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Chapter 1

Introduction

First I briefly describe the main subject of this work.
Fix a positive integer n, consider n independent and identically distributed

random variables ξ1, . . . , ξn on a measurable space (X,X ) with some distribu-
tion µ and take their empirical distribution µn together with its normalization√

n(µn − µ). Beside this, take a function f(x1, . . . , xk) of k variables on the
k-fold product (Xk,X k) of the space (X,X ), introduce the k-th power of
the normalized empirical measure

√
n(µn − µ) on (Xk,X k) and define the

integral of the function f with respect to this signed product measure. This
integral is a random variable, and we want to give a good estimate on its tail
distribution. More precisely, we take the integrals not on the whole space,
the diagonals xs = xs′ , 1 ≤ s, s′ ≤ k, s 6= s′, of the space Xk are omitted
from the domain of integration. Such a modification of the integral seems to
be natural.

We shall also be interested in the following generalized version of the above
problem. Let us have a nice class of functions F of k variables on the product
space (Xk,X k), and consider the integrals of all functions in this class with
respect to the k-fold direct product of our normalized empirical measure. Give
a good estimate on the tail distribution of the supremum of these integrals.

It may be asked why the above problems deserve a closer study. I found
them important, because they may help in solving some essential problems in
probability theory and mathematical statistics. I met such problems when I
tried to adapt the method of proof about the Gaussian limit behaviour of the
maximum likelihood estimate to some similar but more difficult questions.
In the original problem the asymptotic behaviour of the solution of the so-
called maximum likelihood equation has to be investigated. The study of this
problem is hard in its original form. But by applying an appropriate Taylor
expansion of the function that appears in this equation and throwing away its
higher order terms we get an approximation whose behaviour can be simply
understood. So to describe the limit behaviour of the maximum likelihood
estimate it suffices to show that this approximation causes only a negligible
error.
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2 1 Introduction

One would try to apply a similar method in the study of more difficult ques-
tions. I met some non-parametric maximum likelihood problems, for instance
the description of the limit behaviour of the so-called Kaplan–Meyer product
limit estimate when such an approach could be applied. But in these prob-
lems it was harder to show that the simplifying approximation causes only
a negligible error. In this case the solution of the above mentioned problems
was needed. In the non-parametric maximum likelihood estimate problems
I met, the estimation of multiple (random) integrals played a role similar
to the estimation of the coefficients in the Taylor expansion in the study of
maximum likelihood estimates. Although I could apply this approach only in
some special cases, I believe that it works in very general situations. But it
demands some further work to show this.

The above formulated problems about random integrals are interesting
and non-trivial even in the special case k = 1. Their solution leads to some
interesting and non-trivial generalization of the fundamental theorem of the
mathematical statistics about the difference of the empirical and real distri-
bution of a large sample.

These problems have a natural counterpart about the behaviour of so-
called U -statistics, a fairly popular subject in probability theory. The inves-
tigation of multiple random integrals and U -statistics are closely related, and
it turned out that it is useful to consider them simultaneously.

Let us try to get some feeling about what kind of results can be expected
in these problems. For a large sample size n the normalized empirical measure√

n(µn − µ) behaves similarly to a Gaussian random measure. This suggests
that in the problems we are interested in similar results should hold as in
the problems about multiple Gaussian integrals, called Wiener–Itô integrals
in the literature. We may expect that the tail behaviour of the distribution
of a k-fold random integral with respect to a normalized empirical measure
is similar to that of the k-th power of a Gaussian random variable with ex-
pectation zero and an appropriate variance. Beside this, if we consider the
supremum of multiple random integrals of a class of functions with respect to
a normalized empirical measure or with respect to a Gaussian random mea-
sure, then we expect that under not too restrictive conditions this supremum
is not much larger than the ‘worst’ random integral with the largest variance
taking part in this supremum. We may also hope that the methods of the
theory of multiple Gaussian integrals can be adapted to the investigation of
our problems.

The above presented heuristic considerations supply a fairly good descrip-
tion of the situation, but they do not take into account a very essential
difference between the behaviour of multiple Gaussian integrals and multiple
integrals with respect to a normalized empirical measure. If the variance of
a multiple integral with respect to a normalized empirical measure is very
small, what turns out to be equivalent to a very small L2-norm of the func-
tion we are integrating, then the behaviour of this integral is different from
that of a multiple Gaussian integral with the same kernel function. In this



1 Introduction 3

case the effect of some irregularities of the normalized empirical distribution
turns out to be non-negligible, and no good Gaussian approximation holds
any longer. This case must be better understood, and some new methods
have to be worked out to handle it.

The precise formulation of the results will be given in the main part of the
work. Beside their proofs I also tried to explain the main ideas behind them
and the notions introduced in their investigation. This work contains some
new results, and also the proof of some already rather classical theorems is
presented. The results about Gaussian random variables and their non-linear
functionals, in particular multiple integrals with respect to a Gaussian field,
have a most important role in the study of the present work. Hence they will
be discussed in detail together with some of their counterparts about multiple
random integrals with respect to a normalized empirical measure and some
results about U -statistics.

The proofs apply results from different parts of the probability theory. Pa-
pers investigating similar results refer to works dealing with quite different
subjects, and this makes their reading rather hard. To overcome this diffi-
culty I tried to work out the details and to present a self-contained discussion
even at the price of a longer text. Thus I wrote down (in the main text or
in the Appendix) the proof of many interesting and basic results, like results
about Vapnik–Červonenkis classes, about U -statistics and their decomposi-
tion to sums of so-called degenerate U -statistics, about so-called decoupled
U -statistics and their relation to ordinary U -statistics, the diagram formula
about the product of Wiener–Itô integrals, their counterpart about the prod-
uct of degenerate U -statistics, etc. I tried to give such an exposition where
different parts of the problem are explained independently of each other, and
they can be understood in themselves. I wrote about the history of the prob-
lems discussed in this work and their relation to some other question in the
last section of this Lecture Note before the Appendix, in Section 18.

An earlier version of this work was explained at the probability seminar
of the University Debrecen (Hungary).





Chapter 2

Motivation of the investigation.
Discussion of some problems

In this section I try to show by means of some examples why the solution
of the problems mentioned in the introduction may be useful in the study
of some important problems of the probability theory. I try to give a good
picture about the main ideas, but I do not work out all details. Actually, the
elaboration of some details omitted from this discussion would demand hard
work. But as the present section is quite independent of the rest of the paper,
these omissions cause no problem in understanding the subsequent part.

I start with a short discussion of the maximum likelihood estimate in the
simplest case. The following problem is considered. Let us have a class of
density functions f(x, ϑ) on the real line depending on a parameter ϑ ∈ R1,
and observe a sequence of independent random variables ξ1(ω), . . . , ξn(ω)
with a density function f(x, ϑ0), where ϑ0 is an unknown parameter we want
to estimate with the help of the above sequence of random variables.

The maximum likelihood method suggests the following approach. Choose
that value ϑ̂n = ϑ̂n(ξ1, . . . , ξn) as the estimate of the parameter ϑ0 where the
density function of the random vector (ξ1, . . . , ξn), i.e. the product

n∏

k=1

f(ξk, ϑ) = exp

{
n∑

k=1

log f(ξk, ϑ)

}

takes its maximum. This point can be found as the solution of the so-called
maximum likelihood equation

n∑

k=1

∂

∂ϑ
log f(ξk, ϑ) = 0. (2.1)

We are interested in the asymptotic behaviour of the random variable ϑ̂n−ϑ0,
where ϑ̂n is the (appropriate) solution of the equation (2.1).

The direct study of this equation is rather hard, but a Taylor expansion of
the expression at the left-hand side of (2.1) around the (unknown) point ϑ0

5



6 2 Motivation of the investigation. Discussion of some problems

yields a good and simple approximation of ϑ̂n, and it enables us to describe
the asymptotic behaviour of ϑ̂n − ϑ0.

This Taylor expansion yields that

n∑

k=1

∂

∂ϑ
log f(ξk, ϑ̂n) =

n∑

k=1

∂
∂ϑf(ξk, ϑ0)

f(ξk, ϑ0)

+(ϑ̂n − ϑ0)

(
n∑

k=1

(
∂2

∂ϑ2 f(ξk, ϑ0)

f(ξk, ϑ0)
−
(

∂
∂ϑf(ξk, ϑ0)

)2

f2(ξk, ϑ̄0)

))

+ O
(

n(ϑ̂n − ϑ0)2
)

=

n∑

k=1

(

ηk + ζk(ϑ̂n − ϑ0)
)

+ O
(

n(ϑ̂n − ϑ0)2
)

, (2.2)

where

ηk =
∂

∂ϑf(ξk, ϑ0)

f(ξk, ϑ0)
and ζk =

∂2

∂ϑ2 f(ξk, ϑ0)

f(ξk, ϑ0)
−
(

∂
∂ϑf(ξk, ϑ0)

)2

f2(ξk, ϑ̄0)

for k = 1, . . . , n. We want to understand the asymptotic behaviour of the
(random) expression on the right-hand side of (2.2). The relation

Eηk =

∫ ∂
∂ϑf(x, ϑ0)

f(x, ϑ0)
f(x, ϑ0) dx =

∂

∂ϑ

∫

f(x, ϑ0) dx = 0

holds, since
∫

f(x, ϑ) dx = 1 for all ϑ, and a differentiation of this relation

gives the last identity. Similarly, Eη2
k = −Eζk =

∫ ( ∂
∂ϑ f(x,ϑ0))

2

f(x,ϑ0)
dx > 0, k =

1, . . . , n. Hence by the central limit theorem χn = 1√
n

n∑

k=1

ηk is asymptotically

normal with expectation zero and variance I2 =
∫ ( ∂

∂ϑ f(x,ϑ0))
2

f(x,ϑ0)
dx > 0. In the

statistics literature this number I is called the Fisher information. By the

laws of large numbers 1
n

n∑

k=1

ζk ∼ −I2.

Thus relation (2.2) suggests the approximation of the maximum-likelihood

estimate ϑ̂n by the random variable ϑ̃n given by the identity ϑ̃n − ϑ0 =

−
n∑

k=1

ηk

n∑

k=1

ζk

, and the previous calculations imply that
√

n(ϑ̃n − ϑ0) is asymptoti-

cally normal with expectation zero and variance 1
I2 . The random variable ϑ̃n

is not a solution of the equation (2.1), the value of the expression at the left-
hand side is of order O(n(ϑ̃n−ϑ0)2) = O(1) in this point. On the other hand,
some calculations show that the derivative of the function at the left-hand
side is large in this point, it is greater than const. n with some const. > 0.
This implies that the maximum-likelihood equation has a solution ϑ̂n such
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that ϑ̂n − ϑ̃n = O
(

1
n

)
. Hence

√
n(ϑ̂n − ϑ0) and

√
n(ϑ̃n − ϑ0) have the same

asymptotic limit behaviour.
The previous method can be summarized in the following way: Take a

simpler linearized version of the expression we want to estimate by means
of an appropriate Taylor expansion, describe the limit distribution of this
linearized version and show that the linearization causes only a negligible
error.

We want to show that such a method also works in more difficult sit-
uations. But in some cases it is harder to show that the error committed
by a replacement of the original expression by a simpler linearized version
is negligible, and to show this the solution of the problems mentioned in
the introduction is needed. The discussion of the following problem, called
the Kaplan–Meyer method for the estimation of the empirical distribution
function with the help of censored data shows such an example.

The following problem is considered. Let (Xi, Zi), i = 1, . . . , n, be a se-
quence of independent, identically distributed random vectors such that the
components Xi and Zi are also independent with some unknown, continuous
distribution functions F (x) and G(x). We want to estimate the distribution
function F of the random variables Xi, but we cannot observe the variables
Xi, only the random variables Yi = min(Xi, Zi) and δi = I(Xi ≤ Zi). In
other words, we want to solve the following problem. There are certain ob-
jects whose lifetime Xi are independent and F distributed. But we cannot
observe this lifetime Xi, because after a time Zi the observation must be
stopped. We also know whether the real lifetime Xi or the censoring variable
Zi was observed. We make n independent experiments and want to estimate
with their help the distribution function F .

Kaplan and Meyer, on the basis of some maximum-likelihood estimation
type considerations, proposed the following so-called product limit estimator
Sn(u) to estimate the unknown survival function S(u) = 1 − F (u):

1 − Fn(u) = Sn(u) =







n∏

i=1

(
N(Yi)

N(Yi)+1

)I(Yi≤u,δi=1)

if u ≤ max(Y1, . . . , Yn)

0 if u ≥ max(Y1, . . . , Yn), and δn = 1,
undefined if u ≥ max(Y1, . . . , Yn), and δn = 0,

(2.3)
where

N(t) = #{Yi, Yi > t, 1 ≤ i ≤ n} =

n∑

i=1

I(Yi > t).

We want to show that the above estimate (2.3) is really good. For this
goal we shall approximate the random variables Sn(u) by some appropriate
random variables. To do this first we introduce some notations.

Put
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H(u) = P (Yi ≤ u) = 1 − H̄(u),

H̃(u) = P (Yi ≤ u, δi = 1), ˜̃H(u) = P (Yi ≤ u, δi = 0) (2.4)

and

Hn(u) =
1

n

n∑

i=1

I(Yi ≤ u) (2.5)

H̃n(u) =
1

n

n∑

i=1

I(Yi ≤ u, δi = 1), ˜̃Hn(u) =
1

n

n∑

i=1

I(Yi ≤ u, δi = 0).

Clearly H(u) = H̃(u)+ ˜̃H(u) and Hn(u) = H̃n(u)+ ˜̃Hn(u). We shall estimate
Fn(u) − F (u) for u ∈ (−∞, T ] if

1 − H(T ) > δ with some fixed δ > 0. (2.6)

Condition (2.6) implies that there are more than δ
2n sample points Yj larger

than T with probability almost 1. The complementary event has only an
exponentially small probability. This observation helps to show in the subse-
quent calculations that some events have negligibly small probability.

We introduce the so-called cumulative hazard function and its empirical
version

Λ(u) = − log(1 − F (u)), Λn(u) = − log(1 − Fn(u)). (2.7)

Since Fn(u) − F (u) = exp(−Λ(u)) (1 − exp(Λ(u) − Λn(u))) a simple Taylor
expansion yields

Fn(u) − F (u) = (1 − F (u)) (Λn(u) − Λ(u)) + R1(u), (2.8)

and it is easy to see that R1(u) = O
(
Λ(u) − Λn(u))2

)
. It follows from the

subsequent estimations that Λ(u)−Λn(u) = O(n−1/2), thus nR1(u) = O(1).
Hence it is enough to investigate the term Λn(u). We shall show that Λn(u)
has an expansion with Λ(u) as the main term plus n−1/2 times a term which
is a linear functional of an appropriate normalized empirical distribution
function plus an error term of order O(n−1).

From (2.3) it is obvious that

Λn(u) = −
n∑

i=1

I(Yi ≤ u, δi = 1) log

(

1 − 1

1 + N(Yi)

)

.

It is not difficult to get rid of the unpleasant logarithmic function in this
formula by means of the relation − log(1 − x) = x + O(x2) for small x. It
yields that
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Λn(u) =

n∑

i=1

I(Yi ≤ u, δi = 1)

N(Yi)
+ R2(u) = Λ̃n(u) + R2(u) (2.9)

with an error term R2(u) such that nR2(u) is smaller than a constant with
probability almost one. (The probability of the exceptional set is exponen-
tially small.)

The expression Λ̃n(u) is still inappropriate for our purposes. Since the

denominators N(Yi) =
n∑

j=1

I(Yj > Yi) are dependent for different indices i we

cannot see directly the limit behaviour of Λ̃n(u).
We try to approximate Λ̃n(u) by a simpler expression. A natural approach

would be to approximate the terms N(Yi) in it by their conditional expec-
tation (n − 1)H̄(Yi) = (n − 1)(1 − H(Yi)) = E(N(Yi)|Yi) with respect to
the σ-algebra generated by the random variable Yi. This is a too rough ‘first
order’ approximation, but the following ‘second order approximation’ will be
sufficient for our goals. Put

N(Yi) =

n∑

j=1

I(Yj > Yi) = nH̄(Yi)







1 +

n∑

j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)







and express the terms 1
N(Yi)

in the sum defining Λ̃n, (with Λ̃n introduced

in (2.9)) by means of the relation 1
1+z =

∞∑

k=0

(−1)kzk = 1 − z + ε(z) with the

choice z =

n∑

j=1

I(Yj>Yi)−nH̄(Yi)

nH̄(Yi)
. As |ε(z)| < 2z2 for |z| < 1

2 we get that

Λ̃n(u) =

n∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)








1 +

∞∑

k=1






−

n∑

j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)







k






=

n∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)







1 −

n∑

j=1

I(Yj > Yi) − nH̄(Yi)

nH̄(Yi)







+ R3(u)

= 2A(u) − B(u) + R3(u), (2.10)

where

A(u) = A(n, u) =

n∑

i=1

I(Yi ≤ u, δi = 1)

nH̄(Yi)

and
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B(u) = B(n, u) =

n∑

i=1

n∑

j=1

I(Yi ≤ u, δi = 1)I(Yj > Yi)

n2H̄2(Yi)
.

It can be proved by means of standard methods that nR3(u) is exponentially
small. Thus relations (2.9) and (2.10) yield that

Λn(u) = 2A(u) − B(u) + negligible error. (2.11)

This means that to solve our problem the asymptotic behaviour of the
random variables A(u) and B(u) has to be given. We can get a better insight
to this problem by rewriting the sum A(u) as an integral and the double
sum B(u) as a two-fold integral with respect to empirical measures. Then
these integrals can be rewritten as sums of random integrals with respect to
normalized empirical measures and deterministic measures. Such an approach
yields a representation of Λn(u) in the form of a sum whose terms can be
well understood.

Let us write

A(u) =

∫ +∞

−∞

I(y ≤ u)

1 − H(y)
dH̃n(y),

B(u) =

∫ +∞

−∞

∫ +∞

−∞

I(y ≤ u)I(x > y)

(1 − H(y))
2 dHn(x)dH̃n(y).

We rewrite the terms A(u) and B(u) in a form better for our purposes. We
express these terms as a sum of integrals with respect to dH(u), dH̃(u) and
the normalized empirical processes d

√
n(Hn(x) − H(x)) and d

√
n(H̃n(y) −

H̃(y)). For this goal observe that

Hn(x)H̃n(y) = H(x)H̃(y) + H(x)(H̃n(y) − H̃(y)) + (Hn(x) − H(x))H̃(y)

+(Hn(x) − H(x))(H̃n(y) − H̃(y)).

Hence it can be written that B(u) = B1(u) + B2(u) + B3(u) + B4(u), where

B1(u) =

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 dH(x) dH̃(y) ,

B2(u) =
1√
n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 dH(x) d

(√
n(H̃n(y) − H̃(y))

)

,

B3(u) =
1√
n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 d
(√

n (Hn(x) − H(x))
)

dH̃(y) ,

B4(u) =
1

n

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 d
(√

n (Hn(x) − H(x))
)

d
(√

n(H̃n(y) − H̃(y))
)

.
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In the above decomposition of B(u) the term B1 is a deterministic function,
B2, B3 are linear functionals of normalized empirical processes and B4 is
a nonlinear functional of normalized empirical processes. The deterministic
term B1(u) can be calculated explicitly. Indeed,

B1(u) =

∫ u

−∞

∫ +∞

−∞

I(x > y)

(1 − H(y))
2 dH(x)dH̃(y) =

∫ u

−∞

dH̃(y)

1 − H(y)
.

Then the relations H̃(u) =
∫ u

−∞ (1 − G(t)) dF (t) and 1−H = (1−F )(1−G)
imply that

B1(u) =

∫ u

−∞

dF (y)

1 − F (y)
= − log(1 − F (u)) = Λ(u). (2.12)

Observe that

A(u) =

∫ u

−∞

d H̃n(y)

1 − H(y)

=

∫ u

−∞

dH̃(y)

1 − H(y)
+

1√
n

∫ u

−∞

d
(√

n(H̃n(y) − H̃(y))
)

1 − H(y)

= B1(u) + B2(u). (2.13)

From relations (2.11), (2.12) and (2.13) it follows that

Λn(u) − Λ(u) = B2(u) − B3(u) − B4(u) + negligible error. (2.14)

Integration of B2 and B3 with respect to the variable x and then integration
by parts in the expression B2 yields that

B2(u) =
1√
n

∫ u

−∞

d
(√

n(H̃n(y) − H̃(y))
)

1 − H(y)

=

√
n
(

H̃n(u) − H̃(u)
)

√
n(1 − H(u))

− 1√
n

∫ u

−∞

√
n(H̃n(y) − H̃(y))

(1 − H(y))
2 dH(y),

B3(u) =
1√
n

∫ u

−∞

√
n (H(y) − Hn(y))

(1 − H(y))
2 dH̃(y).

With the help of the above expressions for B2 and B3 (2.14) can be rewritten
as

√
n (Λn(u) − Λ(u)) =

√
n(H̃n(u)−H̃(u))

1−H(u) −
∫ u

−∞
√

n(H̃n(y)−H̃(y))

(1−H(y))2
dH(y)

+
∫ u

−∞
√

n(Hn(y)−H(y))

(1−H(y))2
dH̃(y)

−√
nB4(u) + negligible error. (2.15)
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Formula (2.15) (together with formula (2.8)) almost agrees with the state-
ment we wanted to prove. Here the normalized error

√
n (Λn(u) − Λ(u)) is

expressed as a sum of linear functionals of normalized empirical measures
plus some negligible error terms plus the error term

√
nB4(u). So to get a

complete proof it is enough to show that
√

nB4(u) also yields a negligible
error. But nB4(u) is a double integral of a bounded function (here we apply
again formula (2.6)) with respect to a normalized empirical measure. Hence
to bound this term we need a good estimate of multiple stochastic integrals
(with multiplicity 2), and this is just the problem formulated in the introduc-
tion. The estimate we need here follows from Theorem 8.1 of the present work.
Let us remark that the problem discussed here corresponds to the estimation
of the coefficient of the second term in the Taylor expansion considered in the
study of the maximum likelihood estimation. One may worry a little bit how
to bound nB4(u) with the help of estimations of double stochastic integrals,
since in the definition of B4(u) integration is taken with respect to different
normalized empirical processes in the two coordinates. But this problem can
be overcome e.g. by rewriting the integral as a double integral with respect

to the empirical process
(√

n (Hn(x) − H(x)) ,
√

n
(

H̃n(y) − H̃(y)
))

in R2.

By working out the details of the above calculation we get that the lin-
ear functional B2(u) − B3(u) of normalized empirical processes yields a
good estimate on the expression

√
n(Λn(u) − Λ(u)) for a fixed parame-

ter u. But we want to prove somewhat more, we want to get an estimate
uniform in the parameter u, i.e. to show that even the random variable
sup
u≤T

|√n(Λn(u) − Λ(u)) − B2(u) + B3(u)| is small. This can be done by mak-

ing estimates uniform in the parameter u in all steps of the above calculation.
There appears only one difficulty when trying to carry out this program.
Namely, we need an estimate on sup

u≤T
|nB4(u)|, i.e. we have to bound the

supremum of multiple random integrals with respect to a normalized ran-
dom measure for a nice class of kernel functions. This can be done, but at
this point the second problem mentioned in the introduction appears. This
difficulty can be overcome by means of Theorem 8.2 of this work.

Thus we could describe the limit behaviour of the Kaplan–Meyer estimate
by means of an appropriate expansion. But to do it we needed the solution
of the problems mentioned in the introduction. It can be expected that such
a method also works in a much more general situation.

I finish this section with a remark of Richard Gill he made in a personal
conversation after my talk on this subject at a conference. While he accepted
my proof he missed an argument in it about the maximum likelihood char-
acter of the Kaplan–Meyer estimate. This was a completely justified remark,
since if we do not restrict our attention to this problem, but try to generalize
it to general non-parametric maximum likelihood estimates, then we have to
understand how the maximum likelihood character of the estimate can be
exploited. I believe that this can be done, but it demands further studies.



Chapter 3

Some estimates about sums of
independent random variables

We shall need a good bound on the tail distribution of sums of independent
random variables bounded by a constant with probability one. Later only
the results about sums of independent and identically distributed variables
will be interesting for us. But since they can be generalized without any
effort to sums of not necessarily identically distributed random variables the
condition about identical distribution of the summands will be dropped. We
are interested in the question when these estimates give such a good bound
as the central limit theorem suggests, and what can be told otherwise.

More explicitly, the following problem will be considered: Let X1, . . . ,Xn

be independent random variables, EXj = 0, Var Xj = σ2
j , 1 ≤ j ≤ n, and

take the random sum Sn =
n∑

j=1

Xj and its variance Var Sn = V 2
n =

n∑

j=1

σ2
j . We

want to get a good bound on the probability P (Sn > uVn). The central limit
theorem suggests that under general conditions an upper bound of the order
1 − Φ(u) should hold for this probability, where Φ(u) denotes the standard
normal distribution function. Since the standard normal distribution function

satisfies the inequality
(

1
u − 1

u3

)
e−u2/2
√

2π
< 1 − Φ(u) < 1

u
e−u2/2
√

2π
for all u > 0

it is natural to ask when the probability P (Sn > uVn) is comparable with

the value e−u2/2. More generally, we shall call an upper bound of the form
P (Sn > uVn) ≤ e−Cu2

with some constant C > 0 a Gaussian type estimate.
First I formulate Bernstein’s inequality which tells for which values u the

probability P (Sn > uVn) has a Gaussian type estimate. It supplies such an
estimate if u ≤ const Vn. On the other hand, for u ≥ const. Vn it yields
a much weaker estimate. I shall formulate another result, called Bennett’s
inequality, which is a slight improvement of Bernstein’s inequality. It helps
us to tell what can be expected if Bernstein’s inequality does not provide a
Gaussian type estimate. I shall also present an example which shows that
Bennett’s inequality is in some sense sharp. The main difficulties we meet in
this work are closely related to the weakness of the estimates we have for the

13



14 3 Some estimates about sums of independent random variables

probability P (Sn > uVn) if it does not satisfy a Gaussian type estimate. As
we shall see this happens if u ≫ const. Vn.

In the usual formulation of Bernstein’s inequality a real number M is
introduced, and it is assumed that the terms in the sum we investigate are
bounded by this number. But since the problem can be simply reduced to
the case M = 1 I shall consider only this special case.

Theorem 3.1 (Bernstein’s inequality). Let X1, . . . ,Xn be independent
random variables, P (|Xj | ≤ 1) = 1, EXj = 0, 1 ≤ j ≤ n. Put σ2

j = EX2
j ,

1 ≤ j ≤ n, Sn =
n∑

j=1

Xj and V 2
n = Var Sn =

n∑

j=1

σ2
j . Then

P (Sn > uVn) ≤ exp






− u2

2
(

1 + 1
3

u
Vn

)






for all u > 0. (3.1)

Proof of Theorem 3.1. Let us give a good bound on the exponential moments
EetSn for appropriate parameters t > 0. Since EXj = 0 and E|Xk+2

j | ≤ σ2
j

for k ≥ 0 we can write EetXj =
∞∑

k=0

tk

k! EXk
j ≤ 1 +

t2σ2
j

2

(

1 +
∞∑

k=1

2tk

(k+2)!

)

≤

1 +
t2σ2

j

2

(

1 +
∞∑

k=1

3−ktk
)

= 1 +
t2σ2

j

2
1

1− t
3

≤ exp
{

t2σ2
j

2
1

1− t
3

}

if 0 ≤ t < 3.

Hence EetSn =
n∏

j=1

EetXj ≤ exp
{

t2V 2
n

2
1

1− t
3

}

for 0 ≤ t < 3.

The above relation implies that

P (Sn > uVn) = P (etSn > etuVn) ≤ EetSne−tuVn

≤ exp

{
t2V 2

n

2

1

1 − t
3

− tuVn

}

if 0 ≤ t < 3. Choose the number t in this inequality as the solution of the
equation t2V 2

n
1

1− t
3

= tuVn, i.e. put t = u
Vn+ u

3
. Then 0 ≤ t < 3, and we get

that P (Sn > uVn) ≤ e−tuVn/2 = exp

{

− u2

2(1+ 1
3

u
Vn

)

}

.

If the random variables X1, . . . ,Xn satisfy the conditions of Bernstein’s
inequality, then also the random variables −X1, . . . ,−Xn satisfy them. By
applying the above result in both cases we get that P (|Sn| > uVn) ≤
2 exp

{

− u2

2(1+ 1
3

u
Vn

)

}

under the conditions of Bernstein’s inequality.

By Bernstein’s inequality for all ε > 0 there is some number α(ε) > 0

such that in the case u
Vn

< α(ε) P (Sn > uVn) ≤ e−(1−ε)u2/2. Beside this, for
all fixed numbers A > 0 there is some constant C = C(A) > 0 such that in

the case u
Vn

< A the inequality P (Sn > uVn) ≤ e−Cu2

holds. This can be
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interpreted as a Gaussian type estimate for the probability P (Sn > uVn) if
u ≤ const. Vn.

On the other hand, if u
Vn

is very large, then Bernstein’s inequality yields a
much worse estimate. The question arises whether in this case Bernstein’s in-
equality can be replaced by a better, more useful result. Next we present The-
orem 3.2, the so-called Bennett’s inequality which provides a slight improve-
ment of Bernstein’s inequality. But if u

Vn
is very large, then also Bennett’s

inequality provides a much weaker estimate on the probability P (Sn > uVn)
than the bound suggested by a Gaussian comparison. On the other hand,
we shall give an example that shows that (without imposing some additional
conditions) no real improvement of this estimate is possible.

Theorem 3.2 (Bennett’s inequality). Let X1, . . . ,Xn be independent ran-
dom variables, P (|Xj | ≤ 1) = 1, EXj = 0, 1 ≤ j ≤ n. Put σ2

j = EX2
j ,

1 ≤ j ≤ n, Sn =
n∑

j=1

Xj and V 2
n = Var Sn =

n∑

j=1

σ2
j . Then

P (Sn > u) ≤ exp

{

−V 2
n

[(

1 +
u

V 2
n

)

log

(

1 +
u

V 2
n

)

− u

V 2
n

]}

for all u > 0.

(3.2)
As a consequence, for all ε > 0 there exists some B = B(ε) > 0 such that

P (Sn > u) ≤ exp

{

−(1 − ε)u log
u

V 2
n

}

if u > BV 2
n , (3.3)

and there exists some positive constant K > 0 such that

P (Sn > u) ≤ exp

{

−Ku log
u

V 2
n

}

if u > 2V 2
n . (3.4)

Proof of Theorem 3.2. We have

EetXj =

∞∑

k=0

tk

k!
EXk

j ≤ 1 + σ2
j

∞∑

k=2

tk

k!
= 1 + σ2

j

(
et − 1 − t

)
≤ eσ2

j (et−1−t),

1 ≤ j ≤ n,

and EetSn ≤ eV 2
n (et−1−t) for all t ≥ 0. Hence P (Sn > u) ≤ e−tuEetSn ≤

e−tu+V 2
n (et−1−t) for all t ≥ 0. We get relation (3.2) from this inequality with

the choice t = log
(

1 + u
V 2

n

)

. (This is the place of minimum of the function

−tu + V 2
n (et − 1 − t) for fixed u in the parameter t.)

Relation (3.2) and the observation lim
v→∞

(v+1) log(v+1)−v
v log v = 1 with the choice

v = u
V 2

n
imply formula (3.3). Because of relation (3.3) to prove formula (3.4) it

is enough to check it for 2 ≤ u
V 2

n
≤ B with some sufficiently large constant B >

0. In this case relation (3.4) follows directly from formula (3.2). This can be
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seen for instance by observing that the expression
V 2

n

[(

1+ u
V 2

n

)

log

(

1+ u
V 2

n

)

− u
V 2

n

]

u log u
V 2

n

is a continuous and positive function of the variable u
V 2

n
in the interval 2 ≤

u
V 2

n
≤ B, hence its minimum in this interval is strictly positive.

Let us make a short comparison between Bernstein’s and Bennett’s in-
equalities. Both results yield an estimate on the probability P (Sn > u), and
their proofs are very similar. They are based on an estimate of the moment
generating functions Rj(t) = EetXj of the summands Xj , but Bennett’s
inequality yields a better estimate. It may be worth mentioning that the esti-
mate given for Rj(t) = EetXj in the proof of Bennett’s inequality agrees with
the moment generating function Eet(Yj−EYj) of the normalization Yj−EYj of
a Poissonian random variable Yj with parameter Var Xj . As a consequence,
we get, by using the standard method of estimating tail-distributions by
means of the moment generating functions such an estimate for the probabil-
ity P (Sn > u) which is comparable with the probability P (Tn − ETn > u),
where Tn is a Poissonian random variable with parameter Vn = Var Sn. We
can say that Bernstein’s inequality yields a Gaussian and Bennett’s inequal-
ity a Poissonian type estimate for the sums of independent, bounded random
variables.

Remark. Bennett’s inequality yields a sharper estimate for the probability
P (Sn > u) than Bernstein’s inequality for all numbers u > 0. To prove this

it is enough to show that for all 0 ≤ t < 3 the inequality EetSn ≤ eV 2
n (et−1−t)

appearing in the proof of Bennett’s inequality is a sharper estimate than the

corresponding inequality EetSn ≤ exp
{

t2V 2
n

2
1

1− t
3

}

appearing in the proof of

Bernstein’s inequality. (Recall, how we estimate the probability P (Sn > u) in
these proofs with the help of the exponential moment EetSn .) But to prove

this it is enough to check that et − 1 − t ≤ t2

2
1

1− t
3

for all 0 ≤ t < 3. This

inequality clearly holds, since et−1−t =
∞∑

k=2

tk

k! , and t2

2
1

1− t
3

=
∞∑

k=2

1
2 ( 1

3 )k−2tk.

Next we present Example 3.3 which shows that Bennett’s inequality yields
a sharp estimate also in the case u ≫ V 2

n when Bernstein’s inequality yields
a weak bound. But Bennett’s inequality provides only a small improvement
which has only a limited importance. This may be the reason why Bernstein’s
inequality which yields a more transparent estimate is more popular.

Example 3.3 (Sums of independent random variables with bad tail
distribution for large values). Let us fix some positive integer n, real
numbers u and σ2 such that 0 < σ2 ≤ 1

8 , n > 4u ≥ 6 and u > 4nσ2. Let
σ̄2 be that solution of the equation x2 − x + σ2 = 0 which is smaller than 1

2 .
Take a sequence of independent and identically distributed random variables
X̄1, . . . , X̄n such that P (X̄j = 1) = σ̄2, P (X̄j = 0) = 1− σ̄2 for all 1 ≤ j ≤ n.

Put Xj = X̄j−EX̄j = Xj− σ̄2, 1 ≤ j ≤ n, Sn =
n∑

j=1

Xj and V 2
n = nσ2. Then
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P (|X1| ≤ 1) = 1, EX1 = 0, Var X1 = σ2, hence ESn = 0, and Var Sn = V 2
n .

Beside this

P (Sn ≥ u) > exp

{

−Bu log
u

V 2
n

}

with some appropriate constant B > 0 not depending on n, σ and u.

Proof of Example 3.3. Simple calculation shows that EXj = 0, Var Xj =
σ̄2 − σ̄4 = σ2, P (|Xj | ≤ 1) = 0, and also the inequality σ2 ≤ σ̄2 ≤ 3

2σ2

holds. To see the upper bound in the last inequality observe that σ̄2 ≤ 1
3 , i.e.

1 − σ̄2 ≥ 2
3 , hence σ2 = σ̄2(1 − σ̄2) ≥ 2

3 σ̄2. In the proof of the inequality of
Example 3.3 we can restrict our attention to the case when u is an integer,
because in the general case we can apply the inequality with ū = [u] + 1
instead of u, where [u] denotes the integer part of u, and since u ≤ ū ≤ 2u,
the application of the result in this case supplies the desired inequality with
a possibly worse constant B > 0.

Put S̄n =
n∑

j=1

X̄j . We can write P (Sn ≥ u) = P (S̄n ≥ u + nσ̄2) ≥ P (S̄n ≥

2u) ≥ P (S̄n = 2u) =
(

n
2u

)
σ̄4u(1 − σ̄2)(n−2u) ≥ (nσ̄2

2u )2u(1 − σ̄2)(n−2u), since

u ≥ nσ̄2, and n ≥ 2u. On the other hand (1 − σ̄2)(n−2u) ≥ e−2σ̄2(n−2u) ≥
e−2nσ̄2 ≥ e−u, hence

P (Sn ≥ u) ≥ exp
{

−2u log
( u

nσ̄2

)

− 2u log 2 − u
}

= exp

{

−2u log
( u

nσ2

)

− 2u log
σ̄2

σ2
− 2u log 2 − u

}

≥ exp

{

−100u log

(
u

V 2
n

)}

.

Example 3.3 is proved.

In the case u > 4V 2
n Bernstein’s inequality yields the estimate P (Sn >

u) ≤ e−αu with some universal constant α > 0, and the above example shows
that at most an additional logarithmic factor K log u

V 2
n

can be expected in the

exponent of the upper bound in an improvement of this estimate. Bennett’s
inequality shows that such an improvement is really possible.

I finish this section with another estimate due to Hoeffding which will be
later useful in some symmetrization arguments.

Theorem 3.4 (Hoeffding’s inequality). Let ε1, . . . , εn be independent ran-
dom variables, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, and let a1, . . . , an

be arbitrary real numbers. Put V =
n∑

j=1

ajεj. Then

P (V > u) ≤ exp

{

− u2

2
∑n

j=1 a2
j

}

for all u > 0. (3.5)
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Remark 1: Clearly EV = 0 and Var V =
n∑

j=1

a2
j , hence Hoeffding’s inequal-

ity yields such an estimate for P (V > u) which the central limit theorem
suggests. This estimate holds for all real numbers a1, . . . , an and u > 0.

Remark 2: The Rademacher functions rk(x), k = 1, 2, . . . , defined by the
formulas rk(x) = 1 if (2j−1)2−k ≤ x < 2j2−k and rk(x) = −1 if 2(j−1)2−k ≤
x < (2j − 1)2−k, 1 ≤ j ≤ 2k−1, for all k = 1, 2, . . . , can be considered
as random variables on the probability space Ω = [0, 1] with the Borel σ-
algebra and the Lebesgue measure as probability measure on the interval
[0, 1]. They are independent random variables with the same distribution as
the random variables ε1, . . . , εn considered in Theorem 3.4. Therefore results
about such sequences of random variables whose distributions agree with
those in Theorem 3.4 are also called sometimes results about Rademacher
functions in the literature. At some points we will also apply this terminology.

Proof of Theorem 3.4. Let us give a good bound on the exponential moment

EetV for all t > 0. The identity EetV =
n∏

j=1

Eetajεj =
n∏

j=1

(eajt+e−ajt)
2 holds,

and
(eajt+e−ajt)

2 =
∞∑

k=0

a2k
j

(2k)! t
2k ≤

∞∑

k=0

(ajt)2k

2kk!
= ea2

j t2/2, since (2k)! ≥ 2kk!

for all k ≥ 0. This implies that EetV ≤ exp

{

t2

2

n∑

j=1

a2
j

}

. Hence P (V >

u) ≤ exp

{

−tu + t2

2

n∑

j=1

a2
j

}

, and we get relation (3.5) with the choice t =

u

(
n∑

j=1

a2
j

)−1

.



Chapter 4

On the supremum of a nice class of
partial sums

This section contains an estimate about the supremum of a nice class of
normalized sums of independent and identically distributed random variables
together with an analogous result about the supremum of an appropriate class
of one-fold random integrals with respect to a normalized empirical measure.
The second result deals with a one-variate version of the problem about
the estimation of multiple integrals with respect to a normalized empirical
measure. This problem was mentioned in the introduction. Some natural
questions related to these results will be also discussed. It will be examined
how restrictive their conditions are. In particular, we are interested in the
question how the condition about the countable cardinality of the class of
random variables can be weakened. A natural Gaussian counterpart of the
supremum problems about random one-fold integrals will be also considered.
Most proofs will be postponed to later sections.

To formulate these results first a notion will be introduced that plays a
most important role in the sequel.

Definition of Lp-dense classes of functions. Let a measurable space
(Y,Y) be given together with a class G of Y measurable real valued func-
tions on this space. The class of functions G is called an Lp-dense class of
functions, 1 ≤ p < ∞, with parameter D and exponent L if for all num-
bers 0 < ε ≤ 1 and probability measures ν on the space (Y,Y) there exists a
finite ε-dense subset Gε,ν = {g1, . . . , gm} ⊂ G in the space Lp(Y,Y, ν) with
m ≤ Dε−L elements, i.e. there exists such a set Gε,ν ⊂ G with m ≤ Dε−L

elements for which inf
gj∈Gε,ν

∫
|g − gj |p dν < εp for all functions g ∈ G. (Here

the set Gε,ν may depend on the measure ν, but its cardinality is bounded by
a number depending only on ε.)

In most results of this work the above defined Lp-dense classes will be
considered only for the parameter p = 2. But at some points it will be useful to
work also with Lp-dense classes with a different parameter p. Hence to avoid
some repetitions I introduced the above definition for a general parameter p.
When working with Lp-dense classes we shall consider only such classes of
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functions G whose elements are functions with bounded absolute value. Hence
all integrals appearing in the definition of Lp-dense classes of functions are
finite.

The following estimate will be proved.

Theorem 4.1 (Estimate on the supremum of a class of partial sums).
Let us consider a sequence of independent and identically distributed random
variables ξ1, . . . , ξn, n ≥ 2, with values in a measurable space (X,X ) and
with some distribution µ. Beside this, let a countable and L2-dense class of
functions F with some parameter D ≥ 1 and exponent L ≥ 1 be given on the
space (X,X ) which satisfies the conditions

‖f‖∞ = sup
x∈X

|f(x)| ≤ 1, for all f ∈ F (4.1)

‖f‖2
2 =

∫

f2(x)µ( dx) ≤ σ2 for all f ∈ F (4.2)

with some constant 0 < σ ≤ 1, and

∫

f(x)µ( dx) = 0 for all f ∈ F . (4.3)

Define the normalized partial sums Sn(f) = 1√
n

n∑

k=1

f(ξk) for all f ∈ F .

There exist some universal constants C > 0, α > 0 and M > 0 such that
the supremum of the normalized random sums Sn(f), f ∈ F , satisfies the
inequality

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ C exp

{

−α
(u

σ

)2
}

for those numbers u

for which
√

nσ2 ≥ u ≥ Mσ(L3/4 log1/2 2
σ + (log D)3/4), (4.4)

where the numbers D and L in formula (4.4) agree with the parameter and
exponent of the L2-dense class F .

Remark. Here and also in the subsequent part of this work we consider random
variables which take their values in a general measurable space (X,X ). The
only restriction we impose on these spaces is that all sets consisting of one
point are measurable, i.e. {x} ∈ X for all x ∈ X.

The condition
√

nσ2 ≥ u ≥ Mσ(L3/4 log1/2 2
σ +D3/4) about the number u

in formula (4.4) is natural. I discuss this after the formulation of Theorem 4.2
which can be considered as the Gaussian counterpart of Theorem 4.1. I also
formulate a result in Example 4.3 which can be considered as part of this
discussion.

The condition about the countable cardinality of F can be weakened with
the help of the notion of countable approximability introduced below. For
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the sake of later applications I define it in a more general form than needed
in this section. In the subsequent part of this work I shall assume that the
probability measure I work with is complete, i.e. for all such pairs of sets A
and B in the probability space (Ω,A, P ) for which A ∈ A, P (A) = 0 and
B ⊂ A we have B ∈ A and P (B) = 0.

Definition of countably approximable classes of random variables.
Let us have a class of random variables U(f), f ∈ F , indexed by a class of
functions f ∈ F on a measurable space (Y,Y). This class of random variables
is called countably approximable if there is a countable subset F ′ ⊂ F such
that for all numbers u > 0 the sets A(u) = {ω : sup

f∈F
|U(f)(ω)| ≥ u} and

B(u) = {ω : sup
f∈F ′

|U(f)(ω)| ≥ u} satisfy the identity P (A(u) \ B(u)) = 0.

Clearly, B(u) ⊂ A(u). In the above definition it was demanded that for all
u > 0 the set B(u) should be almost as large as A(u). The following corollary
of Theorem 4.1 holds.

Corollary of Theorem 4.1. Let a class of functions F satisfy the conditions
of Theorem 4.1 with the only exception that instead of the condition about the
countable cardinality of F it is assumed that the class of random variables
Sn(f), f ∈ F , is countably approximable. Then the random variables Sn(f),
f ∈ F , satisfy relation (4.4).

This corollary can be simply proved, only Theorem 4.1 has to be applied
for the class F ′. To do this it has to be checked that if F is an L2-dense
class with some parameter D and exponent L, and F ′ ⊂ F , then F ′ is also
an L2-dense class with the same exponent L, only with a possibly different
parameter D′.

To prove this statement let us choose for all numbers 0 < ε ≤ 1 and proba-

bility measures ν on (Y,Y) some functions f1, . . . , fm ∈ F with m ≤ D
(

ε
2

)−L

elements, such that the sets Dj =
{

f :
∫
|f − fj |2 dν ≤

(
ε
2

)2
}

satisfy the re-

lation
m⋃

j=1

Dj = Y . For all sets Dj for which Dj ∩ F ′ is non-empty choose

a function f ′
j ∈ Dj ∩ F ′. In such a way we get a collection of functions f ′

j

from the class F ′ containing at most 2LDε−L elements which satisfies the
condition imposed for L2-dense classes with exponent L and parameter 2LD
for this number ε and measure ν.

Next I formulate in Theorem 4.1′ a result about the supremum of the inte-
gral of a class of functions with respect to a normalized empirical distribution.
It can be considered as a simple version of Theorem 4.1. I formulated this
result, because Theorems 4.1 and 4.1′ are special cases of their multivariate
counterparts about the supremum of so-called U -statistics and multiple inte-
grals with respect to a normalized empirical distribution function discussed
in Section 8. These results are also closely related, but the explanation of
their relation demands some work.
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Given a sequence of independent µ distributed random variables ξ1, . . . , ξn

taking values in (X,X ) let us introduce their empirical distribution on (X,X )
as

µn(A)(ω) =
1

n
# {j : 1 ≤ j ≤ n, ξj(ω) ∈ A} , A ∈ X , (4.5)

and define for all measurable and µ integrable functions f the (random)
integral

Jn(f) = Jn,1(f) =
√

n

∫

f(x)(µn( dx) − µ( dx)). (4.6)

Clearly Jn(f) = 1√
n

n∑

j=1

(f(ξj) − Ef(ξj)) = Sn(f̂) with f̂(x) = f(x) −
∫

f(x)µ( dx). It is not difficult to see that sup
x∈X

|f̂(x)| ≤ 2 if sup
x∈X

|f(x)| ≤ 1,
∫

f̂(x)µ( dx) = 0,
∫

f̂2(x)µ( dx) ≤
∫

f2(x)µ( dx), and if F is an L2-dense class
of functions with parameter D and exponent L, then the class of functions
F̄ consisting of the functions f̄(x) = 1

2

(
f(x) −

∫
f(x)µ( dx)

)
, f ∈ F , is an

L2-dense class of functions with parameter D and exponent L, since
∫

(f̄ −
ḡ)2 dµ ≤

(
ε
2

)2 ≤ ε2 if f, g ∈ F , and
∫

(f − g)2 dµ ≤ ε2. Hence Theorem 4.1
implies the following result.

Theorem 4.1′ (Estimate on the supremum of random integrals with
respect to a normalized empirical distribution). Let us have a sequence
of independent and identically distributed random variables ξ1, . . . , ξn, n ≥ 2,
with distribution µ on a measurable space (X,X ) together with some class
of functions F on this space which satisfies the conditions of Theorem 4.1
with the possible exception of condition (4.3). The estimate (4.4) remains
valid if the random sums Sn(f) are replaced in it by the random integrals
Jn(f) defined in (4.6). Moreover, similarly to the corollary of Theorem 4.1,
the condition about the countable cardinality of the set F can be replaced by
the condition that the class of random variables Jn(f), f ∈ F , is countably
approximable.

All finite dimensional distributions of the set of random variables Sn(f),
f ∈ F , considered in Theorem 4.1 converge to those of a Gaussian random
field Z(f), f ∈ F , with expectation EZ(f) = 0 and correlation EZ(f)Z(g) =
∫

f(x)g(x)µ( dx), f, g ∈ F as n → ∞. Here, and in the subsequent part of the
paper a collection of random variables indexed by some set of parameters will
be called a Gaussian random field if for all finite subsets of these parameters
the random variables indexed by this finite set are jointly Gaussian. We shall
also define so-called linear Gaussian random fields. They consist of jointly
Gaussian random variables Z(f), f ∈ G, indexed by a linear space f ∈ G
which satisfy the relation Z(af + bg) = aZ(f) + bZ(g) with probability 1
for all real numbers a and b and f, g ∈ G. (Let us observe that a set of
Gaussian random variables Z(f), indexed by a linear space f ∈ G such that
EZ(f) = 0, and EZ(f)Z(g) =

∫
f(x)g(x) µ( dx) for all f, g ∈ F is a linear

Gaussian random field. This can be seen by checking the identity E[Z(af +
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bg) − (aZ(f) + bZ(g))]2 = 0 for all real numbers a and b and f, g ∈ G in this
case.)

Let us consider a linear Gaussian random field Z(f), f ∈ G, where the set
of indices G = Gµ consists of the functions f square integrable with respect to
a σ-finite measure µ, and take an appropriate restriction of this field to some
parameter set F ⊂ G. In the next Theorem 4.2 we shall present a natural
Gaussian counterpart of Theorem 4.1 by means of an appropriate choice
of F . Let me also remark that in Section 10 multiple Wiener–Itô integrals of
functions of k variables with respect to a white noise will be defined for all
k ≥ 1. In the special case k = 1 the Wiener–Itô integrals for an appropriate
class of functions f ∈ F yield a model for which Theorem 4.2 is applicable.
Before formulating this result let us introduce the following definition which
is a version of the definition of Lp-dense functions.

Definition of Lp-dense classes of functions with respect to a mea-
sure µ. Let a measurable space (X,X ) be given together with a measure
µ on the σ-algebra X and a set F of X measurable real valued functions
on this space. The set of functions F is called an Lp-dense class of func-
tions, 1 ≤ p < ∞, with respect to the measure µ with parameter D and
exponent L if for all numbers 0 < ε ≤ 1 there exists a finite ε-dense sub-
set Fε = {f1, . . . , fm} ⊂ F in the space Lp(X,X , µ) with m ≤ Dε−L

elements, i.e. such a set Fε ⊂ F with m ≤ Dε−L elements for which
inf

fj∈Fε

∫
|f − fj |p dµ < εp for all functions f ∈ F .

Theorem 4.2 (Estimate on the supremum of a class of Gaussian
random variables). Let a probability measure µ be given on a measurable
space (X,X ) together with a linear Gaussian random field Z(f), f ∈ G,
such that EZ(f) = 0, EZ(f)Z(g) =

∫
f(x)g(x)µ( dx), f, g ∈ G, where G

is the space of square integrable functions with respect to this measure µ.
Let F ⊂ G be a countable and L2-dense class of functions with respect to
the measure µ with some exponent L ≥ 1 and parameter D ≥ 1 which also
satisfies condition (4.2) with some 0 < σ ≤ 1.

Then there exist some universal constants C > 0 and M > 0 (for instance
C = 4 and M = 16 is a good choice) such that the inequality

P

(

sup
f∈F

|Z(f)| ≥ u

)

≤ C(D + 1) exp

{

− 1

256

(u

σ

)2
}

if u ≥ ML1/2σ log1/2 2

σ
(4.7)

holds with the parameter D and exponent L introduced in this theorem.

The exponent at the right-hand side of inequality (4.7) does not contain
the best possible universal constant. One could choose the coefficient 1−ε

2
with arbitrary small ε > 0 instead of the coefficient 1

256 in the exponent at
the right-hand side of (4.7) if the universal constants C > 0 and M > 0
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are chosen sufficiently large in this inequality. Actually, later in Theorem 8.6
such an estimate will be proved which can be considered as the multivariate

generalization of Theorem 4.2 with the expression − (1−ε)u2

2σ2 in the exponent.
The condition about the countable cardinality of the set F in Theorem 4.2

could be weakened similarly to Theorem 4.1. But I omit the discussion of this
question, since Theorem 4.2 was only introduced for the sake of a compar-
ison between the Gaussian and non-Gaussian case. An essential difference
between Theorems 4.1 and 4.2 is that the class of functions F considered in
Theorem 4.1 had to be L2-dense, while in Theorem 4.2 a weaker version of
this property was needed. In Theorem 4.2 it was demanded that there exists
a subset of F of relatively small cardinality which is dense in the L2(µ) norm.
In the L2-density property imposed in Theorem 4.1 a similar property was
demanded for all probability measures ν. The appearance of such a condition
may be unexpected. But as we shall see, the proof of Theorem 4.1 contains
a conditioning argument where a lot of new conditional measures appear,
and the L2-density property is needed to work with all of them. One would
also like to know some results that enable us to check when this condition
holds. In the next section a notion popular in probability theory, the notion
of Vapnik–Červonenkis classes will be introduced, and it will be shown that
a Vapnik–Červonenkis class of functions bounded by 1 is L2-dense.

Another difference between Theorems 4.1 and 4.2 is that the conditions of
formula (4.4) contain the upper bound

√
nσ2 > u, and no such condition was

imposed in formula (4.7). The appearance of this condition in Theorem 4.1
can be explained by comparing this result with those of Section 3. As we have
seen, we do not loose much information if we restrict our attention to the case
u ≤ const. V 2

n = const. nσ2 in Bernstein’s inequality (if sums of independent
and identically distributed random variables are considered). Theorem 4.1
gives an almost as good estimate for the supremum of normalized partial
sums under appropriate conditions for the class F of functions we consider in
this theorem as Bernstein’s inequality yields for the normalized partial sums
of independent and identically distributed random variables with variance
bounded by σ2. But we could prove the estimate of Theorem 4.1 only under
the condition

√
nσ2 > u. We shall show in Example 4.3 discussed below that

in the case u ≫ √
nσ2 only a weaker estimate holds. It has also a natural

reason why condition (4.1) about the supremum of the functions f ∈ F
appeared in Theorems 4.1 and 4.1′, and no such condition was needed in
Theorem 4.2.

The lower bounds for the level u were imposed in formulas (4.4) and (4.7)
because of a similar reason. To understand why such a condition is needed in
formula (4.7) let us consider the following example. Take a Wiener process
W (t), 0 ≤ t ≤ 1, define for all 0 ≤ s < t ≤ 1 the functions fs,t(·) on the
interval [0, 1] as fs,t(u) = 1 if s ≤ u ≤ t, fs,t(u) = 0 if 0 ≤ u < s or t <
u ≤ 1, and introduce for all σ > 0 the following class of functions Fσ. Fσ =
{fs,t : 0 ≤ s < t ≤ 1, t−s ≤ σ2, s and t are rational numbers.}. The integral

Z(f) =
∫ 1

0
f(x)W ( dx) can be defined for all square integrable functions f on
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the interval [0, 1], and this yields a linear Gaussian random field on the space
of square integrable functions. In the special case f = fs,t we have Z(fs,t) =
∫

fs,t(u)W ( du) = W (t) − W (s). It is not difficult to see that the Gaussian
random field Z(f), f ∈ Fσ, satisfies the conditions of Theorem 4.2 with the

number σ in formula (4.2). It is natural to expect that P

(

sup
f∈Fσ

Z(f) > u

)

≤

e−const. (u/σ)2 . However, this relation does not hold if u = u(σ) < 2(1 −

ε)σ log1/2 1
σ with some ε > 0. In such cases P

(

sup
f∈Fσ

Z(f) > u

)

→ 1, as

σ → 0. This can be proved relatively simply with the help of the estimate
P (Z(fs,t) > u(σ)) ≥ const. σ2(1−ε)2 if |t−s| = σ2 and the independence of the
random integrals Z(fs,t) if the functions fs,t are indexed by such pairs (s, t)
for which the intervals (s, t) are disjoint. This means that in this example

formula (4.7) holds only under the condition u ≥ Mσ log1/2 1
σ with M = 2.

There is a classical result about the modulus of continuity of Wiener pro-
cesses, and actually this result helped us to find the previous example. It
is also worth mentioning that there are some concentration inequalities, see
Ledoux [29] and Talagrand [51], which state that under very general con-
ditions the distribution of the supremum of a class of partial sums of inde-
pendent random variables or of the elements of a Gaussian random field is
strongly concentrated around the expected value of this supremum. (Tala-
grand’s result in this direction is also formulated in Theorem 18.1 of this lec-
ture note.) These results imply that the problems discussed in Theorems 4.1
and 4.2 can be reduced to a good estimate of the expected value E sup

f∈F
|Sn(f)|

and E sup
f∈F

|Z(f)| of the supremum considered in these results. However, the

estimation of the expected value of these suprema is not much simpler than
the original problem.

Theorem 4.2 implies that under its conditions

E sup
f∈F

|Z(f)| ≤ const. σ log1/2 2

σ

with an appropriate multiplying constant depending on the parameter D
and exponent L of the class of functions F . In the case of Theorem 4.1 a
similar estimate holds, but under more restrictive conditions. We also have
to impose that

√
nσ2 ≥ const. σ log1/2 2

σ with a sufficiently large constant.
This condition is needed to guarantee that the set of numbers u satisfying
condition (4.4) is not empty. If this condition is violated, then Theorem 4.1
supplies a weaker estimate which we get by replacing σ by an appropriate σ̄ >
σ, and by applying Theorem 4.1 with this number σ̄.

One may ask whether the above estimate about the expected value of the
supremum of normalized partial sums holds without the condition

√
nσ2 ≥

const. σ log1/2 2
σ . We show an example which gives a negative answer to this
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question. Since here we discuss a rather particular problem which is outside
of our main interest in this work I give a rather sketchy explanation of this
example. I present this example together with a Poissonian counterpart of it
which may help to explain its background.

Example 4.3 (Supremum of partial sums with bad tail behaviour).
Let ξ1, . . . , ξn be a sequence of independent random variables with uniform
distribution in the interval [0, 1]. Choose a sequence of real numbers, εn,
n = 3, 4, . . . , such that εn → 0 as n → ∞, and 1

2 ≥ εn ≥ n−δ with a

sufficiently small number δ > 0. Put σn = εn

√
log n

n , and define the set of

functions f̄j,n(·) and fj,n(·) on the interval [0, 1] by the formulas f̄j,n(x) = 1
if (j−1)σ2

n ≤ x < jσ2
n, f̄j,n(x) = 0 otherwise, and fj,n(x) = f̄j,n(x)−σ2

n, n =

3, 4, . . . , 1 ≤ j ≤ 1
σ2

n
. Put Fn = {fj,n(·) : 1 ≤ j ≤ 1

σ2
n
}, Sn(f) = 1√

n

n∑

k=1

f(ξk)

for f ∈ Fn and un = A
log 1

εn

log n√
n

with a sufficiently small A > 0. Then

lim
n→∞

P

(

sup
f∈Fn

Sn(f) > un

)

= 1.

This example has the following Poissonian counterpart.

Example 4.3′ (A Poissonian counterpart of Example 4.3). Let P̄n(x)
be a Poisson process on the interval [0, 1] with parameter n and Pn(x) =
1√
n

[P̄n(x) − nx], 0 ≤ x ≤ 1. Consider the same sequences of numbers εn, σn

and un as in Example 4.3, and define the random variables Zn,j = Pn(jσ2
n)−

Pn((j − 1)σ2
n) for all n = 3, 4, . . . and 1 ≤ j ≤ 1

σ2
n
. Then

lim
n→∞

P

(

sup
1≤j≤ 1

σn

Zn,j > un

)

= 1.

The classes of functions Fn in Example 4.3 are L2-dense classes of func-
tions with some exponent L and parameter D not depending on the param-
eter n and the choice of the numbers σn. It can be seen that even the class
of function F = {fs,t : fs,t(x) = 1, if s ≤ x < t, fs,t(x) = 0 otherwise.}
consisting of functions defined on the interval [0, 1] is an L2-dense class with
some exponent L and parameter D. This follows from the results discussed
in the later part of this work (mainly Theorem 5.2), but it can be proved
directly that this statement holds e.g. with L = 1 and D = 8. The classes
of functions Fn also satisfy conditions (4.1), (4.2) and (4.3) of Theorem 4.1
with σ2 = σ̄2

n = σ2
n − σ4

n, lim
n→∞

σ̄n

σn
= 1, and the number un satisfies the sec-

ond condition un ≥ Mσ̄n(L3/4 log1/2 2
σ̄n

+ (log D)3/4) in (4.4) for sufficiently

large n. But it does not satisfy the first condition
√

nσ̄2
n ≥ un of (4.4), and
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as a consequence Theorem 4.1 cannot be applied in this case. On the other
hand, some calculation shows that un ≥ ( 2

1+4δ )1/2 A
εn log 1

εn

σn log1/2 2
σ n

. Hence

lim inf
n→∞

εn log 1
εn

· 1
σ̄n log1/2 2

σ̄n

E sup
f∈Fn

Sn(f) > 0 in this case. As εn log 1
εn

→ 0

as n → ∞, this means that the expected value of the supremum of the
random sums considered in Example 4.3 does not satisfy the estimate
lim sup

n→∞
1

σ̄n log1/2 2
σ̄n

E sup
f∈Fn

Sn(f) < ∞ suggested by Theorem 4.1. Observe

that
√

nσ̄2
n ∼ const. εnσ̄n log1/2 2

σ̄n
in this case, since

√
nσ̄2

n ∼ ε2
n

log n√
n

, and

σ̄n log1/2 2
σ̄n

∼ const. εn
log n√

n
.

The proof of Examples 4.3 and 4.3′. First we prove the statement of Exam-
ple 4.3′. For a fixed index n the number of random variables Zn,j equals
1

σ2
n
≥ 1

ε2
n

n
log n ≥ n

log n , and they are independent. Hence it is enough to show

that P (Zn,j > un) ≥ n−1/2 if first A > 0 and then δ > 0 (appearing in the
condition εn > n−δ) are chosen sufficiently small, and n ≥ n0 with some
threshold index n0 = n0(A, δ).

Put ūn = [
√

nun + nσ2
n] + 1, where [·] denotes integer part. Then

P (Zn,j > un) ≥ P (P̄n(σ2
n) ≥ ūn) ≥ P (P̄n(σ2

n) = ūn) =
(nσ2

n)ūn

ūn! e−nσ2
n ≥

(
nσ2

n

ūn

)ūn

e−nσ2
n . Some calculation shows that ūn ≤ A log n

log 1
εn

+ ε2
n log n + 1 ≤

2A log n
log 1

εn

,
nσ2

n

ūn
≥ ε2

n log 1
εn

2A , and log
nσ2

n

ūn
≥ −2 log 1

εn
if the constants A > 0, δ > 0

and threshold index n0 are appropriately chosen. Hence P (Zn,j > un) ≥
e−2ūn log(1/εn)−nσ2

n ≥ e−2A log n−ε2
n log n ≥ 1√

n
if A0 > 0 is small enough.

The statement of Example 4.3 can be deduced from Example 4.3′ by ap-
plying Poissonian approximation. Let us apply the result of Example 4.3′ for
a Poisson process P̄n/2 with parameter n

2 and with such a number ε̄n/2 with
which the value of σn/2 equals the previously defined σn. Then ε̄n/2 ∼ εn√

2
,

and the number of sample points of P̄n/2 is less than n with probability al-
most 1. Attaching additional sample points to get exactly n sample points
we can get the result of Example 4.3. I omit the details.

In formulas (4.4) and (4.7) we formulated such a condition for the validity
of Theorem 4.1 and Theorem 4.2 which contains a large multiplying constant
ML3/4 and ML1/2 of σ log1/2 2

σ in the lower bound for the number u if we
deal with such an L2-dense class of functions F which has a large exponent L.
At a heuristic level it is clear that in such a case a large multiplying constant
appears. On the other hand, I did not try to find the best possible coefficients
in the lower bound in relations (4.4) and (4.7).

In Theorem 4.1 (and in its version 4.1′) it was demanded that the class
of functions F should be countable. Later this condition was replaced by a
weaker one about countable approximability. By restricting our attention to
countable or countably approximable classes we could avoid some unpleas-
ant measure theoretical problems which would have arisen if we had worked
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with the supremum of non-countable number of random variables which may
be non-measurable. There are some papers where possibly non-measurable
models are also considered with the help of some rather deep results of the
analysis and measure theory. Actually, the problem we met here is the natural
analogue of an important problem in the theory of the stochastic processes
about the smoothness property of the trajectories of an appropriate version
of a stochastic process which we can get by exploiting our freedom to change
all random variables on a set of probability zero.

The study of the problem in this work is simpler in one respect. Here
the set of random variables Sn(f)(ω) or Jn(f)(ω), f ∈ F , are constructed
directly with the help of the underlying random variables ξ1(ω), . . . , ξn(ω)
for all ω ∈ Ω separately. We are interested in the question when the sets of
random variables constructed in this way are countably approximable, i.e. we
are not looking for a possibly different, better version of them with the same
finite dimensional distributions. The next simple Lemma 4.4 yields a sufficient
condition for countable approximability. Its condition can be interpreted as a
smoothness type condition for the trajectories of a stochastic process indexed
by the functions f ∈ F .

Lemma 4.4. Let a class of random variables U(f), f ∈ F , indexed by some
set F of functions be given on a space (Y,Y). If there exists a countable subset
F ′ ⊂ F of the set F such that the sets A(u) = {ω : sup

f∈F
|U(f)(ω)| ≥ u} and

B(u) = {ω : sup
f∈F ′

|U(f)(ω)| ≥ u} introduced for all u > 0 in the definition

of countable approximability satisfy the relation A(u) ⊂ B(u − ε) for all
u > ε > 0, then the class of random variables U(f), f ∈ F , is countably
approximable.

The above property holds if for all f ∈ F , ε > 0 and ω ∈ Ω there exists a
function f̄ = f̄(f, ε, ω) ∈ F ′ such that |U(f̄)(ω)| ≥ |U(f)(ω)| − ε.

Proof of Lemma 4.4. If A(u) ⊂ B(u−ε) for all ε > 0, then P ∗(A(U)\B(u)) ≤
lim
ε→0

P (B(u − ε) \ B(u)) = 0, where P ∗(X) denotes the outer measure of a

not necessarily measurable set X ⊂ Ω, since
⋂

ε→0
B(u − ε) = B(u), and this

is what we had to prove. If ω ∈ A(u), then for all ε > 0 there exists some
f = f(ω) ∈ F such that |U(f)(ω)| > u− ε

2 . If there exists some f̄ = f̄(f, ε
2 , ω),

f̄ ∈ F ′ such that |U(f̄)(ω)| ≥ |Uf(ω)| − ε
2 , then |U(f̄)(ω)| > u − ε, and

ω ∈ B(u − ε). This means that A(u) ⊂ B(u − ε).

The question about countable approximability also appears in the case of
multiple random integrals with respect to a normalized empirical measure.
To avoid some repetition we prove a result which also covers such cases. For
this goal first we introduce the notion of multiple integrals with respect to a
normalized empirical measure.

Given a measurable function f(x1, . . . , xk) on the k-fold product space
(Xk,X k) and a sequence of independent random variables ξ1, . . . , ξn with
some distribution µ on the space (X,X ) we define the integral Jn,k(f) of the
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function f with respect to the k-fold product of the normalized version of the
empirical measure µn introduced in (4.5) by the formula

Jn,k(f) =
nk/2

k!

∫ ′
f(x1, . . . , xk)(µn(dx1) − µ(dx1)) . . . (µn(dxk) − µ(dxk)),

where the prime in

∫ ′
means that the diagonals xj = xl,

1 ≤ j < l ≤ k, are omitted from the domain of integration. (4.8)

In the case k ≥ 2 it will be assumed that the probability measure µ has no
atoms.

Lemma 4.4 enables us to prove that certain classes of random integrals
Jn,k(f), f ∈ F , defined with the help of some set of functions f ∈ F of k
variables are countably approximable. I present an example of a class of such
random integrals which is important in certain applications.

Let us consider the case when X = Rs, the s-dimensional Euclidean
space with some s ≥ 1. For two vectors u = (u(1), . . . , u(s)) ∈ Rs, v =
(v(1), . . . , v(s)) ∈ Rs such that u < v, i.e. u(j) < v(j) for all 1 ≤ j ≤ s let
B(u, v) denote the s-dimensional rectangle B(u, v) = {z : u < z < v}. Let us
fix some function f(x1, . . . , xk) of k variables such that sup |f(x1, . . . , xk)| ≤
1, on the space (Xk,X k) = (Rks,Bks), where Bt denotes the Borel σ-
algebra on the Euclidean space Rt, together with some probability measure
µ on (Rs,Bs). For all pairs of vectors (u1, . . . , uk), (v1, . . . , vk) such that
uj , vj ∈ Rs and uj ≤ vj , 1 ≤ j ≤ k, let us define the function fu1,...,uk,v1,...,vk

which equals the function f on the rectangle (u1, v1)×· · ·× (uk, vk), and it is
zero outside of this rectangle. Let us call a class of functions F consisting of
functions of the form fu1,...,uk,v1,...,vk

closed if it has the following property.
If fu1,...,uk,v1,...,vk

∈ F for some vectors (u1, . . . , uk) and (v1, . . . , vk), and
uj ≤ ūj < v̄j ≤ vj , 1 ≤ j ≤ k, then fū1,...,ūk,v̄1,...,v̄k

∈ F . In Lemma 4.5 a
closed class F of functions will be considered, and it will be proved that the
random integrals of the functions from this class of functions F introduced
in formula (4.8) constitute a countably approximable class.

Lemma 4.5. Let us have a function f on the Euclidean space Rks such
that the |f | ≤ 1 in all points, and consider a closed class F of func-
tions of the form fu1,...,uk,v1,...,vk

∈ (Rsk,Bsk), uj , vj ∈ Rs, uj ≤ vj,
1 ≤ j ≤ k, introduced in the previous paragraph with the help of this func-
tion f . Let us take n independent and identically distributed random variables
ξ1, . . . , ξn with some distribution µ and values in the space (Rs,Bs). Let µn

denote the empirical distribution of this sequence. Then the class of ran-
dom integrals Jn,k(fu1,...,uk,v1,...,vk

) defined in formula (4.8) with functions
fu1,...,uk,v1,...,vk

∈ F is countably approximable.

Proof of Lemma 4.5. We shall prove that the definition of countable approx-
imability is satisfied in this model if the class of functions F ′ consists of those
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functions fu1,...,uk,v1,...,vk
, uj ≤ vj , 1 ≤ j ≤ k, for which all coordinates of

the vectors uj and vj are rational numbers.
Given some function fu1,...,uk,v1,...,vk

, a real number 0 < ε < 1 and ω ∈ Ω
let us choose a function fū1,...,ūk,v̄1,...,v̄k

∈ F ′ determined with some vectors
ūj = ūj(ε, ω), v̄j = v̄j(ε, ω) 1 ≤ j ≤ k, with rational coordinates uj ≤ ūj <
v̄j ≤ vj in such a way that the sets Kj = B(uj , vj) \ B(ūj , v̄j) satisfy the
relations µ(Kj) ≤ ε2−2k+1n−k/2, and ξl(ω) /∈ Kj for all j = 1, . . . , k and
l = 1, . . . , n. Let us show that

|Jn,k(fū1,...,ūk,v̄1,...,v̄k
)(ω) − Jn,k(fu1,...,uk,v1,...,vk

)(ω)| ≤ ε. (4.9)

Then lemma 4.4 (with the choice U(f) = Jn,k(f)) and relation (4.9) imply
Lemma 4.5.

Relation (4.9) holds, since the difference of integrals at its left-hand side
can be written as the sum of the 2k − 1 integrals of the function f with
respect to the k-fold product of the measure

√
n(µn − µ) on the domains

D1 × · · ·×Dk with the omission of the diagonals xj = xj̄ , 1 ≤ j, ̄ ≤ k, j 6= ̄,
where Dj is either the set Kj or B(uj , vj) and Dj = Kj for at least one
index j. It is enough to show that the absolute value of all these integrals
is less than ε2−k. This follows from the observations that |f(x1, . . . , xk)| ≤
1,

√
n(µn − µ)(Kj) = −√

nµ(Kj), µ(Kj) ≤ ε2−2k+1n−k/2, and the total
variation of the signed measure

√
n(µn − µ) (restricted to the set B(uj , vj))

is less than 2
√

n.

In Lemma 4.5 we have shown with the help of Lemma 4.4 about an impor-
tant class of functions that it is countably approximable. There are other in-
teresting classes of functions whose countable approximability can be proved
with the help of Lemma 4.4. But here we shall not discuss this problem.

Let us discuss the relation of the results in this section to an important re-
sult in probability theory, to the so-called fundamental theorem of the math-
ematical statistics. In that result a sequence of independent random variables
ξ1(ω), . . . , ξn(ω) is taken with some distribution function F (x), the empirical
distribution function Fn(x) = Fn(x, ω) = 1

n#{j : 1 ≤ j ≤ n, ξj(ω) < x} is
introduced, and the difference Fn(x) − F (x) is considered. This result states
that sup

x
|Fn(x) − F (x)| tends to zero with probability one.

Observe that sup
x

|Fn(x) − F (x)| = n−1/2 sup
f∈F

|Jn(f)|, where F consists

of the functions fx(·), x ∈ R1, defined by the relation fx(u) = 1 if u < x,
and fx(u) = 0 if u ≥ x. Theorem 4.1′ yields an estimate for the prob-

abilities P

(

sup
f∈F

|Jn(f)| > u

)

. We have seen that the above class of func-

tions F is countably approximable. The results of the next section imply
that this class of functions is also L2-dense. Let me remark that actually
it is not difficult to check this property directly. Hence we can apply Theo-
rem 4.1′ to the above defined class of functions with σ = 1, and it yields that
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P

(

n−1/2 sup
f∈F

|Jn(f)| > u

)

≤ e−Cnu2

if 1 ≥ u ≥ C̄n−1/2 with some universal

constants C > 0 and C̄ > 0. (The condition 1 ≥ u can actually be dropped.)
The application of this estimate for the numbers ε > 0 together with the
Borel–Cantelli lemma imply the fundamental theorem of the mathematical
statistics.

In short, the results of this section yield more information about the close-
ness the empirical distribution function Fn and distribution function F than
the fundamental theorem of the mathematical statistics. Moreover, since
these results can also be applied for other classes of functions, they yield
useful information about the closeness of the probability measure µ to the
empirical measure µn.





Chapter 5

Vapnik–Červonenkis classes and L2-dense
classes of functions

In this section the most important notions and results will be presented
about Vapnik–Červonenkis classes, and it will be explained how they help
to show in some important cases that certain classes of functions are L2-
dense. The classes of L2-dense classes played an important role in the study
of the previous section. The results of this section may help to find interesting
classes of functions with this property. Some of the results of this section will
be proved in Appendix A.

First I recall the following notions.

Definition of Vapnik-Červonenkis classes of sets and functions. Let
a set X be given, and let us select a class D of subsets of this set X. We
call D a Vapnik–Červonenkis class if there exist two real numbers B and K
such that for all positive integers n and subsets S(n) = {x1, . . . , xn} ⊂ X of
cardinality n of the set X the collection of sets of the form S(n)∩D, D ∈ D,
contains no more than BnK subsets of S(n). We shall call B the parameter
and K the exponent of this Vapnik–Červonenkis class.

A class of real valued functions F on a space (Y,Y) is called a Vapnik–
Červonenkis class if the collection of graphs of these functions is a Vapnik–
Červonenkis class, i.e. if the sets A(f) = {(y, t) : y ∈ Y, min(0, f(y)) ≤ t ≤
max(0, f(y))}, f ∈ F , constitute a Vapnik–Červonenkis class of subsets of
the product space X = Y × R1.

The following result which was first proved by Sauer plays a fundamen-
tal role in the theory of Vapnik–Červonenkis classes. This result provides a
relatively simple condition for a class D of subsets of a set X to be a Vapnik–
Červonenkis class. Its proof is given in Appendix A. Before its formulation
I introduce some terminology which seems to be wide spread and generally
accepted in the literature.

Definition of shattering of a set. Let a set S and a class E of subsets of S
be given. A finite set F ⊂ S is called shattered by the class E if all its subsets
H ⊂ F can be written in the form H = E ∩ F with some element E ∈ E of
the class of sets of E.

33
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Theorem 5.1 (Sauer’s lemma). Let a finite set S = S(n) consisting of
n elements be given together with a class E of subsets of S. If E shatters no
subset of S of cardinality k, then E contains at most

(
n
0

)
+
(
n
1

)
+ · · · +

(
n

k−1

)

subsets of S.

The estimate of Sauer’s lemma is sharp. Indeed, if E contains all subsets
of S of cardinality less than or equal to k − 1, then it shatters no subset of a
set F of cardinality k (a set F of cardinality k cannot be written in the form
E ∩ F , E ∈ E), and E contains

(
n
0

)
+
(
n
1

)
+ · · · +

(
n

k−1

)
subsets of S. Sauer’s

lemma states, that this is an extreme case. Any class of subsets E of S with
cardinality greater than

(
n
0

)
+
(
n
1

)
+ · · · +

(
n

k−1

)
shatters at least one subset

of S with cardinality k.
Let us have a set X and a class of subsets D of it. One may be interested in

when D is a Vapnik–Červonenkis class. Sauer’s lemma gives a useful condition
for it. Namely, it implies that if there exists a positive integer k such that
the class D shatters no subset of X of cardinality k, then D is a Vapnik–
Červonenkis class. Indeed, let us take some number n ≥ k, fix an arbitrary
set S(n) = {x1, . . . , xn} ⊂ X of cardinality n, and introduce the class of
subsets E = E(S(n)) = {S(n) ∩ D : D ⊂ D}. If D shatters no subset of X of
cardinality k, then E shatters no subset of S(n) of cardinality k. Hence by
Sauer’s lemma the class E contains at most

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

k−1

)
elements.

Let me remark that it is also proved that
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

k−1

)
≤ 1.5 nk−1

(k−1)!

if n ≥ k + 1. This estimate gives a bound on the parameter and exponent of
a Vapnik–Červonenkis class which satisfies the above condition.

Moreover, Theorem 5.1 also has the following consequence. Take an (infi-
nite) set X and a class of its subsets D. There are two possibilities. Either
there is some set S(n) ⊂ X of cardinality n for all integers n such that E(S(n))
contains all subsets of S(n), i.e. D shatters this set, or sup

S : S⊂X, |S|=n

|E(S)|

tends to infinity at most in a polynomial order as n → ∞, where |S| and
|E(S)| denote the cardinality of S and E(S).

To understand why the Sauer lemma plays an important role in the theory
of Vapnik–Červonenkis classes let us formulate the following consequence of
the above considerations.

Corrolary of the Sauer’s lemma. Let a set X be given together with a class
D of subsets of this set X. This class of sets D is a Vapnik–Červonenkis class
if there exists a positive integer k such that D shatters no subset F ⊂ X of
cardinality k. In other words if each set F = {x1, . . . , xk} ⊂ X of cardinality k
has a subset G ⊂ F which cannot be written in the form G = D ∩ F with
some D ∈ D, then D is a Vapnik–Červonenkis class.

The following Theorem 5.2, an important result of Richard Dudley, states
that a Vapnik–Červonenkis class of functions bounded by 1 is an L1-dense
class of functions.

Theorem 5.2 (A relation between the L1-dense class and Vapnik–
Červonenkis class property). Let f(y), f ∈ F , be a Vapnik–Červonenkis



5 Vapnik–Červonenkis classes and L2-dense classes of functions 35

class of real valued functions on some measurable space (Y,Y) such that
sup
y∈Y

|f(y)| ≤ 1 for all f ∈ F . Then F is an L1-dense class of functions

on (Y,Y). More explicitly, if F is a Vapnik–Červonenkis class with param-
eter B ≥ 1 and exponent K > 0, then it is an L1-dense class with expo-
nent L = 2K and parameter D = CB2(4K)2K with some universal con-
stant C > 0.

Proof of Theorem 5.2. Let us fix some probability measure ν on (Y,Y) and
a real number 0 < ε ≤ 1. We are going to show that any finite set D(ε, ν) =
{f1, . . . , fM} ⊂ F such that

∫
|fj − fk| dν ≥ ε if j 6= k, fj , fk ∈ D(ε, ν) has

cardinality M ≤ Dε−L with some D > 0 and L > 0. This implies that F is
an L1-dense class with parameter D and exponent L. Indeed, let us take a
maximal subset D̄(ε, ν) = {f1, . . . , fM} ⊂ F such that the L1(ν) distance of
any two functions in this subset is at least ε. Maximality means in this context
that no function fM+1 ∈ F can be attached to D̄(ε, ν) without violating this
condition. Thus the inequality M ≤ Dε−L means that D̄(ε, ν) is an ε-dense
subset of F in the space L1(Y,Y, ν) with no more than Dε−L elements.

In the estimation of the cardinality M of a set D(ε, ν) = {f1, . . . , fM} ⊂
F with the property

∫
|fj − fk| dν ≥ ε if j 6= k we exploit the Vapnik–

Červonenkis class property of F in the following way. Let us choose relatively
few p = p(M, ε) points (yl, tl), yl ∈ Y , −1 ≤ tl ≤ 1, 1 ≤ l ≤ p, in the space
(Y ×[−1, 1]) in such a way that the set S0(p) = {(yl, tl), 1 ≤ l ≤ p} and graphs
A(fj) = {(y, t) : y ∈ Y, min(0, fj(y)) ≤ t ≤ max(0, fj(y))}, fj ∈ D(ε, ν) ⊂ F
have the property that all sets A(fj)∩S0(p), 1 ≤ j ≤ M , are different. Then
the Vapnik–Červonenkis class property of F implies that M ≤ BpK . Hence
if there exists a set S0(p) with the above property and with a relatively small
number p, then this yields a useful estimate on M . Such a set S0(p) will be
given by means of the following random construction.

