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1. Introduction.

First I briefly describe the main subject of this work. Fix a positive integer n, consider
n independent and identically distributed random variables &1, ..., &, on a measurable
space (X, X') with some distribution p and take their empirical distribution p,, together
with its normalization /n(u, — p). Beside this, take a function f(z1,...,zx) of k
variables on the k-fold product (X*, X*) of the space (X, X), introduce the k-th power
of the normalized empirical measure v/n(p, — ) on (X*, X*), and define the integral of
the function f with respect to this signed product measure. This integral is a random
variable, and we want to give a good estimate on its tail distribution. More precisely, we
take the integrals not on the whole space, the diagonals z;, = x4, 1 < 5,8 <k, s # ¢/,
of the space X* are omitted from the domain of integration. Such a modification of the
integral seems to be natural.

We shall also be interested in the following generalized version of the above problem.
Let us have a nice class of functions JF of k variables on the product space (X*, X*),
and consider the integrals of all functions in this class with respect to the k-fold di-
rect product of our normalized empirical measure. Give a good estimate on the tail
distribution of the supremum of these integrals.

It may be asked why the above problems deserve a closer study. I found them
important, because they may help in solving some essential problems in probability
theory and mathematical statistics. I met such problems when tried to adapt the method
of proof about the Gaussian limit behaviour of the maximum likelihood estimate to some
similar but more difficult questions. In the original problem the asymptotic behaviour
of the solution of the so-called maximum likelihood equation has to be investigated.
The study of this equation is hard in its original form. But by applying an appropriate
Taylor expansion of the function whose root we are looking for and throwing away its
higher order terms we get an approximation whose behaviour can be simply understood.
So to describe the limit behaviour of the maximum likelihood estimate it suffices to show
that this approximation causes only a negligible error.

One would try to apply a similar procedure in more difficult situations. I met some
non-parametric maximum likelihood problems, for instance the description of the limit
behaviour of the so-called Kaplan—Meyer product limit estimate when such an approach
could be applied. But in these problems it was harder to justify that the simplifying
approximation causes only a negligible error. To show this, the solution of the above
mentioned problems was needed. In the non-parametric maximum likelihood estimate
problems I met, the estimation of multiple (random) integrals played a role similar to
the estimation of the coefficients in the Taylor expansion in the study of maximum
likelihood estimates. Although I could apply this approach only in some special cases,
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I believe that it works in very general situations. But it demands some further work to
show this.

The above formulated problems about random integrals are interesting and non-
trivial even in the special case k = 1. Their solution leads to some interesting and
non-trivial generalization of the fundamental theorem of the mathematical statistics
about the difference of the empirical and real distribution of a large sample.

These problems have a natural counterpart about the behaviour of so-called U-
statistics, a fairly popular subject in probability theory. The investigation of multiple
random integrals and U-statistics are closely related, and it turned out that it is useful
to consider them simultaneously.

Let us try to get some feeling about what kind of results can be expected in these
problems. For a large sample size n the normalized empirical measure /n(u, — i)
behaves similarly to a Gaussian random measure. This suggests that in the problems we
are interested in similar results should hold as in the problems about multiple Gaussian
integrals, called Wiener-Ito integrals in the literature. We may expect that the tail
behaviour of the distribution of a k-fold random integral with respect to a normalized
empirical measure is similar to that of the k-th power of a Gaussian random variable
with expectation zero and an appropriate variance. Beside this, a similar estimate
should hold for the supremum of multiple random integrals of a class of functions with
respect to a normalized empirical measure or with respect to a Gaussian random measure
under not too restrictive conditions. We may also hope that the methods of the theory
of multiple Gaussian integrals can be adapted to the investigation of our problems.

The above consideration supplies a fairly good description of the situation, but it
does not take into account a very essential difference between the behaviour of mul-
tiple Gaussian integrals and multiple integrals with respect to a normalized empirical
measure. If the variance of a multiple integral with respect to a normalized empiri-
cal measure is very small, what turns out to be equivalent to a very small Lo-norm
of the function we are integrating, then the behaviour of this integral is different from
that of a multiple Gaussian integral with the same kernel function. In this case the
effect of some irregularities of the normalized empirical distribution turns out to be
non-negligible, and no good Gaussian approximation holds any longer. This case must
be better understood, and some new methods have to be worked out to handle it.

The precise formulation of the results will be given in the main part of the work.
Beside their proof I also tried to explain the main ideas behind them and the notions
introduced in their investigation. This work contains some new results, and also the
proof of some already rather classical theorems is presented. The results about Gaussian
random variables and their non-linear functionals, in particular multiple integrals with
respect to a Gaussian field, have a most important role in the study of the present
work. Hence they will be discussed in detail together with some counterparts about
multiple random integrals with respect to a normalized empirical measure and some
results about U-statistics.

The proofs apply results from different parts of the probability theory. Papers
investigating similar results refer to works dealing with quite different subjects, and
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this makes their reading rather hard. To overcome this difficulty I tried to work out the
details and to present a self-contained discussion even at the price of a longer text. Thus
I wrote down (in the main text or in the Appendix) the proof of many interesting and
basic results, like results about Vapnik—Cervonenkis classes, about U-statistics and their
decomposition to sums of so-called degenerate U-statistics, the diagram formula about
the product of Wiener—It6 integrals, their counterpart about the product of degenerate
U-statistics, etc. I tried to give such an exposition where different parts of the problem
are explained independently of each other, and they can be understood in themselves.

An earlier version of this work was explained at the probability seminar of the
University Debrecen (Hungary).

2. Motivation of the investigation. Discussion of some problems.

Here I try to show by means of some examples why the solution of the problems men-
tioned in the introduction may be useful in the study of some important problems of
the probability theory. I try to give a good picture about the main ideas, but I do not
work out all details. Actually, the elaboration of some details omitted would demand
hard work. But as the discussion of this section is quite independent of the rest of the
paper, these omissions cause no problem in understanding the subsequent part.

I start with a short discussion of the maximum likelihood estimate in the simplest
case. The following problem is considered. Let us have a class of density functions
f(x,9) on the real line depending on a parameter ¥ € R', and observe a sequence of
independent random variables &1 (w), ..., &, (w) with a density function f(x, ), where
Yo is an unknown parameter we want to estimate with the help of the above sequence
of random variables.

The maximum likelihood method suggests the following approach. Choose that
value 9,, = 9,,(&1,...,&,) as the estimate of the parameter 9y where the density function
of the random vector (&3, ...,&,), i.e. the product

Ilf@mﬂ>=exp{§jbgf@mﬁf}
k=1

k=1

takes its maximum. This point can be found as the solution of the so-called maximum
likelihood equation

n

2 log (€, 9) = 0. (2.1)

k=1

We are interested in the asymptotic behaviour of the random variable - Y9, where

~

¥y, is the (appropriate) solution of the equation (2.1).
The direct study of this equation is rather hard, but a Taylor expansion of the
expression at the left-hand side of (2.1) around the (unknown) point ¥, yields a good

and simple approximation of 1§n, and it enables us to describe the asymptotic behaviour
of ’19n — 190.



This Taylor expansion yields that

108 [ (€D Z g/ . %)

299 (€. 90)
+ = o) (,; (ﬁé@%ﬁ)) - (%50((5::35)))2)) #0 (n(in = 007)
= :1 (1 + G = 90)) + O (D — 90)?) (2.2)
where
o B @00 Fl (G ) (56 00)

J(&x,Y0) f (&> Y0) f2(&k,Y0)

for k = 1,...,n. We want to understand the asymptotic behaviour of the (random)
expression on the right-hand side of (2.2). The relation

%f(x7 190)

Enk B f(x7790)

f(x,99) dx = % /f(x,ﬂo) dx =0

holds, since [ f(z,9)dx =1 for all ¥, and a differentiation of this relation gives the last

2 f(y 2
identity. Similarly, En? = —E(; = i (&’f(i—l’;z(;)) dex >0, k=1,...,n. Hence by the

n
central limit theorem y,, = \/Lﬁ > n is asymptotically normal with expectation zero
k=1

2 90))2
and variance I? = [ % dr > 0. In the statistics literature this number I is

called the Fisher information. By the laws of large numbers % > G~ T2

k=1
B Z Mk
Thus relation (2.2) suggests the approximation ¥, = —**— of the maximum-
Z Cr
likelihood estimate 1§n, and \/n (~ — ) is _asymptotically normal with expectation

zero and variance 12 The random variable ¥,, is not a solution of the equation (2.1),
the value of the expression at the left-hand side is of order O(n(d,, — 99)?) = O(1) in
this point. On the other hand, the derivative of the function at the left-hand side is
large in this point, it is greater than const.n with some const. > 0. This nnphes that
the maximum-likelihood equation has a solution ¥, such that 9,, — J,, = O ( ) Hence
V9, —9g) and \/n(0, — ) have the same asymptotic limit behaviour.

The previous method can be summarized in the following way: Take a simpler
linearized version of the expression we want to estimate by means of an appropriate

Taylor expansion, describe the limit distribution of this linearized version and show
that the linearization causes only a negligible error.
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We want to show that such a method also works in more difficult situations. But
in some cases it is harder to show that the error committed by a replacement of the
original expression by a simpler linearized version is negligible, and to show this the
solution of the problems mentioned in the introduction is needed. The discussion of the
following problem, called the Kaplan—-Meyer method for the estimation of the empirical
distribution function with the help of censored data shows such an example.

The following problem is considered. Let (X;,7;), ¢ = 1,...,n, be a sequence
of independent, identically distributed random vectors such that the components X;
and Z; are also independent with some unknown distribution functions F'(z) and G(z).
We want to estimate the distribution function F' of the random variables X;, but we
cannot observe the variables X;, only the random variables Y; = min(X;, Z;) and §; =
I(X; < Z;). In other words, we want to solve the following problem. There are certain
objects whose lifetime X; are independent and F' distributed. But we cannot observe
this lifetime X;, because after a time Z; the observation must be stopped. We also
know whether the real lifetime X; or the censoring variable Z; was observed. We
make n independent experiments and want to estimate with their help the distribution
function F.

Kaplan and Meyer, on the basis of some maximum-likelihood estimation type con-
siderations, proposed the following so-called product limit estimator S, (u) to estimate
the unknown survival function S(u) =1 — F(u):

n N(Y)) I(Yi<udi=1)
—_ fu< Y;,....Y,
E(N(K)+1> 1 u_max( 1, ’ )

0 if u > max(Yy,...,Y,), o, =1,
undefined if u > max(Y1,...,Y,), d, =0,

where .
N(t)=#{Yi, Vi>t, 1<i<n}=) I(Y;i>1).
i=1

We want to show that the above estimate (2.3) is really good. For this goal we
shall approximate the random variables S,,(u) by some appropriate random variables.
To do this first we introduce some notations.

Put -
If (u) =P(Y; <u)=1-— H(uz, o
H(u)=P(Y; <u,6;=1), H(u)=P(Y; <u,d=0)
and
Hy(u) = %ZI(YZ- < u)
B . (2.5)

OIS S NP IS OB S (VP )
i=1 ;



Clearly H(u) = H(u) + ﬁI(u) and H,(u) = Hy,(u) + P:In(u) We shall estimate F,(u) —
F(u) for u € (—o0, T if

1—H(T)>?d with some fixed 6 > 0. (2.6)

Condition (2.6) implies that there are more than gn sample points Y} larger than T
with probability almost 1. The complementary event has only an exponentially small
probability. This observation helps to show in the subsequent calculations that some
events have negligibly small probability.

