all classes of functions
F which satisfy the above conditions the sets of decoupled U -statistics Īn,k(f), f ∈ F ,
have a good tail behaviour at level T 4/3 for some T ≥ A0, then they also have a good
tail behaviour at level T .

Proposition 15.4. Fix some positive integer n ≥ max(k, 2), a real number 0 < σ ≤
2−(k+1), a product space (Xk × Y,X k × Y) with some product measure µk × ρ, where
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(Xk,X k, µk) is the k-fold product of some probability space (X,X , µ), and (Y,Y, ρ) is
some other probability space together with two real numbers L ≥ 1 and D ≥ 1 such that
nσ2 > L log n + log D hold.

Let us consider those countable L2-dense classes F consisting of canonical func-
tions f(x1, . . . , xk, y) on the product space (Xk × Y,X k × Y) with exponent L ≥ 1 and
parameter D ≥ 1 whose elements f ∈ F satisfy the inequalities

sup
xj∈X,1≤j≤k,y∈Y

|f(x1, . . . , xk, y)| ≤ 2−(k+1) (15.8)

and ∫
f2(x1, . . . , xk, y)µ( dx1) . . . µ( dxk)ρ( dy) ≤ σ2 for all f ∈ F . (15.9)

There exists some number A0 = A0(k) > 1 such that if for all classes of functions
F which satisfy the above conditions the random integrals Hn,k(f), f ∈ F , defined in
(15.6) have a good tail behaviour at level T (2k+1)/2k with some T ≥ A0, then they also
have a good tail behaviour at level T .

Remark: To complete the formulation of Proposition 15.4 we still have to clarify when
we call a function f(x1, . . . , xk, y) defined on the product space (Xk×Y,X k ×Y, µk ×ρ)
canonical. Here the definition is slightly differs from that given in formula (8.8).

We say that a function f(x1, . . . , xk, y) on the product space (Xk×Y,X k×Y, µk×ρ)
is canonical if

∫
f(x1, . . . , xj−1, u, xj+1, . . . , xk, y)µ( du) = 0

for all 1 ≤ j ≤ k, xs ∈ X, s 6= j and y ∈ Y.

We do not require the analogous identity if we integrate with respect to the variable Y
wit fixed arguments xj ∈ X, 1 ≤ j ≤ k.

Let me also remark that the estimate (15.7) we have formulated in the definition of
the property ‘good tail behaviour for a class of integrals of U -statistics’ is fairly natural.
We have applied the natural normalization, and with such a normalization it is natural
to expect that the tail behaviour of the distribution of sup

f∈F
n−kHn,k(f) is similar to

that of const.
(
σηk

)2
, where η is a standard normal random variable. Formula (15.7)

expresses such a behaviour, only the power of the number A in the exponent at the
right-hand side was chosen in a non-optimal way. Formula (15.5) in the formulation
of the property ‘good tail behaviour for a class of decoupled U -statistics’ has a similar
interpretation. It says that sup

f∈F
|n−k/2In,k(f)| behaves similarly to const. σ|ηk| with a

standard normal random variable η.

We wanted to prove the property of good tail behaviour for a class of integrals of
decoupled U -statistics under appropriate, not too restrictive conditions. Let me remark
that in Proposition 15.4 we have imposed beside formula (15.8) a fairly weak condition
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(15.9) about the L2-norm of the function f . Most difficulties appear in the proof,
because we did not want to impose more restrictive conditions.

It is not difficult to derive Proposition 14.2′ from Proposition 15.3. Indeed, let
us observe that the set of decoupled U -statistics determined by a class of functions F
satisfying the conditions of Proposition 15.3 has a good tail-behaviour at level T0 =
σ−(k+1), since under the conditions of this Proposition the probability at the left-hand
side of (15.5) equals zero for A > σ−(k+1). Then we get from Proposition 15.3 by
induction with respect to the number j, that this set of decoupled U -statistics has a

good tail-behaviour also for all T = Tj =≥ T
(3/4)j

0 = σ−(k+1)(3/4)j

, j = 0, 1, 2, . . . ,

with such indices j for which Tj = σ−(k+1)(3/4)j ≥ A0. This implies that if a class
of functions F satisfies the conditions of Proposition 15.3, then the set of decoupled
U -statistics determined by this class of functions has a good tail-behaviour at level

T = A
4/3
0 , i.e. at a level which depends only on the order k of the decoupled U -

statistics. This result implies Proposition 14.2′, only it has to be applied for the class
of function F ′ = {2−(k+1)f, f ∈ F} instead of the original class of functions F which
appears in Proposition 14.2′ with the same parameters σ, L and D.

Similarly to the above argument an inductive procedure yields a corollary of Propo-
sition 15.4 formulated below. Actually, we shall need this corollary of Proposition 15.4.

Corollary of Proposition 15.4. If the class of functions F satisfies the conditions
of Proposition 15.4, then there exists a constant Ā0 = Ā0(k) > 0 depending only on k
such that the class of integrals Hn,k(f), f ∈ F , defined in formula (15.6) have a good
tail behaviour at level Ā0.

The main difficulty in the proof of Proposition 15.3 arises in the application of the
symmetrization procedure corresponding to Lemma 7.2 in the one-variate case. This
difficulty can be overcome by means of Proposition 15.4, more precisely by means of its
corollary. It helps us to estimate the conditional variances of the decoupled U -statistics
we have to handle in the proof of Proposition 15.3. The proof of Propositions 15.3
and 15.4 apply similar arguments, and they will be proved simultaneously. The fol-
lowing inductive procedure will be applied in their proof. First Proposition 15.3 and
then Proposition 15.4 is proved for k = 1. If Propositions 15.3 and 15.4 are already
proved for all k′ < k for some number k, then first we prove Proposition 15.3 and then
Proposition 15.4 for this number k.

The proof both of Proposition 15.3 and 15.4 applies a symmetrization argument
that will be proved in Section 16. In Section 17 Propositions 15.3 and 15.4 will be
proved with its help. They imply Proposition 14.2′, hence also Theorem 8.4.
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16. A symmetrization argument.

The proof of Propositions 15.3 and 15.4 applies some ideas similar to the argument in the
proof of Proposition 7.3. But here some additional technical difficulties have to be over-
come. As a first step, two results formulated in Lemma 16.1A and 16.1B will be proved.
They can be considered as a randomization argument with the help of Rademacher
functions analogous to the application of Lemma 7.2 in the proof of Propositions 7.3.
Lemma 16.1A will be applied in the proof of Proposition 15.3 and Lemma 16.1B in the
proof of Proposition 15.4. In this section these lemmas will be proved. Their proofs
will be based on some additional lemmas formulated in Lemmas 16.2A, 16.2B, 16.3A
and 16.3B. By exploiting the structure of Propositions 15.3 and 15.4 we may assume
when proving them for parameter k that they hold (together with their consequences)
for all parameters k′ < k.

Lemma 16.1A is a natural multivariate version of Lemma 7.2. Lemma 7.2 enables
us to replace the estimation of the distribution of the supremum of a class of sums of
independent random variables with the estimation of the distribution of the supremum
of the randomized version of these sums. Lemma 16.1A will enable us to reduce the
proof of Proposition 15.3 to the estimation of the tail-distribution of the supremum of
an appropriately defined class of randomized degenerate U -statistics. This supremum
will be estimated by means of the multi-dimensional version of Hoeffding’s inequality
given in Theorem 13.3. Lemma 16.B plays a similar role in the proof of Proposition 15.4.
But its application is more difficult. In this result the probability investigated in Propo-
sition 15.4 is bounded by the distribution of the supremum of some random variables
W̄ (f), f ∈ F , which will be defined in formula (16.7). The expressions W̄ (f), f ∈ F ,
are rather complicated, and they are worth studying more closely. This will be done in
the proof of Corollary of Lemma 16.1B which yields a more appropriate bound for the
expression we want to estimate in Proposition 15.4, than Lemma 16.1B. In the proof of
Proposition 15.4 the Corollary of 16.1B will be applied instead of the original lemma.

The proof of Lemmas 16.1A and 16.1B is similar to that of Lemma 7.2. First

we introduce k additional independent copies ξ̄
(j)
1 , . . . , ξ̄

(j)
n beside the k (independent

and identically distributed) copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the sequence ξ1, . . . , ξn

and construct with their help some appropriate random sums. We shall prove in Lem-
mas 16.2A and 16.2B that these random sums have the same distribution as their ran-
domized versions we shall work with in the proof of Lemmas 16.1A and 16.1B. These
Lemmas formulate a natural multivariate version of an importantant argument in the
proof of Lemma 7.2. In the proof of this lemma we have exploited that the random sums
defined in (7.4) have the same joint distribution as their randomized versions defined
in (7.4′). Lemmas 16.2A and 16.2B formulate a multivariate version of this statement.
They enable us (similarly to the corresponding argument in the proof of Lemma 7.2)
to reduce the proof of Propositions 16.1A and 16.1B to the study of some simpler ques-
tions. This will be done with the help of Lemmas 16.3A and 16.3B. In Lemma 16.3A the
supremum of some conditional variances is estimated under appropriate conditions. This
lemma plays a similar role in the proof of Lemma 16.1A as condition (7.1) plays in the
proof of Lemma 7.1. Its result together with the generalized form of the symmetrization
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Lemma, Lemma 15.2, enable us to prove Lemma 16.1A. Lemma 16.1B can be proved
similarly, but here the conditional distribution of a more complicated expression has to
be estimated. This can be done with the help of Lemma 16.3B. In Lemma 16.3B the
supremum of the conditional expectation of some appropriate expressions is bounded.

The main results of this section are the following two lemmas.

Lemma 16.1A. (Randomization argument in the proof of Proposition 15.3).
Let F be a class of functions on the space (Xk,X k) which satisfies the conditions of
Proposition 15.3 with some probability measure µ. Let us have k independent copies

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence of independent µ distributed random variables

ξ1, . . . , ξn, and a sequence of independent random variables ε = (ε1, . . . , εn), P (εl =
1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is independent also of the random sequences

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. Consider the decoupled U -statistics Īn,k(f), f ∈ F , defined

with the help of these random variables by formula (14.11) together with their randomized
version Īε

n,k(f) defined in formula (14.12).

There exists some constants A0 = A0(k) > 0 and γ = γk > 0 such that the
inequality

P

(
sup
f∈F

n−k/2
∣∣Īn,k(f)

∣∣ > Ank/2σk+1

)
< 2k+1P

(
sup
f∈F

∣∣Īε
n,k(f)

∣∣ > 2−(k+1)Ankσk+1

)

+ 2knk−1e−γkA1/(2k−1)nσ2/k

(16.1)
holds for all A ≥ A0.

It may be worth remarking that the second term at the right-hand side of for-
mula (16.1) yields a small contribution to the upper bound in this relation because of
the condition nσ2 ≥ L log n + log D.

To formulate Lemma 16.1B first some new quantities have to be introduced. Some
of them will be used somewhat later. The quantities ĪV

n,k(f, y) introduced in the sub-
sequent formula (16.2) depend on the sets V ⊂ {1, . . . , k}, and they are the natural
modifications of the inner sum terms in formula (15.1). Such expressions are needed in
the formulation of the symmetrization result applied in the proof of Proposition 15.4.

Their randomized versions Ī
(V,ε)
n,k (f, y), introduced in formula (16.5), correspond to the

inner sum terms in formula (15.2). The integrals of these expressions will be also intro-
duced in formulas (16.3) and (16.6).

Let us consider a class F of functions f(x1, . . . , xk, y) ∈ F on a space (Xk×Y,X k×
Y, µk×ρ) which satisfies the conditions of Proposition 15.4. Let us take 2k independent

copies ξ
(j)
1 , . . . , ξ

(j)
n , ξ̄

(j)
1 , . . . , ξ̄

(j)
n , 1 ≤ j ≤ k, of a sequence of independent µ distributed

random variables ξ1, . . . , ξk together with a sequence of independent random variables
(ε1, . . . , εn), P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is also independent

of the previous random sequences. Let us introduce the notation ξ
(j,1)
l = ξ

(j)
l and

ξ
(j,−1)
l = ξ̄

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k. For all subsets V ⊂ {1, . . . , k} of the set {1, . . . , k}

142



let |V | denote the cardinality of this set, and define for all functions f(x1, . . . , xk, y) ∈ F
and V ⊂ {1, . . . , k} the decoupled U -statistics

ĪV
n,k(f, y) =

1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

f
(
ξ
(1,δ1(V ))
l1

, . . . , ξ
(k,δk(V ))
lk

, y
)

, (16.2)

where δj(V ) = ±1, 1 ≤ j ≤ k, δj(V ) = 1 if j ∈ V , and δj(V ) = −1 if j /∈ V , together
with the random variables

HV
n,k(f) =

∫
ĪV
n,k(f, y)2ρ( dy), f ∈ F . (16.3)

We shall consider ĪV
n,k(f, y) defined in (16.2) as a random variable with values in the

space L2(Y,Y, ρ).

Put
Īn,k(f, y) = Ī

{1,...,k}
n,k (f, y), Hn,k(f) = H

{1,...,k}
n,k (f), (16.4)

i.e. Īn,k(f, y) and Hn,k(f) are the random variables ĪV
n,k(f, y) and HV

n,k(f) with V =
{1, . . . , k} which means that these expressions are defined with the help of the random

variables ξ
(j)
l = ξ

(j,1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n.

Let us also define the ‘randomized version’ of the random variables ĪV
n,k(f, y) and

HV
n,k(f) as

Ī
(V,ε)
n,k (f, y) =

1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(
ξ
(1,δ1(V ))
l1

, . . . , ξ
(k,δk(V ))
lk

, y
)

, f ∈ F ,

(16.5)
and

H
(V,ε)
n,k (f) =

∫
Ī
(V,ε)
n,k (f, y)2ρ( dy), f ∈ F , (16.6)

where δj(V ) = 1 if j ∈ V , and δj(V ) = −1 if j ∈ {1, . . . , k} \ V . Similarly to for-

mula (16.2), we shall consider ĪV,ε
n,k(f, y) defined in (16.5) as a random variable with

values in the space L2(Y,Y, ρ).

Let us also introduce the random variables

W̄ (f) =

∫ 
 ∑

V ⊂{1,...,k}
(−1)(k−|V |)Ī(V,ε)

n,k (f, y)




2

ρ( dy), f ∈ F . (16.7)

With the help of the above notations Lemma 16.1B can be formulated in the following
way.

Lemma 16.1B. (Randomization argument in the proof of Proposition 15.4).
Let F be a set of functions on (Xk × Y,X k × Y) which satisfies the conditions of
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Proposition 15.4 with some probability measure µk × ρ. Let us have 2k independent

copies ξ
(j,±1)
1 , . . . , ξ

(j,±1)
n , 1 ≤ j ≤ k, of a sequence of independent µ distributed random

variables ξ1, . . . , ξn together with a sequence of independent random variables ε1, . . . , εn,
P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, which is independent also of the previously
considered sequences.

Then there exists some constants A0 = A0(k) > 0 and γ = γk such that if the
integrals Hn,k(f), f ∈ F , determined by this class of functions F have a good tail
behaviour at level T (2k+1)/2k for some T ≥ A0, (this property was defined in Section 15
in the definition of good tail behaviour for a class of integrals of decoupled U -statistics
before the formulation of Propositions 15.3 and 15.4), then the inequality

P

(
sup
f∈F

|Hn,k(f)| > A2n2kσ2(k+1)

)
< 2P

(
sup
f∈F

∣∣W̄ (f)
∣∣ > A2

2
n2kσ2(k+1)

)

+ 22k+1nk−1e−γkA1/2knσ2/k

(16.8)

holds with the random variables Hn,k(f) introduced in the second identity of relation
(16.4) and with W̄ (f) defined in formula (16.7) if γk > 0 is a sufficiently small positive
number for all A ≥ T .

A corollary of Lemma 16.1B will be formulated which can be better applied than
the original lemma. Lemma 16.B is a little bit inconvenient, because the expression at
the right-hand side of formula (16.8) contains a probability depending on sup

f∈F
|W̄ (f)|,

and W̄ (f) is a too complicated expression. Some new formulas (16.9) and (16.10) will be
introduced which enable us to rewrite W̄ (f) in a slightly simpler form. These formulas
yield such a corollary of Lemma 16.B which is more appropriate for our purposes. To
work out the details first some diagrams will be introduced.

Let G = G(k) denote the set of all diagrams consisting of two rows, such that both
rows of these diagrams are the set {1, . . . , k}, and these diagrams contain some edges
{(j1, j

′
1) . . . , (js, j

′
s)}, 0 ≤ s ≤ k, connecting a point (vertex) of the first row with a point

(vertex) of the second row. The vertices j1, . . . , js which are end points of some edge in
the first row are all different, and the same relation holds also for the vertices j′1, . . . , j

′
s

in the second row which are endpoints of some edge. Given some diagram G ∈ G let
e(G) = {(j1, j

′
1) . . . , (js, j

′
s)} denote the set of its edges, and let v1(G) = {j1, . . . , js}

be the set of those vertices in the first row and v2(G) = {j′1, . . . , j′s} the set of those
vertices in the second row of the diagram G from which an edge of G starts.

Given some diagram G ∈ G and two sets V1, V2 ⊂ {1, . . . , k}, we define the
following random variables Hn,k(f |G,V1, V2) with the help of the random variables

ξ
(j,1)
1 , . . . , ξ

(j,1)
n , ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, and ε = (ε1, . . . , εn) taking part in the

definition of the random variables W̄ (f):

Hn,k(f |G,V1, V2) =
∑

(l1,...,lk, l′1,...,l′k):

1≤lj≤n, lj 6=lj′ if j 6=j′, 1≤j,j′≤k,

1≤l′j≤n, l′j 6=l′
j′

if j 6=j′, 1≤j,j′≤k,

lj=l′
j′

if (j,j′)∈e(G), lj 6=l′
j′

if (j,j′)/∈e(G)

∏

j∈{1,...,k}\v1(G)

εlj

∏

j∈{1,...,k}\v2(G)

εl′
j
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1

k!2

∫
f(ξ

(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)

f(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′
k

, y)ρ( dy), (16.9)

where δj(V1) = 1 if j ∈ V1, δj(V1) = −1 if j /∈ V1, and δj(V2) = 1 if j ∈ V2, δj(V2) = −1
if j /∈ V2. (Let us observe that if the graph G contains s edges, then the product
of the ε-s in (16.9) contains 2(k − s) terms, and the number of terms in the sum
(16.9) is less than n2k−s.) As the Corollary of Lemma 16.1B will indicate, in the
proof of Proposition 15.4 we shall need a good estimate on the tail distribution of the
random variables Hn,k(f |G,V1, V2) for all f ∈ F and G ∈ G, V1, V2 ⊂ {1, . . . , k}. Such
an estimate can be obtained by means of Theorem 13.3, the multivariate version of
Hoeffding’s inequality. But the estimate we get in such a way will be rewritten in
a form more appropriate for our inductive procedure. This will be done in the next
section.

The identity

W̄ (f) =
∑

G∈G, V1,V2⊂{1,...,k}
(−1)|V1|+|V2|Hn,k(f |G,V1, V2) (16.10)

will be proved.

To prove this identity let us write first

W̄ (f) =
∑

V1,V2⊂{1,...,k}
(−1)|V1|+|V2|

∫
Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y)ρ( dy).

Let us express the products Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y) by means of formula (16.5). Let

us rewrite this product as a sum of products of the form 1
k!2

k∏
j=1

εlj f(· · · )
k∏

j=1

εl′
j
f(· · · )

and let us define the following partition of the terms in this sum. The elements of this
partition are indexed by the diagrams G ∈ G, and if we take a diagram G ∈ G with
the set of edges e(G) = {(j1, j

′
1), . . . , (js, j

′
s)}, then the term of this sum determined by

the indices l1, . . . , lk, l′1, . . . , l
′
k belongs to the element of the partition indexed by this

diagram G if and only if lju = l′j′
u

for all 1 ≤ u ≤ s, and no more numbers between the

indices l1, . . . , lk, l′1 . . . , l′k may agree. Since εlju
εl′

j′u

= 1 for all 1 ≤ u ≤ s and the set of

indices of the remaining random variables εlj is {lj : j ∈ {1, . . . , k} \ v1(G)}, the set of
indices of the remaining random variables εl′

j
is {l′j′ : j ∈ {1, . . . , k} \ v2(G)}, we get by

integrating the product Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y) with respect to the measure ρ that

∫
Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y)ρ( dy) =

∑

G∈G
Hn,k(f |G,V1, V2)

for all V1, V2 ∈ {1, . . . , k}. The last two relations imply formula (16.10).
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Since the number of terms in the sum of formula (16.10) is less than 24kk!, this
relation implies that Lemma 16.1B has the following corollary:

Corollary of Lemma 16.1B. (A simplified version of the randomization ar-
gument of Lemma 16.1B). Let a set of functions F satisfy the conditions of Propo-
sition 15.4. Then there exist some constants A0 = A0(k) > 0 and γ = γk > 0 such that
if the integrals Hn,k(f), f ∈ F , determined by this class of functions F have a good tail
behaviour at level T (2k+1)/2k for some T ≥ A0, then the inequality

P

(
sup
f∈F

|Hn,k(f)| > A2n2kσ2(k+1)

)

≤ 2
∑

G∈G, V1,V2⊂{1,...,k}
P

(
sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

)

+ 22k+1nk−1e−γkA1/2knσ2/k

(16.11)

holds with the random variables Hn,k(f) and Hn,k(f |G,V1, V2) defined in formulas
(16.4) and (16.9) for all A ≥ T .

In the proof of Lemmas 16.1A and 16.1B the result of the following Lemmas 16.2A
and 16.2B will be applied.

Lemma 16.2A. Let us take 2k independent copies

ξ
(j,1)
1 , . . . , ξ(j,1)

n and ξ
(j,−1)
1 , . . . , ξ(j,−1)

n , 1 ≤ j ≤ k,

of a sequence of independent µ distributed random variables ξ1, . . . , ξn together with a
sequence of independent random variables (ε1, . . . , εn), P (εl = 1) = P (εl = −1) = 1

2 ,
1 ≤ l ≤ n, which is also independent of the previous sequences.

Let F be a class of functions which satisfies the conditions of Proposition 15.3.
Introduce with the help of the above random variables for all sets V ⊂ {1, . . . , k} and
functions f ∈ F the decoupled U -statistic

ĪV
n,k(f) =

1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k,

lj 6=lj′ if j 6=j′

f
(
ξ
(1,δ1(V ))
l1

, . . . , ξ
(k,δk(V ))
lk

)
(16.12)

and its ‘randomized version’

Ī
(V,ε)
n,k (f) =

1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k,

lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(
ξ
(1,δ1(V ))
l1

, . . . , ξ
(k,δk(V ))
lk

)
, f ∈ F ,

(16.12′)
where δj(V ) = ±1, and δj(V ) = 1 if j ∈ V , and δj(V ) = −1 if j ∈ {1, . . . , k} \ V .
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Then the sets of random variables

S(f) =
∑

V ⊂{1,...,k}
(−1)(k−|V |)ĪV

n,k(f), f ∈ F , (16.13)

and
S̄(f) =

∑

V ⊂{1,...,k}
(−1)(k−|V |)Ī(V,ε)

n,k (f), f ∈ F , (16.13′)

have the same joint distribution.

Lemma 16.2B. Let us take 2k independent copies

ξ
(j,1)
1 , . . . , ξ(j,1)

n and ξ
(j,−1)
1 , . . . , ξ(j,−1)

n , 1 ≤ j ≤ k,

of a sequence of independent, µ distributed random variables ξ1, . . . , ξn together with a
sequence of independent random variables (ε1, . . . , εn), P (εl = 1) = P (εl = −1) = 1

2 ,
1 ≤ l ≤ n, which is also independent of the previous sequences.

Let us consider a class F of functions f(x1, . . . , xk, y) ∈ F on a space (Xk×Y,X k×
Y, µk×ρ) which satisfies the conditions of Proposition 15.4. For all functions f ∈ F and
V ∈ {1, . . . , k} consider the decoupled U -statistics ĪV

n,k(f, y) defined by formula (16.2)

with the help of the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n and ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , and define

with their help the random variables

W (f) =

∫ 
 ∑

V ⊂{1,...,k}
(−1)(k−|V |)ĪV

n,k(f, y)




2

ρ( dy), f ∈ F . (16.14)

Then the random vectors {W (f): f ∈ F} defined in (16.14) and {W̄ (f): f ∈ F} defined
in (16.7) have the same distribution.

Proof of Lemmas 16.2A and 16.2B. Lemma 16.2A actually agrees with the already
proved Lemma 15.1, only the notation is different. The proof of Lemma 16.2B is very
similar to the proof of Lemma 15.1. It can be shown that even the following stronger
statement holds. For any ±1 sequence u = (u1, . . . , un) of length n the conditional
distribution of the random field W̄ (f), f ∈ F , under the condition (ε1, . . . , εn) = u =
(u1, . . . , un) agrees with the distribution of the random field W (f), f ∈ F .

To see this relation let us first observe that the conditional distribution of the
field W̄ (f) under this condition agrees with the distribution of the random field we
get by replacing the random variables εl by ul for all 1 ≤ l ≤ n in formulas (16.5),

(16.6) and (16.7). Beside this, define the vector (ξ(u)
(j,1)
l , ξ(u)

(j,−1)
l ), 1 ≤ j ≤ k,

1 ≤ l ≤ n, by the formula (ξ(u)
(j,1)
l , ξ(u)

(j,−1)
l ) = (ξ

(j,−1)
l , ξ

(j,1)
l ) for those indices

(j, l) for which ul = −1, and (ξ(u)
(j,1)
l , ξ(u)

(j,−1)
l ) = (ξ

(j,1)
l , ξ

(j,−1)
l ) for which ul = 1

(independently of the value of the parameter j). Then the joint distribution of the

vectors (ξ(u)
(j,1)
l , ξ(u)

(j,−1)
l ), 1 ≤ j ≤ k, 1 ≤ l ≤ n, and (ξ

(j,1)
l , ξ

(j,−1)
l ), 1 ≤ j ≤ k,

147



1 ≤ l ≤ n, agree. Hence the joint distribution of the random vectors ĪV
n,k(f, y), f ∈ F ,

V ⊂ {1, . . . , k} defined in (16.2) and of the random vectors W (f), f ∈ F , defined

in (16.14) do not change if we replace in their definition the random variables ξ
(j,1)
l

and ξ
(j,−1)
l by ξ(u)

(j,1)
l and ξ(u)

(j,−1)
l . But the set of random variables W (f), f ∈ F ,

obtained in this way agrees with the set of random variables we introduced to get a set
of random variables with the same distribution as the conditional distribution of W̄ (f),
f ∈ F under the condition (ε1, . . . , εn) = u. (These random variables are defined as
the square integral of the same sum, only the terms of this sum are listed in a different
order in the two cases.) These facts imply Lemma 16.2B.