Let us choose the p points (yl, tl), 1 ≤ l ≤ p, of the (random) set S0(p)
independently of each other in such a way that the coordinate yl is chosen
with distribution ν on (Y,Y) and the coordinate tl with uniform distribu-
tion on the interval [−1, 1] independently of yl. (The number p will be cho-
sen later.) Let us fix some indices 1 ≤ j, k ≤ M , and estimate from above
the probability that the sets A(fj) ∩ S0(p) and A(fk) ∩ S0(p) agree, where
A(f) denotes the graph of the function f . Consider the symmetric differ-
ence A(fj)∆A(fk) of the sets A(fj) and A(fk). The sets A(fj) ∩ S0(p) and
A(fk)∩S0(p) agree if and only if (yl, tl) /∈ A(fj)∆A(fk) for all (yl, tl) ∈ S0(p).
Let us observe that for a fixed l the estimate P ((yl, tl) ∈ A(fj)∆A(fk)) =
1
2 (ν × λ)(A(fj)∆A(fk)) = 1

2

∫
|fj − fk| dν ≥ ε

2 holds, where λ denotes
the Lebesgue measure. This implies that the probability that the (random)
sets A(fj) ∩ S0(p) and A(fk) ∩ S0(p) agree can be bounded from above by
(
1 − ε

2

)p ≤ e−pε/2. Hence the probability that all sets A(fj) ∩ S0(p) are dif-

ferent is greater than 1 −
(
M
2

)
e−pε/2 ≥ 1 − M2

2 e−pε/2. Choose p such that
7
4epε/2 > e(p+1)ε/2 > M2 ≥ epε/2. Then the above probability is greater than
1
8 , and there exists some set S0(p) with the desired property.
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The inequalities M ≤ BpK and M2 ≥ epε/2 imply that M ≥ eεM1/K/4B1/K

,

i.e. log M1/K

M1/K ≥ ε
4KB1/K . As log M1/K

M1/K ≤ CM−1/2K for M ≥ 1 with some uni-
versal constant C > 0, this estimate implies that Theorem 5.2 holds with the
exponent L and parameter D given in its formulation.

Let us observe that if F is an L1-dense class of functions on a measure
space (Y,Y) with some exponent L and parameter D, and also the inequality
sup
y∈Y

|f(y)| ≤ 1 holds for all f ∈ F , then F is an L2-dense class of functions

with exponent 2L and parameter D2L. Indeed, if we fix some probability
measure ν on (Y,Y) together with a number 0 < ε ≤ 1, and D(ε, ν) =

{f1, . . . , fM} is an ε2

2 -dense set of F in the space L1(Y,Y, ν), M ≤ 2LDε−2L,
then for all function f ∈ F some function fj ∈ D(ε, ν) can be chosen in such
a way that

∫
(f − fj)2 dν ≤ 2

∫
|f − fj | dν ≤ ε2. This implies that F is an

L2-dense class with the given exponent and parameter.
It is not easy to check whether a collection of subsets D of a set X is

a Vapnik–Červonenkis class even with the help of Theorem 5.1. Therefore
the following Theorem 5.3 which enables us to construct many non-trivial
Vapnik–Červonenkis classes is of special interest. Its proof is given in Ap-
pendix A.

Theorem 5.3 (A way to construct Vapnik–Červonenkis classes). Let
us consider a k-dimensional subspace Gk of the linear space of real valued
functions defined on a set X, and define the level-set A(g) = {x : x ∈
X, g(x) ≥ 0} for all functions g ∈ Gk. Take the class of subsets D =
{A(g) : g ∈ Gk} of the set X consisting of the above introduced level sets.
No subset S = S(k + 1) ⊂ X of cardinality k + 1 is shattered by D. Hence by
Theorem 5.1 D is a Vapnik–Červonenkis class of subsets of X.

Theorem 5.3 enables us to construct many interesting Vapnik–Červonenkis
classes. Thus for instance the class of all half-spaces in a Euclidean space,
the class of all ellipses in the plane, or more generally the level sets of k-
order algebraic functions of p variables with a fixed number k constitute a
Vapnik–Červonenkis class in the p-dimensional Euclidean space Rp. It can
be proved that if C and D are Vapnik–Červonenkis classes of subsets of a set
S, then also their intersection C ∩ D = {C ∩ D : C ∈ C, D ∈ D}, their union
C∪D = {C∪D : C ∈ C, D ∈ D} and complementary sets Cc = {S\C : C ∈ C}
are Vapnik–Červonenkis classes. These results are less important for us, and
their proofs will be omitted. We are interested in Vapnik–Červonenkis classes
not for their own sake. We are going to find L2-dense classes of functions,
and Vapnik–Červonenkis classes help us in this. Indeed, Theorem 5.2 implies
that if D is a Vapnik–Červonenkis class of subsets of a set S, then their
indicator functions constitute a Vapnik–Červonenkis class of functions, and
as a consequence an L1-dense, hence also an L2-dense class of functions.
Then the results of Lemma 5.4 formulated below enable us to construct new
L2-dense classes of functions.
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Lemma 5.4 (Some useful properties of L2-dense classes). Let G be
an L2-dense class of functions on some space (Y,Y) whose absolute values
are bounded by one, and let f be a function on (Y,Y) also with absolute
value bounded by one. Then f · G = {f · g : g ∈ G} is also an L2-dense class
of functions. Let G1 and G2 be two L2-dense classes of functions on some
space (Y,Y) whose absolute values are bounded by one. Then the classes of
functions G1 + G2 = {g1 + g2 : g1 ∈ G1, g2 ∈ G2}, G1 · G2 = {g1g2 : g1 ∈
G1, g2 ∈ G2}, min(G1,G2) = {min(g1, g2) : g1 ∈ G1, g2 ∈ G2}, max(G1,G2) =
{max(g1, g2) : g1 ∈ G1, g2 ∈ G2} are also L2-dense. If G is an L2-dense class
of functions, and G′ ⊂ G, then G′ is also an L2-dense class.

The proof of Lemma 5.4 is rather straightforward. One has to observe for
instance that if g1, ḡ1 ∈ G1, g2, ḡ2 ∈ G2 then |min(g1, g2) − min(ḡ1, ḡ2)| ≤
|g1 − ḡ1)| + |g2 − ḡ2|, hence if g1,1, . . . , g1,M1

is an ε
2 -dense subset of G1 and

g2,1, . . . , g2,M2
is an ε

2 -dense subset of G2 in the space L2(Y,Y, ν) with some
probability measure ν, then the functions min(g1,j , g2,k), 1 ≤ j ≤ M1, 1 ≤
k ≤ M2 constitute an ε-dense subset of min(G1,G2) in L2(Y,Y, ν). The last
statement of Lemma 5.4 was proved after the Corollary of Theorem 4.1. The
details are left to the reader.

The above result enable us to construct some L2 dense class of functions.
We give an example for it in the following Example 5.5 which is a consequence
of Theorem 5.2 and Lemma 5.4.

Example 5.5. Take m measurable functions fj(x), 1 ≤ j ≤ m, on a measur-
able space (X,X ) which have the property sup

x∈X
|fj(x)| ≤ 1 for all 1 ≤ j ≤ m.

Let D be a Vapnik-Červonenkis class consisting of measurable subsets of the
set X. Define for all pairs (fj ,D), fj, 1 ≤ j ≤ m, and D ∈ D the function
fj,D(·) as fj,D(x) = fj(x) if x ∈ D, and fj,D(x) = 0 if x /∈ D, i.e. fj,D(·)
is the restriction of the function fj(·) to the set D. Then fj,D, 1 ≤ j ≤ m,
D ∈ D, is an L2-dense class of functions.

Beside this, Theorem 5.3 helps us to construct Vapnik-Červonenkis classes
of sets. Let me also remark that it follows from the result of this section
that the random variables considered in Lemma 4.5 are not only countably
approximable, but the class of functions fu1,...,uk,v1,...,vk

appearing in their
definition is L2-dense.





Chapter 6

The proof of Theorems 4.1 and 4.2 on the
supremum of random sums

In this section we prove Theorem 4.2, an estimate about the tail distribu-
tion of the supremum of an appropriate class of Gaussian random variables
with the help of a method, called the chaining argument. We also investigate
the proof of Theorem 4.1 which can be considered as a version of Theo-
rem 4.2 about the supremum of partial sums of independent and identically
distributed random variables. The chaining argument is not a strong enough
method to prove Theorem 4.1, but it enables us to prove a weakened form of it
formulated in Proposition 6.1. This result turned out to be useful in the proof
of Theorem 4.1. It enables us to reduce the proof of Theorem 4.1 to a simpler
statement formulated in Proposition 6.2. In this section we prove Proposi-
tion 6.1, formulate Proposition 6.2, and reduce the proof of Theorem 4.1
with the help of Proposition 6.1 to this result. The proof of Proposition 6.2
which demands different arguments is postponed to the next section. Before
presenting the proofs of this section I briefly describe the chaining argument.

Let us consider a countable class of functions F on a probability space
(X,X , µ) which is L2-dense with respect to the probability measure µ. Let us
have either a class of Gaussian random variables Z(f) with zero expectation
such that EZ(f)Z(g) =

∫
f(x)g(x)µ( dx), f, g ∈ F , or a set of normalized

partial sums Sn(f) = 1√
n

n∑

j=1

f(ξj), f ∈ F , where ξ1, . . . , ξn is a sequence of

independent µ distributed random variables with values in the space (X,X ),
and assume that Ef(ξj) = 0 for all f ∈ F . We want to get a good estimate

on the probability P

(

sup
f∈F

Z(f) > u

)

or P

(

sup
f∈F

Sn(f) > u

)

if the class of

functions F has some nice properties. The chaining argument suggests to
prove such an estimate in the following way.

Let us try to find an appropriate sequence of subset F1 ⊂ F2 ⊂ · · · ⊂ F
such that

∞⋃

N=1

FN = F , FN is such a set of functions from F with relatively

few elements for which inf
f∈FN

∫
(f − f̄)2 dµ ≤ δN with an appropriately chosen
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number δN for all functions f̄ ∈ F , and let us give a good estimate on

the probability P

(

sup
f∈FN

Z(f) > uN

)

or P

(

sup
f∈FN

Sn(f) > uN

)

for all N =

1, 2, . . . with an appropriately chosen monotone increasing sequence uN such
that lim

N→∞
uN = u.

We can get a relatively good estimate under appropriate conditions for
the class of functions F by choosing the classes of functions FN and numbers
δN and uN in an appropriate way. We try to bound the difference of the
probabilities

P

(

sup
f∈FN+1

Z(f) > uN+1

)

− P

(

sup
f∈FN

Z(f) > uN

)

or of the analogous difference if Z(f) is replaced by Sn(f). For the sake of
completeness define this difference also in the case N = 1 with the choice
F0 = ∅, when the second probability in this difference equals zero.

The above mentioned difference of probabilities can be estimated in a nat-
ural way by taking for all functions fjN+1

∈ FN+1 a function fjN
∈ FN which

is close to it, more explicitly
∫

(fjN+1
− fjN

)2 dµ ≤ δ2
N , and calculating the

probability that the difference of the random variables corresponding to these
two functions is greater than uN+1−uN . We can estimate these probabilities
with the help of some results which give a relatively good bound on the tail
distribution of Z(g) or Sn(g) if

∫
g2 dµ is small. The sum of all such probabili-

ties gives an upper bound for the above considered difference of probabilities.

Then we get an estimate for the probability P

(

sup
f∈FN

Z(f) > uN

)

for all

N = 1, 2, . . . , by summing up the above estimate, and we get a bound on the
probability we are interested in by taking the limit N → ∞. This method
is called the chaining argument. It got this name, because we estimate the
contribution of a random variable corresponding to a function fjN+1

∈ FN+1

to the bound of the probability we investigate by taking the random variable
corresponding to a function fjN

∈ FN close to it, then we choose another
random variable corresponding to a function fjN−1

∈ FN−1 close to this
function, and so on we take a chain of subsequent functions and the random
variables corresponding to them.

First we show how this method supplies the proof of Theorem 4.2. Then
we turn to the investigation of Theorem 4.1. In the study of this problem
the above method does not work well, because if two functions are very
close to each other in the L2(µ)-norm, then the Bernstein inequality (or
an improvement of it) supplies a much weaker estimate for the difference
of the partial sums corresponding to these two functions than the bound
suggested by the central limit theorem. On the other hand, we shall prove a
weaker version of Theorem 4.1 in Proposition 6.1 with the help of the chaining
argument. This result will be also useful for us.
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Proof of Theorem 4.2. Let us list the elements of F as {f0, f1, . . . } = F , and
choose for all p = 0, 1, 2, . . . a set of functions Fp = {fa(1,p), . . . , fa(mp,p)} ⊂
F with mp ≤ (D + 1) 22pLσ−L elements in such a way that inf

1≤j≤mp

∫
(f −

fa(j,p))
2 dµ ≤ 2−4pσ2 for all f ∈ F , and let the set Fp contain also the

function fp. (We imposed the condition fp ∈ Fp to guarantee that the relation
f ∈ Fp holds with some index p for all f ∈ F . We could do this by slightly
enlarging the upper bound we can give for the number mp by replacing the
factor D by D + 1 in it.) For all indices a(j, p) of the functions in Fp, p =
1, 2, . . . , define a predecessor a(j′, p−1) from the indices of the set of functions
Fp−1 in such a way that the functions fa(j,p) and fa(j′,p−1)) satisfy the relation
∫

(f(j,p) − f(j′,p−1))
2 dµ ≤ 2−4(p−1)σ2. With the help of the behaviour of the

standard normal distribution function we can write the estimates

P (A(j, p)) = P
(

|Z(fa(j,p)) − Z(fa(j′,p−1))| ≥ 2−(1+p)u
)

≤ 2 exp

{

− 2−2(p+1)u2

2 · 2−4(p−1)σ2

}

= 2 exp

{

− 22pu2

128σ2

}

1 ≤ j ≤ mp, p = 1, 2, . . . ,

and

P (B(j)) = P
(

|Z(fa(j,0))| ≥
u

2

)

≤ exp

{

− u2

8σ2

}

, 1 ≤ j ≤ m0.

The above estimates together with the relation
∞⋃

p=0
Fp = F which implies

that

{|Z(f)| ≥ u} ⊂
∞⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1
B(s) for all f ∈ F yield that

P

(

sup
f∈F

|Z(f)| ≥ u

)

≤ P





∞⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1

B(s)





≤
∞∑

p=1

mp∑

j=1

P (A(j, p)) +

m0∑

s=1

P (B(s))

≤
∞∑

p=1

2(D + 1)22pLσ−L exp

{

− 22pu2

128σ2

}

+ 2(D + 1)σ−L exp

{

− u2

8σ2

}

.

If u ≥ ML1/2σ log1/2 2
σ with M ≥ 16 (and L ≥ 1 and 0 < σ ≤ 1), then

22pLσ−L exp

{

− 22pu2

256σ2

}

≤ 22pLσ−L
(σ

2

)22pM2L/256

≤ 2−pL ≤ 2−p

for all p = 0, 1 . . . , hence the previous inequality implies that
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P

(

sup
f∈F

|Z(f)| ≥ u

)

≤ 2(D + 1)

∞∑

p=0

2−p exp

{

− 22pu2

256σ2

}

= 4(D + 1) exp

{

− u2

256σ2

}

.

Theorem 4.2 is proved.

With an appropriate choice of the bound of the integrals in the definition
of the sets Fp in the proof of Theorem 4.2 and some additional calculation
it can be proved that the coefficient 1

256 in the exponent of the right-hand
side (4.7) can be replaced by 1−ε

2 with arbitrary small ε > 0 if the remaining
(universal) constants in this estimate are chosen sufficiently large.

The proof of Theorem 4.2 was based on a sufficiently good estimate on
the probabilities P (|Z(f) − Z(g)| > u) for pairs of functions f, g ∈ F and
numbers u > 0. In the case of Theorem 4.1 only a weaker bound can be
given for the corresponding probabilities. There is no good estimate on the
tail distribution of the difference Sn(f) − Sn(g) if its variance is small. As a
consequence, the chaining argument supplies only a weaker result in this case.
This result, where the tail distribution of the supremum of the normalized
random sums Sn(f) is estimated on a relatively dense subset of the class of
functions f ∈ F in the L2(µ) norm will be given in Proposition 6.1. Another
result will be formulated in Proposition 6.2 whose proof is postponed to the
next section. It will be shown that Theorem 4.1 follows from Propositions 6.1
and 6.2.

Before the formulation of Proposition 6.1 I recall an estimate which is a

simple consequence of Bernstein’s inequality. If Sn(f) = 1√
n

n∑

j=1

f(ξj) is the

normalized sum of independent, identically random variables, P (|f(ξ1)| ≤
1) = 1, Ef(ξ1) = 0, Ef(ξ1)2 ≤ σ2, then there exists some constant α > 0
such that

P (|Sn(f)| > u) ≤ 2e−αu2/σ2

if 0 < u <
√

nσ2. (6.1)

In Proposition 6.1 we shall give a good (Gussian type) estimate on the

probability P

(

sup
f∈Fσ̄

|Sn(f)| > u
Ā

)

with some parameter Ā > 1, where Fσ̄ is

an appropriate finite subset of a set of functions F satisfying the conditions
of Theorem 4.1. We cannot give a good estimate for the above probability
for all u > 0, we can do this only for such numbers u which are in an appro-
priate interval depending on the parameter σ appearing in condition (4.2)
of Theorem 4.1 and the parameter Ā we chose in Proposition 6.1. This fact
may explain why we could prove the estimate of Theorem 4.1 only for such
numbers u which satisfy the condition imposed in formula (4.4). The choice of
the set of functions Fσ̄ ⊂ F depends of the number u appearing in the prob-
ability we want to estimate. It is such a subset of relatively small cardinality
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of F whose L2(µ)-norm distance from all elements of F is less than σ̄ = σ̄(u)
with an appropriately defined number σ̄(u). With the help of Proposition 6.1
we want to reduce the proof of Theorem 4.1 to a result formulated in the
subsequent Proposition 6.2. To do this we still need an upper bound on the
cardinality of Fσ̄ and some upper and lower bounds on the value of σ̄(u)
which will be also contained in Proposition 6.1.

Proposition 6.1. Let us have a countable, L2-dense class of functions F
with parameter D ≥ 1 and exponent L ≥ 1 with respect to some probabil-
ity measure µ on a measurable space (X,X ) whose elements satisfy rela-
tions (4.1), (4.2) and (4.3) with this probability measure µ on (X,X ) and
some real number 0 < σ ≤ 1. Take a sequence of independent, µ-distributed
random variables ξ1, . . . , ξn, n ≥ 2, and define the normalized random sums

Sn(f) = 1√
n

n∑

l=1

f(ξl), for all f ∈ F . Let us fix some number Ā ≥ 1.

There exists some number M = M(Ā) such that with these parameters Ā
and M = M(Ā) ≥ 1 the following relations hold.

For all numbers u > 0 such that nσ2 ≥
(

u
σ

)2 ≥ M(L log 2
σ + log D) a

number σ̄ = σ̄(u), 0 ≤ σ̄ ≤ σ ≤ 1, and a collection of functions Fσ̄ =
{f1, . . . , fm} ⊂ F with m ≤ Dσ̄−L elements can be chosen in such a way
that the sets Dj = {f : f ∈ F ,

∫
|f − fj |2 dµ ≤ σ̄2}, 1 ≤ j ≤ m, satisfy the

relation
m⋃

j=1

Dj = F , and the normalized random sums Sn(f), f ∈ Fσ̄, n ≥ 2,

satisfy the inequality

P

(

sup
f∈Fσ̄

|Sn(f)| ≥ u

Ā

)

≤ 4 exp

{

−α
( u

10Āσ

)2
}

under our condition nσ2 ≥ ( u
σ )2 ≥ M(L log 2

σ + log D) (6.2)

with the constants α in formula (6.1) and the exponent L and parameter D of

the L2-dense class F . The inequality 1
16 ( u

Āσ̄
)2 ≥ nσ̄2 ≥ 1

64

(
u

Āσ

)2
also holds

with the number σ̄ = σ̄(u). If the number u satisfies also the inequality

nσ2 ≥
(u

σ

)2

≥ M

(

L3/2 log
2

σ
+ (log D)3/2

)

(6.3)

with a sufficiently large number M = M(Ā), then the relation nσ̄2 ≥ L log n+
log D holds, too. (In formula (6.3) we have imposed a stronger condition
on the number ( u

σ )2 than in (6.2), since here we wrote L3/2 and (log D)3/2

instead of L and log D, and also the constant M = M(Ā) can be chosen
larger in it.)

Proposition 6.1 helps to reduce the proof of Theorem 4.1 to the case
when the L2-norm of the functions in the class F is bounded by a relatively
small number σ̄. In more detail, the proof of Theorem 4.1 can be reduced
to a good estimate on the distribution of the supremum of random variables



44 6 The proof of Theorems 4.1 and 4.2 on the supremum of random sums

sup
f∈Dj

|Sn(f−fj)| for all classes Dj , 1 ≤ j ≤ m, by means of Proposition 6.1. To

carry out such a reduction we also need the inequality nσ̄2 ≥ L log n + log D
(or a slightly weaker version of it). This is the reason why we have finished
Proposition 6.1 with the statement that it holds under the condition (6.3).
We also have to know that the number m of the classes Dj is not too large.
Beside this, we need some estimates on the number σ̄ = σ̄(u) which is the
upper bound of the L2-norm of the functions f − fj , f ∈ Dj . To get such
bounds for σ̄ that we need in the applications of Proposition 6.1 we intro-
duced a large parameter Ā in the formulation of Proposition 6.1 and imposed
a condition with a sufficiently large number M = M(Ā) in formula (6.3). This
condition reappears in Theorem 4.1 in the conditions of the estimate (4.4).

Let me remark that one of the inequalities the number σ̄ introduced in
Proposition 6.1 satisfies has the consequence u > const.

√
nσ̄2 with an appro-

priate constant, and we want to estimate the probability P

(

sup
f∈F

Sn(f)| > u

)

with this number u and a class of functions F whose L2 norm is bounded
by σ̄. Formula (6.1), that will be applied in the proof of Proposition 6.1
holds under the condition u <

√
nσ2, which is an inequality in the oppo-

site direction. Hence to complete the proof of Theorem 4.1 with the help of
Proposition 6.1 we need a result whose proof demands an essentially different
method. Proposition 6.2 formulated below is such a result. I shall show that
Theorem 4.1 is a consequence of Propositions 6.1 and 6.2. Proposition 6.1
is proved at the end of this section, while the proof of Proposition 6.2 is
postponed to the next section.

Proposition 6.2. Let us have a probability measure µ on a measurable space
(X,X ) together with a sequence of independent and µ distributed random
variables ξ1, . . . , ξn, n ≥ 2, and a countable, L2-dense class of functions f =
f(x) on (X,X ) with some parameter D ≥ 1 and exponent L ≥ 1 which
satisfies conditions (4.1), (4.2) and (4.3) with some 0 < σ ≤ 1 such that the
inequality nσ2 > L log n + log D holds. Then there exists a threshold index
A0 ≥ 5 such that the normalized random sums Sn(f), f ∈ F , introduced in
Theorem 4.1 satisfy the inequality

P

(

sup
f∈F

|Sn(f)| ≥ An1/2σ2

)

≤ e−A1/2nσ2/2 if A ≥ A0. (6.4)

I did not try to find optimal parameters in formula (6.4). Even the coef-
ficient −A1/2 in the exponent at its right-hand side could be improved. The
result of Proposition 6.2 is similar to that of Theorem 4.1. Both of them give

an estimate on a probability of the form P

(

sup
f∈F

|Sn(f)| ≥ u

)

with some class

of functions F . The essential difference between them is that in Theorem 4.1



6 The proof of Theorems 4.1 and 4.2 on the supremum of random sums 45

this probability is considered for u ≤ n1/2σ2 while in Proposition 6.2 the case
u = An1/2σ2 with A ≥ A0 is taken, where A0 is a sufficiently large positive
number. Let us observe that in this case no good Gaussian type estimate can
be given for the probabilities P (Sn(f) ≥ u), f ∈ F . In this case Bernstein’s

inequality yields the bound P (Sn(f) > An1/2σ2) = P

(
n∑

l=1

f(ξl) > uVn

)

<

e−const. Anσ2

with u = A
√

nσ and Vn =
√

nσ for each single function f ∈ F
which takes part in the supremum of formula (6.4). The estimate (6.4) yields
a slightly weaker estimate for the supremum of such random variables, since
it contains the coefficient A1/2 instead of A in the exponent of the estimate
at the right-hand side. But also such a bound will be sufficient for us.

In Proposition 6.2 such a situation is considered when the irregularities
of the summands provide a non-negligible contribution to the probabilities
P (|Sn(f)| ≥ u), and the chaining argument applied in the proof of Theo-
rem 4.2 does not give a good estimate on the probability at the left-hand
side of (6.4). This is the reason why we separated the proof of Theorem 4.1
to two different statements given in Proposition 6.1 and 6.2.

In the proof of Theorem 4.1 Proposition 6.1 will be applied with a suffi-
ciently large number Ā ≥ 1 and an appropriate number M = M(Ā) appearing
in the formulation of this result. Proposition 6.2 will be applied for the sets of

functions F = Fj =
{

g−fj

2 : g ∈ Dj

}

and number σ = σ̄, with the number σ̄,

functions fj and sets of functions Dj introduced in Proposition 6.1 and with
the parameter A0 appearing in the formulation of Proposition 6.2. We can
write

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ P

(

sup
f∈Fσ̄

|Sn(f)| ≥ u

Ā

)

(6.5)

+

m∑

j=1

P

(

sup
g∈Dj

∣
∣
∣
∣
Sn

(
fj − g

2

)∣
∣
∣
∣
≥
(

1

2
− 1

2Ā

)

u

)

,

where m is the cardinality of the set of functions Fσ̄ appearing in Proposi-
tion 6.1, which is bounded by m ≤ Dσ̄−L. We want to choose the number Ā
in such a way that the inequality (1

2 − 1
2Ā

)u ≥ A0
√

nσ̄2 holds, since this
enables us to estimate the second term in (6.5) by Proposition 6.2 with the
choice A = A0. This inequality is equivalent to nσ̄2 ≤ ( 1

2A0
− 1

2A0Ā
)2( u

σ̄ )2. On

the other hand, ( u
4Āσ̄

)2 ≥ nσ̄2 by Proposition 6.1, hence the desired inequal-

ity holds if 1
2A0

− 1
2A0Ā

≥ 1
4Ā

. Hence with the choice Ā = max(1, A0+2
2 ) and

a sufficiently large M = M(Ā) we can bound both terms at the right-hand
side of (6.5) with the help of Propositions 6.1 and 6.2.

With such a choice of Ā we can write by Proposition 6.2
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P

(

sup
g∈Dj

∣
∣
∣
∣
Sn

(
fj − g

2

)∣
∣
∣
∣
≥
(

1

2
− 1

2Ā

)

u

)

≤ P

(

sup
g∈Dj

∣
∣
∣
∣
Sn

(
fj − g

2

)∣
∣
∣
∣
≥ A0

√
nσ̄2

)

≤ e−A
1/2
0 nσ̄2/2

for all 1 ≤ j ≤ m.

(Observe that the set of functions
fj−g

2 , g ∈ Dj , is an L2-dense class with pa-
rameter D and exponent L.) Hence Proposition 6.1 together with the bound
m ≤ Dσ̄−L and formula (6.5) imply that

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ 4 exp

{

−α
( u

10Āσ

)2
}

+ Dσ̄−Le−A
1/2
0 nσ̄2/2. (6.6)

To get the estimate in Theorem 4.1 from inequality (6.6) we show that
the inequality nσ̄2 ≥ L log n + log D (with L ≥ 1, D ≥ 1 and n ≥ 2)
which is valid under the conditions of Proposition 6.1 implies that Dσ̄−L ≤
enσ̄2

. Indeed, we have to show that log D + L log 1
σ̄ ≤ nσ̄2. But we have

nσ̄2 ≥ L log n ≥ log n, hence 1
σ̄ ≤

√
n

log n ≤ n, thus log 1
σ̄ ≤ log n, and

log D + L log 1
σ̄ ≤ log D + L log n ≤ nσ̄2, as we have claimed.

This inequality together with the inequality nσ̄2 ≥ 1
64 ( u

Āσ
)2, proved in

Proposition 6.1 imply that

Dσ̄−Le−A
1/2
0 nσ̄2/2 ≤ exp

{

−
(

A
1/2
0

2
− 1

)

nσ̄2

}

≤ exp

{

− (A
1/2
0 − 2)

128Ā2

(u

σ

)2
}

.

Hence relation (6.6) yields that

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ 4 exp

{

− α

100Ā2

(u

σ

)2
}

+ exp

{

− (A
1/2
0 − 2)

128Ā2

(u

σ

)2
}

,

and because of the relation A0 ≥ 5 this estimate implies Theorem 4.1. Let me
remark that the condition

√
nσ2 ≥ u ≥ Mσ(L3/4 log1/2 2

σ + (log D)3/4) ap-
pears in formula (4.4) because of condition (6.3) imposed in Proposition 6.1.
(The parameter M in formula (4.4) can be chosen as twice the parameter M
in (6.3).)

I finish this section with the proof of Proposition 6.1.
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Proof of Proposition 6.1. Let us list the members of F , as f1, f2, . . . , and
choose for all p = 0, 1, 2, . . . a set Fp = {fa(1,p), . . . , fa(mp,p)} ⊂ F with

mp ≤ D 22pLσ−L elements in such a way that inf
1≤j≤mp

∫
(f − fa(j,p))

2 dµ ≤
2−4pσ2 for all f ∈ F . For all indices a(j, p), p = 1, 2, . . . , 1 ≤ j ≤ mp, choose
a predecessor a(j′, p− 1), j′ = j′(j, p), 1 ≤ j′ ≤ mp−1, in such a way that the
functions fa(j,p) and fa(j′,p−1) satisfy the relation

∫
|fa(j,p)−fa(j′,p−1)|2 dµ ≤

σ22−4(p−1). Then we have
∫ ( fa(j,p)−fa(j′,p−1)

2

)2

dµ ≤ 4σ22−4p and

sup
xj∈X, 1≤j≤k

∣
∣
∣
∣

fa(j,p)(x1, . . . , xk) − fa(j′,p−1)(x1, . . . , xk)

2

∣
∣
∣
∣
≤ 1.

Relation (6.1) yields that

P (A(j, p)) = P

(
1

2
|Sn(fa(j,p) − fa(j′,p−1))| ≥

2−(1+p)u

2Ā

)

≤ 2 exp

{

−α

(
2pu

8Āσ

)2
}

if nσ2 ≥ 26p
( u

16Āσ

)2

,

1 ≤ j ≤ mp, p = 1, 2, . . . , (6.7)

and

P (B(s)) = P
(

|Sn(fs,0)| ≥ u

2Ā

)

≤ 2 exp

{

−α
( u

2Āσ

)2
}

, 1 ≤ s ≤ m0,

if nσ2 ≥
( u

2Āσ

)2

. (6.8)

Choose an integer R = R(u), R ≥ 1, by the inequality

26(R+1)
( u

16Āσ

)2

> nσ2 ≥ 26R
( u

16Āσ

)2

,

define σ̄2 = 2−4Rσ2 and Fσ̄ = FR. (As nσ2 ≥
(

u
σ

)2
and Ā ≥ 1 by our con-

ditions, there exists such a number R ≥ 1. The number R was chosen as the
largest number p for which the second relation of formula (6.7) holds.) Then
the cardinality m of the set Fσ̄ equals mR ≤ D22RLσ−L = Dσ̄−L, and the
sets Dj are Dj = {f : f ∈ F ,

∫
(fa(j,R) − f)2 dµ ≤ 2−4Rσ2}, 1 ≤ j ≤ mR,

hence
m⋃

j=1

Dj = F . Beside this, with our choice of the number R inequali-

ties (6.7) and (6.8) can be applied for 1 ≤ p ≤ R. Hence the definition of

the predecessor of an index (j, p) implies that

{

ω : sup
f∈Fσ̄

|Sn(f)(ω)| ≥ u
Ā

}

⊂
R⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1
B(s), and
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P

(

sup
f∈Fσ̄

|Sn(f)| ≥ u

Ā

)

≤ P





R⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1

B(s)





≤
R∑

p=1

mp∑

j=1

P (A(j, p)) +

m0∑

s=1

P (B(s))

≤
∞∑

p=1

2D 22pLσ−L exp

{

−α

(
2pu

8Āσ

)2
}

+ 2Dσ−L exp

{

−α
( u

2Āσ

)2
}

.

If the relation (u
σ )2 ≥ M(L log 2

σ + log D) holds with a sufficiently large
constant M (depending on Ā), and σ ≤ 1, then the inequalities

D22pLσ−L exp

{

−α

(
2pu

8Āσ

)2
}

≤ 2−p exp

{

−α

(
2pu

10Āσ

)2
}

hold for all p = 1, 2, . . . , and

Dσ−L exp

{

−α
( u

2Āσ

)2
}

≤ exp

{

−α
( u

10Āσ

)2
}

.

Hence the previous estimate implies that

P

(

sup
f∈Fσ̄

|Sn(f)| ≥ u

Ā

)

≤
∞∑

p=1

2 · 2−p exp

{

−α

(
2pu

10Āσ

)2
}

+2 exp

{

−α
( u

10Āσ

)2
}

≤ 4 exp

{

−α
( u

10Āσ

)2
}

,

and relation (6.2) holds.
As σ2 = 24Rσ̄2 the inequality

2−4R · 26R

256

( u

Āσ

)2

≤ nσ̄2 = 2−4Rnσ2

≤ 2−4R · 26(R+1)

256

( u

Āσ

)2

=
1

4
· 2−2R

( u

Āσ̄

)2

holds, and this implies (together with the relation R ≥ 1) that

1

64

( u

Āσ

)2

≤ nσ̄2 ≤ 1

16

( u

Āσ̄

)2

,

as we have claimed. It remained to show that under the condition (6.3) nσ̄2 ≥
L log n + log D.

This inequality clearly holds under the conditions of Proposition 6.1
if σ ≤ n−1/3, since in this case log 2

σ ≥ log n
3 , and nσ̄2 ≥ 1

64 ( u
Āσ

)2 ≥



6 The proof of Theorems 4.1 and 4.2 on the supremum of random sums 49

1
64Ā2 M(L3/2 log 2

σ +(log D)3/2) ≥ 1
192Ā2 M(L3/2 log n+(log D)3/2) ≥ L log n+

log D if M ≥ M0(Ā) with a sufficiently large number M0(Ā).

If σ ≥ n−1/3, we can exploit that the inequality 26R
(

u
Āσ

)2 ≤ 256nσ2

holds because of the definition of the number R. It can be rewritten as

2−4R ≥ 2−16/3

[(
u

Āσ

)2

nσ2

]2/3

. Hence nσ̄2 = 2−4Rnσ2 ≥ 2−16/3

Ā4/3 (nσ2)1/3
(

u
σ

)4/3
.

As log 2
σ ≥ log 2 > 1

2 the inequalities nσ2 ≥ n1/3 and (u
σ )2 ≥ M(L3/2 log 2

σ +

(log D)3/2) ≥ M
2 (L3/2 + (log D)3/2) hold. They yield that

nσ̄2 ≥ Ā−4/3

50
(nσ2)1/3

(u

σ

)4/3

≥ Ā−4/3

50
n1/9

(
M

2

)2/3

(L3/2 + (log D)3/2)2/3

≥ M2/3n1/9(L + log D)

100Ā4/3
≥ L log n + log D

if M = M(Ā) is chosen sufficiently large.





Chapter 7

The completion of the proof of Theorem
4.1

This section contains the proof of Proposition 6.2 with the help of a sym-
metrization argument which completes the proof of Theorem 4.1. By sym-
metrization argument I mean the reduction of the investigation of sums of
the form

∑
f(ξj) to sums of the form

∑
εjf(ξj), where εj are indepen-

dent random variables, independent also of the random variables ξj , and
P (εj = 1) = P (εj = −1) = 1

2 . First a symmetrization lemma is proved, and
then with the help of this result and a conditioning argument the proof of
Proposition 6.2 is reduced to the estimation of a probability which can be
bounded by means of the Hoeffding inequality formulated in Theorem 3.4.
Such an approach makes possible to prove Proposition 6.2.

First I formulate the symmetrization lemma we shall apply.

Lemma 7.1 (Symmetrization Lemma). Let Zn and Z̄n, n = 1, 2, . . . ,
be two sequences of random variables independent of each other, and let the
random variables Z̄n, n = 1, 2, . . . , satisfy the inequality

P (|Z̄n| ≤ α) ≥ β for all n = 1, 2, . . . (7.1)

with some numbers α > 0 and β > 0. Then

P

(

sup
1≤n<∞

|Zn| > u + α

)

≤ 1

β
P

(

sup
1≤n<∞

|Zn − Z̄n| > u

)

for all u > 0.

Proof of Lemma 7.1. Put τ = min{n : |Zn| > u + α} if there exists such an
index n, and τ = 0 otherwise. Then the event {τ = n} is independent of the
sequence of random variables Z̄1, Z̄2, . . . for all n = 1, 2, . . . , and because of
this independence

P ({τ = n}) ≤ 1

β
P ({τ = n}∩ {|Z̄n| ≤ α}) ≤ 1

β
P ({τ = n}∩ {|Zn − Z̄n| > u})

for all n = 1, 2, . . . . Hence

51
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P

(

sup
1≤n<∞

|Zn| > u + α

)

=

∞∑

l=1

P (τ = l)

≤ 1

β

∞∑

l=1

P ({τ = l} ∩ {|Zl − Z̄l| > u})

≤ 1

β

∞∑

l=1

P ({τ = l} ∩ sup
1≤n<∞

|Zn − Z̄n| > u})

≤ 1

β
P

(

sup
1≤n<∞

|Zn − Z̄n| > u

)

.

Lemma 7.1 is proved.

We shall apply the following Lemma 7.2 which is a consequence of the
symmetrization lemma 7.1.

Lemma 7.2. Let us fix a countable class of functions F on a measurable
space (X,X ) together with a real number 0 < σ < 1. Consider a sequence
of independent and identically distributed random variables ξ1, . . . , ξn with
values in the space (X,X ) such that Ef(ξ1) = 0, Ef2(ξ1) ≤ σ2 for all f ∈ F
together with another sequence ε1, . . . , εn of independent random variables
with distribution P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, independent also
of the random sequence ξ1, . . . , ξn. Then

P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

f(ξj)

∣
∣
∣
∣
∣
∣

≥ An1/2σ2





≤ 4P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

εjf(ξj)

∣
∣
∣
∣
∣
∣

≥ A

3
n1/2σ2



 if A ≥ 3
√

2√
nσ

. (7.2)

Proof of Lemma 7.2. Let us construct an independent copy ξ̄1, . . . , ξ̄n of the se-
quence ξ1, . . . , ξn in such a way that all three sequences ξ1, . . . , ξn, ξ̄1, . . . , ξ̄n

and ε1, . . . , εn are independent. Define the random variables

Sn(f) =
1√
n

n∑

j=1

f(ξj) and S̄n(f) =
1√
n

n∑

j=1

f(ξ̄j)

for all f ∈ F . The inequality

P

(

sup
f∈F

|Sn(f)| > A
√

nσ2

)

≤ 2P

(

sup
f∈F

|Sn(f) − S̄n(f)| >
2

3
A
√

nσ2

)

.

(7.3)
follows from Lemma 7.1 if it is applied for the countable set of random
variables Zn(f) = Sn(f) and Z̄n(f) = S̄n(f), f ∈ F , and the num-
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bers u = 2
3A

√
nσ2 and α = 1

3A
√

nσ2, since the random fields Sn(f) and
S̄n(f) are independent, and P (|S̄n(f)| ≤ α) > 1

2 for all f ∈ F . Indeed,

α = 1
3A

√
nσ2 ≥

√
2σ, ES̄n(f)2 ≤ σ2, thus Chebishev’s inequality implies

that P (|S̄n(f)| ≤ α) ≥ P (|S̄n(f)| ≤
√

2σ) ≥ 1
2 for all f ∈ F .

Let us observe that the random field

Sn(f) − S̄n(f) =
1√
n

n∑

j=1

(
f(ξj) − f(ξ̄j)

)
, f ∈ F , (7.4)

and its randomization

1√
n

n∑

j=1

εj

(
f(ξj) − f(ξ̄j)

)
, f ∈ F , (7.5)

have the same distribution. Indeed, even the conditional distribution of (7.5)
under the condition that the values of the εj-s are prescribed agrees with the
distribution of (7.4) for all possible values of the εj-s. This follows from the
observation that the distribution of the random field (7.4) does not change
if we exchange the random variables ξj and ξ̄j for those indices j for which
εj = −1 and do not change them for those indices j for which εj = 1. On
the other hand, the distribution of the random field obtained in such a way
agrees with the conditional distribution of the random field defined in (7.5)
under the condition that the values of the random variables εj are prescribed.

The above relation together with formula (7.3) imply that

P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

f(ξj)

∣
∣
∣
∣
∣
∣

≥ An1/2σ2





≤ 2P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

εj

[
f(ξj) − f̄(ξj)

]

∣
∣
∣
∣
∣
∣

≥ 2

3
An1/2σ2





≤ 2P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

εjf(ξj)

∣
∣
∣
∣
∣
∣

≥ A

3
n1/2σ2





+2P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

εjf(ξ̄j)

∣
∣
∣
∣
∣
∣

≥ A

3
n1/2σ2





= 4P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

εjf(ξj)

∣
∣
∣
∣
∣
∣

≥ A

3
n1/2σ2



 .

Lemma 7.2 is proved.
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First I try to explain briefly the method of proof of Proposition 6.2. A

probability of the form P

(

n−1/2 sup
f∈F

∣
∣
∣
∣
∣

n∑

j=1

f(ξj)

∣
∣
∣
∣
∣
> u

)

has to be estimated.

Lemma 7.2 enables us to replace this problem by the estimation of the proba-

bility P

(

n−1/2 sup
f∈F

∣
∣
∣
∣
∣

n∑

j=1

εjf(ξj)

∣
∣
∣
∣
∣
> u

3

)

with some independent random vari-

ables εj , P (εj = 1) = P (εj = −1) = 1
2 , j = 1, . . . , n, which are also indepen-

dent of the random variables ξj . We shall bound the conditional probability
of the event appearing in this modified problem under the condition that
each random variable ξj has a prescribed value. This can be done with the
help of Hoeffding’s inequality formulated in Theorem 3.4 and the L2-density
property of the class of functions F we consider. We hope to get a sharp es-
timate in such a way which is similar to the result we got in the study of the
Gaussian counterpart of this problem, because Hoeffding’s inequality yields
always a Gaussian type upper bound for the tail distribution of the random
sum we are studying.

Nevertheless, there appears a problem when we try to apply such an ap-
proach. To get a good estimate on the conditional tail distribution of the
supremum of the random sums we are studying with the help of Hoeffding’s
inequality we need a good estimate on the supremum of the conditional vari-
ances of the random sums we are studying, i.e. on the tail distribution of

sup
f∈F

1
n

n∑

j=1

f2(ξj). This problem is similar to the original one, and it is not

simpler.
But a more detailed study shows that our approach to get a good estimate

with the help of Hoeffding’s inequality works. In comparing our original prob-
lem with the new, complementary problem we have to understand at which
level we need a good estimate on the tail distribution of the supremum in the
complementary problem to get a good tail distribution estimate at level u in
the original problem. A detailed study shows that to bound the probability
in the original problem with parameter u we have to estimate the proba-

bility P

(

n−1/2 sup
f∈F ′

∣
∣
∣
∣
∣

n∑

j=1

f(ξj)

∣
∣
∣
∣
∣
> u1+α

)

with some new nice, appropriately

defined L2-dense class of bounded functions F ′ and some number α > 0. We
shall exploit that the number u is replaced by a larger number u1+α in the
new problem. Let us also observe that if the sum of bounded random variables
is considered, then for very large numbers u the probability we investigate
equals zero. On the basis of these observations an appropriate backward in-
duction procedure can be worked out. In its n-th step we give a good upper

bound on the probability P

(

n−1/2 sup
f∈F

∣
∣
∣
∣
∣

n∑

j=1

f(ξj)

∣
∣
∣
∣
∣
> u

)

if u ≥ Tn with an

appropriately chosen number Tn, and try to diminish the number Tn in each
step of this induction procedure. We can prove Proposition 6.2 as a conse-
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quence of the result we get by means of this backward induction procedure.
To work out the details we introduce the following notion.

Definition of good tail behaviour for a class of normalized random
sums. Let us have some measurable space (X,X ) and a probability measure
µ on it together with some integer n ≥ 2 and real number σ > 0. Consider
some class F of functions f(x) on the space (X,X ), and take a sequence of
independent and µ distributed random variables ξ1, . . . , ξn with values in the

space (X,X ). Define the normalized random sums Sn(f) = 1√
n

n∑

j=1

f(ξj), f ∈
F . Given some real number T > 0 we say that the set of normalized random
sums Sn(f), f ∈ F , has a good tail behaviour at level T (with parameters n
and σ2 which will be fixed in the sequel) if the inequality

P

(

sup
f∈F

|Sn(f)| ≥ A
√

nσ2

)

≤ exp
{

−A1/2nσ2
}

(7.6)

holds for all numbers A > T .

Now I formulate Proposition 7.3 and show that Proposition 6.2 follows
from it.

Proposition 7.3. Let us fix a positive integer n ≥ 2, a real number 0 < σ ≤ 1
and a probability measure µ on a measurable space (X,X ) together with some
numbers L ≥ 1 and D ≥ 1 such that nσ2 ≥ L log n + log D. Let us consider
those countable L2-dense classes F of functions f = f(x) on the space (X,X )
with exponent L and parameter D for which all functions f ∈ F satisfy the
conditions sup

x∈X
|f(x)| ≤ 1

4 ,
∫

f(x)µ( dx) = 0 and
∫

f2(x)µ( dx) ≤ σ2.

Let a number T > 1 be such that for all classes of functions F which
satisfy the above conditions the set of normalized random sums Sn(f) =

1√
n

n∑

j=1

f(ξj), f ∈ F , defined with the help of a sequence of independent µ dis-

tributed random variables ξ1, . . . , ξn have a good tail behaviour at level T 4/3.
There is a universal constant Ā0 such that if T ≥ Ā0, then the set of the
above defined normalized sums, Sn(f), f ∈ F , have a good tail behaviour for
all such classes of functions F not only at level T 4/3 but also at level T .

Proposition 6.2 simply follows from Proposition 7.3. To show this let us
first observe that a class of normalized random sums Sn(f), f ∈ F , has a good
tail behaviour at level T0 = 1

4σ2 if this class of functions F satisfies the con-

ditions of Proposition 7.3. Indeed, in this case P

(

sup
f∈F

|Sn(f)| ≥ A
√

nσ2

)

≤

P

(

sup
f∈F

|Sn(f)| >
√

n
4

)

= 0 for all A > T0. Then the repetitive application of

Proposition 7.3 yields that a class of random sums Sn(f), f ∈ F , has a good
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tail behaviour at all levels T ≥ T
(3/4)j

0 with an index j such that T
(3/4)j

0 ≥ Ā0

if the class of functions F satisfies the conditions of Proposition 7.3. Hence

it has a good tail behaviour for T = Ā
4/3
0 with the number Ā0 appearing

in Proposition 7.3. If a class of functions f ∈ F satisfies the conditions of

Proposition 6.2, then the class of functions F̄ =
{

f̄ = f
4 : f ∈ F

}

satisfies

the conditions of Proposition 7.3, with the same parameters σ, L and D. (Ac-
tually some of the inequalities that must hold for the elements of a class of
functions F satisfying the conditions of Proposition 7.3 are valid with smaller
parameters. But we did not change these parameters to satisfy also the con-
dition nσ2 ≥ L log n + log D.) Hence the class of functions Sn(f̄), f̄ ∈ F̄ , has

a good tail behaviour at level T = Ā
4/3
0 . This implies that the original class

of functions F satisfies formula (6.4) in Proposition 6.2, and this is what we
had to show.

Proof of Proposition 7.3. Fix a class of functions F which satisfies the condi-
tions of Proposition 7.3 together with two independent sequences ξ1, . . . , ξn

and ε1, . . . , εn of independent random variables, where ξj is µ-distributed,
P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, and investigate the conditional
probability

P (f,A|ξ1, . . . , ξn) = P




1√
n

∣
∣
∣
∣
∣
∣

n∑

j=1

εjf(ξj)

∣
∣
∣
∣
∣
∣

≥ A

6

√
nσ2

∣
∣
∣
∣
∣
∣

ξ1, . . . , ξn





for all functions f ∈ F , A > T and values (ξ1, . . . , ξn) in the condition. By
the Hoeffding inequality formulated in Theorem 3.4

P (f,A|ξ1, . . . , ξn) ≤ 2 exp

{

−
1
36A2nσ4

2S̄2(f, ξ1, . . . , ξn)

}

(7.7)

with

S̄2(f, x1, . . . , xn) =
1

n

n∑

j=1

f2(xj), f ∈ F .

Let us introduce the set

H = H(A) =

{

(x1, . . . , xn) : sup
f∈F

S̄2(f, x1, . . . , xn) ≥
(

1 + A4/3
)

σ2

}

.

(7.8)
I claim that

P ((ξ1, . . . , ξn) ∈ H) ≤ e−A2/3nσ2

if A > T. (7.9)

(The set H is the small exceptional set of those points (x1, . . . , xn) for which
we cannot give a good estimate for P (f,A|ξ1(ω), . . . , ξn(ω)) with ξ1(ω) =
x1,. . . , ξn(ω) = xn for some f ∈ F .)
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To prove relation (7.9) let us consider the functions f̄ = f̄(f), f̄(x) =
f2(x) −

∫
f2(x)µ( dx), and introduce the class of functions F̄ = {f̄(f) : f ∈

F}. Let us show that the class of functions F̄ satisfies the conditions of
Proposition 7.3, hence the estimate (7.6) holds for the class of functions F̄ if
A > T 4/3.

The relation
∫

f̄(x)µ( dx) = 0 clearly holds. The condition sup |f̄(x)| ≤
1
8 < 1

4 also holds if sup |f(x)| ≤ 1
4 , and

∫
f̄2(x)µ( dx) ≤

∫
f4(x)µ( dx) ≤

1
16

∫
f2(x) µ( dx) ≤ σ2

16 < σ2 if f ∈ F . It remained to show that F̄ is an
L2-dense class with exponent L and parameter D. For this goal we need a
good estimate on

∫
(f̄(x)− ḡ(x))2ρ( dx), where f̄ , ḡ ∈ F̄ , and ρ is an arbitrary

probability measure.
Observe that
∫

(f̄(x) − ḡ(x))2ρ( dx)

≤ 2

∫

(f2(x) − g2(x))2ρ( dx) + 2

∫

(f2(x) − g2(x))2µ( dx)

≤ 2(sup(|f(x)| + |g(x)|)2
(∫

(f(x) − g(x))2(ρ( dx) + µ( dx)

)

≤
∫

(f(x) − g(x))2ρ̄( dx)

for all f, g ∈ F , f̄ = f̄(f), ḡ = ḡ(g) and probability measure ρ, where
ρ̄ = ρ+µ

2 . This means that if {f1, . . . , fm} is an ε-dense subset of F in the
space L2(X,X , ρ̄), then {f̄1, . . . , f̄m} is an ε-dense subset of F̄ in the space
L2(X,X , ρ), and not only F , but also F̄ is an L2-dense class with exponent
L and parameter D.

Because of the conditions of Proposition 7.3 we can write for the number
A4/3 > T 4/3 and the class of functions F̄ that

P ((ξ1, . . . , ξn) ∈ H)

= P



sup
f∈F




1

n

n∑

j=1

f̄(f)(ξj) +
1

n

n∑

j=1

Ef2(ξj)



 ≥
(

1 + A4/3
)

σ2





≤ P



sup
f̄∈F̄

1√
n

n∑

j=1

f̄(ξj) ≥ A4/3n1/2σ2



 ≤ e−A2/3nσ2

,

i.e. relation (7.9) holds.
By formula (7.7) and the definition of the set H given in (7.8) the estimate

P (f,A|ξ1, . . . , ξn) ≤ 2e−A2/3nσ2/144 if (ξ1, . . . , ξn) /∈ H (7.10)

holds for all f ∈ F and A > T ≥ 1. (Here we used the estimate 1 + A4/3 ≤
2A4/3.) Let us introduce the conditional probability
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P (F , A|ξ1, . . . , ξn) = P



 sup
f∈F

1√
n

∣
∣
∣
∣
∣
∣

n∑

j=1

εjf(ξj)

∣
∣
∣
∣
∣
∣

≥ A

3

√
nσ2

∣
∣
∣
∣
∣
∣

ξ1, . . . , ξn





for all (ξ1, . . . , ξn) and A > T . We shall estimate this conditional probability
with the help of relation (7.10) if (ξ1, . . . , ξn) /∈ H.

Given a vector x(n) = (x1, . . . , xn) ∈ Xn, let us introduce the measure ν =
ν(x1, . . . , xn) = ν(x(n)) on (X,X ) which is concentrated in the coordinates
of the vector x(n) = (x1, . . . , xn), and ν({xj}) = 1

n for all points xj , j =

1, . . . , n. If
∫

f2(u)ν( du) ≤ δ2 for a function f , then

∣
∣
∣
∣
∣

1√
n

n∑

j=1

εjf(xj)

∣
∣
∣
∣
∣
≤

n1/2
∫
|f(u)|ν( du) ≤ n1/2δ. As a consequence, we can write that

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

εjf(xj) − 1√
n

n∑

j=1

εjg(xj)

∣
∣
∣
∣
∣
∣

≤ A

6

√
nσ2

if

∫

(f(u) − g(u))2 dν(u) ≤
(

Aσ2

6

)2

. (7.11)

Let us list the elements of the (countable) set F as F = {f1, f2, . . . },

fix the number δ = Aσ2

6 , and choose for all vectors x(n) = (x1, . . . , xn) ∈
Xn a sequence of indices p1(x(n)), . . . , pm(x(n)) taking positive integer values
with m = max(1,Dδ−L) = max(1,D( 6

Aσ2 )L) elements in such a way that

inf
1≤l≤m

∫
(f(u) − fpl(x(n))(u))2 dν(x(n))(u) ≤ δ2 for all f ∈ F and x(n) ∈ Xn

with the above defined measure ν(x(n)) on the space (X,X ). This is possible
because of the L2-dense property of the class of functions F . (This is the
point where the L2-dense property of the class of functions F is exploited
in its full strength.) In a complete proof of Proposition 7.3 we still have to
show that we can choose the indices pj(x(n)), 1 ≤ j ≤ m, as measurable
functions of their argument x(n) on the space (Xn,Xn). We shall show this
in Lemma 7.4 at the end of the proof.

Put ξ(n)(ω) = (ξ1(ω), . . . , ξn(ω)). Because of relation (7.11), the choice of
the number δ and the property of the functions fpl(x(n))(·) we have






ω : sup

f∈F

1√
n

∣
∣
∣
∣
∣
∣

n∑

j=1

εj(ω)f(ξj(ω))

∣
∣
∣
∣
∣
∣

≥ A

3

√
nσ2






(7.12)

⊂
m⋃

l=1






ω :

1√
n

∣
∣
∣
∣
∣
∣

n∑

j=1

εj(ω)fpl(ξ(n)(ω))(ξj(ω))

∣
∣
∣
∣
∣
∣

≥ A

6

√
nσ2






.

We can estimate the conditional probability at the left-hand side of (7.12)
under the condition that the vector (ξ1(ω), . . . , ξn(ω)) takes a prescribed
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value. We get with the help of (7.12) and inequality (7.10) that

P (F , A|ξ1, . . . , ξn) ≤
m∑

l=1

P (fpl(ξ(n)), A|ξ1, . . . , ξn)

≤ 2 max

(

1,D

(
6

Aσ2

)L
)

e−A2/3nσ2/144

if (ξ1, . . . , ξn) /∈ H and A > T. (7.13)

If A ≥ Ā0 with a sufficiently large constant Ā0, then this inequality together
with Lemma 7.2 and the estimate (7.9) imply that

P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

f(ξj)

∣
∣
∣
∣
∣
∣

≥ An1/2σ2





≤ 4P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

εjf(ξj)

∣
∣
∣
∣
∣
∣

≥ A

3
n1/2σ2



 (7.14)

≤ max

(

4, 8D

(
6

Aσ2

)L
)

e−A2/3nσ2/144 + 4e−A2/3nσ2

if A > T.

(We may apply Lemma 7.2 if A ≥ A0 with a sufficiently large A0, since
nσ2 ≥ L log n + log D ≤ log 2, hence

√
nσ ≥ √

log 2, and the condition

A ≥ 3
√

2√
nσ

demanded in relation (7.2) is satisfied.)

By the conditions of Proposition 7.3 the inequalities nσ2 ≥ L log n+log D
hold with some L ≥ 1, D ≥ 1 and n ≥ 2. This implies that nσ2 ≥ L log 2 ≥ 1

2 ,

( 6
Aσ2 )L ≤ ( n

2nσ2 )L ≤ nL = eL log n ≤ enσ2

if A ≥ Ā0 with some sufficiently

large constant Ā0 > 0, and 2D = elog 2+log D ≤ e3nσ2

. Hence the first term at
the right-hand side of (7.14) can be bounded by

max

(

4, 8D

(
6

Aσ2

)L
)

e−A2/3nσ2/144 ≤ e−A2/3nσ2/144 · 4e4nσ2 ≤ 1

2
e−A1/2nσ2

if A ≥ Ā0 with a sufficiently large Ā0. The second term at the right-hand

side of (7.14) can also be bounded as 4e−A2/3nσ2 ≤ 1
2e−A1/2nσ2

with an
appropriate choice of the number Ā0.

By the above calculation formula (7.14) yields the inequality

P




1√
n

sup
f∈F

∣
∣
∣
∣
∣
∣

n∑

j=1

f(ξj)

∣
∣
∣
∣
∣
∣

≥ An1/2σ2



 ≤ e−A1/2nσ2

if A > T , and the constant Ā0 is chosen sufficiently large.
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To complete the proof of Proposition 7.3 we still show in the following
Lemma 7.4 that the functions pl(x

(n)), 1 ≤ l ≤ m, we have introduced in the
above argument can be chosen as measurable functions in the space (Xn,Xn).
This implies that the expressions fpl(ξ(n)(ω))(ξj(ω)) in formula (7.12) are
F(ξ1, . . . , ξn) measurable random variables. Hence the formulation of (7.13)
is legitime, no measurability problem arises. We shall present Lemma 7.4
together with some generalizations that we shall apply later in the proof of
Propositions 15.3 and 15.4 which are multivariate versions of Proposition 7.3.
We shall need these results in the proof of the multivariate version of Propo-
sition 6.2. We have formulated them not in their most general possible form,
but as we shall need them.

Lemma 7.4. Let F = {f1, f2, . . . } be a countable and L2-dense class of func-
tions with some exponent L > 0 and parameter D ≥ 1 on a measurable space
(X,X ). Fix some positive integer n, and define for all x(n) = (x1, . . . , xn) ∈
Xn the probability measure ν(x(n)) = ν(x1, . . . , xn) on the space (X,X ) by
the formula ν(x(n))(xj) = 1

n , 1 ≤ j ≤ n. For a number 0 ≤ ε ≤ 1 put
m = m(ε) = [Dε−L], where [·] denotes integer part. For all 0 ≤ ε ≤ 1
there exists m = m(ε) measurable functions pl(x

(n)), 1 ≤ l ≤ m, on the
measurable space (Xn,Xn) with positive integer values in such a way that

inf
1≤l≤m

∫
(f(u) − fpl(x(n))(u))2ν(x(n))( du) ≤ ε2 for all x(n) ∈ Xn and f ∈ F .

In the proof of Proposition 15.3 we need the following result.

Lemma 7.4A. Let F = {f1, f2, . . . } be a countable and L2-dense class of
functions with some exponent L > 0 and parameter D ≥ 1 on the k-fold
product (Xk,X k) of a measurable space (X,X ) with some k ≥ 1. Fix some

positive integer n, and define for all vectors x(n) = (x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤

k) ∈ Xkn, where x
(j)
l ∈ X for all j and l the probability measure ρ(x(n)) in

the space (Xk,X k) by the formula ρ(x(n))(x
(j)
lj

, 1 ≤ j ≤ k, 1 ≤ lj ≤ n) = 1
nk

for all sequences (x
(1)
l1

, . . . , x
(k)
lk

) , 1 ≤ j ≤ k, 1 ≤ lj ≤ n, with coordinates

of the vector x(n) = (x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k). For all 0 ≤ ε ≤ 1 there

exist m = m(ε) = [Dε−L] measurable functions pr(x(n)), 1 ≤ r ≤ m, on the
measurable space (Xkn,X kn) with positive integer values in such a way that

inf
1≤r≤m

∫
(f(u)− fpr(x(n))(u))2ρ(x(n))( du) ≤ ε2 for all x(n) ∈ Xkn and f ∈ F .

In the proof of Proposition 15.4 the following result will be needed.

Lemma 7.4B. Let F = {f1, f2, . . . } be a countable and L2-dense class of
functions with some exponent L > 0 and parameter D ≥ 1 on the product
space (Xk × Y,X k ×Y) with some measurable spaces (X,X ) and (Y,Y) and
integer k ≥ 1. Fix some positive integer n, and define for all vectors x(n) =

(x
(j,1)
l , x

(j,−1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) ∈ X2kn, where x

(j,±1)
l ∈ X for all j and

l a probability measure α(x(n)) in the space (Xk ×Y,X k ×Y) in the following
way. Fix some probability measure ρ in the space (Y,Y) and two ±1 sequences

ε
(k)
1 = (ε1,1, . . . , εk,1) and ε

(k)
2 = (ε1,2, . . . , εk,2) of length k. Define with their
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help first the following probability measures α1(x(n)) = α1(x(n), ε
(k)
1 , ε

(k)
2 , ρ)

and α2(x(n)) = α2(x(n), ε
(k)
1 , ε

(k)
2 , ρ) in the space (Xk × Y,X k × Y) for all

x(n) ∈ X 2kn. Let α1(x(n))({x(1,ε1,1)
l1

} × · · · × {x(k,εk,1)
lk

} × B) = ρ(B)
nk and

α2(x(n))({x(1,ε1,2)
l1

} × · · · × {x(k,εk,2)
lk

} × B) = ρ(B)
nk with 1 ≤ lj ≤ n for all

1 ≤ j ≤ k and B ∈ Y if x
(j,εj,1)
lj

and x
(j,εj,2)
lj

are the appropriate coordinates

of the vector x(n) ∈ X2kn. Put α(x(n)) = α1(x
(n))+α2(x

(n))
2 . For all 0 ≤ ε ≤ 1

there exist m = m(ε) = [Dε−L] measurable functions pr(x(n)), 1 ≤ r ≤ m,
on the measurable space (X2kn,X 2kn) with positive integer values in such a
way that inf

1≤r≤m

∫
(f(u) − fpr(x(n))(u))2α(x(n))( du) ≤ ε2 for all x(n) ∈ X2kn

and f ∈ F .

Proof of Lemma 7.4. Fix some 0 < ε ≤ 1, put the number m = m(ε) in-
troduced in the lemma, and let us list the set of all vectors (j1, . . . , jm)
of length m with positive integer coordinates in some way. Define for
all of these vectors (j1, . . . , jm) the set B(j1, . . . , jm) ⊂ Xn in the fol-
lowing way. We have x(n) = (x1, . . . , xn) ∈ B(j1, . . . , jm) if and only if

inf
1≤r≤m

∫
(f(u) − fjr

(u))2 dν(x(n))(u) ≤ ε2 for all f ∈ F . Then all sets

B(j1, . . . , jm) are measurable, and
⋃

(j1,...,jm)

B(j1, . . . , jm) = Xn because F

is an L2-dense class of functions with exponent L and parameter D. Given
a point x(n) = (x1, . . . , xn) let us choose the first vector (j1, . . . , jm) =
(j1(x(n)), . . . , jm(x(n))) in our list of vectors for which x(n) ∈ B(j1, . . . , jm),
and define pl(x

(n)) = jl(x
(n)) for all 1 ≤ l ≤ m with this vector (j1, . . . , jm).

Then the functions pl(x
(n)) are measurable, and the functions fpl(x(n)),

1 ≤ l ≤ m, defined with their help together with the probability measures
ν(x(n)) satisfy the inequality demanded in Lemma 7.4.

The proof of Lemmas 7.4A and 7.4B is almost the same. We only have to
modify the definition of the sets B(j1, . . . , jm) in a natural way. The space of
arguments x(n) are the spaces Xkn and X2kn in these lemmas, and we have
to integrate with respect to the measures ρ(x(n)) in the space Xk and with
respect to the measures α(x(n)) in the space Xk × Y respectively. The sets
B(j1, . . . , jm) are measurable also in these cases, and the rest of the proof
can be applied without any change.





Chapter 8

Formulation of the main results of this
work

Former sections of this work contain estimates about the tail distribution
of normalized sums of independent, identically distributed random variables
and of the supremum of appropriate classes of such random sums. They were
considered together with some estimates about the tail distribution of the
integral of a (deterministic) function with respect to a normalized empirical
distribution and of the supremum of such integrals. This two kind of problems
are closely related, and to understand them better it is useful to investigate
them together with their natural Gaussian counterpart.

In this section I formulate the natural multivariate versions of the above
mentioned results. They will be proved in the subsequent sections. To formu-
late them we have to introduce some new notions. I shall also discuss some
new problems whose solution helps in the proof of our results. I finish this
section with a short overview about the content of the remaining part of this
work.

I start this section with the formulation of two results, Theorems 8.1
and 8.2 together with some of their simple consequences. They yield a sharp
estimate about the tail distribution of a multiple random integral with re-
spect to a normalized empirical distribution and about the analogous problem
when the tail distribution of the supremum of such integrals is considered.
These results are the natural versions of the corresponding one-variate re-
sults about the tail behaviour of an integral or of the supremum of a class
of integrals with respect to a normalized empirical distribution. They can
be formulated with the help of the notions introduced before, in particular
with the help of the notion of multiple random integrals with respect to a
normalized empirical distribution introduced in formula (4.8).

To formulate the following two results, Theorems 8.3 and 8.4 and their con-
sequences, which are the natural multivariate versions of the results about
the tail distribution of partial sums of independent random variables, and
of the supremum of such sums we have to make some preparation. First we
introduce the so-called U -statistics which can be considered as the natural
multivariate generalizations of the sum of independent and identically dis-
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tributed random variables. Moreover, we had a good estimation about the
tail distribution of sums of independent random variables only if the sum-
mands had expectation zero, and we have to find the natural multivariate
version of this property. Hence we define the so-called degenerate U -statistics
which can be considered as the natural multivariate counterpart of sums of
independent and identically distributed random variables with zero expecta-
tion. Theorems 8.3 and 8.4 contain estimates about the tail-distribution of
degenerate U -statistics and of the supremum of such expressions.

In Theorems 8.5 and 8.6 we formulate the Gaussian counterparts of the
above results. They deal with multiple Wiener-Itô integrals with respect to a
so-called white noise. The notion of multiple Wiener–Itô integrals and their
properties needed to have a good understanding of these results will be ex-
plained in a later section. Still two results are discussed in this section. They
are Examples 8.7 and 8.8, which state that the estimates of Theorems 8.5
and 8.3 are in a certain sense sharp.

To formulate the first two results of this section let us consider a sequence
of independent and identically distributed random variables ξ1, . . . , ξn with
values in a measurable space (X,X ). Let µ denote the distribution of the
random variables ξj , and introduce the empirical distribution of the sequence
ξ1, . . . , ξn defined in (4.5). Given a measurable function f(x1, . . . , xk) on the
k-fold product space (Xk,X k) consider its integral Jn,k(f) with respect to
the k-fold product of the normalized empirical measure

√
n(µn − µ) defined

in formula (4.8). In the definition of this integral the diagonals xj = xl,
1 ≤ j < l ≤ k, were omitted from the domain of integration. The following
Theorem 8.1 can be considered as the multiple integral version of Bernstein’s
inequality formulated in Theorem 3.1.

Theorem 8.1 (Estimate on the tail distribution of a multiple random
integral with respect to a normalized empirical distribution). Let
us take a measurable function f(x1, . . . , xk) on the k-fold product (Xk,X k)
of a measurable space (X,X ) with some k ≥ 1 together with a non-atomic
probability measure µ on (X,X ) and a sequence of independent and identically
distributed random variables ξ1, . . . , ξn with distribution µ on (X,X ). Let the
function f satisfy the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, (8.1)

and

‖f‖2
2 =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 (8.2)

with some constant 0 < σ ≤ 1. There exist some constants C = Ck > 0 and
α = αk > 0, such that the random integral Jn,k(f) defined by formulas (4.5)
and (4.8) satisfies the inequality

P (|Jn,k(f)| > u) ≤ C max
(

e−α(u/σ)2/k

, e−α(nu2)1/(k+1)
)

(8.3)
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for all u > 0. The constants C = Ck > 0 and α = αk > 0 in formula (8.3)
depend only on the parameter k.

Theorem 8.1 can be reformulated in the following equivalent form.

Theorem 8.1′. Under the conditions of Theorem 8.1

P (|Jn,k(f)| > u) ≤ Ce−α(u/σ)2/k

for all 0 < u ≤ nk/2σk+1 (8.4)

with a number σ, 0 ≤ σ ≤ 1, satisfying relation in (8.2) and some universal
constants C = Ck > 0, α = αk > 0, depending only on the multiplicity k of
the integral Jn,k(f).

Theorem 8.1 clearly implies Theorem 8.1′, since in the case u ≤ nk/2σk+1

the first term is larger than the second one in the maximum at the right-hand
side of formula (8.3). On the other hand, Theorem 8.1′ implies Theorem 8.1
also if u > nk/2σk+1. Indeed, in this case Theorem 8.1′ can be applied with

σ̄ =
(
un−k/2

)1/(k+1) ≥ σ if u ≤ nk/2, hence also condition 0 < σ̄ ≤ 1

is satisfied. This yields that P (|Jn,k(f)| > u) ≤ C exp
{

−α
(

u
σ̄

)2/k
}

=

C exp
{
−α(nu2)1/(k+1)

}
if nk/2 ≥ u > nk/2σk+1, and relation (8.3) holds

in this case. If u > nk/2, then P (|Jn,k(f)| > u) = 0, and relation (8.3) holds
again.

Theorem 8.1 or Theorem 8.1′ state that the tail distribution P (|Jn,k(f)| >
u) of the k-fold random integral Jn,k(f) can be bounded similarly to the
probability P (|const. σηk| > u), where η is a random variable with standard
normal distribution and the number 0 ≤ σ ≤ 1 satisfies relation (8.2), pro-
vided that the level u we consider is less than nk/2σk+1. As we shall see later
(see Corollary 1 of Theorem 9.4), the value of the number σ2 in formula (8.2)
is closely related to the variance of Jn,k(f). At the end of this section an ex-
ample is given which shows that the condition u ≤ nk/2σk+1 is really needed
in Theorem 8.1′.

The next result, Theorem 8.2, is the generalization of Theorem 4.1′ for
multiple random integrals with respect to a normalized empirical measure. In
its formulation the notions of L2-dense classes and countably approximability
introduced in Section 4 are applied.

Theorem 8.2 (Estimate on the supremum of multiple random in-
tegrals with respect to an empirical distribution). Let us have a non-
atomic probability measure µ on a measurable space (X,X ) together with a
countable and L2-dense class F of functions f = f(x1, . . . , xk) of k vari-
ables with some parameter D ≥ 1 and exponent L ≥ 1 on the product space
(Xk,X k) which satisfies the conditions

‖f‖∞ = sup
xj∈X, 1≤j≤k

|f(x1, . . . , xk)| ≤ 1, for all f ∈ F (8.5)

and
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‖f‖2
2 = Ef2(ξ1, . . . , ξk) =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2

for all f ∈ F (8.6)

with some constant 0 < σ ≤ 1. There exist some constants C = C(k) > 0,
α = α(k) > 0 and M = M(k) > 0 depending only on the parameter k
such that the supremum of the random integrals Jn,k(f), f ∈ F , defined by
formula (4.8) satisfies the inequality

P

(

sup
f∈F

|Jn,k(f)| ≥ u

)

≤ C exp

{

−α
(u

σ

)2/k
}

for those numbers u

for which nσ2 ≥
(u

σ

)2/k

≥ M(L3/2 log
2

σ
+ (log D)3/2), (8.7)

where the numbers D and L agree with the parameter and exponent of the
L2-dense class F .

The condition about the countable cardinality of the class F can be replaced
by the weaker condition that the class of random variables Jn,k(f), f ∈ F , is
countably approximable.

The condition given for the number u in formula (8.7) appears in Theo-
rem 8.2 for a similar reason as the analogous condition formulated in (4.4) in
its one-variate counterpart, Theorem 4.1. The lower bound is needed, since
we have a good estimate in formula (8.7) only for u ≥ E sup

f∈F
|Jn,k(f)|. The

upper bound appears, since we have a good estimate in Theorem 8.1′ only for
0 < u < nk/2σk+1. If a pair of numbers (u, σ) does not satisfy condition (8.7),
then we may try to get an estimate by increasing the number σ or decreasing
the number u.

To formulate such a version of Theorems 8.1 and 8.2 which corresponds
to the results about sums of independent random variables in the case k = 1
the following notions will be introduced.

Definition of U-statistics. Let us consider a function f = f(x1, . . . , xk)
on the k-th power (Xk,X k) of a space (X,X ) together with a sequence of
independent and identically distributed random variables ξ1, . . . , ξn, n ≥ k,
which take their values in this space (X,X ). The expression

In,k(f) =
1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k,
lj 6=lj′ if j 6=j′

f (ξl1 , . . . , ξlk) (8.8)

is called a U -statistic of order k with the sequence ξ1, . . . , ξn, and kernel
function f .

Remark. In later calculations sometimes we shall work with U -statistics with
kernel functions of the form f(xu1

, . . . , xuk
) instead of f(x1, . . . , xk), where



8 Formulation of the main results of this work 67

{u1, . . . , uk} is an arbitrary set with different elements. The U -statistic with
such a kernel function will also be defined, and it equals the U -statistic with
the original kernel function f defined in (8.8), i.e.

In,k(f(xu1
, . . . , xuk

)) = In,k(f(x1, . . . , xk)). (8.9)

(Observe that if we define the function fπ(x1, . . . , xk) = f(xπ(1), . . . , xπ(k))
for all permutations π of the set {1, . . . , k}, then In,k(fπ) = In,k(f), hence the
above definition is legitimate.) Such a definition is natural, and it simplifies
the notation in some calculations. A similar convention will be introduced
about Wiener–Itô integrals in Section 10.

Some special U -statistics, called degenerate U -statistics, will be also intro-
duced. They can be considered as the natural multivariate version of sums of
identically distributed random variables with expectation zero. Degenerate
U -statistics will be defined together with canonical kernel functions, because
these notions are closely related. For the sake of simpler notation in the future
we shall allow general indexation of the variables in the definition of canonical
functions, and we shall consider functions of the form f(xl1 , . . . , xlk) instead
of f(x1, . . . , xk).

Definition of degenerate U-statistics. A U -statistic In,k(f) of order k
with a sequence of independent and identically distributed random variables
ξ1, . . . , ξn is called degenerate if its kernel function f(x1, . . . , xk) satisfies the
relation

E(f(ξ1, . . . , ξk)|ξ1 = x1, . . . , ξj−1 = xj−1, ξj+1 = xj+1, . . . , ξk = xk) = 0

for all 1 ≤ j ≤ k and xs ∈ X, s 6= j.

Definition of a canonical function. A function f(xl1 , . . . , xlk) taking val-
ues in the k-fold product of a measurable space (X,X ) is called a canonical
function with respect to a probability measure µ on (X,X ) if

∫

f(xl1 , . . . , xlj−1
, u, xlj+1

, . . . , xlk)µ( du) = 0

for all 1 ≤ j ≤ k and xls ∈ X, s 6= j. (8.10)

For the sake of more convenient notations in the future we shall speak also
of U -statistics of order zero. We shall write In,0(c) = c for any constant c,
and In,0(c) will be called a degenerate U -statistic of order zero. A constant
will be considered as a canonical function with zero arguments.

It is clear that a U -statistic In,k(f) with kernel function f and independent
µ-distributed random variables ξ1, . . . , ξn is degenerate if and only if its kernel
function is canonical with respect to the probability measure µ. Let us also
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observe that
In,k(f) = In,k(Sym f) (8.11)

for all functions of k variables.
The next two results, Theorems 8.3 and 8.4, deal with degenerate U -

statistics. Theorem 8.3 is the U -statistic version of Theorem 8.1 and The-
orem 8.4 is the U -statistic version of Theorem 8.2. Actually Theorem 8.3
yields a sharper estimate than Theorems 8.1, because it contains more ex-
plicit and better universal constants. I shall return to this point later.

Theorem 8.3 (Estimate on the tail distribution of a degenerate U-
statistic). Let us have a measurable function f(x1, . . . , xk) on the k-fold
product (Xk,X k), k ≥ 1, of a measurable space (X,X ) together with a prob-
ability measure µ on (X,X ) and a sequence of independent and identically
distributed random variables ξ1, . . . , ξn, n ≥ k, with distribution µ on (X,X ).
Let us consider the U -statistic In,k(f) of order k with this sequence of ran-
dom variables ξ1, . . . , ξn. Assume that this U -statistic is degenerate, i.e. its
kernel function f(x1, . . . , xk) is canonical with respect to the measure µ. Let
us also assume that the function f satisfies conditions (8.1) and (8.2) with
some number 0 < σ ≤ 1. Then there exist some constants A = A(k) > 0 and
B = B(k) > 0 depending only on the order k of the U -statistic In,k(f) such
that

P (n−k/2k!|In,k(f)| > u) ≤ A exp






− u2/k

2σ2/k
(

1 + B
(
un−k/2σ−(k+1)

)1/k
)







(8.12)
for all 0 ≤ u ≤ nk/2σk+1.

Let us also formulate the following simple corollary of Theorem 8.3.

Corollary of Theorem 8.3. Under the conditions of Theorem 8.3 there
exist some universal constants C = C(k) > 0 and α = α(k) > 0 that

P (n−k/2k!|In,k(f)| > u) ≤ C exp

{

−α
(u

σ

)2/k
}

for all 0 ≤ u ≤ nk/2σk+1.

(8.13)

The following estimate holds about the supremum of degenerate U -
statistics.

Theorem 8.4 (Estimate on the supremum of degenerate U-statis-
tics). Let us have a probability measure µ on a measurable space (X,X )
together with a countable and L2-dense class F of functions f = f(x1, . . . , xk)
of k variables with some parameter D ≥ 1 and exponent L ≥ 1 on the product
space (Xk,X k) which satisfies conditions (8.5) and (8.6) with some constant
0 < σ ≤ 1. Let us take a sequence of independent µ distributed random
variables ξ1, . . . , ξn, n ≥ k, and consider the U -statistics In,k(f) with these
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random variables and kernel functions f ∈ F . Let us assume that all these
U -statistics In,k(f), f ∈ F , are degenerate, or in an equivalent form, all
functions f ∈ F are canonical with respect to the measure µ. Then there
exist some constants C = C(k) > 0, α = α(k) > 0 and M = M(k) > 0
depending only on the parameter k such that the inequality

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ C exp

{

−α
(u

σ

)2/k
}

holds for those

numbers u for which nσ2 ≥
(u

σ

)2/k

≥ M(L3/2 log
2

σ
+ (log D)3/2),

(8.14)

where the numbers D and L agree with the parameter and exponent of the
L2-dense class F .

The condition about the countable cardinality of the class F can be replaced
by the weaker condition that the class of random variables n−k/2In,k(f), f ∈
F , is countably approximable.

Next I formulate a Gaussian counterpart of the above results. To do this I
need some notions that will be introduced in Section 10. In that section the
white noise with a reference measure µ will be defined. It is an appropriate
set of jointly Gaussian random variables indexed by those measurable sets
A ∈ X of a measure space (X,X , µ) with a σ-finite measure µ for which
µ(A) < ∞. Its distribution depends on the measure µ which will be called
the reference measure of the white noise.

In Section 10 it will be also shown that given a white noise µW with a
non-atomic σ-additive reference measure µ on a measurable space (X,X )
and a measurable function f(x1, . . . , xk) of k variables on the product space
(Xk,X k) such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 < ∞ (8.15)

a k-fold Wiener-Itô integral of the function f with respect to the white
noise µW

Zµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk) (8.16)

can be defined, and the main properties of this integral will be proved there.
It will be seen that Wiener-Itô integrals have a similar relation to degener-
ate U -statistics and multiple integrals with respect to normalized empirical
measures as normally distributed random variables have to partial sums of
independent random variables. Hence it is useful to find the analogues of the
previous estimates of this section about the tail distribution of Wiener-Itô
integrals. The subsequent Theorems 8.5 and 8.6 contain such results.
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Theorem 8.5 (Estimate on the tail distribution of a multiple
Wiener–Itô integral). Let us fix a measurable space (X,X ) together with
a σ-finite non-atomic measure µ on it, and let µW be a white noise with
reference measure µ on (X,X ). If f(x1, . . . , xk) is a measurable function on
(Xk,X k) which satisfies relation (8.15) with some 0 < σ < ∞, then

P (k!|Zµ,k(f)| > u) ≤ C exp

{

−1

2

(u

σ

)2/k
}

(8.17)

for all u > 0 with some constants C = C(k) depending only on k.

Theorem 8.6 Estimate on the supremum of Wiener–Itô integrals).
Let F be a countable class of functions of k variables defined on the k-fold
product (Xk,X k) of a measurable space (X,X ) such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2 with some 0 < σ ≤ 1 for all f ∈ F

with some non-atomic σ-additive measure µ on (X,X ). Let us also assume
that F is an L2-dense class of functions in the space (Xk,X k) with respect
to the measure µk with some exponent L ≥ 1 and parameter D ≥ 1, where
µk is the k-fold product of the measure µ. (The classes of L2-dense classes
with respect to a measure were defined in Section 4.)

Take a white noise µW on (X,X ) with reference measure µ, and define
the Wiener–Itô integrals Zµ,k(f) for all f ∈ F . Fix some 0 < ε ≤ 1. The
inequality

P

(

sup
f∈F

k!|Zµ,k(f)| > u

)

≤ CD exp

{

−1

2

(
(1 − ε)u

σ

)2/k
}

(8.18)

holds with some universal constants C = C(k) > 0, M = M(k) > 0 for those

numbers u for which u ≥ MLk/2 1
ε logk/2 2

ε · σ logk/2 2
σ .