We introduce the so-called cumulative hazard function and its empirical version
A(u) = —log(1 — F(u)), An(u) = —log(l— F,(u)). (2.7)

Since Fy,(u) — F(u) = exp(—A(u)) (1 — exp(A(u) — A, (u))) a simple Taylor expansion
yields

Fo(u) = F(u) = (1 = F(u)) (An(u) = A(u)) + Ri(u), (2.8)
and it is easy to see that Ry(u) = O (A(u) — An(u))?). It follows from the subsequent
estimations that A(u) — A, (u) = O(n~1/?), thus nR;(u) = O(1). Hence it is enough to
investigate the term A, (u). We shall show that A, (u) has an expansion with A(u) as
the main term plus n~/2 times a term which is a linear functional of an appropriate
normalized empirical distribution function plus an error term of order O(n™1).

From (2.3) it is obvious that

An(u) = = STV < u, 6 = 1) log (1_ 1++(Y))

i=1
It is not difficult to get rid of the unpleasant logarithmic function in this formula by
means of the relation —log(1 — z) = x + O(2?) for small z. It yields that

n

A (1) = Zl [Y: ?V‘(LY(; =Y | Ry(u) = Ao (u) + Ra(u), (2.9)

and the error term nRs(u) is exponentially small.
The expression An(u) is still inappropriate for our purposes. Since the denominators
n

N(Y;) = > I(Y; >Y;) are dependent for different indices i we cannot see directly the
j=1

limit behaviour of A, (u).

We try to approximate An(u) by a simpler expression. A natural approach would

be to approximate the terms N (Y;) in it by their conditional expectation (n—1)H(Y;) =
(n—1)(1—H(Y;)) = E(N(Y;)|Y;). This is a too rough ‘first order’ approximation, but
the following ‘second order approximation’ will be sufficient for our goals. Put

fj I(Y; >Y;) — nH(Y;)
N(Y;) =Y 1(Y; > Vi) = nH (V) | 14+ 2= nH(Y;)

n

j=1



N(lYi) in the sum defining A,, by means of the relation —— =

and express the terms 112

00 zn: I(Y;>Y;)—nH(Y;)

S (=1)F2F =1 — 2+ £(2) with the choice z = 2= . As |e(2)] < 222 for

k=0 nH(Y;)
2| < % we get that
n _ k
1(Y; >Y;) —nH(Y;
R VTR SN | L1055 %) ()
P nH(Y;) = nH(Y;)
I1(Y; >Y;) —nH(Y;
N (I (RS SRR (E
- H(Y) ! H(Y;) T Ralw)
i=1 At nad (2.10)
= 2A(u) — B(u) + R3(u),
where

and
n

B(u) = B(n,u) = Z

i=1 j=1

“I(Y; < w6 = DIY; > Y)
n2H2(Y;) '

It can be proved by means of standard methods that nRs(u) is exponentially small.
Thus relations (2.9) and (2.10) yield that

Ay (u) = 2A(u) — B(u) + negligible error. (2.11)

This means that to solve our problem the asymptotic behaviour of the random
variables A(u) and B(u) has to be given. We can get a better insight to this problem by
rewriting the sum A(u) as an integral and the double sum B(u) as a two-fold integral
with respect to empirical measures. Then these integrals can be rewritten as sums
of random integrals with respect to normalized empirical measures and deterministic
measures. Such an approach yields a representation of A, (u) in the form of a sum whose
terms can be well understood.

Let us write

oo 1 —H(y)

oo (T Iy <w)l(z > y) 2
B(u) = dH,, (x)dH,,(y).
i /oo o (1 H(y) ()dHA )



To rewrite the term B(u) in a form better for our purposes observe that

Hy(2)Ho(y) = H(z)H(y) + H(z)(Hy () - ff(y))Jr(H () — H(x))H(y)
+ (Ho(2) = H(2))(Ha(y) — H(y))-

Hence it can be written in the form B(u) = Bi(u) + B2(u) + Bs(u) + By(u), where

/ /m { “j)z AH (z) dT1(y)

B(u) f L /+°° I‘”’”>5))2dH(x)d(ﬁ(ﬁn@)—Pf(y))),

e Ix>y) ~
Bau) = = / / > d (Vi (Ho(z) — H(x))) dA(y)

H(y))”

/ /+oo 1 (@ >;/ 5 d (Vi (Ho(@) = H(@))) d (Va(fay) = B@)) .

In the above decomposition of B(u) the term Bj is a deterministic function, Bs, Bs
are linear functionals of normalized empirical processes and By is a nonlinear functional
of normalized empirical processes. The deterministic term Bj(u) can be calculated

explicitly. Indeed,
too I(x > y . “
o= [ | im0

Then the relations H(u) = [* (1 —G(t)) dF(t) and 1 — H = (1 — F)(1 — G) imply
that
By (u) = /_ % = —log(1 — F(u)) = Au). (2.12)

Observe that

Alu) = /“ d Hy (y)

—00 - H<y)
) / Cdfi(y) (v) — H(y))) (213)
1-H(y) \/_ H(y)

= Bi(u) + Ba(u).
From relations (2.11), (2.12) and (2.13) it follows that
An(u) — A(u) = Ba(u) — Bs(u) — By(u) + negligible error. (2.14)
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Integration of By and B3 with respect to the variable z and then integration by parts
in the expression Bs yields that

Hn<y> ~ A(y))
Balv) \/_/ H(y)
Vi ()~ H(w) Vil () — A
V(- H(u) / 1— ())

vn (H(y) — Hn(y))
Balw) =7 / (1— Hy)) H()

With the help of the above expressions for By and Bs, (2.14) can be rewritten as

\/ﬁffn( :
i) - ) = L ) / fl_ P ()

f(Hn W) 47 (2.15)
/ a
— v/nBy(u) + negligible error.

(%)) dH (y)

Formula (2.15) almost agrees with the statement we wanted to prove. Here the normal-
ized error v/n (A, (u) — A(u)) is expressed as a sum of linear functionals of normalized
empirical measures plus some negligible error terms plus the error term /nBs(u). So
to get a complete proof it is enough to show that \/nBy(u) also yields a negligible error.
But By4(u) is a double integral of a bounded function (here we apply again formula (2.6))
with respect to a normalized empirical measure. Hence to bound this term we need a
good estimate of multiple stochastic integrals (with multiplicity 2), and this is just the
problem formulated in the introduction. The estimate we need here follows from Theo-
rem 8.1 of the present work. Let us remark that the problem discussed here corresponds
to the estimation of the coefficient of the second term in the Taylor expansion considered
in the study of the maximum likelihood estimation. One may worry a little bit how to
bound By4(u) with the help of estimations of double stochastic integrals, since in the
definition of By(u) integration is taken with respect to different normalized empirical
processes in the two coordinates. But this is a not too difficult technical problem. It can
be simply overcome for instance by rewriting the integral as a double integral with re-
spect to the empirical process (\/ﬁ (H,(x) — H(x)),v/n (ﬁn (y) — ﬁ(y))) in the space
R?.

By working out the details of the above calculation we get that the linear functional
Bs(u)—Bs(u) of normalized empirical processes yields a good estimate on the expression
Vn(Ay,(u) — A(u)) for a fixed parameter u. But we want to prove somewhat more, we

want to get an estimate uniform in the parameter u, i.e. to show that even the random
variable sup |v/n(A,(u) — A(u)) — Ba(u) + Bs(u)] is small. This can be done by making
u<T



estimates uniform in the parameter u in all steps of the above calculation. There appears

only one difficulty when trying to carry out this program. Namely, we need an estimate

on sup |By(u)], i.e. we have to bound the supremum of multiple random integrals with
u

respect to a normalized random measure for a nice class of kernel functions. This can
be done, but at this point the second problem mentioned in the introduction appears.
This difficulty can be overcome by means of Theorem 8.2 of this work.

Thus the limit behaviour of the Kaplan—Meyer estimate can be described by means
of an appropriate expansion. The steps of the calculation leading to such an expansion
are fairly standard, the only hard part is the solution of the problems mentioned in the
introduction. It can be expected that such a method also works in a much more general
situation.

I finish this section with a remark of Richard Gill he made in a personal conversation
after my talk on this subject at a conference. He told that this approach had given a
complete proof about the limit behaviour of this estimate, but it had exploited the
explicit formula given in the Kaplan—-Meyer estimate. He missed the application of an
argument based on the non-parametric maximum likelihood character of this estimate.
This was a completely justified remark, since if we do not restrict our attention to
this problem, but try to generalize it to general non-parametric maximum likelihood
estimates, then we have to understand how the maximum likelihood character can be
exploited. I believe that this can be done, but it demands further studies.

3. Some estimates about sums of independent random variables.

We need some results about the distribution of sums of independent random variables
bounded by a constant with probability one. Later only the results about sums of inde-
pendent and identically distributed variables will be interesting for us. But since they
can be generalized without any effort to sums of not necessarily identically distributed
random variables the condition about identical distribution of the summands will be
dropped. We are interested in the question when these estimates give such a good
bound as the central limit theorem suggests, and what can be told otherwise.

More explicitly, the following problem will be considered: Let X1,..., X, be inde-
pendent random variables, FX; = 0, Var X; = JJZ, 1 <75 < n, and take the random

n n
sum S, = Y X; and its variance Var S, = V2 = Y o7. We want to get a good bound
j=1 j=1
on the probability P(S,, > uV,,). The central limit theorem suggests that under general
conditions an upper bound of the order 1 — ®(u) should hold for this probability, where
®(u) denotes the standard normal distribution function. Since the standard normal dis-

a2 a2
tribution function satisfies the inequality (+ — Z5) e\/QTT/Q <1—-®(u) < %e\/ﬁ” for all

u > 0 it is natural to ask when the probability P(S,, > uV},) is comparable with the value
e~ /2. More generally, we shall call an upper bound of the form P(S,, > uV,,) < e—Cu’
with some constant C' > 0 a Gaussian type estimate.

First I formulate Bernstein’s inequality which tells for which values u the probability
P(S,, > uV,,) has a Gaussian type estimate. It supplies such an estimate if u < const. V,,.
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On the other hand, for u > const. V,, it yields a much weaker estimate. I also present
an example which shows that in this case only a very weak improvement of Bernstein’s
inequality is possible. I also discuss another result, called Bennett’s inequality, which
shows that such an improvement is possible. The main difficulties we meet in this work
are closely related to the weakness of the estimates we have for the probability of the
event P(S, > uV,,) if u > const. V,.

In the usual formulation of Bernstein’s inequality a real number M is introduced,
and it is assumed that the terms in the sum we investigate are bounded by this number.
But since the problem can be simply reduced to the special case M = 1 I shall consider
only this special case.

Theorem 3.1. (Bernstein’s inequality). Let Xi,...,X,, be independent random
variables, P(|X;] < 1) =1, EX; = 0,1 < j <n. Puto; = EX;, 1< j <n,
Sn = Xj and V;; =Var S, = Y o7. Then
j=1 '

Jj=1
2

P (S, >uV,) <exp S
2 (1 + %v%)

for all uw > 0. (3.1)

Proof of Theorem 3.1. Let us give a good bound on the exponential moments Ee*r
for appropriate parameters ¢ > 0. Since FX; = 0 and E|XJ’-“+2| < o2 for k > 0 we can

9tk t?0? o o—k ik
Hk;m <1+ 5|1+ 22370 ) =

k=1

2 2
t7o;

o
2

[ee)
: X t* k
write Fe!®i = > HEXJ- <1+
k=0
t20'32. 1

1+—

t262 1 . tS. n tX . t2v? 1
<exp{TJ—}1fO§t<3. Hence Fe'~» = Ee'*i gexp{ 7 }
=1

1-f = 1-£
for 0 <t < 3.
The above relation implies that

t*Vz o1
P (S, >uV,) = P(e®" > Vn) < EetSre~tuVn < exp{ 2” T tan}
3

if 0 <t < 3. Choose the number ¢ in this inequality as the solution of the equation

t2V?2 1_12 = tuVp, i.e. put t = ~%. Then 0 < ¢ < 3, and we get that P(S, >uV,) <
3 nt3
—tuVy /2 — _ u2_
’ exp{ (155 %) }

If the random variables X7, ..., X,, satisfy the conditions of Bernstein’s inequality,
then also the random variables — X7, ..., —X,, satisfy them. By applying the above
result in both cases we get that P(|S,,| > uV,,) < 2exp {—ﬁ} under the condi-

3Vn

tions of Bernstein’s inequality.