In the next step we prove the following Lemma 16.3A.

Lemma 16.3A. Let us consider a class of functions F satisfying the conditions of

Proposition 15.3 with parameter k together with 2k independent copies ξ
(j,1)
1 , . . . , ξ

(j,1)
n

and ξ
(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, of a sequence of independent, µ-distributed random

variables ξ1, . . . , ξn. Take the random variables ĪV
n,k(f), f ∈ F , V ⊂ {1, . . . , k}, defined

with the help of these quantities in formula (16.12). Let B = B(ξ
(j,1)
1 , . . . , ξ

(j,1)
n ; 1 ≤ j ≤

k) denote the σ-algebra generated by the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , 1 ≤ j ≤ k,

i.e. by the random variables with upper indices of the form (j, 1), 1 ≤ j ≤ k. There
exists a number A0 = A0(k) > 0 such that for all V ⊂ {1, . . . , k}, V 6= {1, . . . , k}, the
inequality

P

(
sup
f∈F

E
(
ĪV
n,k(f)2

∣∣B
)

> 2−(3k+3)A2n2kσ2k+2

)
< nk−1e−γkA1/(2k−1)nσ2/k (16.15)

holds with a sufficiently small γk > 0 if A ≥ A0.

Proof of Lemma 16.3A. Let us first consider the case V = ∅. In this case the estimate

E
(
Ī∅n,k(f)2

∣∣∣B
)

= E
(
Ī∅n,k(f)2

)
≤ nk

k! σ
2 ≤ 2kn2kσ2k+2 holds for all f ∈ F . In the

above calculation it was exploited that the functions f ∈ F are canonical, which implies
certain orthogonalities, and beside this the inequality nσ2 ≥ 1

2 holds, because of the
relation nσ2 ≥ L log n+log D. The above relations imply that for V = ∅ the probability
at the left-hand side of (16.15) equals zero if the number A0 is chosen sufficiently large.
Hence inequality (16.15) holds in this case.

To avoid some complications in the notation let us first restrict our attention to
sets of the form V = {1, . . . , u} with some 1 ≤ u < k, and prove relation (16.15) for
such sets. For this goal let us introduce the random variables

ĪV
n,k(f, lu+1, . . . , lk) =

1

k!

∑

(l1,...,lu):
1≤lj≤n, j=1,...,u,

lj 6=lj′ if j 6=j′

f
(
ξ
(1,1)
l1

, . . . , ξ
(u,1)
lu

, ξ
(u+1,−1)
lu+1

, . . . , ξ
(k,−1)
lk

)

for all f ∈ F and sequences l(u) = (lu+1, . . . , lk) with the properties 1 ≤ lj ≤ n for all

u+1 ≤ j ≤ k and lj 6= lj′ if j 6= j′, i.e. let us fix the last k−u coordinates ξ
(u+1,−1)
lu+1

, . . . ,
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ξ
(k,−1)
lk

of the random variable ĪV
n,k(f) and sum up with respect the first u coordinates.

Then we can write

E
(
ĪV
n,k(f)2

∣∣B
)

= E







∑

(lu+1,...,lk): 1≤lj≤n j=u+1,...,k,

lj 6=lj′ if j 6=j′

ĪV
n,k(f, lu+1, . . . , lk)




2∣∣∣∣∣∣∣∣∣
B




=
∑

(lu+1,...,lk): 1≤lj≤n, j=u+1,...,k,

lj 6=lj′ if j 6=j′

E
(
ĪV
n,k(f, lu+1, . . . , lk)2

∣∣B
)
.

(16.16)

The last relation follows from the identity

E
(
ĪV
n,k(f, lu+1, . . . , lk)ĪV

n,k(f, l′u+1, . . . , l
′
k)
∣∣B
)

= 0

if (lu+1, . . . , lk) 6= (l′u+1, . . . , l
′
k), which holds, since f is a canonical function. We still

exploit that the random variables ξ
(j,1)
l , 1 ≤ j ≤ u are B measurable, while the random

variables ξ
(j,−1)
lj

, u + 1 ≤ j ≤ k, are independent of the σ-algebra B. These facts enable
us to calculate the above conditional expectation in a simple way.

It follows from relation (16.16) that

{
ω: sup

f∈F
E
(
ĪV
n,k(f)2

∣∣B
)

(ω) > 2−(3k+3)A2n2kσ2k+2

}

⊂
⋃

(lu+1,...,lk):
1≤lj≤n, j=u+1,...,k.

lj 6=lj′ if j 6=j′

{
ω: sup

f∈F
E
(
ĪV
n,k(f, lu+1, . . . , lk)2

∣∣B
)

(ω) >
A2n2kσ2k+2

2(3k+3)nk−u

}
.

(16.17)
The probability of the events in the union at the right-hand side of (16.17) can be
estimated with the help of the Corollary of Proposition 15.4 with parameter u < k
instead of k. (We may assume that Proposition 15.4 holds for u < k.) We claim that
this corollary yields that

P

(
sup
f∈F

E
(
ĪV
n,k(f, lu+1, . . . , lk)2

∣∣B
)

>
A2nk+uσ2k+2

2(3k+3)

)
≤ e−γkA1/(2u+1)(n+u−k)σ2

(16.18)
with an appropriate γk > 0 for all sequences (lu+1, . . . , lk), 1 ≤ lj ≤ n, u + 1 ≤ j ≤ k,
and such that lj 6= lj′ if j 6= j′.

Let us show that if a class of functions f ∈ F satisfies the conditions of Propo-
sition 15.3 then it also satisfies relation (16.18). For this goal introduce the space
(Y,Y, ρ) = (Xk−u,X k−u, µk−u), the k − u-fold power of the measure space (X,X , µ),
and for the sake of simpler notations write y = (xu+1, . . . , xk) for a point y ∈ Y . Let us
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also introduce the class of those function F̄ in the space (Xu×Y,X u×Y, µu×ρ) consist-
ing of functions f̄ of the form f̄(x1, . . . , xu, y) = f(x1, . . . , xk) with y = (xu+1, . . . , xk)
and some function f(x1, . . . , xk) ∈ F . If the class of function F satisfies the condi-
tions of Proposition 15.3 (with parameter k), then the class of functions F̄ satisfies the
conditions of Proposition 15.4 with parameter u < k. Hence the Corollary of Proposi-
tion 15.4 can be applied for the class of functions F̄ by our inductive hypothesis. We
shall apply it for decoupled U -statistics with the class of kernel functions F̄ and pa-

rameters n + k − u and u (instead of n and k), and with the expressions Ī
l(u)
n+u−k,u(f̄)

and H
l(u)
n+u−k,u(f̄) defined below with the help of the independent random sequences

ξ
(j,1)
l , 1 ≤ j ≤ u, l ∈ {1, . . . , n} \ {lu+1, . . . , lk} of independent, µ-distributed random

variables of length n+u−k, where the set of numbers {lu+1, . . . , lk} is the set of indices
appearing in formula (16.18). It can be seen that with the definition of the random

variables Ī
l(u)
n+u−k,u(f̄ , y) and H

l(u)
n+u−k,u(f̄) we shall give below the identity

E
(
ĪV
n,k(f, lu+1, . . . , lk)2|B

)
=

(
u!

k!

)2 ∫
Ī

l(u)
n+u−k,u(f̄ , y)2ρ( dy) =

(
u!

k!

)2

H
l(u)
n+u−k,u(f̄)

(16.19)
holds. In formula (16.19) the function f̄ ∈ F̄ is defined by the formula f̄(x1, . . . , xu, y) =

f(x1, . . . , xk) with y = (xu+1, . . . , xk), and the random variables Ī
l(u)
n+u−k,u(f̄ , y) and

H
l(u)
n+u−k,u(f̄) are defined, similarly to (16.2)–(16.4), by the formulas

Ī
l(u)
n+u−k,u(f̄ , y) =

1

u!

∑

(l1,...,lu): lj∈{1,...,n}\{lu+1,...,lk}, j=1,...,u

lj 6=lj′ if j 6=j′

f̄
(
ξ
(1,1)
l1

, . . . , ξ
(u,1)
lu

, y
)

and

H
l(u)
n+u−k,u(f̄) =

∫
Ī

l(u)
n+u−k,u(f̄ , y)2ρ( dy), f̄ ∈ F̄ .

The value of H
l(u)
n+u−k,u(f̄) depends on the choice of the sequence l(u), but its distri-

bution does not depend on it. We can give the following estimate by the corollary of
Proposition (15.4) for u < k and relation (16.19). Choose a sufficiently small γ = γk > 0.
We have

P

(
sup
f̄∈F̄

(n + u − k)−uH
l(u)
n+u−k,u(f̄) ≥ γ

2/(2u+1)
k A2(n + u − k)uσ2u+2

)

= P

(
sup
f̄∈F̄

E(ĪV
n,k(f, lu+1, . . . , lk)2|B) ≥

(
k!

u!

)2

γ
2/(2u+1)
k A2(n + u − k)2uσ2u+2

)

≤ e−γkA1/(2u+1)(n+k−u)σ2

for A > A0(u)γ
−2/(2u+1)
k . (16.20)

It is not difficult to derive formula (16.18) from relation (16.20). It is enough to

check that the level A2nk+uσ2k+2

2(3k+3) in the probability at the left-hand side of (16.18)
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can be replaced by γ
2/(2u+1)
k A2

(
k!
u!

)2
(n + u − k)2uσ2u+2 if γk > 0 is chosen suf-

ficiently small. This statement holds, since γ
2/(2u+1)
k A2

(
k!
u!

)2
(n + u − k)2uσ2u+2 <

γ
2/(2k+1)
k A2

(
k!
u!

)2
n2uσ2u+2 ≤ A2nk+uσ2k+2

2(3k+3) if the constant γk > 0 is chosen sufficiently

small, since nσ2 > L log n ≤ 1
2 by the conditions of Proposition 15.3.

Relations (16.17) and (16.18) imply that

P

(
sup
f∈F

E
(
ĪV
n,k(f)2

∣∣B
)

(ω) > 2−(3k+3)A2n2kσ2k+2

)
≤ nk−ue−γkA1/(2u+1)(n+u−k)σ2

.

Since e−γkA1/(2u+1)(n+u−k)σ2 ≤ e−γkA1/(2k−1)nσ2/k if u ≤ k − 1, n ≥ k and A > A0

with a sufficiently large number A0, inequality (16.15) holds for all sets V of the form
V = {1, . . . , u}, 1 ≤ u < k.

The case of a general set V ⊂ {1, . . . , k}, 1 ≤ |V | < k, can be handled similarly,
only the notation becomes more complicated. Moreover, the case of general sets V can
be reduced to the case of sets of form we have already considered. Indeed, given some set
V ⊂ {1, . . . , k}, 1 ≤ |V | < k, let us define a new class of function FV we get by applying
a rearrangement of the indices of the arguments x1, . . . , xk of the functions f ∈ F in
such a way that the arguments indexed by the set V are the first |V | arguments of the
functions fV ∈ FV , and put V̄ = {1, . . . , |V |}. Then the class of functions FV also
satisfies the condition of Proposition 15.3, and we can get relation (16.15) with the set
V by applying it for the set of function FV and set V̄ .

Now we prove Lemma 16.1A. It will be proved with the help of Lemma 16.2A, the
generalized symmetrization lemma 15.2 and Lemma 16.3A.

Proof of Lemma 16.1A. First we show with the help of the generalized symmetrization
lemma, i.e. of Lemma 15.2 and Lemma 16.3A that

P

(
sup
f∈F

n−k/2
∣∣Īn,k(f)

∣∣ > Ank/2σk+1

)
< 2P

(
sup
f∈F

|S(f)| >
A

2
nkσk+1

)

+ 2knk−1e−γkA1/(2k−1)nσ2/k

(16.21)

with the function S(f) defined in (16.13). To prove relation (16.21) introduce the ran-

dom variables Z(f) = Ī
{1,...,k}
n,k (f) and Z̄(f) = − ∑

V ⊂{1,...,k}, V 6={1,...,k}
(−1)k−|V |ĪV

n,k(f)

for all f ∈ F , the σ-algebra B considered in Lemma 16.3A and the set

B =
⋂

V ⊂{1,...,k}
V 6={1,...,k}

{
ω: sup

f∈F
E
(
ĪV
n,k(f)2

∣∣B
)

(ω) ≤ 2−(3k+3)A2n2kσ2k+2

}
.

Observe that S(f) = Z(f) − Z̄(f), f ∈ F , B ∈ B, and by Lemma 16.3A the

inequality 1 − P (B) ≤ 2knk−1e−γkA1/(2k−1)nσ2/k holds. To prove relation (16.21) apply
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Lemma 15.2 with the above introduced random variables Z(f) and Z̄(f), f ∈ F , (both
here and in the subsequent proof of Lemma 16.1B we work with random variables Z(·)
and Z̄(·) indexed by the countable set of functions f ∈ F , hence the functions f ∈ F
play the role of the parameters p when Lemma 15.2 is applied) random set B and
α = A

2 nkσk+1, u = A
2 nkσk+1. It is enough to show that

P

(
|Z̄(f)| >

A

2
nkσk+1|B

)
(ω) ≤ 1

2
for all f ∈ F if ω ∈ B. (16.22)

But P
(
|Ī |V |

n,k(f)| > 2−(k+1)Ankσk+1|B
)

(ω) ≤ 22(k+1)E(Ī
|V |

n,k
(f)2|B)(ω)

A2n2kσ2(k+1) ≤ 2−(k+1) for all

functions f ∈ F and sets V ⊂ {1, . . . , k}, V 6= {1, . . . , k}, if ω ∈ B by the ‘conditional
Chebishev inequality’, hence relations (16.22) and (16.21) hold.

Lemma 16.1A follows from relation (16.21), Lemma 16.2A and the observation that

the random variables Ī
(V,ε)
n,k (f), f ∈ F , defined in (16.12′) have the same distribution for

all V ⊂ {1, . . . , k} as the random variables Īε
n,k(f), defined in formula (14.12). Hence

Lemma 16.2A, the definition (16.13′) of the random variables S̄(f), f ∈ F , implies the
inequality

P

(
sup
f∈F

|S(f)| >
A

2
nkσk+1

)
= P

(
sup
f∈F

|S̄(f)| >
A

2
nkσk+1

)

≤ 2kP

(
sup
f∈F

∣∣Īε
n,k(f)

∣∣ > 2−(k+1)Ankσk+1

)
.

Lemma 16.1A is proved.

Lemma 16.1B will be proved with the help of the following Lemma 16.3B, which is
a version of Lemma 16.3A.

Lemma 16.3B. Let us consider a class of functions F satisfying the conditions of

Proposition 15.4 together with 2k independent copies ξ
(j,1)
1 , . . . , ξ

(j,1)
n and ξ

(j,−1)
1 , . . . ,

ξ
(j,−1)
n , 1 ≤ j ≤ k, of a sequence of independent, µ-distributed random variables

ξ1, . . . , ξn. Take the random variables ĪV
n,k(f, y) and HV

n,k(f), f ∈ F , V ⊂ {1, . . . , k},
defined in formulas (16.2) and (16.3) with the help of these quantities. Let B =

B(ξ
(j,1)
1 , . . . , ξ

(j,1)
n ; 1 ≤ j ≤ k) denote the σ-algebra generated by the random vari-

ables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , 1 ≤ j ≤ k, i.e. by those random variables which appear in the

definition of the random variables ĪV
n,k(f, y) and HV

n,k(f) introduced in formulas (16.2)
and (16.3), and have second argument 1 in their upper index.

a) There exist some numbers A0 = A0(k) > 0 and γ = γk > 0 such that for all
V ⊂ {1, . . . , k}, V 6= {1, . . . , k}, the inequality

P

(
sup
f∈F

E(HV
n,k(f)|B) > 2−(4k+4)A(2k−1)/kn2kσ2k+2

)
< nk−1e−γkA1/2knσ2/k

(16.23)
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holds if A ≥ A0.

b) Given two subsets V1, V2 ⊂ {1, . . . , k} of the set {1, . . . , k} define the integrals (of
random kernel functions)

H
(V1,V2)
n,k (f) =

∫
|ĪV1

n,k(f, y)ĪV2

n,k(f, y)|ρ( dy), f ∈ F , (16.24)

with the help of the functions ĪV
n,k(f, y) defined in (16.2). There exist some number

A0 = A0(k) > 0 and γ = γk such that if the integrals Hn,k(f), f ∈ F , determined
by this class of functions F have a good tail behaviour at level T (2k+1)/2k for some
T ≥ A0, then the inequality

P

(
sup
f∈F

E(H
(V1,V2)
n,k (f)|B) > 2−(2k+2)A2n2kσ2k+2

)
< 2nk−1e−γkA1/2knσ2/k

(16.25)
holds for any pairs of subsets V1, V2 ⊂ {1, . . . , k} with the property that at least one of
them does not equal the set {1, . . . , k} if the number A satisfies the condition A > T .

Proof of Lemma 16.3B. Part a) of Lemma 16.3B can be proved in almost the same way
as Lemma 16.3A. Hence I only briefly explain the main step of the proof. In the case
V = ∅ the identity E(HV

n,k(f)|B) = E(HV
n,k(f)) holds, hence it is enough to show that

E(HV
n,k(f)) ≤ nkσ2

k! ≤ 2k n2kσ2k+2

k! for all f ∈ F under the conditions of Proposition 15.4.
(This relation holds, because the functions of the class F are canonical.) The case of a
general set V , V 6= ∅ and V 6= {1, . . . , k}, can be reduced to the case V = {1, . . . , u}
with some 1 ≤ u < k.

Given a set V = {1, . . . , u}, 1 ≤ u < k, let us define for all f ∈ F and sequences
l(u) = (lu+1, . . . , lk) with the properties 1 ≤ lj ≤ n for all u + 1 ≤ j ≤ k and lj 6= lj′ if
j 6= j′ the random variable

ĪV
n,k(f, lu+1, . . . , lk, y) =

1

k!

∑

(l1,...,lu):
1≤lj≤n, j=1,...,u,

lj 6=lj′ if j 6=j′

f
(
ξ
(1,1)
l1

, . . . , ξ
(u,1)
lu

, ξ
(u+1,−1)
lu+1

, . . . , ξ
(k,−1)
lk

, y
)

.

It can be shown, similarly to the proof of relation (16.16) in the proof of Proposi-
tion 16.3A that because of the canonical property of the functions f ∈ F

E
(
H̄V

n,k(f)
∣∣B
)

=
∑

(lu+1,...,lk):
1≤lj≤n, j=u+1,...,k,

lj 6=lj′ if j 6=j′

∫
E
(
ĪV
n,k(f, lu+1, . . . , lk, y)2

∣∣B
)
ρ( dy),

and the proof of part a) of Lemma 16.3B can be reduced to the inequality

P

(
sup
f∈F

E

(∫
ĪV
n,k(f, lu+1, . . . , lk, y)2ρ( dy)

∣∣∣∣B
)

>
A(2k−1)/knk+uσ2k+2

2(4k+4)

)

≤ e−γkA(2k−1)/2k(2u+1)(n+u−k)σ2
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with a sufficiently small γk > 0. This inequality can be proved, similarly to relation
(16.18) in the proof of Lemma 16.3A with the help of the Corollary of Proposition 15.4.
Only here we have to work in the space (Xu× Ȳ ,X u×Ȳ, µu× ρ̄) where Ȳ = Xk−u×Y ,
Ȳ = X k−u×Y, ρ̄ = µk−u×ρ with the class of function f̄ ∈ F̄ consisting of the functions f̄
defined by the formula f̄(x1, . . . , xu, ȳ) = f(x1, . . . , xk, y) with some f(x1, . . . , xk, y) ∈
F , where ȳ = (xu+1, . . . , xk, y). Here we apply the following version of formula (16.19).

E
(
ĪV
n,k(f, lu+1, . . . , lk, y)2|B

)
=

(
u!

k!

)2 ∫
Ī

l(u)
n+u−k,u(f̄ , ȳ)2ρ̄( dȳ) =

(
u!

k!

)2

Hn+u−k,u(f̄)

with the function f̄ ∈ F̄ for which the identity f̄(x1, . . . , xu, ȳ) = f(x1, . . . , xk, y)

holds with ȳ = (xu+1, . . . , xk, y) and the and the random variables Ī
l(u)
n+u−k,u(f̄ , ȳ) and

Hn+u−k,u(f̄) defined similarly as the corresponding terms after formula (16.19), only y
is replaced by ȳ, the measure ρ by ρ̄, and the presently defined f̄ ∈ F̄ are considered in
the present case. I omit the details.

Part b) of Lemma 16.3B will be proved with the help of Part a) and the inequality

sup
f∈F

E(H
(V1,V2)
n,k (f)|B) ≤

(
sup
f∈F

E(HV1

n,k(f)|B)

)1/2(
sup
f∈F

E(HV2

n,k(f)|B)

)1/2

which follows from the Schwarz inequality applied for integrals with respect to condi-
tional distributions. Let us assume that V1 6= {1, . . . , k}. The last inequality implies
that

P

(
sup
f∈F

E(H
(V1,V2)
n,k (f)|B) > 2−(2k+2)A2n2kσ2k+2

)

≤ P

(
sup
f∈F

E(HV1

n,k(f)|B) > 2−(4k+4)A(2k−1)/kn2kσ2k+2

)

+ P

(
sup
f∈F

E(HV2

n,k(f)|B) > A(2k+1)/kn2kσ2k+2

)

Hence if we know that also the inequality

P

(
sup
f∈F

E(HV2

n,k(f)|B) > A(2k+1)/kn2kσ2k+2

)
≤ nk−1e−γkA1/2knσ2

(16.26)

holds, then we can deduce relation (16.25) from the estimate (16.23) and the last in-
equality. Relation (16.26) follows from Part a) of Lemma 16.3B if V2 6= {1, . . . , k} and
A ≥ 1, since in this case the level A(2k+1)/kn2kσ2k+2 can be replaced by the smaller
number 2−(4k+2)A(2k−1)/kn2kσ2k+2 in the probability of formula (16.26). In the case
V2 = {1, . . . , k} it follows from the conditions of Part b) of Lemma 16.3B if the number
γk is chosen for some γk ≤ 1. Indeed, since A(2k+1)/2k > T (2k+1)/2k, by the condi-
tions of Proposition 15.4 the estimate (15.7) holds if the number A is replaced in it by
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A(2k+1)/2k (at both side of the inequality), and this relation implies inequality (16.26)
in this case.

Now we turn to the proof of Lemma 16.1B.

Proof of Lemma 16.1B. By Lemma 16.2B it is enough to prove that relation (16.8)
holds if the random variables W̄ (f) are replaced in it by the random variables W (f)
defined in formula (16.14). We shall prove this by applying the generalized form of

the symmetrization lemma, Lemma 15.2, with the choice of Z(f) = H
(V̄ ,V̄ )
n,k (f), V̄ =

{1, . . . , k}, Z̄(f) = Z(f) − W (f), f ∈ F , B = B(ξ
(j,1)
1 , . . . , ξ

(j,1)
n ; 1 ≤ j ≤ k), α =

A2

2 n2kσ2k+2, u = A2

2 n2kσ2k+2 and the set

B =
⋂

(V1,V2): Vj∈{1,...,k}, j=1,2,
V1 6={1,...,k} or V2 6={1,...,k}

{
ω: sup

f∈F
E(H

(V1,V2)
n,k (f)|B)(ω) ≤ 2−(2k+2)A2n2kσ2k+2

}
.

By part b) of Lemma 16.3B the inequality 1 − P (B) ≤ 22k+1nk−1e−γkA1/2knσ2/k

holds. Observe that Z(f) = H
(V̄ ,V̄ )
n,k (f) = Hn,k(f) for all f ∈ F . Hence to prove Lemma

16.1B with the help of Lemma 15.2 it is enough to show that

P

(
|Z̄(f)| >

A2

2
n2kσ2k+2

∣∣∣∣B
)

(ω) ≤ 1

2
for all f ∈ F if ω ∈ B. (16.27)

To prove this relation observe that because of the definition of the set B

E(|Z̄(f)||B)(ω) ≤
∑

(V1,V2): Vj∈{1,...,k}, j=1,2,
V1 6={1,...,k} or V2 6={1,...,k}

E(H
(V1,V2)
n,k (f)|B)(ω) ≤ A2

4
n2kσ2k+2

if ω ∈ B for all f ∈ F . Hence the ‘conditional Markov inequality’ implies that

P
(
|Z̄(f)| > A2

2 n2kσ2(k+1)
∣∣∣B
)

(ω) ≤ 2E(|Z̄(f)||B)(ω)
A2n2kσ2k+2 ≤ 1

2 if ω ∈ B, and inequality (16.27)

holds. Lemma 16.1B is proved.
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17. The proof of the main result.

This section contains the proof of Proposition 15.3 together with Proposition 15.4. They
complete the proof of the main result of this work, of Theorem 8.4.

A.) The proof of Proposition 15.3.

The proof of Proposition 15.3 is similar to that of Proposition 7.3. It applies an induc-
tion procedure with respect to the parameter k. In the proof of Proposition 15.3 for
parameter k we may assume that Propositions 15.3 and 15.4 hold for u < k. In the
proof we want to give a good estimate on the expression

P

(
sup
f∈F

∣∣Īε
n,k(f)

∣∣ > 2−(k+1)Ankσk+1

)

appearing in the estimate (16.1) of Lemma 16.1A. To estimate this probability we
introduce (using the notation of Proposition 15.3) the functions

S2
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) =

1

k!

∑

(l1,...,lk):
1≤lj≤n, j=1,...,k,

lj 6=lj′ if j 6=j′

f2
(
x

(1)
l1

, . . . , x
(k)
lk

)
, f ∈ F ,

(17.1)

with x
(j)
l ∈ X, 1 ≤ l ≤ n, 1 ≤ j ≤ k. We define with the help of this function the

following set H = H(A) ⊂ Xkn for all A > T similarly to the set defined in formula (7.7).

H = H(A) =

{
(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k):

sup
f∈F

S2
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) > 2kA4/3nkσ2

}
.