Formula (8.18) yields an almost as good estimate for the supremum of
Wiener–Itô integrals with the choice of a small ε > 0 as formula (8.17) for a
single Wiener–Itô integral. But the lower bound imposed on the number u in
the estimate (8.18) depends on ε, and for a small number ε > 0 it is large.

The subsequent result presented in Example 8.7 may help to understand
why Theorems 8.3 and 8.5 are sharp. Its proof and the discussion of the
question about the sharpness of Theorems 8.3 and 8.5 will be postponed to
Section 13.

Example 8.7 (A converse estimate to Theorem 8.5). Let us have a
σ-finite measure µ on some measure space (X,X ) together with a white noise
µW on (X,X ) with counting measure µ. Let f0(x) be a real valued function on
(X,X ) such that

∫
f0(x)2µ( dx) = 1, and take the function f(x1, . . . , xk) =

σf0(x1) · · · f0(xk) with some number σ > 0 together with the Wiener–Itô
integral Zµ,k(f) introduced in formula (8.16).
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Then the relation
∫

f(x1, . . . , xk)2 µ( dx1) . . . µ( dxk) = σ2 holds, and the
Wiener–Itô integral Zµ,k(f) satisfies the inequality

P (k!|Zµ,k(f)| > u) ≥ C̄
(

u
σ

)1/k
+ 1

exp

{

−1

2

(u

σ

)2/k
}

for all u > 0 (8.19)

with some constant C̄ > 0.

The above results show that multiple integrals with respect to a normalized
empirical measure or degenerate U -statistics satisfy some estimates similar
to those about multiple Wiener–Itô integrals, but they hold under more re-
strictive conditions. The difference between the estimates in these problems
is similar to the difference between the corresponding results in Section 4
whose reason was explained there. Hence this will be only briefly discussed
here. The estimates of Theorem 8.1 and 8.3 are similar to that of Theorem 8.5.
Moreover, for 0 ≤ u ≤ εnk/2σk+1 with a small number ε > 0 Theorem 8.3
yields an almost as good estimate about degenerate U -statistics as Theo-
rem 8.5 yields for a Wiener–Itô integral with the same kernel function f and
underlying measure µ. Example 8.7 shows that the constant in the exponent
of formula (8.17) cannot be improved, at least there is no possibility of an
improvement if only the L2-norm of the kernel function f is known. Some
results discussed later indicate that neither the estimate of Theorem 8.3 can
be improved. The main difference between Theorem 8.5 and the results of
Theorem 8.1 or 8.3 is that in the latter case the kernel function f must satisfy
not only an L2 but also an L∞ norm type condition, and the estimates of
these results are formulated under the additional condition u ≤ nk/2σk+1. It
can be shown that the condition about the L∞ norm of the kernel function
cannot be dropped from the conditions of these theorems, and a version of
Example 3.3 will be presented in Example 8.8 which shows that in the case
u ≫ nk/2σk+1 the left-hand side of (8.12) may satisfy only a much weaker
estimate. This estimate will be given only for k = 2, but with some work it
can be generalized for general indices k.

Theorems 8.2, 8.4 and 8.6 show that for the tail distribution of the supre-
mum of a not too large class of degenerate U -statistics or multiple integrals
a similar upper bound can be given as for the tail distribution of a single
degenerate U -statistic or multiple integral, only the universal constants may
be worse in the new estimates. However, they hold only under the additional
condition that the level at which the tail distribution of the supremum is
estimated is not too low. A similar phenomenon appeared already in the
results of Section 4. Moreover, such a restriction had to be imposed in the
formulation of the results here and in Section 4 for the same reason.

In Theorem 8.2 and 8.4 an L2-dense class of kernel functions was consid-
ered, and this meant that the class of random integrals or U -statistics we
consider in this result is not too large. In Theorem 8.6 a similar, but weaker
condition was imposed on the class of kernel functions. They had to satisfy
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a similar condition, but only for the reference measure µ of the white noise
appearing in the Wiener–Itô integral. A similar difference appears in the com-
parison of Theorems 4.1 or 4.1′ with Theorem 4.2, and this difference has the
same reason in the two cases.

I still present the proof of the following Example 8.8 which is a multivariate
version of Example 3.3. For the sake of simplicity I restrict my attention to
the case k = 2.

Example 8.8 (A converse estimate to Theorem 8.3). Let us take a se-
quence of independent and identically distributed random variables ξ1, . . . , ξn

with values in the plane X = R2 such that ξj = (ηj,1, ηj,2), ηj,1 and ηj,2

are independent random variables with the following distributions. The dis-
tribution of ηj,1 is defined with the help of a parameter σ2, 0 < σ2 ≤ 1

8 ,
in the same way as the distribution of the random variables Xj in Exam-
ple 3.3, i.e. ηj,1 = η̄j,1 − Eη̄j,1 with P (η̄j,1 = 1) = σ̄2, P (η̄j,1 = 0) = 1 − σ̄2,
where σ̄2 is that solution of the equation x2 − x + σ2 = 0, which is smaller
than 1

2 . The distribution of the random variables is given by the formula
P (ηj,2 = 1) = P (ηj,2 = −1) = 1

2 for all 1 ≤ j ≤ n. Introduce the
function f(x, y) = f((x1, x2), (y1, y2)) = x1y2 + x2y1, x = (x1, x2) ∈ R2,
y = (y1, y2) ∈ R2 if (x, y) is in the support of the distribution of the random
vector (ξ1, ξ2), i.e. if x1 and y1 take the values 1 − σ̄2 or −σ̄2 and x2 and y2

take the values ±1. Put f(x, y) = 0 otherwise. Define the U -statistic

In,2(f) =
1

2

∑

1≤j,k≤n, j 6=k

f(ξj , ξk) =
1

2

∑

1≤j,k≤n, j 6=k

(ηj,1ηk,2 + ηk,1ηj,2)

of order 2 with the above kernel function f and sequence of independent
random variables ξ1, . . . , ξn. Then In,2(f) is a degenerate U -statistic such
that | sup f(x, y)| ≤ 1 and Ef2(ξj , ξj) = σ2.

If u ≥ B1nσ3 with some appropriate constant B1 > 2, B̄−1
2 n ≥ u ≥

B̄2n
−1/2 with a sufficiently large fixed number B̄2 > 0 and 1

4 ≥ σ2 ≥ 1
n2 , and

n is a sufficiently large number, then the estimate

P (n−1In,2(f) > u) ≥ exp
{

−Bn1/3u2/3 log
( u

nσ3

)}

(8.20)

holds with some B > 0.

Remark: In Theorem 8.3 we got the estimate P (n−1In,2(f) > u) ≤ e−αu/σ

for the above defined degenerate U -statistic In,2(f) if 0 ≤ u ≤ nσ3. In the

particular case u = nσ3 we have the estimate P (n−1In,2(f) > nσ3) ≤ e−αnσ2

.
On the other hand, the above example shows that in the case u ≫ nσ3 we
can get only a weaker estimate. It is worth looking at the estimate (8.20)
with fixed parameters n and u and to observe the dependence of the upper
bound on the variance σ2 of In,2(f). In the case σ2 = u2/3n−2/3 we have the

upper bound e−αn1/3u2/3

. Example 8.8 shows that in the case σ2 ≪ u2/3n−2/3
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we can get only a relatively small improvement of this estimate. A similar
picture appears as in Example 3.3 in the case k = 1.

It is simple to check that the U -statistic introduced in the above exam-
ple is degenerate because of the independence of the random variables ηj,1

and ηj,2 and the identity Eηj,1 = Eηj,2 = 0. Beside this, Ef(ξj , ξj)2 = σ2.
In the proof of the estimate (8.20) the results of Section 3, in particular
Example 3.3 can be applied for the sequence ηj,1, j = 1, 2, . . . , n. Beside
this, the following result known from the theory of large deviations will be
applied. If X1, . . . ,Xn are independent and identically distributed random
variables, P (X1 = 1) = P (X1 = −1) = 1

2 , then for any number 0 ≤ α < 1
there exists some numbers C1 = C1(α) > 0 and C2 = C2(α) > 0 such that

P

(
n∑

j=1

Xj > u

)

≥ C1e
−C2u2/n for all 0 ≤ u ≤ αn.

Proof of Example 8.8. The inequality

P (n−1In,2(f) > u) (8.21)

≥ P









n∑

j=1

ηj,1









n∑

j=1

ηj,2



 > 4nu



− P





n∑

j=1

ηj,1ηj,2 > 2nu





holds. Because of the independence of the random variables ηj,1 and ηj,2

the first probability at the right-hand side of (8.21) can be bounded from
below by bounding the multiplicative terms in it with v1 = 4n1/3u2/3 and
v2 = n2/3u1/3. The first term will be estimated by means of Example 3.3. This
estimate can be applied with the choice y = v1, since the relation v1 ≥ 4nσ2

holds if u ≥ B1nσ3 with B1 > 1, and the remaining conditions 0 ≤ σ2 ≤ 1
8

and n ≥ 4v1 ≥ 6 also hold under the conditions of Example 8.8. The second
term can be bounded with the help of the large-deviation result mentioned
after the remark, since v2 ≤ 1

2n if u ≤ B̄−1
2 n with a sufficiently large B̄2 > 0.

In such a way we get the estimate

P









n∑

j=1

ηj,1









n∑

j=1

ηj,2



 > 4nu





≥ P





n∑

j=1

ηj,1 > v1



P





n∑

j=1

ηj,2 > v2





≥ C exp

{

−B1v1 log
( v1

nσ2

)

− B2
v2
2

n

}

≥ C exp
{

−B3n
1/3u2/3 log

( u

nσ3

)}

with appropriate constants B1 > 1, B2 > 0 and B3 > 0. On the other
hand, by applying Bennett’s inequality, more precisely its consequence given
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in formula (3.4) for the sum of the random variables Xj = ηj,1ηj,2 at level
nu instead of level u we get the following upper bound for the second term
at the right-hand side of (8.21).

P





n∑

j=1

ηj,1ηj,2 > 2nu



 ≤ exp
{

−Knu log
u

σ2

}

≤ exp
{

−2B4n
1/3u2/3 log

( u

nσ3

)}

,

since Eηj,1ηj,2 = 0, Eη2
j,1η

2
j,2 = σ2, nu ≥ B1n

2σ3 ≥ 2nσ2 because of the
conditions B1 > 2 and nσ ≥ 1. Hence the estimate (3.4) (with parameter
nu) can be applied in this case. Beside this, the constant B4 can be chosen
sufficiently large in the last inequality if the number n or the bound B̄2

in Example 8.8 us chosen sufficiently large. This means that this term is
negligible small. The above estimates imply the statement of Example 8.8.

Let me remark that under some mild additional restrictions the estimate
(8.20) can be slightly sharpened, the term log can be replaced by log2/3 in
the exponent of the right-hand side of (8.20). To get such an estimate some
additional calculation is needed where the numbers v1 and v2 are replaced
by v̄1 = 4n1/3u2/3 log−1/3

(
u

nσ3

)
and v̄2 = n2/3u1/3 log1/3

(
u

nσ3

)
.

At the end of this section I present a short overview about the content of
the remaining part of this work.

In our proofs we needed some results about U -statistics, and this is the
main topic of Section 9. One of the results discussed here is the so-called Ho-
effding decomposition of U -statistics to the linear combination of degenerate
U -statistics of different order. We also needed some additional results which
explain how some properties (e.g. a bound on the L2 and L∞ norm of a kernel
function, the L2-density property of a class F of kernel function) is inher-
ited if we turn from the original U -statistics to the degenerate U -statistics
appearing in their Hoeffding decomposition. Section 9 contains some results
in this direction. Another important result in it is Theorem 9.4 which yields
a decomposition of multiple integrals with respect to a normalized empirical
distribution to the linear combination of degenerate U -statistics. This result
is very similar to the Hoeffding decomposition of U -statistics. The main dif-
ference between them is that in the decomposition of multiple integrals much
smaller coefficients appear. Theorem 9.4 makes possible to reduce the proof
of Theorems 8.1 and 8.2 to the corresponding results in Theorems 8.3 and 8.4
about degenerate U -statistics.

The definition and the main properties of Wiener–Itô integrals needed
in the proof of Theorems 8.5 and 8.6 are presented in Section 10. It also
contains a result, called the diagram formula for Wiener–Itô integrals which
plays an important role in our considerations. Beside this we proved a limit
theorem, where we expressed the limit of normalized degenerate U -statistics
with the help of multiple Wiener–Itô integrals. This result may explain why
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it is natural to consider Theorem 8.5 as the natural Gaussian counterpart
of Theorem 8.5, and Theorem 8.6 as the natural Gaussian counterpart of
Theorem 8.6.

We could prove Bernstein’s and Bennett’s inequality by means of a good
estimation of the exponential moments of the partial sums we were investigat-
ing. In the proof of their multivariate versions, in Theorems 8.3 and 8.5 this
method does not work, because the exponential moments we have to bound
in these cases may be infinite. On the other hand, we could prove these results
by means of a good estimate on the high moments of the random variables
whose tail distribution we wanted to estimate. In the proof of Theorem 8.5
the moments of multiple Wiener–Itô integrals have to be bounded, and this
can be done with the help of the diagram formula for Wiener–Itô integrals.
In Sections 11 and 12 we proved that there is a version of the diagram for-
mula for degenerate U -statistics, and this enables us to estimate the moments
needed in the proof of Theorem 8.3. In Section 13 we proved Theorems 8.3,
8.5 and a multivariate version of the Hoeffding inequality. At the end of this
section we still discussed some results which state that in certain cases when
we have, beside the upper bound of their L2 and L∞ norm some additional
information about the behaviour of the kernel function f in Theorems 8.3
or 8.5, these results can be improved.

Section 14 contains the natural multivariate versions of the results in Sec-
tion 6. In Section 6 Theorem 4.2 is proved about the supremum of Gaussian
random variables and in Section 14 its multivariate version, Theorem 8.6.
Both results are proved with the help of the chaining argument. On the other
hand, the chaining argument is not strong enough to prove Theorem 4.1. But
as it is shown in Section 6, it enables us to prove a result formulated in Propo-
sition 6.1, and to reduce the proof of Theorem 4.1 with its help to a simpler
result formulated in Proposition 6.2. One of the results in Section 14, Propo-
sition 14.1, is a multivariate version of Proposition 6.1. We showed that the
proof of Theorem 8.4 can be reduced with its help to the proof of a result for-
mulated in Proposition 14.2, which can be considered a multivariate version
of Proposition 6.2. Section 14 contains still another result. It turned out that
it is simpler to work with so-called decoupled U -statistics introduced in this
section than with usual U -statistics, because they have more independence
properties. In Proposition 14.2′ a version of Proposition 14.2 is formulated
about degenerate U -statistics, and it is shown with the help of a result of de
la Peña and Montgomery–Smith that the proof of Proposition 14.2, and thus
of Theorem 8.4 can be reduced to the proof of Proposition 14.2′.

Proposition 14.2′ is proved similarly to its one-variate version, Proposi-
tion 6.2. The strategy of the proof is explained in Section 15. The main
difference between the proof of the two propositions is that since the inde-
pendence properties exploited in the proof of Proposition 6.2 hold only in a
weaker form in the present case, we have to apply a more refined and more
difficult argument. In particular, we have to apply instead of the symmetriza-
tion lemma, Lemma 7.1, a more general version of it, Lemma 15.2. It is hard
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to check its conditions when we try to apply this result in the problems aris-
ing in the proof of Proposition 14.2′. This is the reason why we had to prove
Proposition 14.2′ with the help of two inductive propositions, formulated in
Propositions 15.3 and 15.4, while in the proof of Proposition 6.2 it was enough
to prove one such result, presented in Proposition 7.3. We discuss the details
of the problems and the strategy of the proof in Section 15. The proof of
Propositions 15.3 and 15.4 is given in Sections 16 and 17. Section 16 contains
the symmetrization arguments needed for us, and the proof is completed with
its help in Section 17.

Finally in Section 18 we give an overview of this work, and explain its
relation to some similar researches. The proof of some results is given in the
Appendix.



Chapter 9

Some results about U -statistics

This section contains the proof of the Hoeffding decomposition theorem, an
important result about U -statistics. It states that all U -statistics can be rep-
resented as a sum of degenerate U -statistics of different order. This represen-
tation can be considered as the natural multivariate version of the decompo-
sition of a sum of independent random variable to the sum of independent
random variables with expectation zero plus a constant (which can be inter-
preted as a random variable of zero variable). Some important properties of
the Hoeffding decomposition will also be proved. The properties of the kernel
function of a U -statistic will be compared to those of the kernel functions of
the U -statistics in its Hoeffding decomposition.

If the Hoeffding decomposition of a U -statistic is taken, then the L2 and
L∞-norms of the kernel functions appearing in the U -statistics of the Ho-
effding decomposition will be bounded by means of the corresponding norm
of the kernel function of the original U -statistic. It will be also shown that
if we take a class of U -statistics with an L2-dense class of kernel functions
(and the same sequence of independent and identically distributed random
variables in the definition of each U -statistic) and consider the Hoeffding
decomposition of all U -statistics in this class, then the kernel functions of
the degenerate U -statistics appearing in these Hoeffding decompositions also
constitute an L2-dense class. Another important result of this section is The-
orem 9.4. It yields a decomposition of a k-fold random integral with respect
to a normalized empirical distribution to the linear combination of degener-
ate U -statistics. This result enables us to derive Theorem 8.1 from Theorem
8.3 and Theorem 8.2 from Theorem 8.4, and it is also useful in the proof of
Theorems 8.3 and 8.4.

Let us first consider the Hoeffding’s decomposition. In the special case k =

1 it states that the sum Sn =
n∑

j=1

ξj of independent and identically distributed

random variables can be rewritten as Sn =
n∑

j=1

(ξj −Eξj)+

(
n∑

j=1

Eξj

)

, i.e. as

77
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the sum of independent random variables with zero expectation plus a con-
stant. We introduced the convention that a constant is the kernel function
of a degenerate U -statistic of order zero, and In,0(c) = c for a U -statistic
of order zero. I wrote down the above trivial formula, because Hoeffding’s
decomposition is actually its adaptation to a more general situation. To un-
derstand this let us first see how to adapt the above construction to the case
k = 2.

In this case a sum of the form 2In,2(f) =
∑

1≤j,k≤n,j 6=k

f(ξj , ξk) has to be

considered. Write f(ξj , ξk) = [f(ξj , ξk) − E(f(ξj , ξk)|ξk)] + E(f(ξj , ξk)|ξk) =
f1(ξj , ξk) + f̄1(ξk) with f1(ξj , ξk) = f(ξj , ξk) − E(f(ξj , ξk)|ξk), and f̄1(ξk) =
E(f(ξj , ξk)|ξk) to make the conditional expectation of f1(ξj , ξk) with respect
to ξk equal zero. Repeating this procedure for the first coordinate we define
f2(ξj , ξk) = f1(ξj , ξk) − E(f1(ξj , ξk)|ξj) and f̄2(ξj) = E(f1(ξj , ξk)|ξj). Let
us also write f̄1(ξk) = [f̄1(ξk) − Ef̄1(ξk)] + Ef̄1(ξk) and f̄2(ξj) = [f̄2(ξj) −
Ef̄2(ξj)] + Ef̄2(ξj). Simple calculation shows that 2In,2(f2) is a degenerate
U -statistics of order 2, and the identity 2In,2(f) = 2In,2(f2)+In,1((n−1)(f̄1−
Ef̄1))+In,1((n−1)((f̄2−Ef̄2))+n(n−1)E(f̄1 + f̄2) yields the decomposition
of In,2(f) into a sum of degenerate U -statistics of different orders.

Hoeffding’s decomposition can be obtained by working out the details of
the above argument in the general case. But it is simpler to calculate the
appropriate conditional expectations with the help of the kernel functions
of the U -statistics. To carry out such a program we introduce the following
notations.

Let us consider the k-fold product (Xk,X k, µk) of a measure space
(X,X , µ) with some probability measure µ, and define for all integrable func-
tions f(x1, . . . , xk) and indices 1 ≤ j ≤ k the projection Pjf of the function
f to its j-th coordinate, i.e. integration of the function f with respect to its
j-th coordinate.

For the sake of simpler notations in our future considerations we shall
define the operator Pj in a slightly more general setting. Let us consider
a set A = {p1, . . . , ps} ⊂ {1, . . . , k}, put XA = Xp1

× Xp2
× · · · × Xps

,
XA = Xp1

× Xp2
× · · · × Xps

, µA = µp1
× µp2

× · · · × µps
, take the product

space (XA,XA, µA) and if j ∈ A, then define the operator Pj on this product
space by the formula

Pjf(xp1
, . . . , xpr−1

, xpr+1
, . . . , xps

) =

∫

f(xp1
, . . . , xps

)µ( dxj), if j = pr.

(9.1)
Let us also define the (orthogonal projection) operators Qj = I − Pj as
Qjf = f −Pjf for all integrable functions f on the space (XA,XA, µA), and
j ∈ A, i.e. put

Ojf(xp1
, . . . , xps

) = (I − Pj)f(xp1
, . . . , xps

)

= f(xp1
, . . . , xps

) −
∫

f(xp1
, . . . , xps

)µ( dxj). (9.2)
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In the definition (9.1) Pjf is a function not depending on the coordinate xj ,
but in the definition of Qj we introduce the fictive coordinate xj to make the
expression Qjf = f − Pjf meaningful. The following result holds.

Theorem 9.1 (The Hoeffding decomposition of U-statistics). Let
f(x1, . . . , xk) be an integrable function on the k-fold product (Xk,X k, µk)
of a space (X,X , µ) with a probability measure µ. It has a decomposition of
the form

f(x1, . . . , xk) =
∑

V ⊂{1,...,k}
fV (xj1 , . . . , xj|V |

), (9.3)

with fV (xj1 , . . . , xj|V |
) =




∏

j∈{1,...,k}\V

Pj

∏

j∈V

Qj



 f(x1, . . . , xk)

with V = {j1, . . . , j|V |}, j1 < j2 < · · · < j|V |, for all V ⊂ {1, . . . , k}. Beside
this, all functions fV , V ⊂ {1, . . . , k}, defined in (9.3) are canonical with
respect to the probability measure µ with |V | arguments.

Let ξ1, . . . , ξn be a sequence of independent µ distributed random variables,
and consider the U -statistics In,k(f) and In,|V |(fV ) corresponding to the ker-
nel functions f , fV defined in (9.3) and random variables ξ1, . . . , ξn. Then

k!In,k(f) =
∑

V ⊂{1,...,k}
(n−|V |)(n−|V |−1) · · · (n−k+1)|V |!In,|V |(fV ) (9.4)

is a representation of In,k(f) as a sum of degenerate U -statistics, where |V |
denotes the cardinality of the set V . (The product (n−|V |)(n−|V |−1) · · · (n−
k + 1) is defined as 1 for V = {1, . . . , k}, i.e. if |V | = k.) This representation
is called the Hoeffding decomposition of In,k(f).

Proof of Theorem 9.1. Write f =
k∏

j=1

(Pj + Qj)f . By carrying out the multi-

plications in this identity and applying the commutativity of the operators
Pj and Qj for different indices j we get formula (9.3). To show that the
functions fV in formula (9.3) are canonical let us observe that this property
can be rewritten in the form PjfV ≡ 0 (in all coordinates xs, s ∈ V \ {j} if
j ∈ V ). Since Pj = P 2

j , and the identity PjQj = Pj − P 2
j = 0 holds for all

j ∈ {1, . . . , k} this relation follows from the above mentioned commutativity

of the operators Pj and Qj , as PjfV =

(

∏

s∈{1,...,k}\V

Ps

∏

s∈V \{j}
Qs

)

PjQjf =

0. By applying identity (9.3) for all terms f(ξj1 , . . . , ξjk
) in the sum defining

the U -statistic In,k(f) and then summing them up we get relation (9.4).

In the Hoeffding decomposition we rewrote a general U -statistic in the
form of a linear combination of degenerate U -statistics. In many applications
of this result we still we have to know how the properties of the kernel func-
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tion f of the original U -statistic are reflected in the properties of the kernel
functions fV of the degenerate U -statistics taking part in the Hoeffding com-
position. In particular, we need a good estimate on the L2 and L∞ norm
of the functions fV by means of the corresponding norm of the function f .
Moreover, if we want to prove estimates on the tail distribution of the supre-
mum of U -statistics In,k(f) for a nice class of kernel functions f ∈ F which is
an L2-dense class of functions with some exponent L and parameter D, then
we may need a similar estimate on the class of kernel functions fV , f ∈ F ,
with some V ∈ {1, . . . , k} appearing in the Hoeffding decomposition of these
functions. We have to show that this class of functions is also L2-dense, and
we also need a good bound on the exponent and parameter of this L2-dense
class. The next result formulates such a statement.

Theorem 9.2 (Some properties of the Hoeffding decomposition). Let
us consider a square integrable function f(x1, . . . , xk) on the k-fold product
space (Xk,X k, µk) and take its decomposition defined in formula (9.3). The
inequalities

∫

f2
V (xj , j ∈ V )

∏

j∈V

µ( dxj) ≤
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) (9.5)

and
sup

xj , j∈V
|fV (xj , j ∈ V )| ≤ 2|V | sup

xj , 1≤j≤k
|f(x1, . . . , xk)| (9.6)

hold for all V ⊂ {1, . . . , k}. In particular,

f2
∅ ≤

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) for V = ∅.

Let us consider an L2-dense class F of functions with some parame-
ter D ≥ 1 and exponent L ≥ 0 on the space (Xk,X k), take the decom-
position (9.3) of all functions f ∈ F , and define the classes of functions
FV = {2−|V |fV : f ∈ F} for all V ⊂ {1, . . . , k} with the functions fV taking
part in this decomposition. These classes of functions FV are also L2-dense
with the same parameter D and exponent L for all V ⊂ {1, . . . , k}.

Theorem 9.2 will be proved as a consequence of Proposition 9.3 presented
below. To formulate it first some notations will be introduced:

Let us consider the product (Y ×Z,Y×Z) of two measurable spaces (Y,Y)
and (Z,Z) together with a probability measure µ on (Z,Z) and the operator

Pf(y) = Pµf(y) =

∫

f(y, z)µ( dz), y ∈ Y, z ∈ Z (9.7)

defined for those y ∈ Y for which the above integral is finite. Let I denote the
identity operator on the space of functions on Y ×Z, i.e. let If(y, z) = f(y, z),
and introduce the operator Q = Qµ = I − P = I − Pµ
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Qµf(y, z) = (I −Pµ)f(y, z) = f(y, z)−Pµf(y, z) = f(y, z)−
∫

f(y, z)µ( dz),

(9.8)
defined for those points (y, z) ∈ Y × Z whose first coordinate y is such that
the expression Pµf(y) is meaningful. (Here, and in the sequel a function g(y)
defined on the space (Y,Y) will be sometimes identified with the function
ḡ(y, z) = g(y) on the space (Y × Z,Y × Z) which actually does not depend
on the coordinate z.) The following result holds:

Proposition 9.3. Let us consider the direct product (Y × Z,Y × Z) of two
measure spaces (Y,Y) and (Z,Z) together with a probability measure µ on the
space (Z,Z). Take the transformations Pµ and Qµ defined in formulas (9.7)
and (9.8). Given any probability measure ρ on the space (Y,Y) consider the
product measure ρ × µ on (Y × Z,Y × Z). Then the transformations Pµ

and Qµ, as maps from the space L2(Y × Z,Y × Z, µ × ρ) to L2(Y,Y, ρ) and
L2(Y ×Z,Y ×Z, ρ×µ) respectively, have a norm less than or equal to 1, i.e.

∫

Pµf(y)2ρ( dy) ≤
∫

f(y, z)2ρ( dy)µ( dz), (9.9)

and ∫

Qµf(y, z)2ρ( dy)µ( dz) ≤
∫

f(y, z)2ρ( dy)µ( dz) (9.10)

for all functions f ∈ L2(Y × Z,Y × Z, ρ × µ).
If F is an L2-dense class of functions f(y, z) in the product space (Y ×

Z,Y × Z), with some parameter D ≥ 1 and exponent L ≥ 0, then also the
classes Fµ = {Pµf, f ∈ F} and Gµ = { 1

2Qµf = 1
2 (f − Pµf), f ∈ F} are

L2-dense classes with the same exponent L and parameter D in the spaces
(Y,Y) and (Y × Z,Y × Z) respectively.

The following corollary of Proposition 9.3 is formally more general, but it
is a simple consequence of this result. Actually we shall need this corollary.

Corollary of Proposition 9.3. Let us consider the product (Y1 × Z ×
Y2,Y1 × Z × Y2) of three measurable spaces (Y1,Y1), (Z,Z) and (Y2,Y2)
with a probability measure µ on the space (Z,Z) and a probability measure ρ
on Y1 × Y2,Y1 × Y2), and define the transformations

Pµf(y1, y2) =

∫

f(y1, z, y2)µ( dz), y1 ∈ Y1, z ∈ Z, y2 ∈ Y2 (9.11)

and

Qµf(y1, z, y2) = (I − Pµ)f(y1, z, y2) = f(y1, z, y2) − Pµf(y1, z, y2) (9.12)

= f(y1, z, y2) −
∫

f(y1, z, y2)µ( dz), y1 ∈ Y1, z ∈ Z, y2 ∈ Y2
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for the measurable functions f on the space Y1×Z×Y2 integrable with respect
the measure µ × ρ. Then

∫

Pµf(y1, y2)2ρ( dy1, dy2) ≤
∫

f(y, z)2(ρ × µ)( dy1, dz, dy2) (9.13)

for all probability measures ρ on (Y1×Y2,Y1×Y2), where ρ×µ is the product
of the probability measure ρ on (Y1 × Y2,Y1 × Y2) and µ is a probability
measure on (Z,Z). Also the inequality

∫

Qµf(y1, z, y2)2ρ( dy1, dy2)µ( dz) ≤
∫

f(y1, z, y2)2ρ( dy1, dy2)µ( dz)

(9.14)
holds for all functions f ∈ L2(Y × Z,Y × Z, ρ × µ).

If F is an L2-dense class of functions f(y1, z, y2) in the product space
(Y1 ×Z ×Y2,Y1 ×Z ×Y2), with some parameter D ≥ 1 and exponent L ≥ 0,
then also the classes Fµ = {Pµf, f ∈ F} and Gµ = { 1

2Qµf = 1
2 (f−Pµf), f ∈

F} are L2-dense classes with exponent L and parameter D in the spaces
(Y1 × Y2,Y1 × Y2) and (Y1 × Z × Y2,Y1 ×Z × Y2) respectively.

This corollary is a simple consequence of Proposition 9.3 if we apply it with
(Y,Y) = (Y1 × Y2,Y1 × Y2) and take the natural mapping f((y1, y2), z) →
f(y1, z, y2) of a function from the space (Y × Z,Y × Z) to a function on
(Y1 ×Z ×Y2,Y1 ×Z ×Y2). Beside this, we apply that measure on (Y1 ×Z ×
Y2,Y1×Z×Y2) which is the image of the product measure ρ×µ with respect
to the map induced by the above transformation on the space of measures.

Proposition 9.3, more precisely its corollary implies Theorem 9.2, since it
implies that the operators Ps, Qs, 1 ≤ s ≤ k, applied in Theorem 9.2 do not
increase the L2(µ) norm of a function f , and it is also clear that the norm of
Ps is bounded by 1, the norm of Qs = I −Ps is bounded by 2 as an operator
from L∞ spaces to L∞ spaces. The corollary of Proposition 9.3 also implies
that if F is an L2-dense class of functions with parameter D and exponent L,
then the same property holds for the classes of functions FPs

= {Psf : f ∈ F}
and FQs

= { 1
2Qsf : f ∈ F}, 1 ≤ s ≤ k. These relations together with the

identity fV =

(

∏

s∈{1,...,k}\V

Ps

∏

s∈V

Qs

)

f imply Theorem 9.2.

Proof of Proposition 9.3. The Schwarz inequality yields that Pµ(f)2 ≤
∫

f(y, z)2µ( dz), and integrating this inequality with respect to the proba-
bility measure ρ( dy) we get inequality (9.9). Also the inequality

∫

Qµf(y, z)2ρ( dy)µ( dz) =

∫

[f(y, z) − Pµf(y, z)]2ρ( dy)µ( dz)

≤
∫

f(y, z)2ρ( dy)µ( dz)
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holds, and this is relation (9.10). This follows for instance from the observa-
tion that the functions f(y, z) − Pµf(y, z) and Pµf(y, z) are orthogonal in
the space L2(Y × Z,Y × Z, ρ × µ).

Let us consider an arbitrary probability measure ρ on the space (Y,Y). To
prove that Fµ is an L2-dense class with parameter D and exponent L if the
same relation holds for F we have to find for all 0 < ε ≤ 1 a set {f1, . . . , fm} ⊂
Fµ, 1 ≤ j ≤ m with m ≤ Dε−L elements, such that inf

1≤j≤m

∫
(fj −f)2 dρ ≤ ε2

for all f ∈ Fµ. But a similar property holds for F in the space Y ×Z with the
probability measure ρ × µ. This property together with the L2 contraction
property of Pµ formulated in (9.9) imply that Fµ is an L2-dense class.

To prove that Gµ is also L2-dense with parameter D and exponent L under
the same condition we have to find for all numbers 0 < ε ≤ 1 and probability
measures ρ on Y × Z a subset {g1, . . . , gm} ⊂ Gµ with m ≤ Dε−L elements
such that inf

1≤j≤m

∫
(gj − g)2 dρ ≤ ε2 for all g ∈ Gµ.

To show this let us consider the probability measure ρ̃ = 1
2 (ρ + ρ̄ × µ) on

(Y ×Z,Y×Z), where ρ̄ is the projection of the measure ρ to (Y,Y), i.e. ρ̄(A) =
ρ(A × Z) for all A ∈ Y, take a class of function F0(ε, ρ̃) = {f1, . . . , fm} ⊂ F
with m ≤ Dε−L elements such that inf

1≤j≤m

∫
(fj − f)2 dρ̃ ≤ ε2 for all f ∈ F ,

and put {g1, . . . , gm} = { 1
2Qµf1, . . . ,

1
2Qµfm}. All functions g ∈ Gµ can be

written in the form g = 1
2Qµf with some f ∈ F , and there exists some

function fj ∈ F0(ε, ρ̃) such that
∫

(f − fm)2 dρ̃ ≤ ε2. Hence to complete the
proof of Proposition 9.3 it is enough to show that

∫
1
4 (Qµf − Qµf̄)2 dρ ≤

∫
(f − f̄)2 dρ̃ for all pairs f, f̄ ∈ F . This inequality holds, since

∫
1
4 (Qµf −

Qµf̄)2 dρ ≤
∫

1
2 (f − f̄)2 dρ +

∫
1
2 (Pµf − Pµf̄)2 dρ, and

∫
(Pµf − Pµf̄)2 dρ =

∫
(Pµf − Pµf̄)2 dρ̄ ≤

∫
(f − f̄)2 d(ρ̄ × µ) by formula 9.7. The above relations

imply that
∫

1
4 (Qµf −Qµf̄)2 dρ ≤

∫
(f − f̄)2 1

2d (ρ + ρ̄×µ) =
∫

(f − f̄)2d ρ̃ as
we have claimed.

Now we shall discuss the relation between Theorem 8.1′ and Theorem 8.3
and between Theorem 8.2 and Theorem 8.4. First we show that Theorem 8.1
(or Theorem 8.1′) is equivalent to the estimate (8.13) in the corollary of
Theorem 8.3 which is slightly weaker than the estimate (8.12) of Theorem 8.3.
We also claim that Theorems 8.2 and 8.4 are equivalent. Both in Theorem 8.2
and in Theorem 8.4 we can restrict our attention to the case when the class
of functions F is countable, since the case of countably approximable classes
can be simply reduced to this situation. Let us remark that integration with
respect to the measure µn − µ in the definition (4.8) of the integral Jn,k(f)
yields some kind of normalization which is missing in the definition of the
U -statistics In,k(f). This is the cause why degenerate U -statistics had to
be considered in Theorems 8.3 and 8.4. The deduction of the corollary of
Theorem 8.3 from Theorems 8.1′ or of Theorem 8.4 from Theorem 8.2 is
fairly simple if the underlying probability measure µ is non-atomic, since in
this case the identity In,k(f) = Jn,k(f) holds for a canonical function with
respect to the measure µ. Let us remark that the non-atomic property of the
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measure µ is needed in this argument not only because of the conditions of
Theorems 8.1′ and 8.2, but since in the proof of the above identity we need the
identity

∫
f(x1, . . . , xk)µ( dxj) ≡ 0 in the case when the domain of integration

is not the whole space X but the set X \ {x1, . . . , xj−1, xj+1, . . . , xk}.
The case of possibly atomic measures µ can be simply reduced to the

case of non-atomic measures by means of the following enlargement of the
space (X,X , µ). Let us introduce the product space (X̄, X̄ , µ̄) = (X,X , µ) ×
([0, 1],B, λ), where B is the σ-algebra and λ is the Lebesgue measure on [0, 1].
Define the function f̄((x1, u1), . . . , (xk, uk)) = f(x1, . . . , xk) in this enlarged
space. Then In,k(f) = In,k(f̄), the measure µ̄ = µ × λ is non-atomic, and f̄
is canonical with respect to µ̄ if f is canonical with respect to µ. Hence the
corollary of Theorem 8.3 and Theorem 8.4 can be derived from Theorems 8.1′

and 8.2 respectively by proving them first for their counterpart in the above
constructed enlarged space with the above defined functions.

Also Theorems 8.1′ and 8.2 can be derived from Theorems 8.3 and 8.4 re-
spectively, but this is a much harder problem. To do this let us observe that
a random integral Jn,k(f) can be written as a sum of U -statistics of different
order, and it can also be expressed as a sum of degenerate U -statistics if Ho-
effding’s decomposition is applied for each U -statistic in this sum. Moreover,
we shall show that the multiple integral of a function f of k variables with
respect to a normalized empirical distribution can be decomposed to the lin-
ear combination of degenerate U -statistics with the same kernel functions fV

which appeared in Theorem 9.1 with relatively small coefficients. This is the
content of the following Theorem 9.4. For the sake of a better understanding
I shall reformulate it in a more explicit form in the special case k = 2 in
Corollary 2 of Theorem 9.4 at the end of this section.

Theorem 9.4 (Decomposition of a multiple random integral with
respect to a normalized empirical measure to a linear combina-
tion of degenerate U-statistics). Let a non-atomic measure µ be given
on a measurable space (X,X ) together with a sequence of independent, µ-
distributed random variables ξ1, . . . , ξn. Take a function f(x1, . . . , xk) of k
variables integrable with respect to the product measure µk on the product
space (Xk,X k), and consider the empirical distribution µn of the sequence
ξ1, . . . , ξn introduced in (4.5) together with the k-fold random integral Jn,k(f)
of the function f defined in (4.8). The identity

k!Jn,k(f) =
∑

V ⊂{1,...,k}
C(n, k, |V |)n−|V |/2|V |!In,|V |(fV ) (9.15)

holds with the set of (canonical) functions fV (xj , j ∈ V ) (with respect
to the measure µ) defined in formula (9.3) together with some appropriate
real numbers C(n, k, p), 0 ≤ p ≤ k, where In,|V |(fV ) denotes the (degener-
ate) U -statistic of order |V | with the random variables ξ1, . . . , ξn and kernel
function fV . The constants C(n, k, p) in formula (9.15) satisfy the inequal-
ity |C(n, k, p)| ≤ C(k) for all n ≥ k and 0 ≤ p ≤ k with some constant
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C(k) < ∞ depending only on the order k of the integral Jn,k(f). The rela-
tions lim

n→∞
C(n, k, p) = C(k, p) hold with some appropriate constant C(k, p)

for all 1 ≤ p ≤ k, and C(n, k, k) = 1.

Remark. As the proof of Theorem 9.4 will show, the constant C(n, k, p) in
formula (9.15) is a polynomial order k − 1 of the argument n−1/2 with some
coefficients depending on the parameters k and p. As a consequence, C(k, p)
equals the constant term of this polynomial.

Theorems 8.1′ and 8.2 can be simply derived from Theorems 8.3 and 8.4 re-
spectively with the help of Theorem 9.4. Indeed, to get Theorem 8.1′ observe
that formula (9.15) implies the inequality

P (|Jn,k(f)| > u) ≤
∑

V ⊂{1,...,k}
P

(

n−|V |/2|In,|V |(fV )| >
u

2kC(k)

)

(9.16)

with a constant C(k) satisfying the inequality p!C(n, k, p) ≤ k!C(k) for all
coefficients C(n, k, p), 1 ≤ p ≤ k, in (9.15). Hence Theorem 8.1′ follows
from Theorem 8.3 and relations (9.5) and (9.6) in Theorem 9.2 by which the
L2-norm of the functions fV is bounded by the L2-norm of the function f
and the L∞-norm of fV is bounded by 2|V |-times the L∞-norm or f . It is
enough to estimate each term at the right-hand side of (9.16) by means of
Theorem 8.3. It can be assumed that 2kC(k) > 1. Let us first assume that also
the inequality u

2kC(k)σ
≥ 1 holds. In this case formula (8.4) in Theorem 8.1′

can be obtained by means of the estimation of each term at the right-hand side

of (9.16). Observe that exp

{

−α
(

u
2kC(k)σ

)2/s
}

≤ exp

{

−α
(

u
2kC(k)σ

)2/k
}

for all s ≤ k if u
2kC(k)σ

≥ 1. In the other case, when u
2kC(k)σ

≤ 1, formula (8.4)

holds again with a sufficiently large C > 0, because in this case its right-hand
side of (8.4) is greater than 1.

Theorem 8.2 can be similarly derived from Theorem 8.4 by observing
that relation (9.16) remains valid if |Jn,k(f)| is replaced by sup

f∈F
|Jn,k(f)|

and |In,|V |(fV )| by sup
fV ∈FV

|In,|V |(fV )| in it, and we have the right to choose

the constant M in formula (8.7) of Theorem 8.2 sufficiently large. The only
difference in the argument is that beside formulas (9.5) and (9.6) the last
statement of Theorem 9.2 also has to be applied in this case. It tells that if
F is an L2-dense class of functions on a space (Xk,X k), then the classes of
functions FV = {2−|V |fV : f ∈ F} are also L2-dense classes of functions for
all V ⊂ {1, . . . , k} with the same exponent and parameter.

I make some comments about the content of Theorem 9.4. The expres-
sion Jn,k(f) was defined as a k-fold random integral with respect to the
signed measure µn − µ, where the diagonals were omitted from the domain
of integration. Formula (9.15) expresses the random integral Jn,k(f) as a
linear combination of degenerate U -statistics of different order. This is sim-
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ilar to the Hoeffding decomposition of the U -statistic In,k(f) to the linear
combination of degenerate U -statistics defined with the same kernel func-
tions fV . The main difference between these two formulas is that in the ex-
pansion (9.15) of Jn,k(f) the terms In,|V |(fV ) appear with small coefficients

C(n, k, |V |)|V |! 1
n|V |/2 . As we shall see, E(C(n, k, |V |)|V |! 1

n|V |/2 In,V (fV ))2 <
K with a constant K < ∞ not depending on n for each set V ⊂ {1, . . . , k},
and this can be so interpreted that the sum at the right-hand side of (9.15)
consists of such random variables C(n, k, |V |)|V |!n−|V |/2In,V (fV ) which are
of constant magnitude. The smallness of these coefficients is related to fact
that in the definition of Jn,k(f) integration is taken with respect to the signed
measure µn −µ instead of the empirical measure µn, which means some kind
of normalization. On the other hand, these coefficients C(n, k, |V |) may have
a non-zero limit as n → ∞ also for |V | < k. In particular, the expansion (9.15)
may contain a constant term C(n, k, 0) separated from zero. In such a case
also the expected value EJn,k(f) is separated from zero. But even in such a
case this expected value can be bounded by a finite number not depending
on the sample size n. Next I show an example for a two-fold random integral
Jn,2(f) such that E2Jn,2(f) = −1.

Let us choose a sequence of independent random variables ξ1, . . . , ξn with
uniform distribution on the unit interval, let µn denote its empirical distri-
bution, let f = f(x, y) denote the indicator function of the unit square, i.e.
let f(x, y) = 1 if 0 ≤ x, y ≤ 1, and f(x, y) = 0 otherwise. Let us consider the
random integral 2Jn,2(f) = n

∫

x6=y
f(x, y)(µn( dx) − dx)(µn( dy) − dy), and

calculate its expected value E2Jn,2(f). By adjusting the diagonal x = y to
the domain of integration and taking out the contribution obtained in this

way we get that E2Jn,2(f) = nE(
∫ 1

0
(µn( dx) − µ( dx))

2−n2 · 1
n2 = −1. (The

last term is the integral of the function f(x, y) on the diagonal x = y with
respect to the product measure µn ×µn which equals (µn −µ)× (µn −µ) on
the diagonal.)

Now I turn to the proof of Theorem 9.4.

Proof of Theorem 9.4. Let us remark that for a canonical function g (with re-
spect to the measure µ) of p variables the identity n−p/2p!In,p(g) = p!Jn,p(g)
holds. (At this point we also exploit that µ is a non-atomic measure, which
implies that the identity

∫
g(x1, . . . , xp)µ( dxj) = 0 for all 1 ≤ j ≤ p remains

valid for arbitrary arguments xu, 1 ≤ u ≤ p, u 6= j, also if we omit finitely
many points from the domain of integration.) This relation implies that if we
calculate the (random) integral p!Jn,p(g) for a canonical function g we do not
change the value of this integral by replacing the measures µn( dxj)−µ( dxj)
by µn( dxj) for all 1 ≤ j ≤ p. The integral we get after such a replacement
equals p!n−1/2In,p(g). Since all functions fV appearing in formula (9.15) are
canonical, the above relation between U -statistics and random integrals has
the consequence that formula (9.15) can be rewritten in an equivalent form
as
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k!Jn,k(f) =
∑

V ⊂{1,...,k}
C(n, k, |V |)|V |!Jn,|V |(fV ). (9.17)

Here we use the convention that a constant c is a canonical function of order
zero, and Jn,0(c) = c. We shall prove identity (9.17) by means of induction
with respect to the order k of the integral k!Jn,k(f).

In the case k = 1 f{1}(x) = f(x) −
∫

f(x)µ( dx), f∅ =
∫

f(x)µ( dx), and
Jn,1(f{1}) =

∫
(f(x) − f∅)(µn( dx) − µ( dx)) = Jn,1(f), since

∫
(µn( dx) −

µ( dx)) = 0. Hence formula (9.17) holds for k = 1 with C(n, 1, 1) = 1 and
C(n, 1, 0) = 0. For k = 0 relation (9.17) holds with C(n, 0, 0) = 1 if the
convention fV = f is applied for a function f of zero variables, i.e. if f is
a constant function, and V = ∅. In the case k ≥ 2 we can write by taking
the identity (9.3) formulated in the Hoeffding decomposition Theorem 9.1,

integrating it with respect to the product measure
k∏

j=1

(µn( dxj) − µ( dxj))

and omitting the diagonals from the domain of integration that

k!Jn,k(f) = k!Jn,k(f{1,...,k}) +
∑

Ṽ ⊂{1,...,k}, Ṽ 6={1,...,k}

k!Jn,k(fṼ ). (9.18)

Observe that in the case Ṽ ⊂ {1, . . . , k}, Ṽ 6= {1, . . . , k} the function fṼ has
strictly less than k arguments, while the terms Jn,k(fṼ ) at the right-hand side
of (9.18) are random integrals of order k. We can rewrite these k-fold integrals
as the linear combinations of random integrals of smaller multiplicity with
the help of the following

Lemma 9.5. Let us take a measure space (X,X , µ) with a non-atomic prob-
ability measure µ and an integrable function f(x1, . . . , xk−1) on its k− 1-fold
product, (Xk−1,X k−1, µk−1), k ≥ 2. Let us also take the operator Plf(xj , j ∈
{1, . . . , k − 1} \ {l}) =

∫
f(x1, . . . , xk−1)µ( dxl) for all 1 ≤ l ≤ k − 1. Let us

consider the function f also as a function f(x1, . . . , xk) of k variables which
does not depend on its last coordinate xk. The identity

k!Jn,k(f) = −n−1/2(k− 1)!(k− 1)Jn,k−1(f)−
k−1∑

l=1

(k− 2)!Jn,k−2(Plf) (9.19)

holds. (The function Plf has arguments with indices j ∈ {1, . . . , k − 1} \ {l},
and in the term Jn,k−2(Plf) in (9.19) we take integration with respect to
n−(k−2)/2

∏

j∈{1,...,k−1}\{l}
( dµn(xj) − µ( dxj)).)

Proof of Lemma 9.5. Formula (9.19) is equivalent to the identity
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∫ ′
f(x1, . . . , xk−1)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dxk))

= −k − 1

n

∫ ′
f(x1, . . . , xk−1)

k−1∏

p=1

(µn( dx) − µ( dxp))

− 1

n

k−1∑

l=1

∫ ′ [∫

f(x1, . . . , xk−1)µ( dxl)

]

∏

1≤p≤k−1, p6=l

(µn( dxp) − µ( dxp)).

The expressions at the two sides of this identity are linear combinations of
terms of the form

∫ ′
f(x1, . . . , xk−1)

∏

l∈V

µn( dxl)
∏

l∈{1,...,k−1}\V

µ( dxl)

with V ⊂ {1, . . . , k − 1}. A term of this form with |V | = p at the left-hand
side of this identity has coefficient (−1)k−p(1 − n−p

n ) = (−1)k−p p
n , the first

term at the right-hand side has coefficient (−1)(k−p) k−1
n and the second term

has coefficient (−1)(k−p−1) k−1−p
n . Lemma 9.5 follows from these calculations.

Lemma 9.5 follows from simple elementary calculations. One may ask how
its form can be found. It may be worth observing that there are some diagram
formulas that play an important role in some subsequent proofs, and they
also supply the identity formulated in Lemma 9.5 together with its proof.

In these diagram formulas the product of some random integrals or U -
statistics are expressed by means of the sum of appropriately defined random
integrals or U -statistics. In the subsequent part of this lecture note I discuss
the diagram formula for Wiener–Itô integrals and U -statistics. I also mention
that there is a diagram formula for the product of multiple integrals with
respect to a normalized empirical distribution, and indicate what its form
looks like. An explicit formulation and proof of this result can be found
in [33]. Lemma 9.5 can be obtained as a special case of this formula.

To get Lemma 9.5 with the help of the diagram formula take the function
e(x) ≡ 1 on the space (X,X ). Then we have Jn,1(e) = 0 with probability one.
Given a function f(x1, . . . , xk−1) write up the identity Jn,k−1(f)Jn,1(e) = 0
with probability one, and rewrite its left-hand side by means of the diagram
formula. The identity we get in such a way agrees with Lemma 9.5. One of
the terms in this identity is k!Jn,k(f) which appears as the integral of the
function f̄(x1, . . . , xk) = f(x1, . . . , xk−1)e(xk), and writing up all terms we
get the desired formula.

Now I return to the proof of Theorem 9.4.

Completion of the proof of Theorem 9.4 with the help of Lemma 9.5. We shall
prove the following slightly more general version of (9.17). If f(xj , j ∈ V ) is
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an integrable function with arguments indexed by a set V ⊂ {1, . . . , k}, then

k!Jn,k(f) =
∑

V̄ ⊂V

C(n, k, |V̄ |, |V |)|V̄ |!Jn,|V̄ |(fV̄ ) (9.20)

with some coefficients C(n, k, p, q), 0 ≤ p ≤ q ≤ k such that |C(n, k, p, q)| ≤
Ck < ∞ for all arguments n and 0 ≤ p ≤ q ≤ k, the limit lim

n→∞
C(n, k, p, q) =

C(k, p, q) exists, and C(n, k, k, k) = 1.
At the left-hand side of formulas (9.20) and (9.17) the same integral Jn,k(f)

of order k of a function f with less than or equal to k arguments is taken.
(We define this integral by redefining its kernel function f as a function of
k arguments by means of the introduction of some additional fictive coordi-
nates.) At the right-hand side of these formulas the same canonical functions
fV̄ , V̄ ⊂ {1, . . . , k}, appear. They were introduced in the Hoeffding decom-
position (9.3). But in (9.20) we take the integrals of the functions fV̄ only
with respect to their ‘real’ coordinates with indices l ∈ V̄ ⊂ V . For the sake
of simpler notations first we restrict our attention to the case V = {1, . . . , q}
with some 0 ≤ q ≤ k. (Actually, it can be seen with the help of the subse-
quent proof that we can choose C(n, k, p, q) = C(n, k, p) with the constant
C(n, k, p) appearing in (9.15) or (9.17).)

We shall prove (9.20) by means of induction with respect to k. This relation
holds for k = 0, and to prove it for k = 1 we still we have to check that it
also holds in the special case when f is a function of zero variable, i.e. if
it is a constant, and V = ∅. But relation (9.20) holds in this case with
C(n, 1, 0, 0) = 0, since Jn,1(f) = 0 if f is a variable of zero arguments, i.e. if
it is a constant.

We shall prove relation (9.20) for general parameter k with the help of
formula (9.18), Lemma 9.5 and formula (9.3) in the Hoeffding decomposition
which gives the definition of the functions fṼ appearing in (9.18). I formu-
late a formally more general result than relation (9.19) which follows from
Lemma 9.5 if we reindex the variables of the function f considered in it. I
formulate this result, because this will be applied in our calculations.

Let us take a number p ∈ {1, . . . , k}, k ≥ 2, and a function f(xj , j ∈
{1, . . . , k}\{p}), integrable with respect to the appropriate direct product of
the measure µ together with the functions Pl(f) = Pl(f)(xj , j ∈ {1, . . . , k} \
{l, p}) for all l ∈ {1, . . . , k} \ {p} that we get by integrating the function f
with respect to the measure µ( dxl). The following modified version of (9.19)
holds in this case.

k!Jn,k(f) = −n−1/2(k−1)!(k−1)Jn,k−1(f)−
∑

l∈{1,...,k}\{p}
(k−2)!Jn,k−2(Plf)

(9.21)
where Jn,k−1(f) is the integral of the function f with respect to the measure
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n(k−1)/2
∏

j∈{1,...,k}\{p}
((µn( dxj) − µ( dxj))

and Jn,k−2(Plf) is the integral of the function Plf with respect to the measure

n(k−2)/2
∏

j∈{1,...,k}\{p,l}
((µn( dxj) − µ( dxj)).

(Naturally the diagonals are omitted from the domain of integration.)
First we prove (9.20) in the case V = {1, . . . , k}. We rewrite k!Jn,k(f)

by means of (9.18) as a sum of random integrals of order k with ker-
nel functions fṼ , Ṽ ⊂ {1, . . . , k}. We rewrite each term k!Jn,k(fṼ ) with

Ṽ ⊂ {1, . . . , k}, Ṽ 6= {1, . . . , k} in this sum (i.e. we do not consider the in-
tegral k!Jn,k(f{1,...,k})) as a linear combination of multiple random integrals
of the form Jn,k−1(fṼ ) and Jn,k−2(PlfṼ ) of order k − 1 and k − 2 respec-
tively with the help of identity (9.21), and we can apply formula (9.20) for
them because of our inductive hypothesis. Let us understand what kind of
kernel functions appear in the integrals we get in such a way. If V̄ ⊂ Ṽ then
(fṼ )V̄ = fV̄ by formula (9.3). On the other hand, PlfṼ = fṼ \{l}, and in

the expansion of Jn,k(PlfṼ )) by means of (9.20) we get a linear combina-

tion of random integrals Jn,|V̄ |(fV̄ ) with V̄ ⊂ Ṽ \ {l}. By applying all these
identities, summing them up, adding to them the term Jn,k(f{1,...,k}) and
applying formula (9.21) we get because of our inductive assumptions a rep-
resentation k!Jn,k(f) =

∑

V̄ ⊂V

C(n, k, V̄ )|V̄ |!Jn,|V̄ |(fV̄ ) (where V = {1, . . . , k})

of the random integral k!Jn,k(f) with such coefficients C(n, k, V̄ ) for which
|C(n, k, V̄ )| ≤ C(k) and the limit C(, V̄ ) = lim

n→∞
C(n, k, V̄ ) exists. We still

have to show that these coefficients can be chosen in such a way that
C(n, k, V̄ ) = C(n, k, |V̄ |), i.e. C(n, k, V̄1) = C(n, k, V̄2) if |V̄1| = |V̄2|.

Given a set Ṽ ⊂ {1, . . . , k}, Ṽ 6= {1, . . . , k}, let us express the random
integrals Jn,k−1(fṼ ) and Jn,k−2(PlfṼ ) for all p ∈ {1, . . . , k} \ Ṽ in the above
way, and write Jn,k(fṼ ) and Jn,k(PlfṼ ) as the average of these sums. Working
with these expressions for Jn,k(fṼ ) and Jn,k(PlfṼ ) it can be seen that our
inductive assumption also holds with such coefficients C(n, k, V̄ ) for which
C(n, k, V̄1) = C(n, k, V̄2) if |V̄1| = |V̄2|.

In the next step let us consider the case when f = f(xj , j ∈ V ) with a
set V = {1, . . . , q} such that 0 ≤ q < k. I claim that in this case the identity
fṼ ≡ 0 holds for those sets Ṽ ⊂ {1, . . . , k} for which Ṽ ∩ {q + 1, . . . , k} 6= ∅,

and as a consequence Jk,n(fṼ ) = 0 with probability 1 for such sets Ṽ . First
I show that relation (9.20) can be proved in the present case with the help
of this relation similarly to the previous case.

In the present case formula (9.18) has the form k!Jn,k(f) =
∑

Ṽ ⊂V

k!Jn,k(fṼ ),

and we can express each term k!Jn,k(fṼ ), Ṽ ⊂ V , in this sum by means of
formula (9.21) by choosing fṼ as the function f and an integer p such that
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q+1 ≤ p ≤ k (i.e. p ∈ {1, . . . , k}\V ) in it. In such a way we can write k!Jk,n(f)
as the linear combination of random integrals of the form (k − 1)!Jn,k−1(fṼ )

and (k − 2)!Jn,k−2(PlfṼ ) = (k − 2)!Jn,k−2(fṼ \{l}) with some sets Ṽ ⊂ V

and numbers l ∈ {1, . . . , k} \ {p}, where we took some number p such that
q+1 ≤ p ≤ k. Then we can apply relation (9.20) for parameters k−1 and k−2
by our inductive hypothesis, and this enables us to write Jn,k(f) as the linear
combination of random integrals |V̄ |!Jn,|V̄ |(fV̄ ) with sets V̄ ⊂ V . Moreover,
it can be seen similarly to the previous case (by writing the above identities
for all p ∈ {1, . . . , k} \ Ṽ and taking their average) that the coefficients in
this linear combination can be chosen in such a way as it was demanded in
formula (9.20).

To prove that fṼ ≡ 0 if Ṽ ∩ {q + 1, . . . , k} 6= ∅ and f = f(x1, . . . , xk) is
the extension of a function f = f(xj , j ∈ {1, . . . , q}) to Xk with the help

of some ‘fictive’ coordinates take a number r ∈ Ṽ ∩ {q + 1, . . . , k}, observe
that Prf = f and Qrf ≡ 0 for the operators Pr and Qr defined in (9.1)
and (9.2), since r /∈ V = {1, . . . , q}. The definition of the function fṼ is given
in formula (9.3). Observe that in the present case the operator Qr and not
the operator Pr appears in the formula defining fṼ . Hence formula (9.3) and
the exchangeability of the operators Pj and Qj′ imply that fṼ ≡ 0.

Formula (9.20) in the general case simply follows from the already proved
results by a reindexation of the variables of the function f . Since (9.17) is a
special case of (9.20) Theorem 9.4 is proved.

Two corollaries of Theorem 9.4 will be formulated. The first one explains
the content of conditions (8.2) and (8.6) in Theorems 8.1—8.4.

Corollary 1 of Theorem 9.4. If In,k(f) is a degenerate U -statistic of order
k with some kernel function f , then

E
(

n−k/2In,k(f)
)2

=
n(n − 1) · · · (n − k + 1)

k!nk

∫

Sym f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

≤ 1

k!

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk), (9.22)

where µ is the distribution of the random variables taking part in the def-
inition of the U -statistic In,k(f), and Sym f is the symmetrization of the
function f . The k-fold multiple random integral Jn,k(f) with an arbitrary
square integrable kernel function f satisfies the inequality

EJn,k(f)2 ≤ C̄(k)

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

with some constant C̄(k) depending only on the order k of the integral Jn,k(f).

Proof of Corollary 1 of Theorem 9.4. The identity
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E(n−k/2In,k(f))2 =
1

(k!)2nk

∑ ′
Ef(ξl1 , . . . , ξlk)f(ξl′1

, . . . , ξl′k
) (9.23)

holds, where the prime in
∑′

means that summation is taken for such pairs
of k-tuples (l1, . . . , lk), (l′1, . . . , l

′
k), 1 ≤ lj , l

′
j ≤ n, for which lj 6= lj′ and

l′j 6= l′j′ if j 6= j′. Indeed, the degeneracy of the U -statistic In,k(f) implies that
Ef(ξl1 , . . . , ξlk)f(ξl′1

, . . . , ξl′k
) = 0 if the two sets {l1, . . . , lk} and {l′1, . . . , l′k}

differ. This can be seen by taking such an index lj from the first k-tuple
which does not appear in the second one, and by observing that the condi-
tional expectation of the product we consider equals zero by the degeneracy
condition of the U -statistic under the condition that the value of all random
variables except that of ξlj is fixed in this product. On the other hand,

Ef(ξl1 , . . . , ξlk)f(ξl′1
, . . . , ξl′k

)

=

∫

f(x1, . . . , xk)f(xπ(1), . . . , xπ(k))µ( dx1) . . . µ( dxk)

if (l′1, . . . , l
′
k) = (π(l1), . . . , π(lk)) with some (π(1), . . . , π(k)) ∈ Πk, where Πk

denotes the set of all permutations of the set {1, . . . , k}. By summing up
the above identities for all pairs (l1, . . . , lk) and (l′1, . . . , l

′
k) and by applying

formula (9.23) we get the identity at the left-hand side of formula (9.22). The
second relation in (9.22) is obvious.

The bound for Jn,k(f) follows from Theorem 9.4, formula (9.5) in Theo-
rem 9.2 by which the L2-norm of the functions fV is not greater than the
L2-norm of the function f and the bound that formula (9.22) yields for the
second moment of the degenerate U -statistics n−|V |/2In,|V |(fV ) appearing in
the expansion (9.15).

In Corollary 2 the decomposition (9.15) of a random integral Jn,2(f) of
order 2 is described in an explicit form. This result follows from the proof of
Theorem 9.4.

Corollary 2 of Theorem 9.4. Let the random integral Jn,2(f) satisfy the
conditions of Theorem 9.4. In this case formula (9.15) can be written in the
following explicit form:

2Jn,2(f) =
2

n
In,2(f{1,2}) − 1

n
In,1(f{1}) − 1

n
In,1(f{2}) − f∅

with the functions
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f{1,2}(x, y) = f(x, y) −
∫

f(x, y)µ( dx) −
∫

f(x, y)µ( dy)

+

∫

f(x, y)µ( dx)µ( dy),

f{1}(x) =

∫

f(x, y)µ( dy) −
∫

f(x, y)µ( dx)µ( dy),

f{2}(y) =

∫

f(x, y)µ( dx) −
∫

f(x, y)µ( dx)µ( dy), and

f∅ =

∫

f(x, y)µ( dx)µ( dy).

Corollary 2 of Theorem 9.4 states that in the case k = 2 formula (9.15)
holds with C(n, 2, 2) = 1, C(n, 2, 1) = − 1√

n
and C(n, 2, 0) = −1.





Chapter 10

Multiple Wiener–Itô integrals and their
properties

In this section I present the definition of multiple Wiener–Itô integrals and
some of their most important properties needed in the proof of the results for-
mulated in Section 8. First the notion of the white noise with some reference
measure will be introduced, then multiple Wiener–Itô integrals with respect
to a white noise with some non-atomic reference measure will be defined. A
most important result in the theory of multiple Wiener–Itô integrals is the
so-called diagram formula presented in Theorem 10.2A. It enables us to write
the product of two Wiener–Itô integrals in the form of a sum of Wiener–Itô
integrals. The proof of the diagram formula is given in Appendix B.

Another interesting result about Wiener-Itô integrals, formulated at the
end of this section in Theorem 10.5 states that the class of random vari-
ables which can be written in the form of a sum of Wiener–Itô integrals of
different order is sufficiently rich. All random variables with finite second mo-
ment which are measurable with respect to the σ-algebra generated by the
(Gaussian) random variables appearing in the underlying white noise in the
construction of multiple Wiener–Itô integrals can be written in such a form.

I shall also give a heuristic explanation of the diagram formula which may
indicate why it has the form appearing in Theorem 10.2A. It also helps to
find the analogue of the diagram formula for (random) integrals with respect
to the product of normalized empirical measures. Such a result will be useful
later. The diagram formula has a simple and useful consequence formulated
in Theorem 10.2, where the product of finitely many Wiener–Itô integrals
is written in the form of a sum of Wiener–Itô integrals. This more general
result will be also called the diagram formula. It has an important corollary
about the calculation of the moments of Wiener–Itô integrals. Theorem 8.5
can be proved relatively simply by means of this corollary.

I shall give the proof of two other results about Wiener–Itô integrals in Ap-
pendix C. The first one, Theorem 10.3, is called Itô’s formula for Wiener–Itô
integrals, and it explains the relation between multiple Wiener-Itô integrals
and Hermite polynomials of Gaussian random variables. This result is a rel-

95
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atively simple consequence of the diagram formula and some basic recursive
relations about Hermite polynomials.

The other result proved in Appendix C, Theorem 10.4, is a limit theorem
about a sequence of appropriately normalized degenerate U -statistics. Here
the limit is presented in the form of a multiple Wiener–Itô integral. This result
is interesting for us, because it helps to compare Theorems 8.3 and 8.1 with
their one-variate counterpart, Bernstein’s inequality. In the one-variate case
Bernstein’s inequality provides a comparison of the distribution of sums of
independent random variables and normal distribution functions, i.e. the limit
distribution in the central limit theorem. Theorem 8.3 yields a similar result
about degenerate U -statistics. Its comparison with Theorem 8.5 and the limit
theorem proved in Appendix C about the limit distribution of degenerate
U -statistics show that degenerate U -statistics satisfy an estimate similar to
Bernstein’s inequality. The upper bound in it is similar to the estimate on
the tail-distribution of the limit distribution of normalized degenerate U -
statistics, which equals the distribution of an appropriate multiple Wiener–Itô
integral. Theorem 8.1 which is an estimate of multiple integrals with respect
to a normalized empirical distribution also has such an interpretation.

My Lecture Note [30] contains a rather detailed description of Wiener–Itô
integrals. But in that work the emphasis was put on the study of a slightly
different version of it. The original version of this integral introduced in [25]
was also only briefly discussed there, and not all details were worked out.
In particular, the diagram formula needed in this work was formulated and
proved only for modified Wiener–Itô integrals. I shall discuss the difference
between these random integrals together with the question why a modified
version of Wiener–Itô integrals was studied in [30] at the end of this section.

To define multiple Wiener–Itô integrals first I introduce the notion of white
noise.

Definition of a white noise with some reference measure. Let us have
a σ-finite measure µ on a measurable space (X,X ). A white noise with refer-
ence measure µ is a Gaussian random field µW = {µW (A) : A ∈ X , µ(A) <
∞}, i.e. a set of jointly Gaussian random variables indexed by the above
sets A, which satisfies the relations EµW (A) = 0 and EµW (A)µW (B) =
µ(A ∩ B) for all A,B ∈ X such that µ(A) < ∞ and µ(B) < ∞.

It is worth making some comments about this definition.

Remark: In the definition of a white noise sometimes also the property
µW (A∪B) = µW (A)+µW (B) with probability 1 if A∩B = ∅, and µ(A) < ∞,
µ(B) < ∞ is mentioned. But this condition can be omitted, because it follows
from the remaining properties of the white noise. Indeed, simple calculation
shows that E(µW (A ∪ B) − µW (A) − µW (B))2 = 0 if A ∩ B = ∅, hence
µW (A ∪ B) − µW (A) − µW (B) = 0 with probability 1 in this case. It also
can be observed that if some sets A1, . . . , Ak ∈ X , µ(Aj) < ∞, 1 ≤ j ≤ k,
are disjoint, then the random variables µW (Aj), 1 ≤ j ≤ k, are independent
because of the uncorrelatedness of these jointly Gaussian random variables.
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It is not difficult to see that for an arbitrary reference measure µ on a
space (X,X ) a white noise µW with this reference measure really exists. This
follows simply from Kolmogorov’s fundamental theorem, by which if the finite
dimensional distributions of a random field are prescribed in a consistent way,
then there exists a random field with these finite dimensional distributions.

Now I turn to the definition of multiple Wiener–Itô integrals with respect
to a white noise with some reference measure. First I introduce the class of
functions whose Wiener–Itô integrals with respect to a white noise µW with
a non-atomic reference measure µ will be defined.

Let us consider a measurable space (X,X ), a σ-finite measure µ on it
and a white noise µW on (X,X ) with reference measure µ. Let us define the
classes of functions Hµ,k, k = 1, 2, . . . , consisting of functions of k variables
on (X,X ) by the formula

Hµ,k =

{

f(x1, . . . , xk) : f(x1, . . . , xk) is an X k measurable, real valued

function on Xk, and

∫

f2(x1, . . . , xk)µ( dx1) . . . , µ( dxk) < ∞
}

.

(10.1)

We shall call a σ-finite measure µ on a measurable space (X,X ) non-atomic
if for all sets A ∈ X such that µ(A) < ∞ and all numbers ε > 0 there

is a finite partition A =
N⋃

s=1
Bs of the set A with the property µ(Bs) < ε

for all 1 ≤ s ≤ N . There is a formally weaker definition of a non-atomic
measures by which a σ-finite measure µ is non-atomic if for all measurable
sets A such that 0 < µ(A) < ∞ there is a measurable set B ⊂ A with
the property 0 < µ(B) < µ(A). But these two definitions of non-atomic
measures are actually equivalent, although this equivalence is not trivial. I
do not discuss this problem here, since it is a little bit outside from the
direction of the present work. In our further considerations we shall work
with the first definition of non-atomic measures.

The k-fold Wiener-Itô integrals of the functions f ∈ Hµ,k with respect to
the white noise µW will be defined in a rather standard way. First they will be
defined for some simple functions, called elementary functions, then it will be
shown that the integral for this elementary functions have an L2 contraction
property which makes possible to extend it to the class of functions in Hµ,k.

Let us first introduce the following class of elementary functions H̄µ,k of k
variables. A function f(x1, . . . , xk) on (Xk,X k) belongs to H̄µ,k if there exist
finitely many disjoint measurable subsets A1, . . . , AM , 1 ≤ M < ∞, of the
set X (i.e. Aj ∩ Aj′ = ∅ if j 6= j′) such that µ(Aj) < ∞ for all 1 ≤ j ≤ M ,
and the function f has the form
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f(x1, . . . , xk) =







c(j1, . . . , jk) if (x1, . . . , xk) ∈ Aj1 × · · · × Ajk
with

some indices (j1, . . . , jk), 1 ≤ js ≤ M, 1 ≤ s ≤ k,
such that all numbers j1, . . . , jk are different

0 if (x1, . . . , xk) /∈ ⋃

(j1,...,jk) : 1≤js≤M, 1≤s≤k,
and all j1,...,jk are different.

Aj1 × · · · × Ajk

(10.2)
with some real numbers c(j1, . . . , jk), 1 ≤ js ≤ M , 1 ≤ s ≤ k, if all j1, . . . , jk

are different numbers. This means that the function f is constant on all k-
dimensional rectangles Aj1 × · · · ×Ajk

with different, non-intersecting edges,
and it equals zero on the complementary set of the union of these rectangles.
The property that the support of the function f is on the union of rectangles
with non-intersecting edges is sometimes interpreted so that the diagonals
are omitted from the domain of integration of Wiener–Itô integrals.

The Wiener-Itô integral of an elementary function f(x1, . . . , xk) of the
form (10.2) with respect to a white noise µW with the (non-atomic) reference
measure µ is defined by the formula

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)

=
∑

1≤js≤M, 1≤s≤k
all j1,...,jk are different

c(j1, . . . , jk)µW (Aj1) · · ·µW (Ajk
). (10.3)

(The representation of the function f in (10.2) is not unique, the sets Aj

can be divided to smaller disjoint sets, but its Wiener–Itô integral defined
in (10.3) does not depend on its representation. This can be seen with the
help of the additivity property µW (A ∪ B) = µW (A) + µW (B) if A ∩ B = ∅
of the white noise µW .) The notation

Zµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk), (10.4)

will be used in the sequel, and the expression Zµ,k(f) will be called the
normalized Wiener–Itô integral of the function f . Such a terminology will
be applied also for the Wiener–Itô integrals of all functions f ∈ Hµ,k to be
defined later.

If f is an elementary function in H̄µ,k defined in (10.2), then its normalized
Wiener–Itô integral defined in (10.3) and (10.4) satisfies the relations
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Ek!Zµ,k(f) = 0,

E(k!Zµ,k(f))2 =
∑

(j1,...,jk) : 1≤js≤M, 1≤s≤k,
and all j1,...,jk are different.

∑

π∈Πk

c(j1, . . . , jk)c(jπ(1), . . . , jπ(k))

EµW (Aj1) · · ·µW (Ajk
)µW (Ajπ(1)

) · · ·µW (Ajπ(k)
)

= k!

∫

Sym f2(x1, . . . , xk)µ( dx1) . . . µ( dxk)

≤ k!

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk), (10.5)

with Sym f(x1, . . . , xk) = 1
k!

∑

π∈Πk

f(xπ(1), . . . , xπ(k)), where Πk denotes the

set of all permutations π = {π(1), . . . , π(k)} of the set {1, . . . , k}.
The identities written down in (10.5) can be simply checked. The first

relation follows from the identity EµW (Aj1) · · ·µW (Ajk
) = 0 for disjoint sets

Aj1 , . . . , Ajk
, which holds, since the expectation of the product of independent

random variables with zero expectation is taken. The second identity follows
similarly from the identity

EµW (Aj1) · · ·µW (Ajk
)µW (Aj′

1
) · · ·µW (Aj′

k
) = 0

if the sets of indices {j1, . . . , jk} and {j′1, . . . , j′k} are different,

EµW (Aj1) · · ·µW (Ajk
)µW (Aj′

1
) · · ·µW (Aj′

k
) = µ(Aj1) · · ·µ(Ajk

)

if {j1, . . . , jk} = {j′1, . . . , j′k} i.e. if j′1 = jπ(1), . . . , j
′
k = jπ(k)

with some permutation π ∈ Πk,

which holds because of the facts that the µW measure of disjoint sets are
independent with expectation zero, and EµW (A)2 = µ(A). The remaining
relations in (10.5) can be simply checked.

It is not difficult to check that

EZµ,k(f)Zµ,k′(g) = 0 (10.6)

for all functions f ∈ H̄µ,k and g ∈ H̄µ,k′ if k 6= k′, and

Zµ,k(f) = Zµ,k(Sym f) (10.7)

for all functions f ∈ H̄µ,k.
The definition of Wiener–Itô integrals can be extended to general functions

f ∈ Hµ,k with the help of the estimate (10.5). To carry out this extension
we still have to know that the class of functions H̄µ,k is a dense subset of the
class Hµ,k in the Hilbert space L2(Xk,X k, µk), where µk is the k-th power
of the reference measure µ of the white noise µW . I briefly explain how this
property of H̄µ,k can be proved. The non-atomic property of the measure µ
is exploited at this point.
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To prove this statement it is enough to show that the indicator function of
any product set A1 × · · · ×Ak such that µ(Aj) < ∞, 1 ≤ j ≤ k, but the sets
A1, . . . , Ak may be non-disjoint is in the L2(µk) closure of H̄µ,k. In the proof
of this statement it will be exploited that since µ is a non-atomic measure,
the sets Aj can be represented for all ε > 0 and 1 ≤ j ≤ k as a finite union
Aj =

⋃

s
Bj,s of disjoint sets Bj,s with the property µ(Bj,s) < ε. By means of

these relations the product A1 × · · · × Ak can be written in the form

A1 × · · · × Ak =
⋃

s1,...,sk

B1,s1
× · · · × Bk,sk

(10.8)

with some sets Bj,sj
such that µ(Bj,sj

) < ε for all sets in this union. Moreover,
we may assume, by refining the partitions of the sets Aj if this is necessary
that any two sets Bj,sj

and Bj′,s′
j′

in this representation are either disjoint,

or they agree. Take such a representation of A1 × · · · ×Ak, and consider the
set we obtain by omitting those products B1,s1

×· · ·×Bk,sk
from the union at

the right-hand side of (10.8) for which Bi,si
= Bj,sj

for some 1 ≤ i < j ≤ k.
The indicator function of the remaining set is in the class H̄µ,k. Hence it is
enough to show that the distance between this indicator function and the
indicator function of the set A1 × · · · ×Ak is less than const. ε in the L2(µk)
norm with some const. which may depend on the sets A1, . . . , Ak, but not
on ε. Indeed, by letting ε tend to zero we get from this relation that the
indicator function of the set A1 × A2 × · · · × Ak is in the closure of H̄µ,k in
the L2(µk) norm.

Hence to prove the desired property of H̄µ,k it is enough to prove the
following statement. Take the representation (10.8) of A1 × · · · × Ak (which
depends on ε) and an arbitrary pair of integers i and j such that 1 ≤ i <
j ≤ k. Then the sum of the measures µk(B1,s1

× · · · × Bk,sk
) of those sets

B1,s1
× · · · × Bk,sk

at the right-hand side of (10.8) for which Bi,si
= Bj,sj

is less than const. ε. To prove such an estimate observe that the µk measure
of such a set can be bounded by the µk−1 measure of the set we obtain by
omitting the i-th term from the product defining it in the following way:

µk(B1,s1
×· · ·×Bk,sk

) ≤ εµk−1(B1,s1
×· · ·×Bi−1,si−1

×Bi+1,si+1
×· · ·×Bk,sk

).

Let us sum up this inequality for all such sets B1,s1
× · · · × Bk,sk

at the
right-hand side of (10.8) for which Bi,si

= Bj,sj
. The left-hand side of the

inequality we get in such a way equals the quantity we want to estimate.
The expression at its right-hand side is less than ε

∏

1≤s≤k, s 6=i

µ(As), since ε-

times the µk−1 measure of such disjoint sets are summed up in it which are
contained in the set A1 × · · · ×Ai−1 ×Ai+1 × · · · ×Ak. In such a way we get
the estimate we wanted to prove.

Knowing that H̄µ,k is a dense subset of Hµ,k in L2(µk) norm we can finish
the definition of k-fold Wiener–itô integrals in the standard way. Given any
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function f ∈ Hµ,k, a sequence of functions fn ∈ H̄µ,k, n = 1, 2, . . . , can be
defined in such a way that

∫

|f(x1, . . . , xk) − fn(x1, . . . , xk)|2µ( dx1) . . . µ( dxk) → 0 as n → ∞.

By relation (10.5) the normalizations Zµ,k(fn) of the already defined Wiener–
Itô integrals of the functions fn, n = 1, 2, . . . , constitute a Cauchy sequence
in the space of square integrable random variables on the probability space,
where the white noise is given. (Observe that the difference of two functions
from the class H̄µ,k also belongs to this class.) Hence the limit lim

n→∞
Zµ,k(fn)

exists in L2 norm, and this limit can be defined as the normalized Wiener–Itô
integral Zµ,k(f) of the function f . The definition of this limit does not depend
on the choice of the approximating functions fn, hence it is meaningful. It
can be seen that relations (10.5) and (10.6) remain valid for all functions
f ∈ Hµ,k. The following Theorem 10.1 describes the properties of multiple
Wiener–Itô integrals. It contains already proved results. The only still non-
discussed part of this Theorem is Property f) of Wiener–Itô integrals. But it is
easy to check this property by observing that one-fold Wiener–Itô integrals
are (jointly) Gaussian, they are measurable with respect to the σ-algebra
generated by the white noise µW . Beside this, the random variable µW (A)
for a set A ∈ X , µ(A) < ∞, equals the (one-fold) Wiener–Itô integral of the
indicator function of the set A.

Theorem 10.1 (Some properties of multiple Wiener–Itô integrals).
Let a white noise µW be given with some non-atomic, σ-additive reference
measure on a measurable space (X,X ). Then the k-fold Wiener–Itô integral
of all functions in the class Hµ,k introduced in formula (10.1) can be defined,
and its normalized version Zµ,k(f) = 1

k!

∫
f(x1, . . . , xk)µW ( dx1) . . . µW (dxk)

satisfies the following relations:

a) Zµ,k(αf + βg) = αZµ,k(f) + βZµ,k(g) for all f, g ∈ Hµ,k and real numbers
α and β.

b) If A1, . . . , Ak are disjoint sets, µ(Aj) < ∞, then the function fA1,...,Ak

defined by the relation fA1,...,Ak
(x1, . . . , xk) = 1 if x1 ∈ A1, . . . , xk ∈ Ak,

fA1,...,Ak
(x1, . . . , xk) = 0 otherwise, satisfies the identity

Zµ,k(fA1,...,Ak
(x1, . . . , xk)) =

1

k!
µW (A1) · · ·µW (Ak).

c)

EZµ,k(f) = 0, and EZ2
µ,k(f) =

1

k!
‖Sym f‖2

2 ≤ 1

k!
‖f‖2

2

for all f ∈ Hµ,k, where ‖f‖2
2 =

∫
f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) is the

square of the L2 norm of a function f ∈ Hµ,k.
d) Relation (10.6) holds for all functions f ∈ Hµ,k and g ∈ Hµ,k′ if k 6= k′.
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e) Relation (10.7) holds for all functions f ∈ Hµ,k.
f) The Wiener–Itô integrals Zµ,1(f) of order k = 1 are jointly Gaussian. The

smallest σ-algebra with respect to which they are all measurable agrees
with the σ-algebra generated by the random variables µW (A), A ∈ X ,
µ(A) < ∞, of the white noise.