By Bernstein’s inequality there is some sufficiently small number «(g) > 0 for all

¢ > 0 such that in the case g~ < a(e) P(Sn, > uV,) < e~(1=9)4"/2 Beside this, for all
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fixed numbers A > 0 there is some constant C' = C'(4) > 0 such that in the case - < A

the inequality P(S, > uV,,) < e~C%" holds. This can be interpreted as a Gaussian type
estimate for the probability P(S,, > uV,,) if u < const.V,.

On the other hand, if ¢ is very large, then Bernstein’s inequality yields a much
worse estimate. The next example explains its cause. There are sequences of in-
dependent and identically distributed random variables Xi,..., X,, bounded by one

n
and with expectation zero such that with the notations S, = > X}, o? = EX?,
j=1

V2 = '21 EX J2 = no? the probability P(S, > uV,,) is relatively large if v is large; it is
J:
much larger than the value suggested by the normal approximation.

Example 3.2. (Sums of independent random variables with bad tail distri-
bution for large values). Let us fix some positive integer n, real numbers u and o
such that 0 < 02 < %, n > 3u > 6 and u > 4no?. Take a sequence of independent and
identically distributed random variables X1,..., X, such that P(X; = 1) = P(X, =

1) =2, and P(X; =0) =1—02. Put S, = 3 X; and V? = no®. Then ES, =0,
j=1
Var S, = V.2, and

u
P(S, > u) > exp {—Bu log V—nQ}

with some appropriate constant B > 0 (not depending on n, o and u.

Proof of Example 3.2. Let us fix an integer u such that n > 3u and v > 4no?.
Let B = B(u) denote the event that among the random variables X;, 1 < j < n,
there are exactly 3u terms with values +1 or —1, and the other random variables
X, equal zero. Let us also define the event A = A(u) C B(u) which holds if 2u
random variables X; are equal to 1, u random variables X; are equal to —1, and
all remaining random variables X;, 1 < j < n, are equal to zero. Clearly, P(S, >
u) > P(A) = P(B)P(A|B). On the other hand, P(B) = () (62)™ (1= ¢2)" " >

3u
(3%)% (UQ)SU e—4no® — o—3ulog(3u/no”)—4no’® = Here we exploited that because of the

. 2 ) )
condition o2 < % we have 1 — 0% > e74°". Beside this, u > 4no?, and P(B) >
e—3ulog(3u/no2)—u > e—Blulog(

u/no®) with some appropriate B; > 0 under our assump-
tions.

Let us consider a set of 3u elements, and choose a random subset of it by taking
all elements of this set with probability 1/2 to this random subset independently of
each other. I claim that the conditional probability P(A|B) equals the probability
that this random subset has 2u elements. Indeed, even the conditional probability of
the event A under the condition that for a prescribed set of indices J C {1,...,n}
with exactly 3u elements we have X; = £1if j € J and X; = 0if j ¢ J equals the
probability of the event that the above defined random subset has 2u elements. This
is so, because under this condition the random variables X; take the value +1 with
probability 1/2 for all j € J independently of each other. Hence P(A|B) = (25)2_3“ >
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e~ Cu > e‘BWlOg(u/ no?) With some a,ppropriate constants C > 0 and By > 0 under our
(B) and P(A|B) imply

the statement of Example 3.2.

In the case u > V,2 Bernstein’s inequality yields the estimate P(S, > u) < e~ %
with some universal constant o > 0 in the case u > V2, and the above example shows
that at most an additional logarithmic factor can be expected in the exponent of the
upper bound in an improvement of this estimate. The following result, called Bennett’s

inequality shows that such an improvement is really possible.

Theorem 3.3. (Bennett’s inequality). Let Xi,...,X, be independent random
variables, P(|X;] < 1) =1, EX; = 0,1 < j <n. Puto; = EX;, 1< j <n,

Sn= > X; and V? =Var S, = 3 7. Then

Jj=1

P(S,, > u) <exp {—Vn2 {(1 + W) log (1 + %) - %} } for allu>0. (3.2)

As a consequence, for all € > 0 there exists some B = B(e) > 0 such that
[ .
P (S, > u) Sexp{—(l—s)ulogﬁ} if u > BV?, (3.3)
and there exists some positive constant K > 0 such that

P(Sn>u)§exp{ Kulogv2} if u > 2V2, (3.4)

Proof of Theorem 3.3. We have

0 Lk o Lk
. t t t_q1_ .
EetX :ZEEXJI'C < 1+U?Zg :1+0J2- (et—l—t) Se"?(e 1 t), 1<j57<n,
k=0 k=2
and EetSr < ¢Va(e'=1=1) for all t > 0. Hence P(S, > u) < et EetSn < e tut V(e =1-1)
for all t > 0. We get relation (3.2) from this inequality with the choice ¢t = log (1 + %)

(This is the place of minimum of the function —tu + V,2(e! — 1 — t) for fixed u in the
parameter t.)

Relation (3.2) and the observation lim (wiDlog(v+1)=v _ 1 with the choice v = I

V300 vlogwv
imply formula (3.3). Because of relation (3.3) to prove formula (3.4) it is enough to check
it for 2 < W < B with some sufficiently large constant B > 0. In this case relation

(3.4) follows directly from formula (3.2). This can be seen for instance by observing

() wle)-5]

u
ulogw
n

that the expression is a continuous and positive function

13



U

of the variable {7 in the interval 2 < % < B, hence its minimum in this interval is

strictly positive. "

Let me make a short comparison between Bernstein’s and Bennett’s inequality.
Both results yield an estimate on the probability P(S, > u), and their proofs are very
similar. They are based on an estimate of the moment generating functions R;(t) =
EetXi of the summands X, but Bennett’s inequality yields a better estimate. It may
be worth mentioning that the estimate given for R;(t) = Fe'XJ in the proof of Bennett’s
inequality agrees with the moment generating function Ee*(Yi—EYi) of the normalization
Y; — EY; of a Poissonian random variable Y; with parameter Var X;. As a consequence,
we get, by using the standard method of estimating tail-distributions by means of the
moment generating functions such an estimate for the probability P(S, > ) which is
comparable with the probability P(T, — ET, > u), where T,, is a Poissonian random
variable with parameter V,, = Var .S,,. It can be told that Bernstein’s inequality yields a
Gaussian and Bennett’s inequality a Poissonian type estimate for sums of independent
random variables. As Example 3.2 shows the latter estimate is sharp also in the case
u > V.2 when Bernstein’s inequality yields only a weak bound.

Actually Bernstein’s inequality can be derived from Bennett’s inequality. On the
other hand, it gives a good, ‘visible’ bound for the probability P(S,, > u) for not too
large numbers u, while the estimate of Bennett’s inequality is less attractive. Beside
this, the improvement supplied by Bennett’s inequality for large numbers u has a limited
importance.

I finish this section with another estimate due to Hoeffding which will be later
useful in certain symmetrization arguments.

Theorem 3.4. (Hoeffding’s inequality). Let 1,...,&, be independent random

variables, P(e; =1) = P(e; = —1) = %, 1<j<n, and let aq,...,a, be arbitrary real
numbers. PutV = > a;e;. Then
j=1
V> i (5.5)
PV >u) <exp{ ———=7i— for all u > 0. 3.5
275 143

n

Remark 1: Clearly EV = 0 and VarV = ) a?, hence Hoeffding’s inequality yields

=1
such an estimate for P(V > u) which the central limit theorem suggests. This estimate
holds for all real numbers aq,...,a, and u > 0.
Remark 2: The Rademacher functions ri(z), & = 1,2,..., defined by the formulas
re(z) = 1if (25 —1)27% < 2 < 2527% and rp(x) = —1if 2(j — 1)27% <z < (2§ —
1)27%, 1 < j <2F! forall k =1,2,..., can be considered as random variables on

the probability space Q = [0,1] with the Borel o-algebra and the Lebesgue measure
as probability measure on the interval [0,1]. The Rademacher functions as random
variables on the above probability space are independent with the same distribution

14



as the random variables ¢4, ...,¢, considered in Theorem 3.4. Therefore results about
such sequences of random variables whose distributions agree with those in Theorem 3.4
are also called results about Rademacher functions in the literature. At some points we
will also use this terminology.

Proof of Theorem 3.4. Let us give a good bound on the exponential moment Ee!V for

all £ > 0. The identity Be'" = [] Beses = ] 5 holds, and )

=1 =1
0 2k ) (a;t)* jg 9 ’
> (zjk)!t% D e%t /2 since (2k)! > 2FK! for all k > 0. This implies
k=0 k=0
n n
that Ee!V < exp {% > a?}. Hence P(V > u) < exp {—tu+ % > a?}, and we get
j=1 Jj=1

Jj=1

—1
relation (3.5) with the choice t = u (Z a2~> :

4. On the supremum of a nice class of partial sums.

This section contains an estimate about the supremum of an appropriate class of ran-
dom one-fold integrals with respect to a normalized empirical measure. This result can
be considered as the solution of the one-variate version of the general problem about
the behaviour of multiple integrals with respect to a normalized empirical measure men-
tioned in the introduction. An equivalent version of this estimate about the supremum
of a nice class of sums of independent and identically distributed random variables will
be also presented. Some natural questions related to these results will be also discussed.
It will be examined how restrictive the conditions of these results are. In particular,
we are interested in the question how the condition about the countable cardinality
of the class of random variables can be weakened. A natural Gaussian counterpart of
the supremum problems about random one-fold integrals will be also considered. Most
proofs will be postponed to later sections.

To formulate these results first a notion will be introduced that plays a most im-
portant role in the sequel.

Definition of L,-dense classes of functions. Let a measurable space (Y,Y) be given
together with a set G of Y measurable real valued functions on this space. The class of
functions G is called an Ly-dense class of functions, 1 < p < 0o, with parameter D and
exponent L if for all numbers 0 < e <1 and probability measures v on the space (Y,))
there exists a finite e-dense subset G, = {g1,...,9m} C G in the space L,(Y,Y,v) with
m < De~ L elements, i.e. there exists such a set Gep CG withm < De~L elements for
which inf [ |g— g;|P dv < eP for all functions g € G. (Here the set G., may depend

J e,v

on the measure v, but its cardinality is bounded by a number depending only on €.)

In most results of this work where L,-dense classes will be considered the above
definition will be applied for p = 2, i.e. Lo-dense classes of functions will be considered.
But in some special considerations it will be useful to work also with L,-dense classes
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with a different parameter p. Hence to avoid some repetitions I introduced the above
definition for a general parameter p.

The following estimate will be proved.