(17.2)

We want to show that

P ({ω: (ξ
(j)
l (ω), 1 ≤ j ≤ n, 1 ≤ j ≤ k) ∈ H}) ≤ 2ke−A2/3knσ2

if A ≥ T. (17.3)

To prove relation (17.3) we take the Hoeffding decomposition of the U -statistics
with kernel functions f2(x1, . . . , xk), f ∈ F , given in Theorem 9.1, i.e. we write

f2(x1, . . . , xk) =
∑

V ⊂{1,...,k}
fV (xj , j ∈ V ), f ∈ F , (17.4)

with fV (xj , j ∈ V ) =
∏

j /∈V

Pj

∏
j∈V

Qjf
2(x1, . . . , xk), where Pj is the projection defined in

formula (9.1) and Qj = I − Pj agrees with the operator Qj defined in formula (9.2).

The functions fV appearing in formula (17.4) are canonical (with respect to the

measure µ), and the identity S2
n,k(f)(ξ

(j)
l 1 ≤ l ≤ n, 1 ≤ j ≤ k) = Īn,k(f2) holds for
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all f ∈ F with the expression Īn,k(·) defined in (14.11). By applying the Hoeffding

decomposition (17.4) for each term f2(ξ
(1)
l1

. . . , ξ
(k)
lk

) in the expression S2
n,k(f) we get

that

P

(
sup
f∈F

S2
n,k(f)(ξ

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) > 2kA4/3nkσ2

)

≤
∑

V ⊂{1,...,k}
P

(
|V |!
k!

sup
f∈F

nk−|V ||Īn,|V |(fV )| > A4/3nkσ2

) (17.5)

with the functions fV appearing in formula (17.4). We want to give a good estimate
for each term in the sum at the right-hand side in (17.5). For this goal first we show
that the classes of functions {fV : f ∈ F} in the expansion (17.4) satisfy the conditions
of Proposition 15.3 for all V ⊂ {1, . . . , k}.

The functions fV are canonical for all V ⊂ {1, . . . , k}. It follows from the conditions
of Proposition 15.3 that |f2(x1, . . . , xk)| ≤ 2−2(k+1) and

∫
f4(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ 2−(k+1)σ2.

Hence relations (9.4) and (9.4′) of Theorem 9.2 imply that

∣∣∣∣∣ sup
xj∈X,j∈V

fV (xj , j ∈ V )

∣∣∣∣∣ ≤

2−(k+2) ≤ 2−(k+1) for all V ⊂ {1, . . . , k} and
∫

f2
V (xj , j ∈ V )

∏
j∈V

µ( dxj) ≤ 2−(k+1)σ2 ≤

σ2 for all V ⊂ {1, . . . , k}. Finally, to check that the class of functions FV = {fV : f ∈ F}
is L2-dense with exponent L and parameter D observe that for all probability measures
ρ on (Xk,X k) and pairs of functions f, g ∈ F

∫
(f2 − g2)2 dρ ≤ 2−2k

∫
(f − g)2 dρ.

This implies that if {f1, . . . , fm}, m ≤ Dε−L, is an ε-dense subset of F in the space
L2(Xk,X k, ρ), then the set of functions {2kf2

1 , . . . , 2kf2
m} is an ε-dense subset of the

class of functions F ′ = {2kf2: f ∈ F}, hence F ′ is also an L2-dense class of functions
with exponent L and parameter D. Then by Theorem 9.2 the class of functions FV is
also L2-dense with exponent L and parameter D for all sets V ⊂ {1, . . . , k}.

For V = ∅, the function fV is constant, fV =
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤
σ2 holds, and Ī|V |(f|V |)| = fV ≤ σ2. Therefore the term corresponding to V = ∅ in the
sum of probabilities at the right-hand side of (17.5) equals zero under the conditions of
Proposition 15.3 with the choice of some A0 ≥ 1. I claim that the remaining terms in
the sum at the right-hand side of (17.5) satisfy the inequality

P

(
|V |!
k!

nk−|V | sup
f∈F

|Īn,|V |(fV )| > A4/3nkσ2

)

≤ P

(
sup
f∈F

|Īn,|V |(fV )| > A4/3 k!

|V |!n
|V |σ|V |+1

)
≤ e−A2/3knσ2

if 1 ≤ |V | ≤ k.
(17.6)

The first inequality in (17.6) holds, since σ|V |+1 ≤ σ2 for |V | ≥ 1, and n ≥ k ≥ |V |.
The second inequality follows from the inductive hypothesis if |V | < k, since in this
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case the middle expression in (17.6) can be bounded with the help of Proposition 15.3

by e−(A4/3k!/|V |!)1/2|V |nσ2 ≤ e−A2/3knσ2

if A0 = A0(k) in Proposition 15.3 is chosen
sufficiently large. In the case V = {1, . . . , k} it follows from the inequality A ≥ T and
the inductive assumption by which the supremum of decoupled U -statistics determined
by such a class of kernel-functions which satisfies the conditions of Proposition 15.3
has a good tail behaviour at level T 4/3. Relations (17.5) and (17.6) together with the
estimate in the case V = ∅ imply formula (17.3).

By conditioning the probability P
(∣∣∣Īε

n,k(f)
∣∣∣ > 2−(k+2)Ank/2σk+1

)
with respect to

the random variables ξ
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k we get with the help of the multivariate

version of Hoeffding’s inequality (Theorem 13.3) that

P
(∣∣Īε

n,k(f)
∣∣ > 2−(k+2)Ankσk+1

∣∣∣ ξ(j)
l (ω) = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

≤ C exp



−1

2

(
A2n2kσ2(k+1)

22k+4S2
n,k(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k)/k!

)1/k


 (17.7)

≤ Ce−2−4−4/kA2/3k(k!)1/knσ2

for all f ∈ F if (x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) /∈ H

with some appropriate constant C = C(k) > 0.

Define for all 1 ≤ j ≤ k and sets of points x
(j)
l ∈ X, 1 ≤ l ≤ n, the probability

measures ρj = ρ
j, (x

(j)

l
, 1≤l≤n)

, 1 ≤ j ≤ k, uniformly distributed on the set of points

{x(j)
l , 1 ≤ l ≤ n}, i.e. let ρj(x

(j)
l ) = 1

n for all 1 ≤ l ≤ n. Let us also define the product

ρ = ρ(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) = ρ1 × · · · × ρk of these measures on the space

(Xk,X k). If f is a function on (Xk,X k) such that
∫

f2 dρ ≤ δ2 with some δ > 0, then

sup
ε1,...,εn

|Īε
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k)| ≤ nk

k!

∫
|f(u1, . . . , uk)|ρ( du1, . . . , duk)

≤ nk

k!

(∫
f2 dρ

)1/2

≤ nk

k!
δ,

uj ∈ Rk, 1 ≤ j ≤ k, and as a consequence

sup
ε1,...,εn

|Īε
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) − Īε

n,k(g)(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k)|

≤ 2−(k+2)Ankσk+1 if

∫
(f − g)2 dρ ≤ (2−(k+2)k!Aσk+1)2, (17.8)

where Īε
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) equals the expression Īε

n,k(f) defined in (14.12)

if we replace ξ
(j)
lj

by x
(j)
lj

for all 1 ≤ j ≤ k, and 1 ≤ lj ≤ n in it, and ρ is the measure

ρ = ρ(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) defined above.
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Let us fix the number δ = 2−(k+2)k!Aσk+1, and let us list the elements of the set
F as F = {f1, f2, . . . }. Put

m = m(δ) = max(1, Dδ−L) = max(1, D(2(k+2)(k!)−1A−(1)σ−(k+1))L),

and choose for all vectors x(n) = (x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) ∈ Xkn, such a sequence of

positive integers p1(x(n)), . . . , pm(x(n))) for which

inf
1≤l≤m

∫
(f(u) − fpl(x(n))(u))2 dρ(x(n)) ≤ δ2 for all f ∈ F .

(Here we apply the notation ρ(x(n)) = ρ(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k).) This is possible,

since F is an L2-dense class with exponent L and parameter D, and we can choose
m = Dδ−l, if δ < 1, Beside this, we can choose m = 1 if δ = 1, since

∫
|f − g|2 dρ ≤

sup |f(x) − g(x)|2 ≤ 2−2k ≤ 1 for all f, g ∈ F . Moreover, it follows from Lemma 7.4
that the functions pl(x

(n)), 1 ≤ l ≤ m, can be chosen as measurable functions of the
argument x(n) ∈ Xkn.

Let us introduce the random vector ξ(n)(ω) = (ξ
(j)
l (ω), 1 ≤ l ≤ n, 1 ≤ j ≤ k).

By arguing similarly as we did in the proof of Proposition 7.3 we get with the help of
relation (17.8) and the property of the functions fpl(x(n))(·) constructed above that

{
ω: sup

f∈F
|Īε

n,k(f)(ω)| ≥ 2−(k+1)Ankσk+1

}

⊂
m⋃

l=1

{
ω: |Īε

n,k(fpl(ξ(n)(ω)))(ω)| ≥ 2−(k+2)Ankσ(k+1)
}

.

The above relation and formula (17.7) imply that

P

(
sup
f∈F

∣∣Īε
n,k(f)(ω)

∣∣ > 2−(k+1)Ankσk+1
∣∣∣ ξ(j)

l (ω) = x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

≤
m∑

l=1

P

(∣∣Īε
n,k(fpl(ξ(n)(ω))(ω)

∣∣ > Ankσk+1

2k+2

∣∣∣∣ ξ
(j)
l (ω) = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

≤ Cm(δ)e−2−4−4/kA2/3k(k!)1/knσ2

≤ C(1 + D(2k+2A−1(k!)−1σ−(k+1))L)e−2−4−4/kA2/3k(k!)1/knσ2

(17.9)

if {x(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k} /∈ H.

Relations (17.3) and (17.9) imply that

P

(
sup
f∈F

∣∣Īε
n,k(f)

∣∣ > 2−(k+1)Ankσk+1

)
≤ C(1 + D(2k+2A−1(k!)−1σ−(k+1))L)

e−2−4−4/kA2/3k(k!)1/knσ2

+ 2ke−A2/3knσ2

if A > T.

(17.10)
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Proposition 15.3 follows from the estimates (16.1), (17.10) and the condition nσ2 ≥
L log n + log D, L,D ≥ 1, if A ≥ A0 with a sufficiently large number A0. Indeed,

in this case nσ2 ≥ 1
2 , (2k+2A−1(k!)−1σ−(k+1))L ≤ ( n(k+1)/2

(2nσ2)(k+1)/2 )L ≤ nL(k+1)/2 =

eL log n·(k+1)/2 ≤ e(k+1)nσ2/2, D = elog D ≤ enσ2

, and

C(1 + D(2k+2A−1(k!)−1σ−(k+1))L)e−2−4−4/kA2/3k(k!)1/knσ2 ≤ 1

3
e−A1/2knσ2

.

The estimation of the remaining terms in the upper bound of the estimates (16.1)
and (17.10) leading to the proof of relation (15.5) is simpler. We can exploit that

e−A2/3knσ2 ≪ e−A1/2knσ2

and as nk−1 ≤ e(k−1)nσ2

2knk−1e−γkA1/(2k−1)nσ2/k ≤ 2ke(k−1)nσ2

e−γkA1/(2k−1)nσ2/k ≪ e−A1/2knσ2

for a large number A.

Now we turn to the proof of Proposition 15.4.

B.) The proof of Proposition 15.4.

Because of formula (16.11) in the Corollary of Lemma 16.1B to prove Proposition 15.4
i.e. inequality (15.7) it is enough to choose a sufficiently large parameter A0 and to
show that with such a choice the random variables Hn,k(f |G,V1, V2) defined in formula
(16.9) satisfy the inequality

P

(
sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

)
≤ 2k+1e−A1/2knσ2

for all G ∈ G and V1, V2 ∈ {1, . . . , k} if A > T ≥ A0

(17.11)

under the conditions of Proposition 15.4.

Let us first prove formula (17.11) in the case when |e(G)| = k, i.e. when all vertices
of the diagram G are end-points of some edge, and the expression Hn,k(f |G,V1, V2)
contains no ‘symmetrizing term’ εj . In this case we apply a special argument to prove
relation (17.11).

It can be seen with the help of the Schwarz inequality that for a diagram G such
that |e(G)| = k

|Hn,k(f |G,V1, V2)| ≤ 1

k!




∑

(l1,...,lk):
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫
f2(ξ

(1),δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)




1/2
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1

k!




∑

(l1,...,lk):
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫
f2(ξ

(1,δ1(V2))
l1

, . . . , ξ
(k,δk(V2))
lk

, y)ρ( dy)




1/2

(17.12)

with δj(V1) = 1 if j ∈ V1, δj(V1) = −1 if j /∈ V1, and δj(V2) = 1 if j ∈ V2, δj(V2) = −1
if j /∈ V2.

Relation (17.12) can be proved for instance by bounding first each integral in for-
mula (16.9) by means of the Schwarz inequality, and then by bounding the sum ap-

pearing in such a way by means of the inequality
∑ |ajbj | ≤

(∑
a2

j

)1/2 (∑
b2
j

)1/2
.

Observe that in the case |(e(G)| = k the summation in (16.9) is taken for such vectors
(l1, . . . , lk, l′1, . . . , l

′
k) for which (l′1, . . . , l

′
k) is a permutation of the sequence (l1, . . . , lk)

determined by the diagram G. Hence the sum we get after applying the Schwarz in-
equality for each integral in (16.9) has the form

∑
ajbj where the set of indices j in this

sum agrees with the set of vectors (l1, . . . , lk) such that 1 ≤ lp ≤ n for all 1 ≤ p ≤ k,
and lp 6= lp′ if p 6= p′.

By formula (17.12)

{
ω: sup

f∈F
|Hn,k(f |G,V1, V2)(ω)| >

A2n2kσ(2(k+1)

24k+1k!

}

⊂
{

ω: sup
f∈F

∑

(l1,...,lk):
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫
f2(ξ

(1,δ1(V1))
l1

(ω), . . . , ξ
(k,δk(V1))
lk

(ω), y)ρ( dy)

>
A2n2kσ2(k+1)k!

24k+1

}

∪
{

ω: sup
f∈F

∑

(l1,...,lk):
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫
f2(ξ

(1,δ1(V2))
l1

(ω), . . . , ξ
(k,δk(V2))
lk

(ω), y)ρ( dy)

>
A2n2kσ2(k+1)k!

24k+1

}
,

hence

P

(
sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

)
(17.13)
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≤ 2P


sup

f∈F

1

k!

∑

(l1,...,lk): 1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

hf (ξ
(1,1)
l1

, . . . , ξ
(k,1)
lk

) >
A2n2kσ2(k+1)

24k+1




with the functions hf (x1, . . . , xk) =
∫

f2(x1, . . . , xk, y)ρ( dy), f ∈ F . (In this upper
bound we could get rid of the terms δj(V1) and δj(V2), i.e. on the dependence of the
expression Hn,k(f |G,V1, V2) on the sets V1 and V2, since the probability of the events
in the previous formula do not depend on them.)

I claim that

P

(
sup
f∈F

|Īn,k(hf )| ≥ 2kAnkσ2

)
≤ 2ke−A1/2knσ2

for A ≥ A0 (17.14)

if the constant A0 = A0(k) is chosen sufficiently large in Proposition 15.4. Relation

(17.14) together with the relation A2 n2kσ2(k+1)

24k+1 ≥ 2kAnkσ2 (if A > A0 with a sufficiently
large A0) imply that the probability at the right-hand side of (17.13) can be bounded

by 2k+1e−A1/2knσ2

, and the estimate (17.11) holds in the case |e(G)| = k.

Relation (17.14) is similar to relation (17.3) (together with the definition of the
random set H in formula (17.2)), and a modification of the proof of the latter estimate
yields the proof also in this case. Indeed, it follows from the conditions of Proposi-
tion 15.4 that 0 ≤

∫
hf (x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 for all f ∈ F , and it is

not difficult to check that sup |hf (x1, . . . , xk)| ≤ 2−2(k+1), and the class of functions
H = {2khf , f ∈ F} is an L2-dense class with exponent L and parameter D. Hence
by applying the Hoeffding decomposition of the functions hf , f ∈ F , similarly to for-
mula (17.4) we get for all V ⊂ {1, . . . , k} such a set of functions {hf )V , f ∈ F}, which
satisfies the conditions of Proposition 15.3. Hence a natural adaptation of the estimate
given for the expression at the right-hand side of (17.5) (with the help of (17.6) and the
investigation of Ī|V |(fV ) for V = ∅) yields the proof of formula (17.14). We only have to

replace Sn,k(f) by Īn,k(hf ), Īn,|V |(fV ) by Īn,|V |((hf )V ) and the levels 2kA4/3nkσ2 and

A4/3nkσ2 by 2kAnkσ2 and Ankσ2. Let us observe that each term of the upper bound
we get in such a way can be directly bounded, since during the proof of Proposition 15.4
for parameter k we may assume that the result of Proposition 15.3 holds also for this
parameter k.

In the case e(G) < k formula (17.11) will be proved with the help of the multivariate
version of Hoeffding’s inequality, Theorem 13.3. In the proof of this case an expression,
analogous to S2

n,k(f) defined in formula (17.1) will be introduced and estimated for all
sets V1, V2 ⊂ {1, . . . , k} and diagrams G ∈ G such that |e(G)| < k. To define it first
some notations will be introduced.

Let us consider the set J0(G) = J0(G, k, n),

J0(G) = {(l1, . . . , lk, l′1, . . . , l
′
k): 1 ≤ lj , l

′
j ≤ n, 1 ≤ j ≤ k, lj 6= lj′ if j 6= j′,

l′j 6= l′j′ if j 6= j′, lj = l′j′ if (j, j′) ∈ e(G), lj 6= l′j′ if (j, j′) /∈ e(G)}.
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The set J0(G) contains those sequences (l1, . . . , lk, l′1, . . . , l
′
k) which appear as indices in

the summation in formula (16.9) for a fixed diagram G. We also introduce an appro-
priate partition of it.

For this aim let us first define the sets M1(G) = {j(1), . . . , j(k − |e(G)|)} =
{1, . . . , k} \ v1(G), j(1) < · · · < j(k − |e(G)|), and M2(G) = {̄(1), . . . , ̄(k − |e(G|)} =
{1, . . . , k} \ v2(G), ̄(1) < · · · < ̄(k − |e(G|), the sets of those vertices of the first and
second row of the diagram G in increasing order from which no edge starts. Let us also
introduce the set V (G) = V (G,n, k),

V (G) = {(lj(1), . . . , lj(k−|e(G)|), l
′
̄(1), . . . , l

′
̄(k−|e(G)|)): 1 ≤ lj(p), l

′
̄(p) ≤ n,

1 ≤ p ≤ k − |e(G)|, lj(p) 6= lj(p′), l′̄(p) 6= l′̄(p′) if p 6= p′, 1 ≤ p, p′ ≤ k − |e(G)|,
lj(p) 6= l′̄(p′), 1 ≤ p, p′ ≤ k − |e(G)|}.

The set V (G) consists of those vectors which can appear as the restriction of some
vector (l1, . . . , lk, l′1, . . . , l

′
k) ∈ J0(G) to the coordinates indexed by the elements of the

set M1(G) ∪ M2(G). The elements of V (G) are such vectors whose coordinates are
indexed by the set M1(G)∪M2(G), and they take different integer values between 1 and
n. Given a vector v ∈ V (G) put v = (v(1), v(2)) with v(1) = {v(r), 1 ≤ r ≤ k − |e(G)|},
and v(2) = {v̄(r), 1 ≤ r ≤ k − |e(G)|}, where v(1) and v(2) denote the set of coordinates
of v indexed by the elements of the set M1(G) and M2(G) respectively. For all vectors
v ∈ V (G) define the set

EG(v) = {(l1, . . . , lk, l′1, . . . , l
′
k): 1 ≤ lj ≤ n, 1 ≤ l′̄ ≤ n, for 1 ≤ j, ̄ ≤ k,

lj 6= lj′ if j 6= j′, l′̄ 6= l′̄′ if ̄ 6= ̄′,

lj = l′̄ if (j, ̄) ∈ e(G) and lj 6= l′̄ if (j, ̄) /∈ e(G),

lj(r) = v(r), l′̄(r) = v̄(r), 1 ≤ r ≤ k − |e(G)|}, v ∈ V (G),

where {j(1), . . . , j(k − |e(G)|)} = M1(G), {̄(1), . . . , ̄(k − |e(G)|)} = M2(G), v =
(v(1), v(2)) with v(1) = (v(1), . . . , v(k − |e(G)|)) and v(2) = (v̄(1), . . . , v̄(k − |e(G)|))
in the last line of this definition. Beside this, let us define

E1
G(v) = {(l1, . . . , lk): (l1, . . . , lk, l′1, . . . , l

′
k) ∈ EG(v)}

and
E2

G(v) = {(l′1, . . . , l
′
k): (l1 . . . , lk, l′1, . . . , l

′
k) ∈ EG(v)}.

Given a vector v ∈ V (G), v = (v(1), v(2)), the set EG(v) consists of those vectors
ℓ = (l1, . . . , lk, l′1, . . . , l

′
k) ∈ J0(G) whose restrictions to M1(G) and M2(G) equal v(1)

and v(2) respectively. More explicitly, ℓ ∈ EG(v), if for j ∈ M1(G) its coordinate lj
agrees with the corresponding element of v(1), for ̄ ∈ M2(G) its coordinate l′̄ agrees

with the corresponding element of v(2), and the remaining coordinates of ℓ satisfy the
following properties. The indices of the remaining coordinates of ℓ can be partitioned
into pairs (js, ̄s′), 1 ≤ s, s′ ≤ |e(G)| in such a way that (js, ̄s′) ∈ e(G). The identity
ljs = l′̄s′

holds for such pairs (js, ̄s′), and if (js, ̄s′) /∈ e(G), then the coordinates ljs and
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l′̄s′
are different. Otherwise, the coordinates ljs and l′̄s′

can be freely chosen from the

set {1, . . . , n} \ {v(1), v(2)}. The sets E1
G(v) and E2

G(v) consist of the vectors containing
the first k and the second k coordinates of the vectors ℓ ∈ EG(v).

The sets EG(v), v ∈ V (G), constitute a partition of the set J0(G), and the random
variables Hn,k(f |G,V1, V2) defined in (16.9) can be rewritten with their help as

Hn,k(f |G,V1, V2)(ω) =
∑

v=(v(1),v(2))∈V (G)

k−|e(G)|∏

s=1

εlj(s)
(ω)

k−|e(G)|∏

s=1

εl′
̄(s)

(ω)

∑

(l1,...,lk,l′1...,l′
k
)∈EG(v)

1

k!2

∫
f(ξ

(1,δ1(V1))
l1

(ω), . . . , ξ
(k,δk(V1))
lk

(ω), y)

f(ξ
(1,δ1(V2))
l′1

(ω), . . . , ξ
(k,δk(V2))
l′
k

(ω), y)ρ( dy),

(17.15)

where δj(V1) = 1 if j ∈ V1, δj(V1) = −1 if j /∈ V1, and δj(V2) = 1 if j ∈ V2, δj(V2) = −1
if j /∈ V2.

Let us fix some G ∈ G and V1, V2 ⊂ {1, . . . , k}. The inequality

P
(
S2(F|G,V1, V2) > 22kA8/3n2kσ4

)
≤ 2k+1e−A2/3knσ2

if A ≥ A0 and e(G) < k

(17.16)
will be proved for the random variable

S2(F|G,V1, V2) = sup
f∈F

1

k!2

∑

v∈V (G)

( ∑

(l1,...,lk,l′1,...,l′
k
)∈EG(v)

∫
f(ξ

(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)

f(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′
k

, y)ρ( dy)

)2

,
(17.17)

where δj(V1) = 1 if j ∈ V1, δj(V1) = −1 if j /∈ V1, and δj(V2) = 1 if j ∈ V2, δj(V2) = −1
if j /∈ V2. The random variable S2(F|G,V1, V2) defined in (17.17) plays a similar role in
the proof of Proposition 15.4 as the random variable sup

f∈F
S2

n,k(f) with S2
n,k(f) defined

in formula (17.1) played in the proof of Proposition 15.3.

To prove formula (17.16) let us first fix some v ∈ V (G), and let us observe that the
following inequality similar to relation (17.12) holds.

( ∑

(l1,...,lk,l′1,...,l′
k
)∈EG(v)

∫
f(ξ

(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)

f(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′
k

, y)ρ( dy)

)2

≤


 ∑

(l1,...,lk)∈E1
G

(v)

∫
f2(ξ

(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)
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 ∑

(l′1,...,l′
k
)∈E2

G
(v)

∫
f2(ξ

(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′
k

, y)ρ( dy)


 (17.18)

for all f ∈ F and v ∈ V (G). Indeed, observe that for a vector v̄ = (v̄1, v̄2) ∈ EG(v) with
v̄1 ∈ E1

G(v) and v̄2 ∈ E2
G(v), the coordinates of the vector v̄1 in the set M1(G) and the

coordinates of the vector v̄2 in the set M2(G) are prescribed, while the coordinates of v̄1

in the set v1(G) are given by a permutation of the coordinates v̄2 in the set v2(G). (The
sets v1(G) and v2(G) were defined before the introduction of formula (16.9) as the sets
of those vertices in the first and second row of the diagram G respectively from which an
edge of G starts.) This permutation is determined by the diagram G. Inequality (17.18)
can be proved on the basis of the above observation similarly to formula (17.12).

We shall prove with the help of formula (17.18) the following inequality.

S2(F|G,V1, V2)

≤ sup
f∈F

∑

v∈V (G)

1

k!


 ∑

(l1,...,lk)∈E1
G

(v)

∫
f2(ξ

(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)




1

k!


 ∑

(l′1,...,l′
k
)∈E2

G
(v)

∫
f2(ξ

(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′
k

, y)ρ( dy)


 (17.19)

≤ sup
f∈F

1

k!




∑

(l1,...,lk): 1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫
f2(ξ

(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)




sup
f∈F

1

k!




∑

(l′1,...,l′k): 1≤l′j≤n, 1≤j≤k,

l′j 6=l′
j′

if j 6=j′

∫
f2(ξ

(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′
k

, y)ρ( dy)




.