We have defined Wiener–Itô integrals of order k for all k = 1, 2, . . . . For the
sake of completeness let us introduce the class Hµ,0 for k = 0 which consists of
the real constants (functions of zero variables), and put Zµ,0(c) = c. Because
of relation (10.7) we could have restricted our attention to Wiener–Itô inte-
grals with symmetric kernel functions. But it turned out more convenient to
work also with Wiener–Itô integrals of not necessarily symmetric functions.

Now I formulate the diagram formula for the product of two Wiener–Itô
integrals. For this goal some notations have to be introduced. To present the
product of the multiple Wiener–Itô integrals of two functions f(x1, . . . , xk) ∈
Hµ,k and g(x1, . . . , xl) ∈ Hµ,l in the form of sums of Wiener–Itô integrals a
class of diagrams Γ = Γ (k, l) will be defined. The diagrams γ ∈ Γ (k, l) have
vertices (1, 1), . . . , (1, k) and (2, 1), . . . , (2, l), and edges ((1, j1), (2, j′1)),. . . ,
((1, js), (2, j′s)) with some 1 ≤ s ≤ min(k, l). The indices j1, . . . , js in the
definition of the edges are all different, and the same relation holds for the
indices j′1, . . . , j

′
s. All diagrams γ with such properties belong to Γ (k, l). The

set of vertices of the form (1, j), 1 ≤ j ≤ k, will be called the first row, and
the set of vertices of the form (2, j′), 1 ≤ j′ ≤ l, the second row of a diagram.
We demanded that edges of a diagram can connect only vertices of different
rows, and at most one edge may start from each vertex of a diagram.

Given a diagram γ ∈ Γ (k, l) with the set of edges

E(γ) = {(1, j1), (2, j′1)), . . . , ((1, js), (2, j′s)}

let
V1(γ) = {(1, 1), . . . , (1, k)} \ {(1, j1), . . . , (1, js)}

and
V2(γ) = {(2, 1), . . . , (2, l)} \ {(2, j′1), . . . , (2, j′s)}

denote the set of vertices in the first and in the second row of the dia-
gram γ respectively from which no edge starts. Put αγ(1, j) = (2, j′) if
((1, j), (2, j′)) ∈ E(γ) and αγ(1, j) = (1, j) if the diagram γ contains no
edge of the form ((1, j), (2, j′)) ∈ E(γ). In words, the function αγ(·) is de-
fined on the vertices of the first row of the diagram γ. It replaces a vertex
to the vertex it is connected to by an edge of the diagram if there is such a
vertex, and it does not change those vertices from which no edge starts. Put
|γ| = k + l−2s, i.e. |γ| equals the number of vertices in γ from which no edge
starts. Given two functions f(x1, . . . , xk) ∈ Hµ,k and g(x1, . . . , xl) ∈ Hµ,l let
us introduce their product



10 Multiple Wiener–Itô integrals and their properties 103

(f ◦ g)(x(1,1), . . . , x(1,k), x(2,1), . . . , x(2,l))

= f(x(1,1), . . . , x(1,k))g(x(2,1), . . . , x(2,l)) (10.9)

together with its transform

(f ◦ g)γ(x(1,j), : (1, j) ∈ V1(γ), x(2,1) . . . , x(2,l))

= f(xαγ(1,1), . . . , xαγ(1,k))g(x(2,1), . . . , x(2,l)). (10.10)

(Here the function f(x1, . . . , xk) is replaced by f(x(1,1), . . . , x(1,k)) and the
function g(x1, . . . , xl) by g(x(2,1), . . . , x(2,l)).) With the help of the above
introduced sets V1(γ), V2(γ) and function αγ(·) let us introduce the functions
Fγ(f, g) as

Fγ(f1, f2)(x(1,j), x(2,j′) : (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ))

=

∫

(f ◦ g)γ(xαγ(1,j) : (1, j) ∈ V1(γ), x(2,1), . . . , x(2,l))

∏

(2,j)∈{(2,1),...,(2,l)}\V2(γ)

µ( dx(2,j)) (10.11)

for all diagrams γ ∈ Γ (k, l). In words: We take the product defined in (10.9),
then if the index (1, j) of a variable x(1,j) is connected with the index (2, j′) of
some variable x(2,j′) by an edge of the diagram γ, then we replace the variable
x(1,j) by x(2,j′) in this product. Finally we integrate the function obtained in
such a way with respect to the arguments with indices (2, j′1), . . . , (2, j′s), i.e.
with those vertices of the second row of the diagram γ from which en edge
starts. It is clear that Fγ is a function of |γ| variables. It depends on those
coordinates whose indices are such vertices of γ from which no edge starts.

For the sake of simpler notations we shall also consider Wiener–Itô inte-
grals with such kernel functions whose variables are more generally indexed.
If the k-fold Wiener–Itô integral with a kernel function f(x1, . . . , xk) is well-
defined, then we shall say that the Wiener–Itô integral with kernel function
f(xu1

, . . . , xuk
), where {u1, . . . , uk} is an arbitrary set with k different ele-

ments, is also well defined, and it equals the Wiener–Itô integral with the
original kernel function f(x1, . . . , xk). (We have right to make such a conven-
tion since the value of a Wiener–Itô integral does not change if we permute the
indices of the variables of the kernel function in an arbitrary way.) In partic-
ular, we shall speak about the Wiener–Itô integral of the function Fγ(f1, f2)
defined in (10.11) without reindexing its variables x(1,j) and x(2,j′) ‘in the
right way’. Now we can formulate the diagram formula for the product of
two Wiener–Itô integrals.

Theorem 10.2A (The diagram formula for the product of two
Wiener–Itô integrals). Let a non-atomic, σ-finite measure µ be given on a
measurable space (X,X ) together with a white noise µW with reference mea-
sure µ, and take two functions f(x1, . . . , xk) ∈ Hµ,k and g(x1, . . . , xl) ∈ Hµ,l.
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(The classes of functions Hµ,k and Hµ,l were introduced in (10.1).) Let us
consider the class of diagrams Γ (k, l) introduced above together with the func-
tions Fγ(f, g)nn, γ ∈ Γ (k, l), defined by formulas (10.9), (10.10) and (10.11)
with its help. They satisfy the inequality

‖Fγ(f, g)‖2 ≤ ‖f‖2‖g‖2 for all γ ∈ Γ (k, l), (10.12)

where the L2 norm of a (generally indexed) function h(xu1
, . . . , xus

) is defined
as

‖h‖2
2 =

∫

h2(xu1
, . . . , xus

)µ( dxu1
) . . . µ dxus

).

Beside this, the product Zµ,k(f)Zµ,l(g) of the normalized Wiener–Itô integrals
of the functions f and g (the notation Zµ,k was introduced in (10.4) satisfies
the identity

(k!Zµ,k(f))(l!Zµ,l(g)) =
∑

γ∈Γ (k,l)

|γ|!Zµ,|γ|(Fγ(f ◦ g))

=
∑

γ∈Γ (k,l)

|γ|!Zµ,|γ|(Sym Fγ(f ◦ g)). (10.13)

Theorem 10.2A will be proved in Appendix B. The following consideration
yields a heuristic explanation for it. Actually, it can also be considered as a
sketch of proof.

In the theory of general Itô integrals when stochastic processes are inte-
grated with respect to a Wiener processes, one of the most basic results is Itô’s
formula about differentiation of functions of Itô integrals. It has a heuristic
interpretation by means of the informal ‘identity’ (dW )2 = dt. In the case of
general white noises this ‘identity’ can be generalized as (µW ( dx))2 = µ( dx).
We present a rather informal ‘proof’ of the diagram formula on the basis of
this ‘identity’ and the fact that the diagonals are omitted from the domain
of integration in the definition of Wiener–Itô integrals.

In this ‘proof’ we fix two numbers k ≥ 1 and l ≥ 1, and consider the
product of the Wiener–Itô integrals of the functions f and g of order k and l.
This product is a bilinear form of the functions f and g. Hence it is enough
to check formula (10.13) for a sufficiently rich class of functions. It is enough
to consider functions of the form f(x1, . . . , xk) = IA1

(x1) · · · IAk
(xk) and

g(x1, . . . , xl) = IB1
(x1) · · · IBl

(xl) with disjoint sets A1, . . . , Ak and disjoint
sets B1, . . . , Bl, where IA(x) is the indicator function of a set A. (Here we have
exploited that the functions f and g disappear in the diagonals.) Let us divide

the sets Aj into the union of small disjoint sets D
(m)
j , 1 ≤ j ≤ k with some

fixed number 1 ≤ m ≤ M in such a way that µ(D
(m)
j ) ≤ ε with some fixed

ε > 0, and the sets Bj into the union of small disjoint sets F
(m)
j , 1 ≤ j ≤ l,

with some fixed number 1 ≤ m ≤ M , in such a way that µ(F
(m)
j ) ≤ ε with
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some fixed ε > 0. Beside this, we also require that two sets D
(m)
j and F

(m′)
j′

should be either disjoint or they should agree. (The sets D
(m)
j are disjoint for

different indices, and the same relation holds for the sets F
(m′)
j′ .)

Then the identities

k!Zµ,k(f) =
k∏

j=1

(
M∑

m=1

µW (D
(m)
j )

)

and

l!Zµ,l(g) =
l∏

j′=1

(
M∑

m′=1

µW (F
(m′)
j′ )

)

,

hold, and the product of these two Wiener–Itô integrals can be written in the
form of a sum by means of a term by term multiplication. Let us divide the
terms of the sum we get in such a way into classes indexed by the diagrams
γ ∈ Γ (k, l) in the following way: Each term in this sum is a product of the

form
k∏

j=1

µW (D
(mj)
j )

l∏

j′=1

µW (F
(m′

j)

j′ ). Let it belong to the class indexed by the

diagram γ with edges ((1, j1), (2, j′1)),. . . , and ((1, js), (2, j′s)) if the elements

in the pairs (D
mj1
j1

, F
mj′1

j′
1

),. . . , (D
mjs
js

, F
mj′s

j′
s

) agree, and otherwise all terms

are different. Then letting ε → 0 (and taking partitions of the sets Dj and
Fj′ corresponding to the parameter ε) the sums of the terms in each class
turn to integrals, and our calculation suggests the identity

(k!Zµ,k(f))(l!Zµ,l(g)) =
∑

γ∈Γ (k,l)

Z̄γ(f, g) (10.14)

with

Z̄γ(f, g) =

∫

f(xαγ(1,1), . . . , xαγ(1,k))g(x(2,1), . . . , x(2,l)) (10.15)

µW ( dxαγ(1,1)) . . . µW ( dxαγ(1,k))µW ( dx(2,1)) . . . µW ( dx(2,l))

with the function αγ(·) introduced before formula (10.9). The indices α(1, j)
of the arguments in (10.15) mean that in the case αγ(1, j) = (2, j′) the
argument x(1,j) has to be replaced by x(2,j′). In particular,

µW ( dxα(1,j))µW ( dx(2,j′)) = (µW ( dx(2,j′)))
2 = µ( dx(2,j′))

in this case because of the ‘identity’ (µW ( dx))2 = µ( dx). Hence the above
informal calculation yields the identity Z̄γ(f, g) = |γ|!Zµ,|γ|(Fγ(f, g)), and
relations (10.14) and (10.15) imply formula (10.13).

A similar heuristic argument can be applied to get formulas for the product
of integrals of normalized empirical distributions or (normalized) Poisson
fields, only the starting ‘identity’ (µW ( dx))2 = µ( dx) changes in these cases,
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some additional terms appear in it, which modify the final result. I return to
this question in the next section.

It is not difficult to generalize Theorem 10.2A with the help of some
additional notations to a diagram formula about the product of finitely
many Wiener–Itô integrals. Let us consider m ≥ 2 Wiener–Itô integrals
kp!Zµ,kp

(fp), of functions fp(x1, . . . , xkp
) ∈ Hµ,kp

, of order kp ≥ 1, 1 ≤ p ≤
m, and define a class of diagrams Γ = Γ (k1, . . . , km) in the following way.

The diagrams γ ∈ Γ = Γ (k1, . . . , km) have vertices of the form (p, r),
1 ≤ p ≤ m, 1 ≤ r ≤ kp. The set of vertices {(p, r) : 1 ≤ r ≤ kp} with
a fixed number p will be called the p-th row of the diagram γ. A diagram
γ ∈ Γ = Γ (k1, . . . , km) may have some edges. All edges of a diagram connect
vertices from different rows, and from each vertex there starts at most one
edge. All diagrams satisfying these properties belong to Γ (k1, . . . , km). If
a diagram γ contains an edge of the form ((p1, r1), (p2, r2)) with p1 < p2,
then (p1, r1) will be called the upper and (p2, r2) the lower end point of this

edge. Let E(γ) = {((p
(u)
1 , r

(u)
1 ), (p

(u)
2 , r

(u)
2 )), p

(u)
1 < p

(u)
2 , 1 ≤ u ≤ s} denote

the set of all edges of a diagram γ (the number of edges in γ was denoted by

s = |E(γ)|), and let us also introduce the sets V u(γ) = {((p
(u)
1 , r

(u)
1 ), 1 ≤ u ≤

s}, the set of all upper end points and V b(γ) = {((p
(u)
2 , r

(u)
2 ), 1 ≤ u ≤ s},

the set of all lower end points of edges in a diagram γ. Let V = V (γ) =
{(p, r) : 1 ≤ p ≤ m, 1 ≤ r ≤ kp} denote the set of all vertices of γ, and let
|γ| = k1+· · ·+km−2|E(γ)| be equal to the number of vertices in γ from which
no edge starts. Vertices from which no edge starts will be called free vertices
in the sequel. Let us also define the function αγ(p, r) for a vertex (p, r) of
the diagram γ in the following way: αγ(p, r) = (p̄, r̄), if there is some pair of
integers (p̄, r̄) such that ((p, r), (p̄, r̄)) ∈ E(γ) and p < p̄, i.e. (p, r) ∈ V u(γ)
and ((p, r), (p̄, r̄)) ∈ E(γ), and put αγ(p, r) = (p, r) for (p, r) ∈ V (γ) \V u(γ).
In words, the function αγ(·) was defined on the set of vertices V (γ) in such a
way that it replaces an upper end point of an edge with the lower end point
of this edge, and it does not change the remaining vertices of the diagram.

With the help of the above quantities the appropriate multivariate version
of the functions given in (10.9), (10.10) and (10.11) can be defined. Put

(f1 ◦ f2 ◦ · · · ◦ fm)(x(p,r), 1 ≤ p ≤ m, 1 ≤ r ≤ kp)

=

m∏

p=1

fp(x(p,1), . . . , x(p,kp)), (10.16)

(f1 ◦ f2 ◦ · · · ◦ fm)γ(x(p,r), (p, r) ∈ V (γ) \ V u(γ))

=
m∏

p=1

fp(xαγ(p,1), . . . , xαγ(p,kp)), (10.17)

and
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Fγ(f1, . . . , fm)(x(p,r), (p, r) ∈ V (γ) \ (V b(γ) ∪ V u(γ)) (10.18)

=

∫

(f1 ◦ f2 ◦ · · · ◦ fm)γ(x(p,r), (p, r) ∈ V (γ) \ V u(γ))

∏

(p,r)∈V b(γ)

µ( dx(p,r)).

With the help of the above notations the diagram formula for the product of
finitely many Wiener–Itô integrals can be formulated.

Theorem 10.2 (The diagram formula for the product of finitely
many Wiener–Itô integrals). Let a non-atomic, σ-finite measure µ be
given on a measurable space (X,X ) together with a white noise µW with
reference measure µ. Take m ≥ 2 functions fp(x1, . . . , xkp

) ∈ Hµ,kp
with

some order kp ≥ 1, 1 ≤ p ≤ m. Let us consider the class of diagrams
Γ (k1, . . . , km) introduced above together with the functions Fγ(f1, . . . , fm),
γ ∈ Γ (k1, . . . , km), defined by formulas (10.16), (10.17) and (10.18) with its
help. The L2-norm of these functions satisfies the inequality

‖Fγ(f1, . . . , fm)‖2 ≤
m∏

p=1

‖fp‖2 for all γ ∈ Γ (k1, . . . , km). (10.19)

Beside this, the product
m∏

p=1
Zµ,kp

(fp) of the normalized Wiener–Itô integrals

of the functions fp, 1 ≤ p ≤ m, satisfies the identity

m∏

p=1

kp!Zµ,kp
(fp) =

∑

γ∈Γ (k1,...,km)

|γ|!Zµ,|γ|(Fγ(f1, . . . , fm)) (10.20)

=
∑

γ∈Γ (k1,...,km)

|γ|!Zµ,|γ|(Sym Fγ(f1, . . . , fm)).

Theorem 10.2 can be relatively simply derived from Theorem 10.2A by
means of induction with respect the number of terms whose product we
consider. We still have to check that with the introduction of an appropriate
notation Theorem 10.2A remains valid also in the case when the function f
is a constant.

Let us also consider the case when f = c is a constant, and g ∈ Hµ,l. In this
case we apply the convention Zµ,0(c) = c, define the class of diagrams Γ (0, l)
that consists only of one diagram γ whose first row is empty, its second
row contains the vertices (2, 1), . . . , (2, l), and it has no edge. Beside this,
we define Fγ(c, g)(x(2,1), . . . , x(2,l)) = cg(x(2,1), . . . , x(2,l)) for this diagram γ.
With such a convention Theorem 10.2A can be extended to the case of the
product of two Wiener–Itô integrals of order k ≥ 0 and l ≥ 1. Theorem 10.2
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can be derived from this slightly generalized result by induction with respect
to the number of terms m in the product.

We only briefly explain the proof of Theorem 10.2 which is similar to the
proof of Theorem 11.2 about the product of degenerate U -statistics given in
Sections 11 and 12, only most technical difficulties disappear in this case.

We can define, similarly to the corresponding definition in Section 11 where
the diagram formula for the products of U -statistics was formulated such a
diagram γpr ∈ Γ (k1, . . . , km−1) for all γ ∈ Γ (k1, . . . , km) which is actually the
restriction of the diagram γ to its first m−1 rows. Beside this, we can define a
diagram γcl ∈ Γ (|γpr|, km), where |γpr| denotes the number of free vertices of
γpr which contains those edges of γ (after an enumeration of the free vertices
of γpr with the numbers 1, 2, . . . , |γpr|) whose lower end points are in the m-th
row of γ. It can be seen that Fγ(f1, . . . , fm) = Fγcl

(Fγpr
(f1, . . . , fm−1), fm),

and there is such a one to one correspondence (γ̄, γ̂) ↔ γ between the pairs
of diagrams (γ̄, γ̂), γ̄ ∈ Γ (k1, . . . , km−1), γ̂ ∈ Γ (|γ̄|, km) and diagrams γ ∈
Γ (k1, . . . , km) for which γ̄ = γpr and γ̂ = γcl.

To prove the diagram formula for a product of the form
m∏

p=1
kp!Zµ,kp

(fp)

let us first express the product
m−1∏

p=1
kp!Zµ,kp

(fp) with the help of the diagram

formula by exploiting that by our inductive hypothesis the diagram formula
holds for the parameter m − 1. Then multiplying each term in this sum by
Zµ,km

(fm) and calculating these products with the help of Theorem 10.2A
we get an expression for the product we want to calculate in Theorem 10.2. It
can be seen with the help of the properties of the diagrams γ ∈ Γ (k1, . . . , km)
mentioned in the previous paragraph that the identity we got in such a way
is equivalent to formula (10.20) in Theorem 10.2.

By statement c) of Theorem 10.1 all Wiener–Itô integrals of order k ≥ 1
have expectation zero. This fact together with Theorem 10.2 enable us to
compute the expectation of a product of Wiener–Itô integrals. Theorem 10.2
makes possible to rewrite a product of Wiener–Itô integrals as a sum of
Wiener–Itô integrals. Then its expectation can be calculated by taking the
expected value of each term and summing them up. Only constant terms
yield a non-zero contribution to this expectation. These constant terms agree
with the functions Fγ(f1, . . . , fm) corresponding to diagrams with no free
vertices. The next corollary writes down the result we get in such a way.

Corollary of Theorem 10.2 about the expectation of a product of
Wiener–Itô integrals. Let a non-atomic σ-finite measure µ be given on
a measurable space (X,X ) together with a white noise µW with reference
measure µ. Take m ≥ 2 functions fp(x1, . . . , xkp

) ∈ Hµ,kp
, and consider their

Wiener–Itô integrals Zµ,kp
(fp), 1 ≤ p ≤ m. The expectation of the product of

these random variables satisfies the identity
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E

(
m∏

p=1

kp!Zµ,kp
(fp)

)

=
∑

γ∈Γ̄ (k1,...,km)

Fγ(f1, . . . , fm), (10.21)

where Γ̄ (k1, . . . , km) denotes the set of all such diagrams γ ∈ Γ (k1, . . . , km)
which have no free vertices, i.e. |γ| = 0. Such diagrams will be called closed
diagrams in the sequel. (If Γ̄ (k1, . . . , km) is empty, then the sum at the
right-hand side of (10.21) equals zero.) The functions Fγ(f1, . . . , fm) for
γ ∈ Γ̄ (k1, . . . , km) are constants, and they satisfy the inequality

|Fγ(f1, . . . , fm)| ≤
m∏

p=1

‖fp‖2 for all γ ∈ Γ̄ (k1, . . . , km). (10.22)

Proof of the Corollary. Relation (10.21) is a straight consequence of for-

mula (10.20), part c) of Theorem 10.1 and the identity Zµ,0(Fγ(f1, . . . , fm)) =
Fγ(f1, . . . , fm), if |γ| = 0. Relation (10.22) follows from (10.19).

The next result I formulate is Itô’s formula for multiple Wiener–Itô inte-
grals. It can also be considered as a consequence of the diagram formula. It
will be proved in Appendix C.

Theorem 10.3 (Itô’s formula for multiple Wiener–Itô integrals). Let
a non-atomic, σ-finite measure µ be given on a measurable space (X,X ) to-
gether with a white noise µW with reference measure µ. Let us take some
real valued, orthonormal functions ϕ1(x),. . . , ϕm(x) on the measure space
(X,X , µ). Let Hk(u) denote the k-th Hermite polynomial with leading coef-
ficient 1.Take the one-fold Wiener–Itô integrals ηp = Zµ,1(ϕp), 1 ≤ p ≤ m,
and introduce the random variables Hkp

(ηp), 1 ≤ p ≤ m, with some integers

kp ≥ 1, 1 ≤ p ≤ m. Put Kp =
p∑

j=1

kr, 1 ≤ p ≤ m, K0 = 0. Then η1, . . . , ηm

are independent, standard normal random variables, and the identity

m∏

p=1

Hkp
(ηp) = Km!Zµ,Km





m∏

p=1





Kp∏

j=Kp−1+1

ϕp(xj)







 (10.23)

= Km!Zµ,Km



Sym





m∏

p=1





Kp∏

j=Kp−1+1

ϕp(xj)













holds. In particular, if ϕ(x) is a real valued function such that
∫

ϕ2(x)µ( dx) =
1, then

Hk

(∫

ϕ(x)µW ( dx)

)

=

∫

ϕ(x1) · · ·ϕ(xk)µW ( dx1) . . . µW ( dxk). (10.24)
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I also formulate a limit theorem about the distribution of normalized de-
generate U -statistics that will be proved in Appendix C. The limit distribu-
tion in this result is given by means of multiple Wiener–Itô integrals.

Theorem 10.4 (Limit theorem about normalized degenerate U-
statistics). Let us consider a sequence of degenerate U -statistics In,k(f)
of order k, n = k, k + 1, . . . , defined in (8.8) with the help of a sequence
of independent and identically distributed random variables ξ1, ξ2, . . . tak-
ing values in a measurable space (X,X ) with a non-atomic distribution
µ and a kernel function f(x1, . . . , xk), canonical with respect to the mea-
sure µ, defined on the k-fold product (Xk,X k) of the space (X,X ) for which
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞. Then the sequence of normalized U -
statistics n−k/2In,k(f) converges in distribution, as n → ∞, to the k-fold
Wiener–Itô integral

Zµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW (dx1) . . . µW (dxk)

with kernel function f(x1, . . . , xk) and a white noise µW with reference mea-
sure µ.

Remark. The limit behaviour of degenerate U -statistics In,k(f) with an
atomic measure µ which satisfy the remaining conditions of Theorem 10.4 can
be described in the following way. Take the probability space (U,U , λ), where
U = [0, 1], U is the Borel σ-algebra and λ is the Lebesgue measure on it. In-
troduce a sequence of independent random variables η1, η2, . . . with uniform
distribution on the interval [0, 1], which is independent also of the sequence
ξ1, ξ2, . . . . Define the product space (X̃, X̃ , µ̃) = (X×U,X×U , µ×λ) together
with the function f̃(x̃1, . . . , x̃k) = f̃((x1, u1), . . . , (xk, uk)) = f(x1, . . . , xk)
with the notation x̃ = (x, u) ∈ X × U , and ξ̃j = (ξj , ηj), j = 1, 2, . . . . Then

In,k(f) = In,k(f̃) (with the above defined function f̃ and µ̃ distributed ran-

dom variables ξ̃j). Beside this, Theorem 10.4 can be applied for the degenerate

U -statistics In,k(f̃), n = 1, 2, . . . .

In the next result I give an interesting representation of the Hilbert space
consisting of the square integrable functions measurable with respect to a
white noise µW . An isomorphism will be given with the help of Wiener–Itô
integrals between this Hilbert space and the so-called Fock space to be defined
below. To formulate this result first some notations will be introduced.

Let H0
µ,k ⊂ Hµ,k denote the class of symmetric functions in the space

Hµ,k, k = 0, 1, 2, . . . , i.e. f ∈ Hµ,k is in its subspace H0
µ,k if and only if

f(x1, . . . , xk) = Sym f(x1, . . . , xk). Let us introduce for all k = 0, 1, 2, . . . the
Hilbert space Gk consisting of those random variables η (on the probability
space where the white noise µW is defined) which can be written in the form

η = Zµ,k(f) =
1

k!

∫

f(x1, . . . , xk)µW ( dx1) . . . µW ( dxk)
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with some f ∈ H0
k,µ.

It follows from part a) and c) of Theorem 10.1 that the map f → Zµ,k(f)
is a linear transformation of H0

µ,k to Gk, and 1
k!‖f‖2

2 = EZ2
µ,k(f) for all

f ∈ H0
µ,k, where ‖f‖2 denotes the usual L2-norm of the function f with

respect to the k-fold power of the measure µ. By the definition of Wiener–
Itô integrals the set G1 consists of jointly Gaussian random variables with
expectation zero. The spaces Hµ,0 and G0 consist of the real constants. Let us
define the space Exp (Hµ) of infinite sequences f = (f0, f1, . . . ), fk ∈ H0

µ,k,

k = 0, 1, 2, . . . , such that ‖f‖2
2 =

∞∑

k=0

1
k!‖fk‖2

2 < ∞. The space Exp (Hµ)

with the natural addition and multiplication by a constant and the above
introduced norm ‖f‖2 for f ∈ Exp (Hµ) is a Hilbert space which is called the
Fock space in the literature.

Let G denote the class of random variables of the form

Z(f) =
∞∑

k=0

Zµ,k(fk), f = (f0, f1, f2, . . . ) ∈ Exp (Hµ).

The next result describes the structure of the space of random variables G. It
is useful for a better understanding of Wiener–Itô integrals, but it will be not
used in the sequel. In its proof I shall refer to some basic measure theoretical
results.

Theorem 10.5 (Isomorphism of the space of square integrable ran-
dom variables measurable with respect to a white noise with a Fock
space). Let a non-atomic, σ-finite measure µ be given on a measurable space
(X,X ) together with a white noise µW with reference measure µ. Let us con-
sider the class of functions H0

µ,k, k = 0, 1, 2, . . . , and Exp (Hµ) together with
the spaces of random variables Gk, k = 0, 1, 2, . . . , and G defined above. The

transformation Z : Z(f) =
∞∑

k=0

Zµ,k(fk), f = (f0, f1, f2, . . . ) ∈ Exp (Hµ), is

a unitary transformation from the Hilbert spaces Exp (Hµ) to G. The Hilbert
space G consists of all random variables with finite second moment, measur-
able with respect to the σ-algebra generated by the random variables µW (A),
A ∈ X , µ(A) < ∞. This σ-algebra agrees with the σ-algebra generated by the
random variables Zµ,1(f1), f1 ∈ H0

µ,1.

Proof of Theorem 10.5. Properties a) and c) in Theorem 10.1 imply that the
transformation fk → Zµ,k(fk) is a linear transformation of H0

µ,k to Gk, and
1
k!‖fk‖2

2 = EZµ,k(f)2. Beside this, EZµ,k(f)Zµ,k′(f ′
k′) = 0 if fk ∈ H0

µ,k, and

f ′
k′ ∈ H0

µ,k′ with k 6= k′ by properties d) and c). (The latter property is
needed to guarantee this relation also holds if k = 0 or k′ = 0.) From these

relations follows that the map Z : Z(f) =
∞∑

k=0

Zµ,k(fk), f = (f0, f1, f2, . . . ) ∈
Exp (Hµ) is an isomorphism between the Hilbert spaces Exp (Hµ) and G.
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It remained to show that G contains all random variables with finite second
moment, measurable with respect to the corresponding σ-algebra. Let gj(u),
j = 1, 2, . . . , be an orthonormal basis in H0

µ,1 = Hµ,1, and introduce the ran-
dom variables ηj = Zµ,1(gj), j = 1, 2, . . . . By Itô’s formula for Wiener–Itô
integrals (Theorem 10.3) these random variables are independent with stan-
dard normal distribution, and all expressions of the form Hr1

(ηj1) . . . Hrp
(ηjp

)
with r1 + · · · + rp = k are in the space Gk, where Hr(·) denotes the Hermite
polynomial of order r with leading coefficient 1. To prove the desired state-
ment by means of these relations we recall the following results from the
classical analysis:

a) Hermite polynomials constitute a complete orthonormal system in the L2-
space on the real line with respect to the standard normal distribution.
(This result will be proved in Section C in Proposition C2.)

b) If a random variable ζ is measurable with respect to the σ-algebra gen-
erated by some random variables η1, η2, . . . , then there exists a Borel
measurable function f(x1, x2, . . . ) on the infinite product of the real line
(R∞,B∞) in such a way that ζ = f(η1, η2, . . . ).

This means in our case that any random variable ζ measurable with re-
spect to the σ-algebra generated by the random variables ηj = Zµ,1(gj),
j = 1, 2, . . . , can be written in the form ζ = f(η1, η2, . . . ) with the above in-
troduced independent, standard normal random variables η1, η2, . . . . If ζ has
finite second moment, then the function f appearing in its representation
is a function of finite L2-norm in the infinite product of the real line with
the infinite product of the standard normal distribution on it. Hence some
classical results in analysis enable us to expand the function f with respect
to products of Hermite polynomials, and this also yields the identity

ζ =
∑

c(j1, r1, . . . , js, rs)Hr1
(ηj1) · · ·Hrs

(ηjs
)

with some coefficients c(j1, r1, . . . , js, rs) such that

∑

c2(j1, r1, . . . , js, rs)‖Hr1
(u)‖2 · · · ‖Hrs

(u)‖2 < ∞.

(Actually it is known that ‖Hk(u)‖2 = k!, but here we do not need this
knowledge.)

The above relations yield the desired representation of a random variable
ζ with finite second moment, if it is measurable with respect to the σ-algebra

generated by the random variables in G1. Indeed, the identity ζ =
∞∑

k=0

ζk

holds with

ζk =
∑

r1+···+rs=k

c(j1, r1, . . . , js, rs)Hr1
(ηj1) · · ·Hrs

(ηjs
),
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and ζk ∈ Gk by Itô’s formula.
To complete the proof it is enough to remark that the σ-algebra generated

by the random variables η1, η2, . . . and µW (A), A ∈ X , µ(A) < ∞ agree, as
it was stated in part f) of Theorem 10.1.

The results about Wiener–Itô integrals discussed in this Section are useful
in the study of non-linear functionals of a set of jointly Gaussian random
variables defined by means of a white noise. In my Lecture Note [30] sim-
ilar problems were discussed, but in that work a slightly different version
of Wiener–Itô integrals was introduced. The reason for this modification was
that the solution of the problems studied in [30] demanded different methods.

In work [30] stationary Gaussian random fields were considered, and the
main problem studied there was the description of the limit distribution of
certain sequences of non-linear functionals of such Gaussian random fields.
In a stationary Gaussian random field a shift operator can be introduced.
The shift of all random variables measurable with respect to the underlying
stationary Gaussian random field can be defined. In [30] we needed a tech-
nique which helps in working with the shift operator. In an analogous case,
when functions on the real line are considered, the Fourier analysis is a useful
tool in the study of the shift operator. In the work [30] we tried to unify the
tools of multiple Wiener–Itô integrals and Fourier analysis. This led to the
definition of a slightly different version of Wiener–Itô integrals.

In the work [30] we have shown that not only the correlation function of a
stationary Gaussian field can be given by means of the Fourier transform of
its spectral measure, but also a random spectral measure can be constructed
whose Fourier transform expresses the stationary Gaussian process itself. Af-
ter the introduction of this random spectral measure a version of the multiple
Wiener–Itô integral can be defined with respect to it, and all square integrable
random variables, measurable with respect to the σ-algebra generated by the
underlying Gaussian stationary random field can be expressed as such an
integral. Moreover, such an approach enables us to apply the methods of
multiple Wiener–Itô integrals and Fourier analysis simultaneously. The mod-
ified Wiener–Itô integral introduced in [30] behaves similarly to the original
Wiener–Itô integral, only it has to be taken into account that the random
spectral measure behaves not like a white noise, but as its ‘Fourier transform’.
I omit the details. They can be found in [30].

The spaces Gk consisting of all k-fold Wiener–Itô integrals were introduced
also in [30], and this was done for a special reason. In that work the Hilbert
space of square integrable functions, measurable with respect to an underlying
stationary Gaussian field, was studied together with the shift operator acting
on this Gaussian field, which could be extended to a unitary operator on this
Hilbert space. It was useful to decompose the Hilbert space we were working
with to the direct sum of orthogonal subspaces, invariant with respect to the
shift operator. The spaces Gk were elements of such a decomposition.

In the present work no shift operator was defined, and no limit theorem was
studied for non-linear functionals of a Gaussian field. Here the introduction
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of the spaces Gk was useful because of a different reason. In the study of
our problems we shall need good estimates on the 2p-th moment of random
variables, measurable with respect to the underlying white noise for large
integers p. As it will be shown, the high moments of the random variables in
the spaces Gk with different indices k show an essentially different behaviour.
For a large number p the p-th moment of a random variable in Gk behaves
similarly to the k-th power ξk of a Gaussian random variable ξ with zero
expectation. This statement will be formulated in a more explicit form in
Proposition 13.1 or in its consequence, formula (13.2). A partial converse of
this result will be presented in Theorem 13.6.



Chapter 11

The diagram formula for products of
degenerate U -statistics

There is a natural analogue of the diagram formula for the products of
Wiener–Itô integrals both for the products of multiple integrals with re-
spect to normalized empirical measures and for the products of degenerate
U -statistics. These two results are closely related. They express the product
of multiple random integrals or degenerate U -statistics as a sum of multiple
random integrals or degenerate U -statistics respectively. The kernel functions
of the random integrals or U -statistics appearing in this sum are defined, —
similarly to the case of Wiener–Itô integrals, — by means of diagrams. This
is the reason why they are called the diagram formula. The main difference
between these diagram formulas and their version for Wiener–Itô integrals is
that in the present case we have to work with a more general class of dia-
grams. In this work the diagram formula for multiple integrals with respect
to a normalized empirical measure will be discussed only at an informal level,
while a complete proof of the analogous result about degenerate U -statistics
will be given. The reason for such an approach is that the diagram formula
for the product of degenerate U -statistics is more useful in the study of the
problems discussed in this work.

We want to prove the estimates about the tail distribution of degenerate
U -statistics and multiple integrals with respect to a normalized empirical dis-
tribution formulated in Theorems 8.3 and 8.1 with the help of good bounds
on the high moments of degenerate U -statistics and multiple random inte-
grals. In the case of degenerate U -statistics the diagram formula yields an
explicit formula for these moments. It expresses the product whose expected
value we want be calculate as a sum of degenerate U -statistics of different
order. Beside this, the expected value of all degenerate U -statistics of order
k ≥ 1 equals zero. Hence the expected value we are interested in equals the
sum of the zero order terms appearing in the diagram formula.

The analogous problem about the moments of multiple integrals with re-
spect to a normalized empirical measure is more difficult. The diagram for-
mula enables us to express the moments of multiple random integrals as the
sum of the expectation of such integrals of different order also in this case.

115
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But the expected value of random integrals of order k ≥ 1 with respect to a
normalized empirical distribution may be non-zero. Before the proof of The-
orem 9.4 we showed an example for a multiple integral with respect to a
normalized empirical distribution with non-zero expectation.

First I give an informal description of the diagram formula for the prod-
uct of two random integrals with respect to a normalized empirical measure.
Its analogue, the diagram formula for the product of two Wiener–Itô in-
tegrals can be described in an informal way by means of formulas (10.14)
and (10.15) together with the ‘identity’ (µW ( dx))2 = µ( dx) in their inter-
pretation. The diagram formula for the product of two multiple integrals
with respect to a normalized empirical measure has a similar representa-
tion. (Observe that in the definition of the random integral Jn,k(·) given
in formula (4.8) the diagonals are omitted from the domain of integration,
similarly to the case of Wiener–Itô integrals.) In this case such a version of
formulas (10.14) and (10.15) can be applied where the random integrals Zµ,k

are replaced by Jn,k, and the white noise measures µW are replaced by the
normalized empirical measures νn =

√
n(µn − µ). But the analogue of the

‘identity’ (µW ( dx))2 = µ( dx) needed in the interpretation of these formulas
has a different form. It states that (νn( dx))2 = µ( dx) + 1√

n
νn( dx). Let us

‘prove’ this new ‘identity’.
Take a small set ∆, i.e. a set ∆ such that µ(∆) is very small, write down

the identity (νn(∆))2 = n(µn(∆))2 + n(µ(∆))2 − 2nµn(∆)µ(∆), and ob-
serve that only a second order error is committed if the terms n(µ(∆))2 and
2nµn(∆)µ(∆) are omitted at the right-hand side of this identity. Moreover,
also a second order error is committed if n(µn(∆))2 is replaced by µn(∆),
because it has second order small probability that there are at least two sam-
ple points in the small set ∆. On the other hand, n(µn(∆))2 = µn(∆) if
∆ contains only zero or one sample point. The above considerations sug-
gest that (νn( dx))2 = µn( dx) = µ( dx) + 1√

n
[
√

n(µn( dx) − µ( dx))] =

µ( dx) + 1√
n
νn( dx). (This means that in the ‘identity’ expressing the square

(νn( dx))2 of a normalized empirical measure a correcting term 1√
n
νn( dx)

appears. If the sample size n → ∞, then the normalized empirical measure
tends to a white noise with counting measure µ, and this correcting term
disappears.)

The diagram formula for the product of two multiple integrals with respect
to a normalized empirical measure was proved in paper [33] with a different
notation. Informally speaking, the result in this work states that the identity
suggested by the above heuristic argument really holds. It may be interesting
to remark that once the form of this identity is found it can be proved with the
help of some algebraic calculations similarly to the proof of Lemma 9.5. Here
we omit the proof of this result, since we shall not work with it. We shall prove
instead a version of it about the product of degenerate U -statistics that we
can better apply. This result is similar to the diagram formula for the products
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of multiple integrals with respect to a normalized empirical distribution. This
similarity will be discussed in Remark 4 after Theorem 11.1.

In this section first I formulate the diagram formula about the product
of two degenerate U -statistics in Theorem 11.1 then its generalization about
the product of finitely many degenerate U -statistics in Theorem 11.2. Their
proofs is postponed to the next section. I also present a Corollary of Theo-
rem 11.2 about the expected value of the product of degenerate U -statistics
which follows from this result and the observation that the expected value of
a U -statistic of order k ≥ 1 equals zero. This result together with Lemma 11.3
which yields a bound on the L2-norm of the kernel functions of the degenerate
U -statistics appearing in the diagram formula will enable us to prove good
estimates on the high moments of degenerate U -statistics, and as a conse-
quence to prove Theorem 8.3 about their tail distribution. One might try to
prove the analogous result, Theorem 8.1 about the tail distribution of multi-
ple integrals with respect to a normalized empirical distribution in a similar
way with the help of the diagram formula for multiple random integrals. But
this would be much harder, since the diagram formula for multiple integrals
with respect to a normalized empirical distribution does not supply such a
good formula for the moments of random integrals as the analogous result
about degenerate U -statistics.

To describe the results of this section we introduce some new notions. In
the formulation of the diagram formula for the product of degenerate U -
statistics a more general class of diagrams has to be considered than in the
case of multiple Wiener–Itô integrals. We shall define them under the name
coloured diagrams. The kernel functions of the U -statistics appearing in the
diagram formula will be defined with the help of these coloured diagrams.

A class of coloured diagrams Γ (k1, . . . , km) will be defined whose vertices
will be the pairs (p, r), 1 ≤ p ≤ m, 1 ≤ r ≤ kp, and the set of vertices
(p, r), 1 ≤ r ≤ kp, with a fixed number p will be called the p-th row of
the diagram. To define the coloured diagrams of the class Γ (k1, . . . , km) first
the notions of chain and coloured chain will be introduced. A sequence β =
{(p1, r1), . . . , (ps, rs)} with 1 ≤ p1 < p2 < · · · < ps ≤ m and 1 ≤ ru ≤ kpu

for
all 1 ≤ u ≤ s will be called a chain. The number s of the pairs (pu, ru) in this
sequence, denoted by ℓ(β), will be called the length of the chain β. Chains
of length ℓ(β) = 1, i.e. chains consisting only of one element (p1, r1) are also
allowed. We shall define a function c(β) = ±1 which will be called the colour
of the chain β, and the pair (β, c(β)) will be called a coloured chain. We shall
allow arbitrary colouring c(β) = ±1 of a chain with the only restriction that
a chain of length 1 can only get the colour −1, i.e. c(β) = −1 if ℓ(β) = 1.

A coloured diagram γ ∈ Γ (k1, . . . , km), is a partition of the set of ver-
tices A(k1, . . . , km) = {(p, r) : 1 ≤ p ≤ m, 1 ≤ r ≤ kp} to the union of
some coloured chains β ∈ γ, i.e.

⋃

β∈γ

β = A(k1, . . . , km), and each vertex

(p, r) ∈ A(k1, . . . , km) is the element of exactly one chain β ∈ γ. Beside this,
each chain β ∈ γ has a colour cγ(β) = ±1. The set Γ (k1, . . . , km) consists of
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all coloured diagrams γ with the above defined properties with the only re-
striction that for a chain β = {(p, r)} ∈ γ of length ℓ(β) = 1 of a diagram γ ∈
Γ (k1, . . . , km) cγ(β) = −1. Let us define for all diagrams γ ∈ Γ (k1, . . . , km)
the set of open chains O(γ) = {β : β ∈ γ, cγ(β) = −1} and the set of closed
chains C(γ) = {β : β ∈ γ, cγ(β) = 1} of this diagram γ. We shall define
for all sets of bounded functions fp = fp(x1, . . . , xkp

) ∈ L2(Xkp ,X kp , µkp),
1 ≤ p ≤ m, and diagrams γ ∈ Γ (k1, . . . , km) a bounded and square inte-
grable function Fγ(f1, . . . , fm) = Fγ(f1, . . . , fm)(x1, . . . , x|O(γ)|) on the prod-

uct space (X |O(γ)|,X |O(γ)|, µ|O(γ)|). The number of variables of this func-
tion equals the number |O(γ)| of open chains in the diagram γ. We will
see that the function Fγ(f1, . . . , fm) is canonical (with respect to the mea-
sure µ) if the same relation holds for the functions f1, . . . , fm. In the diagram
formula we shall express the product of normalized degenerate U -statistics
m∏

p=1
n−kp/2kp!In,kp

(fp) as an appropriate linear combination of the normalized

degenerate U -statistics n−|O(γ)|/2|O(γ)|!In,|O(γ)|(Fγ(f1, . . . , fm)).
To define the above mentioned functions Fγ(f1, . . . , fm) first we fix for all

pairs of positive integers k1, k2 = 1, 2, . . . and diagrams γ ∈ Γ (k1, k2) an
enumeration of the chains of γ, and beside this we also enumerate the open
chains of all diagrams γ ∈ Γ (k1, . . . , km), m = 2, 3, . . . . For the sake of simpler
notation we choose such an enumeration β(l1) = β(l1, γ), . . . , β(ls) = β(ls, γ),
l1 < ls < · · · < ls, s = |C(γ)| + |O(γ)|, of the chains of a diagram γ ∈
Γ (k1, k2), where the open chains β ∈ O(γ) get the indices 1, 2, . . . , |O(γ)|),
i.e. β(ls) ∈ O(γ) and β(ls) = s for 1 ≤ s ≤ |O(γ)|. Then the chains β ∈ C(γ)
can get arbitrary indices β(l2) > |O(γ)|. Given a diagram γ ∈ Γ (k1, . . . , km)
we shall enumerate its open chains β ∈ O(γ) with the numbers 1, . . . , |O(γ)|.
The subsequent definition of the functions Fγ(f1, . . . , fm) will depend on the
previously fixed enumeration of the chains of diagrams with two rows and
open chains of diagrams with arbitrary many rows. But the results formulated
with the help of these functions are valid for an arbitrary enumeration of
these chains. Hence the non-uniqueness in the definition of Fγ(f1, . . . , fm)
will cause no problem.

To define the functions Fγ(f1, . . . , fm) we introduce the following opera-
tors. Given a function h(xl1 , . . . , xlr ) with coordinates in the space (X,X )
(the indices l1, . . . , lr are all different, otherwise they can be chosen in an ar-
bitrary way) and a probability measure µ on the space (X,X ) we introduce
the transformations Plph and Qlph, 1 ≤ p ≤ r, by the formulas

(Plph)(xl1 , . . . , xlp−1
, xlp+1

, . . . , xlr ) =

∫

h(xl1 , . . . , xlr )µ( dxlp),

1 ≤ p ≤ r, (11.1)

and
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(Qlph)(xl1 , . . . , xlr ) = h(xl1 , . . . , xlr ) −
∫

h(xl1 , . . . , xlr )µ( dxlp),

1 ≤ p ≤ r. (11.2)

(These formulas actually agree with the definition of the operators Pj and
Qj in formulas (9.1) and (9.2), only the notation is slightly different.)

First we formulate the diagram formula for the product of two degen-
erate U -statistics, i.e. we consider the case m = 2. Let us have a measur-
able space (X,X ) with a probability measure µ on it together with two
measurable functions f1(x1, . . . , xk1

) and f2(x1, . . . , xk2
) of k1 and k2 vari-

ables on this space which are canonical with respect to the measure µ.
Let ξ1, ξ2, . . . be a sequence of (X,X ) valued, independent and identically
distributed random variables with distribution µ. We want to express the
product n−k1/2k1!In,k1

(f1)n−k2/2k2!In,k2
(f2) of normalized degenerate U -

statistics defined with the help of the above random variables and kernel
functions f1 and f2 as a sum of normalized degenerate U -statistics. For this
goal we define some functions Fγ(f1, f2) for all γ ∈ Γ (k1, k2).

We shall define the function Fγ(f1, f2) with the help of the previously
fixed enumeration of the chains of the diagram γ. We shall introduce with
the help of this enumeration also an enumeration of the vertices (1, p), (2, q),
1 ≤ p ≤ k1, 1 ≤ q ≤ k2, of the diagram γ. We do this with the help of the
formula αγ(p, r) = ls if (p, r) ∈ β(ls).

Let us have two functions f1(x1, . . . , xk1
) and f2(x1, . . . , xk2

) together with
a coloured diagram γ ∈ Γ (k1, k2). We define the function Fγ(f1, f2) in two
steps. First we define the function

(f1 ◦ f2)γ(xl1 , . . . , xls)

= f1(xαγ(1,1), . . . , xαγ(1,k1))f2(xαγ(2,1), . . . , xαγ(2,k2)), (11.3)

where l1, . . . , ls, l1 < l2 < · · · < ls, s = |O(γ)| + |C(γ)|, are the indices of
the chains β = β(lp) ∈ γ of the diagram γ ∈ Γ (k1, k2) in increasing order,
and αγ(p, r) denotes the (formerly defined) index of the vertex (p, r) of the
diagram γ. (In formula (11.3) the arguments of both functions f1 and f2

have different indices. But two indices αγ(1, j) and αγ(2, j′) may agree in
some cases. This happens if the vertices (1, j) and (2, j′) belong to the same
chain β ∈ γ of length 2.) In the second step we define the function

Fγ(f1, f2)(x1, . . . , x|O(γ)|) = Fγ(f1, f2)(xl1 , . . . , xl|O(γ)|
) (11.4)

=




∏

lp : β(lp)∈C(γ)

Plp

∏

lp : β(lp)∈O2(γ)

Qlp



 (f1 ◦ f2)γ(xl1 , . . . , xls)

with the operators Plp and Qlp defined in formulas (11.1) and (11.2), where
C(γ) is the set of closed chains of the diagram γ, and O2(γ) ⊂ O(γ) is the
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set of chains of γ with colour −1 and length 2, i.e. O2(γ) = {β : cγ(β) =
−1, and ℓ(β) = 2}.

The arguments of the function Fγ(f1, f2) at the left-hand side of (11.4)
are the indices of the open chains β ∈ O(γ) in an increasing order. At the
right hand side of this formula the indices lp, 1 ≤ p ≤ s = |O(γ)| + |C(γ)|,
the indices of all diagrams β ∈ γ, appear in an increasing order. Let us also
remark that the operators Plp and Qlp in formula (11.4) are exchangeable,
hence it is not important in what order we apply them.

Let me remark that if we had applied a different enumeration of the dia-
grams γ ∈ Γ (k1, k2) then we would have got a different function Fγ(f1, f2).
This would have been a reindexed version of the original function Fγ(f1, f2).
But the value of the U -statistic In,|O(n)|(Fγ(f1, f2)) does not depend on
the indexation of the variables in its kernel function. This has the conse-
quence that the identity formulated in formula (11.5) of the subsequent The-
orem 11.1 does not depend on the enumeration of the chains of the diagrams
γ ∈ Γ (k1, k2). Now we can formulate the following result.

Theorem 11.1 (The diagram formula for the product of two de-
generate U-statistics). Let a sequence of independent and identically dis-
tributed random variables ξ1, ξ2, . . . be given with some distribution µ on
a measurable space (X,X ) together with two bounded, canonical functions
f1(x1, . . . , xk1

) and f2(x1, . . . , xk2
) with respect to the probability measure µ

on the product spaces (Xk1 ,X k1) and (Xk2 ,X k2) respectively. Let us take
the class of coloured diagrams Γ (k1, k2) introduced above together with the
functions Fγ(f1, f2) defined in formulas (11.1)—(11.4).

The function Fγ(f1, f2) is bounded and canonical with respect to the
measure µ with |O(γ)| arguments for all coloured diagrams γ ∈ Γ , where
O(γ) and C(γ) denote the set of open and closed indices of the diagram γ.
The product of the normalized degenerate U -statistics n−k1/2k1!In,k1

(f1) and
n−k2/2k2!In,k2

(f2), n ≥ max(k1, k2), defined in (8.8) can be expressed as

n−k1/2k1!In,k1
(f1) · n−k2/2k2!In,k2

(f2)

=
∑

γ∈Γ (k1,k2)

′(n)
|C(γ)|
∏

j=1

(
n − s(γ) + j

n

)

n−W (γ)/2 · n−|O(γ)|/2|O(γ)|!In,|O(γ)|(Fγ(f1, f2)) (11.5)

with W (γ) = k1 + k2 − |O(γ)| − 2|C(γ)| (we explain in Remark 1 after Theo-
rem 11.1 that W (γ) = |O2(γ)|, i.e. it equals the number of open chains with
length 2) and s(γ) = |O(γ)| + |C(γ)| (which equals the number of coloured

chains in γ), where
∑′(n)

means that summation is taken only for such
coloured diagrams γ ∈ Γ (k1, k2) which satisfy the inequality s(γ) ≤ n, and
|C(γ)|∏

j=1

equals 1 in the case |C(γ)| = 0. The term In,|O(γ)|(Fγ(f1, f2)) can be

replaced by In,|O(γ)|(SymFγ(f1, f2)) in formula (11.5).
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Consider the L2-norm of the functions Fγ(f1, f2)

‖Fγ(f1, f2)‖2
2 =

∫

Fγ(f1, f2)2(x1 . . . , x|O(γ)|)
|O(γ)|
∏

p=1

µ( dxp).

The inequality

‖Fγ(f1, f2)‖2 ≤ ‖f1‖2‖f2‖2 if W (γ) = 0 (11.6)

holds for this norm. The condition W (γ) = 0 in formula (11.6) means that the
diagram γ ∈ Γ (k1, k2) has no chains β of length ℓ(β) = 2 with colour cγ(β) =
−1. Under the condition sup |f2(x1, . . . , xk2

)| ≤ 1 the inequality

‖Fγ(f1, f2)‖2 ≤ 2W (γ)‖f1‖2 (11.7)

holds for a general diagram γ ∈ Γ (k1, k2). Inequalities (11.6) and (11.7)
remain valid also in the case when f1 and f2 may be non-canonical functions.

Inequality (11.6) is actually a repetition of estimate (10.12) about the dia-
grams appearing in the case of Wiener–Itô integrals. Inequality (11.7) yields
a weaker bound about the L2-norm ‖Fγ(f1, f2)‖2 = ‖(f1 ◦ f2)γ‖2 for a gen-
eral diagram γ. We formulated this estimate in a form where the functions f1

and f2 do not play a symmetrical role. This estimate depends on the L2-
norm of the function f1, and it is assumed in it that the supremum of the
function |f2| is less than 1. We chose such a formulation of this inequality
because it can be well generalized to the case when the product of several
U -statistics is considered. The appearance of the condition about the supre-
mum of the function |f2| in the estimate (11.7) is closely related to the fact
that in the estimates on the tail distribution of U -statistics, — unlike the case
of Wiener–Itô integrals, — a condition is imposed not only on the L2-norm
of the kernel function f , but also on its L∞-norm. I return to this question
later.

Remark 1. The expression W (γ) = k1 + k2 − |O(γ)| − 2|C(γ)| appearing in
formulas (11.5) and (11.6) has the following content. It equals |O2(γ)|, i.e. it is
the number of the chains β ∈ γ for which ℓ(β) = 2, and cγ(β) = −1. Indeed,
if W (γ) denotes the number of such chains, and W̄ (γ) equals the number
of chains β ∈ γ for which ℓ(β) = 1 (and as a consequence cγ(β) = −1),
then W (γ) + W̄ (γ) = |O(γ)|, and 2W (γ) + W̄ (γ) + 2|C(γ)| = k1 + k2. These
identities imply the statement of this remark.

Remark 2. The term In,|O(γ)|(Fγ(f1, f2)) with some coloured diagram γ ∈
Γ (k1, k2) appeared in the sum at the right-hand side of (11.5) only if the
condition s(γ) ≤ n was satisfied, which means that the sample size n of the U -
statistic is sufficiently large. This restriction in the summation had a technical
character, which has no great importance in our investigations. It is related
to the fact that a U -statistic In,k(f) exists only if n ≥ k. As a consequence,



122 11 The diagram formula for products of degenerate U-statistics

some U -statistics disappear at the right-hand side of (11.5) if the sample
size n of the U -statistics is relatively small. The term In,|O(γ)|(Fγ(f1, f2))
appeared in (11.5) through the Hoeffding decomposition of a U -statistic with
kernel function (f1 ◦ f2)γ defined in (11.3). This function has s(γ) arguments,
and the U -statistic corresponding to it appears in our calculations only if the
sample size n is not smaller than the number s(γ).

Remark 3. As I earlier mentioned the functions Fγ(f1, f2) depended on the
enumeration of the chains β ∈ Γ (k1, k2). This non-uniqueness in the for-
mulation of identity (11.5) has no importance in its applications. Moreover,
we can get rid of this non-uniqueness by working with symmetrical func-
tions f1 and f2 (with functions which do not change by a permutation of
their variables) and replace the functions Fγ(f1, f2) by their symmetriza-
tions. A similar remark holds for the general version of the diagram formula
to be discussed later, where we may consider the product of more degenerate
U -statistics.

Remark 4. The diagram formula formulated in Theorem 11.1 is similar to
its version about the product of two multiple integrals with respect to a
normalized empirical distribution. The form of the latter result was not writ-
ten up here explicitly, but its form was explained in an informal way at the
beginning of this section. The kernel functions of the U -statistics and ran-
dom integrals appearing in these formulas are indexed by the same diagrams.
Their definitions are different, because in the U -statistic case we have to
work with canonical functions while in the multiple integral case we have
no such restriction. As a consequence we define the functions Fγ(f1, f) in
this case by means of a modified version of formula 11.4 where the opera-
tors Qlp are omitted from the definition. The coefficients of the normalized
degenerate U -statistics and random integrals appearing in the two results
are slightly different. In the multiple integral case we have to multiple with
n−W (γ)/2 while in the U -statistic case this term is multiplied with a factor
between 0 and 1. This is related to the form of the Hoeffding decomposition

of U -statistics given in (9.3). The restriction in the summation
∑′(n)

is also
related to the properties of U -statistics.

Let us turn to the formulation of the general form of the diagram formula
for the product of degenerate U -statistics. The formulation of this result is
harder than of its analogue about Wiener-Itô integrals, because in the present
case we cannot define the kernel functions of the U -statistics appearing in the
diagram formula in a simple, direct way. We shall define them with the help
of an inductive procedure. To do this first we introduce some conventions
which will be useful in our further considerations.

Let us recall the convention introduced after the definition of canonical
degenerate U -statistics by which In,0(c) is a degenerate U -statistic of order
zero, and In,0(c) = c for a constant c. If γ ∈ Γ (k1, k2) is such a diagram for
which |O(γ)| = 0, i.e. cγ(β) = 1 for all chains β ∈ γ, then the expression
Fγ(f1, f2) defined in (11.4) is a constant, and we have to interpret the term
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In,|O(γ)|(Fγ(f1, f2)) in relation (11.5) by means of the previous convention for
such a digram γ. We introduce another convention which enables us to extend
the validity of Theorem 11.1 to the (degenerate) case when the function fk1

=
c with a constant c, and k1 = 0. In this case Γ (k1, k2) consists of only
one diagram γ containing the chains βp = {(2, p)} of length one and colour
cγ({(2, p)}) = −1, 1 ≤ p ≤ k2, and we define Fγ(f1, f2) = cf2(x1, . . . , xk2

).
Beside this, we have C(γ) = ∅, O(γ) = {(2, 1), . . . , (2, k2)}, hence W (γ) =
k1 + k2 − |O(γ)| − 2|C(γ)| = 0, |C(γ)| = 0. Hence formula (11.5) remains
valid also in the case k1 = 0. For the sake of completeness we introduce a
listing of the (open) chains β ∈ O(γ) of the diagram(s) of the set Γ (0, k2). We
define β(p) = {(2, p)}, 1 ≤ p ≤ k2 in this case. We have introduced the above
conventions because we need them in the inductive argument we shall apply
in the proof of the diagram formula for the product of degenerate U -statistics
in the general case.

To formulate the diagram formula for the product of degenerate U -
statistics in the general case first we define a function Fγ(f1, . . . , fm) =
Fγ(f1, . . . , fm)(x1, . . . , x|O(γ)|) for each coloured diagram γ ∈ Γ (k1, . . . , km)
and collection of canonical functions (canonical with respect to a probability
measure µ on a measurable space (X,X )) f1, . . . , fm with k1,. . . ,km vari-
ables. Observe that the function Fγ(f1, . . . , fm) has |O(γ)| arguments. It will
appear as the kernel function of the degenerate U -statistic corresponding to
the diagram γ at the right-hand side of the diagram formula.

These functions will be defined by induction with respect to the number m
of the components in the product of degenerate U -statistics. For m = 2 we
have already defined them. Let the functions Fγ(f1, . . . , fm−1) be defined
for each coloured diagram γ ∈ Γ (k1, . . . , km−1). To define Fγ(f1, . . . , fm)
for a coloured diagram γ ∈ Γ (k1, . . . , km) first we define the predecessor
γpr = γpr(γ) ∈ Γ (k1, . . . , km−1) of γ which will consist of the restrictions of
the chains of the diagram γ to the first m − 1 rows of this diagram together
with an appropriate colouring of these restricted chains. Then we can define
the function Fγpr

(f1, . . . , fm−1) with |O(γpr)| arguments in our inductive
procedure. We shall also define a diagram γcl ∈ Γ (|O(γpr)|, km) of two rows,
which has the heuristic content that it contains the additional information we
need to reconstruct the diagram γ ∈ Γ (k1, . . . , km) from its predecessor γpr.
We shall define the function Fγ(f1, . . . , fm) with the help of the diagram γcl

and the pair of functions Fγpr
(f1, . . . , fm−1) and fm.

The diagram γpr ∈ Γ (k1, . . . , km−1) will consist of the chains βpr =
β \ {(m, 1), . . . , (m, km)}, β ∈ γ, i.e. we get the chain βpr by dropping from
β its vertex from the last row {(m, 1), . . . , (m, km)} of the diagram if it con-
tains such a vertex. If we get an empty set in such a way (this happens if
γ consists of a single vertex of the form(m, p)) then we disregard it, i.e the
empty set will be not taken as a chain of γpr. We define the colour of βpr

as cγpr
(βpr) = cγ(β) if β = βpr, i.e. if β ∩ {(m, 1), . . . , (m, km)} = ∅, and

cγpr
(βpr) = −1 if β contains a vertex of the form (m, p), 1 ≤ p ≤ km. Af-
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ter the definition of the diagrams γpr ∈ Γ (k1, . . . , km−1) we can define the
function Fγpr

(f1, . . . , fm−1) with arguments x1, . . . , x|O(γpr)|.
Let us also define the diagram γcl ∈ Γ (|O(γpr)|, km) for a diagram γ ∈

Γ (k1, . . . , km). We must tell which are the chains {(1, p), (2, r)}, 1 ≤ p ≤
|O(γpr)|, 1 ≤ r ≤ km, of length two of the diagram γcl, and we have to
define their colour. The set {(1, p), (2, r)} is a chain of length two of the
diagram γcl if and only if the open chain β(p) ∈ γpr (the chain β(p) is that
open chain of γpr ∈ Γ (k1, . . . , km−1) which got the label p in the enumeration
of the open chains of γpr) is the restriction βpr of that chain β ∈ γ for
which (m, r) ∈ β. If {(1, p), (2, r)} ∈ γcl, then its colour in γcl is defined
as cγcl

({(1, p), (2, r)}) = cγ(β) with that chain β ∈ γ for which (m, r) ∈ β.
Those vertices (1, p) and (2, r), 1 ≤ p ≤ |O(γpr)|, 1 ≤ r ≤ km, which are not
contained in such a chain of length 2 will be chains of length 1 of γcl with
colour −1.

Given some bounded functions f1, . . . , fm of kp variables, 1 ≤ p ≤ m, and
a diagram γ ∈ Γ (k1, . . . , km) we shall define the function Fγ(f1, . . . , fm) with
the help of the pair of functions Fγpr

(f1, . . . , fm−1) and fm and the diagram
γcl ∈ Γ (|O(γpr)|), km) by the formula

Fγ(f1, . . . , fm)(x1, x2, . . . , x|O(γ)|)

= Fγcl
(Fγpr

(f1, . . . , fm−1), fm)(xt(l1), . . . , xt(l|O(γcl)|
)). (11.8)

Here we applied formula (11.4) with the choice γ = γcl and pair of func-
tions f1 = Fγpr

(f1, . . . , fm−1) and f2 = fm. To justify the correctness of
formula (11.8) we still have to show that |O(γ)| = |O(γcl)|.

To prove this identity observe that the number of those open chains of γcl

which contain a vertex from the first row of γcl equals the number of those
open chains of β ∈ γ which have a vertex outside of the m-th row of the
diagram γ. (The second condition is needed to guarantee that βpr is not an
empty set, and the openness of β in the diagram γ guarantees that βpr is an
open set, and if βpr = p, then the chain (of length 1 or two) of γcl containing
the vertex (1, p) is open.) The remaining open chains of γcl contain one vertex
from the second row of γcl, and they correspond to those open diagrams of
γ which consist of one vertex from the m-th row of the diagram. The above
observations imply the desired identity.

To formulate the general form of the diagram formula for the product of
degenerate U -statistics we introduce some quantities which will be the version
of the quantities W (γ), s(γ) appearing in the identity (11.5) in Theorem 11.1
in the case m > 2. Put

W (γ) =
∑

β∈O(γ)

(ℓ(β) − 1) +
∑

β∈C(γ)

(ℓ(β) − 2), γ ∈ Γ (k1, . . . , km), (11.9)

where ℓ(β) denotes the length of the chain β.
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To define the next quantity let us first introduce the following notation.
Given a chain β = {(p1, r1), . . . , (pl, rl)}, 1 ≤ p1 < p2 < · · · < pl ≤ m, in
the set A(k1, . . . , km) = {(p, r) : 1 ≤ p ≤ m, 1 ≤ r ≤ kp} let us define its
upper level u(β) = p1, and its deepest level d(β) = pl. Let us define with
their help for all diagrams γ ∈ Γ (k1, . . . , km) and integers p, 1 ≤ p ≤ m, the
sets B1(γ, p) = {β : β ∈ γ, cγ(β) = 1, d(β) = p}, and B2(γ, p) = {β : β ∈
γ, cγ(β) = −1, d(β) ≤ p} ∪ {β : β ∈ γ, u(β) ≤ p, d(β) > p}, i.e. B1(γ, p)
consists of those chains β ∈ Γ which have colour 1, all their vertices are in
the first p rows of the diagram, and contain a vertex in the p-th row, while
B2(γ, p) consists of those chains β ∈ γ which have either colour −1, and all
their vertices are in the first p rows of the diagram, or they have (with an
arbitrary colour) a vertex both in the first p rows and in the remaining rows
of the diagram. Put B1(γ, p) = |B1(γ, p)| and B2(γ, p) = |B2(γ, p)|. With the
help of these numbers we define

Jn(γ, p) =







B1(γ,p)∏

j=1

(
n−B1(γ,p)−B2(γ,p)+j

n

)

if B1(γ, p) ≥ 1

1 if B1(γ, p) = 0

(11.10)

for all 2 ≤ p ≤ m and diagrams γ ∈ Γ (k1, . . . , km).
Theorem 11.2 will be formulated with the help of the above notations.

Theorem 11.2 (The diagram formula for the product of several
degenerate U-statistics). Let a sequence of independent and identically
distributed random variables ξ1, ξ2, . . . be given with some distribution µ
on a measurable space (X,X ) together with m ≥ 2 bounded functions
fp(x1, . . . , xkp

) on the spaces (Xkp ,X kp), 1 ≤ p ≤ m, canonical with re-
spect to the probability measure µ. Let us consider the class of coloured
diagrams Γ (k1, . . . , km) together with the functions Fγ = Fγ(f1, . . . , fm),
γ ∈ Γ (k1, . . . , km), defined in formulas (11.8) and the constants W (γ) and
Jn(γ, p), 1 ≤ p ≤ m, given in formulas (11.9) and (11.10).

The functions Fγ(f1, . . . , fm) are canonical with respect to the measure µ
with |O(γ)| variables, and the product of the degenerate U -statistics In,kp

(fp),
1 ≤ p ≤ m, n ≥ max

1≤p≤m
kp, defined in (8.8) can be written in the form

m∏

p=1

n−kp/2kp!In,kp
(fp) =

∑

γ∈Γ (k1,...,km)

′(n, m)

(
m∏

p=2

Jn(γ, p)

)

n−W (γ)/2 · n−|O(γ)|/2|O(γ)|!In,|O(γ)|(Fγ(f1, . . . , fm)), (11.11)

where
∑′(n, m)

means that summation is taken for those γ ∈ Γ (k1, . . . , km)
which satisfy the relation B1(γ, p) + B2(γ, p) ≤ n for all 2 ≤ p ≤ m
with the quantities B1(γ, p) and B2(γ, p) introduced before the definition of
Jn(γ, p) in (11.10), and the expression W (γ) was defined in (11.9). The terms
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In,|O(γ)|(Fγ(f1, . . . , fm)) at the right-hand side of formula (11.11) can be re-
placed by In,|O(γ)|(Sym Fγ(f1, . . . , fm)).

In Theorem 11.2 the product of such degenerate U -statistics were consid-
ered, whose kernel functions were bounded. This also implies that all func-
tions Fγ appearing at the right-hand side of (11.11) are well-defined (i.e. the
integrals appearing in their definition are convergent) and bounded. In the
applications of Theorem 11.2 it is useful to have more information about the
behaviour of the functions Fγ(f1, . . . , fm). We shall need some good bound
on their L2-norm. Such a result is formulated in the following

Lemma 11.3 (Estimate about the L2-norm of the kernel functions
of the U-statistics appearing in the diagram formula). Let m func-
tions fp(x1, . . . , xkp

) be given on the products (Xkp ,X kp , µkp) of some mea-
sure space (X,X , µ), 1 ≤ p ≤ m, with a probability measure µ, which sat-
isfy inequalities (8.1) (if the index k is replaced by the index kp in them).
Let us take a coloured diagram γ ∈ Γ (k1, . . . , km), and consider the func-
tion Fγ(f1, . . . , fm) defined by formulas (11.8). The L2-norm of the function
Fγ(f1, . . . , fm) (with respect to the power of the measure µ to the space where
Fγ(f1, . . . , fm) is defined) satisfies the inequality

‖Fγ(f1, . . . , fm)‖2 ≤ 2W (γ)
∏

p∈U(γ)

‖fp‖2,

where W (γ) is given in (11.9), and the set U(γ) ⊂ {1, . . . ,m} is defined as

U(γ) = {p : 1 ≤ p ≤ m, for all vertices (p, r), 1 ≤ r ≤ kp the chain β ∈ γ

for which (p, r) ∈ β has the property that either u(β) = p

or d(β) = p and cγ(β) = 1}. (11.12)

(If the point (p, r) is such that β = {(p, r)} ∈ γ is the chain containing it,
then u(β) = d(β) =, and cγ(β) = 1. In this case the vertex (p, r) satisfies
that condition which all vertices (p, r), 1 ≤ r ≤ kp, must satisfy to guarantee
the property p ∈ U(γ).

The last result of this section is a corollary of Theorem 11.2. In this corol-
lary we give an estimate on the expected value of product of degenerate
U -statistics. To formulate this result we introduce the following terminology.
Let us call a (coloured) diagram γ ∈ Γ (k1, . . . , km) closed if cγ(β) = 1 for all
chains β ∈ γ. Let us denote the set of all closed diagrams by Γ̄ (k1, . . . , km).
Observe that Fγ(f1, . . . , fm) is constant (a function of zero variable) if and
only if γ is a closed diagram, i.e. γ ∈ Γ̄ (k1, . . . , km), and

In,|O(γ)|(Fγ(f1, . . . , fm)) = In,0(Fγ(f1, . . . , fm)) = Fγ(f1, . . . , fm)

in this case. Now we formulate the following result.
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Corollary of Theorem 11.2 about the expectation of a product of
degenerate U-statistics. Let a finite sequence of functions fp(x1, . . . , xkp

),
1 ≤ p ≤ m, be given on the products (Xkp ,X kp) of some measurable space
(X,X ) together with a sequence of independent and identically distributed
random variables with value in the space (X,X ) and some distribution µ
which satisfy the conditions of Theorem 11.2.

Let us apply the notation of Theorem 11.2 together with the notion of the
above introduced class of closed diagrams Γ̄ (k1, . . . , km). The identity

E

(
m∏

p=1

kp!n−kp/2In,kp
(fkp

)

)

(11.13)

=
∑

γ∈Γ̄ (k1,...,km)

′(n,m)

(
m∏

p=1

Jn(γ, p)

)

n−W (γ)/2 · Fγ(f1, . . . , fm)

holds. This identity has the consequence

∣
∣
∣
∣
∣
E

(
m∏

p=1

kp!n−kp/2In,kp
(fkp

)

)∣
∣
∣
∣
∣
≤

∑

γ∈Γ̄ (k1,...,km)

n−W (γ)/2|Fγ(f1, . . . , fm)|.

(11.14)
Beside this, if the functions fp, 1 ≤ p ≤ m, satisfy conditions (8.1) and (8.2)
(with indices kp instead of k in them), then the numbers |Fγ(f1, . . . , fm)| at
the right-hand side of (11.14) satisfy the inequality

|Fγ(f1, . . . , fm)| ≤ 2W (γ)σ|U(γ)| for all γ ∈ Γ̄ (k1, . . . , km). (11.15)

In formula (11.15) the same number W (γ) and set U(γ) appear as in Lemma
11.3. The only difference is that in the present case the definition of U(γ)
becomes a bit simpler, since cγ(β) = 1 for all chains β ∈ γ.

Remark: We have applied a different terminology for diagrams in this section
and in Section 10, where the theory of Wiener–Itô integrals was discussed.
But there is a simple relation between the terminology of these sections. If
we take only those diagrams from the diagrams considered in this section
which contain only chains of length 1 or 2, and beside this the chains of
length 1 have colour −1, and the chains of length 2 have colour 1, then we
get the diagrams considered in the previous section. Moreover, the functions
Fγ = Fγ(f1, . . . , fm) are the same in the two cases. Hence formula (10.21)
in the Corollary of Theorem 10.2 and formula (11.14) in the Corollary of
Theorem 11.2 make possible to compare the moments of Wiener–Itô integrals
and degenerate U -statistics.

The main difference between these estimates is that formula (11.14) con-
tains some additional terms. They are the contributions of those diagrams
γ ∈ Γ̄ (k1, . . . , km) which contain chains β ∈ γ with length ℓ(β) > 2. These are
those diagrams γ ∈ Γ̄ (k1, . . . , km) for which W (γ) ≥ 1. The estimate (11.15)
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given for the terms Fγ corresponding to such diagrams is weaker, than the es-
timate given for the terms Fγ with W (γ) = 0, since |U(γ)| < m if W (γ) ≥ 1,
while |U(γ)| = m, if W (γ) = 0. On the other hand, such terms have a coef-
ficient n−W (γ)/2 at the right-hand side of formula (11.14). A closer study of
these formulas may explain the relation between the estimates given for the
tail distribution of Wiener–Itô integrals and degenerate U -statistics.



Chapter 12

The proof of the diagram formula for
U -statistics

In this section the results of the previous section will be proved. First I prove
its main result, the diagram formula for the product of two degenerate U -
statistics.

Proof of Theorem 11.1. In the first step of the proof the product

k1!In,k1
(f1)k2!In,k2

(f2)

of two degenerate U -statistics will be rewritten as a sum of not necessarily de-
generate U -statistics. In this step a term by term multiplication is carried out
for the product k1!In,k1

(f1)k2!In,k2
(f2), and the terms of the sum obtained

in such a way are put in different classes indexed by the (non-coloured) di-
agrams with two rows of length k1 and k2. This step is very similar to the
heuristic argument leading to formulas (10.14) and (10.15) in our explanation
about the diagram formula for Wiener-Itô integrals.

In this step of the proof we consider all sets of pairs

{(l1, l
′
1), . . . , (lr, l

′
r)}, 1 ≤ r ≤ min(k1, k2),

with the following properties: 1 ≤ l1 < l2 < · · · < lr ≤ k1, the numbers
l′1, . . . , l

′
r are all different, and 1 ≤ l′s ≤ k2, for all 1 ≤ s ≤ r.

To a set of pairs {(l1, l
′
1), . . . , (lr, l

′
r)} with the above properties let us

correspond the following diagram γ̄((l1, l
′
1), . . . , (lr, l

′
r)) ∈ Γ̄ (k1, k2), where

Γ̄ (k1, k2) denotes the set of (non-coloured) diagrams with two rows of
length k1 and k2. The diagram γ̄((l1, l

′
1), . . . , (lr, l

′
r)) has two rows, {1, . . . , k1},

and {2, . . . , k2}, its chains of length 2 are the sets {(1, ls), (2, l′s)}, 1 ≤ s ≤ r,
and beside this it contains the chains {(1, p)}, p ∈ {1, . . . , k1} \ {u1, . . . , ur},
and {(2, p)}, p ∈ {1, . . . , k2}\{u′

1, . . . , u
′
r} of length 1. All (non-coloured) dia-

grams γ̄ ∈ Γ̄ (k1, k2) can be represented in the form γ̄ = γ̄((l1, l
′
1), . . . , (lr, l

′
r))

with the help of a set of pairs {(l1, l
′
1), . . . , (lr, l

′
r)}, 1 ≤ r ≤ min(k1, k2), with

the above properties in a unique way.

129
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To make the notation in the subsequent discussion simpler we introduce,
similarly to the notation of Chapter 11, an enumeration of the chains of the
diagrams γ̄ ∈ Γ̄ (k1, k2), and then we make an enumeration of the vertices of
these diagram γ̄ with its help.

Let us choose the following natural enumeration of the chains of a diagram.
Consider the diagram γ̄ = γ̄((l1, l

′
1), . . . , (lr, l

′
r)) ∈ Γ̄ (k1, k2) which has s(γ̄) =

k1 + k2 − r chains. The chain β ∈ γ̄ containing the vertex (1, p) gets the
index p, i.e. β(p) = (1, p) if 1 ≤ p ≤ k1, and p /∈ {l1, . . . , lr}, and β(p) =
{(1, ls), (2, l′s)} if p = ls with some 1 ≤ s ≤ r. The remaining chains of γ̄ have
the form {(2, p)} with p ∈ {1, . . . , k2} \ {l′1, . . . , l′r}. Let us list the numbers p
with this property in an increasing order, i.e. write {1, . . . , k2}\{l′1, . . . , l′r} =
{l̄1, . . . , l̄k2−r} with 1 ≤ l̄1 < · · · < l̄k2−r, and define β(k1 + p) = {(2, l̄p)})
for 1 ≤ p ≤ k2 − r. In such a way we have enumerated the chains of a
diagram γ̄ ∈ Γ̄ (k1, k2). After this we enumerate its vertices (p, r) by the
formula αγ̄((p, r)) = l with that index l for which (p, r) ∈ β(l). Let us also
define the sets V1 = V1(γ̄) = {1, . . . , k1 + k2 − r} \ {l1, . . . , lr} and V2 =
V2(γ̄) = {l1, . . . , lr}. These sets yield the labels of the chains of length 1 and
length 2 respectively, i.e. β(p) is a chain of length 1 if p ∈ V1, and it is a chain
of length 2 if p ∈ V2.

We have defined a special enumeration of the chains of the diagrams γ̄ ∈
Γ̄ (k1, k2), and we shall work with this enumeration during the proof. First
we prove relation (11.5) with functions Fγ(f1, f2) defined with the help of
this enumeration of the chains, and then we show that this identity remains
valid for any enumeration of the chains.

Let us consider the product k1!In,k1
(f1)k2!In,k2

(f2), and let us rewrite
it in the form of the sum we get by carrying out a term by term mul-
tiplication in this expression. We put the terms obtained in such a way
into disjoint classes indexed by the diagrams γ̄ ∈ Γ̄ (k1, k2) in the following
way: A product f1(ξj1 , . . . , ξjk1

)f2(ξj′
1
, . . . , ξj′

k2
) belongs to the class indexed

by the diagram γ̄((l1, l
′
1), . . . , (lr, l

′
r)) with the parameters (l1, l

′
1), . . . , (lr, l

′
r),

1 ≤ r ≤ min(k1, k2), where 1 ≤ l1 < l2 < · · · < lr ≤ k1, the numbers
l′1, . . . , l

′
r are different, and 1 ≤ l′s ≤ k2, for all 1 ≤ s ≤ r if the indices

j1, . . . , jk1
, j′1, . . . , j

′
k2

in the arguments of the variables in f1(·) and f2(·) sat-
isfy the relation jls = j′l′s , 1 ≤ s ≤ r, and there is no more coincidence between

the indices j1, . . . , jk1
, j′1, . . . , j

′
k2

.
It is not difficult to see by applying the above partition of the terms in

the product k1!In,k1
(f1)k2!In,k2

(f2), and exploiting that each diagram γ̄ ∈
Γ̄ (k1, k2) can be represented in the form γ̄((l1, l

′
1), . . . , (lr, l

′
r)) in a unique

way that the identity

n−k1/2k1!In,k1
(f1)k2!n−k2/2In,k2

(f2)

=
∑

γ̄∈Γ̄ (k1,k2)

′(n)
n−(k1+k2)/2s(γ̄)!In,s(γ̄)((f1 ◦ f2)γ̄) (12.1)
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holds, where the functions (f1 ◦ f2)γ̄ = (f1 ◦ f2)γ̄(x1, . . . , xs(γ̄)) are defined
in formula (11.3) with the help of the above introduced enumeration of the
chains of the diagram γ̄, and s(γ̄) = k1 + k2 − |V2(γ̄)| denotes the number of
chains in γ̄. (Observe that the numbers l1, . . . , ls are the numbers 1, . . . , s(γ̄)
with the present notation of the chains of the diagrams γ̄ ∈ Γ̄ (k1, k2).) The

notation
∑′(n)

in (12.1) means that summation is taken only for such di-
agrams γ̄ ∈ Γ̄ (k1, k2) for which n ≥ s(γ̄). (Let me remark that although
formula (11.3) was defined for coloured diagrams, the colours of the chains
played no role in it.)

Relation (12.1) is not appropriate for our purposes, since the functions
(f1 ◦ f2)γ̄ in it may be non-canonical. To get the desired formula, Hoeffding’s
decomposition will be applied for the U -statistics In,s(γ̄)((f1◦f2)γ̄) appearing
at the right-hand side of formula (12.1). This decomposition becomes slightly
simpler because of some special properties of the function (f1 ◦ f2)γ̄ related
to the canonical property of the initial functions f1 and f2.

To carry out this procedure let us observe that a function f(xl1 , . . . , xlk) is
canonical if and only if Plpf(xl1 , . . . , xlk) = 0 with the operator Plp defined
in (11.1) for all indices lp, 1 ≤ p ≤ k. Beside this, the condition that the
functions f1 and f2 are canonical implies the relation Pv(f1 ◦ f2)γ̄ = 0 if
v ∈ V1(γ̄) for all diagrams γ̄ ∈ Γ̄ (k1, k2). This relation remains valid if the
function (f1 ◦f2)γ̄ is replaced by such functions which we get by applying the
product of some transformations Pv′ and Qv′ , v′ ∈ V2(γ̄), for the function
(f1 ◦ f2)γ̄ with the transformations Pv′ and Qv′ defined in formulas (11.1)
and (11.2).