Theorem 4.1. (Estimate on the supremum of a class of partial sums).
Let us consider a sequence of independent and identically distributed random variables
&1,...,&n, n > 2, with values in a measurable space (X,X) and with some distribu-
tion . Beside this, let a countable and Lo-dense class of functions F with some pa-
rameter D > 0 and exponent L > 1 be given on the space (X, X) which satisfies the
conditions

Il =sup [f@I <1 forallfeF (4.1)
1712 = / Payu(de) <o®  foral feF (4.2)

with some constant o > 0, and
/f(m)u( dx) =0 forall feF (4.3)

Define the normalized partial sums S, (f) = \/Lﬁ > f(&k) for all f € F, and introduce
k=1

the number 8 = max (logD O), where D is the parameter of the Lo-dense class F.

logn ?
There exist some universal constants C > 0, a > 0 and M > 0 such that the
supremum of the normalized random sums S, (f), f € F, satisfies the inequality

P <J§1€1§>E|Sn(f)| > u) <cpesp{-a ()}

if no?>u> VM(L+ 5)3/4alog1/

(4.4)

2
)
g

logn

with = max <1°gD,O>, and the numbers D and L in formula (4.4) agree with the
parameter and exponent of the Lo-dense class F.

The condition y/no? > u > vV M(L + 6)3/4010g1/2% about the number u in for-
mula (4.4) is natural. I discuss it after the formulation of Theorem 4.2 which can be
considered as the Gaussian counterpart of Theorem 4.1.

The condition about the countable cardinality of F can be weakened with the help
of the notion of countable approximability introduced below. For the sake of later
applications it will be defined in a more general form than it is needed in this section.

Definition of countably approximable classes of random variables. Let us
have a class of random variables U(f), f € F, indexed by a class of functions f €
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F on a measurable space (Y,Y). This class of random variables is called countably

approximable if there is a countable subset F' C F such that for all numbers u > 0 the

sets A(u) = {w: sup |U(f)(w)| > u} and B(u) = {w: sup |U(f)(w)| > u} satisfy the
feF fex’

cF
identity P(A(u) \ B(u)) = 0.

Clearly, B(u) C A(u). In the above definition it was demanded that for all v > 0
the set B(u) should be almost as large as A(u). The following corollary of Theorem 4.1
holds.

Corollary of Theorem 4.1. Let a class of functions F satisfy the conditions of
Theorem 4.1 with the only exception that instead of the condition about the countable
cardinality of F it is assumed that the class of random wvariables S,(f), f € F, is
countably approximable. Then the random variables S, (f), f € F, satisfy relation (4.4).

This corollary can be simply proved, only Theorem 4.1 has to be applied for the
class F'. To do this it has to be checked that if F is an Lo-dense class with some
parameter D and exponent L, and F' C F, then F’ is also an Ls-dense class with the
same exponent L, only with a possibly different parameter D’.

To prove this statement let us choose for all numbers 0 < € < 1 and probability
measures v on (Y,))) some functions fi,..., f,, € F with m < D (%)_
that the sets D; = {f: [1f = fi]Pdv < (%)2} satisfy the relation |J D; =Y. For all

Jj=1

L
elements, such

sets D; for which D; N F’ is non-empty choose a function f; € D; N F'. In such a
way we get a collection of functions f]’ from the class F’ containing at most 27 De~F
elements which satisfies the condition imposed for Ls-dense classes with exponent L
and parameter 27D for this number € and measure v.

Next I formulate in Theorem 4.1’, a result about the supremum of the integral of a
class of functions with respect to a normalized empirical distribution. It can be consid-
ered as a simple version of Theorem 4.1. I formulated this result, because Theorems 4.1
and 4.1’ are special cases of their multivariate counterparts about the supremum of
so-called U-statistics and multiple integrals with respect to a normalized empirical dis-
tribution functions discussed in Section 8. These results are also closely related, but the
explanation of their relation is not self-evident.

Given a sequence of independent p distributed random variables &1, ..., &, taking
values in (X, X) let us introduce their empirical distribution on (X, X) as

L, . .
pn(A)w) = —#{j: L<j<n, §w) e}, Aed, (4.5)
and define for all measurable (and p integrable) functions f the (random) integral

Tof) = Taa(F) = Vit [ $@)lpen(da) — ). (4.6
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Clearly () = 5 32 (/&) = EI&)) = Sa(7) with (@) = f(2) ~ [ §(2)

It is not difficult to see that sup |f(z)] < 2 if sup |f(z)| < 1, ff(x)u(dm) = 0,
zeX zeX

i fP(x)u(dx) < [ f2(z)u(dz), if F is an Lo-dense class of functions with param-
eter D and exponent L then the class of functions F consisting of the functions
flx) = — [ f(z ), f € F, is an Lo-dense class of functions with pararne—

ter 28D and exponent L, since [(f —g)?du<eif f,g € F,and [(f —g)*du < (5) .
Hence Theorem 4.1 implies the following result.

Theorem 4.1'. (Estimate on the supremum of random integrals with respect
to a normalized empirical measure). Let us have a sequence of independent and
tdentically distributed random variables &1,...,&,, n > 2, with distribution p on a
measurable space (X, X) together with some class of functions F on this space which
satisfies the conditions of Theorem 4.1 with the possible exception of condition (4.3). The
estimate (4.4) remains valid if the random sums S, (f) are replaced in it by the random
integrals Jy, (f) defined in (4.6). Moreover, similarly to the corollary of Theorem 4.1, the
condition about the countable cardinality of the set F can be replaced by the condition
that the class of random variables J,(f), f € F, is countably approximable.

All finite dimensional distributions of the set of random variables S, (f), f € F,
converge as n — oo to those of a Gaussian field Z(f), f € F, with expectation EZ(f) =
0 and correlation EZ(f)Z(g) = [ f(z)g(x)pu(dx), f,g € F. Here and in the subsequent
part of the paper a collection of random variables indexed by some set of parameters will
be called a Gaussian field if for all finite subsets of these parameters the random variables
indexed by this finite set are jointly Gaussian. We can expect that the random variables
of a Gaussian field with such properties satisfy an estimate similar to Proposition 4.1.
The following Theorem 4.2, which can be considered as the Gaussian counterpart of
Theorem 4.1, contains such a result. Let me also remark that in Section 10 so-called
multiple Wiener—Ito integrals of functions of k variables with respect to a white noise
will be defined for all k¥ > 1. In the special case k = 1 the Wiener—It6 integrals Z(f),
f € F, of functions of one variable constitute a Gaussian field with the above properties.

Theorem 4.2. (Estimate on the supremum of a class of Gaussian random
variables). Let a probability measure p be given on a measurable space (X, X) together
with a countable set F of square integrable functions with respect to the measure p such
that there exists a parameter D > 0 and exponent L > 1 with the following property:
For all 0 < e <1 there exist m < De~ L functions fi=fie) e F, 1< j <m, such that
for all f € .7: lnf f fi(x) — f(z))*u(dz) < 2. Let us also assume that the class of

functions F satzsﬁes condition (4.2) with some O < o <1. Let us conszder a Gaussian
field Z(f), f € F, such that EZ(f) =0, EZ(f = [ f(z) dx), f,g € F.

Then there exist some constants C > 0 cmd M > O (for instance C =4 and M = 16
can be chosen) such that the inequality

1 2 2
P (Sup Z(f)] > u) < C(D+1)exp {—— <E> } ifu> ML ?5log/? = (4.7)
fer 256 \o o

18



holds with the parameter D and exponent L introduced in this theorem.

The exponent at the right-hand side of inequality (4.7) does not contain the best

possible universal constant. One could choose the coefficient 1%5 with arbitrary small

¢ > 0 instead of the coefficient ﬁ in the exponent at the right-hand side of (4.7) if the
universal constants C' > 0 and M > 0 are chosen sufficiently large in this inequality.
Actually such an estimate will be proved in Theorem 8.6 which can be considered as

the multivariate generalization of Theorem 4.2.

The condition about the countable cardinality of the set F in Theorem 4.2 could
be weakened similarly to Theorem 4.1. But I omit the discussion of this question, since
Theorem 4.2 was only introduced for the sake of a comparison between the Gaussian and
non-Gaussian case. An essential difference between Theorems 4.1 and 4.2 is that the
class of functions F considered in Theorem 4.1 had to be Ly-dense, while in Theorem 4.2
only a weaker version of this property was needed. In that result it was only demanded
that there exists a subset of F of relatively small cardinality which is dense in the
Lo(p) norm. In the Lo-density property imposed in Theorem 4.1 a similar property
was demanded for all probability measures v. It may seem strange why such a property
was demanded for such probability measures v which seem to have no relation to the
original problem. But as we shall see, the proof of Theorem 4.1 contains a conditioning
argument where a lot of new conditioned measures appear, and the Ly-density property
is needed to work with all of them. One would also like to know some results that
enable us to check when this condition holds. In the next section a popular notion, the
notion of Vapnik-Cervonenkis classes will be introduced, and it will be shown that a
Vapnik-Cervonenkis class of functions bounded by 1 is Lo-dense.

Another difference between Theorems 4.1 and 4.2 is that the conditions of for-
mula (4.4) contain the upper bound /no? > u, and no such condition was imposed
in formula (4.7). The appearance of this condition in Theorem 4.1 can be explained
by comparing this result with the results discussed in Section 3. As we have seen, we
do not loose much information if we restrict our attention to the case u < const. V2 =
const. no? in Bernstein’s inequality (if sums of independent and identically distributed
random variables are considered). Theorem 4.1 gives an almost as good estimate for
the supremum of normalized partial sums, under appropriate conditions for the class
F of functions we consider in this theorem, as Berstein’s inequality for the normalized
partial sums of independent and identically distributed random variables with a vari-
ance bounded by 2. But to get such a result it was enough to consider only the case
Vno? > u. Tt has also a natural reason why condition (4.1) about the supremum of the
functions f € F appeared in Theorems 4.1 and 4.1’, and no such condition was needed
in Theorem 4.2.

The lower bounds for the level u were imposed in formulas (4.4) and (4.7) because
of a similar reason. To understand why such a condition is needed in formula (4.7) let
us consider the following example. Take a Wiener process W(t), 0 < ¢t < 1, define the
functions fs.(-) on the interval [0, 1] by the formula fs;(u) =1if s <wu <t, fs,(u) =0
f0<u<sort<u<l, and put Z(fs:) = [ fot(w)W(du) = W(t) — W(s). Given
some ¢ > 0 let us consider the class of functions Fo = {fs¢: [ f2,(u)du =t —s <
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02, s and t are rational numbers}. It is not difficult to see that the above example sat-

feFs
e—const- (/9)*  However, this relation does not hold if u = u(c) < (1 — £)v/20 log!/? 1

isfies the conditions of Theorem 4.2. It is natural to expect that P ( sup Z(f) > u> <

with some € > 0. In such cases P (sup Z(f) > u) — 1, as ¢ — 0. This can be
feFs

proved relatively simply with the help of the estimate P(Z(fs;) > u(c)) > const. ol ¢
if |t — s| = 02 and the independence of the random integrals Z(f ;) if the functions fs
are indexed by such pairs (s,t) for which the intervals (s,t) are disjoint. This means
that in this example formula (4.7) holds only under the condition u > Mo log'/? 1 with

M = /2.

Some additional work would show that a similar picture arises in the model where
the integrals J,,(fs ) of the functions from the same the class F, are considered with
respect to the normalized empirical measure of a sample of size n with uniform distri-
bution on the interval [0, 1] instead of a Wiener process. However the details of such an
argument will be omitted.

At a heuristic level it is clear that if Theorem 4.1 is considered with such a class
of functions F which is Ls-class with a large exponent L then for the validity of rela-
tion (4.4) such a lower bound has to be imposed for u where the expression y/no logl/ 2 %
is multiplied with a large coefficient. A similar statement can be told about condi-
tion (4.7) in Theorem 4.2. (I did not try to find the best possible coefficients in the
conditions of relations (4.4) and (4.7), they could be improved considerably.)