The first inequality of (17.19) is a simple consequence of formula (17.18) and the defini-
tion of the random variable S2(F|G,V1, V2). To check its second inequality let us observe
that it can be reduced to the simpler relation, where the expression sup

f∈F
is omitted at

each place. The simplified inequality obtained after the omission of the expressions sup
can be checked by carrying out the term by term multiplication between the products
of sums appearing in (17.19). At both sides of the inequality a sum consisting of terms
of the form

1

k!2

∫
f2(ξ

(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)

∫
f2(ξ

(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′
k

, y)ρ( dy),

(17.20)
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appears. It is enough to check that if a term of this form appears in the middle term of
the simplified version formula of (17.19), then it appears with coefficient 1, and it also
appears at the right-hand side of this formula. To see this, observe that each term of
the form (17.20) which appears in the sum we get by carrying out the multiplications
in middle term of (17.19) determines uniquely the index v = (v(1), v(2)) ∈ V (G) in the
outer sum of the middle term in the inequality (17.19). Indeed, if the random variables
defining this expression of the form (17.20) have indices ℓ = (l1, . . . , lk, l′1, . . . , l

′
k), then

this vector ℓ uniquely determines the vector v = (v(1), v(2)) ∈ V (G), since v(1) must
agree with the restriction of the vector l = (l1, . . . , lk) to the coordinates with indices
in M1(G) and v(2) must agree with the restriction of the vector l′ = (l′1, . . . , l

′
k) to the

coordinates with indices in M2(G). Beside this, by carrying out the multiplication at
the right-hand side of (17.19) we get such a sum which contains all such terms of the
form (17.20) which appeared in the sum expressing the middle term in inequality (17.19).
The above arguments imply inequality (17.19).

Relation (17.19) implies that

P (S2(F|G,V1, V2)) > 22kA8/3n2kσ4) ≤ 2P

(
sup
f∈F

Īn,k(hf ) > 2kA4/3nkσ2

)

with hf (x1, . . . , xk) =
∫

f2(x1, . . . , xk, y)ρ( dy). (Here we exploited that in the last
formula S2(F|G,V1, V2) is bounded by the product of two random variables whose
distributions do not depend on the sets V1 and V2.) Thus to prove inequality (17.16) it
is enough to show that

2P

(
sup
f∈F

Īn,k(hf ) > 2kA4/3nkσ2

)
≤ 2k+1e−A2/3knσ2

if A ≥ A0. (17.21)

Actually formula (17.21) follows from the already proven formula (17.14), only the
parameter A has to be replaced by A4/3 in it.

With the help of relation (17.16) the proof of Proposition 15.4 can be completed
similarly to Proposition 15.3. The following version of inequality (17.7) can be proved
with the help of the multivariate version of Hoeffding’s inequality, Theorem 13.3, and
the representation of the random variable Hn,k(f |G,V1, V2) in the form (17.15).

P

(
|Hn,k(f |G,V1, V2)| >

A2

24k+2k!
n2kσ2(k+1)

∣∣∣∣ ξ
j,±1
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)
(ω)

≤ Ce−2−(6+2/k)A2/3knσ2

if S2(F|G,V1, V2)(ω) ≤ 22kA8/3n2kσ4 and A ≥ A0

(17.22)
with an appropriate constant C = C(k) > 0 for all f ∈ F and G ∈ G such that |e(G)| < k
and V1, V2 ⊂ {1, . . . , k}. (Observe that the conditional probability estimated in (17.22)

can be represented in the following way. In a point ω ∈ Ω fix the values of ξ
(j,±1)
l (ω) for

all indices 1 ≤ l ≤ n and 1 ≤ j ≤ k in the random variable Hn,k(f |G,V1, Vk), and the
conditional probability in this point ω equals the probability that the random variable,
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(depending on the random variables εl, 1 ≤ l ≤ n), obtained in such a way is greater

than A2

24k+2k!
n2kσ2(k+1).)

Indeed, in this case the conditional probability considered in (17.22) can be bounded
because of the multivariate version of the Hoeffding inequality (Theorem 13.3) by

C exp

{
−1

2

(
A4n4kσ4(k+1)

28k+4(k!)2S2(F|G,V1,V2)/(k!)2

)1/2j
}

≤ C exp

{
−1

2

(
A4/3n2kσ4k

210k+4

)1/2j
}

with an

appropriate C = C(k) > 0, where 2j = 2k − 2|e(G)|, and 0 ≤ |e(G)| ≤ k − 1. Since

j ≤ k, nσ2 ≥ 1
2 , and also A4/3

210k+4 ≥ 2 if A0 is chosen sufficiently large we can write in
the above upper bound for the left-hand side of (17.22) j = k, and in such a way we get
inequality (17.22).

The next inequality in which we estimate sup
f∈F

Hn,k(f |G,V1, V2) is a natural version

of formula (17.9) in the proof of Proposition 15.3.

P

(
sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2

24k+1k!
n2kσ2(k+1)

∣∣∣∣∣ ξ
(j,±1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)
(ω)

≤ C

(
1 + D

(
24k+3k!

A2σ2(k+1)

)L
)

e−2−(6+2/k)A2/3knσ2

if S2(F|G,V1, V2))(ω) ≤ 22kA8/3n2kσ4 and A ≥ A0 (17.23)

for all G ∈ G such that |e(G)| < k and V1, V2 ⊂ {1, . . . , k}.

To prove formula (17.23) let us fix two sets V1, V2 ⊂ {1, . . . , k} and a diagram G

such that |e(G)| < k. Let us define for all vectors x(n) = (x
(j,1)
l , x

(j,−1)
l , 1 ≤ l ≤ n, 1 ≤

j ≤ k) ∈ X2kn some probability measure α(x(n)) on the space Xk×Y (with the space Y
which appears in the formulation of Proposition 15.4) with which we can work similarly
as with the probability measures ν(x(n) and ρ(x(n) in the proof of Propositions 7.3
and 15.3.

To do this let us consider some vector x(n) = (x
(j,1)
l , x

(j,−1)
l , 1 ≤ l ≤ n, 1 ≤

j ≤ k) ∈ X2kn, and define first the probability measures ν
(1)
j = ν

(1)
j (x(n), V1) and

ν
(2)
j = ν

(2)
j (x(n), V2) in the space (X,X ) for all 1 ≤ j ≤ k which are uniformly distributed

in the set of points x
(j,δj(V1))
l , 1 ≤ l ≤ n and x

(j,δj(V2))
l , 1 ≤ l ≤ n, respectively. This

means that we define for all 1 ≤ j ≤ k (and sets V1 and V2) the probability measures

ν
(1)
j

(
{x(j,δj(V1))

l }
)

= 1
n and ν

(2)
j

(
{x(j,δj(V2))

l }
)

= 1
n , 1 ≤ l ≤ n, where δj(V1) = 1 if

j ∈ V1, δj(V1) = −1 if j /∈ V1, and similarly δj(V2) = 1 if j ∈ V2 and δj(V2) = −1 if

j /∈ V2. Let us consider the product measures α1 = α1(x(n), V1) = ν
(1)
1 ×· · ·×ν

(1)
k ×ρ and

α2 = α2(x(n), V2) = ν
(2)
1 ×· · ·×ν

(2)
k ×ρ on the product space (Xk×Y,X k×Y), where ρ is

that probability measure on (Y,Y) which appears in Proposition 15.4. With the help of
the measures α1 and α2 define the measure α = α(x(n)) = α(x(n), V1, V2) = α1+α2

2 in the

space (Xk ×Y,X k,×Y). Let us also define the measure α̃ = α̃(x(n)) = α̃(x(n), V1, V2) =

ν
(1)
1 × · · · ν(1)

k × ν
(2)
1 × · · · ν(2)

k × ρ in the space (X2k × Y,X 2k,×Y).
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Let us define Hn,k(f |G,V1, V2) as a function in the product space (X2kn,X 2kn)

(with arguments x
(j,1)
l and x

(j,−1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n) by means of formula (17.15)

by replacing the random variables ξ
(j,δj(V1))
lj

(ω) by x
(j,δj(V1))
lj

and the random variables

ξ
(j,δj(V2))

l′
j

(ω) by x
(j,δj(V2))

l′
j

in it for all 1 ≤ j ≤ k and 1 ≤ lj , l
′
j ≤ n. With such a notation

we can write for any pairs f, g ∈ F and x(n) = (x
j,1)
l , x

(j,−1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n) ∈

X2kn, by exploiting the properties of the above defined measure α̃ the inequality

sup
ε1,...,εn

|Hn,k(f |G,V1, V2)(x(n)) − Hn,k(f |G,V1, V2)(x(n))|

≤
∑

v=(v(1),v(2))∈V (G)

∑

(l1,...,lk,l′1...,l′
k
)∈EG(v)

1

k!2

∫
|f(x

(1,δ1(V1))
l1

, . . . , x
(k,δk(V1))
lk

, y)f(x
(1,δ1(V2))
l′1

, . . . , x
(k,δk(V2))
l′
k

, y)

− g(x
(1,δ1(V1))
l1

, . . . , x
(k,δk(V1))
lk

, y)g(x
(1,δ1(V2))
l′1

, . . . , x
(k,δk(V2))
l′
k

, y)|ρ( dy)

≤ n2k

∫
|f(x1, . . . , xk, y)f(xk+1, . . . , x2k, y) − g(x1, . . . , xk, y)g(xk+1, . . . , x2k, y)|

α̃( dx1, . . . , dx2k, dy).
(17.24)

Beside this, since both sup |f(x1, . . . , xk, y)| ≤ 1 and sup |g(x1, . . . , xk, y)| ≤ 1, we have

|f(x1, . . . , xk, y)f(xk+1, . . . , x2k, y) − g(x1, . . . , xk, y)g(xk+1, . . . , x2k, y)|
≤ |f(x1, . . . , xk, y)||f(xk+1, . . . , x2k, y) − g(xk+1, . . . , x2k, y)|

+ |g(xk+1, . . . , x2k)||f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|
≤ |f(xk+1, . . . , x2k, y) − g(xk+1, . . . , x2k, y)|

+ |f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|.

It follows from this inequality, formula (17.24) and the definition of the measures α̃, α1,
α2 and α that

sup
ε1,...,εn

|Hn,k(f |G,V1, V2)(x(n)) − Hn,k(f |G,V1, V2)(x(n))|

≤ n2k

∫
(|f(xk+1, . . . , x2k, y) − g(xk+1, . . . , x2k, y)|

+ |f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|)α̃( dx1, . . . , dx2k, dy)

= n2k

∫
|f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|

(α1( dx1, . . . , dxk, dy) + α2( dx1, . . . , dxk, dy)) (17.25)

= 2n2k

∫
|f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|α( dx1, . . . , dxk, dy)

≤ 2n2k

(∫
|f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|2α( dx1, . . . , dxk, dy)

)1/2
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with the previously defined probability measure α = α(x(n)). Put δ = A2σ2(k+1)

24k+3k!
, list the

elements of F as F = {f1, f2, . . . }, and choose a set of indices p1(x(n)), . . . , pm(x(n))
taking positive integer values with m = max(1, Dδ−L) elements such that sup

1≤l≤m

∫
f(u)−

fpl(x(n))(u))2α(x(n))( du) ≤ δ2 for all f ∈ F . Such a choice of the indices pl(x
(n)),

1 ≤ l ≤ m, is possible, since F is L2-dense with exponent L and parameter D. Moreover,
by Lemma 7.4 we may chose the functions pl(x

(n)), 1 ≤ l ≤ m, as measurable functions
of their argument x(n) ∈ X2kn.

Put ξ(n)(ω) = (ξ
(j,±1)
l (ω), 1 ≤ l ≤ n, 1 ≤ j ≤ k). By arguing similarly as we did

in the proof of Propositions 7.3 and (15.3) we get with the help of relation (17.25) and
the property of the functions fpl(x(n))(·) constructed above that

{
ω: sup

f∈F
|Hn,k(f |G,V1, V2)(ω)| ≥ A2n2kσ2(k+1)

2(4k+1)k!

}

⊂
m⋃

l=1

{
ω: |Hn,k(fpl(ξ(n)(ω)|G,V1, V2)(ω)(ω)| ≥ A2n2kσ2(k+1)

2(4k+2)k!

}
.

Hence

P

(
sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

∣∣∣∣∣ ξ
(j,±1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)
(ω)

≤
m∑

l=1

P

(
|Hn,k(fpl(ξ(n)(ω))|G,V1, V2)| >

A2n2kσ2(k+1)

24k+1k!

∣∣∣∣

ξ
(j,±1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)
(ω)

for almost all ω. The last inequality together with (17.22) and the inequality m =

max(1, Dδ−L) ≤ 1 + D
(

24k+3k!
A2σ2(k+1)

)L

imply relation (17.23).

It follows from relations (17.16) and (17.23) that

P

(
sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

)
≤ 2k+1e−A2/3knσ2

+ C

(
1 + D

(
24k+3k!

A2σ2(k+1)

)L
)

e−2−(6+2/k)A2/3knσ2

if A ≥ A0

for all V1, V2 ⊂ {1, . . . , k} and diagram G ∈ G such that |e(G)| ≤ k − 1. This inequality
implies that relation (17.11) holds also in the case |e(G)| ≤ k − 1 if the constants
A0 is chosen sufficiently large in Proposition 15.4, and we this completes the proof of
Proposition 15.4. To prove relation (17.11) in the case |e(G)| ≤ k − 1 we still have to

show that D( 24k+3k!
A2σ2(k+1) )L ≤ econst. nσ2

if A > A0 with a sufficiently large A0, since this
implies that the second term at the right-hand of our last estimation is not too large.
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This follows from the inequality nσ2 ≥ L log n + log D which implies that

(
24k+3k!

A2σ2(k+1)

)L

≤
(

n(k+1)

(2nσ2)(k+1)

)L

≤ e(k+1)L log n ≤ e(k+1)nσ2

if A0 is sufficiently large, and D = elog D ≤ enσ2

.

18. An overview of the results in this work.

I discuss briefly the problems investigated in this work, recall some basic results related
to them, and also give some references. I also write about the background of these
problems which may explain the motivation for their study.

I met the main problem considered in this work when I tried to adapt the method
of proof of the central limit theorem for maximum-likelihood estimates to some more
difficult questions about so-called non-parametric maximum likelihood estimate prob-
lems. The Kaplan–Meyer estimate for the empirical distribution function with the
help of censored data investigated in the second section is such a problem. It is not
a maximum-likelihood estimate in the classical sense, but it can be considered as a
non-parametric maximum likelihood estimate. In the estimation of the empirical distri-
bution function with the help of censored data we cannot apply the classical maximum
likelihood method, since in the solution of this problem we have to choose our estimate
from a too large class of distribution functions. The main problem is that there is no
dominating measure with respect to which all candidates which may appear as our es-
timate have a density function. A natural way to overcome this difficulty is to choose
a smaller class of distribution functions, to compare the probability of the appearance
of the sample we observed with respect to all distribution functions of this class and
to choose that distribution function as our estimate for which this probability takes its
maximum.

The Kaplan–Meyer estimate can be found on the basis of the above principle in
the following way: Let us estimate the distribution function F (x) of the censored data
simultaneously together with the distribution function G(x) of the censoring data. (We
have a sample of size n and know which sample elements are censored and which are
censoring data.) Let us consider the class of such pairs of estimates (Fn(x), Gn(x))
of the pair (F (x), G(x)) for which the distribution function Fn(x) is concentrated in
the censored sample points and the distribution function Gn(x) is concentrated in the
censoring sample points; more precisely, let us also assume that if the largest sample
point is a censored point, then the distribution function Gn(x) of the censoring data
takes still another value which is larger than any sample point, and if it is a censoring
point then the distribution function Fn(x) of the censored data takes still another value
larger than any sample point. (This modification at the end of the definition is needed,
since if the largest sample points is from the class of censored data, then the distribution
G(x) of the censoring data in this point must be strictly less than 1, and if it is from
the class of censoring data, then the value of the distribution function F (x) of the
censored data must be strictly less than 1 in this point.) Let us take this class of
pairs of distribution functions (Fn(x), Gn(x)), and let us choose that pair of distribution
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functions of this class as the (non-parametric maximum likelihood) estimate with respect
to which our observation has the greatest probability.

The above extremal problem for the pairs of distribution functions (Fn(x), Gn(x))
can be solved explicitly, (see [25]), and it yields the estimate of Fn(x) written down
in formula (2.3). (The function Gn(x) satisfies a similar relation, only the random
variables Xj and Yj and the events δj = 1 and δj = 0 have to be replaced in it.)
Then, as I have indicated, a natural analog of the linearization procedure in the proof
of the central limit theorem for the classical maximum likelihood estimate works also
in this case, and there is only one really hard part of the proof. We have to show that
the linearization procedure gives a small error. The estimation of this error led to the
problem about a good estimate on the tail distribution of the integral of an appropriate
function of two variables with respect to the product of a normalized empirical measure
with itself. Moreover, as a more detailed investigation showed, we actually need the
solution of a more general problem where we have to bound the tail distribution of the
supremum of a class of such integrals. The main subject of this work is to solve the
above problems in a more general setting, to estimate not only two-fold, but also k-fold
random integrals and the supremum of such integrals for an appropriate class of kernel
functions with respect to a normalized empirical distribution for all k ≥ 1.

The proof of the limit theorem for the Kaplan–Meyer estimate explained in this
work applied the explicit form of this estimate. It would be interesting to find such a
modification of this proof which only exploits that the Kaplan–Meyer estimate is the
solution of an appropriate extremal problem. We may expect that such a proof can
be generalized to a general result about the limit behaviour for a wide class of non-
parametric maximum likelihood estimates. Such a consideration is behind the remark
of Richard Gill I quoted at the end of Section 2.

A detailed proof together with a sharp estimate on the speed of convergence for
the limit behaviour of the Kaplan–Meyer estimate based on the ideas presented in Sec-
tion 2 is given in paper [38]. Paper [39] explains more about its background, and it
also discusses the solution of some other non-parametric maximum likelihood problems.
The results about multiple integrals with respect to a normalized empirical distribution
function needed in these works were proved in [30]. These results were satisfactory for
the study in [38], but they also have some drawbacks. They do not show that if the
random integrals we are considering have small variances, then they satisfy better esti-
mates. Beside this, if we consider the supremum of random integrals of an appropriate
class of functions, then these results can be applied only in very special cases. Moreover,
the method of proof of [30] did not allow a real generalization of these results, hence I
had to find a different approach when tried to generalize them.

I do not know of other works where the distribution of multiple random integrals
with respect to a normalized empirical distribution is studied. On the other hand, there
are some works where the distribution of (degenerate) U -statistics is investigated. The
most important results obtained in this field are contained in the book of de la Peña
and Giné Decoupling, From Dependence to Independence [7]. The problems about the
behaviour of degenerate U -statistics and multiple integrals with respect to a normalized
empirical distribution function are closely related, but the explanation of their relation
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is far from trivial. The main difference between them is that integration with respect to
µn −µ instead of the empirical distribution µn means some sort of normalization, while
this normalization is missing in the definition of U -statistics. I return to this question
later.

The main part of this work starts at Section 3. A general overview of the results
without the hard technical details can be found in [33].

First the estimation of sums of independent random variables or one-fold random
integrals with respect to a normalized empirical distribution and the supremum of such
expressions is investigated in Sections 3 and 4. This question has a fairly big literature.
I would mention first of all the books A course on empirical processes [11], Real Analysis
and Probability [12] and Uniform Central Limit Theorems [13] of R. M. Dudley. These
books contain a much more detailed description of the empirical processes than the
present work together with a lot of interesting results.

Section 3 deals with the tail behaviour of sums of independent and bounded random
variables with expectation zero. The proof of two already classical results, Bernstein’s
and Bennett’s inequalities is given there. (Their proofs can be found e.g. in Theo-
rem 1.3.2 of [13] and [5]). We are also interested in the question when they give such
an estimate which the central limit theorem suggests. Actually, as it is explained in
Section 3, Bennett’s inequality gives a bound suggested by a Poissonian approximation
of partial sums of independent random variables. Bernstein’s inequality provides an
estimate suggested by the central limit theorem if the variance of the sum we consider
is not too small. (The results in Section 3 explain this statement more explicitly.) If the
variance of the sum is too small, then Bennett’s inequality provides a slight improve-
ment of Bernstein’s inequality. Moreover, as Example 3.3 shows, Bennett’s inequality
is essentially sharp in this case.

The estimate on the tail distribution of a sum of independent random variables
is weak if this sum has a small variance. This means that in this case the probability
that the sum is larger than a given value may be much larger than the (rather small)
value suggested by the central limit theorem. Such a behaviour may occur, because the
contribution of some unpleasant irregularities to this probability may be non-negligible
in the case of a small variance.

In the study of the supremum of sums of independent random variables a good
control is needed on the tail distribution of the (supremum of) sums of independent
random variables even if they have small variance. The solution of this problem (and
of its natural multivariate version) turned out to be the hardest part of this work. The
results based on the similar behaviour of partial sums and their Gaussian counterpart
is not sufficient in this case, some new ideas have to be applied. In the proof of sharp
estimates in this case we also use some kind of symmetrization arguments. The last
result of Section 3, Hoeffding’s inequality presented in Theorem 3.4 is an important
ingredient of these symmetrization arguments. It is also a classical result whose proof
can be found for instance in [23].

Section 4 contains the one-variate version of our main result about the supremum
of the integrals of a class F of functions with respect to a normalized empirical measure
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together with an equivalent statement about the tail distribution of the supremum of a
class of random sums defined with the help of a sequence of independent and identically
distributed random variables and a class of functions F with some nice properties. These
results are given in Theorems 4.1 and 4.1′. Also a Gaussian version of them is presented
in Theorem 4.2 about the distribution of the supremum of a Gaussian random field with
some appropriate properties. The content of these results can be so interpreted that
if we take the supremum of random integrals or of random sums determined by a nice
class of functions F in the way described in Section 4, then the tail distribution of this
supremum satisfies an almost as good estimate as the ‘worst element’ of the random
variables taking part in this supremum. I also discussed a result in Example 4.3 which
shows that some rather technical conditions of Theorem 4.1 cannot be omitted.

The most important condition in Theorem 4.1 was that the class of functions F
we considered in it is L2-dense. This property was introduced before the formulation
of this result. One may ask whether we can introduce different classes of functions
in Theorem 4.1 and prove with their help better results. It is worth mentioning that
Talagrand proved results similar to Theorem 4.1 for different classes of functions F in
his book [52]. These classes of functions are very different of ours, and Talagrand’s
results seem to be incomparable with ours. I return to this question later.

In the above mentioned results we have imposed the condition that the class of
functions F or what is equivalent, the set of random variables whose supremum we
estimate is countable. In the proofs this condition is really exploited. On the other
hand, in some important applications we also need results about the supremum of a
possibly non-countable set of random variables. To handle such cases I introduced the
notion of countably approximable classes of random variables and proved that in the
results of this work the condition about countability can be replaced by the weaker
condition that the supremum of countably approximable classes is taken. R. M. Dudley
worked out a different method to handle the supremum of possibly non-countably many
random variables, and generally his method is applied in the literature. The relation
between these two methods deserves some discussion.

Let us first recall that if a class of random variables St, t ∈ T , indexed by some
index set T is given, and a set A is measurable with respect to the σ-algebra generated
by the random variables St, t ∈ T , then there exists a countable subset T ′ = T ′(A) ⊂ T
such that the set A is measurable also with respect to the smaller σ-algebra generated by
the random variable St, t ∈ T ′. Beside this, if the finite dimensional distributions of the
random variables St, t ∈ T , are given, then by the results of classical measure theory the
probability of the events measurable with respect to the σ-algebra generated by these
random variables St, t ∈ T , is also determined. But we cannot get the probability of all
events we are interested in such a way. In particular, if T is a non-countable set, then

the events

{
ω: sup

t∈T
St(ω) > u

}
are non-measurable with respect to the above σ-algebra,

and generally we cannot speak of their probabilities. To overcome this difficulty Dudley
worked out a theory which enabled him to work also with outer measures. His theory
is based on some rather deep results of the analysis. It can be found for instance in his
book [13].

173



I restricted my attention to such cases when after the completion of the prob-
ability measure P we can also speak of the real (and not only outer) probabilities

P

(
sup
t∈T

St > u

)
. I tried to find appropriate conditions under which these probabilities

really exist. More explicitly, we are interested in the case when for all u > 0 there
exists some set A = Au measurable with respect to the σ-algebra generated by the
random variables St, t ∈ T , such that the symmetric difference of the sets Au and{

ω: sup
t∈T

St(ω) > u

}
is contained in a set measurable with respect to the σ-algebra gen-

erated by the random variables St, t ∈ T , which has probability zero. In such a case

the probability P

(
sup
t∈T

St > u

)
can be defined as P (Au). This approach led me to the

definition of countable approximable classes of random variables. If this property holds,
then we can speak about the probability of the event that the supremum of the random
variables we are interested in is larger than some fixed value. I proved a simple but
useful result in Lemma 4.4 which provides a condition for the validity of this property.
In Lemma 4.5 I proved with its help that an important class of functions is countably
approximable. It seems that this property can be proved for many other interesting
classes of functions with the help of Lemma 4.4, but I did not investigate this question
in more detail.

The problem we met here is not an abstract, technical difficulty. Indeed, the dis-
tribution of such a supremum can become different if we modify each random variable
on a set of probability zero, although the finite dimensional distributions of the ran-
dom variables we consider remain the same after such an operation. Hence, if we are
interested in the probability of the supremum of a non-countable set of random vari-
ables with described finite dimensional distributions we have to describe more explicitly
which version of this set of random variables we consider. It is natural to look for such
an appropriate version of the random field St, t ∈ T , whose ‘trajectories’ St(ω), t ∈ T ,
have nice properties for all elementary events ω ∈ Ω. Lemma 4.4 can be interpreted
as a result in this spirit. The condition given for the countable approximability of a
class of random variables at the end of this lemma can be considered as a smoothness
condition about the ‘trajectories’ of the random field we consider. This approach shows
some analogy to some important problems in the theory of stochastic processes when
a regular version of a stochastic process is considered and the smoothness properties of
its trajectories are investigated.

In our problems the version of the set of random variables St, t ∈ T , we shall work
with appears in a simple and natural way. In these problems we have finitely many
random variables ξ1, . . . , ξn at the start, and all random variables St(ω), t ∈ T , we
are considering can be defined individually for each ω as a functional of these random
variables ξ1(ω), . . . , ξn(ω). We take the version of the random field St(ω), t ∈ T , we
get in such a way and want to show that it is countably approximable. In Section 4
this property is proved in an important model, probably in the most important model
in possible applications we are interested in. In more complicated situations when our
random variables are defined not as a functional of finitely many sample points, for
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instance in the case when we define our set of random variables by means of integrals
with respect to a Gaussian random field it is harder to find the right regular version
of our sets of random variables. In this case the integrals we consider are defined only
with probability 1, and it demands some extra work to find their right version. But in
the problems we study in this work our approach is satisfactory for our purposes, and it
is simpler than that of Dudley; we do not have to follow his rather difficult technique.
On the other hand, I must admit that I do not know the precise relation between the
approach of this work and that of Dudley.