Beside this, the transformations Pv or Qv are exchangeable with the opera-
tors Pv′ or Qv′ for any pairs of indices v, v′, and Pv+Qv) = I, where I denotes
the identity operator. Beside this, PvQv = 0, since PvQv = Pv − P 2

v = 0.
The above relations make possible the following decomposition of the func-
tion (f1 ◦ f2)γ̄ to the sum of canonical functions for all γ̄ ∈ Γ̄ (k1, k2). (In the
proof of the Hoeffding decomposition a similar argument was applied.)

(f1 ◦ f2)γ̄ =
∏

v∈V2(γ̄)

(Pv + Qv)(f1 ◦ f2)γ̄ (12.2)

=
∑

A⊂V2(γ̄)




∏

v∈A

Pv

∏

v∈V2\A

Qv



 (f1 ◦ f2)γ̄ =
∑

γ∈Γ (γ̄)

F̄γ(f1, f2),

where Γ (γ̄) denotes the set of those coloured diagrams γ ∈ Γ (k1, k2) which
contain the same chains (with colour 1 or −1) as the non-coloured diagram γ̄.
The function F̄γ(f1, f2) is defined for a diagram γ ∈ Γ (γ̄) in the following
way.

If the colouring of the chains of γ ∈ Γ (γ̄) is defined with the help of
a set A ⊂ V2(γ̄) by the relations cγ(β(v)) = 1 if v ∈ A, cγ(β(v)) = −1 if
v ∈ V2(γ̄)\A, (and for the remaining chains β ∈ γ with length 1 cγ(β) = −1),
then
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F̄γ(f1, f2) = F̄γ(f1, f2)(xl1 , . . . , xl|O(γ)|
)

=
∏

v∈A

Pv

∏

v∈V2\A

Qv(f1 ◦ f2)γ̄(xl1 , . . . , xl|O(γ)|
). (12.3)

Here the indices l1, . . . , l|O(γ)|, l1 < · · · < l|O(γ)|, of the variables of the
function F̄γ(f1, f2) are the labels of the open chains (chains with colour −1)
of the diagram γ, i.e, they are the elements of the set (V2(γ̄) \ A) ∪ V1(γ̄).
(Clearly, s(γ) = s(γ̄) for the number of chains of γ and γ̄ if γ ∈ Γ (γ̄).) In
such a way we have defined F̄γ(f1, f2) for each γ ∈ Γ (γ̄). The definition of
this function is very similar to that of Fγ(f1, f2) in formula (11.4). These two
functions differ in the indexation of their variables.

It is not difficult to check relation (12.2). We claim that it implies that a
U -statistic with kernel function (f1 ◦ f2)γ̄ satisfies the identity

n−(k1+k2)/2|O(γ̄)|!In,s̄(γ̄) ((f1 ◦ f2)γ̄) (12.4)

=
∑

γ∈Γ (γ̄)

n−(k1+k2)/2n|C(γ)|Jn(γ)|O(γ)|!In,|O(γ)|
(
F̄γ(f1, f2)

)

with the function F̄γ(f1, f2), where Jn(γ) = 1 if |C(γ)| = 0, and

Jn(γ) =

|C(γ)|
∏

j=1

(
n − s(γ) + j

n

)

if |C(γ)| > 0. (12.5)

for all γ̄ ∈ Γ̄ (k1, k2).
Relation (12.4) follows from relation (12.2) in the same way as for-

mula (9.4) follows from formula (9.3) in the proof of the Hoeffding decom-
position. Let us understand why the coefficient n|C(γ)|Jn(γ) appears at the
right-hand side of (12.4).

This coefficient can be calculated in the following way. Let us write up the
identity

n−(k1+k2)/2|O(γ̄)| ((f1 ◦ f2)γ̄) (ξj1 , . . . , ξjs(γ̄)
)

=
∑

γ∈Γ (γ̄)

n−(k1+k2)/2F̄γ(f1, f2)(ξjl1
, . . . , ξjl|O(γ)|

)

with the help of (12.2), and let us sum up these identities for all such sets
of arguments (j1, . . . , js(γ̄)) for which all jp, 1 ≤ p ≤ s(γ̄), are different,
and 1 ≤ jp ≤ n. Then we get at the left-hand side of the identity the U -
statistic n−(k1+k2)/2|O(γ̄)|!In,s̄(γ̄) ((f1 ◦ f2)γ̄). We still have to check that a

term of the form n−(k1+k2)/2F̄γ(f1, f2)(ξjl1
, . . . , ξjl|O(γ)|

) appears with multi-

plicity n|C(γ)Jn(γ) at the right-hand side of this identity. Indeed, such a term
appears for such vectors (j1, . . . , js(γ̄)) for which the value of |O(γ)| arguments
are fixed, the remaining arguments can take arbitrary value between 1 and n
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with the only restriction that all coordinates must be different. There are
n|C(γ)Jn(γ) such vectors. The above observations imply identity (12.4).

Let us observe that k1 + k2 − 2|C(γ)| = |O(γ)| + W (γ) with the number
W (γ) introduced in the formulation of Theorem 11.1. Hence

n−(k1+k2)/2n|C(γ)| = n−W (γ)/2n−|O(γ)|/2.

Let us replace the left-hand side of the last identity by its right-hand side
in (12.4), and let us sum up the identity we get in such a way for all
γ̄ ∈ Γ̄ (k1, k2) such that s(γ̄) ≤ n. The identity we get in such a way
together with formulas (12.1) and (12.5) imply such a version of iden-
tity (11.5) where the kernel functions Fγ(f1, f2) of the U -statistics at the
right-hand side of the equation are replaced by the kernel functions F̄γ(f1, f2)
defined in (12.3). But we can get the function Fγ(f1, f2) by reindexing
the arguments of the function F̄γ(f1, f2). This has the consequence that
In,|O(γ(Fγ(f1, f2)) = In,|O(γ(F̄γ(f1, f2)), and identity (11.5) holds in its orig-
inal form.

Clearly,

In,|O(γ)|(Fγ(f1, f2)) = In,|O(γ)|(SymFγ(f1, f2)),

hence In,|O(γ)|(Fγ(f1, f2)) can be replaced by In,|O(γ)|(Sym Fγ(f1, f2)) in for-
mula (11.5). Beside this, we have shown that the functions Fγ(f1, f2) are
canonical, and it can be simply shown that they are bounded, if the func-
tions f1 and f2 are bounded. We still have to prove inequalities (11.6)
and (11.7).

Inequality (11.6), the estimate of the L2-norm of the function Fγ(f1, f2)
follows from the Schwarz inequality, and actually it agrees with inequal-
ity (10.12), proved at the start of Appendix B. Hence its proof is omitted
here.

To prove inequality (11.7) let us introduce, similarly to formula (11.2), the
operators

Q̃lph(xl1 , . . . , xlr ) = h(xl1 , . . . , xlr ) +

∫

h(xl1 , . . . , xlr )µ( dxlp),

1 ≤ p ≤ r,

in the space of functions h(xl1 , . . . , xlr ) with coordinates in the space (X,X ).
(The indices l1, . . . , lr are all different.) Observe that both the operators Q̃lp

and the operators Plp defined in (11.1) are positive, i.e. they map a non-

negative function to a non-negative function. Beside this, Qlp ≤ Q̃lp , and the

norms of the operators
Q̃lp

2 and Plp are bounded by 1 both in the L1(µ), the
L2(µ) and the supremum norm.

Let us define the function
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(F̃γf1, f2)(xl1 , . . . , xl|O(γ)|
)

=




∏

p : β(lp)∈C(γ)

Plp

∏

p : βlp∈O2(γ)

Q̃lp



 (f1 ◦ f2)γ(xl1 , . . . , xls)

with the notation of Section 11, where s = s(γ) = |C(γ)|+ |O(γ)|. The func-
tion F̃γ(f1, f2) was defined similarly to Fγ(f1, f2) defined in (11.4) with the

help of (f1 ◦ f2)γ only the operators Qj were replaced by Q̃j in its definition.

The properties of the operators Puj
and Q̃uj

listed above together with
the condition sup |f2(x1, . . . , xk)| ≤ 1 imply that

|Fγ(f1, f2)| ≤ F̃γ(|f1|, |f2|) ≤ F̃γ(|f1|, 1), (12.6)

where ‘≤’ means that the function at the right-hand side is greater than
or equal to the function at the left-hand side in all points, and the term 1
in (12.6) denotes the function which equals identically 1. Because of the
relation (12.6) to prove relation (11.7) it is enough to show that

‖(F̃γ(|f1|, 1)γ‖2

=

∥
∥
∥
∥
∥
∥




∏

p : β(lp)∈C(γ)

Plp

∏

β(p : lp)∈O2(γ)

Q̃lp



 |f1(xαγ(1,1), . . . , xαγ(1,k1))|

∥
∥
∥
∥
∥
∥

2

≤ 2|O2(γ)|‖f‖2 = 2W (γ)‖f1‖2. (12.7)

But this inequality trivially holds, since the norm of all operators Pj in for-

mula (12.7) is bounded by 1, the norm of all operators Q̃j is bounded by 2
in the L2(µ) norm, and |O2(γ)| = W (γ).

Proof of Theorem 11.2. Theorem 11.2 will be proved with the help of The-
orem 11.1 by induction with respect to the number m of the terms in the
product of the degenerate U -statistics kp!In,kp

(fp), 1 ≤ p ≤ m. For m = 2
Theorem 11.2 follows from Theorem 11.1, since formula (11.5) agrees with
formula (11.11) for m = 2. To prove Theorem 11.2 for m ≥ 3 first we express
with the help of our inductive hypothesis the product of the first m−1 terms
in the product of degenerate U -statistics as a sum of degenerate U -statistics,
and then we calculate the product of each term in this sum with the last term
of the product with the help of Theorem 11.1. To show that we get the iden-
tity (11.11) formulated in Theorem 11.2 we have to observe some properties
of the decomposition of the diagrams γ ∈ Γ (k1, . . . , km) to a pair of diagrams
γpr ∈ Γ (k1, . . . , km−1) and γcl ∈ Γ (|O(γpr)|, km). Let me recall that during
the definition of the functions Fγ(f1, . . . , fm) we have fixed an enumeration
of the open chains of the diagrams γ ∈ Γ (k1, . . . , km) for all m = 2, 3, . . . ,
hence also of the open chains of the diagrams γpr ∈ Γ (k1, . . . , km−1).

Let us observe that the pair (γpr, γcl) uniquely determines the diagram
γ ∈ Γ (k1, . . . , km), i.e. if γ, γ′ ∈ Γ (k1, . . . , km), and if γ 6= γ′, then either
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γpr 6= γ′
pr or γcl 6= γ′

cl. Hence we can identify each diagram γ ∈ Γ (k1, . . . , km)
with the pair (γpr, γcl) we defined with its help. Beside this, the pairs of
diagrams (γpr, γcl) satisfy the relation γcl ∈ Γ (|O(γpr|, km). Moreover, the
class of pairs of diagrams (γpr, γcl), γ ∈ Γ (k1, . . . , km), have the following
characterization. A one to one correspondence can be given between the pairs
of diagrams (γ̄, γ̂) such that γ̄ ∈ Γ (k1, . . . , km−1) and γ̃ ∈ Γ (|O(γ̄)|, km) and
the diagrams γ ∈ Γ (k1, . . . , km) in such a way that γ̄ = γpr and γ̂ = γcl.
(This correspondence depends on the enumeration of the open chains of the
diagrams γ̄ ∈ Γ (k1, . . . , km−1) that we have previously fixed.) The proof of
the above statements is not difficult, and I leave it to the reader.

Because of our inductive hypothesis we can write by applying rela-
tion (11.11) of Theorem 11.2 with parameter m − 1 the identity

m−1∏

p=1

n−kp/2kp!In,kp
(fp) =

∑

γ̄∈Γ (k1,...,km−1)

′(n, m−1)

(
m−1∏

p=2

Jn(γ̄, p)

)

n−W (γ̄)/2 · n−|O(γ̄)|/2|O(γ̄)|!In,|O(γ̄)|(Fγ̄(f1, . . . , fm−1)). (12.8)

(Here we use the notations of Section 11.)
We get by multiplying the identity (11.5) of Theorem 11.1 with an appro-

priate constant that the identity

(
m−1∏

p=2

Jn(γ̄, p)

)

n−W (γ̄)/2n−|O(γ̄)|/2O(γ̄)!In,|O(|γ̄|(Fγ̄(f1, . . . , fm−1)

·n−km/2km!In,km
(fm)

=

(
m−1∏

p=2

Jn(γ̄, p)

)

n−W (γ̄)/2
∑

γ̂∈Γ (|O(γ̄|,km)

′(n)
|C(γ̂)|
∏

j=1

(
n − s(γ̂) + j

n

)

n−W (γ̂)/2

n−|O(γ̂)|/2|O(γ̂)|!In,|O(γ̂)|(Fγ̂(Fγ̄(f1, . . . , fm−1), fm)). (12.9)

holds for all γ̄ ∈ Γ (k1, . . . , km−1), where
∑

γ̂∈Γ (|O(γ̄|),km)

′(n)
means that summation is

taken for such diagrams γ̂ ∈ Γ (|O(γ̄)|, km) for which s(γ̂) = |O(γ̂)|+|C(γ̂)| ≤

n, and
|C(γ̂|∏

j=1

equals 1, if |C(γ̂)| = 0.

We get (12.9) by applying the identity (11.5) of Theorem 11.1 for the
product

n−|O(γ̄)|/2|O(γ̄)|!In,|O(γ̄)|(Fγ̄(f1, . . . , fm−1)) · n−km/2km!In,km
(fm),

and by multiplying it with

(
m−1∏

p=2
Jn(γ̄, p)

)

n−W (γ̄)/2.
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We shall prove relation (11.11) for the parameter m with the help of rela-
tions (12.8) and (12.9). Let us sum up formula (12.9) for all such diagrams
γ̄ ∈ Γ (k1, . . . , km−1) for which B1(γ̄, p) + B2(γ̄, p) ≤ n for all 2 ≤ p ≤ m− 1.
The numbers B1(·) and B2(·) in these inequalities are the numbers intro-
duced before formula (11.10), only in this case the diagram γ is replaced
by γ̄. We imposed those conditions on the terms γ̄ in this summation which

appear in the conditions of the summation in
∑′(n,m−1)

at the right-hand
side of formula (12.8) when it is applied with parameter m − 1. Hence for-
mula (12.8) implies that the sum of the terms at the left-hand side of these

identities equals
m∏

p=1
n−kp/2kp!In,kp

(fp), i.e. the left-hand side of (11.11) for

parameter m. To prove formula (11.11) for the parameter m it is enough to
show that the sum of the right-hand side of the above inequalities equals the
right-hand side of (11.11).

In the proof of this relation we shall apply the properties of the pairs of
diagrams (γpr, γcl) coming from a diagram γ ∈ Γ (k1, . . . , km) mentioned be-
fore. Namely, we shall exploit that there is a one to one correspondence
between the diagrams γ ∈ Γ (k1, . . . , km) and pairs of diagrams (γ̄, γ̂),
γ̄ ∈ Γ (k1, . . . , km−1), γ̂ ∈ Γ (|O(γ̄)|, km) in such a way that γ and the
pair (γ̄, γ̂) correspond to each other if and only if γ̄ = γpr and γ̂ = γcl.
This correspondence enables us to reformulate the statement we have to
prove in the following way. Let us rewrite formula (12.9) by replacing γ̄
with γpr and γ̂ by γcl, with that diagram γ ∈ Γ (k1, . . . , km) for which
γ̄ = γpr and γ̂ = γcl. It is enough to show that if we take those modified
versions of (12.9) which we get by replacing the pairs (γ̄, γ̂) by the pairs
(γpr, γcl) with some γ ∈ Γ (k1, . . . , km), and sum up them for those γ for
which B1(γpr, p) + B2(γpr, p) ≤ n for all 2 ≤ p ≤ m − 1, then the sum of
the right-hand side expressions in these identities equals the right-hand side
of (11.11).

To shall prove the above identity with the help of the following statements.
For all γ ∈ Γ (k1, . . . , km) the identities W (γpr) + W (γcl) = W (γ) and

m−1∏

p=2

Jn(γpr, p)

|C(γcl)|∏

j=1

(
n − s(γcl) + j

n

)

=

m∏

p=2

Jn(γ, p),

hold, where
|C(γcl)|∏

j=1

= 1 if |C(γcl)| = 0. The inequalities B1(γ, p)+B2(γ, p) ≤ n

hold simultaneously for all 2 ≤ p ≤ m for a diagram γ if and only if the
inequalities B1(γpr, p) + B2(γpr, p) ≤ n for all 2 ≤ p ≤ m − 1, together with
the inequality s(γcl) ≤ n hold simultaneously for this γ.

To show the validity of the above identity with the help of the above rela-
tions let us first check that we sum up for the same set of γ ∈ Γ (k1, . . . , km)
if we take the sum of modified versions of (12.9) for all γ such that

B1(γpr, p) + B2(γpr, p) ≤ n for all 2 ≤ p ≤ m− 1, and if we take the
∑′(n,m)
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at the right-hand side of (11.11). Indeed, in the second case we have to take
those diagrams γ for which B1(γ, p)+B2(γ, p) ≤ n for all 2 ≤ p ≤ m, while in
the first case we take those diagrams γ for which B1(γpr, p) + B2(γpr, p) ≤ n
for all 2 ≤ p ≤ m − 1, and s(γcl) ≤ n. The last condition is contained in

a slightly hidden form in the summation
∑′(n)

of formula (12.9). Hence the
above mentioned relations imply that have to sum up for the same diagrams γ
in the two cases.

Beside this, it follows from (11.8) that the same U -statistics appear for a
diagram γ ∈ Γ (k1, . . . , km) in (11.11) and in the modified version of (12.9).
We still have to check that they have the same coefficients in the two cases.
But this holds, because the previously formulated identities imply that

n−(W (γpr)/2n−W (γcl)/2 = n−W (γ)/2,

m−1∏

p=2

Jn(γpr, p)

|C(γcl)|∏

j=1

(
n − s(γcl) + j

n

)

=

m∏

p=2

Jn(γ, p)

and n−|O(γcl)|/2|O(γcl)|! = n−|O(γ)|/2|O(γ)|!, since |O(γ)| = |O(γcl)|, as we
have seen before.

Let us prove the relations we applied in the previous argument. We start
with the proof of the identity W (γpr)+W (γcl) = W (γ) for the function W (·)
defined in (11.9).

Let us first remark that W (γcl) = |O2(γcl)|, where O2(γcl) is the set
of open chains in γcl with length 2. Beside this if β ∈ γ is such that
β ∩ {(m, 1), . . . , (m, k)} = ∅, i.e. if the chain β contains no vertex from
the last row of the diagram γ, then ℓ(β) = ℓ(βpr), and cγ(β) = cγpr

(βpr).
If β ∩ {(m, 1), . . . , (m, k)} 6= ∅, then either cγ(β) = 1, ℓ(βpr) = ℓ(β) − 1,
and cγpr

(β) = −1 or cγ(β) = −1 and one of the following cases ap-
pears. Either ℓ(β) = 1, and the chain βpr does not exists, or ℓ(β) > 1,
and ℓ(βpr) = ℓ(β) − 1, cγpr

(βpr) = −1. We get by calculating W (γ)
with the help of the above relations that W (γ) = W (γpr) + |V(γ)|, where
V(γ) = {β : β ∈ γ, β ∩ {(m, 1), . . . , (m, k)} 6= ∅, ℓ(β) > 1, cγ(β) = −1}.
Since |V(γ)| = |O2(γcl)|, the above relations imply the desired identity.

To prove the remaining relations first we observe that for each diagram
γ ∈ Γ (k1, . . . , km) and number 2 ≤ p ≤ m − 1 we have B1(γpr, p) = B1(γ, p)
and B2(γpr, p) = B2(γ, p). Beside this, |C(γcl)| = B1(γ,m) and |O(γcl)| =
B2(γ,m). The identity about |C(γcl)| simply follows from the definition of γcl

and B1(γ,m). To prove the identity about |O(γcl)| observe that |O(γcl)| =
|O(γ)|, and |O(γ)| = B2(γ,m). (Observe that in the case p = m the definition
of the set B2(γ,m) becomes simpler, because there is no chain β ∈ γ for which
d(β) > m.)

The remaining relations can be deduced from these relations. Indeed, they
imply that Jn(γpr, p) = Jn(γ, p) for all 2 ≤ p ≤ m − 1. Beside this, we have
|C(γcl)|∏

j=1

(
n−s(γcl)+j

n

)

= Jn(γ,m) because of the relations |C(γcl)| = B1(γ,m)
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|O(γcl)| = B2(γ,m), s(γcl) = |C(γcl)| + |O(|γcl)| and the definition of
Jn(γ,m). Hence the identity about the product of the terms Jn(γ, p) holds.
It can be seen similarly that the relations B1(γ, p)+B2(γ, p) ≤ n holds for all
2 ≤ p ≤ m−1 if and only if B1(γpr, p)+B2(γpr, p) ≤ n for all 2 ≤ p ≤ m−1,
and B1(γ,m) + B2(γ,m) ≤ n if and only if s(γcl) ≤ n.

Thus we have proved identity (11.11). To complete the proof of Theo-
rem 11.2 we still have to show that under its conditions Fγ(f1, . . . , fm) is a
bounded, canonical function. But this follows from Theorem 11.1 and rela-
tion (11.8) by a simple induction argument.

Proof of Lemma 11.3. Lemma 11.3 will be proved by induction with re-
spect to the number m of the terms in the product of U -statistics with
the help of inequalities (11.6) and (11.7). These relations imply the de-
sired inequality for m = 2. In the case m > 2 we apply the identity (11.8)
Fγ(f1, . . . , fm) = Fγcl

(Fγpr
(f1, . . . , fm−1), fm). We have seen that W (γ) =

W (γpr)+W (γcl), and it is not difficult to show that U(γ) = U(γpr)+U(γcl).
Hence if U(γcl) = 0, i.e. if γcl contains a chain of length 2 with colour −1, then
U(γ) = U(γpr), and an application of (11.8) and (11.7) for the diagram γcl

implies Lemma 11.3 in this case.
If U(γcl) = 1, then W (γcl) = 0, U(γ) = U(γpr) + 1, W (γ) = W (γpr), and

the application of (11.8) and (11.6) for the diagram γcl implies Lemma 11.3
in this case.

The corollary of Theorem 11.2 is a simple consequence of Theorem 11.2
and Lemma 11.3.

Proof of the corollary of Theorem 11.2. Observe that Fγ is a function of
|O(γ)| arguments. Hence a coloured diagram γ ∈ Γ (k1, . . . , km) is in the
class of closed diagrams, i.e. γ ∈ Γ̄ (k1, . . . , km) if and only if Fγ(f1, . . . , fm)
is a constant. Thus formula (11.13) is a simple consequence of relation (11.11)
and the observation that EIn,|O(γ)|(Fγ(f1, . . . , fm)) = 0 if |O(γ)| ≥ 1, i.e. if
γ /∈ Γ̄ (k1, . . . , km), and

In,|O(γ)|(Fγ(f1, . . . , fm)) = In,0(Fγ(f1, . . . , fm)) = Fγ(f1, . . . , fm)

if γ ∈ Γ̄ (k1, . . . , km).

Relations (11.14) and (11.15) follow from relation (11.13) and Lemma 11.3.



Chapter 13

The proof of Theorems 8.3, 8.5 and
Example 8.7

In this section we prove the estimates on the distribution of a multiple
Wiener–Itô integral or degenerate U -statistic formulated in Theorems 8.5
and 8.3 and also present the proof of Example 8.7. Beside this, we prove
a multivariate version of Hoeffding’s inequality (Theorem 3.4). The latter
result is useful in the estimation of the supremum of a class of degenerate
U -statistics. The estimate on the distribution of a multiple random integral
with respect to a normalized empirical distribution given in Theorem 8.1 is
omitted, because, as it was shown in Section 9, this result follows from the
estimate of Theorem 8.3 on degenerate U -statistics. We finish this section
with a separate part Section 13 B, where the results proved in this section
are discussed together with the method of their proofs and some recent re-
sults. These new results state that in certain cases the estimates on the tail
distribution of Wiener–Itô integrals and U -statistics considered in this sec-
tion can be improved if we have some additional information on the kernel
function of these Wiener–Itô integrals or U -statistics.

The proof of Theorems 8.5 and 8.3 is based on a good estimate on high
moments of Wiener–Itô integrals and degenerate U -statistics. They can be
deduced from the corollaries of Theorems 10.2 and 11.2. Such an approach
slightly differs from the classical proof in the one-variate case. The one-variate
version of the problems discussed here is an estimate about the tail distribu-
tion of a sum of independent random variables. This can be proved with the
help of a good bound on the moment generating function of the sum. Such
a method does not work in the multivariate case, because, as later calcula-
tions will show, there is no good estimate on the moment-generating function
of U -statistics or multiple Wiener–Itô integrals of order k ≥ 3. Actually, the
moment-generating function of a Wiener–Itô integral of order k ≥ 3 is always
divergent, because the tail distribution behaviour of such a random integral
is similar to that of the k-th power of a Gaussian random variable. On the
other hand, good bounds on the moments EZ2M of a random variable Z
for all positive integers M (or at least for a sufficiently rich class of parame-
ters M) together with the application of the Markov inequality for Z2M and

139
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an appropriate choice of the parameter M yield a good estimate on the tail
distribution of Z.

Propositions 13.1 and 13.2 contain some estimates on the moments of
Wiener–Itô integrals and degenerate U -statistics.

Proposition 13.1 (Estimate of the moments of Wiener–Itô inte-
grals). Let f(x1, . . . , xk) be a function of k variables on some measurable
space (X,X ) that satisfies formula (8.15) with some σ-finite non-atomic mea-
sure µ. Take the k-fold Wiener–Itô integral Zµ,k(f) of this function with re-
spect to a white noise µW with reference measure µ. The inequality

E (k!|Zµ,k(f)|)2M ≤ 1 · 3 · 5 · · · (2kM − 1)σ2M for all M = 1, 2, . . . (13.1)

holds.

By Stirling’s formula Proposition 13.1 implies that

E(k!|Zµ,k(f)|)2M ≤ (2kM)!

2kM (kM)!
σ2M ≤ A

(
2

e

)kM

(kM)kMσ2M (13.2)

for any A >
√

2 if M ≥ M0 = M0(A). Formula (13.2) can be considered
as a simpler, better applicable version of Proposition 13.1. It can be better
compared with the moment estimate on degenerate U -statistics given in 13.3).

Proposition 13.2 provides a similar, but weaker inequality for the moments
of normalized degenerate U -statistics.

Proposition 13.2 (Estimate on the moments of degenerate U-
statistics). Let us consider a degenerate U -statistic In,k(f) of order k with
sample size n and with a kernel function f satisfying relations (8.1) and (8.2)
with some 0 < σ2 ≤ 1. Fix a positive number η > 0. There exist some uni-
versal constants A < ∞ and C < ∞ such that

E
(

n−k/2k!In,k(f)
)2M

≤ A (1 + C
√

η)
2kM

(
2

e

)kM

(kM)
kM

σ2M

for all integers M such that 0 ≤ kM ≤ ηnσ2. (13.3)

In formula (13.3) the constant C can be chosen as C =
√

2.

Theorem 13.2 yields a good estimate on E
(
n−k/2k!In,k(f)

)2M
with a fixed

exponent 2M with the choice η = kM
nσ2 . With such a choice of the number

η formula (13.3) yields an estimate on the moments E
(
n−k/2k!In,k(f)

)2M

comparable with the estimate on the corresponding Wiener–Itô integral if
M ≤ nσ2, while it yields a much weaker estimate if M ≫ nσ2.

Now I turn to the proof of these propositions.

Proof of Proposition 13.1. Proposition 13.1 can be simply proved by means
of the Corollary of Theorem 10.2 with the choice m = 2M , and fp = f for
all 1 ≤ p ≤ 2M . Formulas (10.21) and (10.22) yield that
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E
(
k!Zµ,k(f)2M

)
≤
(∫

f2(x1, . . . , xk)µ( dx1) . . . µ(dxk)

)M

|Γ2M (k)|

≤ |Γ2M (k)|σ2M ,

where |Γ2M (k)| denotes the number of closed diagrams γ in the class
Γ̄ (k, . . . , k
︸ ︷︷ ︸

2M times

) introduced in the corollary of Theorem 10.2. Thus to com-

plete the proof of Proposition 13.1 it is enough to show that |Γ2M (k)| ≤
1 · 3 · 5 · · · (2kM − 1). But this can easily be seen with the help of the fol-
lowing observation. Let Γ̄2M (k) denote the class of all graphs with vertices
(l, j), 1 ≤ l ≤ 2M , 1 ≤ j ≤ k, such that from all vertices (l, j) exactly one
edge starts, all edges connect different vertices, but edges connecting vertices
(l, j) and (l, j′) with the same first coordinate l are also allowed. Let |Γ̄2M (k)|
denote the number of graphs in Γ̄2M (k). Then clearly |Γ2M (k)| ≤ |Γ̄2M (k)|.
On the other hand, |Γ̄2M (k)| = 1 · 3 · 5 · · · (2kM − 1). Indeed, let us list the
vertices of the graphs from Γ̄2M (k) in an arbitrary way. Then the first vertex
can be paired with another vertex in 2kM − 1 way, after this the first vertex
from which no edge starts can be paired with 2kM −3 vertices from which no
edge starts. By following this procedure the next edge can be chosen 2kM −5
ways, and by continuing this calculation we get the desired formula.

Proof of Proposition 13.2. Relation (13.3) will be proved by means of relations
(11.14) and (11.15) in the Corollary of Theorem 11.2 with the choice m = 2M
and fp = f for all 1 ≤ p ≤ 2M . Let us take the class of closed coloured
diagrams Γ (k,M) = Γ̄ (k, . . . , k

︸ ︷︷ ︸

2Mtimes

). This will be partitioned into subclasses

Γ (k,M, r), 1 ≤ r ≤ kM , where Γ (k,M, r) contains those closed diagrams
γ ∈ Γ (k,M) for which W (γ) = 2r. Let us recall that W (γ) was defined
in (11.9), and in the case of closed diagrams W (γ) =

∑

β∈γ

(ℓ(β) − 2). For a

diagram γ ∈ Γ (k,M), W (γ) is an even number, since W (γ) + 2s(γ) = 2kM ,
i.e. W (γ) = 2r with r = kM − s, where s = s(γ) denotes the number of
chains in γ.

First we prove an estimate about the cardinality of Γ (k,M, r). We claim
that there exists some universal constant A < ∞ such that

|Γ (k,M, r)| ≤
(

2kM

2r

)

1 · 3 · 5 · · · (2kM − 2r − 1)(kM − r)2r (13.4)

≤ A

(
2

e

)kM (
2kM

2r

)

2−r(kM)kM+r for all 0 ≤ r ≤ kM

with some universal constant A < ∞.
To prove formula (13.4) let us first observe that |Γ (k,M, r)| can be

bounded from above with the number of such partitions of a set with 2kM
points which consists of s = kM − r sets containing at least two points. In-
deed, for each γ ∈ Γ (k,M, r) the chains of the diagram γ yield a partition of
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the set {(p, r) : 1 ≤ p ≤ 2M, 1 ≤ k ≤ r} consisting of 2r sets such that each
of them contains at least two points. Moreover, the partition given in such a
way determines the chains of γ, because the vertices of a chain are listed in a
prescribed order. Namely, the indices of the rows which contain them follow
each other in increasing order. This implies that we can correspond to each
diagram γ ∈ Γ (k,M, r) a different partition of a set of 2Mk elements with
the prescribed properties.

The number of the partitions with the above properties can be bounded
from above in the following way. Let us calculate the number of possibilities
for choosing s = kM − r disjoint subsets of cardinality two from a set of
cardinality 2kM , and multiply this number with the possibility of attaching
each of the remaining 2r points of the original set to one of these sets of
cardinality 2.

We can choose these sets of cardinality 2 in
(
2kM
2r

)
1 · 3 · 5 · · · (2kM − 1)

ways, since we can choose the union of these sets, which consists of 2kM −2r
points in

(
2kM

2kM−2r

)
=
(
2kM
2r

)
ways, and then we can choose the pair of the

first element in 2kM − 2r − 1 ways, then the pair of the first still not chosen
element in 2kM − 2r − 3 ways, and continuing this procedure we get the
above formula for the number of choices for these sets of cardinality 2. Then
the remaining 2r points of the original set can be put in (kM − r)2r ways in
one of these kM − r sets of cardinality 2. The above relations imply the first
inequality of formula (13.4).

To get the second inequality observe that by the Stirling formula 1 · 3 ·
5 · · · (2kM − 2r − 1) = (2kM−2r)!

2kM−r(kM−r)!
≤ A

(
2
e

)kM−r
(kM − r)kM−r with some

universal constant A < ∞. Beside this, we can write (kM − r)kM+r ≤
(kM)r(kM − r)kM = (kM)kM+r(1 − r

kM )kM ≤ e−r(kM)kM+r. These es-
timates imply the second inequality in (13.4).

We prove the estimate (13.3) with the help of the relations (11.14),
(11.15) and (13.4). First we estimate the term n−W (γ)/2|Fγ | for a diagram
γ ∈ Γ (k,M, r) under the conditions kM ≤ ηnσ2 and σ2 ≤ 1 with the help of
relation (11.15).

In this case we can write |U(γ)| ≥ 2M − W (γ) = 2M − 2r for the
function U(γ) defined in (11.12). Hence by relation (11.15) n−W (γ)/2|Fγ | ≤
22rn−rσ|U(γ)| ≤ 22r

(
nσ2

)−r
σ2M ≤ ηr22r(kM)−rσ2M for γ ∈ Γ (k,M, r)

because of the conditions kM ≤ ηnσ2 and σ2 ≤ 1.
This estimate together with relation (11.14) imply that for kM ≤ ηnσ2

E
(

n−k/2k!In,k(fk)
)2M

≤
∑

γ∈Γ (k,M)

n−W (γ)/2 · |Fγ |

≤
kM∑

r=0

|Γ (k,M, r)|ηr22r(kM)−rσ2M .

Hence by formula (13.4)



13 The proof of Theorems 8.3, 8.5 and Example 8.7 143

E
(

n−k/2k!In,k(fk)
)2M

≤ A

(
2

e

)kM

(kM)kMσ2M
kM∑

r=0

(
2kM

2r

)(√

2η
)2r

≤ A

(
2

e

)kM

(kM)kMσ2M
(

1 +
√

2
√

η
)2kM

if 0 ≤ kM ≤ ηnσ2. Thus we have proved Proposition 13.2 with C =
√

2.

It is not difficult to prove Theorem 8.5 with the help of Proposition 13.1.

Proof of Theorem 8.5. By formula (13.2) which is a consequence of Proposi-
tion 13.1 and the Markov inequality

P (|k!Zµ,k(f)| > u) ≤ E (k!Zµ,k(f))
2M

u2M
≤ A

(
2kMσ2/k

eu2/k

)kM

(13.5)

with some constant A >
√

2 if M ≥ M0 with some constant M0 = M0(A),
and M is an integer.

Put M̄ = M̄(u) = 1
2k

(
u
σ

)2/k
, and M = M(u) = [M̄ ], where [x] de-

notes the integer part of a real number x. Choose some number u0 such that
1
2k

(
u0

σ

)2/k ≥ M0 + 1. Then relation (13.5) can be applied with M = M(u)
for u ≥ u0, and this yields that

P (|k!Zµ,k(f)| > u) ≤ A

(
2kMσ2/k

eu2/k

)kM

≤ e−kM ≤ Aeke−kM̄

= Aek exp

{

−1

2

(u

σ

)2/k
}

if u ≥ u0. (13.6)

Relation (13.6) means that relation (8.17) holds for u ≥ u0 with the pre-
exponential coefficient Aek. By enlarging this coefficient if it is needed it can
be guaranteed that relation (8.17) holds for all u > 0. Theorem 8.5 is proved.

Theorem 8.3 can be proved similarly by means of Proposition 13.2. Nev-
ertheless, the proof is technically more complicated, since in this case the
optimal choice of the parameter in the Markov inequality cannot be given in
such a direct form as in the proof of Theorem 8.5. In this case the Markov
inequality is applied with an only almost optimal choice of the parameter M .

Proof of Theorem 8.3. The Markov inequality and relation (13.3) with η =
kM
nσ2 imply that

P (n−k/2k!|In,k(f)| > u) ≤ E
(
k!n−k/2In,k(f)

)2M

u2M
(13.7)

≤ A




1

e
· 2kM

(

1 + C

√
kM√
nσ

)2
(σ

u

)2/k





kM
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for all integers M ≥ 0.
Relation (8.12) will be proved with the help of estimate (13.7) under the

condition 0 ≤ u
σ ≤ nk/2σk. To this end let us introduce the number M̄ by

means of the formula

kM̄ =
1

2

(u

σ

)2/k 1

1 + B
( u

σ )
1/k

√
nσ

=
1

2

(u

σ

)2/k 1

1 + B
(
un−k/2σ−(k+1)

)1/k

with a sufficiently large number B = B(C) > 0 and M = [M̄ ], where [x]
means the integer part of the number x.

Observe that
√

kM̄ ≤
(

u
σ

)1/k
,

√
kM̄√
nσ

≤
(
un−k/2σ−(k+1)

)1/k ≤ 1, and

(

1 + C

√
kM̄√
nσ

)2

≤ 1 + B

√
kM̄√
nσ

≤ 1 + B
(

un−k/2σ−(k+1)
)1/k

with a sufficiently large B = B(C) > 0 if u
σ ≤ nk/2σk. Hence

1

e
· 2kM

(

1 + C

√
kM√
nσ

)2
(σ

u

)2/k

≤ 1

e
· 2kM̄

(

1 + C

√
kM̄√
nσ

)2
(σ

u

)2/k

=
1

e
·

(

1 + C
√

kM̄√
nσ

)2

1 + B
(
un−k/2σ−(k+1)

)1/k
≤ 1

e
(13.8)

if u
σ ≤ nk/2σk. Inequalities (13.7) and (13.8) together yield that

P (n−k/2k!|In,k(f)| > u) ≤ Ae−kM ≤ Aeke−kM̄

if 0 ≤ u
σ ≤ nk/2σk. Hence the choice of the number M̄ implies that inequal-

ity (8.12) holds with the pre-exponential constant Aek and the sufficiently
large but fixed number B > 0. Theorem 8.3 is proved.

Example 8.7 is a relatively simple consequence of Itô’s formula for multiple
Wiener–Itô integrals.

Proof of Example 8.7. We may restrict our attention to the case k ≥ 2. Itô’s
formula for multiple Wiener-Itô integrals, more explicitly relation (10.24),
implies that the random variable k!Zµ,k(f) can be expressed as k!Zµ,k(f) =
σHk

(∫
f0(x)µW ( dx)

)
= σHk(η), where Hk(x) is the k-th Hermite polyno-

mial with leading coefficient 1, and η =
∫

f0(x)µW ( dx) is a standard normal
random variable. Hence we get by exploiting that the coefficient of xk−1 in
the polynomial Hk(x) is zero that P (k!|Zµ,k(f)| > u) = P (|Hk(η)| ≥ u

σ ) ≥
P
(
|ηk| − D|ηk−2| > u

σ

)
with a sufficiently large constant D > 0 if u

σ > 1.
There exist such positive constants A and B for which
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P
(

|ηk| − D|ηk−2| >
u

σ

)

≥ P

(

|ηk| >
u

σ
+ A

(u

σ

)(k−2)/k
)

if
u

σ
> B.

Hence

P (k!|Zµ,k(f)| > u) ≥ P

(

|η| >
(u

σ

)1/k
(

1 + A
(u

σ

)−2/k
))

≥
C̄ exp

{

− 1
2

(
u
σ

)2/k
}

(
u
σ

)1/k
+ 1

with an appropriate C̄ > 0 if u
σ > B. Since P (k!|Zµ,k(f)| > 0) > 0, the

above inequality also holds for 0 ≤ u
σ ≤ B if the constant C̄ > 0 is chosen

sufficiently small. This means that relation (8.19) holds.

Next we prove a multivariate version of Hoeffding’s inequality. Before its
formulation some notations will be introduced.

Let us fix two positive integers k and n and some real numbers a(j1, . . . , jk)
for all sequences of arguments {j1, . . . , jk} such that 1 ≤ jl ≤ n, 1 ≤ l ≤ k,
and jl 6= jl′ if l 6= l′.

With the help of the above real numbers a(·) and a sequence of independent
random variables ε1, . . . , εn, P (εj = 1) = P (εj = −1) = 1

2 , 1 ≤ j ≤ n, the
random variable

V =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k,
jl 6=jl′ if l 6=l′

a(j1, . . . , jk)εj1 · · · εjk
(13.9)

and number

S2 =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k,
jl 6=jl′ if l 6=l′

a2(j1, . . . , jk). (13.10)

will be introduced.
With the help of the above notations the following result can be formu-

lated.

Theorem 13.3 (The multivariate version of Hoeffding’s inequality).
The random variable V defined in formula (13.9) satisfies the inequality

P (|V | > u) ≤ C exp

{

−1

2

(u

S

)2/k
}

for all u ≥ 0 (13.11)

with the constant S defined in (13.10) and some constants C > 0 depending
only on the parameter k in the expression V .

Theorem 13.3 will be proved by means of two simple lemmas. Before their
formulation the random variable
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Z =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k,
jl 6=jl′ if l 6=l′

|a(j1, . . . , jk)|ηj1 · · · ηjk
(13.12)

will be introduced, where η1, . . . , ηn are independent random variables with
standard normal distribution, and the numbers a(j1, . . . , jk) agree with those
in formula (13.9). The following lemmas will be proved.

Lemma 13.4. The random variables V and Z introduced in (13.9) and
(13.12) satisfy the inequality

EV 2M ≤ EZ2M for all M = 1, 2, . . . .

Lemma 13.5. The random variable Z defined in formula (13.12) satisfies
the inequality

EZ2M ≤ 1 · 3 · 5 · · · (2kM − 1)S2M for all M = 1, 2, . . . (13.13)

with the constant S defined in formula (13.10).

Proof of Lemma 13.4. We can write, by carrying out the multiplications in the
expressions EV 2M and EZ2M , by exploiting the additive and multiplicative
properties of the expectation for sums and products of independent random
variables together with the identities Eε2k+1

j = 0 and Eη2k+1
j = 0 for all

k = 0, 1, . . . that

EV 2M =
∑

(j1,...,jl, m1,...,ml) :
1≤js≤n, ms≥1, 1≤s≤l, m1+···+ml=kM

A(j1, . . . , jl,m1, . . . ,ml)Eε2m1
j1

· · ·Eε2ml
jl

(13.14)
and

EZ2M =
∑

(j1,...,jl, m1,...,ml) :
1≤js≤n, ms≥1, 1≤s≤l, m1+···+ml=kM

B(j1, . . . , jl,m1, . . . ,ml)Eη2m1
j1

· · ·Eη2ml
jl

(13.15)
with some coefficients A(j1, . . . , jl,m1, . . . ,ml) and B(j1, . . . , jl,m1, . . . ,ml)
such that

|A(j1, . . . , jl,m1, . . . ,ml)| ≤ B(j1, . . . , jl,m1, . . . ,ml). (13.16)

The coefficients A(·, ·, ·) and B(·, ·, ·) could be expressed explicitly, but we
do not need such a formula. What is important for us is that A(·, ·, ·) can
be expressed as the sum of certain terms, and B(·, ·, ·) as the sum of the
absolute value of the same terms. Hence relation (13.16) holds. Since Eε2m

j ≤
Eη2m

j for all parameters j and m formulas (13.14), (13.15) and (13.16) imply
Lemma 13.4.
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Proof of Lemma 13.5. Let us consider a white noise W (·) on the unit inter-
val [0, 1] with the Lebesgue measure λ on [0, 1] as its reference measure, i.e.
let us take a set of Gaussian random variables W (A) indexed by the mea-
surable sets A ⊂ [0, 1] such that EW (A) = 0, EW (A)W (B) = λ(A ∩ B)
with the Lebesgue measure λ for all measurable subsets of the interval [0, 1].
Let us introduce n orthonormal functions ϕ1(x), . . . , ϕn(x) with respect to
the Lebesgue measure on the interval [0, 1], and define the random variables
ηj =

∫
ϕj(x)W ( dx), 0 ≤ j ≤ n. Then η1, . . . , ηn are independent random

variables with standard normal distribution, hence we may assume that they
appear in the definition of the random variable Z in formula (13.12). Beside
this, the identity ηj1 · · · ηjk

=
∫

ϕj1(x1) · · ·ϕjk
(xk)W ( dx1) . . . W ( dxk) holds

for all k-tuples (j1, . . . , jk), such that 1 ≤ js ≤ n for all 1 ≤ s ≤ k, and
the indices j1,. . . , js are different. This identity follows from Itô’s formula for
multiple Wiener–Itô integrals formulated in formula (10.23) of Theorem 10.3.

Hence the random variable Z defined in (13.12) can be written in the form

Z =

∫

f(x1, . . . , xk)W ( dx1) . . . W ( dxk)

with the function

f(x1, . . . , xk) =
∑

(j1,...,jk) : 1≤jl≤n for all 1≤l≤k,
jl 6=jl′ if l 6=l′

|a(j1, . . . , jk)|ϕj1(x1) · · ·ϕjk
(xk).

Because of the orthogonality of the functions ϕj(x)

S2 =

∫

[0,1]k
f2(x1, . . . , xk) dx1 . . . dxk.

Lemma 13.5 is a straightforward consequence of the above relations and for-
mula (13.1) in Proposition 13.1.

Proof of Theorem 13.3. The proof of Theorem 13.3 with the help of Lem-
mas 13.4 and 13.5 is an almost word for word repetition of the proof of
Theorem 8.5. By Lemma 13.4 inequality (13.13) remains valid if the random
variable Z is replaced by the random variable V at its left-hand side. Hence
the Stirling formula yields that

EV 2M ≤ EZ2M ≤ (2kM)!

2kM (kM)!
S2M ≤ C

(
2

e

)kM

(kM)kMS2M

for any C ≥
√

2 if M ≥ M0(A). As a consequence, by the Markov inequality
the estimate

P (|V | > u) ≤ EV 2M

u2M
≤ C

(

2kM

e

(
S

u

)2/k
)kM

(13.17)
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holds for all C >
√

2 if M ≥ M0(C). Put kM̄ = kM̄(u) = 1
2

(
u
S

)2/k
and

M = M(u) = [M̄ ], where [x] denotes the integer part of the number x. Let

us choose a threshold number u0 by the identity 1
2k

(
u0

S

)2/k
= M0(C) + 1.

Formula (13.17) can be applied with M = M(u) for u ≥ u0, and it yields
that

P (|V | > u) ≤ Ce−kM ≤ Ceke−kM̄ = Cek exp

{

−1

2

(u

S

)2/k
}

if u ≥ u0.

The last inequality means that relation (13.11) holds for u ≥ u0 if the constant
C is replaced by Cek in it. With the choice of a sufficiently large constant C
relation (13.11) holds for all u ≥ 0. Theorem 13.3 is proved.

13. B) A short discussion about the methods and results.

A comparison of Theorem 8.5 and Example 8.7 shows that the estimate (8.18)
is sharp. At least no essential improvement of this estimate is possible which
holds for all Wiener–Itô integrals with a kernel function f satisfying the
conditions of Theorem 8.5. This fact also indicates that the bounds (13.1)
and (13.2) on high moments of Wiener–Itô integrals are sharp. It is worth
while comparing formula (13.2) with the estimate of Proposition 13.2 on
moments of degenerate U -statistics.

Let us consider a normalized k-fold degenerate U -statistic n−k/2k!In,k(f)
with some kernel function f and a µ-distributed sample of size n. Let us
compare its moments with those of a k-fold Wiener–Itô integral k!Zµ,k(f)
with the same kernel function f with respect to a white noise µW with ref-
erence measure µ. Let σ denote the L2-norm of the kernel function f . If
M ≤ εnσ2 with a small number ε > 0, then Proposition 13.2 (with an ap-
propriate choice of the parameter η which is small in this case) provides an
almost as good bound on the 2M -th moment of the normalized U -statistic as
Proposition 13.1 does on the 2M -th moment of the corresponding Wiener–Itô
integral. In the case M ≤ Cnσ2 with some fixed (not necessarily small) num-
ber C > 0 the 2M -th moment of the normalized U -statistic can be bounded
by C(k)M times the natural estimate on the 2M -th moment of the Wiener–
Itô integral with some constant C(k) > 0 depending only on the number C.
This can be so interpreted that in this case the estimate on the moments of
the normalized U -statistic is weaker than the estimate on the moments of
the Wiener–Itô integral, but they are still comparable. Finally, in the case
M ≫ nσ2 the estimate on the 2M -th moment of the normalized U -statistic
is much worse than the estimate on the 2M -th moment of the Wiener–Itô
integral.

A similar picture arises if the distribution of the normalized degenerate
U -statistic

Fn(u) = P (n−k/2k!|In,k(f)| > u)

is compared to the distribution of the Wiener–Itô integral
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G(u) = P (k!|Zµ,k(f)| > u).

A comparison of Theorems 8.3 and 8.5 shows that for 0 ≤ u ≤ εnk/2σk+1

with a small ε > 0 an almost as good estimate holds Fn(u) as for G(u). In
the case 0 ≤ u ≤ nk/2σk+1 the behaviour of Fn(u) and G(u) is similar, only
in the exponent of the estimate on Fn(u) in formula ((8.10)) a worse constant
appears. Finally, if u ≫ nk/2σk+1, then — as Example 8.8 shows, at least in
the case k = 2, — the (tail) distribution function Fn(u) satisfies a much worse
estimate than the function G(u). Thus a similar picture arises as in the case
when the estimate on the tail-distribution of normalized sums of indepen-
dent random variables, discussed in Section 3, is compared to the behaviour
of the standard normal distribution in the neighbourhood of infinity. To un-
derstand this similarity better it is useful to recall Theorem 10.4, the limit
theorem about normalized degenerate U -statistics. Theorems 8.3 and 8.5 en-
able us to compare the tail behaviour of normalized degenerate U -statistics
with their limit presented in the form of multiple Wiener–Itô integrals, while
the one-variate versions of these results compare the distribution of sums of
independent random variables with their Gaussian limit.

The above results show that good bounds on the moments of degenerate
U -statistics and multiple Wiener–Itô also provide a good estimate on their
distribution. To understand the behaviour of high moments of degenerate
U -statistics it is useful to have a closer look at the simplest case k = 1, when
the moments of sums of independent random variables with expectation zero
are considered.

Let us consider a sequence of independent and identically distributed ran-

dom variables ξ1, . . . , ξn with expectation zero, take their sum Sn =
n∑

j=1

ξj ,

and let us try to give a good estimate on the moments ES2M
n for all

M = 1, 2, . . . . Because of the independence of the random variables ξj and
the condition Eξj = 0 the identity

ES2M
n =

∑

(j1,...,js,l1,...,ls)
j1+···+js=2M, ju≥2, for all 1≤u≤s

lu 6=lu′ if u6=u′

Eξj1
l1
· · ·Eξjs

ls
(13.18)

holds. Simple combinatorial considerations show that a dominating num-
ber of terms at the right-hand side of (13.18) are indexed by a vector
(j1, . . . , jM ; l1, . . . , lM ) such that ju = 2 for all 1 ≤ u ≤ M , and the number

of such vectors is equal to
(

n
M

) (2M)!
2M ∼ nM (2M)!

2M M !
. The last asymptotic relation

holds if the number n of terms in the random sum Sn is sufficiently large.
The above considerations suggest that under not too restrictive conditions

ES2M
n ∼

(
nσ2

)M (2M)!
2M M !

= Eη2M
nσ2 , where σ2 = Eξ2 is the variance of the

terms in the sum Sn, and ηu denotes a random variable with normal distri-
bution with expectation zero and variance u. The question arises when the
above heuristic argument gives a right estimate.
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For the sake of simplicity let us restrict our attention to the case when the
absolute value of the random variables ξj is bounded by 1. Let us observe that
even in this case the above heuristic argument holds only under the condition
that the variance σ2 of the random variables ξj is not too small. Indeed, let us

consider such random variables ξj , for which P (ξj = 1) = P (ξj = −1) = σ2

2 ,
P (ξj = 0) = 1 − σ2. Then these random variables ξj have variance σ2, and
the contribution of the terms Eξ2M

j , 1 ≤ j ≤ n, to the sum in (13.18) equals

nσ2. If σ2 is very small, then it may happen that nσ2 ≫
(
nσ2

)M (2M)!
2M M !

, and
the approximation given for ES2M

n in the previous paragraph does not hold
any longer. Hence the asymptotic relation for a very high moment ES2M

n

suggested by the above heuristic argument may only hold if the variance σ2

of the summands satisfies an appropriate lower bound.
In the proof of Proposition 13.2 a similar picture appears in a hidden way.

In the calculation of the moments of a degenerate U -statistic the contribu-
tion of certain (closed) diagrams, more precisely of some integrals defined
with their help, has to be estimated. Some of these diagrams (those in which
all chains have length 2) appear also in the calculation of the moments of
multiple Wiener–Itô integrals. In the calculation of the moments of sums of
independent random variables the terms consisting of products of second mo-
ments play such a role in the sum in formula (13.18) as the ‘nice’ diagrams
consisting of chains of length 2 play in the calculation of the moments of de-
generate U -statistics in formula (11.14). In nice cases the remaining diagrams
do not give a much greater contribution than these ‘nice’ diagrams, and we
get an almost as good bound for the moments of a normalized degenerate
U -statistic as for the moments of the corresponding multiple Wiener–Itô in-
tegral. The proof of Proposition 13.2 shows that such a situation appears
under very general conditions.

Let me also remark that there is an essential difference between the tail
behaviour of Wiener–Itô integrals and normalized degenerate U -statistics. A
good estimate can be given on the tail distribution of Wiener–Itô integrals
which depends only on the L2-norm of the kernel function, while in the case of
normalized degenerate U -statistics the corresponding estimate depends not
only on the L2-norm but also on the L∞ norm of the kernel function. In
Theorem 8.3 such an estimate is proved.

For k ≥ 2 the distribution of k-fold Wiener-Itô integrals are not determined
by the L2-norm of their kernel functions. This is an essential difference be-
tween Wiener–Itô integrals of order k ≥ 2 and k = 1. In the case k = 1 a
Wiener–Itô integral is a Gaussian random variable with expectation zero, and
its variance equals the square of the L2-norm of its kernel function. Hence its
distribution is completely determined by the L2-norm of its kernel function.
On the other hand, the distribution of a Wiener–Itô integral of order k ≥ 2
is not determined by its variance. Theorem 8.5 yields a ‘worst case’ estimate
on the distribution of Wiener–Itô integrals if we have a bound on their vari-
ance. In the statistical problems which were the main motivation for this
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work we need such estimates, but it may be interesting to know what kind of
estimates are known about the distribution of a multiple Wiener–Itô integral
or degenerate U -statistic if we have some additional information about its
kernel function. Some results will be mentioned in this direction, but most
technical details will be omitted from their discussion.

H. P. Mc. Kean proved the following lower bound on the distribution of
multiple Wiener–Itô integrals. (See [30] or [42].)

Theorem 13.6 (Lower bound on the tail distribution of Wiener–Itô
integrals). All k-fold Wiener–Itô integrals Zµ,k(f) satisfy the inequality

P (|Zµ,k(f)| > u) > Ke−Au2/k

(13.19)

with some numbers K = K(f, µ) > 0 and A = A(f, µ) > 0.

The constant A in the exponent Au2/k of formula (13.19) is always finite, but
Mc. Kean’s proof yields no explicit upper bound on it. The following example
shows that in certain cases if we fix the constant K in relation (13.19), then
this inequality holds only with a very large constant A > 0 even if the variance
of the Wiener–Itô integral equals 1.

Take a probability measure µ and a white noise µW with reference mea-
sure µ on a measurable space (X,X ), and let ϕ1, ϕ2, . . . be a sequence of
orthonormal functions on (X,X ) with respect to this measure µ. Define for
all L = 1, 2, . . . , the function

f(x1, . . . , xk) = fL(x1, . . . , xk) = (k!)1/2L−1/2
L∑

j=1

ϕj(x1) · · ·ϕj(xk) (13.20)

and the Wiener–Itô integral

Zµ,k(f) = Zµ,k(fL) =
1

k!

∫

fL(x1, . . . , xk)µW ( dx1) . . . µW ( dxk).

Then EZ2
µ,k(f) = 1, and the high moments of Zµ,k(f) can be well estimated.

For a large parameter L these moments are much smaller, than the bound
given in Proposition 13.1. (The calculation leading to the estimation of the
moments of Zµ,k(f) will be omitted.) These moment estimates also imply that
if the parameter L is large, then for not too large numbers u the probability
P (|Zµ,k(f)| > u) has a much better estimate than that given in Theorem 8.5.
As a consequence, for a large number L and fixed number K relation (13.19)
may hold only with a very big number A > 0.

We can expect that if we take a Gaussian random polynomial P (ξ1, . . . , ξn)
whose arguments are Gaussian random variables ξ1, . . . , ξn, and which is the
sum of many small almost independent terms, then a similar picture arises as
in the case of a Wiener–Itô integral with kernel function (13.20) with a large
parameter L. Such a random polynomial has an almost Gaussian distribution
by the central limit theorem, and we can also expect that its not too high
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moments behave so as the corresponding moments of a Gaussian random
variable with expectation zero and the same variance as the Gaussian random
polynomial we consider. Such a bound on the moments has the consequence
that the estimate on the probability (P (ξ1, . . . , ξn) > u) given in Theorem 8.5
can be improved if the number u is not too large. A similar picture arises if
we consider Wiener–Itô integrals whose kernel function satisfies some ‘almost
independence’ properties. The problem is to find the right properties under
which we can get a good estimate that exploits the almost independence
property of a Gaussian random polynomial or of a Wiener–Itô integral. The
main result of R. Lata la’s paper [27] can be considered as a response to this
question. I describe this result below.

To formulate Lata la’s result some new notions have to be introduced.
Given a finite set A let P(A) denote the set of all its partitions. If a
partition P = {B1, . . . , Bs} ∈ P(A) consists of s elements then we say
that this partition has order s, and write |P | = s. In the special case
A = {1, . . . , k} the notation P(A) = Pk will be used. Given a measur-
able space (X,X ) with a probability measure µ on it together with a fi-
nite set B = {b1, . . . , bj} let us introduce the following notations. Take j
different copies (Xbr

,Xbr
) and µbr

, 1 ≤ r ≤ j, of this measurable space
and probability measure indexed by the elements of the set B, and define

their product (X(B),X (B), µ(B)) =

(
j∏

r=1
Xbr

,
j∏

r=1
Xbr

,
j∏

r=1
µbr

)

. The points

(xb1 , . . . , xbj
) ∈ X(B) will be denoted by x(B) ∈ X(B) in the sequel. With the

help of the above notations I introduce the quantities needed in the formu-
lation of the following Theorem 13.7.

Let f = f(x1, . . . , xk) be a function on the k-fold product (Xk,X k, µk) of
a measure space (X,X , µ) with a probability measure µ. For all partitions
P = {B1, . . . , Bs} ∈ Pk of the set {1, . . . , k} consider the functions gr

(
x(Br)

)

on the space X(Br), 1 ≤ r ≤ s, and define with their help the quantities

α(P ) = α(P, f, µ)

= sup
g1,...,gs

∫

f(x1, . . . , xk)g1

(

x(B1)
)

· · · gs

(

x(Bs)
)

µ(dx1) . . . µ(dxk);

where supremum is taken for such functions

g1, . . . , gs, gr : XBr → R1 for which
∫

g2
r

(

x(Br)
)

µ(Br)
(

dx(Br)
)

≤ 1 for all 1 ≤ r ≤ s, (13.21)

and put
αs = max

P∈Pk, |P |=s
α(P ), 1 ≤ s ≤ k. (13.22)

In Lata la’s estimation of Wiener–Itô integrals of order k the quantities
αs, 1 ≤ s ≤ k, play a similar role as the number σ2 in Theorem 8.5.
Observe that in the case |P | = 1, i.e. if P = {1, . . . , k} the identity
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α2(P ) =
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) holds, which means that α1 = σ.
The following estimate is valid for Wiener–Itô integrals of general order.

Theorem 13.7 (Lata la’s estimate about the tail-distribution of
Wiener–Itô integrals). Let a k-fold Wiener–Itô integral Zµ,k(f), k ≥ 1,
be defined with the help of a white noise µW with a non-atomic reference
measure µ and a kernel function f of k variables such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞.

There is some universal constant C(k) < ∞ depending only on the order k
of the random integral such that the inequalities

E(Zµ,k(f))2M ≤
(

C(k) max
1≤s≤k

(Ms/2αs)

)2M

, (13.23)

and

P (|Zµ,k(f)| > u) ≤ C(k) exp

{

− 1

C(k)
min

1≤s≤k

(
u

αs

)2/s
}

(13.24)

hold for all M = 1, 2, . . . and u > 0 with the quantities αs, defined in formu-
las (13.21) and (13.22).

Inequality (13.24) is a simple consequence of (13.23). In the special case
when αs ≤ M−(s−1)/2 for all 1 ≤ s ≤ k, then inequality (13.23) says that
the moment EZµ,k(f)2M has the same magnitude as the 2M -th moment of a
standard Gaussian random variable multiplied by a constant, and it implies
a good estimate on P (|Zµ,k(f)| > u) given in (13.24). Actually the result of
Theorem 13.7 can be reduced to the special case when αs ≤ M−(s−1)/2 for all
1 ≤ s ≤ k. Thus it can be interpreted so that if the quantities αs of a k-fold
Wiener–Itô integral are sufficiently small, then these ‘almost independence’
conditions imply that the 2M -th moment of this integrals behaves like a
one-fold Wiener–Itô integral with the same variance.

Actually Lata la formulated his result in a different form, and he proved a
slightly weaker result. He considered Gaussian polynomials of the following
form:

P (ξ
(s)
j , 1 ≤ j ≤ n, 1 ≤ s ≤ k)

=
1

k!

∑

(j1,...,jk) : 1≤js≤n, 1≤s≤k

a(j1, . . . , jk)ξ
(1)
j1

· · · ξ(k)
jk

, (13.25)

where ξ
(s)
j , 1 ≤ j ≤ n and 1 ≤ s ≤ k, are independent standard normal

random variables. Lata la gave an estimate about the moments and tail-
distribution of such random polynomials.
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The problem about the behaviour of such random polynomials can be
reformulated as a problem about the behaviour of Wiener–Itô integrals in the
following way: Take a measurable space (X,X ) with a non-atomic measure µ
on it. Let Zµ be a white noise with reference measure µ, let us choose a set

of orthogonal functions h
(s)
j (x), 1 ≤ j ≤ n, 1 ≤ s ≤ k, on the space (X,X )

with respect to the measure µ, and define the function

f(x1, . . . , xk) =
1

k!

∑

(j1,...,jk) : 1≤js≤n, 1≤s≤k

a(j1, . . . , jk)h
(1)
j1

(x1) · · ·h(k)
jk

(xk)

(13.26)
together with the Wiener–Itô integral Zµ,k(f). Since the random integrals

ξ̄
(s)
j =

∫
h

(s)
j (x)Zµ( dx), 1 ≤ j ≤ n, 1 ≤ s ≤ k, are independent, standard

Gaussian random variables, it is not difficult to see with the help of Itô’s
formula (Theorem 10.3 in this work) that the distributions of the random

polynomial P (ξ
(s)
j , 1 ≤ j ≤ n, 1 ≤ s ≤ k) and Zµ,k(f) agree. Here we refor-

mulated Lata la’s estimates about random polynomials of the form (13.25) to
estimates about Wiener–Itô integrals with kernel function of the form (13.26).

These estimates are equivalent to Lata la’s result if we restrict our atten-
tion to the special class of Wiener–Itô integrals with kernel functions of the
form (13.26). But we have formulated our result for Wiener–Itô integrals with
a general kernel function. Lata la’s proof heavily exploits the special structure
of the random polynomials given in (13.25), the independence of the random

variables ξ
(s)
j for different parameters s in it. (It would be interesting to find a

proof which does not exploit this property.) On the other hand, this result can
be generalized to the case discussed in Theorem 13.7. This generalization can
be proved by exploiting the theorem of de la Peña and Montgomery–Smith
about the comparison of U -statistics and decoupled U -statistics (formulated
in Theorem 14.3 of this work) and the properties of the Wiener–Itô integrals.
I omit the details of the proof.

Lata la also proved a converse estimate in [27] about random polynomials
of Gaussian random polynomials which shows that the estimates of Theo-
rem 13.7 are sharp. We formulate it in its original form, i.e. we restrict our
attention to the case of Wiener–Itô integrals with kernel functions of the
form (13.26).

Theorem 13.8 (A lower bound about the tail distribution of Wiener–
Itô integrals). A random integral Zµ,k(f) with a kernel function of the
form (13.26) satisfies the inequalities

E(Zµ,k(f))2M ≥
(

C(k) max
1≤s≤k

(Ms/2αs)

)2M

,

and

P (|Zµ,k(f)| > u) ≥ 1

C(k)
exp

{

−C(k) min
1≤s≤k

(
u

αs

)2/s
}
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for all M = 1, 2, . . . and u > 0 with some universal constant C(k) > 0
depending only on the order k of the integral and the quantities αs, defined
in formula (13.21) and (13.22).

Let me finally remark that there is a counterpart of Theorem 13.7 about
degenerate U -statistics. Adamczak’s paper [1] contains such a result. Here
we do not discuss it, because this result is far from the main topic of this
work. We only remark that some new quantities have to be introduced to
formulate it. The appearance of these conditions is related to the fact that
in an estimate about the tail-behaviour of a degenerate U -statistic we need
a bound not only on the L2-norm but also on the supremum norm of the
kernel function. In a sharp estimate the bound about the supremum of the
kernel function has to be replaced by a more complex system of conditions,
just as the condition about the L2-norm of the kernel function was replaced
by a condition about the quantities αs, 1 ≤ s ≤ k, defined in formulas (13.21)
and (13.22) in Theorem 13.7.





Chapter 14

Reduction of the main result in this work

The main result of this work is Theorem 8.4 or its multiple integral version
Theorem 8.2. It was shown in Section 9 that Theorem 8.2 follows from The-
orems 8.4. Hence it is enough to prove Theorem 8.4. It may be useful to
study this problem together with its multiple Wiener–Itô integral version,
Theorem 8.6.

Theorems 8.6 and 8.4 will be proved similarly to their one-variate versions,
Theorems 4.2 and 4.1. Theorem 8.6 will be proved with the help of Theo-
rem 8.5 about the estimation of the tail distribution of multiple Wiener–Itô
integrals. A natural modification of the chaining argument applied in the
proof of Theorem 4.2 works also in this case. No new difficulties arise. On
the other hand, in the proof of Theorem 8.4 several new difficulties have to
be overcome. I start with the proof of Theorem 8.6.

Proof of Theorem 8.6. Fix a number 0 < ε < 1, and let us list the elements of
the countable set F as f1, f2, . . . . For all p = 0, 1, 2, . . . let us choose by ex-
ploiting the conditions of Theorem 8.6 a set Fp = {fa(1,p), . . . , fa(mp,p)} ⊂ F
of function with mp ≤ 2D 2(2p+4)Lε−Lσ−L elements in such a way that

inf
1≤j≤mp

∫
(f − fa(j,p))

2 dµ ≤ 2−4p−8ε2σ2 for all f ∈ F , and beside this let

fp ∈ Fp. For all indices a(j, p), p = 1, 2, . . . , 1 ≤ j ≤ mp, choose a pre-
decessor a(j′, p − 1), j′ = j′(j, p), 1 ≤ j′ ≤ mp−1, in such a way that the
functions fa(j,p) and fa(j′,p−1) satisfy the relation

∫
|fa(j,p)−fa(j′,p−1)|2 dµ ≤

ε2σ22−4(p+1). Theorem 8.5 with the choice ū = ū(p) = 2−(p+1)εu and
σ̄ = σ̄(p) = 2−2p−2εσ yields the estimates

P (A(j, p)) = P
(

k!|Zµ,k(fa(j,p) − fa(j′,p−1))| ≥ 2−(1+p)εu
)

≤ C exp

{

−1

2

(
2p+1u

σ

)2/k
}

, 1 ≤ j ≤ mp, (14.1)

for all p = 1, 2, . . . , and
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P (B(s)) = P
(

k!|Zµ,k(fa(0,s))| ≥
(

1 − ε

2

)

u
)

≤ C exp






−1

2

((
1 − ε

2

)
u

σ

)2/k





, 1 ≤ s ≤ m0. (14.2)

Since all f ∈ F is the element of at least one set Fp, p = 0, 1, 2, . . . , (We
made a construction, where fp ∈ Fp), the definition of the predecessor of an
index a(j, p) and of the events A(j, p) and B(s) in formulas (14.1) and (14.2)
together with the previous estimates imply that

P

(

sup
f∈F

k!|Zµ,k(f)| ≥ u

)

≤ P





∞⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1

B(s)





≤
∞∑

p=1

mp∑

j=1

P (A(j, p)) +

m0∑

s=1

P (B(s))

≤
∞∑

p=1

2CD2(2p+4)Lε−Lσ−L exp

{

−1

2

(
2p+1u

σ

)2/k
}

+21+4LCDε−Lσ−L exp






−1

2

((
1 − ε

2

)
u

σ

)2/k





. (14.3)

Standard calculation shows that if u ≥ MLk/2 1
ε logk/2 2

ε · σ logk/2 2
σ with a

sufficiently large constant M , then the inequalities

2(2p+4)Lε−Lσ−L exp

{

−1

2

(
2p+1u

σ

)2/k
}

≤ 2−p

{

−1

2

(
(1 − ε)u

σ

)2/k
}

hold for all p = 1, 2 . . . , and

24Lε−Lσ−L exp






−1

2

((
1 − ε

2

)
u

σ

)2/k





≤ exp

{

−1

2

(
(1 − ε) u

σ

)2/k
}

.

These inequalities together with relation (14.3) imply relation (8.18). The-
orem 8.6 is proved.

The proof of Theorem 8.4 is harder. In this case the chaining argument
in itself does not supply the proof, since Theorem 8.3 gives a good estimate
about the distribution of a degenerate U -statistic only if it has a not too
small variance. The same difficulty appeared in the proof of Theorem 4.1,
and the method applied in that case will be adapted to the present situation.

A multivariate version of Proposition 6.1 will be proved in Proposi-
tion 14.1, and another result which can be considered as a multidimensional
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version of Proposition 6.2 will be formulated in Proposition 14.2. It will be
shown that Theorem 8.4 follows from Propositions 14.1 and 14.2. Most steps
of these proofs can be considered as a simple repetition of the corresponding
arguments in the proof of the results in Section 6. Nevertheless, I wrote them
down for the sake of completeness.

The result formulated in Proposition 14.1 can be proved in almost the same
way as its one-variate version, Proposition 6.1. The only essential difference is
that now we apply a multivariate version of Bernstein’s inequality given in the
Corollary of Theorem 8.3. In the calculations of the proof of Proposition 14.1
the term ( u

σ )2/k shows a behaviour similar to the term (u
σ )2 in Proposition 6.1.

Theorem 14.1 contains the information we can get by applying Theorem 8.3
together with the chaining argument. Its main content, inequality (14.4),
yields a good estimate on the supremum of degenerate U -statistics if it is
taken for an appropriate finite subclass Fσ̄ of the original class of kernel
functions F . The class of kernel functions Fσ̄ is a relatively dense subclass of
F in the L2 norm. Proposition 14.1 also provides some useful estimates on
the value of the parameter σ̄ which describes how dense the class of functions
Fσ̄ is in F .

Proposition 14.1. Let the k-fold power (Xk,X k) of a measurable space
(X,X ) be given together with some probability measure µ on (X,X ) and a
countable, L2-dense class F of functions f(x1, . . . , xk) of k variables with
some exponent L ≥ 1 and parameter D ≥ 1 with respect to the measure µ on
the product space (Xk,X k) which has the following properties. All functions
f ∈ F are canonical with respect to the measure µ, and they satisfy condi-
tions (8.5) and (8.6) with some real number 0 < σ ≤ 1. Take a sequence
of independent, µ-distributed random variables ξ1, . . . , ξn, n ≥ max(k, 2),
and consider the (degenerate) U -statistics In,k(f), f ∈ F , defined in for-
mula (8.8), and fix some number Ā = Āk ≥ 2k.

There is a number M = M(Ā, k) such that for all numbers u > 0 for which

the inequality nσ2 ≥
(

u
σ

)2/k ≥ M(L log 2
σ +log D) holds, a number σ̄ = σ̄(u),

0 ≤ σ̄ ≤ σ ≤ 1, and a collection of functions Fσ̄ = Fσ̄(u) = {f1, . . . , fm} ⊂ F
with m ≤ Dσ̄−L elements can be chosen in such a way that the sets Dj =

{f : f ∈ F ,
∫
|f − fj |2 dµ ≤ σ̄2}, 1 ≤ j ≤ m, satisfy the relation F =

m⋃

j=1

Dj,

and for the (degenerate) U -statistics In,k(f), f ∈ Fσ̄(u), the inequality

P

(

sup
f∈Fσ̄(u)

n−k/2|In,k(f)| ≥ u

Ā

)

≤ 2C exp

{

−α
( u

10Āσ

)2/k
}

if nσ2 ≥
(u

σ

)2/k

≥ M

(

L log
2

σ
+ log D

)

(14.4)

holds with the constants α = α(k), C = C(k) appearing in formula (8.13) of
the Corollary of Theorem 8.3 and the exponent L and parameter D of the L2-
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dense class F . Beside this, also the inequality 4
(

u
Āσ̄

)2/k ≥ nσ̄2 ≥ 1
64

(
u

Āσ

)2/k

holds for this number σ̄ = σ̄(u). If the number u satisfies also the inequality

nσ2 ≥
(u

σ

)2/k

≥ M(L3/2 log
2

σ
+ (log D)3/2) (14.5)

with a sufficiently large number M = M(Ā, k), then the relation nσ̄2 ≥
L log n + log D holds, too.

Proof of Proposition 14.1. Let us list the elements of the countable set F as
f1, f2, . . . . For all p = 0, 1, 2, . . . let us choose, by exploiting the L2-density
property of the class F , a set Fp = {fa(1,p), . . . , fa(mp,p)} ⊂ F with mp ≤
D 22pLσ−L elements in such a way that inf

1≤j≤mp

∫
(f − fa(j,p))

2 dµ ≤ 2−4pσ2

for all f ∈ F . For all indices a(j, p), p = 1, 2, . . . , 1 ≤ j ≤ mp, choose a
predecessor a(j′, p − 1), j′ = j′(j, p), 1 ≤ j′ ≤ mp−1, in such a way that the
functions fa(j,p) and fa(j′,p−1) satisfy the relation

∫
|fa(j,p)−fa(j′,p−1)|2 dµ ≤

σ22−4(p−1). Then the inequalities
∫ ( fa(j,p)−fa(j′,p−1)

2

)2

dµ ≤ 4σ22−4p and

sup
xj∈X, 1≤j≤k

∣
∣
∣
fa(j,p)(x1,...,xk)−fa(j′,p−1)(x1,...,xk)

2

∣
∣
∣ ≤ 1 hold. The Corollary of The-

orem 8.3 yields that

P (A(j, p)) = P

(

n−k/2|In,k(fa(j,p) − fa(j′,p−1))| ≥
2−(1+p)u

Ā

)

≤ C exp

{

−α

(
2pu

8Āσ

)2/k
}

if 4nσ22−4p ≥
(

2pu

8Āσ

)2/k

,

1 ≤ j ≤ mp, p = 1, 2, . . . , (14.6)

and

P (B(s)) = P
(

n−k/2|In,k(f0,s)| ≥ u

2Ā

)

≤ C exp

{

−α
( u

2Āσ

)2/k
}

,

1 ≤ s ≤ m0, quad if nσ2 ≥
( u

2Āσ

)2/k

. (14.7)

Introduce an integer R = R(u), R > 0, which satisfies the relations

2(4+2/k)(R+1)
( u

Āσ

)2/k

≥ 22+6/knσ2 ≥ 2(4+2/k)R
( u

Āσ

)2/k

,

and define σ̄2 = 2−4Rσ2 and Fσ̄ = FR (this is the class of functions Fp

introduced at the start of the proof with p = R). We defined the number R,
analogously to the proof of Proposition 6.1, as the largest number p for which

the condition formulated in (14.6) holds. As nσ2 ≥
(

u
σ

)2/k
, and Ā ≥ 2k by

our conditions, there exists such a positive integer R.) The cardinality m of
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the set Fσ̄ is clearly not greater than Dσ̄−L, and
m⋃

j=1

Dj = F . Beside this, the

number R was chosen in such a way that the inequalities (14.6) and (14.7)
hold for 1 ≤ p ≤ R. Hence the definition of the predecessor of an index a(j, p)
implies that

P

(

sup
f∈Fσ̄

n−k/2|In,k(f)| ≥ u

Ā

)

≤ P





R⋃

p=1

mp⋃

j=1

A(j, p) ∪
m0⋃

s=1

B(s)





≤
R∑

p=1

mp∑

j=1

P (A(j, p)) +

m0∑

s=1

P (B(s))

≤
∞∑

p=1

CD 22pLσ−L exp

{

−α

(
2pu

8Āσ

)2/k
}

+ CDσ−L exp

{

−α
( u

2Āσ

)2/k
}

.

If the condition
(

u
σ

)2/k ≥ M(L log 2
σ + log D) holds with a sufficiently large

constant M (depending on Ā), then the inequalities

D22pLσ−L exp

{

−α

(
2pu

8Āσ

)2/k
}

≤ 2−p exp

{

−α

(
2pu

10Āσ

)2/k
}

hold for all p = 1, 2, . . . , and

Dσ−L exp

{

−α
( u

2Āσ

)2/k
}

≤ exp

{

−α
( u

10Āσ

)2/k
}

.

Hence the previous estimate implies that

P

(

sup
f∈Fσ̄

n−k/2|In,k(f)| ≥ u

Ā

)

≤
∞∑

p=1

C2−p exp

{

−α

(
2pu

10Āσ

)2/k
}

+C exp

{

−α
( u

10Āσ

)2/k
}

≤ 2C exp

{

−α
( u

10Āσ

)2/k
}

,

and relation (14.4) holds.
The estimates

1

64

( u

Āσ

)2/k

≤ 2−2−6/k22k/R
( u

Āσ

)2/k

= 2−4R · 2(4+2/k)R−2−6/k
( u

Āσ

)2/k

≤ nσ̄2 = 2−4Rnσ2 ≤ 2−4R · 2(4+2/k)(R+1)−2−6/k
( u

Āσ

)2/k

= 22−4/k · 22R/k
( u

Āσ

)2/k

= 22−4/k · 2−2R/k
( u

Āσ̄

)2/k

≤ 4
( u

Āσ̄

)2/k
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hold because of the relation R ≥ 1. This means that nσ̄2 has the upper
and lower bound formulated in Proposition 14.1. It remained to show that
nσ̄2 ≥ L log n + D if relation (14.5) holds.

This inequality clearly holds under the conditions of Proposition 14.1 if
σ ≤ n−1/3, since in this case log 2

σ ≥ log n
3 , and

nσ̄2 ≥ 1

64

( u

Āσ

)2/k

≥ 1

64
Ā−2/kM(L3/2 log

2

σ
+ (log D)3/2)3/2

≥ 1

192
Ā−2/kM(L3/2 log n + (log D)3/2) ≥ L log n + log D

if M = M(Ā, k) is sufficiently large.

If σ ≥ n−1/3, then the inequality 2(4+2/k)R
(

u
Āσ

)2/k ≤ 22+6/knσ2 can be

applied. This implies that 2−4R ≥ 2−4(2+6/k))/(4+2/k)

[(
u

Āσ

)2/k

nσ2

]4/(4+2/k)

,

and

nσ̄2 = 2−4Rnσ2 ≥ 2−16/3

Ā4/3
(nσ2)1−γ

[(u

σ

)2/k
]γ

with γ =
4

4 + 2
k

≥ 2

3
.

The inequalities nσ2 ≥ n1/3 and nσ2 ≥ ( u
σ )2/k ≥ M(L3/2 log 2

σ +(log D)3/2) ≥
M
2 (L3/2 + (log D)3/2) hold, (since log 2

σ ≥ 1
2 ). They yield that for suffi-

ciently large M = M(Ā, k) (nσ2)1−γ
[(

u
σ

)2/k
]γ

≥ (nσ2)1−γ
[(

u
σ

)2/k
]2/3

=

(nσ2)1/(2k+1)
[(

u
σ

)2/k
]2/3

, and

nσ̄2 ≥ Ā−4/3

50
(nσ2)1/(2k+1)

[(u

σ

)2/k
]2/3

≥ Ā−4/3

50
n1/3(2k+1)

(
M

2

)2/3

(L3/2 + (log D)3/2)2/3 ≥ L log n + log D.

A multivariate analogue of Proposition 6.2 is formulated in Proposi-
tion 14.2, and it will be shown that Propositions 14.1 and 14.2 imply Theo-
rem 8.4.

Proposition 14.2. Let a probability measure µ be given on a measurable
space (X,X ) together with a sequence of independent and µ distributed ran-
dom variables ξ1, . . . , ξn and a countable L2-dense class F of canonical (with
respect to the measure µ) kernel functions f = f(x1, . . . , xk) with some pa-
rameter D ≥ 1 and exponent L ≥ 1 on the product space (Xk,X k). Let all
functions f ∈ F satisfy conditions (8.1) and (8.2) with some 0 < σ ≤ 1 such
that nσ2 > L log n + D. Let us consider the (degenerate) U -statistics In,k(f)
with the random sequence ξ1, . . . , ξn, n ≥ max(2, k), and kernel functions
f ∈ F . There exists a threshold index A0 = A0(k) > 0 and two numbers
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C̄ = C̄(k) > 0 and γ = γ(k) > 0 depending only on the order k of the
U -statistics such that the degenerate U -statistics In,k(f), f ∈ F , satisfy the
inequality

P

(

sup
f∈F

|n−k/2In,k(f)| ≥ Ank/2σk+1

)

≤ C̄e−γA1/2knσ2

if A ≥ A0. (14.8)

Proposition 14.2 yields an estimate for the tail distribution of the supre-
mum of degenerate U -statistics at level u ≥ A0n

k/2σk+1, i.e. in the case when
Theorem 8.3 does not give a good estimate on the tail-distribution of the sin-
gle degenerate U -statistics taking part in the supremum at the left-hand side
of (14.8).