In Theorem 4.1 (and in its version 4.1") it was demanded that the class of func-
tions F should be countable. Later this condition was replaced by a weaker one about
countable approximability. By restricting our attention to countable or countably ap-
proximable classes we could avoid some unpleasant measure theoretical problems which
would have arisen if we had worked with the supremum of non-countable number of
random variables which may be non-measurable. There are some papers where possibly
non-measurable models are also considered with the help of some rather deep results
of the analysis and measure theory. Actually, the problem we met here is the natural
analog of an important problem in the theory of the stochastic processes about the
smoothness property of the trajectories of an appropriate version of a stochastic process
which we can get by exploiting our freedom to change all random variables on a set of
probability zero.

The study of the problem in this work is simpler in one respect. Here the set of
random variables S, (f)(w) or J,(f)(w), f € F, are constructed directly with the help
of the underlying random variables & (w), ..., &, (w) for all w € Q separately. We are
interested in when the sets of random variables constructed in this way are countably
approximable, i.e. we are not looking for a possibly different, better version of them
with the same finite dimensional distributions. The next simple Lemma 4.3 yields a
sufficient condition for countable approximability. Its condition can be interpreted as
a smoothness type condition for the trajectories of a stochastic process indexed by the
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functions f € F.

Lemma 4.3. Let a class of random variables U(f), f € F, indexed by some set F of

functions be given on a space (Y,)). If there exists a countable subset F' C F of the set

F such that the sets A(u) = {w: sup |[U(f)(w)| > u} and B(u) = {w: sup [U(f)(w)| >
fer

u} introduced for all u > 0 in the definition of countable apprommabzlzty satisfy the
relation A(u) C B(u — ¢€) for all w > € > 0, then the class of random variables U(f),
f € F, is countably approximable.

_ The above property holds if for all f € F, € >0 and w € Q) there exists a function
f=1({fe,w) € F' such that |U(f)(w)| = |U(f)(w)| —e.

Proof of Lemma 4.3. If A(u) C B(u — ¢) for all ¢ > 0, then P*(A(U) \ B(u)) <
hl’% P(B(u—e¢)\ B(u)) = 0, where P*(X) denotes the outer measure of a not necessarily
e—

measurable set X C (), since (| B(u—¢) = B(u), and this is what we had to prove. If

e—0

w € A(u), then for all € > 0 there exists some f = f(w) € F such that |U(f)(w)| > u—35.
If there exists some f = f(f,5,w), f € F' such that |[U(f)(w)| > [Uf(w)| — §, then
U(f)(w)| >u—¢, and w € B(u — €). This means that A(u) C B(u — ¢).

The question about countable approximability also appears in the case of multiple
random integrals with respect to a normalized empirical measure. To avoid some rep-
etition we prove a result which also covers such cases. For this goal first we introduce
the notion of multiple integrals with respect to a normalized empirical measure.

Given a measurable function f(z1,...,zx) on the k-fold product space (X*, xX*)
and a sequence of independent random variables &1, ..., &, with some distribution p on
the space (X, X) we define the integral .J, 1 (f) of the function f with respect to the
k-fold product of the normalized version of the empirical measure p,, introduced in (4.5)
by the formula

nk/2

— /fw o) (pin(dy) — p(dzr) - (i dy) — pi( dzy)),

where the prime in f means that the diagonals x; =27, 1 < j <l <k,

are omitted from the domain of integration. (4.8)

In the case k > 2 it will be assumed that the probability measure i has no atoms.

Lemma 4.3 enables us to prove that certain classes of random integrals J,, (f),
f € F, defined with the help of some set of functions f € F of k variables are count-
ably approximable. I present an example of a class of such random integrals which is
important in certain applications.

Let us consider the case when X = R?®, the s-dimensional Euclidean space with

some s > 1. Given some v = (uM,...,u®) € R*, v = (vW,...,v(®)) € R® such that
u<wv, ie ul) <ol forall 1 <j<s, let B(u,v) denote the s-dimensional rectangle
B(u,v) = {2: u < z < v}. Let us fix some function f(xi,...,xy) of k variables such

that sup |f(z1,...,2r)| < 1, on the space (X*, X*) = (RF, Bks) where B' denotes the
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Borel o-algebra on the Euclidean space R! together with some probability measure pu
on (R*,B%). For all vectors (u1,...,ug), (v1,...,v) such that u;,v; € R® and u; < v,
1 < j <k, let us define the function fy, .. . 01,....0, Which equals the function f on
the rectangle (uq,v1) X -+ X (ug,vg), and it is zero outside of this rectangle. Let us
call a class of functions F consisting of functions of the form f,, . . vy,....0, closed if
it has the following property. If fu, . u, v1,... v, € F for some vectors (u,...,u;) and
(v1,...,vg), and uj; < u; <05 <wj, 1 <j <k, then fz,  a, .. 5 €F. InLemma4.4
it will be proved that the random integrals introduced in formula (4.8) of functions from
a closed class F constitute a countably approximable class.

Lemma 4.4. Let us have a function f on the Buclidean space R*® such that the |f] <1
in all points, and consider a closed class F of functions of the form fu,. . u,.v1,..0n €
(Rk, Bs%), uj,v; € R®, uy <wj, 1 <35 <k, introduced in the previous paragraph with
the help of this function f. Let us take n independent and identically distributed random
variables &1, ..., &, with some distribution p and values in the space (R®,B%). Let p,
denote the empirical distribution of this sequence. Then the class of random integrals
Tt (Furroinson.n) defined in formula (4.8) with functions fu,....upor.con € F is
countably approximable.

Proof of Lemma 4.4. We shall prove that the definition of countable approximabil-
ity is satisfied in this model if the class of functions F’ consists of those functions
Jursougv1,eops U5 < 05, 1 < j < k, for which all coordinates of the vectors u; and v;
are rational numbers.

Given some function fy, . . 0,05, & real number 0 < € < 1 and w € € let us
choose a function fa,, . a. 5,5 € F determined with some vectors u; = u,;(e,w),
v; = v;(e,w) 1 < j <k, with rational coordinates u; < u; < v; < v; such that the sets
K; = B(uj,v;) \ B(4;,7;) satisfy the relations u(K;) < e272kF1n=k/2 and &(w) ¢ K;
forallj=1,...,kand [ =1,...,n. Let us show that

|Jn,kz(fﬂ1,...,ﬂk,l_q,...,z_)k)(w) - Jn,k(ful,...,uk,vl,...,vk)(w)| S €. (4‘9)

Then lemma 4.3 (with the choice U(f) = J,, x(f)) and relation (4.9) imply Lemma 4.4.

Relation (4.9) holds, since the difference of integrals at its left-hand side can be
written as the sum of the 2¥ — 1 integrals of the function f with respect to the k-fold
product of the measure \/n(u, — ) on the domains Dy X - - - X Dy, with the omission of
the diagonals v; = x5, 1 < 4,7 <k, j # J, where Dj is either the set K; or B(u;,v;) and
D; = K for at least one index j. It is enough to show that the absolute value of all these
integrals is less than 2%, This follows from the observations that |f(z1,...,2;)| < 1,
Vi, — p)(K;) = —/nu(K;), p(K;) < e272+1n=k/2 and the total variation of the
signed measure v/n(u, — i) (restricted to the set B(u;,v;)) is less than 2/n.

Let us discuss the relation of the results in this section to an important result,
the so-called fundamental theorem of the mathematical statistics. In that problem a

sequence of independent random variables & (w), ..., &, (w) is considered with distribu-
tion function F(z), the empirical distribution function F,(z) = F,,(z,w) = ~#{j: 1 <
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Jj < n, &(w) < x} is introduced, and the difference F,,(z) — F'(z) is considered. This
result states that sup |F},(xz) — F'(x)| tends to zero with probability one.

Observe that sup |F,, (z) — F(x)| = n=Y2 sup |J,.(f)|, where F consists of the func-
T feF
tions f,(-), € R, defined by the relation f,(u) = 1if u < z, and f.(u) = 0 if u > z.
Theorem 4.1" yields an estimate for the probabilities P | sup |J,(f)] > u |. We have
ferF

seen that the above class of functions F is countably approximable. The results of the
next section imply that this class of functions is also Lo-dense. Otherwise it is not
difficult to check this property directly. Hence we can apply Theorem 4.1 to the above

defined class of functions with ¢ = 1, and it yields that P (n‘l/ Zsup [J.(f)] > u) <
feF

e—Cnv® if | > 4 > Cn~ /2 with some universal constants C > 0 and C > 0. (The

condition 1 > u can actually be dropped.) The application of this estimate for the

numbers € > 0 together with the Borel-Cantelli lemma imply the fundamental theorem

of the mathematical statistics.

In short, the results of this section yield more information about the closeness the
empirical distribution function F,, and distribution function F' than the fundamental
theorem of the mathematical statistics. Moreover, since these results can also be applied
for other classes of functions, they yield useful information about the closeness of the
probability measure p and empirical measure fi,,.

5. Vapnik—Cervonenkis classes and L,-dense classes of functions.

In this section the most important notions and results will be presented about Vapnik—
Cervonenkis classes, and it will be explained how they help to show in some important
cases that certain classes of functions are Lo-dense. The classes of Lo-dense classes
played an important role in the study of the previous section. The results of this
section may help to find interesting classes of functions with this property. Some of the
results formulated in this section will be proved in Appendix A.

First I recall the following notions.

Definition of Vapnik-Cervonenkis classes of sets and functions. Let a set X
be given, and let us select a class D of subsets of this set X. We call D a Vapnik-
Cervonenkis class if there exist two real numbers B and K such that for all positive
integers n and subsets S(n) = {z1,...,x,} C X of cardinality n of the set X the
collection of sets of the form S(n) N D, D € D, contains no more than Bn’ subsets
of S(n). We shall call B the parameter and K the exponent of this Vapnik-Cervonenkis
class.

A class of real valued functions F on a space (Y,Y) is called a Vapnik—Cervonenkis
class if the collection of graphs of these functions is a Vapnik—Cervonenkis class, i.e. if
the sets A(f) = {(y,t): y € Y, min(0, f(y)) <t < max(0, f(y))}, f € F, constitute a
Vapnik-Cervonenkis class of subsets of the product space X =Y x R'.
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The following result which was first proved by Sauer is of fundamental importance
in the theory of Vapnik-Cervonenkis classes. This result provides a relatively simple
condition for a class D of subsets of a set X to be a Vapnik-Cervonenkis class. Its proof
is given in Appendix A. Before its formulation I introduce some terminology which
seems to be wide spread and generally accepted in the literature.

Definition of shattering of a set. Let a set S and a class € of subsets of S be given.
A finite set F' C S is called shattered by the class & if all its subsets H C F can be
written in the form H = E N F with some element B € £ of the class of sets of £.

Theorem 5.1. (Sauer’s lemma). Let a finite set S = S(n) consisting of n elements be
given together with a class £ of subsets of S. If £ shatters no subset of S of cardinality k,

then € contains at most () + () + -+ (") subsets of S.

The estimate of Sauer’s lemma is sharp. Indeed, if £ contains all subsets of S of
cardinality less than or equal to k—1, then it shatters no subset of a set F' of cardinality
k (a set F' of cardinality k cannot be written in the form ENF, E € £), and £ contains
(g) + (Tf) 4+t (kfl) subsets of S.

Let us have a set X and a class of subsets D of it. One may be interested in when
D is a Vapnik-Cervonenkis class. Sauer’s lemma gives a most useful condition for it.
Namely, it implies that if there exists a positive integer k£ such that the class D shatters
no subset of X of cardinality k, then D is a Vapnik—Cervonenkis class. Indeed, let us
take some number n > k, fix an arbitrary set S(n) = {z1,...,2,} C X of cardinality n,
and introduce the class of subsets &€ = £(S(n)) = {S(n) N D: D C D}. If the above
condition is satisfied, then £ shatters no subset of S(n) of cardinality k, hence by Sauer’s
lemma the class £ contains at most (3) + (711) +et ( kfl) elements. Let me remark that

it is also proved that (g) + (711) 4+ (kfl) < 1.5% if n > k+1. This estimate gives

a bound on the parameter and exponent of a Vapnik—Cervonenkis class which satisfies
the above condition.