In Section 4 the notion of Lp-dense classes, 1 ≤ p < ∞, also has been introduced.
The notion of L2-dense classes appeared in the formulation Theorems 4.1 and 4.1′. It can
be considered as a version of the ε-entropy, discussed at many places in the literature.
On the other hand, there seems to be no standard definition of the ε-entropy. The
term of L2-dense classes seemed to be the appropriate object to work with in this work.
To apply the results related to L2-dense classes we also need some knowledge about
how to check this property in concrete models. For this goal I discussed here Vapnik–
Červonenkis classes, a popular and important notion of modern probability theory.
Several books and papers, (see e.g. the books [13], [44], [53] and the references in them)
deal with this subject. An important result in this field is Sauer’s lemma, (Lemma 5.1)
which together with some other results, like Lemma 5.3 imply that several interesting
classes of sets or functions are Vapnik–Červonenkis classes.

I put the proof of these results to the Appendix, partly because they can be found in
the literature, partly because in this work Vapnik–Červonenkis classes play a different
and less important role than at other places. Here Vapnik–Červonenkis classes are
applied to show that certain classes of functions are L2-dense. A result of Dudley
formulated in Lemma 5.2 implies that a Vapnik–Červonenkis class of functions with
absolute value bounded by a fixed constant is an L1, and as a consequence, also an
L2-dense class of functions. The proof of this important result which seems to be less
known even among experts of this subject than it would deserve is contained in the main
text. Dudley’s original result was formulated in the special case when the functions we
consider are indicator functions of some sets. But its proof contains all important ideas
needed in the proof of Lemma 5.2.

Theorem 4.2, which is the Gaussian counterpart of Theorems 4.1 and 4.1′ is proved
in Section 6 by means of a natural and important technique, called the chaining argu-
ment. This means the application of an inductive procedure, in which an appropriate
sequence of finite subsets of the original set of random variables is introduced, and a
good estimate is given on the supremum of the random variables in these subsets by
means of an inductive procedure. The subsets became denser subsets of the original
set of the random variables at each step of this procedure. This chaining argument is a
popular method in certain investigation. It is hard to say with whom to attach it. Its
introduction may be connected to some works of R. M. Dudley. It is worth mentioning
that Talagrand [52] worked out a sharpened version of it which yields in the study of
certain problems a sharper and more useful estimate. But it seems to me that in the
study of the problems of this work it does not provide a real improvement.

Theorem 4.2 can be proved by means of the chaining argument, but this method is
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not strong enough to supply a proof of Theorem 4.1. The chaining argument provides
only a weak estimate in this case, because there is no good estimate on the probability
that a sum of independent random variables is greater than a prescribed value if these
random variables have too small variances. As a consequence the chaining argument
supplies a much weaker estimate than the result we want to prove under the conditions
of Theorem 4.1. Lemma 6.1 contains the result the chaining argument yields under
these conditions. In Section 6 still another result, Lemma 6.2 is formulated. It can be
considered as a special case of Theorem 4.1 where only the supremum of partial sums
with small variances is estimated. It is also shown that Lemmas 6.1 and 6.2 together
imply Theorem 4.1. The proof is not difficult, despite of some non-attractive details.
It has to be checked that the parameters in Lemmas 6.1 and 6.2 can be fitted to each
other.

Lemma 6.2 is proved in Section 7. It is based on a symmetrization argument.
This proof applies the ideas of a paper of Kenneth Alexander [2], and although its
presentation is different from Alexander’s approach, it can be considered as a version
of his proof.

A similar problem should also be mentioned at this place. M. Talagrand wrote a
series of papers about concentration inequalities, (see e.g. [50] or [51]), and his research
was also continued by some other authors. I would mention the works of M. Ledoux [27]
and P. Massart [41]. Concentration inequalities give a bound about the difference be-
tween the supremum of a set of appropriately defined random variables and the expected
value of this supremum. They express how strongly this supremum is concentrated
around its expected value. Such results are closely related to Theorem 4.1, and the
discussion of their relation deserves some attention. A typical concentration inequality
is the following result of Talagrand [51].

Theorem 18.1. (Theorem of Talagrand). Consider n independent and identically
distributed random variables ξ1, . . . , ξn with values in some measurable space (X,X ).
Let F be some countable family of real-valued measurable functions of (X,X ) such that

‖f‖∞ ≤ b < ∞ for every f ∈ F . Let Z = sup
f∈F

n∑
i=1

f(ξi) and v = E(sup
f∈F

n∑
i=1

f2(ξi)).

Then for every positive number x,

P (Z ≥ EZ + x) ≤ K exp

{
− 1

K ′
x

b
log

(
1 +

xb

v

)}

and

P (Z ≥ EZ + x) ≤ K exp

{
− x2

2(c1v + c2bx)

}
,

where K, K ′, c1 and c2 are universal positive constants. Moreover, the same inequalities
hold when replacing Z by −Z.

Theorem 18.1 yields, similarly to Theorem 4.1, an estimate about the distribution of
the supremum for a class of sums of independent random variables. It can be considered
as a generalization of Bernstein’s and Bennett’s inequalities when the distribution of
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the supremum of partial sums (and not only the distribution of one partial sum) is
estimated. A remarkable feature of this result is that it assumes no condition about
the structure of the class of functions F (like the condition of L2-dense property of the
class F imposed in Theorem 4.1.) On the other hand, the estimates in Theorem 18.1

contain the quantity EZ = E

(
sup
f∈F

n∑
i=1

f(ξi)

)
. Such an expectation of some supremum

appears in all concentration inequalities. As a consequence, they are useful only if we
can bound the expected value of the supremum we want to estimate. This is a hard
question in the general case. There is a paper [16] which provides a useful estimate
about the expected value of the supremum of random sums under the conditions of
Theorem 4.1. But I preferred a direct proof of this result. Let me remark that because
of the above mentioned concentration inequality the condition u ≥ const. σ log1/2 2

σ
with some appropriate constant which cannot be dropped from Theorem 4.1 can be
interpreted so that under the conditions of Theorem 4.1 const. σ log1/2 2

σ is an upper
bound for the expected value of the supremum we are studying.

It is also worth mentioning Talagrand’s work [52] which contains several interesting
results similar to Theorem 4.1. But despite their formal similarity, they are essentially
different from the results of this work. This difference deserves some special discussion.

Talagrand proved in [52] by working out a more refined, better version of the chain-
ing argument a sharp upper bound for the expected value E sup

t∈T
ξt of the supremum of

countably many (jointly) Gaussian random variable with zero expectation. This result is
sharp. Indeed, Talagrand proved also a lower bound for this expected value, and the pro-
portion of his upper and lower bound is bounded by a universal constant. He also gave

by applying similar arguments an upper bound for E sup
f∈F

N∑
k=1

f(ξk) in Proposition 2.7.2

of his book, where ξ1, . . . , ξN is a sequence of independent, identically distributed ran-
dom variables with some known distribution µ, and F is a class of functions with some
nice properties. Then he proved in Chapter 3 some estimates with the help of this result
for certain models which solved some problems that could not be solved with the help
of the original version of the chaining argument.

Talagrand investigated in his book [52] the expected value of the supremum of
partial sums, while we gave an estimate on its tail distribution. But this is not a
great difference. Talagrand’s results also give an estimate on the tail distribution of the
supremum by means of concentration inequalities, and actually his proofs also provide
a direct estimate for the tail distribution we are interested in without the application of
these results. The main difference between the two works is that Talagrand’s method
gives a sharp estimate for different classes of functions F .

Talagrand could prove sharp results in such cases when the class of functions F for
which the supremum is taken consists of smooth functions. An example for such classes
of function which he thoroughly investigated is the class of Lipschitz 1 functions. On
the other hand we can give sharp results in such cases when F consists of non-smooth
functions. (See Example 5.5.)
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This difference in the conditions of the results in these two books is not a small
technical detail. Talagrand exploited in his proof that he worked with such classes
of functions F from which he could select such a subclass of functions of relatively
small cardinality which is dense in F in the supremum norm. He needed this property,
because this enabled him to get sharp estimates on the tail distribution of the differences
of functions he had to work with by means of the Bernstein’s inequality. He needed such
estimates to apply (a refined version of) the chaining argument. On the other hand,
we considered such classes of functions F which may have no small subclasses which
are dense in F in the supremum norm. I would characterize the difference between the
results of the two works in the following way. Talagrand proved the sharpest possible
estimates which can be obtained by a refinement of the chaining argument, while our
main problem was to get sharp estimates also in such cases when the chaining argument
does not work.

The main results of this work are presented in Section 8. A weaker version of
Theorem 8.3 about an estimate of the distribution of a degenerate U -statistic was first
proved in a paper of Arcones and Giné in [3]. The result of Theorem 8.3 in the present
form is proved in my paper [36]. Its version about multiple integrals with respect to
a normalized empirical measure formulated in Theorem 8.1 is proved in [32]. This
paper contains a direct proof. On the other hand, Theorem 8.1 can be derived from
Theorem 8.3 by means of Theorem 9.4 of this paper. Theorem 8.5 is the natural
Gaussian counterpart of Theorem 8.3. The limit theorem about degenerate U -statistics,
Theorem 10.4 (and its version about limit theorems for multiple integrals with respect
to normalized empirical measures, presented in Theorem 10.4′ of Appendix C) was
discussed in this work to explain better the relation between degenerate U -statistics (or
multiple integrals with respect to normalized empirical measures) and multiple Wiener–
Itô integrals. A proof of this result based on similar ideas as that discussed here can be
found in [14]. Theorem 6.6 of my lecture note [29] contains such a weakened version of
Theorem 8.5 which does not take into account the variance of the random integral.

Example 8.7 is a natural supplement of Theorem 8.5. It shows that the estimate of
Theorem 8.5 is sharp if only the variance of a Wiener–Itô integral is known. At the end
of Section 13 I also mentioned the results of papers [1] and [26] without proof which also
have some relation to this problem. I discussed mainly the content of [26] and explained
its relation to some results discussed in this work. The proof of these papers apply a
method different of those of this work. It would be interesting to prove them with the
methods discussed here. These papers contain such a refinement of Theorems 8.5 and 8.3
respectively whose estimates depend on some other rather complicated quantities. In
some cases they supply a better estimate. On the other hand, in the problems discussed
here they have a restricted importance because their conditions are hard to check.

Theorems 8.2 and 8.4 yield an estimate about the supremum of (degenerate) U -
statistics or of multiple random integrals with respect to a normalized empirical measure
when the class of kernel functions in these U -statistics or random integrals satisfy some
conditions. They were proved in my paper [34]. Earlier Arcones and Giné proved a
weaker form of this result in paper [4], but their work did not help in the proof of
the results of this note. They were based on an adaptation of Alexander’s method

178



to the multivariate case. Theorem 8.6 contains the natural Gaussian counterpart of
Theorems 8.2 and 8.4.

Example 8.8 in Section 8 shows that the condition u ≤ const. nσ3 imposed in
Theorem 8.3 in the case k = 2 cannot be dropped. The paper of Arcones and Giné [3]
contains another example explained by Talagrand to the authors of that paper which
also has a similar consequence. But that example does not provide such an explicit
comparison of the upper and lower bound on the probability investigated in Theorem 8.3
as Example 8.8. Similar examples could be constructed for all k ≥ 1.

Example 8.8 shows that at high levels only a very weak (and from practical point
of view not really important) improvement of the estimation on the tail distribution of
degenerate U -statistics is possible. But probably there exists a multivariate version of
Bennett’s inequality, i.e. of Theorem 3.2 which provides such an estimate. Moreover,
there is some hope to get a similar strengthened form of Theorems 8.2 and 8.4 (or
of Theorem 4.2 in the one-dimensional case). This question is not investigated in the
present work.

Section 9 deals with the properties of U -statistics. Its first result, Theorem 9.1, is
a rather classical result. It is the so-called Hoeffding decomposition of U -statistics to
the sum of degenerate statistics. Its proof first appeared in the paper [22], but it can be
found at many places. The explanation of this work contains some ideas similar to [49]. I
tried to explain that Hoeffding’s decomposition is the natural multivariate version of the
(trivial) decomposition of sums of independent random variables to sums of independent
random variables with expectation zero plus the sum of the expectations of the original
random variables. Moreover, even the proof of the Hoeffding’s decomposition shows
some similarity to this simple decomposition.

Theorem 9.2 and Proposition 9.3 can be considered as a continuation of the investi-
gation of the Hoeffding’s decomposition in Theorem 9.1. They tell how the properties of
the kernel function of the original U -statistic are inherited in the properties of the kernel
functions of the degenerate U -statistics taking part in its Hoeffding decomposition. In
several applications of Hoeffding’s decomposition we need such results.

The last result of Section 9, Theorem 9.4, enables us to reduce the estimation of
multiple random integrals with respect to normalized empirical measures to the estima-
tion of degenerate U -statistics. This result is a version of Hoeffding’s decomposition,
where multiple integrals with respect to a normalized empirical distribution are decom-
posed to the sum of degenerate U -statistics. Multiple random integrals with respect to
a normalized empirical measure can be simply written as sums of U -statistics, and by
applying the Hoeffding decomposition for each term of these sums we get the desired
decomposition. Theorem 9.4 yields the result we get in such a way. This formula is very
similar to the original Hoeffding decomposition. The main difference between them is
that the coefficients of the degenerate U -statistics in the decomposition of Theorem 9.4
are relatively small. The cancellation effect caused by integration with respect to a
normalized empirical measure is reflected in the appearance of small coefficients in the
decomposition given in Theorem 9.4. Theorem 9.4 was proved in [34]. The same proof
is given in this note, but some calculations are worked out in more detail.
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Theorem 8.1 can be derived from Theorem 8.3 and Theorem 8.2 from Theorem 8.4
by means of Theorem 9.4. The proof of the latter results is simpler. The results of
Sections 10–12 contain the results needed in the proof of Theorem 8.3 and its Gaussian
counterpart Theorems 8.5 and 8.7. The proof of these results is based on good estimates
of high moments of degenerate U -statistics and multiple Wiener–Itô integrals. The
classical proof of the one-variate counterparts of these results is based on a good estimate
of the moment generating function. This method was replaced by the estimate of high
moments, because the moment generating function of a k-fold Wiener–Itô integral is
divergent for k ≥ 3, and this property is also reflected in the behaviour of degenerate U -
statistics. On the other hand, good estimates on high moments can replace the estimate
of the moment generating function. A good estimate can be given for all moments of
a Wiener–Itô integral, while we have a good estimate only on not too high moments of
degenerate U -statistics. This has the consequence that we can give a good estimate on
the tail distribution of degenerate U -statistic only for not too large values.

I know of two deep methods to study high moments of multiple Wiener–Itô in-
tegrals. Both of them can be adapted to the study of the moments of degenerate
U -statistics. They deserve a more detailed discussion.

The first one of them is called Nelson’s inequality named after Edward Nelson who
published it in his paper [43]. This inequality simply implies Theorem 8.5 about multiple
Wiener–Itô integrals, although with worse constants. Later Leonhard Gross discovered a
deep and useful generalization of this result which he published in the work Logarithmic
Sobolev inequalities [19]. In that paper Gross compared two Markov processes with the
same infinitesimal operator but with possibly different initial distribution, where the
second Markov process had stationary distribution. He could give a sharp bound on the
Radon–Nikodym derivative of the distribution of the first Markov process with respect
to the (stationary) distribution of the second Markov process at all time T on the basis
of the properties of the infinitesimal operator of the Markov processes. With the help
of this result he could prove a more general form of Nelson’s inequality. In particular,
his result may help to prove (a weaker version of) Theorem 8.3 (with worse universal
constants). Let me also remark that Gross’ method works not only in the study of these
problems, but in several hard problems of the probability theory. (See e.g [20] or [27]).
Nevertheless, in the present note I applied a different method, because this seemed to
be more appropriate here.

I applied a method related to the names of Kyoshi Itô and Roland L’vovich Do-
brushin. This is the theory of multiple Wiener–Itô integrals with respect to a white
noise. This integral was introduced in paper [24]. It is useful, because every random
variable measurable with respect to the σ-algebra generated by the Gaussian random
variables of the underlying white noise with finite second moment can be written as
the sum of Wiener–Itô integrals of different order. Moreover, if only Wiener–Itô inte-
grals of symmetric kernel functions are taken, then this representation is unique. An
important result, the so-called diagram formula, formulated in Theorem 10.2, expresses
products of Wiener–Itô integrals as a sum of such integrals. This result which shows
some similarity to the Feynman diagrams applied in the statistical physics was proved
in [9]. Actually this paper discussed a modified version of Wiener–Itô integrals which
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is more appropriate to study the action of shift operators for non-linear functionals of
a stationary Gaussian field. But these modified Wiener–Itô integrals can be investi-
gated in almost the same way as the original ones. The diagram formula has a simple
consequence formulated in Corollary of Theorem 10.2 of this note. It enables us to
calculate the expectation of products of Wiener–Itô integrals, in particular it yields an
explicit formula about the moments of a Wiener–Itô integral. This result was applied
in the proof of Theorem 8.5, i.e. in the estimation of the tail-distribution of Wiener–Itô
integrals. Itô’s formula for multiple Wiener–Itô integrals (Theorem 10.3) was proved
in [24].

The diagram formula has a natural and useful analog both for degenerate U -
statistics and multiple integrals with respect to a normalized empirical measure. They
enable us to express the product of degenerate U -statistics and multiple integrals as
the sum of such expressions. These results enable us to adapt several useful methods
in the study of non-linear functionals of a Gaussian random field to the study of non-
linear functionals of normalized empirical measures. A version of the diagram formula
was proved for degenerate U -statistics in [36] and for multiple random integrals with
respect to a normalized empirical measures in [32]. Let me remark that in the formula-
tion of the result in the work [36] a different notation was applied than in the present
note. In that paper I wanted to formulate version of the diagram formula for U -statistics
with the help of such diagrams which appear in the classical form of diagram formula
presented for Wiener–Itô integrals. I could do this only in a somewhat artificial way.
In this work I formulated this result by introducing first more general diagrams which
may contain some chains. The formulation of the result with the help of such more gen-
eral diagrams seems to be more natural. Let me also remark that the study of results
similar to the diagram formula for Wiener–Itô integrals did not get such an attention
in the literature as it would deserve in my opinion. I know only of one work where
such questions were investigated. It is the paper of Surgailis [46], where a version of the
diagram formula is proved for Poissonian integrals. The Corollary of Theorem 11.2 is
of special interest for us, because it enables us to prove such moment estimates which
are useful in the proof of Theorem 8.3.

It is worth mentioning that the problems about Wiener–Itô integrals are closely
related to the study of Hermite polynomials or to their multivariate version, to the so-
called Wick polynomials. (See e.g. [29] or [40] for the definition of Wick polynomials.)
Appendix C contains the most important properties of Hermite polynomials needed in
the study of Wiener–Itô integrals. In particular, it contains the proof of Proposition C2
which states that the set of all Hermite polynomials is a complete orthogonal system
in the Hilbert space of the functions square integrable with respect to the Gaussian
distribution. This result can be found for instance in Theorem 5.2.7 of [48]. In the
present proof I wanted to show that this result is closely related to the so-called moment
problem, i.e. to the question when a distribution is determined by its moments uniquely.
This method, with some refinement, can be applied to prove some generalizations of
Proposition C2 about the completeness of orthogonal polynomials with respect to more
general weight functions.

Itô’s formula creates a relation between Wiener–Itô integrals and Hermite poly-
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nomials. The results about multiple Wiener–Itô integrals have their analogs for Wick
polynomials. Thus for instance there is a diagram formula for the product of Wick
polynomials which also has some interesting generalizations. Such questions are stud-
ied both in probability theory and statistical physics, see [40] and [45]. The relation
between Wiener–Itô integrals and Hermite polynomials also has a natural counterpart
in the study of other multiple random integrals. The so-called Appell polynomials,
(see [47]), appeared in such a way.

Theorems 8.3, 8.5 and 8.7 were proved on the basis of the results in Sections 10–
12 and in Section 13. Section 13 also contains the proof of a multivariate version
of Hoeffding’s inequality, formulated in Theorem 13.3. This result is needed in the
symmetrization argument applied in the proof of Theorem 8.4. A weaker version of it
(an estimate with a worse constant in the exponent) which would be satisfactory for
our purposes would simply follow from a classical result, called Borell’s inequality. But
since this result is not discussed in this note, and I was interested in a proof which yields
the best estimate in the exponent of this estimate I have chosen another proof, given
in [35] which is based on the results of Sections 10–12. Later I have learned that this
estimate is contained in an implicit form also in the paper [6] of A. Bonami.

Sections 14–17 are devoted to the proof of Theorems 8.4 and 8.6. They are based
on a similar argument as their one-variate counterparts, Theorems 4.1 and 4.2. The
proof of Theorem 8.6 about the supremum of Wiener–Itô integrals is based, similarly
to the proof of Theorem 4.2 on the chaining argument. In the proof of Theorem 8.4,
the chaining argument yields only a weaker result formulated in Proposition 14.1 which
helps to reduce Theorem 8.4 to the proof of Proposition 14.2. In the one-variate case
a similar approach was applied. In that case the proof of Theorem 4.1 was reduced
to that of Proposition 6.2 by means of Proposition 6.1. The next step in the proof
of Theorem 8.6 has no one-variate counterpart. The notion of so-called decoupled U -
statistics was introduced, and Proposition 14.2 was reduced to a similar result about
decoupled U -statistics formulated in Proposition 14.2′.

The adjective ‘decoupled’ in the expression decoupled U -statistic refers to the fact
that it is such a version of a U -statistic where independent copies of a sequence of
independent and identically distributed random variables are put into different coor-
dinates of the kernel function of the U -statistic. Their study is a popular subject of
some mathematicians. In particular, the main subject of the book [7] is a comparison
of the properties of U -statistics and decoupled U -statistics. A result of de la Peña and
Montgomery–Smith [8] formulated in Theorem 14.3 helps in reducing some problems
about U -statistics to a similar problem about decoupled U -statistics. In this lecture
note the proof of Theorem 14.3 is given in Appendix D. It follows the argument of the
original proof, but several steps are worked out in detail where the authors gave only a
very short explanation. Paper [8] also contains some kind of converse results to Theo-
rem 14.3, but as they are not needed in the present work, I omitted their discussion.

Decoupled U -statistics behave similarly to the original U -statistics. Beside this,
some symmetrization arguments becomes considerably simpler if we are working with
decoupled U -statistics instead of the original U -statistics. This can be exploited in some
investigations. For example the proof of Proposition 14.2′ is simpler than a direct proof
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of Proposition 14.2. On the other hand, Theorem 14.3 enables us to reduce the proof
of Proposition 14.2 to that of Proposition 14.2′, and we have exploited this possibility.

The proof of Theorem 8.4 was reduced to that of Proposition 14.2′ in Section 14.
Sections 15–17 deal with the proof of this result. It was proved in my paper [34]. The
proof is similar to that of its one-variate version, Proposition 6.2, but some additional
difficulties have to be overcome. The main difficulty appears when we want to find
the multivariate analog of the symmetrization argument which could be carried out by
means of the Symmetrization Lemma, Lemma 7.1 and Lemma 7.2 in the one-variate
case.

In the multivariate case Lemma 7.1 is not sufficient for us. We work instead of
it with a generalized version of this result, formulated in Lemma 15.2. The proof of
Lemma 15.2 is not hard. The real difficulty arises when we want to apply it in the proof
of Proposition 14.2′. We have to check formula (15.3), and this means in this case a
non-trivial estimation of some complicated conditional probabilities. This is the hardest
part of the proof of Proposition 14.2′.

Proposition 14.2′ was proved by means of an inductive procedure formulated in
Proposition 15.3, which is the multivariate analog of Proposition 7.3. A basic ingredient
of both proofs was a symmetrization argument. But while this symmetrization argument
could be simply carried out in the one-variate case, its adaptation to the multivariate
case in the proof of Theorem 15.3 was a most serious problem. To overcome this
difficulty another result was formulated in Proposition 15.4. Propositions 15.3 and 15.4
were proved simultaneously by means of an appropriate inductive procedure. Their
proofs were based on a refinement of the arguments in the proof of Proposition 7.3. We
also had to apply Theorem 13.3, a multivariate version of Hoeffding’s inequality, and
some properties of the Hoeffding decomposition of U -statistics proved in Section 9.
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Appendix A.

The proof of some results about Vapnik–Červonenkis classes.

Proof of Theorem 5.1. (Sauer’s lemma). This result has several different proofs. Here
I write down a relatively simple proof of P. Frankl and J. Pach which appeared in [15].
It is based on some linear algebraic arguments.

The following equivalent reformulation of Sauer’s lemma will be proved. Let us
take a set S = S(n) consisting of n elements and a class E of subsets of S consisting
of m elements E1, . . . , Em ⊂ S. Assume that m ≥ m0 + 1 with m0 = m0(n, k) =(
n
0

)
+
(
n
1

)
+ · · · +

(
n

k−1

)
. Then there exists a set F ⊂ S of cardinality k which the class

of sets E shatters. Actually, it is enough to show that there exists a set F of cardinality
greater than or equal to k which the class of sets E shatters, because if a set has this
property, then all of its subsets have it. This latter statement will be proved.

To prove this statement let us first list the subsets X0, . . . , Xm0 of the set S of
cardinality less than or equal to k − 1, and correspond to all sets Ei ∈ E the vector
ei = (ei,1, . . . , ei,m0), 1 ≤ i ≤ m, with elements

ei,j =

{
1 if Xj ⊆ Ei

0 if Xj 6⊆ Ei

1 ≤ i ≤ m, and 1 ≤ j ≤ m0.

Since m > m0, the vectors e1, . . . , em are linearly dependent. Because of the
definition of the vectors ei, 1 ≤ i ≤ m, this can be expressed in the following way:
There is a non-zero vector (f(E1), . . . , f(Em)) such that

∑

Ei: Ei⊇Xj

f(Ei) = 0 for all 1 ≤ j ≤ m0. (A1)

Let F , F ⊂ S, be a minimal set with the property

∑

Ei: Ei⊇F

f(Ei) = α 6= 0. (A2)

Such a set F really exists, since every maximal element of the family {Ei: 1 ≤ i ≤
m, f(Ei) 6= 0} satisfies relation (A2). The requirement that F should be a minimal set
means that if F is replaced by some H ⊂ F , H 6= F , at the left-hand side of (A2), then
this expression equals zero. The inequality |F | ≥ k holds because of relation (A1) and
the definition of the sets Xj .

Introduce the quantities

ZF (H) =
∑

Ei: Ei∩F=H

f(Ei)

for all H ⊆ F .
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Then ZF (F ) = α, and for any set of the form H = F \ {x}, x ∈ F ,

ZF (H) =
∑

Ei: Ei∩F=H

f(Ei) =
∑

Ei: Ei⊇H

f(Ei) −
∑

Ei: Ei⊇F

f(Ei) = 0 − α = −α

because of the minimality property of the set F .