Formula (8.14) will be proved by means of Proposition 14.1 with an appro-
priate choice of the parameter Ā in it and Proposition 14.2 with the choice

σ = σ̄ = σ̄(u) and the classes of functions Fj =
{

g−fj

2 : g ∈ Dj

}

with the

number σ̄, functions fj and sets of functions Dj , 1 ≤ j ≤ m, introduced in
Proposition 14.1. Clearly,

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ P

(

sup
f∈Fσ̄

n−k/2|In,k(f)| ≥ u

Ā

)

+

m∑

j=1

P

(

sup
g∈Dj

n−k/2

∣
∣
∣
∣
In,k

(
fj − g

2

)∣
∣
∣
∣
≥
(

1

2
− 1

2Ā

)

u

)

, (14.9)

where m is the cardinality of the set of functions Fσ̄ appearing in Proposi-
tion 14.1. We shall estimate the two terms of the sum at the right-hand side
of (14.9) by means of Propositions 14.1 and 14.2 with a good choice of the
parameters Ā and the corresponding M = M(Ā) in Proposition 14.1 together
with a parameter A ≥ A0 in Proposition 14.2.

We shall choose the parameter A ≥ A0 in the application of Proposi-
tion 14.2 so that it satisfies also the relation γ A1/2k ≥ 2 with the number γ
appearing in Proposition 14.2, hence we put A = max(A0, ( 2

γ )2k). After this

choice we want to define the parameter Ā in Proposition 14.1 in such a way
that the numbers u satisfying the conditions of Proposition 14.1 also sat-
isfy the relation (1

2 − 1
2Ā

)u ≥ Ank/2σ̄k+1 with the already fixed number A.

This inequality can be rewritten in the form A−2/k( 1
2 − 1

2Ā
)2/k( u

σ̄ )2/k ≥ nσ̄2.
On the other hand, under the conditions of Proposition 14.1 the inequal-
ity 4( u

Āσ̄
)2/k ≥ nσ̄2 holds. Hence the desired inequality holds if A−2/k( 1

2 −
1

2Ā
)2/k ≥ 4Ā−2/k. Thus the number Ā = 2k+1A + 1 is an appropriate choice.

With such a choice of Ā (together with the corresponding M = M(Ā, k))
and A we can write
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P

(

sup
g∈Dj

n−k/2

∣
∣
∣
∣
In,k

(
fj − g

2

)∣
∣
∣
∣
≥
(

1

2
− 1

2Ā

)

u

)

≤ P

(

sup
g∈Dj

n−k/2

∣
∣
∣
∣
In,k

(
fj − g

2

)∣
∣
∣
∣
≥ Ank/2σ̄k+1

)

≤ C̄e−γA1/2knσ̄2

for all 1 ≤ j ≤ m. (Observe that the set of functions
fj−g

2 , g ∈ Dj , is an
L2-dense class with parameter D and exponent L.) Hence Proposition 14.1
(relation (14.4) together with the inequality m ≤ Dσ̄−L) and formula (14.8)
with our A ≥ A0 and relation (14.9) imply that

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ 2C exp

{

−α
( u

10Āσ

)2/k
}

+ C̄Dσ̄−Le−γA1/2knσ̄2

. (14.10)

We show by repeating an argument given in Section 6 that Dσ̄−L ≤ enσ̄2

.
Indeed, we have to show that log D + L log 1

σ̄ ≤ nσ̄2. But, as we have seen,
the relation nσ̄2 ≥ L log n + log D with L ≥ 1 and D ≥ 1 implies that
nσ̄2 ≥ log n, hence log 1

σ ≤ log n, and log D+L log 1
σ̄ ≤ log D+L log n ≤ nσ̄2.

On the other hand, γA1/2k ≥ 2 by the definition of the number A, and by the

estimates of Proposition 14.1 nσ̄2 ≥ 1
64

(
u

Āσ

)2/k
. The above relations imply

that Dσ̄−Le−γA1/2knσ̄2 ≤ e−γA1/2knσ̄2/2 ≤ exp
{

− γ
128A1/2kĀ−2/k

(
u
σ

)2/k
}

.

Hence relation (14.10) yields that

P

(

sup
f∈F

n−k/2|In,k(f)| ≥ u

)

≤ 2C exp

{

− α

(10Ā)2

(u

σ

)2/k
}

+ C̄ exp

{

− γ

128
A1/2kĀ−2/k

(u

σ

)2/k
}

,

and this estimate implies Theorem 8.4.

To complete the proof of Theorem 8.4 we have to prove Proposition 14.2. It
will be proved, similarly to its one-variate version Proposition 6.2, by means
of a symmetrization argument. We want to find its right formulation. It would
be natural to formulate it as a result about the supremum of degenerate U -
statistics. However, we shall choose a slightly different approach. There is a
notion, called decoupled U -statistic. Decoupled U -statistics behave similarly
to U -statistics, but it is simpler to work with them, because they have more
independence properties. It turned out to be useful to introduce this notion
and to apply a result of de la Peña and Montgomery–Smith which enables
us to reduce the estimation of U -statistics to the estimation of decoupled
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U -statistics, and to work out the symmetrization argument for decoupled
U -statistics.

Next we introduce the notion of decoupled U -statistics together with
their randomized version. We also formulate a result of de la Peña and
Montgomery–Smith in Theorem 14.3 which enables us to reduce Proposi-
tion 14.2 to a version of it, presented in Proposition 14.2′. It states a result
similar to Proposition 14.2 about decoupled U -statistics. The proof of Propo-
sition 14.2′ is the hardest part of the problem. In Sections 15, 16 and 17 we
deal essentially with this problem. The result of de la Peña and Montgomery–
Smith will be proved in Appendix D.

Now we introduce the following notions.

Definition of decoupled and randomized decoupled U-statistics.

Let us have k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence

ξ1, . . . , ξn of independent and identically distributed random variables taking
their values in a measurable space (X,X ) together with a measurable func-
tion f(x1, . . . , xk) on the product space (Xk,X k) with values in a separable
Banach space. The decoupled U -statistic Īn,k(f) determined by the random

sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and kernel function f is defined by the

formula

Īn,k(f) =
1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k,
lj 6=lj′ if j 6=j′

f
(

ξ
(1)
l1

, . . . , ξ
(k)
lk

)

. (14.11)

Let us have beside the sequences ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and function

f(x1, . . . , xk) a sequence of independent random variables ε = (ε1, . . . , εn),
P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is independent also of the se-

quences of random variables ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k. The randomized decou-

pled U -statistic Īn,k(f, ε) (depending on the random sequences ξ
(j)
1 , . . . , ξ

(j)
n ,

1 ≤ j ≤ k, the kernel function f and the randomizing sequence ε1, . . . , εn) is
defined by the formula

Īε
n,k(f) =

1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k,
lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1)
l1

, . . . , ξ
(k)
lk

)

. (14.12)

A decoupled or randomized decoupled U -statistics (with real valued kernel
function) will be called degenerate if its kernel function is canonical. This
terminology is in full accordance with the definition of (usual) degenerate
U -statistics.

A result of de la Peña and Montgomery–Smith will be formulated below.
It gives an upper bound for the tail distribution of a U -statistic by means
of the tail distribution of an appropriate decoupled U -statistic. It also has a
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generalization, where the supremum of U -statistics is bounded by the supre-
mum of decoupled U -statistics. It enables us to reduce Proposition 14.2 to a
version formulated Proposition 14.2′, which gives a bound on the tail distri-
bution of the supremum of decoupled U -statistics. It is simpler to prove this
result than the original one.

Before the formulation of the theorem of de la Peña and Montgomery–
Smith I make some remark about it. It considers more general U -statistics
with kernel functions taking values in a separable Banach space, and it
compares the norm of Banach space valued U -statistics and decoupled U -
statistics. (Decoupled U -statistics were defined with general Banach space
valued kernel functions, and the definition of U -statistics can also be general-
ized to separable Banach space valued kernel functions in a natural way.) This
result was formulated in such a general form for a special reason. This helped
to derive formula (14.14) of the subsequent theorem from formula (14.13). It
can be exploited in the proof of formula (14.14) that the constants in the esti-
mate (14.13) do not depend on the Banach space, where the kernel function f
takes its values.

Theorem 14.3 (Theorem of de la Peña and Montgomery–Smith
about the comparison of U-statistics and decoupled U-statistics).
Let us consider a sequence of independent and identically distributed random
variables ξ1, . . . , ξn with values in a measurable space (X,X ) together with k

independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of this sequence. Let us also have

a function f(x1, . . . , xk) on the k-fold product space (Xk,X k) which takes
its values in a separable Banach space B. Let us take the U -statistic and
decoupled U -statistic In,k(f) and Īn,k(f) with the help of the above random

sequences ξ1, . . . , ξn, ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, and kernel function f . There

exist some constants C̄ = C̄(k) > 0 and γ = γ(k) > 0 depending only on the
order k of the U -statistic such that

P (‖In,k(f)‖ > u) ≤ C̄P
(
‖Īn,k(f)‖ > γu

)
(14.13)

for all u > 0. Here ‖ · ‖ denotes the norm in the Banach space B where the
function f takes its values.

More generally, if we have a countable sequence of functions fs, s =
1, 2, . . . , taking their values in the same separable Banach-space, then

P

(

sup
1≤s<∞

‖In,k(fs)‖ > u

)

≤ C̄P

(

sup
1≤s<∞

∥
∥Īn,k(fs)

∥
∥ > γu

)

. (14.14)

Now I formulate the following version of Proposition 4.2.

Proposition 14.2′. Let a probability measure µ be given on a measurable
space (X,X ) together with a sequence of independent and µ distributed ran-
dom variables ξ1, . . . , ξn, n ≥ max(k, 2), and a countable L2-dense class F of
canonical (with respect to the measure µ) kernel functions f = f(x1, . . . , xk)
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with some parameter D ≥ 1 and exponent L ≥ 1 on the product space
(Xk,X k). Let all functions f ∈ F satisfy conditions (8.1) and (8.2) with
some 0 < σ ≤ 1 such that nσ2 > L log n + log D. Let us take k indepen-

dent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the random sequence ξ1, . . . , ξn, and

consider the decoupled U -statistics Īn,k(f), f ∈ F , defined with their help in
formula (14.11).

There exists a threshold index A0 = A0(k) > 0 depending only on the order
k of the decoupled U -statistics In,k(f), f ∈ F , such that the (degenerate) de-
coupled U -statistics Īn,k(f), f ∈ F , satisfy the following version of inequality
(14.8):

P

(

sup
f∈F

n−k/2|Īn,k(f)| ≥ Ank/2σk+1

)

≤ e−2−(1/2+1/2k)A1/2knσ2

if A ≥ A0.

(14.15)

It is clear that Proposition 14.2′ and Theorem 14.3, more explicitly for-
mula (14.14) in it, imply Proposition 14.2. Hence the proof of Theorem 8.4
was reduced to Proposition 14.2′ in this section. The proof of Proposi-
tion 14.2′ is based on a symmetrization argument. Its main ideas will be
explained in the next section.





Chapter 15

The strategy of the proof for the main
result of this work

In the previous section the proof of Theorem 8.4 was reduced to that of
Proposition 14.2′. Proposition 14.2′ is a multivariate version of Proposi-
tion 6.2, and its proof is based on similar ideas. An important step in the
proof of Proposition 6.2 was a symmetrization argument in which we re-

duced the estimation of the probability P

(

sup
f∈F

n∑

j=1

f(ξj) > u

)

to the es-

timation of the probability P

(

sup
f∈F

n∑

j=1

εjf(ξj) > u
3

)

, where ξ1, . . . , ξn is a

sequence of independent and identically distributed random variables, and
εj , 1 ≤ j ≤ n, is a sequence of independent random variables with distribu-
tion P (εj = 1) = P (εj = −1) = 1

2 , independent of the sequence ξj . Let us
understand how to formulate the corresponding symmetrization argument in
the proof of Proposition 14.2′ and how to prove it.

The symmetrization argument applied in the proof of Proposition 6.2 was
carried out in two steps. We took a copy ξ′1, . . . , ξ

′
n of the sequence ξ1, . . . , ξn,

i.e. a sequence of independent random variables which is independent also
of the original sequence ξ1, . . . , ξn, and has the same distribution. In the

first step we compared the tail distribution of the expression sup
f∈F

n∑

j=1

[f(ξj)−

f(ξ′j)] with that of sup
f∈F

n∑

j=1

f(ξj). This was done with the help of Lemma 7.1.

In the second step, in Lemma 7.2, we proved a ‘randomization argument’

which stated that the distribution of the random fields
n∑

j=1

[f(ξj)−f(ξ′j)] and

n∑

j=1

εj [f(ξj)−f(ξ′j)], f ∈ F , agree. The symmetrization argument was proved

with the help of these two observations.
In the proof of Proposition 14.2′ we would like to reduce the estimation of

the tail distribution of the supremum of decoupled U -statistics sup
f∈F

Īn,k(f)

169
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defined in formula (14.11) to the estimation of the tail distribution of the
supremum of randomized decoupled U -statistics sup

f∈F
Īε
n,k(f) defined in for-

mula (14.12) by means of a similar argument. To do this first we have
to understand what kind of random fields should be introduced instead of
n∑

j=1

[f(ξj) − f(ξ′j)], f ∈ F , in the new case. In formula (15.1) we shall define

such a random field. Its definition reminds a bit to the definition of Stieltjes
measures. In Lemma 15.1 we will show that a version of the ‘randomiza-
tion argument’ of Lemma 7.2 can be applied when we are working with this
random field.

The adaptation of the first step of the symmetrization argument in the
proof of Proposition 6.2 to the present case is much harder. The proof of
Proposition 6.2 was based on the symmetrization lemma, Lemma 7.1, which
does not work in the present case. Hence we shall prove a generalization of this
result in Lemma 15.2. The proof of the symmetrization argument is difficult
even with the help of this result. The hardest part of our problem appears at
this point. I return to this point after the formulation of Lemma 15.2.

To formulate Lemma 15.1 needed in our proof we introduce some nota-
tions.

Let Vk denote the set of all sequences (v(1), . . . , v(k)) of length k such that
v(j) = +1 or v(j) = −1 for all 1 ≤ j ≤ k. Let m(v), v = (v(1), . . . , v(k)) ∈ Vk,
denote the number of digits −1 in the sequence v. Let a (real valued) func-
tion f(x1, . . . , xk) of k variables be given on a measurable space (X,X ) to-
gether with a sequence of independent and identically distributed random
variables ξ1, . . . , ξn with values in the space (X,X ) and 2k independent copies

ξ
(j,1)
1 , . . . , ξ

(j,1)
n and ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, of this sequence. Let us

have beside them another sequence ε = (ε1, . . . , εn), P (εj = 1) = P (εj =
−1) = 1

2 , of independent random variables, also independent of all previ-
ously introduced random variables. With the help of the above quantities we
introduce the random variables

Ĩn,k(f) =
1

k!

∑

v∈Vk

(−1)m(v)
∑

(l1,...,lk) : 1≤lr≤n, r=1,...,k,
lr 6=lr′ if r 6=r′

f
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

(15.1)
and

Ĩε
n,k(f) =

1

k!

∑

v∈Vk

(−1)m(v) (15.2)

∑

(l1,...,lk) : 1≤lr≤n, r=1,...,k,
lr 6=lr′ if r 6=r′

εl1 · · · εlkf
(

ξ
(1,v(1))
l1

, . . . , ξ
(k,v(k))
lk

)

The number m(v) in the above formulas denotes the number of the digits −1
in the ±1 sequence v of length k, hence it counts how many random variables
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ξ
(j,1)
lj

, 1 ≤ j ≤ k, were replaced by the ‘secondary copy’ ξ
(j,−1)
lj

for a v ∈ Vk

in the inner sum in formulas (15.1) or (15.2).
The following result holds.

Lemma 15.1. Let us consider a (non-empty) class of functions F of k vari-
ables f(x1, . . . , xk) on the space (Xk,X k) together with the random variables
Ĩn,k(f) and Ĩε

n,k(f) defined in formulas (15.1) and (15.2) for all f ∈ F . The

distributions of the random fields Ĩn,k(f), f ∈ F , and Ĩε
n,k(f), f ∈ F , agree.

Let me recall that we say that the distribution of two random fields X(f),
f ∈ F , and Y (f), f ∈ F , agree if for any finite sets {f1, . . . , fp} ∈ F the
distribution of the random vectors (X(f1), . . . ,X(fp)) and (Y (f1), . . . , Y (fp))
agree.

Proof of Lemma 15.1. I even claim that for any fixed sequence

u = (u(1), . . . , u(n)), u(l) = ±1, 1 ≤ l ≤ n,

of length n the conditional distribution of the field Ĩε
n,k(f), f ∈ F , under the

condition (ε1, . . . , εn) = u = (u(1), . . . , u(n)) agrees with the distribution of
the field of Ĩn,k(f), f ∈ F .

Indeed, the random variables Ĩn,k(f), f ∈ F , defined in (15.1) are func-

tions of a random vector with coordinates (ξ
(j)
l , ξ̄

(j)
l ) = (ξ

(j,1)
l , ξ

(j,−1)
l ),

1 ≤ l ≤ n, 1 ≤ j ≤ k, and the distribution of this random vector does

not change if the coordinates (ξ
(j)
l , ξ̄

(j)
l ) = (ξ

(j,1)
l , ξ

(j,−1)
l ) with such indices

(l, j) for which u(l) = −1 (and the index j is arbitrary) are replaced by

(ξ̄
(j)
l , ξ

(j)
l ) = (ξ

(j,−1)
l , ξ

(j,1)
l ), and the coordinates (ξ

(j)
l , ξ̄

(j)
l ) with such indices

(l, j) for which u(l) = 1 are not changed. As a consequence, the distribution
of the random field Ĩn,k(f |u), f ∈ F , we get by replacing the original vector

(ξ
(j)
l , ξ̄

(j)
l ), 1 ≤ l ≤ n, 1 ≤ j ≤ k, in the definition of the expression Ĩn,k(f)

in (15.1) for all f ∈ F by this modified vector depending on u has the same
distribution as the random field Ĩn,k(f), f ∈ F . On the other hand, I claim

that the distribution of the random field Ĩn,k(f |u), f ∈ F , agrees with the

conditional distribution of the random field Ĩε
n,k(f), f ∈ F , defined in (15.2)

under the condition that (ε1, . . . , εn) = u with u = (u(1), . . . , u(n)).
To prove the last statement let us observe that the conditional distribution

of the random field Ĩε
n,k(f), f ∈ F , under the condition (ε1, . . . , εn) = u is the

same as the distribution of the random field we obtain by putting u(l) = εl,
1 ≤ l ≤ n, in all coordinates εl of the random variables Ĩε

n,k(f). On the other
hand, the random variables we get in such a way agree with the random
variables appearing in the sum defining Ĩn,k(f |u), only the terms in this sum
are listed in a different order. Lemma 15.1 is proved.

Next we prove the following generalization of Lemma 7.1.

Lemma 15.2 (Generalized version of the Symmetrization Lemma).
Let Zp and Z̄p, p = 1, 2, . . . , be two sequences of random variables on a
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probability space (Ω,A, P ). Let a σ-algebra B ⊂ A be given on the probability
space (Ω,A, P ) together with a B-measurable set B and two numbers α > 0
and β > 0 such that the random variables Zp, p = 1, 2, . . . , are B measurable,
and the inequality

P (|Z̄p| ≤ α|B)(ω) ≥ β for all p = 1, 2, . . . if ω ∈ B (15.3)

holds. Then

P

(

sup
1≤p<∞

|Zp| > α + u

)

≤ 1

β
P

(

sup
1≤p<∞

|Zp − Z̄p| > u

)

+(1−P (B)) (15.4)

for all u > 0.

Proof of Lemma 15.2. Put τ = min{p : |Zp| > α + u) if there exists such an
index p ≥ 1, and put τ = 0 otherwise. Then

P ({τ = p} ∩ B) ≤
∫

{τ=p}∩B

1

β
P (|Z̄p| ≤ α|B) dP

=
1

β
P ({τ = p} ∩ {|Z̄p| ≤ α} ∩ B)

≤ 1

β
P ({τ = p} ∩ {|Zp − Z̄p| > u}) for all p = 1, 2, . . . .

Hence

P

(

sup
1≤p<∞

|Zp| > α + u

)

− (1 − P (B)) ≤ P

({

sup
1≤p<∞

|Zp| > α + u

}

∩ B

)

=

∞∑

p=1

P ({τ = p} ∩ B) ≤ 1

β

∞∑

p=1

P ({τ = p} ∩ {|Zp − Z̄p| > u})

≤ 1

β
P

(

sup
1≤p<∞

|Zp − Z̄p| > u

)

.

Lemma 15.2 is proved.

To find a symmetrization argument useful in the proof of Proposition 14.2′

we want to bound the probability P

(

sup
f∈F

|Īn,k(f)| > u

)

by

C · P
(

sup
f∈F

|Ĩn,k(f)| > cu

)

+ a negligible error term

with some appropriate numbers C < ∞ and 0 < c < 1. The random vari-
ables Īn,k(f) and Ĩn,k(f) appearing in these formulas were defined in (14.11)
and (15.1). (Actually we work with a slightly modified version of for-

mula (14.11) where the random variables ξ
(j)
l are replaced by the random
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variables ξ
(j,1)
l .) We shall prove the above mentioned estimate with the help

of Lemma 15.2. To find the random variables Zp and Z̄p we want to work
with in Lemma 15.2 let us list the elements of the class of functions F as
F = {f1, f2, . . . }. We shall apply Lemma 15.2 with the choice Zp = Īn,k(fp)

and Z̄p = Īn,k(fp) − Ĩn,k(fp), p = 1, 2, . . . , together with the σ-algebra

B = B(ξ
(j,1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k).

Let us observe that Zp is a decoupled U -statistic depending on the random

variables ξ
(j,1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n, while Z̄p is a linear combination of

decoupled U -statistics, whose arguments contain not only the random vari-

ables of the form ξ
(j,−1)
l , but also the random variables of the form ξ

(j,1)
l . As

a consequence, the random variables Zp and Z̄p are not independent. This is
the reason why we cannot apply Lemma 7.2 in the proof of Proposition 14.2′.

We shall show that Lemma 15.2 with the choice of the above defined
random variables Zp and Z̄p and the σ-algebra B may help us to prove the
estimates we need in our considerations. To apply this lemma we have to
show that condition (15.3) holds with an appropriate pair of numbers (α, β)
and a B measurable set B of probability almost 1. To check this condition is
a hard but solvable problem.

In Lemma 7.2 condition (7.1) played a role similar to the condition (15.3)
in Lemma 15.2. In that case we could check this condition by estimating the
second moment EZ̄2

n. In the present case we shall estimate the supremum
sup

fp∈F
E(Z̄2

p |B) of conditional second moments. In this formula Z̄p is a (com-

plicated) random variable depending on the function fp ∈ F . The estimation
of the supremum of the conditional second moments we want to work with is
a hard problem, and the main difficulties of our proof appear at this point.

The conditional second moments whose supremum we want to estimate
can be expressed as the integral of a random function that can be written
down explicitly. In such a way we get a problem similar to our original one
about the estimation of sup

f∈F
Īn,k(f). It turned out that these two problems

can be handled similarly. We can work out a symmetrization argument with
the help of Lemma 15.2 in both cases, and an inductive argument similar to
Proposition 7.3 can be formulated and proved which supplies the results we
want to prove.

We shall prove Proposition 14.2′ as a consequence of two inductive propo-
sitions formulated in Propositions 15.3 and 15.4. Here we apply an approach
similar to the proof of Proposition 6.2 which was done with the help of an
inductive proposition formulated in Proposition 7.3. The main difference is
that now we have to prove two inductive propositions simultaneously, be-
cause we also have to bound the supremum of some conditional variances,
which demands special attention. To formulate them first we introduce the
notions of good tail behaviour for a class of decoupled U -statistics and good
tail behaviour for a class of integrals of decoupled U -statistics.
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Definition of good tail behaviour for a class of decoupled U-
statistics. Let some measurable space (X,X ) be given together with a prob-
ability measure µ on it. Let us consider some countable class F of functions
f(x1, . . . , xk) on the k-fold product (Xk,X k) of the space (X,X ). Fix some
positive integer n ≥ k and a positive number 0 < σ ≤ 1, and take k in-

dependent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence of independent

µ-distributed random variables ξ1, . . . , ξn. Let us introduce with the help of
these random variables the decoupled U -statistics Īn,k(f), f ∈ F , defined in
formula (14.11). Given some real number T > 0 we say that the set of de-
coupled U -statistics determined by the class of functions F has a good tail
behaviour at level T (with parameters n and σ2 which are fixed in the sequel)
if

P

(

sup
f∈F

|n−k/2Īn,k(f)| ≥ Ank/2σk+1

)

≤ exp
{

−A1/2knσ2
}

for all A > T.

(15.5)

Definition of good tail behaviour for a class of integrals of decou-
pled U-statistics. Let us have a product space (Xk × Y,X k ×Y) with some
product measure µk × ρ, where (Xk,X k, µk) is the k-fold product of some
probability space (X,X , µ), and (Y,Y, ρ) is some other probability space. Fix
some positive integer n ≥ k and a positive number 0 < σ ≤ 1, and consider
some countable class F of functions f(x1, . . . , xk, y) on the product space

(Xk×Y,X k×Y, µk×ρ). Take k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of

a sequence of independent, µ-distributed random variables ξ1, . . . , ξn. For all
f ∈ F and y ∈ Y let us define the decoupled U -statistics Īn,k(f, y) = Īn,k(fy)

by means of these random variables ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, the kernel func-

tion fy(x1, . . . , xk) = f(x1, . . . , xk, y) and formula (14.11). Define with the
help of these U -statistics Īn,k(f, y) the random integrals

Hn,k(f) =

∫

Īn,k(f, y)2ρ( dy), f ∈ F . (15.6)

Choose some real number T > 0. We say that the set of random integrals
Hn,k(f), f ∈ F , has a good tail behaviour at level T (with parameters n and
σ2 which we fix in the sequel) if

P

(

sup
f∈F

n−kHn,k(f) ≥ A2nkσ2k+2

)

≤ exp
{

−A1/(2k+1)nσ2
}

for all A > T. (15.7)

Propositions 15.3 and 15.4 will be formulated with the help of the above
notions.
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Proposition 15.3. Let us fix a positive integer n ≥ max(k, 2), a real
number 0 < σ ≤ 2−(k+1), a probability measure µ on a measurable space
(X,X ) together with two real numbers L ≥ 1 and D ≥ 1 such that nσ2 ≥
L log n+log D. Let us consider those countable L2-dense classes F of canon-
ical kernel functions f = f(x1, . . . , xk) (with respect to the measure µ) on the
k-fold product space (Xk,X k) with exponent L and parameter D for which all
functions f ∈ F satisfy the inequalities sup

xj∈X,1≤j≤k
|f(x1, . . . , xk)| ≤ 2−(k+1)

and
∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2.
There is some real number A0 = A0(k) > 1 such that if for all classes

of functions F which satisfy the above conditions the sets of decoupled U -
statistics Īn,k(f), f ∈ F , have a good tail behaviour at level T 4/3 for some
T ≥ A0, then they also have a good tail behaviour at level T .

Proposition 15.4. Fix some positive integer n ≥ max(k, 2), a real number
0 < σ ≤ 2−(k+1), a product space (Xk × Y,X k × Y) with some product
measure µk × ρ, where (Xk,X k, µk) is the k-fold product of some probability
space (X,X , µ), and (Y,Y, ρ) is some other probability space together with
two real numbers L ≥ 1 and D ≥ 1 such that nσ2 > L log n + log D hold.

Let us consider those countable L2-dense classes F consisting of canonical
functions f(x1, . . . , xk, y) on the product space (Xk×Y,X k×Y) with exponent
L ≥ 1 and parameter D ≥ 1 whose elements f ∈ F satisfy the inequalities

sup
xj∈X,1≤j≤k,y∈Y

|f(x1, . . . , xk, y)| ≤ 2−(k+1) (15.8)

and
∫

f2(x1, . . . , xk, y)µ( dx1) . . . µ( dxk)ρ( dy) ≤ σ2 for all f ∈ F . (15.9)

There exists some number A0 = A0(k) > 1 such that if for all classes of
functions F which satisfy the above conditions the random integrals Hn,k(f),
f ∈ F , defined in (15.6) have a good tail behaviour at level T (2k+1)/2k with
some T ≥ A0, then they also have a good tail behaviour at level T .

Remark: To complete the formulation of Proposition 15.4 we still have to
clarify when we call a function f(x1, . . . , xk, y) defined on the product space
(Xk ×Y,X k ×Y, µk ×ρ) canonical. Here we apply a definition which slightly
differs from that given in formula (8.10).

We say that a function f(x1, . . . , xk, y) on the product space (Xk×Y,X k×
Y, µk × ρ) is canonical if

∫

f(x1, . . . , xj−1, u, xj+1, . . . , xk, y)µ( du) = 0

for all 1 ≤ j ≤ k, xs ∈ X, s 6= j and y ∈ Y.
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In this definition we do not require the analogous identity if we integrate with
respect to the variable Y with fixed arguments xj ∈ X, 1 ≤ j ≤ k.

Let me also remark that the estimate (15.7) we have formulated in the
definition of the property ‘good tail behaviour for a class of integrals of U -
statistics’ is fairly natural. We have applied the natural normalization, and
with such a normalization it is natural to expect that the tail behaviour of

the distribution of sup
f∈F

n−kHn,k(f) is similar to that of const
(
σηk

)2
, where

η is a standard normal random variable. Formula (15.7) expresses such a
behaviour, only the power of the number A in the exponent at the right-hand
side was chosen in a non-optimal way. Formula (15.5) in the formulation of
the property ‘good tail behaviour for a class of decoupled U -statistics’ has
a similar interpretation. It says that sup

f∈F
|n−k/2In,k(f)| behaves similarly to

const, σ|ηk| with a standard normal random variable η.
We wanted to prove the property of good tail behaviour for a class of

integrals of decoupled U -statistics under appropriate, not too restrictive con-
ditions. Let me remark that in Proposition 15.4 we have imposed beside
formula (15.8) a fairly weak condition (15.9) about the L2-norm of the func-
tion f . Most difficulties appear in the proof, because we did not want to
impose more restrictive conditions.

It is not difficult to derive Proposition 14.2′ from Proposition 15.3. In-
deed, let us observe that the set of decoupled U -statistics determined by
a class of functions F satisfying the conditions of Proposition 15.3 has a
good tail-behaviour at level T0 = σ−(k+1), since under the conditions of this
Proposition the probability at the left-hand side of (15.5) equals zero for
A > σ−(k+1). Then we get from Proposition 15.3 by induction with respect
to the number j, that this set of decoupled U -statistics has a good tail-

behaviour also for all T = Tj =≥ T
(3/4)j

0 = σ−(k+1)(3/4)j

, j = 0, 1, 2, . . . ,

with such indices j for which Tj = σ−(k+1)(3/4)j ≥ A0. This implies that if
a class of functions F satisfies the conditions of Proposition 15.3, then the
set of decoupled U -statistics determined by this class of functions has a good

tail-behaviour at level T = A
4/3
0 , i.e. at a level which depends only on the

order k of the decoupled U -statistics. This result implies Proposition 14.2′,
only it has to be applied for the class of function F ′ = {2−(k+1)f, f ∈ F}
instead of the original class of functions F which appears in Proposition 14.2′

with the same parameters σ, L and D.
Similarly to the above argument an inductive procedure yields a corollary

of Proposition 15.4 formulated below. Actually, we shall need this corollary
of Proposition 15.4.

Corollary of Proposition 15.4. If the class of functions F satisfies the
conditions of Proposition 15.4, then there exists a constant Ā0 = Ā0(k) > 0
depending only on k such that the class of integrals Hn,k(f), f ∈ F , defined
in formula (15.6) have a good tail behaviour at level Ā0.
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The main difficulty in the proof of Proposition 15.3 arises in the applica-
tion of the symmetrization procedure corresponding to Lemma 7.2 in the one-
variate case. This difficulty can be overcome by means of Proposition 15.4,
more precisely by means of its corollary. It helps us to estimate the condi-
tional variances of the decoupled U -statistics we have to handle in the proof
of Proposition 15.3. The proof of Propositions 15.3 and 15.4 apply similar
arguments, and they will be proved simultaneously. The following induc-
tive procedure will be applied in their proof. First Proposition 15.3 and then
Proposition 15.4 is proved for k = 1. If Propositions 15.3 and 15.4 are already
proved for all k′ < k for some number k, then first we prove Proposition 15.3
and then Proposition 15.4 for this number k.

The proof both of Proposition 15.3 and 15.4 applies a symmetrization
argument that will be proved in Section 16. In Section 17 Propositions 15.3
and 15.4 will be proved with its help. They imply Proposition 14.2′, hence
also Theorem 8.4.





Chapter 16

A symmetrization argument

The proof of Propositions 15.3 and 15.4 applies some ideas similar to the
argument in the proof of Proposition 7.3. But here some additional technical
difficulties have to be overcome. As a first step, two results formulated in
Lemma 16.1A and 16.1B will be proved. They can be considered as a ran-
domization argument with the help of Rademacher functions analogous to
Lemma 7.2 which was applied in the proof of Propositions 7.3. Lemma 16.1A
will be applied in the proof of Proposition 15.3 and Lemma 16.1B in the proof
of Proposition 15.4. In this section these lemmas will be proved. Their proofs
will be based on some additional lemmas formulated in Lemmas 16.2A, 16.2B,
16.3A and 16.3B. By exploiting the structure of Propositions 15.3 and 15.4
we may assume when proving them for parameter k that they hold (together
with their consequences) for all parameters k′ < k.

Lemma 16.1A is a natural multivariate version of Lemma 7.2. Lemma 7.2
enabled us to replace the estimation of the distribution of the supremum
of a class of sums of independent random variables with the estimation of
the distribution of the supremum of a randomized version of these sums.
Lemma 16.1A will enable us to reduce the proof of Proposition 15.3 to the
estimation of the tail-distribution of the supremum of an appropriately de-
fined class of randomized decoupled, degenerate U -statistics. This supremum
will be estimated by means of the multi-dimensional version of Hoeffding’s
inequality given in Theorem 13.3. Lemma 16.B plays a similar role in the
proof of Proposition 15.4. But its application is more difficult. In this re-
sult the probability investigated in Proposition 15.4 is bounded by means of
an expression depending on the supremum of some random variables W̄ (f),
f ∈ F , which will be defined in formula (16.7). The expressions W̄ (f), f ∈ F ,
are rather complicated, and they are worth studying more closely. This will
be done in the proof of Corollary of Lemma 16.1B which yields a more appro-
priate bound for the probability we want to estimate in Proposition 15.4. In
the proof of Proposition 15.4 the Corollary of 16.1B will be applied instead
of the original lemma 16.1B.

179
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The proof of Lemmas 16.1A and 16.1B is similar to that of Lemma 7.2.

First we introduce k additional independent copies ξ̄
(j)
1 , . . . , ξ̄

(j)
n beside the

k (independent and identically distributed) copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k,

of the sequence ξ1, . . . , ξn and construct with their help some appropriate
random sums. We shall prove in Lemmas 16.2A and 16.2B that these ran-
dom sums have the same distribution as their randomized versions we shall
work with in the proof of Lemmas 16.1A and 16.1B. These Lemmas formu-
late a natural multivariate version of an important argument in the proof of
Lemma 7.2. In the proof of Lemma 7.2 we have exploited that the random
sums defined in (7.4) have the same joint distribution as their randomized
versions defined in (7.5). Lemmas 16.2A and 16.2B formulate a multivariate
version of this statement. They enable us (similarly to the corresponding ar-
gument in the proof of Lemma 7.2) to reduce the proof of Propositions 16.1A
and 16.1B to the study of some simpler questions. This will be done with the
help of Lemmas 16.3A and 16.3B. In Lemma 16.3A the supremum of some
conditional variances is estimated under appropriate conditions. This lemma
plays a similar role in the proof of Lemma 16.1A as condition (7.1) plays
in the proof of Lemma 7.1. Its result together with the generalized form of
the symmetrization Lemma, Lemma 15.2, enable us to prove Lemma 16.1A.
Lemma 16.1B can be proved similarly, but here the conditional distribution
of a more complicated expression has to be estimated. This can be done with
the help of Lemma 16.3B. In Lemma 16.3B the supremum of the conditional
expectation of some appropriate expressions is bounded.

The main results of this section are the following two lemmas.

Lemma 16.1A (Randomization argument in the proof of Propo-
sition 15.3). Let F be a class of functions on the space (Xk,X k) which
satisfies the conditions of Proposition 15.3 with some probability measure µ.

Let us have k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of a sequence of

independent µ distributed random variables ξ1, . . . , ξn, and a sequence of in-
dependent random variables ε = (ε1, . . . , εn), P (εl = 1) = P (εl = −1) = 1

2 ,

1 ≤ l ≤ n, which is independent also of the random sequences ξ
(j)
1 , . . . , ξ

(j)
n ,

1 ≤ j ≤ k. Consider the decoupled U -statistics Īn,k(f), f ∈ F , defined with
the help of these random variables by formula (14.11) together with their
randomized version Īε

n,k(f) defined in formula (14.12).
There exist some constants A0 = A0(k) > 0 and γ = γk > 0 such that the

inequality

P

(

sup
f∈F

n−k/2
∣
∣Īn,k(f)

∣
∣ > Ank/2σk+1

)

< 2k+1P

(

sup
f∈F

∣
∣Īε

n,k(f)
∣
∣ > 2−(k+1)Ankσk+1

)

+2knk−1e−γkA1/(2k−1)nσ2/k (16.1)
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holds for all A ≥ A0.

It may be worth remarking that the second term at the right-hand side of
formula (16.1) yields a small contribution to the upper bound in this relation
because of the condition nσ2 ≥ L log n + log D.

To formulate Lemma 16.1B first some new quantities have to be intro-
duced. Some of them will be used somewhat later. The quantities ĪV

n,k(f, y) in-
troduced in the subsequent formula (16.2) depend on the sets V ⊂ {1, . . . , k},
and they are the natural modifications of the inner sum terms in formula
(15.1). Such expressions are needed in the formulation of the symmetrization
result applied in the proof of Proposition 15.4. Their randomized versions

Ī
(V,ε)
n,k (f, y), introduced in formula (16.5), correspond to the inner sum terms

in formula (15.2). The integrals of these expressions will be also introduced
in formulas (16.3) and (16.6).

Let us consider a class F of functions f(x1, . . . , xk, y) ∈ F on a space
(Xk × Y,X k × Y, µk × ρ) which satisfies the conditions of Proposition 15.4.

Let us take 2k independent copies ξ
(j)
1 , . . . , ξ

(j)
n , ξ̄

(j)
1 , . . . , ξ̄

(j)
n , 1 ≤ j ≤ k, of a

sequence of independent µ distributed random variables ξ1, . . . , ξk together
with a sequence of independent random variables (ε1, . . . , εn), P (εl = 1) =
P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is also independent of the previous

random sequences. Let us introduce the notation ξ
(j,1)
l = ξ

(j)
l and ξ

(j,−1)
l =

ξ̄
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k. For all subsets V ⊂ {1, . . . , k} of the set
{1, . . . , k} let |V | denote the cardinality of this set, and define for all functions
f(x1, . . . , xk, y) ∈ F and V ⊂ {1, . . . , k} the decoupled U -statistics

ĪV
n,k(f, y) =

1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k
lj 6=lj′ if j 6=j′

f
(

ξ
(1,δ1(V ))
l1

, . . . , ξ
(k,δk(V ))
lk

, y
)

,

(16.2)
where δj(V ) = ±1, 1 ≤ j ≤ k, δj(V ) = 1 if j ∈ V , and δj(V ) = −1 if j /∈ V ,
together with the random variables

HV
n,k(f) =

∫

ĪV
n,k(f, y)2ρ( dy), f ∈ F . (16.3)

We shall consider ĪV
n,k(f, y) defined in (16.2) as a random variable with values

in the space L2(Y,Y, ρ).
Put

Īn,k(f, y) = Ī
{1,...,k}
n,k (f, y), Hn,k(f) = H

{1,...,k}
n,k (f), (16.4)

i.e. Īn,k(f, y) and Hn,k(f) are the random variables ĪV
n,k(f, y) and HV

n,k(f)
with V = {1, . . . , k}, which means that these expressions are defined with

the help of the random variables ξ
(j)
l = ξ

(j,1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n.

Let us also define the ‘randomized version’ of the random variables
ĪV
n,k(f, y) and HV

n,k(f) as
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Ī
(V,ε)
n,k (f, y) =

1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k
lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1,δ1(V ))
l1

, . . . , ξ
(k,δk(V ))
lk

, y
)

,

if f ∈ F , (16.5)

and

H
(V,ε)
n,k (f) =

∫

Ī
(V,ε)
n,k (f, y)2ρ( dy), f ∈ F , (16.6)

where δj(V ) = 1 if j ∈ V , and δj(V ) = −1 if j ∈ {1, . . . , k} \ V . Similarly

to formula (16.2), we shall consider ĪV,ε
n,k(f, y) defined in (16.5) as a random

variable with values in the space L2(Y,Y, ρ).
Let us also introduce the random variables

W̄ (f) =

∫



∑

V ⊂{1,...,k}
(−1)(k−|V |)Ī(V,ε)

n,k (f, y)





2

ρ( dy), f ∈ F . (16.7)

With the help of the above notations Lemma 16.1B can be formulated in the
following way.

Lemma 16.1B (Randomization argument in the proof of Proposi-
tion 15.4). Let F be a set of functions on (Xk×Y,X k×Y) which satisfies the
conditions of Proposition 15.4 with some probability measure µk × ρ. Let us

have 2k independent copies ξ
(j,±1)
1 , . . . , ξ

(j,±1)
n , 1 ≤ j ≤ k, of a sequence of in-

dependent µ distributed random variables ξ1, . . . , ξn together with a sequence
of independent random variables ε1, . . . , εn, P (εj = 1) = P (εj = −1) = 1

2 ,
1 ≤ j ≤ n, which is independent also of the previously considered sequences.

Then there exist some constants A0 = A0(k) > 0 and γ = γk such that if
the integrals Hn,k(f), f ∈ F , determined by this class of functions F have a
good tail behaviour at level T (2k+1)/2k for some T ≥ A0, (this property was
defined in Section 15 in the definition of good tail behaviour for a class of
integrals of decoupled U -statistics before the formulation of Propositions 15.3
and 15.4), then the inequality

P

(

sup
f∈F

|Hn,k(f)| > A2n2kσ2(k+1)

)

< 2P

(

sup
f∈F

∣
∣W̄ (f)

∣
∣ >

A2

2
n2kσ2(k+1)

)

+22k+1nk−1e−γkA1/2knσ2/k (16.8)

holds with the random variables Hn,k(f) introduced in the second identity
of relation (16.4) and with W̄ (f) defined in formula (16.7) if γk > 0 is a
sufficiently small positive number for all A ≥ T .

A corollary of Lemma 16.1B will be formulated which can be better applied
than the original lemma. Lemma 16.B is a little bit inconvenient, because
the expression at the right-hand side of formula (16.8) contains a probability
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depending on sup
f∈F

|W̄ (f)|, and W̄ (f) is a too complicated expression. Some

new formulas (16.9) and (16.10) will be introduced which enable us to rewrite
W̄ (f) in a slightly simpler form. These formulas yield such a corollary of
Lemma 16.B which is more appropriate for our purposes. To work out the
details first some diagrams will be introduced.

Let G = G(k) denote the set of all diagrams consisting of two rows, such
that both rows of these diagrams are the set {1, . . . , k}, and these diagrams
contain some edges {(j1, j

′
1) . . . , (js, j

′
s)}, 0 ≤ s ≤ k, connecting a point

(vertex) of the first row with a point (vertex) of the second row. The vertices
j1, . . . , js which are end points of some edge in the first row are all different,
and the same relation holds also for the vertices j′1, . . . , j

′
s in the second row.

Given some diagram G ∈ G let e(G) = {(j1, j
′
1) . . . , (js, j

′
s)} denote the set of

its edges, and let v1(G) = {j1, . . . , js} be the set of those vertices in the first
row and v2(G) = {j′1, . . . , j′s} the set of those vertices in the second row of
the diagram G from which an edge of G starts.

Given some diagram G ∈ G and two sets V1, V2 ⊂ {1, . . . , k}, we define
the following random variables Hn,k(f |G,V1, V2) with the help of the random

variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, and ε = (ε1, . . . , εn)

taking part in the definition of the random variables W̄ (f):

Hn,k(f |G,V1, V2)

=
∑

(l1,...,lk, l′1,...,l′k) :
1≤lj≤n, lj 6=lj′ if j 6=j′, 1≤j,j′≤k,

1≤l′j≤n, l′j 6=l′j′ if j 6=j′, 1≤j,j′≤k,

lj=l′j′ if (j,j′)∈e(G), lj 6=l′j′ if (j,j′)/∈e(G)

∏

j∈{1,...,k}\v1(G)

εlj

∏

j∈{1,...,k}\v2(G)

εl′j

1

k!2

∫

f(ξ
(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)

f(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′k

, y)ρ( dy), (16.9)

where δj(V1) = 1 if j ∈ V1, δj(V1) = −1 if j /∈ V1, and δj(V2) = 1 if j ∈ V2,
δj(V2) = −1 if j /∈ V2. (Let us observe that if the graph G contains s edges,
then the product of the ε-s in (16.9) contains 2(k−s) terms, and the number of
terms in the sum (16.9) is less than n2k−s.) As the Corollary of Lemma 16.1B
will indicate, in the proof of Proposition 15.4 we shall need a good estimate on
the tail distribution of the random variables Hn,k(f |G,V1, V2) for all f ∈ F
and G ∈ G, V1, V2 ⊂ {1, . . . , k}. Such an estimate can be obtained by means
of Theorem 13.3, the multivariate version of Hoeffding’s inequality. But the
estimate we get in such a way will be rewritten in a form more appropriate
for our inductive procedure. This will be done in the next section.

The identity

W̄ (f) =
∑

G∈G, V1,V2⊂{1,...,k}
(−1)|V1|+|V2|Hn,k(f |G,V1, V2) (16.10)
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will be proved.
To prove this identity let us write first

W̄ (f) =
∑

V1,V2⊂{1,...,k}
(−1)|V1|+|V2|

∫

Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y)ρ( dy).

Let us express the products Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y) by means of formula

(16.5). Let us rewrite this product as a sum of products of the form

1

k!2

k∏

j=1

εlj f(· · · )
k∏

j=1

εl′j
f(· · · )

and let us define the following partition of the terms in this sum. The elements
of this partition are indexed by the diagrams G ∈ G, and if we take a diagram
G ∈ G with the set of edges e(G) = {(j1, j

′
1), . . . , (js, j

′
s)}, then the term of

this sum determined by the indices l1, . . . , lk, l′1, . . . , l
′
k belongs to the element

of the partition indexed by this diagram G if and only if lju
= l′j′

u
for all

1 ≤ u ≤ s, and no more numbers between the indices l1, . . . , lk, l′1 . . . , l′k may
agree. Since εlju

εl′
j′u

= 1 for all 1 ≤ u ≤ s and the set of indices of the

remaining random variables εlj is {lj : j ∈ {1, . . . , k} \ v1(G)}, the set of
indices of the remaining random variables εl′j

is {l′j′ : j ∈ {1, . . . , k} \ v2(G)},

we get by integrating the product Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y) with respect to the

measure ρ that

∫

Ī
(V1,ε)
n,k (f, y)Ī

(V2,ε)
n,k (f, y)ρ( dy) =

∑

G∈G
Hn,k(f |G,V1, V2)

for all V1, V2 ∈ {1, . . . , k}. The last two identities imply formula (16.10).
Since the number of terms in the sum of formula (16.10) is less than 24kk!,

this relation implies that Lemma 16.1B has the following corollary:

Corollary of Lemma 16.1B (A simplified version of the randomiza-
tion argument of Lemma 16.1B). Let a set of functions F satisfy the con-
ditions of Proposition 15.4. Then there exist some constants A0 = A0(k) > 0
and γ = γk > 0 such that if the integrals Hn,k(f), f ∈ F , determined by this
class of functions F have a good tail behaviour at level T (2k+1)/2k for some
T ≥ A0, then the inequality

P

(

sup
f∈F

|Hn,k(f)| > A2n2kσ2(k+1)

)

≤ 2
∑

G∈G, V1,V2⊂{1,...,k}
P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

)

+22k+1nk−1e−γkA1/2knσ2/k (16.11)



16 A symmetrization argument 185

holds with the random variables Hn,k(f) and Hn,k(f |G,V1, V2) defined in
formulas (16.4) and (16.9) for all A ≥ T .

In the proof of Lemmas 16.1A and 16.1B the result of the following Lem-
mas 16.2A and 16.2B will be applied.

Lemma 16.2A. Let us take 2k independent copies

ξ
(j,1)
1 , . . . , ξ(j,1)

n and ξ
(j,−1)
1 , . . . , ξ(j,−1)

n , 1 ≤ j ≤ k,

of a sequence of independent µ distributed random variables ξ1, . . . , ξn to-
gether with a sequence of independent random variables (ε1, . . . , εn), P (εl =
1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is also independent of the previous
sequences.

Let F be a class of functions which satisfies the conditions of Proposition
15.3. Introduce with the help of the above random variables for all sets V ⊂
{1, . . . , k} and functions f ∈ F the decoupled U -statistic

ĪV
n,k(f) =

1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k,
lj 6=lj′ if j 6=j′

f
(

ξ
(1,δ1(V ))
l1

, . . . , ξ
(k,δk(V ))
lk

)

(16.12)

and its ‘randomized version’

Ī
(V,ε)
n,k (f) =

1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k,
lj 6=lj′ if j 6=j′

εl1 · · · εlkf
(

ξ
(1,δ1(V ))
l1

, . . . , ξ
(k,δk(V ))
lk

)

,

f ∈ F , (16.13)

where δj(V ) = ±1, and we have δj(V ) = 1 if j ∈ V , and δj(V ) = −1 if
j ∈ {1, . . . , k} \ V .

Then the sets of random variables

S(f) =
∑

V ⊂{1,...,k}
(−1)(k−|V |)ĪV

n,k(f), f ∈ F , (16.14)

and
S̄(f) =

∑

V ⊂{1,...,k}
(−1)(k−|V |)Ī(V,ε)

n,k (f), f ∈ F , (16.15)

have the same joint distribution.

Lemma 16.2B. Let us take 2k independent copies

ξ
(j,1)
1 , . . . , ξ(j,1)

n and ξ
(j,−1)
1 , . . . , ξ(j,−1)

n , 1 ≤ j ≤ k,

of a sequence of independent, µ distributed random variables ξ1, . . . , ξn to-
gether with a sequence of independent random variables (ε1, . . . , εn), P (εl =
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1) = P (εl = −1) = 1
2 , 1 ≤ l ≤ n, which is also independent of the previous

sequences.
Let us consider a class F of functions f(x1, . . . , xk, y) ∈ F on a space

(Xk×Y,X k×Y, µk×ρ) which satisfies the conditions of Proposition 15.4. For
all functions f ∈ F and V ∈ {1, . . . , k} consider the decoupled U -statistics
ĪV
n,k(f, y) defined by formula (16.2) with the help of the random variables

ξ
(j,1)
1 , . . . , ξ

(j,1)
n and ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , and define with their help the random

variables

W (f) =

∫



∑

V ⊂{1,...,k}
(−1)(k−|V |)ĪV

n,k(f, y)





2

ρ( dy), f ∈ F . (16.16)

Then the random vectors {W (f) : f ∈ F} defined in (16.16) and {W̄ (f) : f ∈
F} defined in (16.7) have the same distribution.

Proof of Lemmas 16.2A and 16.2B. Lemma 16.2A actually agrees with
the already proved Lemma 15.1, only the notation is different. The proof
of Lemma 16.2B is very similar to the proof of Lemma 15.1. It can be
shown that even the following stronger statement holds. For any ±1 sequence
u = (u1, . . . , un) of length n the conditional distribution of the random field
W̄ (f), f ∈ F , under the condition (ε1, . . . , εn) = u = (u1, . . . , un) agrees
with the distribution of the random field W (f), f ∈ F .

To see this relation let us first observe that the conditional distribu-
tion of the field W̄ (f) under this condition agrees with the distribution
of the random field we get by replacing the random variables εl by ul

for all 1 ≤ l ≤ n in formulas (16.5), (16.6) and (16.7). Beside this, de-

fine the vector (ξ(u)
(j,1)
l , ξ(u)

(j,−1)
l ), 1 ≤ j ≤ k, 1 ≤ l ≤ n, by the for-

mula (ξ(u)
(j,1)
l , ξ(u)

(j,−1)
l ) = (ξ

(j,−1)
l , ξ

(j,1)
l ) for those indices (j, l) for which

ul = −1, and (ξ(u)
(j,1)
l , ξ(u)

(j,−1)
l ) = (ξ

(j,1)
l , ξ

(j,−1)
l ) for which ul = 1 (inde-

pendently of the value of the parameter j). Then the joint distribution of

the vectors (ξ(u)
(j,1)
l , ξ(u)

(j,−1)
l ), 1 ≤ j ≤ k, 1 ≤ l ≤ n, and (ξ

(j,1)
l , ξ

(j,−1)
l ),

1 ≤ j ≤ k, 1 ≤ l ≤ n, agree. Hence the joint distribution of the random
vectors ĪV

n,k(f, y), f ∈ F , V ⊂ {1, . . . , k} defined in (16.2) and of the random
vectors W (f), f ∈ F , defined in (16.16) do not change if we replace in their

definition the random variables ξ
(j,1)
l and ξ

(j,−1)
l by ξ(u)

(j,1)
l and ξ(u)

(j,−1)
l .

But the set of random variables W (f), f ∈ F , obtained in this way agrees
with the set of random variables we introduced to get a set of random vari-
ables with the same distribution as the conditional distribution of W̄ (f),
f ∈ F under the condition (ε1, . . . , εn) = u. (These random variables are de-
fined as the square integral of the same sum, only the terms of this sum are
listed in a different order in the two cases.) These facts imply Lemma 16.2B.

In the next step we prove the following Lemma 16.3A.
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Lemma 16.3A. Let us consider a class of functions F satisfying the con-
ditions of Proposition 15.3 with parameter k together with 2k independent

copies ξ
(j,1)
1 , . . . , ξ

(j,1)
n and ξ

(j,−1)
1 , . . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, of a sequence of in-

dependent, µ-distributed random variables ξ1, . . . , ξn. Take the random vari-
ables ĪV

n,k(f), f ∈ F , V ⊂ {1, . . . , k}, defined with the help of these quantities

in formula (16.12). Let B = B(ξ
(j,1)
1 , . . . , ξ

(j,1)
n ; 1 ≤ j ≤ k) denote the σ-

algebra generated by the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , 1 ≤ j ≤ k, i.e.

by the random variables with upper indices of the form (j, 1), 1 ≤ j ≤ k.
There exists a number A0 = A0(k) > 0 such that for all V ⊂ {1, . . . , k},
V 6= {1, . . . , k}, the inequality

P

(

sup
f∈F

E
(
ĪV
n,k(f)2

∣
∣B
)

> 2−(3k+3)A2n2kσ2k+2

)

< nk−1e−γkA1/(2k−1)nσ2/k

(16.17)
holds with a sufficiently small γk > 0 if A ≥ A0.

Proof of Lemma 16.3A. Let us first consider the case V = ∅. In this case

the estimate E
(

Ī∅n,k(f)2
∣
∣
∣B
)

= E
(

Ī∅n,k(f)2
)

≤ nk

k! σ
2 ≤ 2kn2kσ2k+2 holds

for all f ∈ F . In the above calculation it was exploited that the functions
f ∈ F are canonical, which implies certain orthogonalities, and beside this
the inequality nσ2 ≥ 1

2 holds, because of the relation nσ2 ≥ L log n + log D.
The above relations imply that for V = ∅ the probability at the left-hand
side of (16.17) equals zero if the number A0 is chosen sufficiently large. Hence
inequality (16.17) holds in this case.

To avoid some complications in the notation let us first restrict our at-
tention to sets of the form V = {1, . . . , u} with some 1 ≤ u < k, and prove
relation (16.17) for such sets. For this goal let us introduce the random vari-
ables

ĪV
n,k(f, lu+1, . . . , lk)

=
1

k!

∑

(l1,...,lu) :
1≤lj≤n, j=1,...,u,

lj 6=lj′ if j 6=j′

f
(

ξ
(1,1)
l1

, . . . , ξ
(u,1)
lu

, ξ
(u+1,−1)
lu+1

, . . . , ξ
(k,−1)
lk

)

for all f ∈ F and sequences l(u) = (lu+1, . . . , lk) with the properties 1 ≤ lj ≤
n for all u + 1 ≤ j ≤ k and lj 6= lj′ if j 6= j′, i.e. let us fix the last k − u

coordinates ξ
(u+1,−1)
lu+1

,. . . , ξ
(k,−1)
lk

of the random variable ĪV
n,k(f) and sum up

with respect the first u coordinates. Then we can write
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E
(
ĪV
n,k(f)2

∣
∣B
)

(16.18)

= E















∑

(lu+1,...,lk) : 1≤lj≤n j=u+1,...,k,
lj 6=lj′ if j 6=j′

ĪV
n,k(f, lu+1, . . . , lk)








2∣
∣
∣
∣
∣
∣
∣
∣
∣

B








=
∑

(lu+1,...,lk) : 1≤lj≤n, j=u+1,...,k,
lj 6=lj′ if j 6=j′

E
(
ĪV
n,k(f, lu+1, . . . , lk)2

∣
∣B
)
.

The last relation follows from the identity

E
(
ĪV
n,k(f, lu+1, . . . , lk)ĪV

n,k(f, l′u+1, . . . , l
′
k)
∣
∣B
)

= 0

if (lu+1, . . . , lk) 6= (l′u+1, . . . , l
′
k), which holds, since f is a canonical function.

We still exploit that the random variables ξ
(j,1)
l , 1 ≤ j ≤ u are B measur-

able, while the random variables ξ
(j,−1)
lj

, u + 1 ≤ j ≤ k, are independent
of the σ-algebra B. These facts enable us to calculate the above conditional
expectation in a simple way.

It follows from relation (16.18) that

{

ω : sup
f∈F

E
(
ĪV
n,k(f)2

∣
∣B
)

(ω) > 2−(3k+3)A2n2kσ2k+2

}

(16.19)

⊂
⋃

(lu+1,...,lk) :
1≤lj≤n, j=u+1,...,k.

lj 6=lj′ if j 6=j′

{

ω : sup
f∈F

E
(
ĪV
n,k(f, lu+1, . . . , lk)2

∣
∣B
)

(ω) >
A2n2kσ2k+2

2(3k+3)nk−u

}

.

The probability of the events in the union at the right-hand side of (16.19)
can be estimated with the help of the Corollary of Proposition 15.4 with
parameter u < k instead of k. (We may assume that Proposition 15.4 holds
for u < k.) We claim that this corollary yields that

P

(

sup
f∈F

E
(
ĪV
n,k(f, lu+1, . . . , lk)2

∣
∣B
)

>
A2nk+uσ2k+2

2(3k+3)

)

≤ e−γkA1/(2u+1)(n+u−k)σ2

(16.20)

with an appropriate γk > 0 for all sequences (lu+1, . . . , lk), 1 ≤ lj ≤ n,
u + 1 ≤ j ≤ k, and such that lj 6= lj′ if j 6= j′.

Let us show that if a class of functions f ∈ F satisfies the conditions
of Proposition 15.3, then it also satisfies relation (16.20). For this goal in-
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troduce the space (Y,Y, ρ) = (Xk−u,X k−u, µk−u), the k − u-fold power of
the measure space (X,X , µ), and for the sake of simpler notations write
y = (xu+1, . . . , xk) for a point y ∈ Y . Let us also introduce the class of those
function F̄ in the space (Xu × Y,X u × Y, µu × ρ) consisting of functions
f̄ of the form f̄(x1, . . . , xu, y) = f(x1, . . . , xk) with y = (xu+1, . . . , xk) and
some function f(x1, . . . , xk) ∈ F . If the class of function F satisfies the con-
ditions of Proposition 15.3 (with parameter k), then the class of functions
F̄ satisfies the conditions of Proposition 15.4 with parameter u < k. Hence
the Corollary of Proposition 15.4 can be applied for the class of functions
F̄ by our inductive hypothesis. We shall apply it for decoupled U -statistics
with the class of kernel functions F̄ and parameters n + k−u and u (instead

of n and k), and with the expressions Ī
l(u)
n+u−k,u(f̄) and H

l(u)
n+u−k,u(f̄) defined

below with the help of the independent random sequences ξ
(j,1)
l , 1 ≤ j ≤ u,

l ∈ {1, . . . , n} \ {lu+1, . . . , lk} of independent, µ-distributed random variables
of length n + u − k, where the set of numbers {lu+1, . . . , lk} is the set of
indices appearing in formula (16.20). It can be seen that with the definition

of the random variables Ī
l(u)
n+u−k,u(f̄ , y) and H

l(u)
n+u−k,u(f̄) we shall give below

the identity

E
(
ĪV
n,k(f, lu+1, . . . , lk)2|B

)
(16.21)

=

(
u!

k!

)2 ∫

Ī
l(u)
n+u−k,u(f̄ , y)2ρ( dy) =

(
u!

k!

)2

H
l(u)
n+u−k,u(f̄)

holds. In formula (16.21) the function f̄ ∈ F̄ is defined by the formula
f̄(x1, . . . , xu, y) = f(x1, . . . , xk) with y = (xu+1, . . . , xk), and the random

variables Ī
l(u)
n+u−k,u(f̄ , y) and H

l(u)
n+u−k,u(f̄) are defined, similarly to (16.2)–

(16.4), by the formulas

Ī
l(u)
n+u−k,u(f̄ , y)

=
1

u!

∑

(l1,...,lu) : lj∈{1,...,n}\{lu+1,...,lk}, j=1,...,u
lj 6=lj′ if j 6=j′

f̄
(

ξ
(1,1)
l1

, . . . , ξ
(u,1)
lu

, y
)

and

H
l(u)
n+u−k,u(f̄) =

∫

Ī
l(u)
n+u−k,u(f̄ , y)2ρ( dy), f̄ ∈ F̄ .

The value of H
l(u)
n+u−k,u(f̄) depends on the choice of the sequence l(u), but

its distribution does not depend on it. We can give the following estimate by
the corollary of Proposition (15.4) for u < k and relation (16.21). Choose a
sufficiently small γ = γk > 0. We have
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P

(

sup
f̄∈F̄

E(ĪV
n,k(f, lu+1, . . . , lk)2|B)

≥
(

k!

u!

)2

γ
2/(2u+1)
k A2(n + u − k)2uσ2u+2

)

= P

(

sup
f̄∈F̄

(n + u − k)−uH
l(u)
n+u−k,u(f̄) ≥ γ

2/(2u+1)
k A2(n + u − k)uσ2u+2

)

≤ e−γkA1/(2u+1)(n+k−u)σ2

for A > A0(u)γ
−2/(2u+1)
k . (16.22)

It is not difficult to derive formula (16.20) from relation (16.22). It is enough

to check that the level A2nk+uσ2k+2

2(3k+3) in the probability at the left-hand side

of (16.20) can be replaced by γ
2/(2u+1)
k A2

(
k!
u!

)2
(n+u−k)2uσ2u+2 if γk > 0 is

chosen sufficiently small. This statement holds, since γ
2/(2u+1)
k A2

(
k!
u!

)2
(n +

u − k)2uσ2u+2 < γ
2/(2k+1)
k A2

(
k!
u!

)2
n2uσ2u+2 ≤ A2nk+uσ2k+2

2(3k+3) if the constant

γk > 0 is chosen sufficiently small, since nσ2 > L log n ≤ 1
2 by the conditions

of Proposition 15.3.
Relations (16.19) and (16.20) imply that

P

(

sup
f∈F

E
(
ĪV
n,k(f)2

∣
∣B
)

(ω) > 2−(3k+3)A2n2kσ2k+2

)

≤ nk−ue−γkA1/(2u+1)(n+u−k)σ2

.

Since e−γkA1/(2u+1)(n+u−k)σ2 ≤ e−γkA1/(2k−1)nσ2/k if u ≤ k − 1, n ≥ k and
A > A0 with a sufficiently large number A0, inequality (16.17) holds for all
sets V of the form V = {1, . . . , u}, 1 ≤ u < k.

The case of a general set V ⊂ {1, . . . , k}, 1 ≤ |V | < k, can be handled
similarly, only the notation becomes more complicated. Moreover, the case
of general sets V can be reduced to the case of sets of form we have already
considered. Indeed, given some set V ⊂ {1, . . . , k}, 1 ≤ |V | < k, let us define
a new class of function FV we get by applying a rearrangement of the indices
of the arguments x1, . . . , xk of the functions f ∈ F in such a way that the
arguments indexed by the set V are the first |V | arguments of the functions
fV ∈ FV , and put V̄ = {1, . . . , |V |}. Then the class of functions FV also
satisfies the condition of Proposition 15.3, and we can get relation (16.17)
with the set V by applying it for the set of function FV and set V̄ .

Now we prove Lemma 16.1A. It will be proved with the help of Lemma
16.2A, the generalized symmetrization lemma 15.2 and Lemma 16.3A.

Proof of Lemma 16.1A. First we show with the help of the generalized sym-
metrization lemma, i.e. of Lemma 15.2 and Lemma 16.3A that
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P

(

sup
f∈F

n−k/2
∣
∣Īn,k(f)

∣
∣ > Ank/2σk+1

)

< 2P

(

sup
f∈F

|S(f)| >
A

2
nkσk+1

)

+2knk−1e−γkA1/(2k−1)nσ2/k (16.23)

with the function S(f) defined in (16.14). To prove relation (16.23) introduce

the random variables Z(f) = Ī
{1,...,k}
n,k (f) and

Z̄(f) = −
∑

V ⊂{1,...,k}, V 6={1,...,k}
(−1)k−|V |ĪV

n,k(f)

for all f ∈ F , the σ-algebra B considered in Lemma 16.3A and the set

B =
⋂

V ⊂{1,...,k}
V 6={1,...,k}

{

ω : sup
f∈F

E
(
ĪV
n,k(f)2

∣
∣B
)

(ω) ≤ 2−(3k+3)A2n2kσ2k+2

}

.

Observe that S(f) = Z(f) − Z̄(f), f ∈ F , B ∈ B, and by Lemma 16.3A

the inequality 1 − P (B) ≤ 2knk−1e−γkA1/(2k−1)nσ2/k holds. To prove rela-
tion (16.23) apply Lemma 15.2 with the above introduced random vari-
ables Z(f) and Z̄(f), f ∈ F , (both here and in the subsequent proof of
Lemma 16.1B we work with random variables Z(·) and Z̄(·) indexed by
the countable set of functions f ∈ F , hence the functions f ∈ F play the
role of the parameters p when Lemma 15.2 is applied) random set B and
α = A

2 nkσk+1, u = A
2 nkσk+1. It is enough to show that

P

(

|Z̄(f)| >
A

2
nkσk+1|B

)

(ω) ≤ 1

2
for all f ∈ F if ω ∈ B. (16.24)

But

P
(

|Ī |V |
n,k(f)| > 2−(k+1)Ankσk+1|B

)

(ω)

≤
22(k+1)E(Ī

|V |
n,k(f)2|B)(ω)

A2n2kσ2(k+1)
≤ 2−(k+1)

for all functions f ∈ F and sets V ⊂ {1, . . . , k}, V 6= {1, . . . , k}, if ω ∈ B
by the ‘conditional Chebishev inequality’, hence relations (16.24) and (16.23)
hold.

Lemma 16.1A follows from relation (16.23), Lemma 16.2A and the obser-

vation that the random variables Ī
(V,ε)
n,k (f), f ∈ F , defined in (16.13) have

the same distribution for all V ⊂ {1, . . . , k} as the random variables Īε
n,k(f),

defined in formula (14.12). Hence Lemma 16.2A and the definition (16.15) of
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the random variables S̄(f), f ∈ F , imply the inequality

P

(

sup
f∈F

|S(f)| >
A

2
nkσk+1

)

= P

(

sup
f∈F

|S̄(f)| >
A

2
nkσk+1

)

≤ 2kP

(

sup
f∈F

∣
∣Īε

n,k(f)
∣
∣ > 2−(k+1)Ankσk+1

)

.

Lemma 16.1A is proved.

Lemma 16.1B will be proved with the help of the following Lemma 16.3B,
which is a version of Lemma 16.3A.

Lemma 16.3B. Let us consider a class of functions F satisfying the condi-

tions of Proposition 15.4 together with 2k independent copies ξ
(j,1)
1 , . . . , ξ

(j,1)
n

and ξ
(j,−1)
1 ,. . . , ξ

(j,−1)
n , 1 ≤ j ≤ k, of a sequence of independent, µ-

distributed random variables ξ1, . . . , ξn. Take the random variables ĪV
n,k(f, y)

and HV
n,k(f), f ∈ F , V ⊂ {1, . . . , k}, defined in formulas (16.2) and (16.3)

with the help of these quantities. Let B = B(ξ
(j,1)
1 , . . . , ξ

(j,1)
n ; 1 ≤ j ≤ k) de-

note the σ-algebra generated by the random variables ξ
(j,1)
1 , . . . , ξ

(j,1)
n , 1 ≤ j ≤

k, i.e. by those random variables which appear in the definition of the random
variables ĪV

n,k(f, y) and HV
n,k(f) introduced in formulas (16.2) and (16.3), and

have second argument 1 in their upper index.

a) There exist some numbers A0 = A0(k) > 0 and γ = γk > 0 such that for
all V ⊂ {1, . . . , k}, V 6= {1, . . . , k}, the inequality

P

(

sup
f∈F

E(HV
n,k(f)|B) > 2−(4k+4)A(2k−1)/kn2kσ2k+2

)

< nk−1e−γkA1/2knσ2/k (16.25)

holds if A ≥ A0.

b) Given two subsets V1, V2 ⊂ {1, . . . , k} of the set {1, . . . , k} define the inte-
grals (of random kernel functions)

H
(V1,V2)
n,k (f) =

∫

|ĪV1

n,k(f, y)ĪV2

n,k(f, y)|ρ( dy), f ∈ F , (16.26)

with the help of the functions ĪV
n,k(f, y) defined in (16.2). There exist some

number A0 = A0(k) > 0 and γ = γk such that if the integrals Hn,k(f),
f ∈ F , determined by this class of functions F have a good tail behaviour
at level T (2k+1)/2k for some T ≥ A0, then the inequality
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P

(

sup
f∈F

E(H
(V1,V2)
n,k (f)|B) > 2−(2k+2)A2n2kσ2k+2

)

< 2nk−1e−γkA1/2knσ2/k

(16.27)
holds for any pairs of subsets V1, V2 ⊂ {1, . . . , k} with the property that at
least one of them does not equal the set {1, . . . , k} if the number A satisfies
the condition A > T .

Proof of Lemma 16.3B. Part a) of Lemma 16.3B can be proved in almost
the same way as Lemma 16.3A. Hence I only briefly explain the main step of
the proof. In the case V = ∅ the identity E(HV

n,k(f)|B) = E(HV
n,k(f)) holds,

hence it is enough to show that E(HV
n,k(f)) ≤ nkσ2

k! ≤ 2k n2kσ2k+2

k! for all
f ∈ F under the conditions of Proposition 15.4. (This relation holds, because
the functions of the class F are canonical.) The case of a general set V , V 6= ∅
and V 6= {1, . . . , k}, can be reduced to the case V = {1, . . . , u} with some
1 ≤ u < k.

Given a set V = {1, . . . , u}, 1 ≤ u < k, let us define for all f ∈ F
and sequences l(u) = (lu+1, . . . , lk) with the properties 1 ≤ lj ≤ n for all
u + 1 ≤ j ≤ k and lj 6= lj′ if j 6= j′ the random variable

ĪV
n,k(f, lu+1, . . . , lk, y)

=
1

k!

∑

(l1,...,lu) :
1≤lj≤n, j=1,...,u,

lj 6=lj′ if j 6=j′

f
(

ξ
(1,1)
l1

, . . . , ξ
(u,1)
lu

, ξ
(u+1,−1)
lu+1

, . . . , ξ
(k,−1)
lk

, y
)

.

It can be shown, similarly to the proof of relation (16.18) in the proof of
Proposition 16.3A that since the functions f ∈ F have the canonical property
the identity

E
(
H̄V

n,k(f)
∣
∣B
)

=
∑

(lu+1,...,lk) :
1≤lj≤n, j=u+1,...,k,

lj 6=lj′ if j 6=j′

∫

E
(
ĪV
n,k(f, lu+1, . . . , lk, y)2

∣
∣B
)
ρ( dy)

holds, and the proof of part a) of Lemma 16.3B can be reduced to the in-
equality

P

(

sup
f∈F

E

(∫

ĪV
n,k(f, lu+1, . . . , lk, y)2ρ( dy)

∣
∣
∣
∣
B
)

>
A(2k−1)/knk+uσ2k+2

2(4k+4)

)

≤ e−γkA(2k−1)/2k(2u+1)(n+u−k)σ2

with a sufficiently small γk > 0. This inequality can be proved, similarly to
relation (16.20) in the proof of Lemma 16.3A with the help of the Corollary
of Proposition 15.4. Only here we have to work in the space (Xu × Ȳ ,X⊓ ×
Ȳ, µ⊓ × ρ̄) where Ȳ = Xk−u × Y , Ȳ = X k−u × Y, ρ̄ = µk−u × ρ with the



194 16 A symmetrization argument

class of function f̄ ∈ F̄ consisting of the functions f̄ defined by the formula
f̄(x1, . . . , xu, ȳ) = f(x1, . . . , xk, y) with some f(x1, . . . , xk, y) ∈ F , where
ȳ = (xu+1, . . . , xk, y). Here we apply the following version of formula (16.21).

E
(
ĪV
n,k(f, lu+1, . . . , lk, y)2|B

)
=

(
u!

k!

)2 ∫

Ī
l(u)
n+u−k,u(f̄ , ȳ)2ρ̄( dȳ)

=

(
u!

k!

)2

Hn+u−k,u(f̄)

with the function f̄ ∈ F̄ for which the identity

f̄(x1, . . . , xu, ȳ) = f(x1, . . . , xk, y)

holds with ȳ = (xu+1, . . . , xk, y) and the random variables Ī
l(u)
n+u−k,u(f̄ , ȳ)

and Hn+u−k,u(f̄) defined similarly as the corresponding terms after for-
mula (16.21), only y is replaced by ȳ, the measure ρ by ρ̄, and the presently
defined f̄ ∈ F̄ are considered in the present case. I omit the details.

Part b) of Lemma 16.3B will be proved with the help of Part a) and the
inequality

sup
f∈F

E(H
(V1,V2)
n,k (f)|B) ≤

(

sup
f∈F

E(HV1

n,k(f)|B)

)1/2(

sup
f∈F

E(HV2

n,k(f)|B)

)1/2

which follows from the Schwarz inequality applied for integrals with respect
to conditional distributions. Let us assume that V1 6= {1, . . . , k}. The last
inequality implies that

P

(

sup
f∈F

E(H
(V1,V2)
n,k (f)|B) > 2−(2k+2)A2n2kσ2k+2

)

≤ P

(

sup
f∈F

E(HV1

n,k(f)|B) > 2−(4k+4)A(2k−1)/kn2kσ2k+2

)

+P

(

sup
f∈F

E(HV2

n,k(f)|B) > A(2k+1)/kn2kσ2k+2

)

Hence if we know that also the inequality

P

(

sup
f∈F

E(HV2

n,k(f)|B) > A(2k+1)/kn2kσ2k+2

)

≤ nk−1e−γkA1/2knσ2

(16.28)

holds, then we can deduce relation (16.27) from the estimate (16.25) and
the last inequality. Relation (16.28) follows from Part a) of Lemma 16.3B if
V2 6= {1, . . . , k} and A ≥ 1, since in this case the level A(2k+1)/kn2kσ2k+2
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can be replaced by the smaller number 2−(4k+2)A(2k−1)/kn2kσ2k+2 in the
probability of formula (16.28). In the case V2 = {1, . . . , k} it follows from
the conditions of Part b) of Lemma 16.3B if the number γk is chosen for
some γk ≤ 1. Indeed, since A(2k+1)/2k > T (2k+1)/2k, by the conditions of
Proposition 15.4 the estimate (15.7) holds if the number A is replaced in
it by A(2k+1)/2k (at both side of the inequality), and this relation implies
inequality (16.28) in this case.

Now we turn to the proof of Lemma 16.1B.

Proof of Lemma 16.1B. By Lemma 16.2B it is enough to prove that relation
(16.8) holds if the random variables W̄ (f) are replaced in it by the random
variables W (f) defined in formula (16.16). We shall prove this by applying
the generalized form of the symmetrization lemma, Lemma 15.2, with the

choice of Z(f) = H
(V̄ ,V̄ )
n,k (f), V̄ = {1, . . . , k}, Z̄(f) = Z(f) − W (f), f ∈ F ,

B = B(ξ
(j,1)
1 , . . . , ξ

(j,1)
n ; 1 ≤ j ≤ k), α = A2

2 n2kσ2k+2, u = A2

2 n2kσ2k+2 and
the set

B =
⋂

(V1,V2) : Vj∈{1,...,k}, j=1,2,
V1 6={1,...,k} or V2 6={1,...,k}

{

ω : sup
f∈F

E(H
(V1,V2)
n,k (f)|B)(ω) ≤ 2−(2k+2)A2n2kσ2k+2

}

.

By part b) of Lemma 16.3B the inequality

1 − P (B) ≤ 22k+1nk−1e−γkA1/2knσ2/k

holds. Observe that Z(f) = H
(V̄ ,V̄ )
n,k (f) = Hn,k(f) for all f ∈ F . Hence to

prove Lemma 16.1B with the help of Lemma 15.2 it is enough to show that

P

(

|Z̄(f)| >
A2

2
n2kσ2k+2

∣
∣
∣
∣
B
)

(ω) ≤ 1

2
for all f ∈ F if ω ∈ B. (16.29)

To prove this relation observe that because of the definition of the set B

E(|Z̄(f)||B)(ω)

≤
∑

(V1,V2) : Vj∈{1,...,k}, j=1,2,
V1 6={1,...,k} or V2 6={1,...,k}

E(H
(V1,V2)
n,k (f)|B)(ω) ≤ A2

4
n2kσ2k+2

if ω ∈ B for all f ∈ F . Hence the ‘conditional Markov inequality’ implies

that P
(

|Z̄(f)| > A2

2 n2kσ2(k+1)
∣
∣
∣B
)

(ω) ≤ 2E(|Z̄(f)||B)(ω)
A2n2kσ2k+2 ≤ 1

2 if ω ∈ B, and

inequality (16.29) holds. Lemma 16.1B is proved.





Chapter 17

The proof of the main result

This section contains the proof of Proposition 15.3 together with Proposi-
tion 15.4. They complete the proof of Theorem 8.4, of the main result of this
work.

A.) The proof of Proposition 15.3.

The proof of Proposition 15.3 is similar to that of Proposition 7.3. It ap-
plies an induction procedure with respect to the parameter k. In the proof
of Proposition 15.3 for parameter k we may assume that Propositions 15.3
and 15.4 hold for u < k. In the proof we want to give a good estimate on the
expression

P

(

sup
f∈F

∣
∣Īε

n,k(f)
∣
∣ > 2−(k+1)Ankσk+1

)

appearing at the right-hand side of the estimate (16.1) in Lemma 16.1A.
To estimate this probability we introduce (using the notation of Proposi-
tion 15.3) the functions

S2
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k)

=
1

k!

∑

(l1,...,lk) :
1≤lj≤n, j=1,...,k,

lj 6=lj′ if j 6=j′

f2
(

x
(1)
l1

, . . . , x
(k)
lk

)

, f ∈ F , (17.1)

with x
(j)
l ∈ X, 1 ≤ l ≤ n, 1 ≤ j ≤ k. We define with the help of this function

the following set H = H(A) ⊂ Xkn for all A > T similarly to the set defined
in formula (7.8).

H = H(A) =

{

(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) :

sup
f∈F

S2
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) > 2kA4/3nkσ2

}

. (17.2)

197
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We want to show that

P ({ω : (ξ
(j)
l (ω), 1 ≤ j ≤ n, 1 ≤ j ≤ k) ∈ H}) ≤ 2ke−A2/3knσ2

if A ≥ T.
(17.3)

To prove relation (17.3) we take the Hoeffding decomposition of the U -
statistics with kernel functions f2(x1, . . . , xk), f ∈ F , given in Theorem 9.1,
i.e. we write

f2(x1, . . . , xk) =
∑

V ⊂{1,...,k}
fV (xj , j ∈ V ), f ∈ F , (17.4)

with fV (xj , j ∈ V ) =
∏

j /∈V

Pj

∏

j∈V

Qjf
2(x1, . . . , xk), where Pj and Qj are the

operators defined in formulas (9.1) and (9.2).
The functions fV appearing in formula (17.4) are canonical (with respect

to the measure µ), and the identity S2
n,k(f)(ξ

(j)
l 1 ≤ l ≤ n, 1 ≤ j ≤ k) =

Īn,k(f2) holds for all f ∈ F with the expression Īn,k(·) defined in (14.11). By

applying the Hoeffding decomposition (17.4) for each term f2(ξ
(1)
l1

. . . , ξ
(k)
lk

)

in the expression S2
n,k(f) we get that

P

(

sup
f∈F

S2
n,k(f)(ξ

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) > 2kA4/3nkσ2

)

≤
∑

V ⊂{1,...,k}
P

(

|V |!
k!

sup
f∈F

nk−|V ||Īn,|V |(fV )| > A4/3nkσ2

)

(17.5)

with the functions fV appearing in formula (17.4). We want to give a good
estimate for each term in the sum at the right-hand side in (17.5). For this
goal first we show that the classes of functions {fV : f ∈ F} in the expan-
sion (17.4) satisfy the conditions of Proposition 15.3 for all V ⊂ {1, . . . , k}.