Moreover, Theorem 5.1 also has the following consequence. Take an (infinite) set
X and a class of its subsets D. There are two possibilities. Either there is some set
S(n) C X of cardinality n for all integers n such that £(S(n)) contains all subsets

of S(n), i.e. D shatters this set, or sup |€(S)| tends to infinity at most in a
S: SCX,|S|=n
polynomial order as n — oo, where |S| and |£(S)| denote the cardinality of S and £(S5).

The following Theorem 5.2, an important result of Richard Dudley, states that a
Vapnik—Cervonenkis class of functions bounded by 1 is an L;-dense class of functions.

Theorem 5.2. (A relation between the L;-dense class and Vapnik—Cervonen-
kis class property). Let f(y), f € F, be a Vapnik—Cervonenkis class of real valued

functions on some measurable space (Y,Y) such that sup |f(y)] < 1 for all f € F.
yey
Then F is an Ly-dense class of functions on (Y,)). More explicitly, if F is a Vapnik—

Cervonenkis class with parameter B > 1 and exponent K > 0, then it is an Ly-dense
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class with exponent L = 2K and parameter D = CBZ%(4K)** with some universal
constant C' > 0.

Proof of Theorem 5.2. Let us fix some probability measure v on (Y;))) and a real
number 0 < & < 1. We are going to show that any finite set D(e,v) = {f1,...,fm} C F
such that [|f; — fuldv > € if j # k, f;, f € D(e,v) has cardinality M < De™* with
some D > 0 and L > 0. This implies that F is an Li-dense class with parameter D and
exponent L. Indeed, let us take a maximal subset D(e,v) = {f1,..., far} C F such that
the Lq(v) distance of any two functions in this subset is at least . Maximality means
in this context that no function fy;11 € F can be attached to D(e, ) without violating
this condition. Thus the inequality M < De~% means that D(e,v) is an e-dense subset
of F in the space Li(Y,),v) with no more than De~% elements.

In the estimation of the cardinality M of a (finite) set D(e,v) = {f1,..., fm}
with the property [|f; — fx|dv > € if j # k the Vapnik—Cervonenkis class property
of F is exploited in the following way. Let us choose relatively few p points (y;,1;),
yeY, -1 <t <1,1<1 < p,in the space (Y x [-1,1]) in such a way that the
set So(p) = {(wi,t1), 1 <1 < p} and graphs A(f;) = {(y,t): v € Y, min(0, f;(y)) <
t < max(0, fj(y))}, f; € D(e,v) C F have the property that all sets A(f;) N So(p),
1 < j < M, are different. Then the Vapnik—Cervonenkis class property of F implies
that M < Bp. Hence if there exists a set Sp(p) with the above property and with a
relatively small number p, then this yields a useful estimate on M. Such a set Sp(p)
will be given by means of the following random construction.

Let us choose the p points (y;,t;), 1 <1 < p, of the (random) set Sp(p) indepen-
dently of each other in such a way that the coordinate y; is chosen with distribution v on
(Y,Y) and the coordinate ¢; with uniform distribution on the interval [—1,1] indepen-
dently of y;. (The number p will be chosen later.) Let us fix some indices 1 < j, k < M,
and estimate the probability that the sets A(f;) N So(p) and A(fx) N So(p) agree,
where A(f) denotes the graph of the function f. Consider the symmetric difference
A(fj)AA(fr) of the sets A(f;) and A(fx). The sets A(f;) N So(p) and A(fx) N So(p)
agree if and only if (y;,t;) ¢ A(f;)AA(fx) for all (y;,t;) € So(p). Let us observe
that for a fixed [ the estimate P((y;,t1) € A(f;})AA(fx)) = 2(v x A)(A(f)AA(fr)) =
2 [1fi = feldv > £ hold, where A denotes the Lebesgue measure. This implies that
the probability that the (random) sets A(f;) N So(p) and A(fx) N So(p) agree can
be bounded from above by (1 — %)p < e P%/2. Hence the probability that all sets
A(f;) N So(p) are different is greater than 1 — (12\/[)~'3*p‘5/2 >1-— MTZe*pE/Q. Choose p
such that £€p6/2 > e(Pt1)e/2 5 N2 > ¢Pe/2 Then the above probability is greater than
%, and there exists some set Sp(p) with the desired property.

The inequalities M < BpX and M? > eP*/2 imply that M > eEMl/K/4Bl/K, ie.
log M1/ Ag logM!/E < OM~12K for M > 1 with some universal constant

M1/ K - 4K§1/K' M1/ K
C > 0, this estimate implies that Theorem 5.2 holds with the exponent L and parameter

D given in its formulation.

Let us observe that if F is an Li-dense class of functions on a measure space (Y, ))

with some exponent L and parameter D, and also the inequality sup |f(y)| < 1 holds
yey
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for all f € F, then F is an Lo-dense class of functions with exponent 2L and parameter
D2%. Indeed, if we fix some probability measure v on (Y,)) together with a number
0<e<l1,and D(e,v) ={f1,...,fm} is an %—dense set of F in the space L1 (Y, ), v),
M < 2EDe™2E | then for all function f € F some function f; € D(e,v) can be chosen in
such a way that [(f— f;)*dv <2 [|f — fjldv < 2. This implies that F is an La-dense
class with the given exponent and parameter.

It is not easy to check whether a collection of subsets D of a set X is a Vapnik—
Cervonenkis class even with the help of Theorem 5.1. Therefore the following Theo-
rem 5.3 which enables us to construct many non-trivial Vapnik-Cervonenkis classes is
of special interest. Its proof is given in Appendix A.

Theorem 5.3. (A way to construct Vapnik—Cervonenkis classes). Let us con-
sider a k-dimensional subspace Gy of the linear space of real valued functions defined
on a set X, and define the level-set A(g) = {x: = € X, g(x) > 0} for all functions
g € Gi. Take the class of subsets D = {A(g): g € Gr} of the set X consisting of the
above introduced level sets. No subset S = S(k+1) C X of cardinality k+1 is shattered
by D. Hence by Theorem 5.1 D is a Vapnik-Cervonenkis class of subsets of X.

Theorem 5.3 enables us to construct many interesting Vapnik—Cervonenkis classes.
Thus for instance the class of all half-spaces in a Euclidean space, the class of all
ellipses in the plane, or more generally the level sets of k-order algebraic functions with
a fixed number k constitute a Vapnik—Cervonenkis class. It can be proved that if C
and D are Vapnik—Cervonenkis classes of subsets of a set S, then also their intersection
CND={CnD: CeC,D € D}, their union CUD = {CUD: C € C,D € D} and
complementary sets C¢ = {S\ C: C € C} are Vapnik-Cervonenkis classes. These results
are less important for us, and their proofs will be omitted. We are interested in Vapnik—
Cervonenkis classes not for their own sake. We are going to study Lo-dense classes
of functions, and Vapnik—Cervonenkis classes make possible to find some examples.
Indeed, Theorem 5.2 implies that if D is a Vapnik—Cervonenkis class of subsets of a set
S, then their indicator functions constitute an Li-dense, hence also an Lo-dense class
of functions. Then the results of Lemma 5.4 formulated below enable us to construct
new Lo-dense class of functions.

Lemma 5.4. (Some useful properties of L,-dense classes). Let G be an Lo-dense
class of functions on some space (Y,)) whose absolute values are bounded by one, and let
f be a function on (Y,Y) also with absolute value bounded by one. Then f-G ={f-g: g €
G} is also an Lo-dense class of functions. Let Gy and Gy be two Lo-dense classes of
functions on some space (Y,Y) whose absolute values are bounded by one. Then the
classes of functions Gi +Ga = {g1+92: 91 € G1, 92 € Go}, G1-Go = {g192: 91 € G1, 92 €
G2}, min(Gy, G2) = {min(g1, 92): 91 € Gi1, 92 € G2}, max(Gi1,G2) = {max(g1,92): ¢1 €
Gi1, g2 € Ga} are also Lo-dense. If G is an Lo-dense class of functions, and G' C G,
then G’ is also an Lo-dense class.

The proof of Lemma 5.4 is rather straightforward. One has to observe for instance that

if 91,91 € G1, g2, G2 € G2 then |min(g1, g2) —min(gi, g2)| < |91 — g1)| + |92 — g2/, hence if
g1,1,---,91,M, is an 5-dense subset of G1 and ga1, ..., g2, u1, is an §-dense subset of Go in
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the space Lo (Y, ), v) with some probability measure v, then the functions min(g1 ;, g2,),
1 <75 < M, 1<k < M, constitute an e-dense subset of min(G;,Gs) in Lao(Y, YV, v).
The last statement of Lemma 5.4 was proved after the Corollary of Theorem 4.1. The
details are left to the reader.

The above results enable us to find some interesting classes of Lo-dense classes of
functions. In particular, the indicator functions of a Vapnik-Cervonenkis class of sets
is an Lo-dense class of functions, and Lemma 5.4 enables us to construct new classes of
Lo-dense classes of functions with their help. It is not difficult to see with the help of
these results for instance that the random variables considered in Lemma 4.4 are not
only countably approximable, but the class of functions fu, . . u, v,,...,0, taking part in
their definition is Ly-dense.

6. The proof of Theorems 4.1 and 4.2 on the supremum of random sums.

In this section some results will be proved by means of a simple but useful method,
called the chaining argument. This enables us to prove Theorem 4.2, but if the supre-
mum of sums of independent and identically distributed random variables is considered,
then it yields a much weaker estimate than Theorem 4.1, which will be presented in
Proposition 6.1. But even this result turned out to be useful, because it enables to
reduce the proof of Theorem 4.1 to the proof of a weaker version of it formulated in
Proposition 6.2. It will be shown that Propositions 6.1 and 6.2 together imply Theo-
rem 4.1. The proof of Proposition 6.2 which is based on a symmetrization argument is
postponed to the next section.

The method of proof of Theorem 4.2 does not suffice to prove Theorem 4.1, because
we have relatively weak estimates about the tail distribution of sums of independent
random variables with small variances. This does not allow to follow the chaining
argument in the proof of Theorem 4.1 up to the end, we have to stop at an earlier point.
Proposition 6.1 contains the result that can be obtained in such a way. Before the study
of this problem we shall prove Theorem 4.2.

Proof of Theorem 4.2. Let us list the elements of F as {fo, f1,...} = F, and choose

for all p = 0,1,2,... a set of functions F) = {fap,1),---> fa(p,m,)} C F with m, <

(D + 1) 22PL5=L elements in such a way that 1<ir2f J(f = fap.))? du < 27402 for all
SJ)SMmp

f € F,and let f, € F,. For all indices a(p, j) of the functions in F,, p =1,2,..., define
a predecessor a(p — 1, ") from the indices of the set of functions F,_; in such a way
that the functions fu(p ;) and fu,—1),j-) satisfy the relation [(f, ) — fp—1,59)% dp <
2-4(P=1) 52 With the help of the behaviour of the standard normal distribution function
we can write the estimates

9—2(p+1),,2 }

P(A(p,j)) =P <’Z(fa(p7j)) - Z(fa(p—l,j’))l > 2_(1+p)u) < 2exp {—m

22pq,2
=2 — 1< < =12 ...
exp{ 12802} S]>Mp, P ) 4y )
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and
2

PIBU) = P (1200, 2 ) Sexp{ g b, 1<) <mo

The above estimates together with the relation |J F, = F which implies that
p=0
oo Mp mo
{1Z(H)l>u}c U U Alp,j)u U B(s) for all f € F yield that

P <sup 2(5) > ) <r(UUawivlJ s

fer

p=1j=1
oo Mp mo
<) P(A@p. ) + ) P(B(s)
p=1j=1 s=1
0 22pu2 u2
2pL _—L -L
g;Q(D+1)2p o exp{—12802}+2(D+1)a exp{—@}.