Moreover, the identity

ZF (H) = (−1)pα for all H ⊆ F such that |H| = |F | − p, 0 ≤ p ≤ |F |. (A3)

holds. To show relation (A3) observe that

ZF (H) =
∑

Ei: Ei∩F=H

f(Ei) =

p∑

j=0

(−1)j
∑

G: H⊂G⊂F, |G|=|H|+j

∑

Ei: Ei⊇G

f(Ei) (A4)

for all sets H ⊂ F with cardinality |H| = |F | − p. Identity (A4) holds, since the term

f(Ei) is counted at the right-hand side of (A4)
l∑

j=0

(−1)j
(

l
j

)
= (1 − 1)l = 0 times if

Ei ∩ F = G with some H ⊂ G ⊆ F with |G| = |H| + l elements, 1 ≤ l ≤ p, while
in the case Ei ∩ F = H it is counted once. Relation (A4) together with (A2) and the
minimality property of the set F imply relation (A3).

It follows from relation (A3) and the definition of the function ZF (H) that for all
sets H ⊆ F there exists some set Ei such that H = Ei ∩ F , i.e. F is shattered by E .
Since |F | ≥ k, this implies Theorem 5.1.

Proof of Theorem 5.3. Let us fix an arbitrary set F = {x1, . . . , xk+1} of the set X,
and consider the set of vectors Gk(F ) = {(g(x1), . . . , g(xk+1)): g ∈ Gk} of the k + 1-
dimensional space Rk+1. By the conditions of Theorem 5.3 Gk(F ) is an at most k-
dimensional subspace of Rk+1. Hence there exists a non-zero vector a = (a1, . . . , ak+1)

such that
k+1∑
j=1

ajg(xj) = 0 for all g ∈ Gk. We may assume that the set A = A(a) =

{j: aj < 0, 1 ≤ j ≤ k + 1} is non-empty, by multiplying the vector a by −1 if it is
necessary.

Thus the identity

∑

j∈A

ajg(xj) =
∑

j∈{1,...,k+1}\A

(−aj)g(xj), for all g ∈ Gk (A5)

holds. Put B = {xj : j ∈ A}. Then B ⊂ F , and F \ B 6= {x: g(x) ≥ 0} ∩ F for all
g ∈ Gk. Indeed, if there were some g ∈ Gk such that F \ B = {x: g(x) ≥ 0} ∩ F , then
the left-hand side of the equation (A5) would be strictly positive (as aj < 0, g(xj) < 0
if j ∈ A, and A 6= ∅) its right-hand side would be non-positive for this g ∈ Gk, and this
is a contradiction.

The above proved property means that D shatters no set F ⊂ X of cardinality k+1.
Hence Theorem 5.1 implies that D is a Vapnik–Červonenkis class.
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Appendix B. The proof of the diagram formula for Wiener–Itô integrals.

The proof of Theorem (10.2A) (the diagram formula for the product of two Wiener–
Itô integrals) will be started with the proof of inequality (10.11). To show that this
relation holds let us observe that the Cauchy inequality yields the following bound on
the function Fγ defined in (10.10) (with the notation introduced there):

F 2
γ (x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ))

≤
∫

f2(xαγ(1,1), . . . , xαγ(1,k))
∏

(2,j)∈{(2,1),...,(2,l)}\V2(γ)

µ( dx(2,j))

∫
g2(x(2,1), . . . , x(2,l))

∏

(2,j)∈{(2,1),...,(2,l)}\V2(γ)

µ( dx(2,j)).

(B1)

The expression at the right-hand side of inequality (B1) is the product of two functions
with different arguments. The first function has arguments x(1,j) with (1, j) ∈ V1(γ) and
the second one x(2,j′) with (2, j′) ∈ V2(γ). By integrating both sides of inequality (B1)
with respect to these arguments we get inequality (10.11).

Relation (10.12) will be proved first for the product of the Wiener–Itô integrals of
two elementary functions. Let us consider two (elementary) functions f(x1, . . . , xk) and
g(x1, . . . , xl) given in the following form: Let some disjoint sets A1, . . . , AM , µ(As) < ∞,
1 ≤ s ≤ M , be given together with some real numbers c(s1, . . . , sk) indexed with such
k-tuples (s1, . . . , sk), 1 ≤ sj ≤ M , 1 ≤ j ≤ k, for which the numbers s1, . . . , sk in a k-
tuple are all different. Put f(x1, . . . , xk) = c(s1, . . . , sk) on the rectangles As1×· · ·×Ask

with edges As, indexed with the above k-tuples, and let f(x1, . . . , xk) = 0 outside
of these rectangles. Take similarly some disjoint sets B1, . . . , BM ′ , µ(Bt) < ∞, 1 ≤
t ≤ M ′, and some real numbers d(t1, . . . , tl), indexed with such l-tuples (t1, . . . , tl),
1 ≤ tj′ ≤ M ′, 1 ≤ j′ ≤ l, for which the numbers t1, . . . , tl in an l-tuple are different.
Put g(x1, . . . , xl) = d(t1, . . . , tl) on the rectangles Bt1 × · · · × Btl

with edges indexed
with the above introduced l-tuples, and let g(x1, . . . , xl) = 0 outside of these rectangles.

Let us take some small number ε > 0 and rewrite the above introduced functions
f(x1, . . . , xk) and g(x1, . . . , xl) with the help of this number ε > 0 in the following way.

Divide the sets A1, . . . , AM to smaller sets Aε
1, . . . , A

ε
M(ε),

M(ε)⋃
s=1

Aε
s =

M⋃
s=1

As, in such a

way that all sets Aε
1, . . . , A

ε
M(ε) are disjoint, and µ(Aε

s) ≤ ε, 1 ≤ s ≤ M(ε). Similarly,

take sets Bε
1, . . . , B

ε
M ′(ε),

M ′(ε)⋃
t=1

Bε
t =

M ′⋃
t=1

Bt, in such a way that all sets Bε
1, . . . , B

ε
M ′(ε) are

disjoint, and µ(Bε
t ) ≤ ε, 1 ≤ t ≤ M ′(ε). Beside this, let us also demand that two sets Aε

s

and Bε
t , 1 ≤ s ≤ M(ε), 1 ≤ t ≤ M ′(ε), are either disjoint or they agree. Such a partition

exists because of the non-atomic property of measure µ. The above defined functions
f(x1, . . . , xk) and g(x1, . . . , xl) can be rewritten by means of these new sets Aε

s and Bε
t .

Namely, let f(x1, . . . , xk) = cε(s1, . . . , sk) on the rectangles Aε
s1
×· · ·×Aε

sk
with 1 ≤ sj ≤

M(ε), 1 ≤ j ≤ k, with different indices s1, . . . , sk, where cε(s1, . . . , sk) = c(p1, . . . , pk)
with those indices (p1, . . . , pk) for which Aε

s1
×· · ·×Aε

sk
⊂ Ap1 ×· · ·×Apk

. The function
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f disappears outside of these rectangles. The function g(x1, . . . , xl) can be written
similarly in the form g(x1, . . . , xl) = dε(t1, . . . , tl) on the rectangles Bε

t1 × · · ·×Bε
tl

with
1 ≤ tj′ ≤ M ′(ε), 1 ≤ j′ ≤ l, and different indices, t1, . . . , tl. Beside this, the function g
disappears outside of these rectangles.

The above representation of the functions f and g through a parameter ε is useful,
since it enables us to give a good asymptotic formula for the product k!Zµ,k(f)l!Zµ,l(g)
which yields the diagram formula for the product of Wiener–Itô integrals of elementary
functions with the help of a limiting procedure ε → 0.

Fix a small number ε > 0, take the representation of the functions f and g with its
help, and write

k!Zµ,k(f)l!Zµ,l(g) =
∑

γ∈Γ(k,l)

Zγ(ε) (B2)

with

Zγ(ε) =
∑γ

cε(s1, . . . , sk)dε(t1, . . . , tl)µW (Aε
s1

) . . . µW (Aε
sk

)µW (Bε
t1) . . . µW (Bε

tl
),

(B3)
where Γ(k, l) denotes the class of diagrams introduced before the formulation of The-
orem 10.2A, and

∑γ
denotes summation for such k + l-tuples (s1, . . . , sk, t1, . . . , tl),

1 ≤ sj ≤ M(ε), 1 ≤ j ≤ k, and 1 ≤ tj′ ≤ M ′(ε), 1 ≤ j′ ≤ l, for which Aε
sj

= Bε
tj′

if

((1, j), (2, j′)) ∈ E(γ), i.e. if it is an edge of γ, and otherwise all sets Aε
sj

and Bε
tj′

are

disjoint. (This sum also depends on ε.) In the case of an empty sum Zγ(ε) equals zero.

For all γ ∈ Γ(k, l) the expression Zγ will be written in the form

Zγ(ε) = Z(1)
γ (ε) + Z(2)

γ (ε), γ ∈ Γ(k, l), (B4)

with
Z(1)

γ (ε) =
∑γ

cε(s1, . . . , sk)dε(t1, . . . , tl)
∏

j: (1,j)∈V1(γ)

µW (Aε
sj

)
∏

j′: (2,j′)∈V2(γ)

µW (Bε
tj′

)

∏

j: (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
sj

)

(B5)

and

Z(2)
γ (ε) =

∑γ
cε(s1, . . . , sk)dε(t1, . . . , tl)
∏

j: (1,j)∈V1(γ)

µW (Aε
sj

)
∏

j′: (2,j′)∈V2(γ)

µW (Bε
tj′

)

[ ∏

j: (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µW (Aε
sj

)
∏

j′: (2,j′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW (Bε
tj′

)

−
∏

j: (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
sj

)

]
, (B6)
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where V1(γ) and V2(γ) (introduced before formula (10.9) during the preparation to the
formulation of Theorem 10.2A) are the sets of vertices in the first and second row of
the diagram γ from which no edge starts.

I claim that there is some constant C > 0 not depending on ε such that

E
(
|γ|!Zµ,|γ|(Fγ) − Z(1)

γ (ε)
)2

≤ Cε for all γ ∈ Γ(k, l) (B7)

with the Wiener–Itô integral with the kernel function Fγ defined in (10.9), (10.9a) and
(10.10), and

E
(
Z(2)

γ (ε)
)2

≤ Cε for all γ ∈ Γ(k, l). (B8)

Relations (B7) and (B8) imply relation (10.12) if f and g are elementary functions.
Indeed, they imply that

lim
ε→0

∥∥ |γ|!Zµ,|γ|(Fγ) − Zγ(ε)
∥∥

2
→ 0 for all γ ∈ Γ(k, l),

and this relation together with (B2) yield relation (10.12) with the help of a limiting
procedure ε → 0.

To prove relation (B7) let us introduce the function

F ε
γ (x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ))

= Fγ(x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ))

if x(1,j) ∈ Aε
sj

, for all (1, j) ∈ V1(γ),

x(2,j′) ∈ Bε
tj′

, for all (2, j′) ∈ V2(γ)), and

all sets Aε
sj

, (1, j) ∈ V1(γ), and Bε
tj′

, (2, j′) ∈ V2(γ) are different.

with the function Fγ defined in (10.9a) and (10.10), and put

F ε
γ (x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ)) = 0 otherwise.

The function F ε
γ is elementary, and a comparison of its definition with relation (B5)

and the definition of the function Fγ yield that

Z(1)
γ (ε) = |γ|!Zµ,|γ|(F

ε
γ ). (B9)

The function F ε
γ slightly differs from Fγ , since the function Fγ may not disappear in

such points (x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ)) for which there is some pair
(j, j′) with the property x(1,j) ∈ Aε

sj
and x(2,j′) ∈ Bε

tj′
with some sets Aε

sj
and Bε

tj′
such

that Aε
sj

= Bε
tj′

, while F ε
γ must be zero in such points. On the other hand, in the case

|γ| = max(k, l) − min(k, l), i.e. if one of the sets V1(γ) or V2(γ) is empty, Fγ = F ε
γ ,

Z
(1)
γ = |γ|!Zµ,|γ|(Fγ), and relation (B7) clearly holds for such diagrams γ.
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In the case |γ| = max(k, l) − min(k, l) > 0 such an estimate will be proved for the
probability of the the set where Fγ 6= F ε

γ which implies relation (B7).

Let us define the sets A =
M(ε)⋃
s=1

Aε
s and B =

M ′(ε)⋃
t=1

Bε
t . These sets A and B do not

depend on the parameter ε. Beside this µ(A) < ∞, and µ(B) < ∞. Define for all pairs
(j0, j

′
0) such that (1, j0) ∈ V1(γ), (2, j′0) ∈ V2(γ) the set

D(j0, j
′
0) = {(x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ)):

x(1,j0) ∈ Aε
sj0

, x(1,j′
0)

∈ Bε
tj′

0

for some sj0 and tj′
0

such that Aε
sj0

= Bε
tj′

0

x(1,j) ∈ A for all (1, j) ∈ V1(γ), and x(2,j′) ∈ B for all (2, j′) ∈ V2(γ)}.

Introduce the notation xγ = (x(1,j), x(2,j′)), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ)) and put

Dγ = {xγ : F ε
γ (xγ) 6= Fγ(xγ)}. The relation Dγ ⊂

k⋃
j=1

l⋃
j′=1

D(j0, j
′
0) holds, since if

F ε
γ (xγ) 6= Fγ(xγ) for some vector xγ , then it has some coordinates (1, j0) ∈ V1(γ) and

(2, j′0) ∈ V2(γ) such that x(1,j0) ∈ Aε
sj0

and x(1,j′
0)

∈ Bε
tj′

0

with some sets Aε
sj0

= Bε
tj′

0

,

and the relation in the last line of the definition of D(j0, j
′
0) must also hold for this

vector xγ , since otherwise Fγ(xγ) = 0 = F ε
γ (xγ). I claim that there is some constant

C1 such that

µ|V1(γ)|+|V2(γ)|(D(j0, j
′
0)) ≤ C1ε for all sets D(j0, j

′
0),

where µ|V1(γ)|+|V2(γ)| denotes the direct product of the measure µ on some copies of the
original space (X,X ) indexed by (1, j) ∈ V1(γ) and (2, j′) ∈ V2(γ). To see this relation
one has to observe that

∑
Aε

sj0
=Bε

t
j′
0

µ(Aε
sj0

)µ(Bε
tj′

0

) ≤∑ εµ(Aε
sj0

) = εµ(A). Thus the set

D(j0, j
′
0) can be covered by the direct product of a set whose µ measure is not greater

than εµ(A) and of a rectangle whose edges are either the set A or the set B.

The above relations imply that

µ|V1(γ)|+|V2(γ)|(Dγ) ≤ C2ε (B10)

with some constant C2 > 0.

Relation (B9), estimate (B10), the property c) formulated in Theorem 10.1 for
Wiener–Itô integrals and the observation that the function Fγ = Fγ(f, g) is bounded in
supremum norm if f and g are elementary functions imply the inequality

E
(
|γ|!Zµ,|γ|(Fγ) − Z(1)

γ (ε)
)2

= |γ!|2E
(
Zµ,|γ|(Fγ − F ε

γ )
)2 ≤ |γ|!‖Fγ − F ε

γ‖2
2

≤ Kµ|V1(γ)|+|V2(γ)|(Dγ) ≤ Cε.

This means that relation (B7) holds.
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To prove relation (B8) write E
(
Z

(2)
γ (ε)

)2

in the following form:

E
(
Z(2)

γ (ε)
)2

=
∑γ∑γ

cε(s1, . . . , sk)dε(t1, . . . , tl)c
ε(s̄1, . . . , s̄k)dε(t̄1, . . . , t̄l)

EU(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l)
(B11)

with

U(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l)

=
∏

j: (1,j)∈V1(γ)

µW (Aε
sj

)
∏

j′: (2,j′)∈V2(γ)

µW (Bε
tj′

)

∏

̄: (1,̄)∈V1(γ)

µW (Aε
s̄̄

)
∏

̄′: (2,̄′)∈V2(γ)

µW (Bε
t̄̄′

)

[ ∏

j: (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µW (Aε
sj

)
∏

j′: (2,j′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW (Bε
tj′

)

−
∏

j: (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
sj

)

]

[ ∏

̄: (1,̄)∈{(1,1),...,(1,k)}\V1(γ)

µW (Aε
s̄̄

)
∏

̄′: (2,̄′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW (Bε
t̄̄′

)

−
∏

̄: (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
s̄̄

)

]
. (B12)

The double sum
∑γ ∑γ

in (B11) has to be understood in the following way. The first
summation is taken for vectors (s1, . . . , sk, t1, . . . , tl), and these vectors take such values
which were defined in

∑γ
in formula (B3). The second summation is taken for vectors

(s̄1, . . . , s̄k, t̄1, . . . , t̄l), and again with values defined in the summation
∑γ

.

Relation (B8) will be proved by means of some estimates about the expectation
of the above defined random variable U(·) which will be presented in the following
Lemma B. Before its formulation I introduce the following Properties A and B.

Property A. A sequence s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l, with elements 1 ≤
sj , s̄̄ ≤ M(ε), for 1 ≤ j, ̄ ≤ k, and 1 ≤ tj , t̄̄′ ≤ M ′(ε) for 1 ≤ j′, ̄′ ≤ l, satisfies
Property A (depending on a fixed diagram γ and number ε > 0) if the sequences of sets
{Aε

sj
, Bε

tj′
, (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ)} and {Aε

s̄̄
, Bε

t̄̄′
, (1, ̄) ∈ V1(γ), (2, ̄′) ∈ V2(γ)}

agree. (Here we say that two sequences agree if they contain the same elements in a
possibly different order.)

Property B. A sequence s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l, with elements 1 ≤
sj , s̄̄ ≤ M(ε), for 1 ≤ j, ̄ ≤ k, and 1 ≤ tj , t̄̄′ ≤ M ′(ε) for 1 ≤ j′, ̄′ ≤ l, satisfies
Property B (depending on a fixed diagram γ and number ε > 0) if the sequences of sets

{Aε
sj

, Bε
tj′

, (1, j) ∈ {(1, 1), . . . , (1, k)} \ V1(γ), (2, j′) ∈ {(2, 1), . . . , (2, l)} \ V2(γ)}
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and

{Aε
s̄̄

, Bε
t̄̄′

, (1, ̄) ∈ {(1, 1), . . . , (1, k)} \ V1(γ), (2, ̄′) ∈ {(2, 1), . . . , (2, l)} \ V2(γ)}

have at least one common element.

(In the above definitions two sets Aε
s and Bε

t are identified if Aε
s = Bε

t .)

Now I formulate the following

Lemma B. Let us consider the function U(·) introduced in formula (B12). Assume that
its arguments s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l are chosen in such a way that the
function U(·) with these arguments appears in the double sum

∑γ ∑γ
in formula (B11),

i.e. Aε
sj

= Bεtj′ if ((1, j), (2, j′)) ∈ E(γ), otherwise all sets Aε
sj

and Bε
tj′

are disjoint,

and an analogous statement holds if the coordinates s1, . . . , sk, t1, . . . , tl are replaced by
s̄1, . . . , s̄k, t̄1, . . . , t̄l. Then

EU(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l) = 0 (B13)

if the sequence of the arguments in U(·) does not satisfies either Property A or Prop-
erty B.

If the sequence of the arguments in U(·) satisfies both Property A and Property B,
then

|EU(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l)|
≤ Cε

∏ ′
µ(Aε

sj
)µ(Aε

s̄̄
)µ(Bε

tj′
)µ(Bε

t̄̄′
)

(B14)

with some appropriate constant C = C(k, l) > 0 depending only on the number of
variables k and l of the functions f and g. The prime in the product

∏′
at the right-

hand side of (B14) means that in this product the measure µ of those sets Aε
sj

, Aε
s̄̄

,
Bε

tj′
and Bε

t̄̄′
are considered, whose indices are listed among the arguments sj , s̄̄, tj′

or t̄̄′ of U(·), and the measure µ of each such set appears exactly once. (This means
e.g. that if Aε

sj
= Bε

tj′
or Aε

sj
= Bε

t̄̄′
for some indices j and j′ or ̄′, then one of the

terms between µ(Aε
sj

) and µ(Bε
tj′

) or µ(Bε
t̄̄′

) is omitted from the product. For the sake

of definitiveness let us preserve the set µ(Aε
js

) in such a case.)

Remark. The content of Lemma B is that most terms in the double sum in formula (B11)
equal zero, and even the non-zero terms are small.

The proof of Lemma B. Let us prove first relation (B13) in the case when Property A
does not hold. It will be exploited that for disjoint sets the random variables µW (As)
and µW (Bt) are independent, and this provides a good factorization of the expectation
of certain products. Let us carry out the multiplications in the definition of U(·) in
formula (B12), and show that each product obtained in such a way has zero expectation.
If Property A does not hold for the arguments of U(·), and beside this the arguments
s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l satisfy the remaining conditions of Lemma B,
then each product we consider contains a factor µW (Aε

sj0
), (1, j0) ∈ V1(γ), which is
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independent of all those terms in this product which are in the following list: µW (Aε
sj

)
with some j 6= j0, 1 ≤ j ≤ k, or µW (Bε

tj′
), 1 ≤ j ≤ l, or µW (Aε

s̄̄
) with (1, ̄) ∈

V1(γ), or µW (Bε
t̄̄′

) with (2, ̄′) ∈ V2(γ). We will show with the help of this property

that the expectation of each term has a factorization with a factor either of the form
EµW (Aε

sj0
) = 0 or EµW (Aε

sj0
)3 = 0, hence it equals zero. Indeed, although the above

properties do not exclude the appearance of such a pair of arguments Aε
tj̄′

, (1, ̄′) ∈
{(1, 1), . . . , (1, k) \ V1(γ) and Bε

tj̄′
, (2, ̄′) ∈ {(2, 1), . . . , (2, l)} \ V2(γ) in the product

for which Aε
tj̄

= Bε
tj̄′

= Aε
sj0

, and in such a case a term of the form EµW (Aε
sj0

) will

not appear in the product, but if this happens, then the product contains a factor of
the form EµW (Aε

sj0
)3 = 0. Hence an appropriate factorization of each term of EU(·)

contains either a factor of the form EµW (Aε
sj0

) = 0 or EµW (Aε
sj0

)3 = 0 if U(·) does not
satisfy Property A.

To finish the proof of relation (B13) it is enough consider the case when the ar-
guments of U(·) satisfy Property A, but they do not satisfy Property B. The validity
of Property A implies that the sets {Aε

sj
, j ∈ V1} ∪ {Bε

tj′
, j′ ∈ V2} and {Aε

s̄j
, j ∈

V1}∪{Bε
t̄j′

, j′ ∈ V2} agree. The conditions of Lemma B also imply that the elements of

these sets are such sets which are disjoint of the sets Aε
sj

, Bε
tj′

, Aε
s̄̄

and Bε
t̄̄′

with indices

(1, j), (1, ̄) ∈ {(1, 1), . . . , (1, k)} \ V1(γ) and (2, j′), (2, ̄′) ∈ {(2, 1), . . . , (2, l)} \ V2(γ). If
Property B does not hold, then the latter class of sets can be divided into two sub-
classes in such a way that the elements in different subclasses are disjoint. The first
subclass consists of the sets Aε

sj
and Bε

tj′
, and the second one of the sets Aε

s̄̄
and

Bε
t̄̄′

with indices such that (1, j), (1, ̄) ∈ {(1, 1), . . . , (1, k)} \ V1(γ) and (2, j′), (2, ̄′) ∈
{(2, 1), . . . , (2, l)} \ V2(γ). These facts imply that EU(·) has a factorization, which con-
tains the term

E

[ ∏

j: (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µW (Aε
sj

)
∏

j′: (2,j′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW (Bε
tj′

)

−
∏

j: (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
sj

)

]
= 0,

hence relation (B13) holds also in this case. The last expression has zero expec-
tation, since if we take such pairs Aε

sj
, Bε

t′
j

for the sets appearing in it for which

that ((1, j), (2, j′)) ∈ E(γ), i.e. these vertices are connected with an edge of γ, then
Aε

sj
= Bε

t′
j

in a pair, and elements in different pairs are disjoint. This observation al-

lows a factorization in the product whose expectation is taken, and then the identity
EµW (Aε

sj
)µW (Bε

tj′
) = µ(Aε

sj
) implies the desired identity.

To prove relation (B14) if the arguments of the function U(·) satisfy both Prop-
erties A and B consider the expression (B12) which defines U(·), carry out the term
by term multiplication between the two differences at the end of this formula, take ex-
pectation for each term of the sum obtained in such a way, and factorize them. Since
EµW (A)2 = µ(A), EµW (A)4 = 3µ(A)2 for all sets A ∈ X , µ(A) < ∞, some calculation
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shows that each term can be expressed as constant times a product whose elements
are those probabilities µ(Aε

s) and µ(Bε
t ) or their square which appear at the right-hand

side of (B14). Moreover, since the arguments of U(·) satisfy Property B, there will be
at least one term of the form µ(Aε

s)2 in this product. Since µ(Aε
s)2 ≤ εµ(Aε

s), these
calculations provide formula (B14). Lemma B is proved.

Relation (B11) implies that

E
(
Z(2)

γ (ε)
)2

≤ K
∑ γ ∑ γ

|EU(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l)| (B15)

with some appropriate K > 0. By Lemma B it is enough to sum up only for such terms
U(·) in (B15) whose arguments satisfy both Properties A and B. Moreover, each such
term can be bounded by means of inequality (B14). Let us list the sets Aε

sj
, Aε

s̄̄
, Bε

tj′
, Bε

t̄̄′

appearing in the upper bound at the right-hand side of (B14) for all functions U(·)
taking part in the sum at the right-hand side of (B15). Since all fixed sequences of
the sets Aε

s and Bε
t appear less than C(k, l) times with an appropriate constant C(k, l)

depending only on the order k and l of the integrals we are considering, and
M(ε)∑
s=1

µ(Aε
s)+

M ′(ε)∑
t=1

µ(Bε
t ) = µ(A) + µ(B) < ∞, the above relations imply that

E
(
Z(2)

γ (ε)
)2

≤ C1ε
k+l∑

j=1

(µ(A) + µ(B))j ≤ Cε.

Hence relation (B8) holds.