The functions fV are canonical for all V ⊂ {1, . . . , k}. It follows from the
conditions of Proposition 15.3 that |f2(x1, . . . , xk)| ≤ 2−2(k+1) and

∫

f4(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ 2−(k+1)σ2.

Hence relations (9.5) and (9.6) of Theorem 9.2 imply that

∣
∣
∣
∣
∣

sup
xj∈X,j∈V

fV (xj , j ∈ V )

∣
∣
∣
∣
∣
≤ 2−(k+2) ≤ 2−(k+1)

and
∫

f2
V (xj , j ∈ V )

∏

j∈V

µ( dxj) ≤ 2−(k+1)σ2 ≤ σ2 for all V ⊂ {1, . . . , k}.

Finally, to check that the class of functions FV = {fV : f ∈ F} is L2-
dense with exponent L and parameter D observe that for all probability
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measures ρ on (Xk,X k) and pairs of functions f, g ∈ F the inequality
∫

(f2−
g2)2 dρ ≤ 2−2k

∫
(f − g)2 dρ holds. This implies that if {f1, . . . , fm}, m ≤

Dε−L, is an ε-dense subset of F in the space L2(Xk,X k, ρ), then the set
of functions {2kf2

1 , . . . , 2kf2
m} is an ε-dense subset of the class of functions

F ′ = {2kf2 : f ∈ F}, hence F ′ is also an L2-dense class of functions with
exponent L and parameter D. Then by Theorem 9.2 the class of functions FV

is also L2-dense with exponent L and parameter D for all sets V ⊂ {1, . . . , k}.
For V = ∅, the function fV is constant, the relation

fV =

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤ σ2

holds, and Ī|V |(f|V |)| = fV ≤ σ2. Therefore the term corresponding to V = ∅
in the sum of probabilities at the right-hand side of (17.5) equals zero under
the conditions of Proposition 15.3 with the choice of some A0 ≥ 1. I claim
that the remaining terms in the sum at the right-hand side of (17.5) satisfy
the inequality

P

(

|V |!
k!

nk−|V | sup
f∈F

|Īn,|V |(fV )| > A4/3nkσ2

)

≤ P

(

sup
f∈F

|Īn,|V |(fV )| > A4/3 k!

|V |!n
|V |σ|V |+1

)

≤ e−A2/3knσ2

if 1 ≤ |V | ≤ k. (17.6)

The first inequality in (17.6) holds, since σ|V |+1 ≤ σ2 for |V | ≥ 1, and
n ≥ k ≥ |V |. The second inequality follows from the inductive hypothesis if
|V | < k, since in this case the middle expression in (17.6) can be bounded

with the help of Proposition 15.3 by e−(A4/3k!/|V |!)1/2|V |nσ2 ≤ e−A2/3knσ2

if
A0 = A0(k) in Proposition 15.3 is chosen sufficiently large. In the case V =
{1, . . . , k} it follows from the inequality A ≥ T and the inductive assumption
by which the supremum of decoupled U -statistics determined by such a class
of kernel-functions which satisfies the conditions of Proposition 15.3 has a
good tail behaviour at level T 4/3. Relations (17.5) and (17.6) together with
the estimate in the case V = ∅ imply formula (17.3).

By conditioning the probability P
(∣
∣
∣Īε

n,k(f)
∣
∣
∣ > 2−(k+2)Ank/2σk+1

)

with

respect to the random variables ξ
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k we get with the

help of the multivariate version of Hoeffding’s inequality (Theorem 13.3) that
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P
(∣
∣Īε

n,k(f)
∣
∣ > 2−(k+2)Ankσk+1

∣
∣
∣ ξ

(j)
l (ω) = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

≤ C exp






−1

2

(

A2n2kσ2(k+1)

22k+4S2
n,k(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k)/k!

)1/k






≤ Ce−2−4−4/kA2/3k(k!)1/knσ2

for all f ∈ F
if (x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) /∈ H (17.7)

with some appropriate constant C = C(k) > 0.

Define for all 1 ≤ j ≤ k and sets of points x
(j)
l ∈ X, 1 ≤ l ≤ n, the

probability measures ρj = ρ
j, (x

(j)
l , 1≤l≤n)

, 1 ≤ j ≤ k, uniformly distributed

on the set of points {x(j)
l , 1 ≤ l ≤ n}, i.e. let ρj(x

(j)
l ) = 1

n for all 1 ≤ l ≤ n.

Let us also define the product ρ = ρ(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) = ρ1×· · ·×ρk

of these measures on the space (Xk,X k). If f is a function on (Xk,X k) such
that

∫
f2 dρ ≤ δ2 with some δ > 0, then

sup
ε1,...,εn

|Īε
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k)|

≤ nk

k!

∫

|f(u1, . . . , uk)|ρ( du1, . . . , duk) ≤ nk

k!

(∫

f2 dρ

)1/2

≤ nk

k!
δ,

uj ∈ Rk, 1 ≤ j ≤ k, and as a consequence

sup
ε1,...,εn

|Īε
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) (17.8)

−Īε
n,k(g)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k)|

≤ 2−(k+2)Ankσk+1 if

∫

(f − g)2 dρ ≤ (2−(k+2)k!Aσk+1)2,

where Īε
n,k(f)(x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) equals the expression Īε

n,k(f)

defined in (14.12) if we replace ξ
(j)
lj

by x
(j)
lj

for all 1 ≤ j ≤ k, and 1 ≤ lj ≤ n

in it, and ρ is the measure ρ = ρ(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) defined above.

Let us fix the number δ = 2−(k+2)k!Aσk+1, and let us list the elements of
the set F as F = {f1, f2, . . . }. Put

m = m(δ) = max(1,Dδ−L) = max(1,D(2(k+2)(k!)−1A−(1)σ−(k+1))L),

and choose for all vectors x(n) = (x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) ∈ Xkn such a

sequence of positive integers p1(x(n)), . . . , pm(x(n))) for which

inf
1≤l≤m

∫

(f(u) − fpl(x(n))(u))2 dρ(x(n)) ≤ δ2 for all f ∈ F .
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(Here we apply the notation ρ(x(n)) = ρ(x
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k).) This is

possible, since F is an L2-dense class with exponent L and parameter D, and
we can choose m = Dδ−l, if δ < 1, Beside this, we can choose m = 1 if δ = 1,
since

∫
|f − g|2 dρ ≤ sup |f(x)− g(x)|2 ≤ 2−2k ≤ 1 for all f, g ∈ F . Moreover,

it follows from Lemma 7.4A that the functions pl(x
(n)), 1 ≤ l ≤ m, can be

chosen as measurable functions of the argument x(n) ∈ Xkn.

Let us introduce the random vector ξ(n)(ω) = (ξ
(j)
l (ω), 1 ≤ l ≤ n, 1 ≤

j ≤ k). By arguing similarly as we did in the proof of Proposition 7.3 we get
with the help of relation (17.8) and the property of the functions fpl(x(n))(·)
constructed above that

{

ω : sup
f∈F

|Īε
n,k(f)(ω)| ≥ 2−(k+1)Ankσk+1

}

⊂
m⋃

l=1

{

ω : |Īε
n,k(fpl(ξ(n)(ω)))(ω)| ≥ 2−(k+2)Ankσ(k+1)

}

.

The above relation and formula (17.7) imply that

P

(

sup
f∈F

∣
∣Īε

n,k(f)(ω)
∣
∣ > 2−(k+1)Ankσk+1

∣
∣
∣
∣
∣

ξ
(j)
l (ω) = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

≤
m∑

l=1

P

(

|Īε
n,k(fpl(ξ(n)(ω))(ω)| >

Ankσk+1

2k+2

∣
∣
∣
∣

ξ
(j)
l (ω) = x

(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

≤ Cm(δ)e−2−4−4/kA2/3k(k!)1/knσ2

≤ C(1 + D(2k+2A−1(k!)−1σ−(k+1))L)e−2−4−4/kA2/3k(k!)1/knσ2

if {x(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k} /∈ H. (17.9)

Relations (17.3) and (17.9) imply that

P

(

sup
f∈F

∣
∣Īε

n,k(f)
∣
∣ > 2−(k+1)Ankσk+1

)

≤ C(1 + D(2k+2A−1(k!)−1σ−(k+1))L)

e−2−4−4/kA2/3k(k!)1/knσ2

+ 2ke−A2/3knσ2

if A > T. (17.10)

Proposition 15.3 follows from the estimates (16.1), (17.10) and the condition
nσ2 ≥ L log n+log D, L,D ≥ 1, if A ≥ A0 with a sufficiently large number A0.

Indeed, in this case nσ2 ≥ 1
2 , (2k+2A−1(k!)−1σ−(k+1))L ≤ ( n(k+1)/2

(2nσ2)(k+1)/2 )L ≤
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nL(k+1)/2 = eL log n·(k+1)/2 ≤ e(k+1)nσ2/2, D = elog D ≤ enσ2

, and

C(1 + D(2k+2A−1(k!)−1σ−(k+1))L)e−2−4−4/kA2/3k(k!)1/knσ2 ≤ 1

3
e−A1/2knσ2

.

The estimation of the remaining terms in the upper bound of the esti-
mates (16.1) and (17.10) leading to the proof of relation (15.5) is simpler.

We can exploit that e−A2/3knσ2 ≪ e−A1/2knσ2

and as nk−1 ≤ e(k−1)nσ2

2knk−1e−γkA1/(2k−1)nσ2/k ≤ 2ke(k−1)nσ2

e−γkA1/(2k−1)nσ2/k ≪ e−A1/2knσ2

for a large number A.
Now we turn to the proof of Proposition 15.4.

B.) The proof of Proposition 15.4.

Because of formula (16.11) in the Corollary of Lemma 16.1B to prove Propo-
sition 15.4 i.e. inequality (15.7) it is enough to choose a sufficiently large
parameter A0 and to show that with such a choice the random variables
Hn,k(f |G,V1, V2) defined in formula (16.9) satisfy the inequality

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

)

≤ 2k+1e−A1/2knσ2

for all G ∈ G and V1, V2 ∈ {1, . . . , k} if A > T ≥ A0 (17.11)

under the conditions of Proposition 15.4.
Let us first prove formula (17.11) in the case |e(G)| = k, i.e. when all

vertices of the diagram G are end-points of some edge, and the expression
Hn,k(f |G,V1, V2) contains no ‘symmetrizing term’ εj . In this case we apply
a special argument to prove relation (17.11).

It can be seen with the help of the Schwarz inequality that for a diagram
G such that |e(G)| = k

|Hn,k(f |G,V1, V2)| (17.12)

≤ 1

k!










∑

(l1,...,lk) :
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1),δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)










1/2

1

k!










∑

(l1,...,lk) :
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1,δ1(V2))
l1

, . . . , ξ
(k,δk(V2))
lk

, y)ρ( dy)










1/2
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with δj(V1) = 1 if j ∈ V1, δj(V1) = −1 if j /∈ V1, and δj(V2) = 1 if j ∈ V2,
δj(V2) = −1 if j /∈ V2.

Relation (17.12) can be proved for instance by bounding first each integral
in formula (16.9) by means of the Schwarz inequality, and then by bounding
the sum appearing in such a way by means of the inequality

∑ |ajbj | ≤
(∑

a2
j

)1/2 (∑
b2
j

)1/2
. Observe that in the case |(e(G)| = k the summation

in (16.9) is taken for such vectors (l1, . . . , lk, l′1, . . . , l
′
k) for which (l′1, . . . , l

′
k)

is a permutation of the sequence (l1, . . . , lk) determined by the diagram G.
Hence the sum we get after applying the Schwarz inequality for each integral
in (16.9) has the form

∑
ajbj where the set of indices j in this sum agrees

with the set of vectors (l1, . . . , lk) such that 1 ≤ lp ≤ n for all 1 ≤ p ≤ k, and
lp 6= lp′ if p 6= p′.

By formula (17.12)

{

ω : sup
f∈F

|Hn,k(f |G,V1, V2)(ω)| >
A2n2kσ(2(k+1)

24k+1k!

}

⊂
{

ω : sup
f∈F

∑

(l1,...,lk) :
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1,δ1(V1))
l1

(ω), . . . , ξ
(k,δk(V1))
lk

(ω), y)ρ( dy)

>
A2n2kσ2(k+1)k!

24k+1

}

∪
{

ω : sup
f∈F

∑

(l1,...,lk) :
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1,δ1(V2))
l1

(ω), . . . , ξ
(k,δk(V2))
lk

(ω), y)ρ( dy)

>
A2n2kσ2(k+1)k!

24k+1

}

,

hence

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

)

(17.13)

≤ 2P










sup
f∈F

1

k!

∑

(l1,...,lk) :
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

hf (ξ
(1,1)
l1

, . . . , ξ
(k,1)
lk

) >
A2n2kσ2(k+1)

24k+1










with the functions hf (x1, . . . , xk) =
∫

f2(x1, . . . , xk, y)ρ( dy), f ∈ F . (In this
upper bound we could get rid of the terms δj(V1) and δj(V2), i.e. on the
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dependence of the expression Hn,k(f |G,V1, V2) on the sets V1 and V2, since
the probability of the events in the previous formula do not depend on them.)

I claim that

P

(

sup
f∈F

|Īn,k(hf )| ≥ 2kAnkσ2

)

≤ 2ke−A1/2knσ2

for A ≥ A0 (17.14)

if the constant A0 = A0(k) is chosen sufficiently large in Proposition 15.4.

Relation (17.14) together with the relation A2 n2kσ2(k+1)

24k+1 ≥ 2kAnkσ2 (if A >
A0 with a sufficiently large A0) imply that the probability at the right-hand

side of (17.13) can be bounded by 2k+1e−A1/2knσ2

, and the estimate (17.11)
holds in the case |e(G)| = k.

Relation (17.14) is similar to relation (17.3) (together with the definition
of the random set H in formula (17.2), and a modification of the proof of the
latter estimate yields the proof also in this case. Indeed, it follows from the
conditions of Proposition 15.4 that 0 ≤

∫
hf (x1, . . . , xk)µ( dx1) . . . µ( dxk) ≤

σ2 for all f ∈ F , and it is not difficult to check that sup |hf (x1, . . . , xk)| ≤
2−2(k+1), and the class of functions H = {2khf , f ∈ F} is an L2-dense
class with exponent L and parameter D. Hence by applying the Hoeffding
decomposition of the functions hf , f ∈ F , similarly to formula (17.4) we
get for all V ⊂ {1, . . . , k} such a set of functions {hf )V , f ∈ F}, which
satisfies the conditions of Proposition 15.3. Hence a natural adaptation of the
estimate given for the expression at the right-hand side of (17.5) (with the
help of (17.6) and the investigation of Ī|V |(fV ) for V = ∅) yields the proof of
formula (17.14). We only have to replace Sn,k(f) by Īn,k(hf ), then Īn,|V |(fV )

by Īn,|V |((hf )V ) and the levels 2kA4/3nkσ2 and A4/3nkσ2 by 2kAnkσ2 and

Ankσ2. Let us observe that each term of the upper bound we get in such a
way can be directly bounded, since during the proof of Proposition 15.4 for
parameter k we may assume that the result of Proposition 15.3 holds also for
this parameter k.

In the case e(G) < k formula (17.11) will be proved with the help of the
multivariate version of Hoeffding’s inequality, Theorem 13.3. In the proof of
this case an expression, analogous to S2

n,k(f) defined in formula (17.1) will be
introduced and estimated for all sets V1, V2 ⊂ {1, . . . , k} and diagrams G ∈ G
such that |e(G)| < k. To define it first some notations will be introduced.

Let us consider the set J0(G) = J0(G, k, n),

J0(G) = {(l1, . . . , lk, l′1, . . . , l
′
k) : 1 ≤ lj , l

′
j ≤ n, 1 ≤ j ≤ k, lj 6= lj′ if j 6= j′,

l′j 6= l′j′ if j 6= j′, lj = l′j′ if (j, j′) ∈ e(G), lj 6= l′j′ if (j, j′) /∈ e(G)}.

The set J0(G) contains those sequences (l1, . . . , lk, l′1, . . . , l
′
k) which appear as

indices in the summation in formula (16.9) for a fixed diagram G. We also
introduce an appropriate partition of it.

For this aim let us first define the sets M1(G) = {j(1), . . . , j(k−|e(G)|)} =
{1, . . . , k} \ v1(G), j(1) < · · · < j(k − |e(G)|), and M2(G) = {̄(1), . . . , ̄(k −
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|e(G|)} = {1, . . . , k} \ v2(G), ̄(1) < · · · < ̄(k − |e(G|), the sets of those
vertices of the first and second row of the diagram G in increasing order from
which no edge starts. Let us also introduce the set V (G) = V (G,n, k),

V (G) = {(lj(1), . . . , lj(k−|e(G)|), l
′
̄(1), . . . , l

′
̄(k−|e(G)|)) : 1 ≤ lj(p), l

′
̄(p) ≤ n,

1 ≤ p ≤ k − |e(G)|, lj(p) 6= lj(p′), l′̄(p) 6= l′̄(p′)

if p 6= p′, 1 ≤ p, p′ ≤ k − |e(G)|,
lj(p) 6= l′̄(p′), 1 ≤ p, p′ ≤ k − |e(G)|}.

The set V (G) consists of those vectors which can appear as the restriction
of some vector (l1, . . . , lk, l′1, . . . , l

′
k) ∈ J0(G) to the coordinates indexed by

the elements of the set M1(G) ∪ M2(G). The elements of V (G) are such
vectors whose coordinates are indexed by the set M1(G) ∪ M2(G), and they
take different integer values between 1 and n. Given a vector v ∈ V (G) put
v = (v(1), v(2)) with v(1) = {v(r), 1 ≤ r ≤ k − |e(G)|}, and v(2) = {v̄(r), 1 ≤
r ≤ k−|e(G)|}, where v(1) and v(2) denote the set of coordinates of v indexed
by the elements of the set M1(G) and M2(G) respectively. For all vectors
v ∈ V (G) define the set

EG(v) = {(l1, . . . , lk, l′1, . . . , l
′
k) : 1 ≤ lj ≤ n, 1 ≤ l′̄ ≤ n, for 1 ≤ j, ̄ ≤ k,

lj 6= lj′ if j 6= j′, l′̄ 6= l′̄′ if ̄ 6= ̄′,

lj = l′̄ if (j, ̄) ∈ e(G) and lj 6= l′̄ if (j, ̄) /∈ e(G),

lj(r) = v(r), l′̄(r) = v̄(r), 1 ≤ r ≤ k − |e(G)|}, v ∈ V (G),

where {j(1), . . . , j(k − |e(G)|)} = M1(G), {̄(1), . . . , ̄(k − |e(G)|)} = M2(G),
v = (v(1), v(2)) with v(1) = (v(1), . . . , v(k−|e(G)|)) and v(2) = (v̄(1), . . . , v̄(k−
|e(G)|)) in the last line of this definition. Beside this, let us define

E1
G(v) = {(l1, . . . , lk) : (l1, . . . , lk, l′1, . . . , l

′
k) ∈ EG(v)}

and
E2

G(v) = {(l′1, . . . , l
′
k) : (l1 . . . , lk, l′1, . . . , l

′
k) ∈ EG(v)}.

Given a vector v ∈ V (G), v = (v(1), v(2)), the set EG(v) consists of those
vectors ℓ = (l1, . . . , lk, l′1, . . . , l

′
k) ∈ J0(G) whose restrictions to M1(G) and

M2(G) equal v(1) and v(2) respectively. More explicitly, ℓ ∈ EG(v), if for
j ∈ M1(G) its coordinate lj agrees with the corresponding element of v(1),
for ̄ ∈ M2(G) its coordinate l′̄ agrees with the corresponding element of

v(2), and the remaining coordinates of ℓ satisfy the following properties. The
indices of the remaining coordinates of ℓ can be partitioned into pairs (js, ̄s′),
1 ≤ s, s′ ≤ |e(G)| in such a way that (js, ̄s′) ∈ e(G). The identity ljs

= l′̄s′

holds for such pairs (js, ̄s′), and if (js, ̄s′) /∈ e(G), then the coordinates
ljs

and l′̄s′
are different. Otherwise, the coordinates ljs

and l′̄s′
can be freely

chosen from the set {1, . . . , n}\{v(1), v(2)}. The sets E1
G(v) and E2

G(v) consist
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of the vectors containing the first k and the second k coordinates of the vectors
ℓ ∈ EG(v).

The sets EG(v), v ∈ V (G), constitute a partition of the set J0(G), and the
random variables Hn,k(f |G,V1, V2) defined in (16.9) can be rewritten with
their help as

Hn,k(f |G,V1, V2)(ω) =
∑

v=(v(1),v(2))∈V (G)

k−|e(G)|
∏

s=1

εlj(s)
(ω)

k−|e(G)|
∏

s=1

εl′̄(s)
(ω)

∑

(l1,...,lk,l′1...,l′k)∈EG(v)

1

k!2

∫

f(ξ
(1,δ1(V1))
l1

(ω), . . . , ξ
(k,δk(V1))
lk

(ω), y)

f(ξ
(1,δ1(V2))
l′1

(ω), . . . , ξ
(k,δk(V2))
l′k

(ω), y)ρ( dy), (17.15)

where δj(V1) = 1 if j ∈ V1, δj(V1) = −1 if j /∈ V1, and δj(V2) = 1 if j ∈ V2,
δj(V2) = −1 if j /∈ V2.

Let us fix some G ∈ G and V1, V2 ⊂ {1, . . . , k}. The inequality

P
(

S2(F|G,V1, V2) > 22kA8/3n2kσ4
)

≤ 2k+1e−A2/3knσ2

if A ≥ A0 and e(G) < k (17.16)

will be proved for the random variable

S2(F|G,V1, V2)

= sup
f∈F

1

k!2

∑

v∈V (G)

(
∑

(l1,...,lk,l′1,...,l′k)∈EG(v)

∫

f(ξ
(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)

f(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′k

, y)ρ( dy)

)2

, (17.17)

where δj(V1) = 1 if j ∈ V1, δj(V1) = −1 if j /∈ V1, and δj(V2) = 1 if j ∈ V2,
δj(V2) = −1 if j /∈ V2. The random variable S2(F|G,V1, V2) defined in (17.17)
plays a similar role in the proof of Proposition 15.4 as the random variable
sup
f∈F

S2
n,k(f) with S2

n,k(f) defined in formula (17.1) played in the proof of

Proposition 15.3.
To prove formula (17.16) let us first fix some v ∈ V (G), and let us show

that the following inequality similar to relation (17.12) holds.
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(
∑

(l1,...,lk,l′1,...,l′k)∈EG(v)

∫

f(ξ
(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)

f(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′k

, y)ρ( dy)

)2

≤




∑

(l1,...,lk)∈E1
G(v)

∫

f2(ξ
(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)








∑

(l′1,...,l′k)∈E2
G(v)

∫

f2(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′k

, y)ρ( dy)





(17.18)

for all f ∈ F and v ∈ V (G). Indeed, observe that for a vector v̄ = (v̄1, v̄2) ∈
EG(v) with v̄1 ∈ E1

G(v) and v̄2 ∈ E2
G(v), the coordinates of the vector v̄1

in the set M1(G) and the coordinates of the vector v̄2 in the set M2(G) are
prescribed, while the coordinates of v̄1 in the set v1(G) are given by a per-
mutation of the coordinates v̄2 in the set v2(G). (The sets v1(G) and v2(G)
were defined before the introduction of formula (16.9) as the sets of those
vertices in the first and second row of the diagram G respectively from which
an edge of G starts.) This permutation is determined by the diagram G. In-
equality (17.18) can be proved on the basis of the above observation similarly
to formula (17.12).

We shall prove with the help of formula (17.18) the following inequality.
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S2(F|G,V1, V2) (17.19)

≤ sup
f∈F

∑

v∈V (G)

1

k!




∑

(l1,...,lk)∈E1
G(v)

∫

f2(ξ
(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)





1

k!




∑

(l′1,...,l′k)∈E2
G(v)

∫

f2(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′k

, y)ρ( dy)





≤ sup
f∈F

1

k!










∑

(l1,...,lk) :
1≤lj≤n, 1≤j≤k,

lj 6=lj′ if j 6=j′

∫

f2(ξ
(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)










sup
f∈F

1

k!











∑

(l′1,...,l′k) :
1≤l′j≤n, 1≤j≤k,

l′j 6=l′j′ if j 6=j′

∫

f2(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′k

, y)ρ( dy)











.

The first inequality of (17.19) is a simple consequence of formula (17.18) and
the definition of the random variable S2(F|G,V1, V2). To check its second
inequality let us observe that it can be reduced to the simpler relation, where
the expression sup

f∈F
is omitted at each place. The simplified inequality ob-

tained after the omission of the expressions sup can be checked by carrying
out a term by term multiplication between the products of sums appearing
in (17.19). At both sides of the inequality a sum consisting of terms of the
form

1

k!2

∫

f2(ξ
(1,δ1(V1))
l1

, . . . , ξ
(k,δk(V1))
lk

, y)ρ( dy)

∫

f2(ξ
(1,δ1(V2))
l′1

, . . . , ξ
(k,δk(V2))
l′k

, y)ρ( dy), (17.20)

appears. It is enough to check that if a term of this form appears in the
middle term of the simplified version formula of (17.19), then it appears with
multiplicity 1, and it also appears at the right-hand side of this formula. To see
this, observe that each term of the form (17.20) which appears in the sum we
get by carrying out the multiplications in middle term of (17.19) determines
uniquely the index v = (v(1), v(2)) ∈ V (G) in the outer sum of the middle
term in the inequality (17.19). Indeed, if the random variables defining this
expression of the form (17.20) have indices ℓ = (l1, . . . , lk, l′1, . . . , l

′
k), then this

vector ℓ uniquely determines the vector v = (v(1), v(2)) ∈ V (G), since v(1)

must agree with the restriction of the vector l = (l1, . . . , lk) to the coordinates
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with indices in M1(G) and v(2) must agree with the restriction of the vector
l′ = (l′1, . . . , l

′
k) to the coordinates with indices in M2(G). Beside this, by

carrying out the multiplication at the right-hand side of (17.19) we get such
a sum which contains all such terms of the form (17.20) which appeared in the
sum expressing the middle term in inequality (17.19). The above arguments
imply inequality (17.19).

Relation (17.19) implies that

P (S2(F|G,V1, V2)) > 22kA8/3n2kσ4) ≤ 2P

(

sup
f∈F

Īn,k(hf ) > 2kA4/3nkσ2

)

with hf (x1, . . . , xk) =
∫

f2(x1, . . . , xk, y)ρ( dy). (Here we exploited that in
the last formula S2(F|G,V1, V2) is bounded by the product of two random
variables whose distributions do not depend on the sets V1 and V2.) Thus to
prove inequality (17.16) it is enough to show that

2P

(

sup
f∈F

Īn,k(hf ) > 2kA4/3nkσ2

)

≤ 2k+1e−A2/3knσ2

if A ≥ A0. (17.21)

Actually formula (17.21) follows from the already proven formula (17.14),
only the parameter A has to be replaced by A4/3 in it.

With the help of relation (17.16) the proof of Proposition 15.4 can be
completed similarly to Proposition 15.3. The following version of inequal-
ity (17.7) can be proved with the help of the multivariate version of Hoeff-
ding’s inequality, Theorem 13.3, and the representation of the random vari-
able Hn,k(f |G,V1, V2) in the form (17.15).

P

(

|Hn,k(f |G,V1, V2)| >
A2

24k+2k!
n2kσ2(k+1)

∣
∣
∣
∣

ξj,±1
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

(ω) ≤ Ce−2−(6+2/k)A2/3knσ2

if S2(F|G,V1, V2)(ω) ≤ 22kA8/3n2kσ4 and A ≥ A0 (17.22)

with an appropriate constant C = C(k) > 0 for all f ∈ F and G ∈ G
such that |e(G)| < k and V1, V2 ⊂ {1, . . . , k}. (Observe that the conditional
probability estimated in (17.22) can be represented in the following way. In a

point ω ∈ Ω fix the values of ξ
(j,±1)
l (ω) for all indices 1 ≤ l ≤ n and 1 ≤ j ≤ k

in the random variable Hn,k(f |G,V1, Vk), and the conditional probability in
this point ω equals the probability that the random variable, (depending on
the random variables εl, 1 ≤ l ≤ n), obtained in such a way is greater than

A2

24k+2k!
n2kσ2(k+1).)

Indeed, in this case the conditional probability considered in (17.22) can
be bounded because of the multivariate version of the Hoeffding inequality
(Theorem 13.3) by
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C exp

{

−1

2

(
A4n4kσ4(k+1)

28k+4(k!)2S2(F|G,V1, V2)/(k!)2

)1/2j
}

≤ C exp

{

−1

2

(
A4/3n2kσ4k

210k+4

)1/2j
}

with an appropriate C = C(k) > 0, where 2j = 2k−2|e(G)|, and 0 ≤ |e(G)| ≤
k − 1. Since j ≤ k, nσ2 ≥ 1

2 , and also A4/3

210k+4 ≥ 2 if A0 is chosen sufficiently
large we can write in the above upper bound for the left-hand side of (17.22)
j = k, and in such a way we get inequality (17.22).

The next inequality in which we estimate sup
f∈F

Hn,k(f |G,V1, V2) is a natural

version of formula (17.9) in the proof of Proposition 15.3.

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2

24k+1k!
n2kσ2(k+1)

∣
∣
∣
∣
∣

ξ
(j,±1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

(ω)

≤ C

(

1 + D

(
24k+3k!

A2σ2(k+1)

)L
)

e−2−(6+2/k)A2/3knσ2

if S2(F|G,V1, V2))(ω) ≤ 22kA8/3n2kσ4 and A ≥ A0 (17.23)

for all G ∈ G such that |e(G)| < k and V1, V2 ⊂ {1, . . . , k}.
To prove formula (17.23) let us fix two sets V1, V2 ⊂ {1, . . . , k} and

a diagram G such that |e(G)| < k. Let us define for all vectors x(n) =

(x
(j,1)
l , x

(j,−1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) ∈ X2kn some probability measure

α(x(n)) on the space Xk × Y (with the space Y which appears in the formu-
lation of Proposition 15.4) with which we can work similarly as with the prob-
ability measures ν(x(n) and ρ(x(n) in the proof of Propositions 7.3 and 15.3.

To do this let us consider some vector x(n) = (x
(j,1)
l , x

(j,−1)
l , 1 ≤ l ≤

n, 1 ≤ j ≤ k) ∈ X2kn, and define first the probability measures ν
(1)
j =

ν
(1)
j (x(n), V1) and ν

(2)
j = ν

(2)
j (x(n), V2) in the space (X,X ) for all 1 ≤ j ≤ k

which are uniformly distributed in the set of points x
(j,δj(V1))
l , 1 ≤ l ≤ n and

x
(j,δj(V2))
l , 1 ≤ l ≤ n, respectively. This means that we define for all 1 ≤ j ≤ k

(and sets V1 and V2) the probability measures ν
(1)
j

(

{x(j,δj(V1))
l }

)

= 1
n and

ν
(2)
j

(

{x(j,δj(V2))
l }

)

= 1
n , 1 ≤ l ≤ n, where δj(V1) = 1 if j ∈ V1, δj(V1) = −1

if j /∈ V1, and similarly δj(V2) = 1 if j ∈ V2 and δj(V2) = −1 if j /∈ V2. Let

us consider the product measures α1 = α1(x(n), V1) = ν
(1)
1 × · · · × ν

(1)
k × ρ

and α2 = α2(x(n), V2) = ν
(2)
1 × · · · × ν

(2)
k × ρ on the product space (Xk ×

Y,X k × Y), where ρ is that probability measure on (Y,Y) which appears in
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Proposition 15.4. With the help of the measures α1 and α2 define the measure
α = α(x(n)) = α(x(n), V1, V2) = α1+α2

2 in the space (Xk × Y,X k,×Y). Let

us also define the measure α̃ = α̃(x(n)) = α̃(x(n), V1, V2) = ν
(1)
1 × · · · ν(1)

k ×
ν

(2)
1 × · · · ν(2)

k × ρ in the space (X2k × Y,X 2k,×Y).
Define Hn,k(f |G,V1, V2) as a function in the product space (X2kn,X 2kn)

(with arguments x
(j,1)
l and x

(j,−1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n) by means of

formula (17.15) by replacing the random variables ξ
(j,δj(V1))
lj

(ω) by x
(j,δj(V1))
lj

and the random variables ξ
(j,δj(V2))

l′j
(ω) by x

(j,δj(V2))

l′j
in it for all 1 ≤ j ≤ k

and 1 ≤ lj , l
′
j ≤ n. With such a notation we can write for any pairs f, g ∈ F

and x(n) = (x
j,1)
l , x

(j,−1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n) ∈ X2kn, by exploiting the

properties of the above defined measure α̃ the inequality

sup
ε1,...,εn

|Hn,k(f |G,V1, V2)(x(n)) − Hn,k(f |G,V1, V2)(x(n))|

≤
∑

v=(v(1),v(2))∈V (G)

∑

(l1,...,lk,l′1...,l′k)∈EG(v)

1

k!2

∫

|f(x
(1,δ1(V1))
l1

, . . . , x
(k,δk(V1))
lk

, y)f(x
(1,δ1(V2))
l′1

, . . . , x
(k,δk(V2))
l′k

, y)

−g(x
(1,δ1(V1))
l1

, . . . , x
(k,δk(V1))
lk

, y)g(x
(1,δ1(V2))
l′1

, . . . , x
(k,δk(V2))
l′k

, y)|ρ( dy)

≤ n2k

∫

|f(x1, . . . , xk, y)f(xk+1, . . . , x2k, y)

−g(x1, . . . , xk, y)g(xk+1, . . . , x2k, y)|α̃( dx1, . . . , dx2k, dy).

(17.24)

Beside this, since both sup |f(x1, . . . , xk, y)| ≤ 1 and sup |g(x1, . . . , xk, y)| ≤
1, we have

|f(x1, . . . , xk, y)f(xk+1, . . . , x2k, y) − g(x1, . . . , xk, y)g(xk+1, . . . , x2k, y)|
≤ |f(x1, . . . , xk, y)||f(xk+1, . . . , x2k, y) − g(xk+1, . . . , x2k, y)|

+|g(xk+1, . . . , x2k)||f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|
≤ |f(xk+1, . . . , x2k, y) − g(xk+1, . . . , x2k, y)|

+|f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|.

It follows from this inequality, formula (17.24) and the definition of the mea-
sures α̃, α1, α2 and α that
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sup
ε1,...,εn

|Hn,k(f |G,V1, V2)(x(n)) − Hn,k(f |G,V1, V2)(x(n))|

≤ n2k

∫

(|f(xk+1, . . . , x2k, y) − g(xk+1, . . . , x2k, y)|

+|f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|)α̃( dx1, . . . , dx2k, dy)

= n2k

∫

|f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|

(α1( dx1, . . . , dxk, dy) + α2( dx1, . . . , dxk, dy)) (17.25)

= 2n2k

∫

|f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|α( dx1, . . . , dxk, dy)

≤ 2n2k

(∫

|f(x1, . . . , xk, y) − g(x1, . . . , xk, y)|2α( dx1, . . . , dxk, dy)

)1/2

with the previously defined probability measure α = α(x(n)). Put δ =
A2σ2(k+1)

24k+3k!
, list the elements of F as F = {f1, f2, . . . }, and choose a set

of indices p1(x(n)), . . . , pm(x(n)) taking positive integer values with m =
max(1,Dδ−L) elements such that sup

1≤l≤m

∫
f(u)− fpl(x(n))(u))2α(x(n))( du) ≤

δ2 for all f ∈ F . Such a choice of the indices pl(x
(n)), 1 ≤ l ≤ m, is pos-

sible, since F is L2-dense with exponent L and parameter D. Moreover, by
Lemma 7.4B we may chose the functions pl(x

(n)), 1 ≤ l ≤ m, as measurable
functions of their argument x(n) ∈ X2kn.

Put ξ(n)(ω) = (ξ
(j,±1)
l (ω), 1 ≤ l ≤ n, 1 ≤ j ≤ k). By arguing similarly

as we did in the proof of Propositions 7.3 and (15.3) we get with the help
of relation (17.25) and the property of the functions fpl(x(n))(·) constructed
above that

{

ω : sup
f∈F

|Hn,k(f |G,V1, V2)(ω)| ≥ A2n2kσ2(k+1)

2(4k+1)k!

}

⊂
m⋃

l=1

{

ω : |Hn,k(fpl(ξ(n)(ω)|G,V1, V2)(ω)(ω)| ≥ A2n2kσ2(k+1)

2(4k+2)k!

}

.

Hence

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

∣
∣
∣
∣
∣

ξ
(j,±1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

(ω)

≤
m∑

l=1

P

(

|Hn,k(fpl(ξ(n)(ω))|G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

∣
∣
∣
∣

ξ
(j,±1)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k

)

(ω)
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for almost all ω. The last inequality together with (17.22) and the inequality

m = max(1,Dδ−L) ≤ 1 + D
(

24k+3k!
A2σ2(k+1)

)L

imply relation (17.23).

It follows from relations (17.16) and (17.23) that

P

(

sup
f∈F

|Hn,k(f |G,V1, V2)| >
A2n2kσ2(k+1)

24k+1k!

)

≤ 2k+1e−A2/3knσ2

+C

(

1 + D

(
24k+3k!

A2σ2(k+1)

)L
)

e−2−(6+2/k)A2/3knσ2

if A ≥ A0

for all V1, V2 ⊂ {1, . . . , k} and diagram G ∈ G such that |e(G)| ≤ k − 1. This
inequality implies that relation (17.11) holds also in the case |e(G)| ≤ k − 1
if the constants A0 is chosen sufficiently large in Proposition 15.4, and we
this completes the proof of Proposition 15.4. To prove relation (17.11) in the

case |e(G)| ≤ k − 1 we still have to show that D( 24k+3k!
A2σ2(k+1) )L ≤ econst. nσ2

if
A > A0 with a sufficiently large A0, since this implies that the second term
at the right-hand of our last estimation is not too large.

This follows from the inequality nσ2 ≥ L log n + log D which implies that

(
24k+3k!

A2σ2(k+1)

)L

≤
(

n(k+1)

(2nσ2)(k+1)

)L

≤ e(k+1)L log n ≤ e(k+1)nσ2

if A0 is sufficiently large, and D = elog D ≤ enσ2

.





Chapter 18

An overview of the results in this work

I discuss briefly the problems investigated in this work, recall some basic
results related to them, and also give some references. I also write about the
background of these problems which may explain the motivation for their
study.

I met the main problem considered in this work when I tried to adapt
the method of proof of the central limit theorem for maximum-likelihood
estimates to some more difficult questions about so-called non-parametric
maximum likelihood estimate problems. The Kaplan–Meyer estimate for the
empirical distribution function with the help of censored data investigated in
the second section is such a problem. It is not a maximum-likelihood estimate
in the classical sense, but it can be considered as a non-parametric maximum
likelihood estimate. In the estimation of the empirical distribution function
with the help of censored data we cannot apply the classical maximum like-
lihood method, since in this problem we have to choose our estimate from a
too large class of distribution functions. The main problem is that there is no
dominating measure with respect to which all candidates which may appear
as our estimate have a density function. A natural way to overcome this dif-
ficulty is to choose an appropriate smaller class of distribution functions, to
compare the probability of the appearance of the sample we observed with re-
spect to all distribution functions of this class and to choose that distribution
function as our estimate for which this probability takes its maximum.

The Kaplan–Meyer estimate can be found on the basis of the above princi-
ple in the following way: Let us estimate the distribution function F (x) of the
censored data simultaneously together with the distribution function G(x) of
the censoring data. (We have a sample of size n and know which sample ele-
ments are censored and which are censoring data.) Let us consider the class
of such pairs of estimates (Fn(x), Gn(x)) of the pair (F (x), G(x)) for which
the distribution function Fn(x) is concentrated in the censored sample points
and the distribution function Gn(x) is concentrated in the censoring sample
points; more precisely, let us also assume that if the largest sample point is
a censored point, then the distribution function Gn(x) of the censoring data
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takes still another value which is larger than any sample point, and if it is
a censoring point then the distribution function Fn(x) of the censored data
takes still another value larger than any sample point. (This modification at
the end of the definition is needed, since if the largest sample point is from
the class of censored data, then the distribution G(x) of the censoring data in
this point must be strictly less than 1, and if it is from the class of censoring
data, then the value of the distribution function F (x) of the censored data
must be strictly less than 1 in this point.) Let us take this class of pairs of
distribution functions (Fn(x), Gn(x)), and let us choose that pair of distri-
bution functions of this class as the (non-parametric maximum likelihood)
estimate with respect to which our observation has the greatest probability.

The above extremal problem about the pairs of distribution functions
(Fn(x), Gn(x)) can be solved explicitly, (see [26]), and it yields the estimate
of Fn(x) written down in formula (2.3). (The function Gn(x) satisfies a sim-
ilar relation, only the random variables Xj and Yj and the events δj = 1
and δj = 0 have to be replaced in it.) Then, as I have indicated, a natural
analogue of the linearization procedure in the proof of the central limit the-
orem for the classical maximum likelihood estimate works also in this case,
and there is only one really hard part of the proof. We have to show that the
linearization procedure gives a small error. The estimation of this error led
to the problem about a good estimate on the tail distribution of the integral
of an appropriate function of two variables with respect to the product of a
normalized empirical measure with itself. Moreover, as a more detailed in-
vestigation showed, we actually need the solution of a more general problem
where we have to bound the tail distribution of the supremum of a class of
such integrals. The main subject of this work is to solve the above problems
in a more general setting, to estimate not only two-fold, but also k-fold ran-
dom integrals and the supremum of such integrals for an appropriate class
of kernel functions with respect to a normalized empirical distribution for
all k ≥ 1.

The proof of the limit theorem for the Kaplan–Meyer estimate explained
in this work applied the explicit form of this estimate. It would be interesting
to find such a modification of this proof which only exploits that the Kaplan–
Meyer estimate is the solution of an appropriate extremal problem. We may
expect that such a proof can be generalized to a general result about the limit
behaviour for a wide class of non-parametric maximum likelihood estimates.
Such a consideration was behind the remark of Richard Gill I quoted at the
end of Section 2.

A detailed proof together with a sharp estimate on the speed of conver-
gence for the limit behaviour of the Kaplan–Meyer estimate based on the
ideas presented in Section 2 is given in paper [38]. Paper [39] explains more
about its background, and it also discusses the solution of some other non-
parametric maximum likelihood problems. The results about multiple inte-
grals with respect to a normalized empirical distribution function needed in
these works were proved in [31]. These results were satisfactory for the study
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in [38], but they also have some drawbacks. They do not show that if the
random integrals we are considering have small variances, then they satisfy
better estimates. Beside this, if we consider the supremum of random inte-
grals of an appropriate class of functions, then these results can be applied
only in very special cases. Moreover, the method of proof of [31] did not allow
a real generalization of these results, hence I had to find a different approach
when I tried to generalize them.

I do not know of other works where the distribution of multiple random
integrals with respect to a normalized empirical distribution is studied. On
the other hand, there are some works where the distribution of (degenerate)
U -statistics is investigated. The most important results obtained in this field
are contained in the book of de la Peña and Giné Decoupling, From Depen-
dence to Independence [8]. The problems about the behaviour of degenerate
U -statistics and multiple integrals with respect to a normalized empirical
distribution function are closely related, but the explanation of their rela-
tion is far from trivial. The main difference between them is that integration
with respect to µn − µ instead of the empirical distribution µn means some
sort of normalization, while this normalization is missing in the definition of
U -statistics. I return to this question later.

The main part of this work starts at Section 3. A general overview of the
results without the hard technical details can be found in [34].

First the estimation of sums of independent random variables or one-fold
random integrals with respect to a normalized empirical distribution and
the supremum of such expressions is investigated in Sections 3 and 4. This
question has a fairly big literature. I would mention first of all the books
A course on empirical processes [12], Real Analysis and Probability [13] and
Uniform Central Limit Theorems [14] of R. M. Dudley. These books contain
a much more detailed description of the empirical processes than the present
work together with a lot of interesting results.

Section 3 deals with the tail behaviour of sums of independent and bounded
random variables with expectation zero. The proof of two already classical
results, Bernstein’s and Bennett’s inequalities is given there. (Their proofs
can be found e.g. in Theorem 1.3.2 of [14] and [6]). We are also interested in
the question when they give such an estimate which the central limit theorem
suggests. Actually, as it is explained in Section 3, Bennett’s inequality gives a
bound suggested by a Poissonian approximation of partial sums of indepen-
dent random variables. Bernstein’s inequality provides an estimate suggested
by the central limit theorem if the variance of the sum we consider is not
too small. (The results in Section 3 explain this statement more explicitly.)
If the variance of the sum is too small, then Bennett’s inequality provides
a slight improvement of Bernstein’s inequality. Moreover, as Example 3.3
shows, Bennett’s inequality is essentially sharp in this case.

The estimate on the tail distribution of a sum of independent random
variables is weak if this sum has a small variance. This means that in this
case the probability that the sum is larger than a given value may be much
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larger than the (rather small) value suggested by the central limit theorem.
Such a behaviour may occur, because the contribution of some unpleasant
irregularities to this probability may be non-negligible in the case of a small
variance.

In the study of the supremum of sums of independent random variables a
good control is needed on the tail distribution of the (supremum of) sums of
independent random variables even if they have small variance. The solution
of this problem (and of its natural multivariate version) turned out to be
the hardest part of this work. The results based on the similar behaviour of
partial sums and their Gaussian counterpart is not sufficient in this case, some
new ideas have to be applied. In the proof of sharp estimates in this case we
also use some kind of symmetrization arguments. The last result of Section 3,
Hoeffding’s inequality presented in Theorem 3.4 is an important ingredient
of these symmetrization arguments. It is also a classical result whose proof
can be found for instance in [24].

Section 4 contains the one-variate version of our main result about the
supremum of the integrals of a class F of functions with respect to a normal-
ized empirical measure together with an equivalent statement about the tail
distribution of the supremum of a class of random sums defined with the help
of a sequence of independent and identically distributed random variables and
a class of functions F with some nice properties. These results are formulated
in Theorems 4.1 and 4.1′. Also a Gaussian version of them is presented in
Theorem 4.2 about the distribution of the supremum of a Gaussian random
field with some appropriate properties. A deeper version of Theorem 4.2 is
studied in paper [11]. The content of these results can be so interpreted that
if we take the supremum of random integrals or of random sums determined
by a nice class of functions F in the way described in Section 4, then the
tail distribution of this supremum satisfies an almost as good estimate as the
‘worst element’ of the random variables taking part in this supremum. But
such a result holds only if we consider the value of this tail distribution at
a sufficiently large level, since as some concentration inequalities imply the
supremum of these random sums are larger than the expected value of this
supremum with probability almost 1. I also discussed a result in Example 4.3
which shows that some rather technical conditions of Theorem 4.1 cannot be
omitted.

The most important condition in Theorem 4.1 was that the class of func-
tions F we considered in it is L2-dense. This property was introduced before
the formulation of this result. One may ask whether one can prove a bet-
ter version of this result, where we prove similar bound with a different,
possibly larger class of functions F . It is worth mentioning that Talagrand
proved results similar to Theorem 4.1 for different classes of functions F in
his book [52]. These classes of functions are very different of ours, and Tala-
grand’s results seem to be incomparable with ours. I return to this question
later.
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In the above mentioned results we have imposed the condition that the
class of functions F or what is equivalent, the set of random variables whose
supremum we estimate is countable. In the proofs this condition is really
exploited. On the other hand, in some important applications we also need
results about the supremum of a possibly non-countable set of random vari-
ables. To handle such cases I introduced the notion of countably approximable
classes of random variables and proved that in the results of this work the
condition about countability can be replaced by the weaker condition that the
supremum of countably approximable classes is taken. R. M. Dudley worked
out a different method to handle the supremum of possibly non-countably
many random variables, and generally his method is applied in the litera-
ture. The relation between these two methods deserves some discussion.

Let us first recall that if we take a class of random variables St, t ∈ T ,
indexed by some index set T , and consider a set A, measurable with respect to
the σ-algebra generated by the random variables St, t ∈ T , then there exists a
countable subset T ′ = T ′(A) ⊂ T such that the set A is measurable also with
respect to the smaller σ-algebra generated by the random variable St, t ∈ T ′.
Beside this, if the finite dimensional distributions of the random variables
St, t ∈ T , are given, then by the results of classical measure theory the
probability of the events measurable with respect to the σ-algebra generated
by these random variables St, t ∈ T , is also determined. But we cannot get
the probability of all events we are interested in such a way. In particular,

if T is a non-countable set, then the events

{

ω : sup
t∈T

St(ω) > u

}

are non-

measurable with respect to the above σ-algebra, and generally we cannot
speak of their probabilities. To overcome this difficulty Dudley worked out
a theory which enabled him to work also with outer measures. His theory is
based on some rather deep results of the analysis. It can be found for instance
in his book [14].

I restricted my attention to such cases when after the completion of the
probability measure P we can also speak of the real (and not only outer)

probabilities P

(

sup
t∈T

St > u

)

. I tried to find appropriate conditions under

which these probabilities really exist. More explicitly, we are interested in
the case when for all u > 0 there exists some set A = Au measurable with
respect to the σ-algebra generated by the random variables St, t ∈ T , such

that the symmetric difference of the sets Au and

{

ω : sup
t∈T

St(ω) > u

}

is

contained in a set measurable with respect to the σ-algebra generated by the
random variables St, t ∈ T , which has probability zero. In such a case the

probability P

(

sup
t∈T

St > u

)

can be defined as P (Au). This approach led me

to the definition of countable approximable classes of random variables. If this
property holds, then we can speak about the probability of the event that the
supremum of the random variables we are interested in is larger than some
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fixed value. I proved a simple but useful result in Lemma 4.4 which provides
a condition for the validity of this property. In Lemma 4.5 I proved with
its help that an important class of functions is countably approximable. It
seems that this property can be proved for many other interesting classes of
functions with the help of Lemma 4.4, but I did not investigate this question
in more detail.

The problem we met here is not an abstract, technical difficulty. Indeed,
the distribution of such a supremum can become different if we modify each
random variable on a set of probability zero, although the finite dimensional
distributions of the random variables we consider remain the same after such
an operation. Hence, if we are interested in the probability of the supremum
of a non-countable set of random variables with described finite dimensional
distributions we have to describe more explicitly which version of this set of
random variables we consider. It is natural to look for such an appropriate
version of the random field St, t ∈ T , whose ‘trajectories’ St(ω), t ∈ T , have
nice properties for all elementary events ω ∈ Ω. Lemma 4.4 can be interpreted
as a result in this spirit. The condition given for the countable approximability
of a class of random variables at the end of this lemma can be considered
as a smoothness type condition about the ‘trajectories’ of the random field
we consider. This approach shows some analogy to some important problems
in the theory of stochastic processes when a regular version of a stochastic
process is considered and the smoothness properties are investigated for the
trajectories of this version.

In our problems the version of the set of random variables St, t ∈ T , we
shall work with appears in a simple and natural way. In these problems we
have finitely many random variables ξ1, . . . , ξn at the start, and all random
variables St(ω), t ∈ T , we are considering can be defined individually for
each ω as a function of these random variables ξ1(ω), . . . , ξn(ω). We take the
version of the random field St(ω), t ∈ T , we get in such a way and want to
show that it is countably approximable. In Section 4 this property is proved
in an important model, probably in the most important model in possible
applications we are interested in. In more complicated situations when our
random variables are defined not as a function of finitely many sample points,
for instance in the case when we define our set of random variables by means
of integrals with respect to a Gaussian random field it is harder to find the
right regular version of our sets of random variables. In this case the integrals
we consider are defined only with probability 1, and it demands some extra
work to find their right version. But in the problems we study in this work
such an approach is satisfactory for our purposes, and it is simpler than that
of Dudley; we do not have to follow his rather difficult technique. On the
other hand, I must admit that I do not know the precise relation between the
approach of this work and that of Dudley.

In Section 4 the notion of Lp-dense classes, 1 ≤ p < ∞, also has been
introduced. The notion of L2-dense classes appeared in the formulation The-
orems 4.1 and 4.1′. It can be considered as a version of the ε-entropy, discussed
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at many places in the literature. On the other hand, there seems to be no
standard definition of the ε-entropy. The term of L2-dense classes seemed
to be the appropriate object to work with in this work. To apply the re-
sults related to L2-dense classes we also need some knowledge about how to
check this property in concrete models. For this goal I discussed here Vapnik–
Červonenkis classes, a popular and important notion of modern probability
theory. Several books and papers, (see e.g. the books [14], [44], [53] and the
references in them) deal with this subject. An important result in this field
is Sauer’s lemma, (Lemma 5.1) which together with some other results, like
Lemma 5.3 imply that several interesting classes of sets or functions are
Vapnik–Červonenkis classes.

I put the proof of these results to the Appendix, partly because they can
be found in the literature, partly because in this work Vapnik–Červonenkis
classes play a different and less important role than at other places. Here
Vapnik–Červonenkis classes are applied to show that certain classes of func-
tions are L2-dense. A result of Dudley formulated in Lemma 5.2 implies that
a Vapnik–Červonenkis class of functions with absolute value bounded by a
fixed constant is an L1, and as a consequence, also an L2-dense class of
functions. The proof of this important result which seems to be less known
even among experts of this subject than it would deserve is contained in the
main text. Dudley’s original result was formulated in the special case when
the functions we consider are indicator functions of some sets. But its proof
contains all important ideas needed in the proof of Lemma 5.2.

Theorem 4.2, which is the Gaussian counterpart of Theorems 4.1 and 4.1′ is
proved in Section 6 by means of a natural and important technique, called the
chaining argument. This means the application of an inductive procedure, in
which an appropriate sequence of finite subsets of the original set of random
variables is introduced, and a good estimate is given on the supremum of the
random variables in these subsets by means of an inductive procedure. The
subsets became denser subsets of the original set of the random variables at
each step of this procedure. This chaining argument is a popular method in
certain investigation. It is hard to say with whom to attach it. Its introduction
may be connected to some works of R. M. Dudley. It is worth mentioning that
Talagrand [52] worked out a sharpened version of it which yields in the study
of certain problems a sharper and more useful estimate. But it seems to me
that in the study of the problems of this work this improvement has a limited
importance, it turns out to be useful in the study of different problems.

Theorem 4.2 can be proved by means of the chaining argument, but this
method is not strong enough to supply a proof of Theorem 4.1. The chain-
ing argument provides only a weak estimate in this case, because there is no
good estimate on the probability that a sum of independent random vari-
ables is greater than a prescribed value if these random variables have too
small variances. As a consequence the chaining argument supplies a much
weaker estimate than the result we want to prove under the conditions of
Theorem 4.1. Lemma 6.1 contains the result the chaining argument yields
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under these conditions. In Section 6 still another result, Lemma 6.2 is formu-
lated. It can be considered as a special case of Theorem 4.1 where only the
supremum of partial sums with small variances is estimated. We also show in
this section that Lemmas 6.1 and 6.2 together imply Theorem 4.1. The proof
is not difficult, despite of some non-attractive details. It has to be checked
that the parameters in Lemmas 6.1 and 6.2 can be fitted to each other.

Lemma 6.2 is proved in Section 7. It is based on a symmetrization ar-
gument. This proof applies the ideas of a paper of Kenneth Alexander [3],
and although its presentation is different from Alexander’s approach, it can
be considered as a version of his proof. It may be worth mentioning that
the symmetrization arguments were first applied in the theory of Vapnik–
Červonenkis classes to get some useful estimates (see e.g. [44]). But it turned
out that an appropriate refinement of this method supplies sharper results if
we are working with L2-dense classes instead of Vapnik–Červonenkis classes
of functions.

A similar problem should also be mentioned at this place. M. Talagrand
wrote a series of papers about concentration inequalities, (see e.g. [50] or
[51]), and his research was also continued by some other authors. I would
mention the works of M. Ledoux [28] and P. Massart [41]. Concentration
inequalities give a bound about the difference between the supremum of a
set of appropriately defined random variables and the expected value of this
supremum. They express how strongly this supremum is concentrated around
its expected value. Such results are closely related to Theorem 4.1, and the
discussion of their relation deserves some attention. A typical concentration
inequality is the following result of Talagrand [51].

Theorem 18.1 (Theorem of Talagrand). Consider n independent and
identically distributed random variables ξ1, . . . , ξn with values in some mea-
surable space (X,X ). Let F be some countable family of real-valued measur-
able functions of (X,X ) such that ‖f‖∞ ≤ b < ∞ for every f ∈ F . Let

Z = sup
f∈F

n∑

i=1

f(ξi) and v = E

(

sup
f∈F

n∑

i=1

f2(ξi)

)

. Then for every positive num-

ber x,

P (Z ≥ EZ + x) ≤ K exp

{

− 1

K ′
x

b
log

(

1 +
xb

v

)}

and

P (Z ≥ EZ + x) ≤ K exp

{

− x2

2(c1v + c2bx)

}

,

where K, K ′, c1 and c2 are universal positive constants. Moreover, the same
inequalities hold when replacing Z by −Z.

Theorem 18.1 yields, similarly to Theorem 4.1, an estimate about the
distribution of the supremum for a class of sums of independent random
variables. (The paper of P. Massart [41] contains a similar estimate which is
better for our purposes. The main difference between these two estimates is
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that the bound given by Massart depends on σ2 = sup
f∈F

n∑

i=1

Var f(ξi) instead of

v = E

(

sup
f∈F

n∑

i=1

f2(ξi)

)

.) Theorem 18.1 can be considered as a generalization

of Bernstein’s and Bennett’s inequalities when the distribution of the supre-
mum of partial sums (and not only the distribution of one partial sum) is
estimated. A remarkable feature of this result is that it assumes no condition
about the structure of the class of functions F (like the condition of L2-dense
property of the class F imposed in Theorem 4.1). On the other hand, the es-

timates in Theorem 18.1 contain the quantity EZ = E

(

sup
f∈F

n∑

i=1

f(ξi)

)

. Such

an expectation of some supremum appears in all concentration inequalities.
As a consequence, they are useful only if we can bound the expected value
of the supremum we want to estimate. This is a hard question in the general
case. Paper [17] provides a useful estimate about the expected value of the
supremum of random sums under the conditions of Theorem 4.1. But I pre-
ferred a direct proof of this result. Let me remark that because of the above
mentioned concentration inequality the condition u ≥ const. σ log1/2 2

σ with
some appropriate constant which cannot be dropped from Theorem 4.1 can
be interpreted so that under the conditions of Theorem 4.1 const. σ log1/2 2

σ
is an upper bound for the expected value of the supremum we investigated
in this result. Example 4.3 implies that if the conditions of Theorem 4.1 are
violated then the expected value of the above supremum may be larger.

It is also worth mentioning Talagrand’s work [52] which contains several
interesting results similar to Theorem 4.1. But despite their formal similarity,
they are essentially different from the results of this work. This difference
deserves a special discussion.

Talagrand proved in [52] by working out a more refined, better version of
the chaining argument a sharp upper bound for the expected value E sup

t∈T
ξt

of the supremum of countably many (jointly) Gaussian random variable with
zero expectation. This result is sharp. Indeed, Talagrand proved also a lower
bound for this expected value, and the proportion of his upper and lower
bound is bounded by a universal constant. By applying similar arguments

he also gave an upper bound for E sup
f∈F

N∑

k=1

f(ξk) in Proposition 2.7.2 of his

book, where ξ1, . . . , ξN is a sequence of independent, identically distributed
random variables with some known distribution µ, and F is a class of func-
tions with some nice properties. Then he proved in Chapter 3 of this book
some estimates with the help of this result for certain models which solved
some problems that could not be solved with the help of the original version
of the chaining argument.

Let us make some short comparison between our Theorem 4.1 and Tala-
grand’s result. Talagrand investigated in his book [52] the expected value of
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the supremum of partial sums, while we gave an estimate on its tail distribu-
tion. But this is not an essential difference. Talagrand’s results also give an
estimate on the tail distribution of the supremum by means of concentration
inequalities, and actually his proofs also provide a direct estimate for the tail
distribution we are interested in without the application of these results. The
main difference between the two works is that Talagrand’s method gives a
sharp estimate for different classes of functions F .

Talagrand could prove sharp results in such cases when the class of func-
tions F for which the supremum is taken consists of smooth functions.
An example for such classes of functions which he thoroughly investigated
is the class of Lipschitz 1 functions. In particular, in Chapter 3 of his
book [52] he proved that if ξ1, . . . , ξn is a sequence of independent ran-
dom variables, uniformly distributed in the unit square D = [0, 1] × [0, 1],
and F is the class of Lipschitz 1 functions on the unit square D such that
∫

D
f dλ = 0 for all f ∈ F , where λ denotes the Lebesgue measure on D,

then E sup
f∈F

n∑

l=1

f(ξl) ≤ L
√

n log n with a universal constant L. He was inter-

ested in this result because it is equivalent with a theorem of Ajtai–Komlós–
Tusnády [2]. (See Chapter 3 of [52] for details.) On the other hand we can
give sharp results in such cases when F consists of non-smooth functions,
(see Example 5.5), and Talagrand’s method does not work in the study of
such problems.

This difference in the conditions of the results in these two books is not a
small technical detail. Talagrand heavily exploited in his proof that he worked
with such classes of functions F from which he could select a subclass of
functions of F of relatively small cardinality which is dense in F not only in
the L2(µ)-norm with the probability measure µ he was working with, but also
in the supremum norm. He needed this property, because this enabled him
to get sharp estimates on the tail distribution of the differences of functions
he had to work with by means of the Bernstein’s inequality. He needed such
estimates to apply (a refined version of) the chaining argument. On the other
hand, we considered such classes of functions F which may have no small
subclasses which are dense in F in the supremum norm. I would characterize
the difference between the results of the two works in the following way.
Talagrand proved the sharpest possible estimates which can be obtained by
a refinement of the chaining argument, while our main problem was to get
sharp estimates also in such cases when the chaining argument does not work.
Let me remark that we could prove such results (see Theorem 4.1) for such
classes of functions F which are L2-dense. In the Gaussian counterpart of this
result, in Theorem 4.2, it was enough to impose that F is an L2-dense class
with respect to a fixed probability measure µ. This extra condition enabled
us to prove sharp results about the tail distribution of supremum of partial
sums when the chaining argument does not work.

The main results of this work are presented in Section 8. A weaker version
of Theorem 8.3 about an estimate of the distribution of a degenerate U -
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statistic was first proved in a paper of Arcones and Giné in [4]. The result of
Theorem 8.3 in the present form is proved in my paper [37]. Its version about
multiple integrals with respect to a normalized empirical measure formulated
in Theorem 8.1 is proved in [33]. This paper contains a direct proof. On the
other hand, Theorem 8.1 can be derived from Theorem 8.3 by means of The-
orem 9.4 of this paper. Theorem 8.5 is the natural Gaussian counterpart of
Theorem 8.3. The limit theorem about degenerate U -statistics, Theorem 10.4
(and its version about limit theorems for multiple integrals with respect to
normalized empirical measures, presented in Theorem 10.4′ of Appendix C)
was discussed in this work to explain better the relation between degener-
ate U -statistics (or multiple integrals with respect to normalized empirical
measures) and multiple Wiener–Itô integrals. A proof of this result based on
similar ideas as that discussed here can be found in [15]. Theorem 6.6 of my
lecture note [30] contains such a weakened version of Theorem 8.5 which does
not take into account the variance of the random integral.

Example 8.7 is a natural supplement of Theorem 8.5. It shows that the
estimate of Theorem 8.5 is sharp if only the variance of a Wiener–Itô in-
tegral is known. At the end of Section 13 I also mentioned the results of
papers [1] and [27] without proof which also have some relation to this prob-
lem. I discussed mainly the content of [27] and explained its relation to some
results discussed in this work. The proof of these papers apply a method
different of those of this work. It would be interesting to prove them with
the methods discussed here. These papers contain such a refinement of The-
orems 8.5 and 8.3 respectively whose estimates depend on some other rather
complicated quantities. In some cases they supply a better estimate. On the
other hand, in the problems discussed here they have a restricted importance
because their conditions are hard to check.

Theorems 8.2 and 8.4 which are the natural multivariate counterparts of
Theorem 4.1 and 4.1′ yield an estimate about the supremum of (degenerate)
U -statistics or of multiple random integrals with respect to a normalized
empirical measure when the class of kernel functions in these U -statistics or
random integrals satisfy some conditions. They were proved in my paper [35].
Earlier Arcones and Giné proved a weaker form of this result in paper [5],
but their work did not help in the proof of the results of this note. They
were based on an adaptation of Alexander’s method [3] to the multivariate
case. Theorem 8.6 contains the natural Gaussian counterpart of Theorems 8.2
and 8.4.

Example 8.8 in Section 8 shows that the condition u ≤ const. nσ3 imposed
in Theorem 8.3 in the case k = 2 cannot be dropped. The paper of Arcones
and Giné [4] contains another example explained by Talagrand to the authors
of that paper which also has a similar consequence. But that example does
not provide such an explicit comparison of the upper and lower bound on the
probability investigated in Theorem 8.3 as Example 8.8. Similar examples
could be constructed for all k ≥ 1.
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Example 8.8 shows that at high levels only a very weak (and from practical
point of view not really important) improvement of the estimation on the
tail distribution of degenerate U -statistics is possible. But probably there
exists a multivariate version of Bennett’s inequality, i.e. of Theorem 3.2 which
provides such an estimate. Moreover, there is some hope to get a similar
strengthened form of Theorems 8.2 and 8.4 (or of Theorem 4.2 in the one-
dimensional case). This question is not investigated in the present work.

Section 9 deals with the properties of U -statistics. Its first result, Theo-
rem 9.1, is a rather classical result. It is the so-called Hoeffding decomposition
of U -statistics to the sum of degenerate statistics. Its proof first appeared in
the paper [23], but it can be found at many places. The explanation of this
work contains some ideas similar to [49]. I tried to explain that Hoeffding’s
decomposition is the natural multivariate version of the (trivial) decomposi-
tion of sums of independent random variables to sums of independent random
variables with expectation zero plus the sum of the expectations of the original
random variables. Moreover, even the proof of the Hoeffding’s decomposition
shows some similarity to this simple decomposition.

Theorem 9.2 and Proposition 9.3 can be considered as a continuation of the
investigation of the Hoeffding’s decomposition in Theorem 9.1. They tell how
the properties of the kernel function of the original U -statistic are inherited
in the properties of the kernel functions of the degenerate U -statistics taking
part in its Hoeffding decomposition. In several applications of Hoeffding’s
decomposition we need such results.

The last result of Section 9, Theorem 9.4, enables us to reduce the es-
timation of multiple random integrals with respect to normalized empirical
measures to the estimation of degenerate U -statistics. This result is a ver-
sion of Hoeffding’s decomposition, where multiple integrals with respect to a
normalized empirical distribution are decomposed to the sum of degenerate
U -statistics. The main difference between them is that the coefficients of the
degenerate U -statistics in the decomposition of Theorem 9.4 are relatively
small. The cancellation effect caused by integration with respect to a nor-
malized empirical measure is reflected in the appearance of small coefficients
in the decomposition given in Theorem 9.4. Theorem 9.4 was proved in [35].
The proof given in this note is essentially different from that of [35].

Theorem 8.1 can be derived from Theorem 8.3 and Theorem 8.2 from
Theorem 8.4 by means of Theorem 9.4. The proof of the latter results is
simpler. The results of Sections 10–12 contain the results needed in the proof
of Theorem 8.3 and its Gaussian counterpart Theorems 8.5 and 8.7. The
proof of these results is based on good estimates of high moments of degener-
ate U -statistics and multiple Wiener–Itô integrals. The classical proof of the
one-variate counterparts of these results is based on a good estimate of the
moment generating function. This method was replaced by the estimate of
high moments, because the moment generating function of a k-fold Wiener–
Itô integral is divergent for k ≥ 3, and this property is also reflected in the
behaviour of degenerate U -statistics. On the other hand, good estimates on
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high moments can replace the estimate of the moment generating function.
A good estimate can be given for all moments of a Wiener–Itô integral, while
we have a good estimate only on not too high moments of degenerate U -
statistics. This has the consequence that we can give a good estimate on the
tail distribution of degenerate U -statistic only for not too large values. We
met a similar situation in Section 3 in the study of Bernstein’s and Bennett’s
inequality.

I know of two deep methods to study high moments of multiple Wiener–
Itô integrals. Both of them can be adapted to the study of the moments of
degenerate U -statistics. They deserve a more detailed discussion.

The first one is called Nelson’s inequality named after Edward Nelson who
published it in his paper [43]. This inequality simply implies Theorem 8.5
about multiple Wiener–Itô integrals, although with worse constants. Later
Leonhard Gross discovered a deep and useful generalization of this result
which he published in the work Logarithmic Sobolev inequalities [20]. In that
paper Gross compared two Markov processes with the same infinitesimal
operator but with possibly different initial distribution, where the second
Markov process had stationary distribution. He could give a sharp bound on
the Radon–Nikodym derivative of the distribution of the first Markov process
with respect to the (stationary) distribution of the second Markov process at
all time T on the basis of the properties of the infinitesimal operator of the
Markov processes. With the help of this result he could prove a more general
form of Nelson’s inequality. In particular, his result may help to prove (a
weaker version of) Theorem 8.3 (with worse universal constants). Let me also
remark that Gross’ method works not only in the study of these problems,
but in several hard problems of the probability theory. (See e.g [21] or [28]).
Nevertheless, in the present note I applied a different method, because this
seemed to be more appropriate here.

I applied a method related to the names of Kyoshi Itô and Roland L’vovich
Dobrushin. This is the theory of multiple Wiener–Itô integrals with respect
to a white noise. This integral was introduced in paper [25]. It is useful, be-
cause every random variable measurable with respect to the σ-algebra gen-
erated by the Gaussian random variables of the underlying white noise with
finite second moment can be written as the sum of Wiener–Itô integrals of
different order. Moreover, if only Wiener–Itô integrals of symmetric kernel
functions are taken, then this representation is unique. An important result,
the so-called diagram formula, formulated in Theorem 10.2, expresses prod-
ucts of Wiener–Itô integrals as a sum of such integrals. This result which
shows some similarity to the Feynman diagrams applied in the statistical
physics was proved in [10]. Actually this paper discussed a modified version
of Wiener–Itô integrals which is more appropriate to study the action of shift
operators for non-linear functionals of a stationary Gaussian field. But these
modified Wiener–Itô integrals can be investigated in almost the same way
as the original ones. The diagram formula has a simple consequence formu-
lated in Corollary of Theorem 10.2 of this note. It enables us to calculate
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the expectation of products of Wiener–Itô integrals, in particular it yields
an explicit formula about the moments of a Wiener–Itô integral. This result
was applied in the proof of Theorem 8.5, i.e. in the estimation of the tail-
distribution of Wiener–Itô integrals. Itô’s formula for multiple Wiener–Itô
integrals (Theorem 10.3) was proved in [25].

The diagram formula has a natural and useful analogue both for degener-
ate U -statistics and multiple integrals with respect to a normalized empirical
measure. They enable us to express the product of degenerate U -statistics
and multiple integrals as the sum of such expressions. These results enable
us to adapt several useful methods in the study of non-linear functionals of
a Gaussian random field to the study of non-linear functionals of normalized
empirical measures. A version of the diagram formula was proved for degen-
erate U -statistics in [37] and for multiple random integrals with respect to
a normalized empirical measures in [33]. Let me remark that in the formu-
lation of the result in the work [37] a different notation was applied than in
the present note. In that paper I wanted to formulate such a version of the
diagram formula for U -statistics where we have to work with diagrams simi-
lar to those introduced in the study of Wiener–Itô integrals. I could do this
only in a somewhat artificial way. In this work I formulated the diagram for-
mula for U -statistics with the help of diagrams having a more general form.
I introduced the notion of chains and coloured chains, and defined diagrams
with their help. The formulation of the results with the help of such more
general diagrams seems to me more natural. Let me also remark that the
study of results similar to the diagram formula for Wiener–Itô integrals did
not get such an attention in the literature as it would deserve in my opinion.
I know only of one work where such questions were investigated. It is the
paper of Surgailis [46], where a version of the diagram formula is proved for
Poissonian integrals. The Corollary of Theorem 11.2 is of special interest for
us, because it enables us to prove such moment estimates which are useful in
the proof of Theorem 8.3.

It is worth mentioning that the problems about Wiener–Itô integrals are
closely related to the study of Hermite polynomials or to their multivari-
ate version, to the so-called Wick polynomials. (See e.g. [30] or [40] for the
definition of Wick polynomials.) Appendix C contains the most important
properties of Hermite polynomials needed in the study of Wiener–Itô inte-
grals. In particular, it contains the proof of Proposition C2 which states that
the set of all Hermite polynomials is a complete orthogonal system in the
Hilbert space of the functions square integrable with respect to the standard
Gaussian distribution. This result can be found for instance in Theorem 5.2.7
of [48]. In the present proof I wanted to show that this result is closely related
to the so-called moment problem, i.e. to the question when a distribution is
determined by its moments uniquely. This method, with some refinement,
can be applied to prove some generalizations of Proposition C2 about the
completeness of orthogonal polynomials with respect to more general weight
functions.
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Itô’s formula creates a relation between Wiener–Itô integrals and Hermite
polynomials. The results about multiple Wiener–Itô integrals have their ana-
logues for Wick polynomials. Thus for instance there is a diagram formula
for the product of Wick polynomials which also has some interesting general-
izations. Such questions are studied both in probability theory and statistical
physics, see [40] and [45]. The relation between Wiener–Itô integrals and Her-
mite polynomials also has a natural counterpart in the study of other multiple
random integrals. The so-called Appell polynomials, (see [47]), appeared in
such a way.

Theorems 8.3, 8.5 and 8.7 were proved on the basis of the results in Sections
10–12 and in Section 13. Section 13 also contains the proof of a multivariate
version of Hoeffding’s inequality, formulated in Theorem 13.3. This result is
needed in the symmetrization argument applied in the proof of Theorem 8.4.
A weaker version of it (an estimate with a worse constant in the exponent)
which would be satisfactory for our purposes would simply follow from a
classical result, called Borell’s inequality. But since this result is not discussed
in this note, and I was interested in a proof which yields the best estimate
in the exponent of this estimate I have chosen another proof, given in [36]
which is based on the results of Sections 10–12. Later I have learned that this
estimate is contained in an implicit form also in the paper [7] of A. Bonami.

Sections 14–17 are devoted to the proof of Theorems 8.4 and 8.6. They are
based on a similar argument as their one-variate counterparts, Theorems 4.1
and 4.2. The proof of Theorem 8.6 about the supremum of Wiener–Itô in-
tegrals is based, similarly to the proof of Theorem 4.2 on the chaining ar-
gument. In the proof of Theorem 8.4 the chaining argument yields only a
weaker result formulated in Proposition 14.1 which helps to reduce Theo-
rem 8.4 to the proof of Proposition 14.2. In the one-variate case a similar
approach was applied. In that case the proof of Theorem 4.1 was reduced to
that of Proposition 6.2 by means of Proposition 6.1. The next step in the
proof of Theorem 8.4 has no one-variate counterpart. The notion of so-called
decoupled U -statistics was introduced, and Proposition 14.2 was reduced to
a similar result about decoupled U -statistics formulated in Proposition 14.2′.

The adjective ‘decoupled’ in the expression decoupled U -statistic refers to
the fact that it is such a version of a U -statistic where independent copies
of a sequence of independent and identically distributed random variables
are put into different coordinates of the kernel function. Their study is a
popular subject of some mathematicians. In particular, the main subject of
the book [8] is a comparison of the properties of U -statistics and decoupled
U -statistics. A result of de la Peña and Montgomery–Smith [9] formulated
in Theorem 14.3 helps in reducing some problems about U -statistics to a
similar problem about decoupled U -statistics. In this lecture note the proof
of Theorem 14.3 is given in Appendix D. It follows the argument of the
original proof, but several steps are worked out in detail where the authors
gave only a very short explanation. Paper [9] also contains some kind of
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converse results to Theorem 14.3, but as they are not needed in the present
work, I omitted their discussion.

Decoupled U -statistics behave similarly to the original U -statistics. Be-
side this, some symmetrization arguments becomes considerably simpler if
we are working with decoupled U -statistics instead of the original ones. This
can be exploited in some investigations. For example the proof of Proposi-
tion 14.2′ is simpler than a direct proof of Proposition 14.2. On the other
hand, Theorem 14.3 enables us to reduce the proof of Proposition 14.2 to
that of Proposition 14.2′, and we have exploited this possibility.

The proof of Theorem 8.4 was reduced to that of Proposition 14.2′ in
Section 14. Sections 15–17 deal with the proof of this result. It was proved
in my paper [35]. The proof is similar to that of its one-variate version,
Proposition 6.2, but some additional difficulties have to be overcome. The
main difficulty appears when we want to find the multivariate analogue of the
symmetrization argument which could be carried out by means of Lemmas 7.1
and 7.2 in the one-variate case.

In the multivariate case Lemma 7.1 is not sufficient for us. We work instead
of it with a generalized version of this result, formulated in Lemma 15.2. The
proof of Lemma 15.2 is not hard. The real difficulty arises when we want
to apply it in the proof of Proposition 14.2′. We have to check its condition
given in formula (15.3), and this means in this case a non-trivial estimation
of some complicated conditional probabilities. This is the hardest part in the
proof of Proposition 14.2′.

Proposition 14.2′ was proved by means of an inductive procedure for-
mulated in Proposition 15.3, which is the multivariate analogue of Proposi-
tion 7.3. A basic ingredient of both proofs was a symmetrization argument.
But while this symmetrization argument could be simply carried out in the
one-variate case, its adaptation to the multivariate case in the proof of The-
orem 15.3 was a most serious problem. To overcome this difficulty another
result was formulated in Proposition 15.4. Propositions 15.3 and 15.4 were
proved simultaneously by means of an appropriate inductive procedure. Their
proofs were based on a refinement of the arguments in the proof of Propo-
sition 7.3. We also had to apply Theorem 13.3, a multivariate version of
Hoeffding’s inequality, and some properties of the Hoeffding decomposition
of U -statistics proved in Section 9.



Appendix A

The proof of some results about
Vapnik–Červonenkis classes

Proof of Theorem 5.1. (Sauer’s lemma). This result has several different
proofs. Here I write down a relatively simple proof of P. Frankl and J. Pach
which appeared in [16]. It is based on some linear algebraic arguments.

The following equivalent reformulation of Sauer’s lemma will be proved.
Let us take a set S = S(n) consisting of n elements and a class E of subsets
of S consisting of m elements E1, . . . , Em ⊂ S. Assume that m ≥ m0 +1 with
m0 = m0(n, k) =

(
n
0

)
+
(
n
1

)
+ · · · +

(
n

k−1

)
. Then there exists a set F ⊂ S of

cardinality k which is shattered by the class of sets E . Actually, it is enough
to show that there exists a set F of cardinality greater than or equal to k
which is shattered by the class of sets E , because if a set has this property,
then all of its subsets have it. This latter statement will be proved.

To prove this statement let us first list the subsets X0, . . . ,Xm0
of the set

S of cardinality less than or equal to k− 1, and correspond to all sets Ei ∈ E
the vector ei = (ei,1, . . . , ei,m0

), 1 ≤ i ≤ m, with elements

ei,j =

{
1 if Xj ⊆ Ei

0 if Xj 6⊆ Ei
1 ≤ i ≤ m, and 1 ≤ j ≤ m0.

Since m > m0, the vectors e1, . . . , em are linearly dependent. Because of
the definition of the vectors ei, 1 ≤ i ≤ m, this can be expressed in the
following way: There is a non-zero vector (f(E1), . . . , f(Em)) such that

∑

Ei : Ei⊇Xj

f(Ei) = 0 for all 1 ≤ j ≤ m0. (A.1)

Let F , F ⊂ S, be a minimal set with the property

∑

Ei : Ei⊇F

f(Ei) = α 6= 0. (A.2)

231
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Such a set F really exists, since every maximal element of the family {Ei : 1 ≤
i ≤ m, f(Ei) 6= 0} satisfies relation (A.2). The requirement that F should
be a minimal set means that if F is replaced by some H ⊂ F , H 6= F , at
the left-hand side of (A.2), then this expression equals zero. The inequality
|F | ≥ k holds because of relation (A.1) and the definition of the sets Xj .

Introduce the quantities

ZF (H) =
∑

Ei : Ei∩F=H

f(Ei)

for all H ⊆ F .
Then ZF (F ) = α, and for any set of the form H = F \ {x}, x ∈ F ,

ZF (H) =
∑

Ei : Ei∩F=H

f(Ei) =
∑

Ei : Ei⊇H

f(Ei)−
∑

Ei : Ei⊇F

f(Ei) = 0−α = −α

because of the minimality property of the set F .
Moreover, the identity

ZF (H) = (−1)pα for all H ⊆ F such that |H| = |F | − p, 0 ≤ p ≤ |F |.
(A.3)

holds. To show relation (A.3) observe that

ZF (H) =
∑

Ei : Ei∩F=H

f(Ei) =

p
∑

j=0

(−1)j
∑

G : H⊂G⊂F, |G|=|H|+j

∑

Ei : Ei⊇G

f(Ei)

(A.4)
for all sets H ⊂ F with cardinality |H| = |F | − p. Identity (A.4) holds,

since the term f(Ei) is counted at the right-hand side of (A.4)
l∑

j=0

(−1)j
(

l
j

)
=

(1 − 1)l = 0 times if Ei ∩ F = G with some H ⊂ G ⊆ F with |G| = |H| + l
elements, 1 ≤ l ≤ p, while in the case Ei ∩ F = H it is counted once.
Relation (A.4) together with (A.2) and the minimality property of the set F
imply relation (A.3).

It follows from relation (A.3) and the definition of the function ZF (H)
that for all sets H ⊆ F there exists some set Ei such that H = Ei ∩ F , i.e.
F is shattered by E . Since |F | ≥ k, this implies Theorem 5.1.