If u> ML'"25log 2 with M > 16 (and L > 1), then

2p,,2 —2pL 22P M2 [, /256
22PL =L oxp  — 27U < 1 o~k (z> <2 Pl <omp
25602 2 2

for all p=0,1..., hence the previous inequality implies that

P Z D g 20\ _ oy op u?
> <2 1 2° — = 1 — .
wiznlze) <20+ 1% exp{ 3wz | =40+ Dewp {7 |

Theorem 4.2 is proved.

With an appropriate choice of the bound of the integrals in the definition of the
sets F, in the proof of Theorem 4.2 and some more calculation it can be proved that
the coefficient ﬁ in the exponent of the right-hand side (4.7) can be replaced by 155
with arbitrary small ¢ > 0 if the remaining (universal) constants in this estimate are

chosen sufficiently large.

The proof of Theorem 4.2 was based on a sufficiently good estimate on the proba-
bilities P(|Z(f) — Z(g)| > u) for pairs of functions f,g € F and numbers u > 0. In the
case of Theorem 4.1 only a weaker bound can be given for the corresponding probabil-
ities. There is no good estimate on the tail distribution of the difference S, (f) — S, (g)
if its variance is small. As a consequence, the chaining argument supplies only a weaker
result in this case. This result, where the tail distribution of the supremum of the
normalized random sums Sy, (f) is estimated on a relatively dense subset of the class of
functions f € F in the Lo(u) norm will be given in Proposition 6.1. Another result will
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be formulated in Proposition 6.2 whose proof is postponed to the next section. It will
be shown that Theorem 4.1 follows from Propositions 6.1 and 6.2.

Before the formulation of Proposition 6.1 I recall an estimate which is a simple

consequence of Bernstein’s inequality: If S, (f) = \/Lﬁ >~ f(&;) is the normalized sum of
j=1

independent, identically random variables, P(|f(&1)| < 1) =1, Ef(&) =0, Ef(&)* <
02, then there exists some constant a > 0 such that

P(ISn(f)] > u) < 2e7°%/7° i 0 < u < /no®. (6.1)
We can choose o = % in this estimate, and also could present a slightly more general
version of it, but such a version of (6.1) would not give a real help.

Proposition 6.1. Let us have a countable Lo-dense class of functions F with parameter
D and exponent L, L > 1, on a measurable space (X, X) whose elements satisfy rela-
tions (4.1), (4.2) and (4.3) with some probability measure p on (X, X) and real number
0 <o < 1. Take a sequence of independent, p-distributed random variables &1, ... ,&,,

n > 2, and define the normalized random sums S, (f) = \/Lﬁ S f(&), forall f € F. Let
I=1

us fiv some number A > 2. For all sufficiently large numbers M > My = My(A) the
following relation holds:

For all numbers w > 0 such that no? > (%)2 > MLlog% a number ¢ = o (u),
0<ad<o0<1, and a collection of functions Fs = {f1,..., fm} C F with m < D& L
elements can be chosen in such a way that the sets D; = {f: f € F, [|f—f;|* du < 52},

m

1 < j < m, satisfy the relation |J D; = F, and the normalized random sums Sy(f),
j=1

f € Fz, n>2, satisfy the inequality

U U 2 U\ 2 2

> — | < —a—— ' 2> (=) > =

P (fseuj];)cr 1Sn(f)| > A) < 4Dexp{ Q <10Aa> } if no® > <0_> > M Llog -
(6.2)

with the constants o in formula (6.1) and the exponent L and parameter D of the

Lo-dense class F. Beside this, also the inequalities i(%)Q > no? > é (%)2 and
2/3
ng? > M4 15&1@;%” hold with 8 = max (ﬁig,O), provided that also the inequality

no? > (g)2 > M(L + 3)%/? log 2 holds. (We may assume that the sample size n is

sufficiently large, so the set of numbers u for which no? > (g)2 > M(L+ B3)%/? log% 18
non-empty.)

Proposition 6.1 helps to reduce the proof of Theorem 4.1 to the case when the
Lo norm of the functions in the class F is bounded by a relatively small number &.
In more detail, the proof of Theorem 4.1 can be reduced to a good estimate on the

distribution of the supremum of random variables sup |S, (f — f;)| for all classes D;,
feb;
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1 < j < m, by means of Proposition 6.1. We also have to know that the number m of
the classes D; is not too large, otherwise our estimates cannot be useful.

A result formulated in Proposition 6.2 helps us to complete the proof of Theo-
rem 4.1. Its formulation contains some parameters. In the proof of Theorem 4.1 with
the help of Propositions 6.1 and 6.2 the parameters appearing in these Propositions
must be fitted to each other. The parameter A > 2 in Proposition 6.1 was introduced
to make this fitting simpler, and this was also the reason to formulate inequality (6.2)
under the condition M > My(A) with a bound My(A) depending on A. We wanted
to guarantee the validity of Proposition 6.1 with such a number ¢ = &(u) which also
satisfies the inequality na? > K logn holds with a previously fixed number K > 0. The
last relation in Proposition 6.1 shows that this is possible if first the number A and then
the number My = My(A) is chosen sufficiently large.

Now I formulate Proposition 6.2 and prove Theorem 4.1 with its help.

Proposition 6.2. Let us have a probability measure 1 on a measurable space (X, X)
together with a sequence of independent and p distributed random variables &1, ..., &,
n > 2, and a countable, Lo-dense class of functions f = f(z) on (X, X) with some
parameter D and exponent L > 1 which satisfies conditions (4.1), (4.2) and (4.3) with

some o > 0 such that the inequality no?® > K (L + 3)logn holds with an appropriate,

log D

) 7 Then there exists
ogn

sufficiently large universal number K > 0 and = max <O

some universal constant v > 0 and threshold index Ay > 0 such that the normalized
random sums S, (f), f € F, introduced in Theorem 4.1 satisfy the inequality

P (sup 1S, (f)] > An1/202> < e VAN ir A > A, (6.3)
feF

(A possible choice of the parameters is K = 4, Ag = 219 - 1016 and v = %)

I did not try to find optimal parameters in formula (6.3). Even the exponent % of A
in the exponent at its right-hand side could be improved. The result of Proposition 6.2
is similar to that of Theorem 4.1. Both of them give an estimate on a probability of

the form P (sup |Sn(f)| > u) with some class of functions F. The essential difference
feF

between them is that in Theorem 4.1 this probability is considered for u < const. nl/2q2
while in Proposition 6.2 the case u = An'/202 with A > A, is taken where Ay is a
sufficiently large positive number. Let us observe that in this case no good Gaussian type
estimate can be given for the probabilities P(S, (f) > u), f € F. In this case Bernstein’s

inequality yields the bound P(S,(f) > An'/?26%) = P <Z f(&) > an) < e—const. Ang?
=1

with u = Ay/no and V,, = /no for each single function f € F which takes part in the
supremum of formula (6.3). The estimate (6.3) yields a slightly weaker estimate for the
supremum of such random variables, since it contains the coefficient A'/? instead of A
in the exponent of the estimate at the right-hand side. But also such a bound will be
sufficient for us.
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In Proposition 6.2 such a situation is considered when the irregularities of the
summands provide a non-negligible contribution to the probabilities P(|S,(f)| > w),
and the chaining argument applied in the proof of Theorem 4.1 does not give a good
estimate on the expression at the left-hand side of (6.3). This makes natural to separate
the proof Theorem 4.1 to the proof of two different statements given in Proposition 6.1
and 6.2.

In the proof of Theorem 4.1 Proposition 6.1 will be applied with a sufficiently
large number A > 2 and Proposition 6.2 with ¢ = ¢ with the number & defined in
Proposition 6.1 and the classes 7 = D;, more precisely the classes of functions F =

{Q_Tfj: g€E Dj} introduced in Proposition 6.1, where f; is the function appearing in

) 6.4
()= ()

where m is the cardinality of the set of functions F; appearing in Proposition 6.1. We
want to show that if A and then M > My(A) are chosen sufficiently large, then the
first term at the right-hand side can be well bounded by means of Proposition 6.1, the
second term can be well bounded by means of Proposition 6.2, and Theorem 4.1 follows
from these estimates.

the definition of the class of functions D;. Clearly,

p (sup 1Sn ()] > u) <P (sup 1Sn ()| >

ferF feFs

m
+ Z P | sup
j=1 9€D;

NS

Let us choose a number Ay in such a way _that Ay > _Ao and 7[1(1)/ 2 > % with the
numbers Ap, K and 7 in Proposition 6.2, put A = max(2A4y, 2), and apply Proposition

6.1 with this number A. Then also the inequality (%)2 > 4A%n5% > (4A()?na?, hence
u > 4Agy/nc? holds with the number & in Proposition 6.1. (We assume that such

numbers u are considered which satisfy the condition no? > (%)2 > M(L+ 3)3/%log 2

imposed in Proposition 6.1.) Choose the number M > My(A) in Proposition 6.1 with

such a treshold My = My(A) (this number M can be chosen also in formula (4.4)
2/3
of Theorem 4.1) which also satisfies the inequality m](\){)()W > K with the number

K appearing in the conditions of Proposition 6.2. With such a choice we also have
no? > K(L + 8) logn.

Since (% - ﬁ) u> g > /_10\/562 and Ay > Ao Proposition 6.2 yields the estima-
tion

0= Goaa)
P | sup |S, >l=——=u| <P| su
<g€£j ( 2 2 24 gegj

11/2 _2 .
<e M forall 1< j < m,

2

s (552) o)

fi

(observe that the set of functions T_g, g € Dj is an Lo-dense class with parameter D
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and exponent L), hence Proposition 6.1 and formula 6.4 imply that

U 2 T1/2 _o
_ D~ Le=740 " mo” 6.5
fer lOAU) }+ o e (6.5)

P (sup 1Sn ()] = u) < 4Dexp {—a (
To get the estimate in Theorem 4.1 from inequality (6.5) we have to replace its second
term at the right-hand side with a more appropriate expression where, in particular,
we get rid of the coefficient 6~%. The condition ng? > K (L + 3)logn implies that

_1/2, and by our choice of Ay we have 714_1(1)/27162 > %n&Q > Llogn > 2Llog %,

. A/2, - ) " _

je. o L < eVAfl) 2""2/2. By the estimates of Proposition 6.1 ng? > 6—14 (%)2. The above
. . _ al/2 Al/2 ~ - -

relations imply that g—Le—7Ay “na® < e—1Ay 1o’ /2 < exp {—iA(l)/2A_2 (%)2} Then

relation (6.5) gives that

@ w2 Vox1/2 79 (U2
P LAl >u| <4D __* (t D _ T a2 (B L
(?22'5 (f)|—“> = eXp{ (104)2 (0) }+ eXp{ 12870 <a>

and this estimate implies Theorem 4.1.

o>n

Proof of Proposition 6.1. Let us list the members of F, as f1, f, ..., and choose for all

p=0,1,2,... aset F) = {fap1)s- > fa@m,)} CF with m, < D 22Lg—L elements in

such a way that 1<igf [(f = fa.))? dpu < 27%02 for all f € F. For all indices a(p, j),
SJ)smyp

p=1,2,...,1<j <m,, choose a predecessor a(p —1,5"), 3/ = 7' (p,7), 1 < j < myp_1,

in such a way that the functions fo(, ;) and f,—1,) satisfy the relation Ik | fap,j) —

. N2
faw-19?dp < 0?274®=1 " Then we have | (f“(p’“ J;“(”’“ )> dp < 402274 and

sup fa<w'>@1’~~-7wk>*12”a<p—1’j/><x1’~~’l‘k> < 1. Relation (6.1) yields that
z;€X,1<j<k
, 1 9—(14p)y, 2P\ 2
P(A(p,j)) =P (§|5n(fa<p,j) — fap-1.49)) = T) < 2expq —« (8[10)
2P 2
if 4no?27% > <@> , 1<j<m, p=12..., (6.6)
and

P(B(s) = P (194(fo.)] = o) < 2exp {—a (%)2} L 1<s<mo

A
if no?> <ﬁ>2.