To prove Theorem 10.2A in the general case take for all pairs of functions f ∈ Hµ,k

and g ∈ Hµ,l two sequences of elementary functions fn ∈ H̄µ,k and gn ∈ H̄µ,l, n =
1, 2, . . . , such that ‖fn − f‖2 → 0 and ‖gn − g‖2 → 0 as n → ∞. Let us introduce the
notation Fγ(f, g) = Fγ if the function Fγ is defined in formulas (10.9a) and (10.10) with
the help of the functions f and g. It is enough to show that

E|k!Zµ,k(f)l!Zµ,l(g) − k!Zµ,k(fn)l!Zµ,l(gn)| → 0 as n → ∞, (B16)

and

|γ|!E
∣∣Zµ,|γ|(Fγ(f, g)) − Zµ,|γ|(Fγ(fn, gn))

∣∣→ 0 as n → ∞ for all γ ∈ Γ(k, l),
(B17)

since then a simple limiting procedure n → ∞, and the already proved part of the
theorem for Wiener–Itô integrals of elementary functions imply Theorem 10.2A.

To prove relation (B16) write

E|k!Z, µ, k(f)l!Zµ,l(g) − k!Zµ,k(fn)l!Zµ,l(gn)|
≤ k!l! (E|Zµ,k(f)Zµ,l(g − gn)| + E|Zµ,k(f − fn)Zµ,l(gn)) |
≤ k!l!

((
EZ2

µ,k(f)
)1/2 (

EZ2
µ,l(g − gn)

)1/2
+
(
EZ2

µ,k(f − fn)
)1/2 (

EZ2
µ,l(gn)

)1/2
)

≤ (k!l!)1/2 (‖f‖2‖g − gn‖2 + ‖f − fn‖2‖gn‖2) .
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Relation (B16) follows from this inequality with a limiting procedure n → ∞.

To prove relation (B17) write

|γ|!E
∣∣Zµ,|γ|(Fγ(f, g)) − Zµ,|γ|(Fγ(fn, gn))

∣∣
≤ |γ|!E

∣∣Zµ,|γ|(Fγ(f, g − gn))
∣∣+ |γ|!E

∣∣Zµ,|γ|(Fγ(f − fn, gn))
∣∣

≤ |γ|!
(
EZ2

µ,|γ|(Fγ(f, g − gn))
)1/2

+ |γ|!
(
EZ2

µ,|γ|(Fγ(f − fn, gn))
)1/2

≤ (|γ|!)1/2 (‖Fγ(f, g − gn)‖2 + ‖Fγ(f − fn, gn)‖2) ,

and observe that by relation (10.11) ‖Fγ(f, g − gn)‖2 ≤ ‖f‖2‖g − gn‖2, and ‖Fγ(f −
fn, gn)‖2 ≤ ‖f − fn‖2‖gn‖2. Hence

|γ|!E
∣∣Zµ,|γ|(Fγ(f, g)) − Zµ,|γ|(Fγ(fn, gn))

∣∣

≤ (|γ|!)1/2 (‖f‖2‖g − gn‖2 + ‖f − fn‖2‖gn‖2) .

The last inequality implies relation (B17) with a limiting procedure n → ∞. Theorem
10.2A is proved.

Appendix C. The proof of some results about Wiener–Itô integrals.

First I prove Itô’s formula about multiple Wiener–Itô integrals (Theorem 10.3). The
proof is based on the diagram formula for Wiener–Itô integrals and a recursive formula
about Hermite polynomials proved in Proposition C. In Proposition C2 I present the
proof of another important property of Hermite polynomials. This result states that
the class of all Hermite polynomials is a complete orthogonal system in an appropriate
Hilbert space. It is needed in the proof of Theorem 10.5 about the isomorphism of
Fock spaces to the Hilbert space generated by Wiener–Itô integrals. At the end of
Appendix C the proof of Theorem 10.4, a limit theorem about degenerated U -statistics
is given.

Proposition C about some properties of Hermite polynomials. The functions

Hk(x) = (−1)kex2/2 dk

dxk
e−x2/2, k = 0, 1, 2, . . . (C1)

are the Hermite polynomials with leading coefficient 1, i.e. Hk(x) is a polynomial of
order k with leading coefficient 1 such that

∫ ∞

−∞
Hk(x)Hl(x)

1√
2π

e−x2/2 dx = 0 if k 6= l, (C2)

and ∫ ∞

−∞
H2

k(x)
1√
2π

e−x2/2 dx = k! for all k = 0, 1, 2 . . . . (C2′)
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The recursive relation

Hk(x) = xHk−1(x) − (k − 1)Hk−2(x) (C3)

holds for all k = 1, 2, . . . .

Remark. It is more convenient to consider relation (C3) valid also in the case k = 1. In
this case H1(x) = x, H0(x) = 1, and relation holds with an arbitrary function H−1(x).

Proof of Proposition C. It is clear from formula (C1) that Hk(x) is a polynomial of order
k with leading coefficient 1. Take l ≥ k, and write by means of integration by parts

∫ ∞

−∞
Hk(x)Hl(x)

1√
2π

e−x2/2 dx =

∫ ∞

−∞

1√
2π

Hk(x)(−1)l dl

dxl
e−x2/2 dx

=

∫ ∞

−∞

1√
2π

d

dx
Hk(x)(−1)l−1 dl−1

dxl−1
e−x2/2 dx.

Successive partial integration together with the identity dk

dxk Hk(x) = k! yield that

∫ ∞

−∞
Hk(x)Hl(x)

1√
2π

e−x2/2 dx = k!

∫ ∞

−∞

1√
2π

(−1)l−k dl−k

dxl−k
e−x2/2 dx.

The last relation supplies formulas (C2) and (C2′).

To prove relation (C3) observe that Hk(x) − xHk−1(x) is a polynomial of order
k − 2. (The term xk−1 is missing from this expression. Indeed, if k is an even number,
then the polynomial Hk(x)−xHk−1(x) is an even function, and it does not contain the
term xk−1 with an odd exponent k−1. Similar argument holds if the number k is odd.)
Beside this, it is orthogonal (with respect to the standard normal distribution) to all
Hermite polynomials Hl(x) with 0 ≤ l ≤ k − 3. Hence Hk(x) − xHk−1(x) = CHk−2(x)
with some constant C to be determined.

Multiply both sides of the last identity with Hk−2(x) and integrate them with
respect to the standard normal distribution. Apply the orthogonality of the polynomials
Hk(x) and Hk−2(x), and observe that the identity

∫
Hk−1(x)xHk−2(x)

1√
2π

e−x2/2 dx =

∫
H2

k−1(x)
1√
2π

e−x2/2 dx = (k − 1)!

holds. (In this calculation we have exploited that Hk−1(x) is orthogonal to Hk−1(x) −
xHk−2(x), because the order of the latter polynomial is less than k − 1.) In such a way
we get the identity −(k − 1)! = C(k − 2)! for the constant C in the last identity, i.e.
C = −(k − 1), and this implies relation (C3).

Proof of Itô’s formula for multiple Wiener–Itô integrals. Let K =
m∑

p=1
kp, the sum of the

order of the Hermite polynomials, denote the order of the expression in relation (10.20).
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Formula (10.20) clearly holds for expressions of order K = 1. It will be proved in the
general case by means of induction with respect to the order K.

In the proof the functions f(x1) = ϕ1(x1) and

g(x1, . . . , xKm−1) =

K1−1∏

j=1

ϕ1(xj) ·
m∏

p=2

Kp−1∏

j=Kp−1

ϕp(xj),

will be introduced and the product Zµ,1(f)(Km − 1)!Zµ,Km−1(g) will be calculated by
means of the diagram formula. (The same notation is applied as in Theorem 10.3.

In particular, K = Km, and in the case K1 = 1 the convention
K1−1∏
j=1

ϕ1(xj) = 1 is

applied.) In the application of the diagram formula diagrams with two rows appear.
The first row of these diagrams contains the vertex (1, 1) and the second row contains
the vertices (2, 1), . . . , (2,Km − 1). It is useful to divide the diagrams to three disjoint
classes. The first class contains only the diagram γ0 without any edges. The second class
Γ1 consists of those diagrams which have an edge of the form ((1, 1), (2, j)) with some
1 ≤ j ≤ k1 − 1, and the third class Γ2 is the set of those diagrams which have an edge
of the form ((1, 1), (2, j)) with some k1 ≤ j ≤ Km − 1. Because of the orthogonality
of the functions ϕs for different indices s Fγ ≡ 0 and Zµ,Km−2(Fγ) = 0 for γ ∈ Γ2.
The class Γ1 contains k1 − 1 diagrams. Let us consider a diagram γ from this class
with an edge ((1, 1), (2, j0)), 1 ≤ j ≤ k1 − 1. We have for such a diagram Fγ =

∏
j∈{1,...,K1−1}\{j0}

ϕ1(x(2,j))
m∏

p=2

Kp−1∏
j=Kp−1

ϕp(x(2,j)), and by our inductive hypothesis (Km−

2)!Zµ,Km−2(Fγ) = Hk1−2(η1)
m∏

p=2
Hkp(ηp). Finally

Km!Zµ,Km(Fγ0) = Km!Zµ,Km




m∏

p=1




Kp∏

j=Kp−1+1

ϕp(xj)






for the diagram γ0 without any edge.

Our inductive hypothesis also implies the following identity for the expression we
wanted to calculate with the help of the diagram formula.

Zµ,1(f)(Km − 1)!Zµ,Km−1(g) = η1Hk1−1(η1)
m∏

p=2

Hkp(ηp).

The above calculations together with the observation |Γ1| = k1−1 yield the identity

Km!Zµ,Km




m∏

p=1




Kp∏

j=Kp−1+1

ϕp(xj)




 = Km!Zµ,Km(Fγ0)
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= Zµ,1(f)(Km − 1)!Zµ,Km−1(g) −
∑

γ∈Γ1

(Km − 2)!Zµ,Km−2(Fγ)

= η1Hk1−1(η1)

m∏

p=2

Hkp(ηp) − (k1 − 1)Hk1−2(η1)

m∏

p=2

Hkp(ηp)

= [η1Hk1−1(η1) − (k1 − 1)Hk1−2(η1)]

m∏

p=2

Hkp(ηp). (C4)

On the other hand, η1Hk1−1(η1)− (k1−1)Hk1−2(η1) = Hk1(η1) by formula (C3). These
relations imply formula (10.20), i.e. Itô’s formula.

I present the proof of another important property of the Hermite polynomials in
the following Proposition C2.

Proposition C2 on the completeness of the orthogonal system of Hermite
polynomials. The Hermite polynomials Hk(x), k = 0, 1, 2, . . . , defined in formula
(C4) constitute a complete orthonormal system of in the L2-space of the functions square

integrable with respect to the Gaussian measure 1√
2π

e−x2/2 dx on the real line.

Proof of Proposition C2. Let us consider the orthogonal complement of the subspace
generated by the Hermite polynomials in the space of the square integrable functions
with respect to the measure 1√

2π
e−x2/2 dx. It is enough to prove that this orthogonal

completion contains only the identically zero function. Since the orthogonality of a func-
tion to all polynomials of the form xk, k = 0, 1, 2, . . . is equivalent to the orthogonality
of this function to all Hermite polynomials Hk(x), k = 0, 1, 2, . . . , Proposition C2 can
be reformulated in the following form:

If a function g(x) on the real line is such that

∫ ∞

−∞
xkg(x)

1√
2π

e−x2/2 dx = 0 for all k = 0, 1, 2, . . . (C5)

and ∫ ∞

−∞
g2(x)

1√
2π

e−x2/2 dx < ∞, (C6)

then g(x) = 0 for almost all x.

Given a function g(x) on the real line whose absolute value is integrable with respect

to the Gaussian measure 1√
2π

e−x2/2 dx define the (finite) measure νg,

νg(A) =

∫

A

g(x)
1√
2π

e−x2/2 dx

on the measurable sets of the real line together with its Fourier transform ν̃g(t) =∫∞
−∞ eitxνg( dx). (This measure νg and its Fourier transform can be defined for all

functions g satisfying relation (C6), because their absolute value is integrable with
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respect to the Gaussian measure.) First I show that Proposition C2 can be reduced to
the following statement: If a function g satisfies both (C5) and (C6) then ν̃g(t) = 0 for
all −∞ < t < ∞.

Indeed, if there were a function g satisfying (C5) and (C6) which is not identically
zero, then the non-negative functions g+(x) = max(0, g(x)) and g−(x) = −min(0, g(x))
would be different. Then also their Fourier transform ν̃g+(t) and ν̃g−(t) would be dif-
ferent, since a finite measure is uniquely determined by its Fourier transform. (This
statement is equivalent to an important result in probability theory, by which a prob-
ability measure on the real line is determined by its characteristic function.) But this
would mean that ν̃g(t) = ν̃g+(t) − ν̃g−(t) 6= 0 for some t. Hence Proposition C2 can be
reduced to the above statement.

Since
∣∣∣eitx − 1 − (itx) − · · · − (itx)k

k!

∣∣∣ ≤ |tx|(k+1)

(k+1)! for all real numbers t, x and integer

k = 1, 2, . . . we may write because of relation (C5)

|ν̃g(t)| =

∣∣∣∣
∫ ∞

−∞

(
eitx − 1 − (itx) − · · · − (itx)k

k!

)
g(x)

1√
2π

e−x2/2 dx

∣∣∣∣

≤
∫ ∞

−∞

|t|(k+1)

(k + 1)!
|x|k+1|g(x)| 1√

2π
e−x2/2 dx

for all k = 1, 2, . . . and real number t if the function g satisfies relation (C5). If it satisfies
both relation (C5) and (C6), then from the last relation and the Schwarz inequality

|ν̃g(t)|2 ≤ const.
|t|2(k+1)

((k + 1)!)
2

∫ ∞

−∞
|x|2(k+1) 1√

2π
e−x2/2 dx

= const.
|t|2(k+1)

((k + 1)!)
2 1 · 3 · 5 · · · (2k + 1)

for all real number t and integer k = 1, 2, . . . . Simple calculation shows that the right-
hand side of the last estimate tends to zero as k → ∞. This implies that ν̃g(t) = 0 for
all t, and Proposition C2 holds.

I finish Appendix C with the proof of Theorem 10.4, a limit theorem about a
sequence of normalized degenerate U -statistics. It is based on an appropriate represen-
tation of the U -statistics by means of multiple random integrals which makes possible
to carry out an appropriate limiting procedure.

Proof of Theorem 10.4. For all n = 1, 2, . . . , the normalized degenerate U -statistics
n−k/2In,k(f) can be written in the form

n−k/2k!In,k(f) = nk/2

∫ ′
f(x1, . . . , xk)µn( dx1) . . . µn( dxk)

= nk/2

∫ ′
f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dx1)),

(C7)
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where µn is the empirical distribution function of the sequence ξ1, . . . , ξn defined in (4.5),
and the prime in

∫ ′
denotes that the diagonals, i.e. the points x = (x1, . . . , xk) such

that xj = xj′ for some pairs of indices 1 ≤ j, j′ ≤ k, j 6= j′, are omitted from the
domain of integration. The second identity in relation (C7) can be justified by means
of the identity

∫ ′
f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dx1)) − In,k(f)

=
∑

V : V ∈{1,...,k}, |V |≥1

(−1)|V |
∫ ′

f(x1, . . . , xk)
∏

j∈V

µ( dxj)
∏

j∈{1,...,k}\V

µn( dxj)) = 0.

(C8)
This identity holds for a function f canonical with respect to a non-atomic measure
µ, because each term in the sum at the right-hand side of (C8) equals zero. Indeed,
the integral of a canonical function f with respect to µ( dxj) with some index j ∈ V
equals zero for all fixed values x1, . . . , xj−1, xj+1, . . . , xk. The non-atomic property of
the measure µ was needed to guarantee that this integral equals zero also in the case
when the diagonals are omitted from the domain of integration.

We would like to derive Theorem 10.4 from relation (C7) by means of an appropriate
limiting procedure which exploits the convergence of the random fields n1/2(µn(A) −
µ(A)), A ∈ X , to a Gaussian field ν(A), A ∈ X , as n → ∞. But some problems arise
if we want to carry out such a program, because the fields n1/2(µn − µ) converge to a
non white noise type Gaussian field. The limit we get is similar to a Wiener bridge on
the real line. Hence a relation between Wiener processes and Wiener bridges suggests
to write the following version of formula (C7).

Let us take a standard Gaussian random variable η, independent of the random
sequence ξ1, ξ2, . . . . For a canonical function f the following version of (C7) holds.

n−k/2k!In,k(f) = J ′
n,k(f) (C9)

with

J ′
n,k(f) =

∫ ′
f(x1, . . . , xk)

[√
n(µn( dx1) − µ( dx1)) + ηµ( dx1)

]

. . .
[√

n(µn( dxk) − µ( dxk)) + ηµ( dxk)
]
.

(C10)

This relation can be seen similarly to (C7).

The random measures n1/2(µn − µ) + ηµ converge to a white noise with reference
measure µ. Hence Theorem 10.4 can be proved by means of formulas (C9) and (C10)
with the help of an appropriate limiting procedure. More explicitly, I claim that the
following slightly more general result holds. The expressions J ′

n,k(f) introduced in (C10)
converge in distribution to the Wiener–Itô integral k!Zµ,k(f) as n → ∞ for all functions
f square integrable with respect to the product measure µk. This result also holds
for non-canonical functions f . This limit theorem together with relation (C9) imply
Theorem 10.4.
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The convergence of the random variables J ′
n,k(f) defined in (C10) to the Wiener–Itô

integral k!Zµ,k(f) can be easily checked for elementary functions f ∈ H̄µ,k. Indeed, if
A1, . . . , AM are disjoint sets with µ(As) < ∞, then the multi-dimensional central limit
theorem implies that the random vectors {√n((µn(As)−µ(As)) + ηµ(As), 1 ≤ s ≤ M}
converge in distribution to the random vector {(µW (As), 1 ≤ s ≤ M}, i.e. to a set
of independent normal random variables ζs, Eζs = 0, 1 ≤ s ≤ M , with variance
Eζ2

s = µ(As) as n → ∞. The definition of the elementary functions given in (10.2)
shows that this central limit theorem implies the demanded convergence of the sequence
J ′

n,k(f) to k!Zµ,k(f) for elementary functions.

To show the convergence of the sequence J ′
n,k(f) to k!Zµ,k(f) in the general case,

take for any function f ∈ Hµ,k a sequence of elementary functions fN ∈ H̄µ,k such that
‖f − fN‖2 → 0 as N → ∞. Then E(Zµ,k(f) − Zµ,k(fN ))2 = E(Zµ,k(f − fN ))2 → 0 as
N → ∞ by Property c) in Theorem 10.1. Hence the already proved part of the theorem
implies that there exists some sequence of positive integers, N(n), n = 1, 2, . . . , in
such a way that N(n) → ∞, and the sequence J ′

n,k(fN(n)) converges to k!Zµ,k(f) in
distribution as n → ∞. Thus to complete the proof of Theorem 10.4 it is enough to
show that E(J ′

n,k(fN(n)) − J ′
n,k(f))2 = E(J ′

n,k(fN(n) − f))2 → 0 as n → ∞.

It is enough to show that

E(J ′
n,k(f))2 ≤ C‖f‖2

2 for all f ∈ Hµ,k (C11)

with a constant C = Ck depending only on the order k of the function f and to apply
inequality (C11) for the functions fN(n) − f . Relation (C11) is a relatively simple
consequence of Corollary 1 of Theorem 9.4.

Indeed,

J ′
n,k(f) =

∑

V ⊂{1,...,k}
ηk−|V ||V |!Jn,|V |(fV )

with

fV (xj , j ∈ V ) =

∫
f(x1, . . . , xk)

∏

j′∈{1,...,k}\V

µ(dxj′)

and the random integral Jn,k(·) defined in (4.8), hence

E(J ′
n,k(f))2 ≤ 2k

∑

V ⊂{1,...,k}
(|V |!)2Eη2(k−|V |) · EJ2

n,|V |(fV ). (C12)

Inequality ‖fV ‖2 ≤ ‖f‖2 holds for all sets V ⊂ {1, . . . , k}, hence an application of
Corollary 1 of Theorem (9.4) to all random integrals Jn,|V |(f) supplies (C11).

The above proof also yields the following slight generalization of Theorem 10.4. Let
us consider a finite sequence of functions fj ∈ Hµ,j , 1 ≤ j ≤ k, canonical with respect to
a non-atomic probability measure µ. The vectors {n−j/2In,j(fj), 1 ≤ j ≤ k}, consisting
of normalized degenerate U -statistics defined with the help of a sequence of independent
µ-distributed random variables converge to the random vector {Zµ,j(fj), 1 ≤ j ≤ k} in
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distribution as n → ∞. This result together with Theorem 9.4 imply the following limit
theorem about multiple random integrals Jn,k(f).

Theorem 10.4′. (Limit theorem about multiple random integrals with re-
spect to normalized empirical measures). Let a sequence of independent and
identically distributed random variables ξ1, ξ2, . . . be given with some non-atomic dis-
tribution µ on a measurable space (X,X ) together with a function f(x1, . . . , xk) on the
k-fold product (Xk,X k) of the space (X,X ) such that

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞.

Let us consider for all n = 1, 2, . . . the random integrals Jn,k(f) of order k defined in
formulas (4.5) and (4.8) with the help of the empirical distribution µn of the sequence
ξ1, . . . , ξn and the function f . These random integrals Jn,k(f) converge in distribution,
as n → ∞, to the following sum U(f) of multiple Wiener–Itô integrals:

U(f) =
∑

V ⊂{1,...,k}
C(k, V )Zµ,|V |(fV )

=
∑

V ⊂{1,...,k}

C(k, V )

|V |!

∫
fV (xj , j ∈ V )

∏

j∈V

µW (dxj),

where the functions fV (xj j ∈ V ), V ⊂ {1, . . . , k}, are those functions defined in formula
(9.2) which appear in the Hoeffding decomposition of the function f(x1, . . . , xk), the con-
stants C(k, V ) are the limits appearing in the limit relation lim

n→∞
C(n, k, V ) = C(k, V )

satisfied by the coefficients C(n, k, V ) in formula (9.9), and µW is a white noise with
reference measure µ.

An essential step of the proof of Theorem 10.4 was the reduction of the case of
general kernel functions to the case of elementary kernel functions. Let me make some
comments about it.

It would be simple to make such a reduction if we had a good approximation of
a canonical function with such elementary functions which are also canonical. But it
is very hard to find such an approximation. To overcome this difficulty we reduced
the proof of Theorem 10.4 to a modified version of this result, where instead of a limit
theorem for degenerate U -statistics a limit theorem for the random variables J ′

n,k(f)
introduced in formula (C10) has to be proved. In the proof of such a version we could
apply the approximation of a general kernel function with not necessarily canonical
elementary functions. Theorem 9.4 helped us to work with such an approximation.
Another natural way to overcome the above difficulty is to apply a Poissonian approxi-
mation of the normalized empirical measure. Such an approach was applied in [14] and
in [31], where some generalizations of Theorem 10.4 were proved.
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Appendix D. The proof of Theorem 14.3.

A result about the comparison of U -statistics and decoupled U -statistics.

The proof of Theorem 14.3. It will be simpler to formulate and prove a generalized
version of Theorem 14.3 where such generalized U -statistics are considered in which
different kernel functions may appear in each term of the sum. More explicitly, let
ℓ = ℓ(n, k) denote the set of all such sequences l = (l1, . . . , lk) of integers of length k
for which 1 ≤ lj ≤ n, 1 ≤ j ≤ k. To define generalized U -statistics let us fix a set
of functions {fl1,...,lk(x1, . . . , xk), (l1, . . . , lk) ∈ ℓ} which map the space (Xk,X k) to a
separable Banach space B, and have the property fl1,...,lk(x1, . . . , xk) ≡ 0 if lj = lj′ for
some indices j 6= j′. (The last condition corresponds to that property of U -statistics
that the diagonals are omitted from the summation in their definition.) Let us denote
this set of functions by f(ℓ) and define, similarly to the U -statistics and decoupled
U -statistics the generalized U -statistics and generalized decoupled U -statistics by the
formulas

In,k(f(ℓ)) =
1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k

fl1,...,lk (ξl1 , . . . , ξlk) (D1)

and

Īn,k(f(ℓ)) =
1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k

fl1,...,lk

(
ξ
(1)
l1

, . . . , ξ
(k)
lk

)
(D2)

(with the same independent random variables ξl and ξ
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k, as in

the definition of the original U -statistics and decoupled U -statistics.)

The following generalization of relation (14.13) will be proved.

P (‖In,k(f(ℓ))‖ > u) ≤ A(k)P
(
‖Īn,k(f(ℓ))‖ > γ(k)u

)
(14.13d)

with some constants A(k) > 0 and γ(k) > 0 depending only on the order k of these
generalized U -statistics.

We concentrate mainly on the proof of the generalization (14.13d) of relation
(14.13). Formula (14.14) is a relatively simple consequence of it. Formula (14.13d)
will be proved by means of an inductive procedure which works only in this more gen-
eral setting. It will be derived from the following statement.

Let us take two independent copies ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n of our original

sequence of random variables ξ1, . . . , ξn, and introduce for all sets V ⊂ {1, . . . , k} the
function αV (j), 1 ≤ j ≤ k, defined as αV (j) = 1 if j ∈ V and αV (j) = 2 if j /∈ V . Let
us define with their help the following version of decoupled U -statistics

In,k,V (f(ℓ)) =
1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k

fl1,...,lk

(
ξ
(αV (1))
l1

, . . . , ξ
(αV (k))
lk

)

for all V ⊂ {1, . . . , k}. (D3)
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The following inequality will be proved: There are some constants Ck > 0 and
Dk > 0 depending only on the order k of the generalized U -statistic In,k(f(ℓ)) such
that for all numbers u > 0

P (‖In,k(f(ℓ))‖ > u) ≤
∑

V ⊂{1,...,k}, 1≤|V |≤k−1

CkP (Dk‖In,k,V (f(ℓ))‖ > u) . (D4)

Here |V | denotes the cardinality of the set V , and the condition 1 ≤ |V | ≤ k − 1 in
the summation of formula (D4) means that the sets V = ∅ and V = {1, . . . , k} are
omitted from the summation, i.e. the terms where either αV (j) = 1 or αV (j) = 2 for all
1 ≤ j ≤ k are not considered. Formula (14.13d) can be derived from formula (D4) by
means of an inductive argument. The hard part of the problem is to prove formula (D4).
To do this first the following simple lemma will be proved.

Lemma D1. Let ξ and η be two independent and identically distributed random vari-
ables taking values in a separable Banach space B. Then

3P

(
|ξ + η| >

2

3
u

)
≥ P (|ξ| > u) for all u > 0.