Proof of Theorem 5.3. Let us fix an arbitrary set F = {x1, . . . , xk+1} of the set
X, and consider the set of vectors Gk(F ) = {(g(x1), . . . , g(xk+1)) : g ∈ Gk} of
the k + 1-dimensional space Rk+1. By the conditions of Theorem 5.3 Gk(F )
is an at most k-dimensional subspace of Rk+1. Hence there exists a non-zero

vector a = (a1, . . . , ak+1) such that
k+1∑

j=1

ajg(xj) = 0 for all g ∈ Gk. We may

assume that the set A = A(a) = {j : aj < 0, 1 ≤ j ≤ k + 1} is non-empty, by
multiplying the vector a by −1 if it is necessary.

Thus the identity
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∑

j∈A

ajg(xj) =
∑

j∈{1,...,k+1}\A

(−aj)g(xj), for all g ∈ Gk (A.5)

holds. Put B = {xj : j ∈ A}. Then B ⊂ F , and F \B 6= {x : g(x) ≥ 0}∩F for
all g ∈ Gk. Indeed, if there were some g ∈ Gk such that F \ B = {x : g(x) ≥
0}∩F , then the left-hand side of the equation (A.5) would be strictly positive
(as aj < 0, g(xj) < 0 if j ∈ A, and A 6= ∅) its right-hand side would be non-
positive for this g ∈ Gk, and this is a contradiction.

The above proved property means that D shatters no set F ⊂ X of car-
dinality k + 1. Hence Theorem 5.1 implies that D is a Vapnik–Červonenkis
class.





Appendix B

The proof of the diagram formula for
Wiener–Itô integrals

We start the proof of Theorem 10.2A (the diagram formula for the product
of two Wiener–Itô integrals) with the proof of inequality (10.12). To show
that this relation holds let us observe that the Cauchy inequality yields the
following bound on the function Fγ(f, g) defined in (10.11) (with the notation
introduced there):

F 2
γ (f, g)(x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ))

≤
∫

f2(xαγ(1,1), . . . , xαγ(1,k))
∏

(2,j)∈{(2,1),...,(2,l)}\V2(γ)

µ( dx(2,j))

∫

g2(x(2,1), . . . , x(2,l))
∏

(2,j)∈{(2,1),...,(2,l)}\V2(γ)

µ( dx(2,j)). (B.1)

The expression at the right-hand side of inequality (B.1) is the product of
two functions with different arguments. The first function has arguments
x(1,j) with (1, j) ∈ V1(γ) and the second one x(2,j′) with (2, j′) ∈ V2(γ). By
integrating both sides of inequality (B.1) with respect to these arguments we
get inequality (10.12).

Relation (10.13) will be proved first for the product of the Wiener–Itô inte-
grals of two elementary functions. Let us consider two (elementary) functions
f(x1, . . . , xk) and g(x1, . . . , xl) given in the following form: Let some disjoint
sets A1, . . . , AM , µ(As) < ∞, 1 ≤ s ≤ M , be given together with some real
numbers c(s1, . . . , sk) indexed with such k-tuples (s1, . . . , sk), 1 ≤ sj ≤ M ,
1 ≤ j ≤ k, for which the numbers s1, . . . , sk in a k-tuple are all different. Put
f(x1, . . . , xk) = c(s1, . . . , sk) on the rectangles As1

× · · · × Ask
with edges

As, indexed with the above k-tuples, and let f(x1, . . . , xk) = 0 outside of
these rectangles. Take similarly some disjoint sets B1, . . . , BM ′ , µ(Bt) < ∞,
1 ≤ t ≤ M ′, and some real numbers d(t1, . . . , tl), indexed with such l-tuples
(t1, . . . , tl), 1 ≤ tj′ ≤ M ′, 1 ≤ j′ ≤ l, for which the numbers t1, . . . , tl in
an l-tuple are different. Put g(x1, . . . , xl) = d(t1, . . . , tl) on the rectangles
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Bt1 × · · · × Btl
with edges indexed with the above introduced l-tuples, and

let g(x1, . . . , xl) = 0 outside of these rectangles.
Let us take some small number ε > 0 and rewrite the above introduced

functions f(x1, . . . , xk) and g(x1, . . . , xl) with the help of this number ε > 0 in
the following way. Divide the sets A1, . . . , AM to smaller sets Aε

1, . . . , A
ε
M(ε),

M(ε)⋃

s=1
Aε

s =
M⋃

s=1
As, in such a way that all sets Aε

1, . . . , A
ε
M(ε) are disjoint, and

µ(Aε
s) ≤ ε, 1 ≤ s ≤ M(ε). Similarly, take sets Bε

1, . . . , B
ε
M ′(ε),

M ′(ε)⋃

t=1
Bε

t =

M ′
⋃

t=1
Bt, in such a way that all sets Bε

1, . . . , B
ε
M ′(ε) are disjoint, and µ(Bε

t ) ≤ ε,

1 ≤ t ≤ M ′(ε). Beside this, let us also demand that two sets Aε
s and Bε

t ,
1 ≤ s ≤ M(ε), 1 ≤ t ≤ M ′(ε), are either disjoint or they agree. Such
a partition exists because of the non-atomic property of measure µ. The
above defined functions f(x1, . . . , xk) and g(x1, . . . , xl) can be rewritten by
means of these new sets Aε

s and Bε
t . Namely, let f(x1, . . . , xk) = cε(s1, . . . , sk)

on the rectangles Aε
s1

× · · · × Aε
sk

with 1 ≤ sj ≤ M(ε), 1 ≤ j ≤ k, with
different indices s1, . . . , sk, where cε(s1, . . . , sk) = c(p1, . . . , pk) with those
indices (p1, . . . , pk) for which Aε

s1
×· · ·×Aε

sk
⊂ Ap1

×· · ·×Apk
. The function

f disappears outside of these rectangles. The function g(x1, . . . , xl) can be
written similarly in the form g(x1, . . . , xl) = dε(t1, . . . , tl) on the rectangles
Bε

t1 × · · · × Bε
tl

with 1 ≤ tj′ ≤ M ′(ε), 1 ≤ j′ ≤ l, and different indices,
t1, . . . , tl. Beside this, the function g disappears outside of these rectangles.

The above representation of the functions f and g through a parameter
ε is useful, since it enables us to give a good asymptotic formula for the
product k!Zµ,k(f)l!Zµ,l(g) which yields the diagram formula for the product
of Wiener–Itô integrals of elementary functions with the help of a limiting
procedure ε → 0.

Fix a small number ε > 0, take the representation of the functions f and
g with its help, and write

k!Zµ,k(f)l!Zµ,l(g) =
∑

γ∈Γ (k,l)

Zγ(f, g, ε) (B.2)

with

Zγ(f, g, ε) =
∑γ

cε(s1, . . . , sk)dε(t1, . . . , tl)

µW (Aε
s1

) . . . µW (Aε
sk

)µW (Bε
t1) . . . µW (Bε

tl
), (B.3)

where Γ (k, l) denotes the class of diagrams introduced before the formula-
tion of Theorem 10.2A, and

∑γ
denotes summation for such k + l-tuples

(s1, . . . , sk, t1, . . . , tl), 1 ≤ sj ≤ M(ε), 1 ≤ j ≤ k, and 1 ≤ tj′ ≤ M ′(ε),
1 ≤ j′ ≤ l, for which Aε

sj
= Bε

tj′
if ((1, j), (2, j′)) ∈ E(γ), i.e. if it is an edge
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of γ, and otherwise all sets Aε
sj

and Bε
tj′

are disjoint. (This sum also depends

on ε.) In the case of an empty sum Zγ(f, g, ε) equals zero.
For all γ ∈ Γ (k, l) the expression Zγ(f, g, ε) will be written in the form

Zγ(f, g, ε) = Z(1)
γ (f, g, ε) + Z(2)

γ (f, g, ε), γ ∈ Γ (k, l), (B.4)

with

Z(1)
γ (f, g, ε) =

∑γ
cε(s1, . . . , sk)dε(t1, . . . , tl)
∏

j : (1,j)∈V1(γ)

µW (Aε
sj

)
∏

j′ : (2,j′)∈V2(γ)

µW (Bε
tj′

)

∏

j : (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
sj

) (B.5)

and

Z(2)
γ (f, g, ε) =

∑γ
cε(s1, . . . , sk)dε(t1, . . . , tl)
∏

j : (1,j)∈V1(γ)

µW (Aε
sj

)
∏

j′ : (2,j′)∈V2(γ)

µW (Bε
tj′

)

[
∏

j : (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µW (Aε
sj

)

∏

j′ : (2,j′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW (Bε
tj′

)

−
∏

j : (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
sj

)

]

, (B.6)

where V1(γ) and V2(γ) (introduced before formula (10.9) during the prepa-
ration to the formulation of Theorem 10.2A) are the sets of vertices in the
first and second row of the diagram γ from which no edge starts.

I claim that there is some constant C > 0 not depending on ε such that

E
(

|γ|!Zµ,|γ|(Fγ(f, g)) − Z(1)
γ (f, g, ε)

)2

≤ Cε for all γ ∈ Γ (k, l) (B.7)

with the Wiener–Itô integral with the kernel function Fγ(f, g) defined in
(10.9), (10.10) and (10.11), and

E
(

Z(2)
γ (f, g, ε)

)2

≤ Cε for all γ ∈ Γ (k, l). (B.8)

Relations (B.7) and (B.8) imply relation (10.13) if f and g are elementary
functions. Indeed, they imply that
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lim
ε→0

∥
∥ |γ|!Zµ,|γ|(Fγ(f, g)) − Zγ(f, g, ε)

∥
∥

2
→ 0 for all γ ∈ Γ (k, l),

and this relation together with (B.2) yield relation (10.13) with the help of
a limiting procedure ε → 0.

To prove relation (B.7) let us introduce the function

F ε
γ (f, g)(x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ))

= Fγ(f, g)(x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ))

if x(1,j) ∈ Aε
sj

, for all (1, j) ∈ V1(γ),

x(2,j′) ∈ Bε
tj′

, for all (2, j′) ∈ V2(γ)), and

all sets Aε
sj

, (1, j) ∈ V1(γ), and Bε
tj′

, (2, j′) ∈ V2(γ) are different.

with the function Fγ(f, g) defined in (10.10) and (10.11), and put

F ε
γ (f, g)(x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ)) = 0 otherwise.

The function F ε
γ (f, g) is elementary, and a comparison of its definition

with relation (B.5) and the definition of the function Fγ(f, g) yields that

Z(1)
γ (f, g, ε) = |γ|!Zµ,|γ|(F

ε
γ (f, g)). (B.9)

The function F ε
γ (f, g) slightly differs from Fγ(f, g), since the function Fγ(f, g)

may not disappear in such points (x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈
V2(γ)) for which there is some pair (j, j′) with the property x(1,j) ∈ Aε

sj

and x(2,j′) ∈ Bε
tj′

with some sets Aε
sj

and Bε
tj′

such that Aε
sj

= Bε
tj′

,

while F ε
γ (f, g) must be zero in such points. On the other hand, in the case

|γ| = max(k, l) − min(k, l), i.e. if one of the sets V1(γ) or V2(γ) is empty,

Fγ(f, g) = F ε
γ (f, g), Z

(1)
γ (f, g, ε) = |γ|!Zµ,|γ|(Fγ(f, g)), and relation (B.7)

clearly holds for such diagrams γ.
In the case |γ| = max(k, l)−min(k, l) > 0 such an estimate will be proved

for the probability of the set where Fγ 6= F ε
γ which implies relation (B.7).

Let us define the sets A =
M(ε)⋃

s=1
Aε

s and B =
M ′(ε)⋃

t=1
Bε

t . These sets A and B

do not depend on the parameter ε. Beside this µ(A) < ∞, and µ(B) < ∞.
Define for all pairs (j0, j

′
0) such that (1, j0) ∈ V1(γ), (2, j′0) ∈ V2(γ) the set

D(j0, j
′
0) = {(x(1,j), x(2,j′), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ)) :

x(1,j0) ∈ Aε
sj0

, x(1,j′
0)

∈ Bε
tj′0

for some sj0 and tj′
0

such that Aε
sj0

= Bε
tj′0

x(1,j) ∈ A for all (1, j) ∈ V1(γ),

and x(2,j′) ∈ B for all (2, j′) ∈ V2(γ)}.

Introduce the notation xγ = (x(1,j), x(2,j′)), (1, j) ∈ V1(γ), (2, j′) ∈ V2(γ)),
and consider only such vectors xγ whose coordinates satisfy the condi-
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tions x(1,j) ∈ A for all (1, j) ∈ V1(γ) and x(2,j′) ∈ B for all (2, j′) ∈
V2(γ). Put Dγ = {xγ : F ε

γ (f, g)(xγ) 6= Fγ(f, g)(xγ)}. The relation Dγ ⊂
k⋃

j=1

l⋃

j′=1

D(j0, j
′
0) holds, since if F ε

γ (f, g)(xγ) 6= Fγ(f, g)(xγ) for some vec-

tor xγ , then it has some coordinates (1, j0) ∈ V1(γ) and (2, j′0) ∈ V2(γ) such
that x(1,j0) ∈ Aε

sj0
and x(1,j′

0)
∈ Bε

tj′0

with some sets Aε
sj0

= Bε
tj′0

, and the

relation in the last line of the definition of D(j0, j
′
0) must also hold for this

vector xγ , since otherwise Fγ(f, g)(xγ) = 0 = F ε
γ (f, g)(xγ).

I claim that there is some constant C1 such that

µ|V1(γ)|+|V2(γ)|(D(j0, j
′
0)) ≤ C1ε for all sets D(j0, j

′
0),

where µ|V1(γ)|+|V2(γ)| denotes the direct product of the measure µ on some
copies of the original space (X,X ) indexed by (1, j) ∈ V1(γ) and (2, j′) ∈
V2(γ). To see this relation one has to observe that

∑

Aε
sj0

=Bε
t
j′0

µ(Aε
sj0

)µ(Bε
tj′0

) ≤
∑

εµ(Aε
sj0

) = εµ(A). Thus the set D(j0, j
′
0) can be covered by the direct

product of a set whose µ measure is not greater than εµ(A) and of a rectangle
whose edges are either the set A or the set B.

The above relations imply that

µ|V1(γ)|+|V2(γ)|(Dγ) ≤ C2ε (B.10)

with some constant C2 > 0.
Relation (B.9), estimate (B.10), the property c) formulated in Theo-

rem 10.1 for Wiener–Itô integrals and the observation that the function
Fγ(f, g) is bounded in supremum norm if f and g are elementary functions
imply the inequality

E
(

|γ|!Zµ,|γ|(Fγ(f, g)) − Z(1)
γ (f, g, ε)

)2

= |γ!|2E
(
Zµ,|γ|(Fγ(f, g) − F ε

γ (f, g))
)2 ≤ |γ|!‖Fγ(f, g) − F ε

γ (f, g)‖2
2

≤ Kµ|V1(γ)|+|V2(γ)|(Dγ) ≤ Cε.

This means that relation (B.7) holds.

To prove relation (B.8) write E
(

Z
(2)
γ (f, g, ε)

)2

in the following form:

E
(

Z(2)
γ (f, g, ε)

)2

=
∑γ∑γ

cε(s1, . . . , sk)dε(t1, . . . , tl)c
ε(s̄1, . . . , s̄k)

dε(t̄1, . . . , t̄l)EU(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l)

(B.11)

with
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U(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l)

=
∏

j : (1,j)∈V1(γ)

µW (Aε
sj

)
∏

j′ : (2,j′)∈V2(γ)

µW (Bε
tj′

)

∏

̄ : (1,̄)∈V1(γ)

µW (Aε
s̄̄

)
∏

̄′ : (2,̄′)∈V2(γ)

µW (Bε
t̄̄′

)

[
∏

j : (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µW (Aε
sj

)
∏

j′ : (2,j′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW (Bε
tj′

)

−
∏

j : (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
sj

)

]

[
∏

̄ : (1,̄)∈{(1,1),...,(1,k)}\V1(γ)

µW (Aε
s̄̄

)
∏

̄′ : (2,̄′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW (Bε
t̄̄′

)

−
∏

̄ : (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
s̄̄

)

]

. (B.12)

The double sum
∑γ ∑γ

in (B.11) has to be understood in the following
way. The first summation is taken for vectors (s1, . . . , sk, t1, . . . , tl), and these
vectors take such values which were defined in

∑γ
in formula (B.3). The

second summation is taken for vectors (s̄1, . . . , s̄k, t̄1, . . . , t̄l), and again with
values defined in the summation

∑γ
.

Relation (B.8) will be proved by means of some estimates about the ex-
pectation of the above defined random variable U(·) which will be presented
in the following Lemma B. Before its formulation I introduce the following
Properties A and B.

Property A. A sequence s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l, with ele-
ments 1 ≤ sj , s̄̄ ≤ M(ε), for 1 ≤ j, ̄ ≤ k, and 1 ≤ tj , t̄̄′ ≤ M ′(ε) for
1 ≤ j′, ̄′ ≤ l, satisfies Property A (depending on a fixed diagram γ and num-
ber ε > 0) if the sequences of sets Aε

sj
, (1, j) ∈ V1(γ), Bε

tj′
, (2, j′) ∈ V2(γ),

and Aε
s̄̄

, (1, ̄) ∈ V1(γ), Bε
t̄̄′

, (2, ̄′) ∈ V2(γ), agree. (Here we say that two

sequences agree if they contain the same elements in a possibly different or-
der.)

(In the formulation of Property A we considered the sets Aε
sj

only for such
indices j for which (1, j) ∈ V1(γ), the sets Bε

t′j
only for such indices j′ for

which (2, j′) ∈ V2(γ). The sets Aε
s̄̄

and Bε
t̄̄′

were selected in a similar way. A

similar convention will be applied in the definition of Property B.)

Property B. A sequence s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l, with ele-
ments 1 ≤ sj , s̄̄ ≤ M(ε), for 1 ≤ j, ̄ ≤ k, and 1 ≤ tj , t̄̄′ ≤ M ′(ε) for
1 ≤ j′, ̄′ ≤ l, satisfies Property B (depending on a fixed diagram γ and
number ε > 0) if the sequences of sets
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Aε
sj

, (1, j) ∈ {(1, 1), . . . , (1, k)} \ V1(γ),

Bε
tj′

, (2, j′) ∈ {(2, 1), . . . , (2, l)} \ V2(γ),

and

Aε
s̄̄

, (1, ̄) ∈ {(1, 1), . . . , (1, k)} \ V1(γ),

Bε
t̄̄′

, (2, ̄′) ∈ {(2, 1), . . . , (2, l)} \ V2(γ),

have at least one common element.

(In the above definitions two sets Aε
s and Bε

t are identified if Aε
s = Bε

t .)
Now I formulate the following

Lemma B. Let us consider the function U(·) introduced in formula (B.12).
Assume that its arguments s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l are cho-
sen in such a way that the function U(·) with these arguments appears in the
double sum

∑γ ∑γ
in formula (B.11), i.e. Aε

sj
= Bε

tj′
if ((1, j), (2, j′)) ∈

E(γ), otherwise all sets Aε
sj

and Bε
tj′

are disjoint, and an analogous state-

ment holds if the coordinates s1, . . . , sk, t1, . . . , tl are replaced by s̄1, . . . , s̄k

and t̄1, . . . , t̄l. Then

EU(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l) = 0 (B.13)

if the sequence of the arguments in U(·) does not satisfies either Property A
or Property B.

If the sequence of the arguments in U(·) satisfies both Property A and
Property B, then

|EU(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l)|
≤ Cε

∏ ′
µ(Aε

sj
)µ(Aε

s̄̄
)µ(Bε

tj′
)µ(Bε

t̄̄′
) (B.14)

with some appropriate constant C = C(k, l) > 0 depending only on the num-
ber of variables k and l of the functions f and g. The prime in the product
∏′

at the right-hand side of (B.14) means that in this product the measure µ
of those sets Aε

sj
, Aε

s̄̄
, Bε

tj′
and Bε

t̄̄′
are considered, whose indices are listed

among the arguments sj , s̄̄, tj′ or t̄̄′ of U(·), and the measure µ of each such
set appears exactly once. (This means e.g. that if Aε

sj
= Bε

tj′
or Aε

sj
= Bε

t̄̄′

for some indices j and j′ or ̄′, then one of the terms between µ(Aε
sj

) and
µ(Bε

tj′
) or µ(Bε

t̄̄′
) is omitted from the product. For the sake of definitiveness

let us preserve the set µ(Aε
js

) in such a case.)

Remark. The content of Lemma B is that most terms in the double sum in
formula (B.11) equal zero, and even the non-zero terms are small.

The proof of Lemma B. Let us prove first relation (B.13) in the case when
Property A does not hold. It will be exploited that for disjoint sets the ran-
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dom variables µW (As) and µW (Bt) are independent, and this provides a
good factorization of the expectation of certain products. Let us carry out
the multiplications in the definition of U(·) in formula (B.12), and show
that each product obtained in such a way has zero expectation. If Prop-
erty A does not hold for the arguments of U(·), and beside this the ar-
guments s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l satisfy the remaining condi-
tions of Lemma B, then each product we consider contains a factor µW (Aε

sj0
),

(1, j0) ∈ V1(γ), which is independent of all those terms in this product which
are in the following list: µW (Aε

sj
) with some j 6= j0, 1 ≤ j ≤ k, or µW (Bε

tj′
),

1 ≤ j ≤ l, or µW (Aε
s̄̄

) with (1, ̄) ∈ V1(γ), or µW (Bε
t̄̄′

) with (2, ̄′) ∈ V2(γ).

We will show with the help of this property that the expectation of each
term has a factorization with a factor either of the form EµW (Aε

sj0
) = 0 or

EµW (Aε
sj0

)3 = 0, hence it equals zero. Indeed, although the above prop-
erties do not exclude the appearance of such a pair of arguments Aε

tj̄′
,

(1, ̄′) ∈ {(1, 1), . . . , (1, k) \ V1(γ) and Bε
tj̄′

, (2, ̄′) ∈ {(2, 1), . . . , (2, l)} \ V2(γ)

in the product for which Aε
tj̄

= Bε
tj̄′

= Aε
sj0

, and in such a case a term of the

form EµW (Aε
sj0

) will not appear in the product, but if this happens, then

the product contains a factor of the form EµW (Aε
sj0

)3 = 0. Hence an appro-

priate factorization of each term of EU(·) contains either a factor of the form
EµW (Aε

sj0
) = 0 or EµW (Aε

sj0
)3 = 0 if U(·) does not satisfy Property A.

To finish the proof of relation (B.13) it is enough consider the case when the
arguments of U(·) satisfy Property A, but they do not satisfy Property B. The
validity of Property A implies that the sets {Aε

sj
, j ∈ V1}∪{Bε

tj′
, j′ ∈ V2} and

{Aε
s̄j

, j ∈ V1}∪{Bε
t̄j′

, j′ ∈ V2} agree. The conditions of Lemma B also imply

that the elements of these sets are such sets which are disjoint of the sets Aε
sj

,
Bε

tj′
, Aε

s̄̄
and Bε

t̄̄′
with indices (1, j), (1, ̄) ∈ {(1, 1), . . . , (1, k)} \ V1(γ) and

(2, j′), (2, ̄′) ∈ {(2, 1), . . . , (2, l)} \ V2(γ). If Property B does not hold, then
the latter class of sets can be divided into two subclasses in such a way that
the elements in different subclasses are disjoint. The first subclass consists
of the sets Aε

sj
and Bε

tj′
, and the second one of the sets Aε

s̄̄
and Bε

t̄̄′
with

indices such that (1, j), (1, ̄) ∈ {(1, 1), . . . , (1, k)} \ V1(γ) and (2, j′), (2, ̄′) ∈
{(2, 1), . . . , (2, l)} \ V2(γ). These facts imply that EU(·) has a factorization,
which contains the term

E

[
∏

j : (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µW (Aε
sj

)
∏

j′ : (2,j′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW (Bε
tj′

)

−
∏

j : (1,j)∈{(1,1),...,(1,k)}\V1(γ)

µ(Aε
sj

)

]

= 0,

hence relation (B.13) holds also in this case. The last expression has zero
expectation, since if we take such pairs Aε

sj
, Bε

t′j
for the sets appearing in it

for which that ((1, j), (2, j′)) ∈ E(γ), i.e. these vertices are connected with an
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edge of γ, then Aε
sj

= Bε
t′j

in a pair, and elements in different pairs are disjoint.

This observation allows a factorization in the product whose expectation is
taken, and then the identity EµW (Aε

sj
)µW (Bε

tj′
) = µ(Aε

sj
) implies the desired

identity.
To prove relation (B.14) if the arguments of the function U(·) satisfy both

Properties A and B consider the expression (B.12) which defines U(·), carry
out the term by term multiplication between the two differences at the end of
this formula, take expectation for each term of the sum obtained in such a way
and factorize them. Since EµW (A)2 = µ(A), EµW (A)4 = 3µ(A)2 for all sets
A ∈ X , µ(A) < ∞, some calculation shows that each term can be expressed
as constant times a product whose elements are those probabilities µ(Aε

s)
and µ(Bε

t ) or their square which appear at the right-hand side of (B.14).
Moreover, since the arguments of U(·) satisfy Property B, there will be at
least one term of the form µ(Aε

s)2 in this product. Since µ(Aε
s)2 ≤ εµ(Aε

s),
these calculations provide formula (B.14). Lemma B is proved.

Relation (B.11) implies that

E
(

Z(2)
γ (f, g, ε)

)2

(B.15)

≤ K
∑ γ ∑ γ

|EU(s1, . . . , sk, t1, . . . , tl, s̄1, . . . , s̄k, t̄1, . . . , t̄l)|

with some appropriate K > 0. By Lemma B it is enough to sum up only
for such terms U(·) in (B.15) whose arguments satisfy both Properties A
and B. Moreover, each such term can be bounded by means of inequality
(B.14). Let us list the sets Aε

sj
, Aε

s̄̄
, Bε

tj′
, Bε

t̄̄′
appearing in the upper bound

at the right-hand side of (B.14) for all functions U(·) taking part in the sum
at the right-hand side of (B.15). Since all fixed sequences of the sets Aε

s

and Bε
t appear less than C(k, l) times with an appropriate constant C(k, l)

depending only on the order k and l of the integrals we are considering, and
M(ε)∑

s=1
µ(Aε

s) +
M ′(ε)∑

t=1
µ(Bε

t ) = µ(A) +µ(B) < ∞, the above relations imply that

E
(

Z(2)
γ (f, g, ε)

)2

≤ C1ε
k+l∑

j=1

(µ(A) + µ(B))j ≤ Cε.

Hence relation (B.8) holds.

To prove Theorem 10.2A in the general case take for all pairs of functions
f ∈ Hµ,k and g ∈ Hµ,l two sequences of elementary functions fn ∈ H̄µ,k and
gn ∈ H̄µ,l, n = 1, 2, . . . , such that ‖fn − f‖2 → 0 and ‖gn − g‖2 → 0 as
n → ∞. It is enough to show that

E|k!Zµ,k(f)l!Zµ,l(g) − k!Zµ,k(fn)l!Zµ,l(gn)| → 0 as n → ∞, (B.16)
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and

|γ|!E
∣
∣Zµ,|γ|(Fγ(f, g)) − Zµ,|γ|(Fγ(fn, gn))

∣
∣→ 0 as n → ∞

for all γ ∈ Γ (k, l), (B.17)

since then a simple limiting procedure n → ∞, and the already proved part
of the theorem for Wiener–Itô integrals of elementary functions imply Theo-
rem 10.2A.

To prove relation (B.16) write

E|k!Z, µ, k(f)l!Zµ,l(g) − k!Zµ,k(fn)l!Zµ,l(gn)|
≤ k!l! (E|Zµ,k(f)Zµ,l(g − gn)| + E|Zµ,k(f − fn)Zµ,l(gn)) |
≤ k!l!

((
EZ2

µ,k(f)
)1/2 (

EZ2
µ,l(g − gn)

)1/2

+
(
EZ2

µ,k(f − fn)
)1/2 (

EZ2
µ,l(gn)

)1/2
)

≤ (k!l!)1/2 (‖f‖2‖g − gn‖2 + ‖f − fn‖2‖gn‖2) .

Relation (B.16) follows from this inequality with a limiting procedure n → ∞.
To prove relation (B.17) write

|γ|!E
∣
∣Zµ,|γ|(Fγ(f, g)) − Zµ,|γ|(Fγ(fn, gn))

∣
∣

≤ |γ|!E
∣
∣Zµ,|γ|(Fγ(f, g − gn))

∣
∣+ |γ|!E

∣
∣Zµ,|γ|(Fγ(f − fn, gn))

∣
∣

≤ |γ|!
(

EZ2
µ,|γ|(Fγ(f, g − gn))

)1/2

+ |γ|!
(

EZ2
µ,|γ|(Fγ(f − fn, gn))

)1/2

≤ (|γ|!)1/2 (‖Fγ(f, g − gn)‖2 + ‖Fγ(f − fn, gn)‖2) ,

and observe that by relation (10.12) ‖Fγ(f, g − gn)‖2 ≤ ‖f‖2‖g − gn‖2, and
‖Fγ(f − fn, gn)‖2 ≤ ‖f − fn‖2‖gn‖2. Hence

|γ|!E
∣
∣Zµ,|γ|(Fγ(f, g)) − Zµ,|γ|(Fγ(fn, gn))

∣
∣

≤ (|γ|!)1/2 (‖f‖2‖g − gn‖2 + ‖f − fn‖2‖gn‖2) .

The last inequality implies relation (B.17) with a limiting procedure n → ∞.
Theorem 10.2A is proved.



Appendix C

The proof of some results about
Wiener–Itô integrals

First I prove Itô’s formula about multiple Wiener–Itô integrals (Theo-
rem 10.3). The proof is based on the diagram formula for Wiener–Itô in-
tegrals and a recursive formula about Hermite polynomials proved in Propo-
sition C. In Proposition C2 I present the proof of another important property
of Hermite polynomials. This result states that the class of all Hermite poly-
nomials is a complete orthogonal system in an appropriate Hilbert space. It
is needed in the proof of Theorem 10.5 which provides an isomorphism be-
tween a Fock space and the Hilbert space generated by Wiener–Itô integrals
with respect to a white noise with an appropriate reference measure. At the
end of Appendix C the proof of Theorem 10.4, a limit theorem about de-
generate U -statistics is given together with a version of this result about the
limit behaviour of multiple integrals with respect to a normalized empirical
distribution.

Proposition C about some properties of Hermite polynomials. The
functions

Hk(x) = (−1)kex2/2 dk

dxk
e−x2/2, k = 0, 1, 2, . . . (C.1)

are the Hermite polynomials with leading coefficient 1, i.e. Hk(x) is a poly-
nomial of order k with leading coefficient 1 such that

∫ ∞

−∞
Hk(x)Hl(x)

1√
2π

e−x2/2 dx = 0 if k 6= l. (C.2)

Beside this,

∫ ∞

−∞
H2

k(x)
1√
2π

e−x2/2 dx = k! for all k = 0, 1, 2 . . . . (C.3)

The recursive relation

Hk(x) = xHk−1(x) − (k − 1)Hk−2(x) (C.4)

245
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holds for all k = 1, 2, . . . .

Remark. It is more convenient to consider relation (C.4) valid also in the
case k = 1. In this case H1(x) = x, H0(x) = 1, and relation holds with an
arbitrary function H−1(x).

Proof of Proposition C. It is clear from formula (C.1) that Hk(x) is a poly-
nomial of order k with leading coefficient 1. Take l ≥ k, and write by means
of integration by parts

∫ ∞

−∞
Hk(x)Hl(x)

1√
2π

e−x2/2 dx =

∫ ∞

−∞

1√
2π

Hk(x)(−1)l dl

dxl
e−x2/2 dx

=

∫ ∞

−∞

1√
2π

d

dx
Hk(x)(−1)l−1 dl−1

dxl−1
e−x2/2 dx.

Successive partial integration together with the identity dk

dxk Hk(x) = k! yield
that

∫ ∞

−∞
Hk(x)Hl(x)

1√
2π

e−x2/2 dx = k!

∫ ∞

−∞

1√
2π

(−1)l−k dl−k

dxl−k
e−x2/2 dx.

The last relation supplies formulas (C.2) and (C.3).
To prove relation (C.4) observe that Hk(x)−xHk−1(x) is a polynomial of

order k − 2. (The term xk−1 is missing from this expression. Indeed, if k is
an even number, then the polynomial Hk(x)−xHk−1(x) is an even function,
and it does not contain the term xk−1 with an odd exponent k − 1. Similar
argument holds if the number k is odd.) Beside this, it is orthogonal (with
respect to the standard normal distribution) to all Hermite polynomials Hl(x)
with 0 ≤ l ≤ k−3. Hence Hk(x)−xHk−1(x) = CHk−2(x) with some constant
C to be determined.

Multiply both sides of the last identity with Hk−2(x) and integrate them
with respect to the standard normal distribution. Apply the orthogonality of
the polynomials Hk(x) and Hk−2(x), and observe that the identity

∫

Hk−1(x)xHk−2(x)
1√
2π

e−x2/2 dx =

∫

H2
k−1(x)

1√
2π

e−x2/2 dx = (k − 1)!

holds. (In this calculation we have exploited that Hk−1(x) is orthogonal to
Hk−1(x) − xHk−2(x), because the order of the latter polynomial is less than
k − 1.) In such a way we get the identity −(k − 1)! = C(k − 2)! for the
constant C in the last identity, i.e. C = −(k − 1), and this implies relation
(C.4).

Proof of Itô’s formula for multiple Wiener–Itô integrals. Let K =
m∑

p=1
kp,

the sum of the order of the Hermite polynomials, denote the order of the
expression in relation (10.23). Formula (10.23) clearly holds for expressions
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of order K = 1. It will be proved in the general case by means of induction
with respect to the order K.

In the proof the functions f(x1) = ϕ1(x1) and

g(x1, . . . , xKm−1) =

K1−1∏

j=1

ϕ1(xj) ·
m∏

p=2

Kp−1
∏

j=Kp−1

ϕp(xj),

will be introduced and the product Zµ,1(f)(Km − 1)!Zµ,Km−1(g) will be cal-
culated by means of the diagram formula. (The same notation is applied
as in Theorem 10.3. In particular, K = Km, and in the case K1 = 1

the convention
K1−1∏

j=1

ϕ1(xj) = 1 is applied.) In the application of the dia-

gram formula diagrams with two rows appear. The first row of these dia-
grams contains the vertex (1, 1) and the second row contains the vertices
(2, 1), . . . , (2,Km − 1). It is useful to divide the diagrams to three disjoint
classes. The first class, Γ0 contains only the diagram γ0 without any edges.
The second class Γ1 consists of those diagrams which have an edge of the
form ((1, 1), (2, j)) with some 1 ≤ j ≤ k1 − 1, and the third class Γ2 is the
set of those diagrams which have an edge of the form ((1, 1), (2, j)) with
some k1 ≤ j ≤ Km − 1. Because of the orthogonality of the functions ϕs

for different indices s Fγ ≡ 0 and Zµ,Km−2(Fγ) = 0 for γ ∈ Γ2. The class
Γ1 contains k1 − 1 diagrams. Let us consider a diagram γ from this class
with an edge ((1, 1), (2, j0)), 1 ≤ j ≤ k1 − 1. We have for such a diagram

Fγ =
∏

j∈{1,...,K1−1}\{j0}
ϕ1(x(2,j))

m∏

p=2

Kp−1∏

j=Kp−1

ϕp(x(2,j)), and by our inductive

hypothesis (Km − 2)!Zµ,Km−2(Fγ) = Hk1−2(η1)
m∏

p=2
Hkp

(ηp). Finally

Km!Zµ,Km
(Fγ0

) = Km!Zµ,Km





m∏

p=1





Kp∏

j=Kp−1+1

ϕp(xj)









for the diagram γ0 ∈ Γ0 without any edge.
Our inductive hypothesis also implies the following identity for the expres-

sion we wanted to calculate with the help of the diagram formula.

Zµ,1(f)(Km − 1)!Zµ,Km−1(g) = η1Hk1−1(η1)

m∏

p=2

Hkp
(ηp).

The above calculations together with the observation |Γ1| = k1 − 1 yield
the identity
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Km!Zµ,Km





m∏

p=1





Kp∏

j=Kp−1+1

ϕp(xj)







 = Km!Zµ,Km
(Fγ0

)

= Zµ,1(f)(Km − 1)!Zµ,Km−1(g) −
∑

γ∈Γ1

(Km − 2)!Zµ,Km−2(Fγ)

= η1Hk1−1(η1)

m∏

p=2

Hkp
(ηp) − (k1 − 1)Hk1−2(η1)

m∏

p=2

Hkp
(ηp)

= [η1Hk1−1(η1) − (k1 − 1)Hk1−2(η1)]

m∏

p=2

Hkp
(ηp). (C.5)

On the other hand, η1Hk1−1(η1) − (k1 − 1)Hk1−2(η1) = Hk1
(η1) by formula

(C.4). These relations imply formula (10.23), i.e. Itô’s formula.

I present the proof of another important property of the Hermite polyno-
mials in the following Proposition C2.

Proposition C2 on the completeness of the orthogonal system of
Hermite polynomials. The Hermite polynomials Hk(x), k = 0, 1, 2, . . . ,
defined in formula (C.5) constitute a complete orthonormal system in the L2-
space of the functions square integrable with respect to the Gaussian measure

1√
2π

e−x2/2 dx on the real line.

Proof of Proposition C2. Let us consider the orthogonal complement of the
subspace generated by the Hermite polynomials in the space of the square
integrable functions with respect to the measure 1√

2π
e−x2/2 dx. It is enough

to prove that this orthogonal completion contains only the identically zero
function. Since the orthogonality of a function to all polynomials of the form
xk, k = 0, 1, 2, . . . is equivalent to the orthogonality of this function to all
Hermite polynomials Hk(x), k = 0, 1, 2, . . . , Proposition C2 can be reformu-
lated in the following form:

If a function g(x) on the real line is such that

∫ ∞

−∞
xkg(x)

1√
2π

e−x2/2 dx = 0 for all k = 0, 1, 2, . . . (C.6)

and ∫ ∞

−∞
g2(x)

1√
2π

e−x2/2 dx < ∞, (C.7)

then g(x) = 0 for almost all x.
Given a function g(x) on the real line whose absolute value is integrable

with respect to the Gaussian measure 1√
2π

e−x2/2 dx define the (finite) mea-
sure νg,

νg(A) =

∫

A

g(x)
1√
2π

e−x2/2 dx
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on the measurable sets of the real line together with its Fourier transform
ν̃g(t) =

∫∞
−∞ eitxνg( dx). (This measure νg and its Fourier transform can be

defined for all functions g satisfying relation (C.7), because their absolute
value is integrable with respect to the Gaussian measure.) First I show that
Proposition C2 can be reduced to the following statement: If a function g
satisfies both (C.6) and (C.7) then ν̃g(t) = 0 for all −∞ < t < ∞.

Indeed, if there were a function g satisfying (C.6) and (C.7) which is not
identically zero, then the non-negative functions g+(x) = max(0, g(x)) and
g−(x) = −min(0, g(x)) would be different. Then also their Fourier trans-
form ν̃g+(t) and ν̃g−(t) would be different, since a finite measure is uniquely
determined by its Fourier transform. (This statement is equivalent to an im-
portant result in probability theory, by which a probability measure on the
real line is determined by its characteristic function.) But this would mean
that ν̃g(t) = ν̃g+(t) − ν̃g−(t) 6= 0 for some t. Hence Proposition C2 can be
reduced to the above statement.

Since
∣
∣
∣eitx − 1 − (itx) − · · · − (itx)k

k!

∣
∣
∣ ≤ |tx|(k+1)

(k+1)! for all real numbers t, x

and integer k = 1, 2, . . . we may write because of relation (C.6)

|ν̃g(t)| =

∣
∣
∣
∣

∫ ∞

−∞

(

eitx − 1 − (itx) − · · · − (itx)k

k!

)

g(x)
1√
2π

e−x2/2 dx

∣
∣
∣
∣

≤
∫ ∞

−∞

|t|(k+1)

(k + 1)!
|x|k+1|g(x)| 1√

2π
e−x2/2 dx

for all k = 1, 2, . . . and real number t if the function g satisfies relation (C.6).
If it satisfies both relation (C.6) and (C.7), then from the last relation and
the Schwarz inequality

|ν̃g(t)|2 ≤ const.
|t|2(k+1)

(k + 1)!)2

∫ ∞

−∞
|x|2(k+1) 1√

2π
e−x2/2 dx

= const.
|t|2(k+1)

(k + 1)!)2
1 · 3 · 5 · · · (2k + 1)

for all real number t and integer k = 1, 2, . . . . Simple calculation shows that
the right-hand side of the last estimate tends to zero as k → ∞. This implies
that ν̃g(t) = 0 for all t, and Proposition C2 holds.

I finish Appendix C with the proof of Theorem 10.4, a limit theorem
about a sequence of normalized degenerate U -statistics. It is based on an
appropriate representation of the U -statistics by means of multiple random
integrals which makes possible to carry out an appropriate limiting procedure.

Proof of Theorem 10.4. For all n = 1, 2, . . . , the normalized degenerate U -
statistics n−k/2k!In,k(f) can be written in the form
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n−k/2k!In,k(f) = nk/2

∫ ′
f(x1, . . . , xk)µn( dx1) . . . µn( dxk) (C.8)

= nk/2

∫ ′
f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dx1)),

where µn is the empirical distribution of the sequence ξ1, . . . , ξn defined
in (4.5), and the prime in

∫ ′
denotes that the diagonals, i.e. the points

x = (x1, . . . , xk) such that xj = xj′ for some pairs of indices 1 ≤ j, j′ ≤ k,
j 6= j′, are omitted from the domain of integration. The second identity in
relation (C.8) can be justified by means of the identity

∫ ′
f(x1, . . . , xk)(µn( dx1) − µ( dx1)) . . . (µn( dxk) − µ( dx1)) − In,k(f)

=
∑

V : V ∈{1,...,k}, |V |≥1

(−1)|V |
∫ ′

f(x1, . . . , xk)

∏

j∈V

µ( dxj)
∏

j∈{1,...,k}\V

µn( dxj)) = 0. (C.9)

This identity holds for a function f canonical with respect to a non-
atomic measure µ, because each term in the sum at the right-hand side
of (C.9) equals zero. Indeed, the integral of a canonical function f with
respect to µ( dxj) with some index j ∈ V equals zero for all fixed values
x1, . . . , xj−1, xj+1, . . . , xk. The non-atomic property of the measure µ was
needed to guarantee that this integral equals zero also in the case when the
diagonals are omitted from the domain of integration.

We would like to derive Theorem 10.4 from relation (C.8) by means of an
appropriate limiting procedure which exploits the convergence of the random
fields n1/2(µn(A)−µ(A)), A ∈ X , to a Gaussian field ν(A), A ∈ X , as n → ∞.
But some problems arise if we want to carry out such a program, because the
fields n1/2(µn − µ) converge to a non white noise type Gaussian field. The
limit we get is similar to a Wiener bridge on the real line. Hence a relation
between Wiener processes and Wiener bridges suggests to write the following
version of formula (C.8).

Let us take a standard Gaussian random variable η, independent of the
random sequence ξ1, ξ2, . . . . For a canonical function f the following version
of (C.8) holds.

n−k/2k!In,k(f) = J ′
n,k(f) (C.10)

with

J ′
n,k(f) =

∫ ′
f(x1, . . . , xk)

[√
n(µn( dx1) − µ( dx1)) + ηµ( dx1)

]

. . .
[√

n(µn( dxk) − µ( dxk)) + ηµ( dxk)
]
. (C.11)

This relation can be seen similarly to (C.8).
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The random measures n1/2(µn − µ) + ηµ converge to a white noise with
reference measure µ. Hence Theorem 10.4 can be proved by means of for-
mulas (C.10) and (C.11) with the help of an appropriate limiting procedure.
More explicitly, I claim that the following slightly more general result holds.
The expressions J ′

n,k(f) introduced in (C.11) converge in distribution to the
Wiener–Itô integral k!Zµ,k(f) as n → ∞ for all functions f square inte-
grable with respect to the product measure µk. This result also holds for
non-canonical functions f . This limit theorem together with relation (C.10)
imply Theorem 10.4.

The convergence of the random variables J ′
n,k(f) defined in (C.11) to the

Wiener–Itô integral k!Zµ,k(f) can be easily checked for elementary functions
f ∈ H̄µ,k. Indeed, if A1, . . . , AM are disjoint sets with µ(As) < ∞, then
the multi-dimensional central limit theorem implies that the random vectors
{√n((µn(As)−µ(As)) +ηµ(As), 1 ≤ s ≤ M} converge in distribution to the
random vector {(µW (As), 1 ≤ s ≤ M}, i.e. to a set of independent normal
random variables ζs, Eζs = 0, 1 ≤ s ≤ M , with variance Eζ2

s = µ(As) as
n → ∞. The definition of the elementary functions given in (10.2) shows that
this central limit theorem implies the demanded convergence of the sequence
J ′

n,k(f) to k!Zµ,k(f) for elementary functions.
To show the convergence of the sequence J ′

n,k(f) to k!Zµ,k(f) in the general
case take for any function f ∈ Hµ,k a sequence of elementary functions fN ∈
H̄µ,k such that ‖f − fN‖2 → 0 as N → ∞. Then E(Zµ,k(f) − Zµ,k(fN ))2 =
E(Zµ,k(f −fN ))2 → 0 as N → ∞ by Property c) in Theorem 10.1. Hence the
already proved part of the theorem implies that there exists some sequence
of positive integers, N(n), n = 1, 2, . . . , in such a way that N(n) → ∞,
and the sequence J ′

n,k(fN(n)) converges to k!Zµ,k(f) in distribution as n →
∞. Thus to complete the proof of Theorem 10.4 it is enough to show that
E(J ′

n,k(fN(n)) − J ′
n,k(f))2 = E(J ′

n,k(fN(n) − f))2 → 0 as n → ∞.
It is enough to show that

E(J ′
n,k(f))2 ≤ C‖f‖2

2 for all f ∈ Hµ,k (C.12)

with a constant C = Ck depending only on the order k of the function f and
to apply inequality (C.12) for the f unctions fN(n) − f . Relation (C.12) is a
relatively simple consequence of Corollary 1 of Theorem 9.4.

Indeed,

J ′
n,k(f) =

∑

V ⊂{1,...,k}
ηk−|V ||V |!Jn,|V |(fV )

with

fV (xj , j ∈ V ) =

∫

f(x1, . . . , xk)
∏

j′∈{1,...,k}\V

µ(dxj′)

and the random integral Jn,k(·) defined in (4.8), hence
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E(J ′
n,k(f))2 ≤ 2k

∑

V ⊂{1,...,k}
(|V |!)2Eη2(k−|V |) · EJ2

n,|V |(fV ). (C.13)

Inequality ‖fV ‖2 ≤ ‖f‖2 holds for all sets V ⊂ {1, . . . , k}, hence an ap-
plication of Corollary 1 of Theorem 9.4 to all random integrals Jn,|V |(f)
supplies (C.12).

The above proof also yields the following slight generalization of Theo-
rem 10.4. Let us consider a finite sequence of functions fj ∈ Hµ,j , 1 ≤ j ≤ k,
canonical with respect to a non-atomic probability measure µ. The vectors
{n−j/2In,j(fj), 1 ≤ j ≤ k}, consisting of normalized degenerate U -statistics
defined with the help of a sequence of independent µ-distributed random
variables converge to the random vector {Zµ,j(fj), 1 ≤ j ≤ k} in distribution
as n → ∞. This result together with Theorem 9.4 imply the following limit
theorem about multiple random integrals Jn,k(f).

Theorem 10.4′ (Limit theorem about multiple random integrals
with respect to a normalized empirical measure). Let a sequence of
independent and identically distributed random variables ξ1, ξ2, . . . be given
with some non-atomic distribution µ on a measurable space (X,X ) together
with a function f(x1, . . . , xk) on the k-fold product (Xk,X k) of the space
(X,X ) such that

∫

f2(x1, . . . , xk)µ( dx1) . . . µ( dxk) < ∞.

Let us consider for all n = 1, 2, . . . the random integrals Jn,k(f) of order k
defined in formulas (4.5) and (4.8) with the help of the empirical distribution
µn of the sequence ξ1, . . . , ξn and the function f . These random integrals
Jn,k(f) converge in distribution, as n → ∞, to the following sum U(f) of
multiple Wiener–Itô integrals:

U(f) =
∑

V ⊂{1,...,k}
C(k, V )Zµ,|V |(fV )

=
∑

V ⊂{1,...,k}

C(k, V )

|V |!

∫

fV (xj , j ∈ V )
∏

j∈V

µW (dxj),

where the functions fV (xj , j ∈ V ), V ⊂ {1, . . . , k}, are those functions
defined in formula (9.3) which appear in the Hoeffding decomposition of
the function f(x1, . . . , xk), the constants C(k, V ) are the limits appearing
in the limit relation lim

n→∞
C(n, k, V ) = C(k, V ) satisfied by the coefficients

C(n, k, V ) in formula (9.15), and µW is a white noise with reference mea-
sure µ.

An essential step of the proof of Theorem 10.4 was the reduction of the
case of general kernel functions to the case of elementary kernel functions.
Let me make some comments about it.
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It would be simple to make such a reduction if we had a good approxima-
tion of a canonical function with such elementary functions which are also
canonical. But it is very hard to find such an approximation. To overcome
this difficulty we reduced the proof of Theorem 10.4 to a modified version of
this result where instead of a limit theorem for degenerate U -statistics a limit
theorem for the random variables J ′

n,k(f) introduced in formula (C.11) has to
be proved. In the proof of such a version we could apply the approximation of
a general kernel function with not necessarily canonical elementary functions.
Theorem 9.4 helped us to work with such an approximation. Another natural
way to overcome the above difficulty is to apply a Poissonian approximation
of the normalized empirical measure. Such an approach was applied in [15]
and in [32], where some generalizations of Theorem 10.4 were proved.





Appendix D

The proof of Theorem 14.3 about
U -statistics and decoupled U -statistics

The proof of Theorem 14.3. It will be simpler to formulate and prove a
generalized version of Theorem 14.3 where such generalized U -statistics are
considered in which different kernel functions may appear in each term of
the sum. More explicitly, let ℓ = ℓ(n, k) denote the set of all such se-
quences l = (l1, . . . , lk) of integers of length k for which 1 ≤ lj ≤ n,
1 ≤ j ≤ k. To define generalized U -statistics let us fix a set of functions
{fl1,...,lk(x1, . . . , xk), (l1, . . . , lk) ∈ ℓ} which map the space (Xk,X k) to a
separable Banach space B, and have the property fl1,...,lk(x1, . . . , xk) ≡ 0
if lj = lj′ for some indices j 6= j′. (The last condition corresponds to that
property of U -statistics that the diagonals are omitted from the summation
in their definition.) Let us denote this set of functions by f(ℓ) and define,
similarly to the U -statistics and decoupled U -statistics the generalized U -
statistics and generalized decoupled U -statistics by the formulas

In,k(f(ℓ)) =
1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k

fl1,...,lk (ξl1 , . . . , ξlk) (D.1)

and

Īn,k(f(ℓ)) =
1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k

fl1,...,lk

(

ξ
(1)
l1

, . . . , ξ
(k)
lk

)

(D.2)

(with the same independent and identically distributed random variables ξl

and ξ
(j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k, as in the definition of the original U -statistics

and decoupled U -statistics.)
The following generalization of relation (14.13) will be proved.

P (‖In,k(f(ℓ))‖ > u) ≤ A(k)P
(
‖Īn,k(f(ℓ))‖ > γ(k)u

)
(D.3)

with some constants A(k) > 0 and γ(k) > 0 depending only on the order k
of these generalized U -statistics.

255
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We concentrate mainly on the proof of the generalization (D.3) of rela-
tion (14.13). Formula (14.14) is a relatively simple consequence of it. For-
mula (D.3) will be proved by means of an inductive procedure which works
only in this more general setting. It will be derived from the following state-
ment.

Let us take two independent copies ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n of our

original sequence of random variables ξ1, . . . , ξn, and introduce for all sets
V ⊂ {1, . . . , k} the function αV (j), 1 ≤ j ≤ k, defined as αV (j) = 1 if j ∈ V
and αV (j) = 2 if j /∈ V . Let us define with their help the following version
of decoupled U -statistics

In,k,V (f(ℓ)) =
1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k

fl1,...,lk

(

ξ
(αV (1))
l1

, . . . , ξ
(αV (k))
lk

)

for all V ⊂ {1, . . . , k}. (D.4)

The following inequality will be proved: There are some constants Ck > 0
and Dk > 0 depending only on the order k of the generalized U -statistic
In,k(f(ℓ)) such that for all numbers u > 0

P (‖In,k(f(ℓ))‖ > u) ≤
∑

V ⊂{1,...,k}, 1≤|V |≤k−1

CkP (Dk‖In,k,V (f(ℓ))‖ > u) .

(D.5)
Here |V | denotes the cardinality of the set V , and the condition 1 ≤ |V | ≤
k − 1 in the summation of formula (D.5) means that the sets V = ∅ and
V = {1, . . . , k} are omitted from the summation, i.e. the terms where either
αV (j) = 1 or αV (j) = 2 for all 1 ≤ j ≤ k are not considered. Formula (D.3)
can be derived from formula (D.5) by means of an inductive argument. The
hard part of the problem is to prove formula (D.5). To do this first we prove
the following simple lemma.

Lemma D1. Let ξ and η be two independent and identically distributed ran-
dom variables taking values in a separable Banach space B. Then

3P

(

|ξ + η| >
2

3
u

)

≥ P (|ξ| > u) for all u > 0.

Proof of Lemma D1. Let ξ, η and ζ be three independent, identically dis-
tributed random variables taking values in B. Then

3P

(

|ξ + η| >
2

3
u

)

= P

(

|ξ + η| >
2

3
u

)

+ P

(

|ξ + ζ| >
2

3
u

)

+P

(

| − (η + ζ)| >
2

3
u

)

≥ P (|ξ + η + ξ + ζ − η − ζ| > 2u) = P (|ξ| > u).
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To prove formula (D.5) we introduce the random variable

Tn,k(f(ℓ)) =
1

k!

∑

(l1,...,lk), (s1,...,sk) :
1≤lj≤n, sj=1 or sj=2, j=1,...,k,

fl1,...,lk

(

ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)

=
∑

V ⊂{1,...,k}
In,k,V (f(ℓ)). (D.6)

The random variables In,k(f(ℓ)), In,k,∅(f(ℓ)) and In,k,{1,...,k}(f(ℓ)) are iden-
tically distributed, and the last two random variables are independent of each
other. Hence Lemma D1 yields that

P (‖In,k(f(ℓ))‖ > u) ≤ 3P

(

‖In,k,∅(f(ℓ)) + In,k,{1,...,k}(f(ℓ))‖ >
2

3
u

)

= 3P





∥
∥
∥
∥
∥
∥

Tn,k(f(ℓ)) −
∑

V : V ⊂{1,...,k}, 1≤|V |≤k−1

In,k,|V |(f(ℓ))

∥
∥
∥
∥
∥
∥

>
2

3
u





≤ 3P (3 · 2k−1‖Tn,k(f(ℓ))‖ > u)

+
∑

V : V ⊂{1,...,k}, 1≤|V |≤k−1

3P (3 · 2k−1‖In,k,|V |(f(ℓ))‖ > u). (D.7)

To derive relation (D.5) from relation (D.7) we need a good upper bound on
the probability P (3 ·2k−1‖Tn,k(f(ℓ))‖ > u). To get such an estimate we shall
compare the tail distribution of ‖Tn,k(f(ℓ))‖ with that of ‖In,k,V (f(ℓ))‖ for an
arbitrary set V ⊂ {1, . . . , k}. This will be done with the help of Lemmas D2
and D4 formulated below.

In Lemma D2 such a random variable ‖În,k,V (f(ℓ))‖ will be constructed
whose distribution agrees with the distribution of ‖In,k,V (f(ℓ))‖. The expres-

sion În,k,V (f(ℓ)), whose norm will be investigated will be defined in formu-
las (D.8) and (D.9). It is a random polynomial of some Rademacher functions
ε1, . . . , εn. The coefficients of this polynomial are random variables, inde-
pendent of the Rademacher functions ε1, . . . , εn. Beside this, the constant
term of this polynomial equals Tn,k(f(ℓ)). These properties of the polyno-

mial În,k,V (f(ℓ)) together with Lemma D4 formulated below enable us prove
such an estimate on the distribution of ‖Tn,k(f(ℓ))‖ that together with for-
mula (D.7) imply relation (D.5). Let us formulate these lemmas.

Lemma D2. Let us consider a sequence of independent random variables
ε1, . . . , εn, P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n, which is also independent

of the random variables ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n appearing in the defini-

tion of the modified decoupled U -statistics In,k,V (f(ℓ)) given in formula (D.4).

Let us define with their help the sequences of random variables η
(1)
1 , . . . , η

(1)
n

and η
(2)
1 , . . . , η

(2)
n whose elements (η

(1)
l , η

(2)
l ) = (η

(1)
l (εl), η

(2)
l (εl)), 1 ≤ l ≤ n,
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are defined by the formula

(η
(1)
l (εl), η

(2)
l (εl)) =

(
1 + εl

2
ξ
(1)
l +

1 − εl

2
ξ
(2)
l ,

1 − εl

2
ξ
(1)
l +

1 + εl

2
ξ
(2)
l

)

,

i.e. let (η
(1)
l (εl), η

(2)
l (εl)) = (ξ

(1)
l , ξ

(2)
l ) if εl = 1, and (η

(1)
l (εl), η

(2)
l (εl)) =

(ξ
(2)
l , ξ

(1)
l ) if εl = −1, 1 ≤ l ≤ n. Then the joint distribution of the pair

of sequences of random variables ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n agrees with

that of the pair of sequences η
(1)
1 , . . . , η

(1)
n and η

(2)
1 , . . . , η

(2)
n , which is also

independent of the sequence ε1, . . . , εn.
Let us fix some V ⊂ {1, . . . , k}, and introduce the random variable

În,k,V (f(ℓ)) =
1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k

fl1,...,lk

(

η
(αV (1))
l1

, . . . , η
(αV (k))
lk

)

,

(D.8)
where similarly to formula (D.4) αV (j) = 1 if j ∈ V , and αV (j) = 2 if j /∈ V .
Then the identity

2k În,k,V (f(ℓ)) (D.9)

=
1

k!

∑

(l1,...,lk), (s1,...,sk) :
1≤lj≤n, sj=1 or sj=2,

j=1,...,k,

(1 + κ
(1)
s1,V εl1) · · · (1 + κ

(k)
sk,V εlk)fl1,...,lk

(

ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)

holds, where κ
(j)
1,V = 1 and κ

(j)
2,V = −1 if j ∈ V , and κ

(j)
1,V = −1 and κ

(j)
2,V = 1

if j /∈ V , i.e. κ
(j)
1,V = 3 − 2αV (j) and κ

(j)
2,V = −κ

(j)
1,V .

Before the formulation of Lemma D4 another Lemma D3 will be presented
which will be applied in its proof.

Lemma D3. Let Z be a random variable taking values in a separable Banach
space B with expectation zero, i.e. let Eκ(Z) = 0 for all κ ∈ B′, where B′

denotes the (Banach) space of all (bounded) linear transformations of B to

the real line. Then P (‖v + Z‖ ≥ ‖v‖) ≥ inf
κ∈B′

(E|κ(Z)|)2
4Eκ(Z)2 for all v ∈ B.

Lemma D4. Let us consider a positive integer n and a sequence of indepen-
dent random variables ε1, . . . , εn, P (εl = 1) = P (εl = −1) = 1

2 , 1 ≤ l ≤ n.
Beside this, fix some positive integer k, take a separable Banach space B
and choose some elements as(l1, . . . , ls) of this Banach space B, 1 ≤ s ≤ k,
1 ≤ lj ≤ n, lj 6= lj′ if j 6= j′, 1 ≤ j, j′ ≤ s. With the above notations the
inequality
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P








∥
∥
∥
∥
∥
∥
∥
∥
∥

v +
k∑

s=1

∑

(l1,...,ls) : 1≤lj≤n, j=1,...,s,
lj 6=lj′ if j 6=j′

as(l1, . . . , ls)εl1 · · · εls

∥
∥
∥
∥
∥
∥
∥
∥
∥

≥ ‖v‖








≥ ck

(D.10)
holds for all v ∈ B with some constant ck > 0 which depends only on the
parameter k. In particular, it does not depend on the norm in the separable
Banach space B.

Proof of Lemma D2. Let us consider the conditional joint distribution of the

sequences of random variables η
(1)
1 , . . . , η

(1)
n and η

(2)
1 , . . . , η

(2)
n under the con-

dition that the random vector ε1, . . . , εn takes the value of some prescribed
±1 series of length n. Observe that this conditional distribution agrees with

the joint distribution of the sequences ξ
(1)
1 , . . . , ξ

(1)
n and ξ

(2)
1 , . . . , ξ

(2)
n for all

possible conditions. This fact implies the statement about the joint distribu-

tion of the sequences (η
(1)
l , η

(2)
l ), 1 ≤ l ≤ n and their independence of the

sequence ε1, . . . , εn.
To prove identity (D.9) let us fix a set M ⊂ {1, . . . , n}, and consider the

case when εl = 1 if l ∈ M and εl = −1 if l /∈ M . Put βV,M (j, l) = 1 if j ∈ V
and l ∈ M or j /∈ V and l /∈ M , and let βV,M (j, l) = 2 otherwise. Then we
have for all (l1, . . . , lk), 1 ≤ lj ≤ n, 1 ≤ j ≤ k, and our fixed set V

∑

(s1,...,sk) :
sj=1 or sj=2, j=1,...,k

(1 + κ
(1)
s1,V εl1) · · · (1 + κ

(k)
sk,V εlk)fl1,...,lk

(

ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)

= 2kfl1,...,lk

(

ξ
(βV,M (1,l1))
l1

, . . . , ξ
(βV,M (k,lk))
lk

)

, (D.11)

since the product (1 + κ
(1)
s1,V εl1) · · · (1 + κ

(k)
sk,V εlk) equals either zero or 2k,

and it equals 2k for that sequence (s1, . . . , sk) for which κ
(j)
sj ,V εlj = 1 for all

1 ≤ j ≤ k, and the relation κ
(j)
sj ,V εlj = 1 is equivalent to βV,M (j, lj) = sj

for all 1 ≤ j ≤ k. (In relation (D.11) it is sufficient to consider only such
products for which lj 6= lj′ if j 6= j′ because of the properties of the functions
fl1,...,lk .)

Beside this, ξ
βV,M (l,j)
l = η

αV (j)
l for all 1 ≤ l ≤ n and 1 ≤ j ≤ k, and as a

consequence

fl1,...,lk

(

ξ
(βV,M (1,l1))
l1

, . . . , ξ
(βV,M (k,lk))
lk

)

= fl1,...,lk

(

η
(αV (1))
l1

, . . . , η
(αV (k))
lk

)

.

Summing up the identities (D.11) for all 1 ≤ l1, . . . , lk ≤ n and applying the
last identity we get relation (D.9), since the identity obtained in such a way
holds for all M ⊂ {1, . . . , n}.

Proof of Lemma D3. Let us first observe that if ξ is a real valued random

variable with zero expectation, then P (ξ ≥ 0) ≥ (E|ξ|)2
4Eξ2 since (E|ξ|)2 =
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4(E(ξI({ξ ≥ 0}))2 ≤ 4P (ξ ≥ 0)Eξ2 by the Schwarz inequality, where I(A)
denotes the indicator function of the set A. (In the above calculation and in
the subsequent proofs I apply the convention 0

0 = 1. We need this convention
if Eξ2 = 0. In this case we have the identities P (ξ = 0) = 1 and E|ξ| = 0,
hence the above proved inequality holds in this case, too.)

Given some v ∈ B, let us choose a linear operator κ such that ‖κ‖ = 1, and
κ(v) = ‖v‖. Such an operator exists by the Banach–Hahn theorem. Observe
that {ω : ‖v + Z(ω)‖ ≥ ‖v‖} ⊃ {ω : κ(v + Z(ω)) ≥ κ(v)} = {ω : κ(Z(ω)) ≥
0}. Beside this, Eκ(Z) = 0. Hence we can apply the above proved inequality

for ξ = κ(Z), and it yields that P (‖v+Z‖ ≥ ‖v‖) ≥ P (κ(Z) ≥ 0) ≥ (E|κ(Z)|)2
4Eκ(Z)2 .

Lemma D3 is proved.

Proof of Lemma D4. Take the class of random polynomials

Y =
k∑

s=1

∑

(l1,...,ls) : 1≤lj≤n, j=1,...,s,
lj 6=lj′ if j 6=j′

bs(l1, . . . , ls)εl1 · · · εls ,

where εl, 1 ≤ l ≤ n, are independent random variables with P (εl = 1) =
P (εl = −1) = 1

2 , and the coefficients bs(l1, . . . , ls), 1 ≤ s ≤ k, are arbitrary
real numbers. The proof of Lemma D4 can be reduced to the statement
that there exists a constant ck > 0 depending only on the order k of these
polynomials such that the inequality

(E|Y |)2 ≥ 4ckEY 2. (D.12)

holds for all such polynomials Y . Indeed, consider the polynomial

Z =

k∑

s=1

∑

(l1,...,ls) : 1≤lj≤n, j=1,...,s,
lj 6=lj′ if j 6=j′

as(l1, . . . , ls)εl1 · · · εls ,

and observe that Eκ(Z) = 0 for all linear functionals κ on the space B. Hence
Lemma D3 implies that the left-hand side expression in (D.10) is bounded

from below by inf
κ∈B′

(E|κ(Z)|)2
4Eκ(Z)2 . On the other hand, relation (D.12) implies that

inf
κ∈G′

(E|κ(Z)|)2
4Eκ(Z)2 ≥ ck.

To prove relation (D.12) first we compare the moments EY 2 and EY 4.
Let us introduce the random variables

Ys =
∑

(l1,...,ls) : 1≤lj≤n, j=1,...,s,
lj 6=lj′ if j 6=j′

bs(l1, . . . , ls)εl1 · · · εls 1 ≤ s ≤ k.

We shall show that the estimates of Section 13 imply that
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EY 4
s ≤ 24s

(
EY 2

s

)2
(D.13)

for these random variables Ys.
Relation (D.13) together with the uncorrelatedness of the random variables

Ys, 1 ≤ s ≤ k, imply that

EY 4 = E

(
k∑

s=1

Ys

)4

≤ k3
k∑

s=1

EY 4
s ≤ k324k

k∑

s=1

(EY 2
s )2

≤ k324k

(
k∑

s=1

EY 2
s

)2

= k324k(EY 2)2.

This estimate together with the Hölder inequality with p = 3 and q = 3
2 yield

that

EY 2 = E|Y |4/3| · |Y |2/3 ≤ (EY 4)1/3(E|Y |)2/3 ≤ k24k/3(EY 2)2/3(E|Y |)2/3,

i.e. EY 2 ≤ k324k(E|Y |)2, and relation (D.12) holds with 4ck = k−32−4k.
Hence to complete the proof of Lemma D4 it is enough to check rela-
tion (D.13).

In the proof of relation (D.13) it can be assumed that the coefficients
bs(l1, . . . , ls) of the random variable Ys are symmetric functions of the argu-
ments l1, . . . , ls, since a symmetrization of these coefficients does not change
the value of Y . Put

B2
s =

∑

(l1,...,ls) : 1≤lj≤n, j=1,...,s,
lj 6=lj′ if j 6=j′

b2
s(l1, . . . , ls), 1 ≤ s ≤ k.

Then
EY 2

s = s!B2
s ,

and

EY 4
s ≤ 1 · 3 · 5 · · · (4s − 1)B4

s =
(4s)!

22s(2s)!
B4

s

by Lemmas 13.4 and 13.5 with the choice M = 2 and k = s. Inequality (D.13)
follows from the last two relations. Indeed, to prove formula (D.13) by means

of these relations it is enough to check that (4s)!
22s(2s)!(s!)2 ≤ 24s. But it is easy

to check this inequality with induction with respect to s. (Actually, there
is a well-known inequality in the literature, known under the name Borell’s
inequality, which implies inequality (D.13) with a better coefficient at the
right hand side of this estimate.) We have proved Lemma D4.

Let us turn back to the estimation of the probability P (3·2k−1‖Tn,k(f)‖ >

u). Let us introduce the σ-algebra F = B(ξ
(1)
l , ξ

(2)
l , 1 ≤ l ≤ n) generated by

the random variables ξ
(1)
l , ξ

(2)
l , 1 ≤ l ≤ n, and fix some set V ⊂ {1, . . . , k}. I
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show with the help of Lemma D4 and formula (D.9) that there exists some
constant ck > 0 such that the random variables Tn,kf(ℓ)) defined in for-

mula (D.6) and În,k,V (f(ℓ)) defined in formula (D.8) satisfy the inequality

P
(

‖2k În,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F
)

≥ ck with probability 1. (D.14)

In the proof of (D.14) we shall exploit that in formula (D.9) 2k În,k,V (f(ℓ))
is represented by a polynomial of the Rademacher functions ε1, . . . , εn whose
constant term is Tn,k(f(ℓ)). The coefficients of this polynomial are functions

of the random variables ξ
(1)
l and ξ

(2)
l , 1 ≤ l ≤ n. The independence of these

random variables from εl, 1 ≤ l ≤ n, and the definition of the σ-algebra F
yield that

P
(

‖2k În,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F
)

(D.15)

= PεV

(∥
∥
∥
∥

1

k!

∑

(l1,...,lk), (s1,...,sk) :
1≤lj≤n,sj=1 or sj=2,

j=1,...,k,

(1 + κ
(1)
s1,V εl1) · · · (1 + κ

(k)
sk,V εlk)

fl1,...,lk

(

ξ
(s1)
l1

, . . . , ξ
(sk)
lk

)
∥
∥
∥
∥

> ‖Tn,k(f(ℓ))(ξ
(j)
l , 1 ≤ l ≤ n, j = 1, 2)‖

)

,

where PεV
means that the values of the random variables ξ

(1)
l , ξ

(2)
l , 1 ≤ l ≤ n,

are fixed, (their value depend on the atom of the σ-algebra F we are con-
sidering) and the probability is taken with respect to the remaining random
variables εl, 1 ≤ l ≤ n. At the right-hand side of (D.15) the probability of such
an event is considered that the norm of a polynomial of order k of the random

variables ε1, . . . , εn is larger than ‖Tn,k(f(ℓ))(ξ
(j)
l , 1 ≤ l ≤ n, j = 1, 2)‖. Be-

side this, the constant term of this polynomial equals Tn,k(f(ℓ))(ξ
(j)
l , 1 ≤ l ≤

n, j = 1, 2). Hence this probability can be bounded by means of Lemma D4,
and this result yields relation (D.14).

As the distributions of In,k,V (f(ℓ)) and În,k,V (f(ℓ)) agree by the first state-
ment of Lemma D2 and a comparison of formulas (D.4) and (D.8), relation
(D.14) implies that
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P

(

‖2kIn,k,V (f(ℓ))‖ ≥ 1

3
· 21−ku

)

= P

(

‖2k În,k,V (f(ℓ))‖ ≥ 1

3
· 21−ku

)

≥ P

(

‖2k În,k,V (f(ℓ))‖ ≥ ‖Tn,k(f(ℓ))‖, ‖Tn,k(f(ℓ))‖ ≥ 1

3
· 21−ku

)

=

∫

{ω : ‖Tn,k(f(ℓ))(ω)‖≥ 1
3 ·21−ku}

P
(

‖2k În,k,V (f(ℓ))‖ > ‖Tn,k(f(ℓ))‖|F
)

dP

≥ ckP (3 · 2k−1‖Tn,k(f(ℓ))‖ ≥ u).

The last inequality with the choice of any set V ⊂ {1, . . . , k}, 1 ≤ |V | ≤ k−1,
together with relation (D.7) imply formula (D.5).

Relation (D.3) will be proved together with another inductive hypothesis
with the help of relation (D.5) by means of an induction procedure with
respect to the order k of the U -statistic. To formulate this new inductive
hypothesis some new quantities will be introduced. Let W = W(k) denote
the set of all partitions of the set {1, . . . , k}. Let us fix k independent copies

ξ
(j)
1 , . . . , ξ

(j)
n , 1 ≤ j ≤ k, of the sequence of random variables ξ1, . . . , ξn. Given

a partition W = (U1, . . . , Us) ∈ W(k) let us introduce the function sW (j),
1 ≤ j ≤ k, which tells for all arguments j the index of that element of the
partition W which contains the point j, i.e. the value of the function sW (j),
1 ≤ j ≤ k, in a point j is defined by the relation j ∈ VsW (j). Let us introduce
the expression

In,k,W (f(ℓ)) =
1

k!

∑

(l1,...,lk) : 1≤lj≤n, j=1,...,k

fl1,...,lk

(

ξ
(sW (1))
l1

, . . . , ξ
(sW (k))
lk

)

for all W ∈ W(k).

An expression of the form In,k,W (f(ℓ)), W ∈ Wk, will be called a de-
coupled U -statistic with generalized decoupling. Given a partition W =
(U1, . . . , Us) ∈ Wk let us call the number s, i.e. the number of the elements
of this partition the rank both of the partition W and of the decoupled U -
statistic In,k,W (f(ℓ)) with generalized decoupling.

Now I formulate the following hypothesis. For all k ≥ 2 and 2 ≤ j ≤ k
there exist some constants C(k, j) > 0 and δ(k, j) > 0 such that for all
W ∈ Wk a decoupled U -statistic In,k,W (f(ℓ)) with generalized decoupling
satisfies the inequality

P (‖In,k,W (f(ℓ))‖ > u) ≤ C(k, j)P
(
‖Īn,k(f(ℓ))‖ > δ(k, j)u

)

for all 2 ≤ j ≤ k if the rank of W equals j. (D.16)

It will be proved by induction with respect to k that both relations (D.3)
and (D.16) hold for U -statistics of order k. Let us observe that for k = 2
relation (D.3) follows from (D.5). Relation (D.16) also holds for k = 2, since
in this case we have to consider only the case j = k = 2, and relation (D.16)
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clearly holds in this case with C(2, 2) = 1 and δ(2, 2) = 1. Hence we can start
our inductive proof with k = 3. First I prove relation (D.16).

In relation (D.16) the tail-distribution of decoupled U -statistics with
generalized decoupling is compared with that of the decoupled U -statistic
Īn,k(f(ℓ)) introduced in (D.2). Given the order k of these U -statistics it will
be proved by means of a backward induction with respect to the rank j of
the decoupled U -statistics In,k,W (f(ℓ)) with generalized decoupling.

Relation (D.16) clearly holds for j = k with C(k, k) = 1 and δ(k, k) = 1.
To prove it for decoupled U -statistics with generalized decoupling of rank
2 ≤ j < k first the following observation will be made. If the rank j of
the partition W = (U1, . . . , Uj) satisfies the relation 2 ≤ j ≤ k − 1, then it
contains an element with cardinality strictly less than k and strictly greater
than 1. For the sake of simpler notation let us assume that the element Uj of
this partition is such an element, and Uj = {t, . . . , k} with some 2 ≤ t ≤ k−1.
The investigation of general U -statistics of rank j, 2 ≤ j ≤ k − 1, can be re-
duced to this case by a reindexation of the arguments in the U -statistics if it
is necessary. Let us consider the partition W̄ = (U1, . . . , Uj−1, {t}, . . . , {k})
and the decoupled U -statistic In,k,W̄ (f(ℓ)) with generalized decoupling corre-
sponding to this partition W̄ . It will be shown that our inductive hypothesis
implies the inequality

P (‖In,k,W (f(ℓ))‖ > u) ≤ Ā(k)P
(
‖In,k,W̄ (f(ℓ))‖ > γ̄(k)u

)
(D.17)

with Ā(k) = sup
2≤p≤k−1

A(p), γ̄(k) = inf
2≤p≤k−1

γ(p) if the rank j of W is such

that 2 ≤ j ≤ k − 1, where the constants A(p) and γ(p) agree with the
corresponding coefficients in formula (D.3).

To prove relation (D.17) (in the case Uj = {t, . . . , k}) let us define the
σ-algebra F generated by the random variables appearing in the first t − 1

coordinates of these U -statistics, i.e. by the random variables ξ
sW (j)
lj

, 1 ≤ j ≤
t − 1, and 1 ≤ lj ≤ n for all 1 ≤ j ≤ t − 1. We have 2 ≤ t ≤ k − 1. By our
inductive hypothesis relation (D.3) holds for U -statistics of order p = k−t+1,
since 2 ≤ p ≤ k − 1. I claim that this implies that

P (‖In,k,W (f(ℓ))‖ > u|F) ≤ A(k−t+1)P
(
‖In,k,W̄ (f(ℓ))‖ > γ(k − t + 1)u|F

)

(D.18)
with probability 1. Indeed, by the independence properties of the random

variables ξ
sW (j)
l (and ξ

sW̄ (j)
l ), 1 ≤ j ≤ k, 1 ≤ l ≤ n,

P (‖In,k,W (f(ℓ))‖ > u|F) = P
ξ

sW (j)

l ,1≤j≤t−1
(‖In,k,W (f(ℓ)‖ > u)

and

P
(
‖In,k,W̄ (f(ℓ))‖ > γ(k − t + 1)u|F

)

= P
ξ

sW (j)

l ,1≤j≤t−1
(‖In,k,W̄ f(ℓ)‖ > γ(k − t + 1)u),
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where P
ξ

sW (j)

l ,1≤j≤t−1
denotes that the values of the random variables

ξ
sW (j)
l (ω), 1 ≤ j ≤ t − 1, 1 ≤ l ≤ n, are fixed, and we consider the probabil-

ity that the appropriate functions of these fixed values and of the remaining
random variables ξsW (j) and ξsW̄ (j), t ≤ j ≤ k, satisfy the desired relation.
These identities and the relation between the sets W and W̄ imply that rela-
tion (D.18) is equivalent to the identity (D.3) for the generalized U -statistics
of order 2 ≤ k − t + 1 ≤ k − 1 with kernel functions

flt,...,lk(xt, . . . , xk)

=
∑

(l1,...,lt−1) : 1≤lj≤n, 1≤j≤t−1

fl1,...,lk(ξ
sW (1)
l1

(ω), . . . , ξ
sW (t−1)
lt−1

(ω), xt, . . . , xk).

Relation (D.17) follows from inequality (D.18) if expectation is taken at both
sides. As the rank of W̄ is strictly greater than the rank of W , relation (D.17)
together with our backward inductive assumption imply relation (D.16) for
all 2 ≤ j ≤ k.

Relation (D.16) implies in particular (with the applications of partitions of
order k and rank 2) that the terms in the sum at the right-hand side of (D.5)
satisfy the inequality

P (Dk‖In,k,V (f(ℓ))‖ > u) ≤ C̄(k, j)P
(
‖Īn,k(f(ℓ))‖ > D̄ku

)

with some appropriate C̄k > 0 and D̄k > 0 for all V ⊂ {1, . . . , k}, 1 ≤ |V | ≤
k−1. This inequality together with relation (D.5) imply that inequality (D.3)
also holds for the parameter k.

In such a way we get the proof of relation (D.3) and of its special case,
relation (14.13). Let us prove formula (14.14) with its help first in the simpler
case when the supremum of finitely many functions is taken. If M < ∞ func-
tions f1, . . . , fM are considered, then relation (14.14) for the supremum of the
U -statistics and decoupled U -statistics with these kernel functions can be de-
rived from formula (14.13) if it is applied for the function f = (f1, . . . , fM )
with values in the separable Banach space BM which consists of the vectors
(v1, . . . , vM ), vj ∈ B, 1 ≤ j ≤ M , and the norm ‖(v1, . . . , vM )‖ = sup

1≤j≤m
‖vj‖

is introduced in it. The application of formula (14.13) with this choice yields
formula (14.14) for this supremum. Let us emphasize that the constants ap-
pearing in this estimate do not depend on the number M . (We took only
M < ∞ kernel functions, because with such a choice the Banach space BM

defined above is also separable.) Since the distribution of the random variables
sup

1≤s≤M
‖In,k(fs)‖ converge to that of sup

1≤s<∞
‖In,k(fs)‖, and the distribution of

the random variables sup
1≤s≤M

∥
∥Īn,k(fs)

∥
∥ converge to that of sup

1≤s<∞

∥
∥Īn,k(fs)

∥
∥

as M → ∞, relation (14.14) in the general case follows from its already
proved special case and a limiting procedure M → ∞.
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Remark. The above proved formula (D.3) can be slightly generalized. It also
holds if the expressions In,k(f(ℓ)) and Īn,k(f(ℓ)) appearing in this inequality
are defined in a more general way. Namely, they are the random functions
introduced in formulas (D.1) and (D.2), but the sequences ξ1, . . . , ξn and their

independent copies ξ
(j)
1 , . . . , ξ

(j)
n in these formulas are independent random

variables which may also be non-identically distributed. Such a generalization
can be proved without any essential change in the original proof.
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Birkhäuser Boston, Boston, MA.

20. Gross, L. (1975) Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083
21. Guionnet, A. and Zegarlinski, B. (2003) Lectures on Logarithmic Sobolev in-

equalities. Lecture Notes in Mathematics 1801 1–134 2. Springer Verlag, New
York

22. Hanson, D. L. and Wright, F. T. (1971) A bound on the tail probabilities for
quadratic forms in independent random variables. Ann. Math. Statist. 42 52–61

23. Hoeffding, W. (1948) A class of statistics with asymptotically normal distribution.
Ann. Math. Statist. 19 293–325

24. Hoeffding, W. (1963) Probability inequalities for sums of bounded random vari-
ables. J. Amer. Math. Society 58, 13–30

25. Itô K. (1951) Multiple Wiener integral. J. Math. Soc. Japan 3. 157–164
26. Kaplan, E.L. and Meier P. (1958) Nonparametric estimation from incomplete

data, Journal of American Statistical Association, 53, 457–481.
27. Lata la, R. (2006) Estimates of moments and tails of Gaussian chaoses. Annals of

Probability 34 2315–2331
28. Ledoux, M. (1996) On Talagrand deviation inequalities for product measures.

ESAIM: Probab. Statist. 1. 63–87. Available at http://www.emath./fr/ps/.
29. Ledoux, M. (2001) The concentration of measure phenomenon. Mathematical

Surveys and Monographs 89 American Mathematical Society, Providence, RI.
30. Major, P. (1981) Multiple Wiener–Itô integrals. Lecture Notes in Mathematics
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Vapnik-Červonenkis classes of sets and
functions 33, 221

W

white noise with some reference measure
µ 96
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