Proof of Lemma D1. Let ξ, η and ζ be three independent, identically distributed random
variables taking values in B. Then

3P

(
|ξ + η| >

2

3
u

)
= P

(
|ξ + η| >

2

3
u

)
+ P

(
|ξ + ζ| >

2

3
u

)
+ P

(
| − (η + ζ)| >

2

3
u

)

≥ P (|ξ + η + ξ + ζ − η − ζ| > 2u) = P (|ξ| > u).

To prove formula (D4) we introduce the random variable

Tn,k(f(ℓ)) =
1

k!

∑

(l1,...,lk), (s1,...,sk):
1≤lj≤n, sj=1 or sj=2, j=1,...,k,

fl1,...,lk

(
ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)
=

∑

V ⊂{1,...,k}
In,k,V (f(ℓ)).

(D5)
Observe that the random variables In,k(f(ℓ)), In,k,∅(f(ℓ)) and In,k,{1,...,k}(f(ℓ)) are
identically distributed, and the last two random variables are independent of each other.
Hence Lemma D1 yields that

P (‖In,k(f(ℓ))‖ > u) ≤ 3P

(
‖In,k,∅(f(ℓ)) + In,k,{1,...,k}(f(ℓ))‖ >

2

3
u

)

= 3P



∥∥∥∥∥∥
Tn,k(f(ℓ)) −

∑

V : V ⊂{1,...,k}, 1≤|V |≤k−1

In,k,|V |(f(ℓ))

∥∥∥∥∥∥
>

2

3
u
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≤ 3P (3 · 2k−1‖Tn,k(f(ℓ))‖ > u) (D6)

+
∑

V : V ⊂{1,...,k}, 1≤|V |≤k−1

3P (3 · 2k−1‖In,k,|V |(f(ℓ))‖ > u).

To derive relation (D4) from relation (D6) a good estimate is needed on the probability
P (3·2k−1‖Tn,k(f(ℓ))‖ > u). To get such an estimate the tail distribution of ‖Tn,k(f(ℓ))‖
will be compared with that of ‖In,k,V (f(ℓ))‖ for an arbitrary set V ⊂ {1, . . . , k}. This
will be done with the help of Lemmas D2 and D4 formulated below.

In Lemma D2 such a random variable ‖Īn,k,V (f(ℓ))‖ will be constructed whose dis-
tribution agrees with that of ‖In,k,V (f(ℓ))‖. The expression Īn,k,V (f(ℓ)), whose norm
will be investigated will be defined in formulas (D7) and (D8). It is a random poly-
nomial of some Rademacher functions ε1, . . . , εn. The coefficients of this polynomial
are random variables, independent of the Rademacher functions ε1, . . . , εn. Beside this,
the constant term of this polynomial equals Tn,k(f(ℓ). These properties of the poly-
nomial Īn,k,V (f(ℓ)) together with Lemma D4 formulated below enable us prove such
an estimate on the distribution of ‖Tn,k(f(ℓ))‖ that together with formula (D6) imply
relation (D4). Let us formulate these lemmas.

Lemma D2. Let us consider a sequence of independent random variables ε1, . . . , εn,
P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is also independent of the ran-

dom variables ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n appearing in the definition of the modi-

fied decoupled U -statistics In,k,V (f(ℓ)) given in formula (D3). Let us define with their

help the sequences of random variables η
(1)
1 , . . . , η

(1)
n and η

(2)
1 , . . . , η

(2)
n whose elements

(η
(1)
l , η

(2)
l ) = (η

(1)
l (εl), η

(2)
l (εl)), 1 ≤ l ≤ n, are defined by the formula

(η
(1)
l (εl), η

(2)
l (εl)) =

(
1 + εl

2
ξ
(1)
l +

1 − εl

2
ξ
(2)
l ,

1 − εl

2
ξ
(1)
l +

1 + εl

2
ξ
(2)
l

)
,

i.e. let (η
(1)
l (εl), η

(2)
l (εl)) = (ξ

(1)
l , ξ

(2)
l ) if εl = 1, and (η

(1)
l (εl), η

(2)
l (εl)) = (ξ

(2)
l , ξ

(1)
l )

if εl = −1, 1 ≤ l ≤ n. Then the joint distribution of the pair of sequences of ran-

dom variables ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n agrees with that of the pair of sequences

η
(1)
1 , . . . , η

(1)
n and η

(2)
1 , . . . , η

(2)
n , which is also independent of the sequence ε1, . . . , εn.

Let us fix some V ⊂ {1, . . . , k}, and introduce the random variable

Īn,k,V (f(ℓ)) =
1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k

fl1,...,lk

(
η
(αV (1))
l1

, . . . , η
(αV (k))
lk

)
, (D7)

where similarly to formula (D3) αV (j) = 1 if j ∈ V , and αV (j) = 2 if j /∈ V . Then the
identity

2k Īn,k,V (f(ℓ)) (D8)

=
1

k!

∑

(l1,...,lk), (s1,...,sk):
1≤lj≤n, sj=1 or sj=2, j=1,...,k,

(1 + κ
(1)
s1,V εl1) · · · (1 + κ

(k)
sk,V εlk)fl1,...,lk

(
ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)
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holds, where κ
(j)
1,V = 1 and κ

(j)
2,V = −1 if j ∈ V , and κ

(j)
1,V = −1 and κ

(j)
2,V = 1 if j /∈ V ,

i.e. κ
(j)
1,V = 3 − 2αV (j) and κ

(j)
2,V = −κ

(j)
1,V .

Before the formulation of Lemma D4 another Lemma D3 will be presented which
will be applied in its proof.

Lemma D3. Let Z be a random variable taking values in a separable Banach space
B with expectation zero, i.e. let Eκ(Z) = 0 for all κ ∈ B′, where B′ denotes the
(Banach) space of all (bounded) linear transformations of B to the real line. Then

P (‖v + Z‖ ≥ ‖v‖) ≥ inf
κ∈B′

(E|κ(Z)|)2
4Eκ(Z)2 for all v ∈ B.

Lemma D4. Let us consider a positive integer n and a sequence of independent random
variables ε1, . . . , εn, P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n. Beside this, fix
some positive integer k, take a separable Banach space B and choose some elements
as(l1, . . . , ls) of this Banach space B, 1 ≤ s ≤ k, 1 ≤ lj ≤ n, lj 6= lj′ if j 6= j′,
1 ≤ j, j′ ≤ s. With the above notations the inequality

P




∥∥∥∥∥∥∥∥∥
v +

k∑

s=1

∑

(l1,...,ls): 1≤lj≤n, j=1,...,s,

lj 6=lj′ if j 6=j′

as(l1, . . . , ls)εl1 · · · εls

∥∥∥∥∥∥∥∥∥
≥ ‖v‖


 ≥ ck (D9)

holds for all v ∈ B with some constant ck > 0 which depends only on the parameter k.

Proof of Lemma D2. Let us consider the conditional joint distribution of the sequences of

random variables η
(1)
1 , . . . , η

(1)
n and η

(2)
1 , . . . , η

(2)
n under the condition that the random

vector ε1, . . . , εn takes the value of some prescribed ±1 series of length n. Observe
that this conditional distribution agrees with the joint distribution of the sequences

ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n for all possible conditions. This fact implies the statement

about the joint distribution of the sequences η
(1)
l , η

(2)
l , 1 ≤ l ≤ n and their independence

of the sequence ε1, . . . , εn.

To prove identity (D8) let us fix a set M ⊂ {1, . . . , n}, and consider the case when
εl = 1 if l ∈ M and εl = −1 if l /∈ M . Put βV,M (j, l) = 1 if j ∈ V and l ∈ M or
j /∈ V and l /∈ M , and let βV,M (j, l) = 2 otherwise. Then we have for all (l1, . . . , lk),
1 ≤ lj ≤ n, 1 ≤ j ≤ n, and our fixed set V

∑

(s1,...,sk): sj=1 or sj=2, j=1,...,k,

(1 + κ
(1)
s1,V εl1) · · · (1 + κ

(k)
sk,V εlk)fl1,...,lk

(
ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)

= 2kfl1,...,lk

(
ξ
(βV,M (1,l1))
l1

, . . . , ξ
(βV,M (k,lk))
lk

)
,

(D10)

since the product (1+κ
(1)
s1,V εl1) · · · (1+κ

(k)
sk,V εlk) equals either zero or 2k, and it equals 2k

for that sequence (s1, . . . , sk) for which κ
(j)
sj ,V εlj = 1 for all 1 ≤ j ≤ k, and the relation

κ
(j)
sj ,V εlj = 1 is equivalent to βV,M (j, lj) = sj for all 1 ≤ j ≤ k. (In relation (D10) it

205



is sufficient to consider only such products for which lj 6= lj′ if j 6= j′ because of the
properties of the functions fl1,...,lk .)

Beside this, ξ
βV,M (l,j)
l = η

αV (j)
l for all 1 ≤ l ≤ n and 1 ≤ j ≤ k, and as a consequence

fl1,...,lk

(
ξ
(βV,M (1,l1))
l1

, . . . , ξ
(βV,M (k,lk))
lk

)
= fl1,...,lk

(
η
(αV (1))
l1

, . . . , η
(αV (k))
lk

)
.

Summing up the identities (D10) for all 1 ≤ l1, . . . , lk ≤ n and applying the last identity
we get relation (D8), since the identity obtained in such a way holds for all M ⊂
{1, . . . , n}.

Proof of Lemma D3. Let us first observe that if ξ is a real valued random variable with

zero expectation, then P (ξ ≥ 0) ≥ (E|ξ|)2
4Eξ2 since (E|ξ|)2 = 4(E(ξI({ξ ≥ 0}))2 ≤ 4P (ξ ≥

0)Eξ2 by the Schwarz inequality, where I(A) denotes the indicator function of the set A.
(In the above calculation and in the subsequent proofs I apply the convention 0

0 = 1.
We need this convention if Eξ2 = 0. In this case we have, because of the condition
Eξ = 0 the identity P (ξ = 0) = 1, hence the above proved identity holds in this case,
too.)

Given some v ∈ B, let us choose a linear operator κ such that ‖κ‖ = 1 and
κ(v) = ‖v‖. Such an operator exists by the Banach–Hahn theorem. Observe that
{ω: ‖v + Z(ω)‖ ≥ ‖v‖} ⊃ {ω: κ(v + Z(ω)) ≥ κ(v)} = {ω: κ(Z(ω)) ≥ 0}. Beside this
Eκ(Z) = 0. Hence we can apply the above proved inequality for ξ = κ(Z), and it yields

that P (‖v + Z‖ ≥ ‖v‖) ≥ P (κ(Z) ≥ 0) ≥ (E|κ(Z)|)2
4Eκ(Z)2 . Lemma D3 is proved.

Proof of Lemma D4. Take the class of random polynomials

Y =
k∑

s=1

∑

(l1,...,ls): 1≤lj≤n, j=1,...,s,

lj 6=lj′ if j 6=j′

bs(l1, . . . , ls)εl1 · · · εls ,

where εl, 1 ≤ l ≤ n, are independent random variables with P (εl = 1) = P (εl = −1) =
1
2 , and the coefficients bs(l1, . . . , ls), 1 ≤ s ≤ k, are arbitrary real numbers. The proof
of Lemma D4 can be reduced to the statement that there exists a constant ck > 0
depending only on the order k of these polynomials such that the inequality

(E|Y |)2 ≥ 4ckEY 2. (D11)

holds for all such polynomials Y . Indeed, consider the polynomial

Z =
k∑

s=1

∑

(l1,...,ls): 1≤lj≤n, j=1,...,s,

lj 6=lj′ if j 6=j′

as(l1, . . . , ls)εl1 · · · εls ,

and observe that Eκ(Z) = 0 for all linear functionals κ on the space B. Hence
Lemma D3 implies that the left-hand side expression in (D9) is bounded from below by

inf
κ∈B′

(E|κ(Z)|)2
4Eκ(Z)2 . On the other hand, relation (D11) implies that inf

κ∈G′

(E|κ(Z)|)2
4Eκ(Z)2 ≥ ck.
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To prove relation (D11) first we compare the moments EY 2 and EY 4. Let us
introduce the random variables

Ys =
∑

(l1,...,ls): 1≤lj≤n, j=1,...,s,

lj 6=lj′ if j 6=j′

bs(l1, . . . , ls)εl1 · · · εls 1 ≤ s ≤ k.

We shall show that the estimates of Section 13 imply that

EY 4
s ≤ 24s

(
EY 2

s

)2
(D12)

for these random variables Ys.

Relation (D12) together with the uncorrelatedness of the random variables Ys,
1 ≤ s ≤ k, imply that

EY 4 = E

(
k∑

s=1

Ys

)4

≤ k3
k∑

s=1

EY 4
s ≤ k324k

k∑

s=1

(EY 2
s )2

≤ k324k

(
k∑

s=1

EY 2
s

)2

= k324k(EY 2)2.

This estimate together with the Hölder inequality with p = 3 and q = 3
2 yield that

EY 2 = E|Y |4/3| · |Y |2/3 ≤ (EY 4)1/3(E|Y |)2/3 ≤ k24k/3(EY 2)2/3(E|Y |)2/3, i.e. EY 2 ≤
k324k(E|Y |)2, and relation (D11) holds with 4ck = k−32−4k. Hence to complete the
proof of Lemma D4 it is enough to check relation (D12).

In the proof of relation (D12) it can be assumed that the coefficients bs(l1, . . . , ls)
of the random variable Ys are symmetric functions of the arguments l1, . . . , ls, since a
symmetrization of these coefficients does not change the value of Y . Put

B2
s =

∑

(l1,...,ls): 1≤lj≤n, j=1,...,s,

lj 6=lj′ if j 6=j′

b2
s(l1, . . . , ls), 1 ≤ s ≤ k.

Then
EY 2

s = s!B2
s ,

and

EY 4
s ≤ 1 · 3 · 5 · · · (4s − 1)B4

s =
(4s)!

22s(2s)!
B4

s

by Lemmas 13.4 and 13.5 with the choice M = 2 and k = s. Inequality (D12) follows
from the last two relations. Indeed, to prove formula (D12) by means of these relations

it is enough to check that (4s)!
22s(2s)!(s!)2 ≤ 24s. But it is easy to check this inequality with

induction with respect to s. (Actually, there is a well-known inequality in the literature,
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known under the name Borell’s inequality, which implies inequality (D12) with a better
coefficient at the right hand side of this estimate.)

Let us turn back to the estimation of the probability P (3 · 2k−1‖Tn,k(f)‖ > u).

Let us introduce the σ-algebra F = B(ξ
(1)
l , ξ

(2)
l , 1 ≤ l ≤ n) generated by the random

variables ξ
(1)
l , ξ

(2)
l , 1 ≤ l ≤ n, and fix some set V ⊂ {1, . . . , k}. I show with the

help of Lemma D4 and formula (D8) that there exists some constant ck > 0 such
that the random variables Tn,kf(ℓ)) defined in formula (D5) and Īn,k,V (f(ℓ)) defined in
formula (D7) satisfy the inequality

P
(
‖2k Īn,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F

)
≥ ck with probability 1. (D13)

In the proof I shall exploit that in formula (D8) 2k Īn,k,V (f(ℓ)) is represented by a
polynomial of the Rademacher functions ε1, . . . , εn whose constant term is Tn,k(f(ℓ)).

The coefficients of this polynomial are functions of the random variables ξ
(1)
l and ξ

(2)
l ,

1 ≤ l ≤ n. The independence of these random variables from εl, 1 ≤ l ≤ n, and the
definition of the σ-algebra F yield that

P
(
‖2k Īn,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F

)

= PεV

(∥∥∥∥
1

k!

∑

(l1,...,lk), (s1,...,sk):
1≤lj≤n,sj=1 or sj=2, j=1,...,k,

(1 + κ
(1)
s1,V εl1) · · · (1 + κ

(k)
sk,V εlk)fl1,...,lk

(
ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)∥∥∥∥

> ‖Tn,k(f(ℓ))(ξ
(j)
l , 1 ≤ l ≤ n, j = 1, 2)‖

)
, (D14)

where PεV
means that the values of the random variables ξ

(1)
l , ξ

(2)
l , 1 ≤ l ≤ n, are

fixed, (their value depend on the atom of the σ-algebra F we are considering) and the
probability is taken with respect to the remaining random variables εl, 1 ≤ l ≤ n.
At the right-hand side of (D14) the probability of such an event is considered that
the norm of a polynomial of order k of the random variables ε1, . . . , εn is larger than

‖Tn,k(f(ℓ))(ξ
(j)
l , 1 ≤ l ≤ n, j = 1, 2)‖. Beside this, the constant term of this polynomial

equals Tn,k(f(ℓ))(ξ
(j)
l , 1 ≤ l ≤ n, j = 1, 2). Hence this probability can be bounded by

means of Lemma D4, and this result yields relation (D13).

As the distributions of In,k,V (f(ℓ)) and Īn,k,V (f(ℓ)) agree by the first statement of
Lemma D2 and a comparison of formulas (D3) and (D7), relation (D13) implies that

P

(
‖2kIn,k,V (f(ℓ))‖ ≥ 1

3
· 21−ku

)
= P

(
‖2k Īn,k,V (f(ℓ))‖ ≥ 1

3
· 21−ku

)

≥ P

(
‖2k Īn,k,V (f(ℓ))‖ ≥ ‖Tn,k(f(ℓ))‖, ‖Tn,k(f(ℓ))‖ ≥ 1

3
· 21−ku

)

=

∫

{ω: ‖Tn,k(f(ℓ))(ω)‖≥ 1
3 ·21−ku}

P
(
‖2k Īn,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F

)
dP

≥ ckP (3 · 2k−1‖Tn,k(f(ℓ))‖ ≥ u).

208



The last inequality with the choice of any set V ⊂ {1, . . . , k}, 1 ≤ |V | ≤ k − 1, together
with relation (D6) imply formula (D4).

Relation (14.13d) will be proved together with another inductive hypothesis with
the help of relation (D4) by means of an induction procedure with respect to the order
k of the U -statistic. To formulate the other inductive hypothesis some new quantities
will be introduced. Let W = W(k) denote the set of all partitions of the set {1, . . . , k}.

Let us fix k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the sequence of random

variables ξ1, . . . , ξn. Given a partition W = (U1, . . . , Us) ∈ W(k) let us introduce the
function sW (j), 1 ≤ j ≤ k, which tells for all arguments j the index of that element
of the partition W which contains the point j, i.e. the value of the function sW (j),
1 ≤ j ≤ k, in a point j is defined by the relation j ∈ VsW (j). Let us introduce the
expression

In,k,W (f(ℓ)) =
1

k!

∑

(l1,...,lk): 1≤lj≤n, j=1,...,k

fl1,...,lk

(
ξ
(sW (1))
l1

, . . . , ξ
(sW (k))
lk

)

for all W ∈ W(k).

An expression of the form In,k,W (f(ℓ)), W ∈ Wk, will be called a decoupled U -statistic
with generalized decoupling. Given a partition W = (U1, . . . , Us) ∈ Wk let us call the
number s, i.e. the number of the elements of this partition the rank both of the partition
W and of the decoupled U -statistic In,k,W (f(ℓ)) with generalized decoupling.

Now I formulate the following hypothesis. For all k ≥ 2 and 2 ≤ j ≤ k there exist
some constants C(k, j) > 0 and δ(k, j) > 0 such that for all W ∈ Wk a decoupled
U -statistic In,k,W (f(ℓ)) with generalized decoupling satisfies the inequality

P (‖In,k,W (f(ℓ))‖ > u) ≤ C(k, j)P
(
‖Īn,k(f(ℓ))‖ > δ(k, j)u

)

for all 2 ≤ j ≤ k if the rank of W equals j.
(D15)

It will be proved by induction with respect to k that both relations (14.13d)
and (D15) hold for U -statistics of order k. Let us observe that for k = 2 relation (14.13d)
follows from (D4). Relation (D15) also holds for k = 2, since in this case we have to
consider only the case j = k = 2, and relation (D15) clearly holds in this case with
C(2, 2) = 1 and δ(2, 2) = 1. Hence we can start our inductive proof with k = 3. First I
prove relation (D15).

In relation (D15) the tail-distribution of decoupled U -statistics with generalized
decoupling is compared with that of the decoupled U -statistic Īn,k(f(ℓ)) introduced
in (D2). Given the order k of these U -statistics it will be proved by means of a backward
induction with respect to the rank j of the decoupled U -statistics In,k,W (f(ℓ)) with
generalized decoupling.

Relation (D15) clearly holds for j = k with C(k, k) = 1 and δ(k, k) = 1. To prove
it for decoupled U -statistics with generalized decoupling of rank 2 ≤ j < k first the
following observation will be made. If the rank j of the partition W = (U1, . . . , Uj)
satisfies the relation 2 ≤ j ≤ k − 1, then it contains an element with cardinality strictly
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less than k and strictly greater than 1. For the sake of simpler notation let us assume
that the element Uj of this partition is such an element, and Uj = {t, . . . , k} with some
2 ≤ t ≤ k − 1. The investigation of general U -statistics of rank j, 2 ≤ j ≤ k − 1,
can be reduced to this case by a reindexation of the arguments in the U -statistics if
it is necessary. Let us consider the partition W̄ = (U1, . . . , Uj−1, {t}, . . . , {k}) and the
decoupled U -statistic In,k,W̄ (f(ℓ)) with generalized decoupling corresponding to this
partition W̄ . It will be shown that our inductive hypothesis implies the inequality

P (‖In,k,W (f(ℓ))‖ > u) ≤ Ā(k)P
(
‖In,k,W̄ (f(ℓ))‖ > γ̄(k)u

)
(D16)

with Ā(k) = sup
2≤p≤k−1

A(p), γ̄(k) = inf
2≤p≤k−1

γ(p) if the rank j of W is such that 2 ≤ j ≤

k − 1, where the constants A(p) and γ(p) agree with the corresponding coefficients in
formula (14.13d).

To prove relation (D16) (in the case when Uj = {t, . . . , k}) let us define the σ-
algebra F generated by the random variables appearing in the first t− 1 coordinates of

these U -statistics, i.e. by the random variables ξ
sW (j)
lj

, 1 ≤ j ≤ t− 1, and 1 ≤ lj ≤ n for

all 1 ≤ j ≤ t− 1. We have 2 ≤ t ≤ k − 1. By our inductive hypothesis relation (14.13d)
holds for U -statistics of order p = k− t+1, since 2 ≤ p ≤ k−1. I claim that this implies
that

P (‖In,k,W (f(ℓ))‖ > u|F) ≤ A(k − t + 1)P
(
‖In,k,W̄ (f(ℓ))‖ > γ(k − t + 1)u|F

)
(D17)

with probability 1. Indeed, by the independence properties of the random variables

ξ
sW (j)
l (and ξ

sW̄ (j)
l ), 1 ≤ j ≤ k, 1 ≤ l ≤ n,

P (‖In,k,W (f(ℓ))‖ > u|F) = P
ξ

sW (j)

l
,1≤j≤t−1

(‖In,k,W (f(ℓ)‖ > u)

and

P
(
‖In,k,W̄ (f(ℓ))‖ > γ(k − t + 1)u|F

)
= P

ξ
sW (j)

l
,1≤j≤t−1

(‖In,k,W̄ f(ℓ)‖ > γ(k− t + 1)u),

where P
ξ

sW (j)

l
,1≤j≤t−1

denotes that the values of the random variables ξ
sW (j)
l (ω), 1 ≤

j ≤ t − 1, 1 ≤ l ≤ n, are fixed, and we consider the probability that the appropriate
functions of these fixed values and of the remaining random variables ξsW (j) and ξsW̄ (j),
t ≤ j ≤ k, satisfy the desired relation. These identities and the relation between the
sets W and W̄ imply that relation (D17) is equivalent to the identity (14.13d) for the
generalized U -statistics of order 2 ≤ k − t + 1 ≤ k − 1 with kernel functions

flt,...,lk(xt, . . . , xk)

=
∑

(l1,...,lt−1): 1≤lj≤n, 1≤j≤t−1

fl1,...,lk(ξ
sW (1)
l1

(ω), . . . , ξ
sW (t−1)
lt−1

(ω), xt, . . . , xk).

Relation (D16) follows from inequality (D17) if expectation is taken at both sides. As
the rank of W̄ is strictly greater than the rank of W , relation (D16) together with our
backward inductive assumption imply relation (D15) for all 2 ≤ j ≤ k.
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Relation (D15) implies in particular (with the applications of partitions of order k
and rank 2) that the terms in the sum at the right-hand side of (D4) satisfy the inequal-
ity P (Dk‖In,k,V (f(ℓ))‖ > u) ≤ C̄(k, j)P

(
‖Īn,k(f(ℓ))‖ > D̄ku

)
with some appropriate

C̄k > 0 and D̄k > 0 for all V ⊂ {1, . . . , k}, 1 ≤ |V | ≤ k − 1. This inequality together
with relation (D4) imply that inequality (14.13d) also holds for the parameter k.

In such a way we get the proof of relation (14.13d) and of its special case, rela-
tion (14.13). Let us prove formula (14.14) with its help first in the simpler case when
the supremum of finitely many functions is taken. If M < ∞ functions f1, . . . , fM are
considered, then relation (14.14) for the supremum of the U -statistics and decoupled
U -statistics with these kernel functions can be derived from formula (14.13) if it is
applied for the function f = (f1, . . . , fM ) with values in the separable Banach space
BM which consists of the vectors (v1, . . . , vM ), vj ∈ B, 1 ≤ j ≤ M , and the norm
‖(v1, . . . , vM )‖ = sup

1≤j≤m
‖vj‖ is introduced in it. The application of formula (14.13)

with this choice yields formula (14.14) for this supremum. Let us emphasize that the
constants appearing in this estimate do not depend on the number M . (We took only
M < ∞ kernel functions, because with such a choice the Banach space BM defined
above is also separable.) Since the distribution of the random variables sup

1≤s≤M
‖In,k(fs)‖

converge to that of sup
1≤s<∞

‖In,k(fs)‖, and the distribution of the random variables

sup
1≤s≤M

∥∥Īn,k(fs)
∥∥ converge to that of sup

1≤s<∞

∥∥Īn,k(fs)
∥∥ as M → ∞, relation (14.14)

in the general case follows from its already proved special case and a limiting procedure
M → ∞.

Remark. The above proved formula (14.13d) can be slightly generalized. It also holds
if the expressions In,k(f(ℓ)) and Īn,k(f(ℓ)) appearing in this inequality are defined in
a more general way. Namely, they are the random functions introduced in formulas

(D1) and (D2), but the sequences ξ1, . . . , ξn and their independent copies ξ
(j)
1 , . . . , ξ

(j)
n

in these formulas are independent random variables which may also be non-identically
distributed. This generalization can be shown without any essential change in the
original proof.
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