(6.7)

. 6(R+1) 2 6R 2
Choose an integer number R, R > 0, such that 22T (—j‘;) > no? > éﬁ (—X—U) , define

2 =2"*R52 and F5 = Fr. (As no? > (%)2 and A > 2 by our conditions, there exists
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such a positive number R. The number R was chosen as the largest number p for which
relation (6.6) holds.) Then the cardinality m of the set F, equals mp < D22flg—L =
Do~ and the sets D; are D; = {f: f € F, [(fa(rj)— F)?dp < 27*Fo?}, 1 < j < mp,

hence |J D; = F. Beside this, with our choice of the number R inequalities (6.6) and
j=1

(6.7) can be applied for 1 < p < R. Hence the definition of the predecessor of an index

(p,7) implies that

R mp mo
P (sup 1Sn(f)| > %) <P U U A(p, j) U U B(s)

feFs

p=1j=1 s=1
R mp mo o0 . . 2pu 2
< P(A(p,j)) + P(B(s)) < 2D 2Pl e L exp{ —a (T)
>3 Pl + 3 P(B) < 3 p{ 2

+2Do LFexp {—a (ﬁ)2} .

If the relation (%)2 > ML logg holds with a sufficiently large constant M (depending
on A), then the inequalities

2Py \ 2P 2
QQPLU_LeXp{—a <8A1;> }g?‘pexp{—a(m:U) }
hold for all p =1,2,..., and
L u \2 u \2
—a [ —— < — - .
7 eXp{ a<2Aa> }—eXp{ a<10A0> }

Hence the previous estimate implies that
P sup [Sa(f)] > = <i2D2_pex a2 2
b Y T P 1040
feFs =

2D “ 3V oup L\

_ _ < - _
* eXp{ a<10Aa> }— eXp{ O‘<10Aa> }
and relation (6.2) holds.

The inequality

u N2 26(R+1) u N2 1 u N2
N ¢ 52 = 9—4R 52 < 9—4R (?> _ L. 92R <?>
<Aa> =ne ne-= 256 \Ag 4 ’

holds, and this implies (together with the relation R > 1) that
1 7 u\2 5 1 /o u\2 1 /0o u\2 1/ u\2
o1 (1r) <=3 (G) (&) =1 (G () <a(55)
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M?/3(L+B)logn
1000A%/3

This inequality clearly holds under the conditions of Proposition 6.1 if 0 < n
logn “and ng? > = (- )2 > LAM(L + B)3%log 2 >

as we have claimed. It remained to show that ng? >
~1/3

since in this case log% >

3 64 \ Ao/ = 64
—_ / _
‘;‘TQZJ\_AI(L + B)logn > M? fé&g@;og" if M > My(A) with a sufficiently large number
Mo(A).

If o > n~/3, we can exploit that the inequality 267 (%)2 < 256n0? holds because

u 2 2/3
of the definition of the number R. It can be rewritten as 2~ 4% > 2-16/3 [%] .
no

Hence no no? > 2;5;3 (no?)'/3 (%)4/3. Since no? > n!/3 and (%)? > M(L +

B)3/2log 2 > 2 (L + 8)3/%, these estimates yield that

A74/3 4/3 A74/3 M 2/3 M2/3 L 1
=2 S (n02)1/3 (E) > nl/9 (_) (L+6) > (L + 3)logn

2 _ 274R

"= s) = 50 3 1000A%/3

7. The completion of the proof of Theorem 4.1.

This section contains the proof of Proposition 6.2 with the help of a symmetrization
argument which completes the proof of Theorem 4.1. By symmetrization argument I
mean the reduction of the investigation of sums of the form ) f(§;) to sums of the
form > e;f(x;), where ¢; are independent random variables, independent also of the
random variables ¢;, and P(e; = 1) = P(e; = —1) = . First a symmetrization lemma
is proved, and then with the help of this result and a conditioning argument the proof
of Proposition 6.2 is reduced to the estimation of a probability which can be bounded
by means of the Hoeffding inequality formulated in Theorem 3.4. Such an approach
makes possible to prove Proposition 6.2.

First I formulate the symmetrization lemma we shall apply.

Lemma 7.1 (Symmetrization Lemma). Let Z, and Z,, n = 1,2,..., be two
sequences of random variables independent of each other, and let the random variables
Zn, n=1,2,..., satisfy the inequality

P(|Z,| <a)>p foralln=1,2,... (7.1)

with some numbers a >0 and 3 > 0. Then

1 _
P( sup |Zn|>u+a)§BP( sup ]Zn—Zn]>u) for all u > 0.

1<n<oo 1<n<oo

Proof of Lemma 7.1. Put 7 = min{n: |Z,| > u+ «a} if there exists such an index n,
and 7 = 0 otherwise. Then the event {7 = n} is independent of the sequence of random
variables Z1, Zs,... for all n =1,2,..., and because of this independence

P({r =n}) < %P({T =1} N {|Za] < a}) < %P({r =} N {|Zn — Za| > u})
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for alln =1,2,.... Hence

1<n<oo

P( sup |Zn|>u+a):;P(T %Z {r=1}n{1Z - Z|| > u})

1 & _ 1 _
—ZP({T:l}ﬂ sup |Zn—Zn|>u})§BP< sup |Zn—Zn|>u).

1<n<oo 1<n<oo

Lemma 7.1 is proved.
We shall apply the following consequence Lemma 7.2 of the symmetrization lemma.

Lemma 7.2. Let us fix a countable class of functions F on a measurable space (X, X)
together with a real number 0 < o < 1. Consider a sequence of independent and

identically distributed random variables &1, ..., &, with values in the space (X, X) such
that Ef(&1) =0, Ef2(&) < 02 for all f € F together with another sequence €1, ..., &y
of independent random variables with distribution P(e; = 1) = P(e; = —1) = 1,
1 < j < n, independent also of the random sequence &1, ...,&,. Then
P sup f(&)| = Ant/20?
\/_ feF JZ::I ’
(7.2)
A 3v2
< 4P sup e f(&)] > =nt/?62 if A > :
\/_ fer ; T \/_U
Proof of Lemma 7.2. Let us construct an independent copy 5_1, e ,En of the sequence
&1,...,&, in such a way that all three sequences &1,...,&,, &1,...,&, and €1,...,¢6,

are independent. Define the random variables S, (f) = % Z f(&) and S, (f) =

\/Lﬁ > f(&) for all f € F. The inequality

j=1

p (Sup 1Sn(f)] > A\/ﬁ02> <2P (Sup |Sn(f) = Su(f)] > ;A\/ﬁ02> : (7.3)

feF feF

follows fromiLemma 7.1 if it is applied for the countable set of random variables Z,,(f) =
Sn(f) and Z,(f) = Sn(f), f € F, and the numbers v = 2A/no? and o = 1A\/_a
since the random fields S, (f) and S,,(f) are independent, and P(|S,,(f)| < a) 5 for

all f € F. Indeed, a = %A\/_az > 20, ES,(f)? < 02, thus Chebishev’s inequahty
implies that P(|S,(f)| < a) > P(|Sn(f)| < V20) > % for all f € F.
Let us observe that the random field

Sulf) = Sulf) = =S (F&) - £&)), ferF, (7.4)
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and its randomization
1 — ~
e (&) - &), SeF (7.4)
j=1

have the same distribution. Indeed, even the conditional distribution of (7.4") under
the condition that the values of the €;-s are prescribed agrees with the distribution
of (7.4) for all possible values of the ¢;-s. This follows from the observation that the
distribution of the field (7.4) does not change if we exchange the random variables &;
and &; for those indices j for which e; = —1 and do not change them for those indices j
for which €; = 1. On the other hand, the distribution of the random field obtained in
such a way agrees with the conditional distribution of the random field defined in (7.4)
under the condition that the values of the random variables €; are prescribed.

The above relation together with formula (7.3) imply that

P sup f(&) > An'/?5?
\/_fef Z i)
< 2P sup Zsa f(&)] >2 n'/?g?
—= \/_fe}' - 3
<2P sup e; f(&)] > n'/2g?
\/_fef Z T
+ 2P sup Zs f(&) An1/202
\/_fe}" e J J/| = 3
_4P A 1/2 2
= sup Zgjf 5] =z

\/_ fer =1

Lemma 7.2 is proved.

Let me briefly explain the method of proof of Proposition 6.2. A probability of the
form P <n1/2 sup | >, f(&)] >

feF |j=1

u) has to be estimated. Lemma 7.2 enables us to re-
n
place this problem by the estimation of the probability P (n_l/ 2 Jsclelg)__ Zl g;if(&)] > %)
J:
with some independent random variables ¢;, P(e; = 1) = P(g; = —1) = %, j=1,...,n,
which are also independent of the random variables £;. We shall bound the conditional
probability of the event appearing in this modified problem under the condition that
the values of the random variables {; are prescribed. This can be done with the help
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of Hoeffding’s inequality formulated in Theorem 3.4 and the Ls-density property of the
class of functions F we consider. We shall show that such an approach leads to the

n
estimation of the probability P (n_l/ Zsup | > f(&)
feF =1
Ls-dense class of bounded functions 7' and some number @ > 0. This problem is very
similar to the original one. Nevertheless, it turned out to be useful to turn to the investi-
gation of this new inequality. We shall exploit that the number w is replaced by a larger
number ©'*T® when turning to this new inequality. Let us also observe that if the sum
of bounded random variables is considered, then for very large values u the probability
we investigate equals zero, since the sum of bounded random variables is bounded with
probability 1.0n the basis of these observations such a backward induction procedure
can be worked out, in which the lower bound of the numbers u for which we can give

S F(E)

J=1

> uHa) with some new nice

a good upper bound on the probability P (n_l/ 2 sup
fer

> u) is diminished at

each step.

Proposition 6.2 contains the estimate we can get with the help of the above argu-
ment. To work out the details we introduce the following notion.

Definition of good tail behaviour for a class of normalized random sums.

Let us have some measurable space (X,X) and a probability measure p on it together

with some integer n > 2 and real number o > 0. Consider some class F of functions

f(x) on the space (X, X), and take a sequence of independent and p distributed random

variables &1, ..., &,, with values in the space (X, X). Define the normalized random
n

sums Sy (f) = \/Lﬁ 21 f(&), f € F. Given some real number T' > 0 we say that the set
j:

of normalized random sums S,(f), f € F, has a good tail behaviour at level T (with
parameters n and o which will be fived in the sequel) if the inequality

P <sup 1Sn(f)| > A\/HJQ) < exp {—A1/2n02} (7.5)

feF
holds for all numbers A > T.
Now I formulate Proposition 7.3 and show that Proposition 6.2 follows from it.

Proposition 7.3. Let us fix a positive integer n > 2, a real number o > 0 and a
probability measure p on a measurable space (X, X) together with a countable Lo-dense
class F of functions f = f(x) on the space (X, X) with some prescribed exponent L > 1
and parameter D. Let us also assume that all functions f € F satisfy the conditions
sup |f(z)| < %, [ fA(z)p(dz) < 0%, and no? > K(L + B)logn with a sufficiently large
rzeX

log D
fized number K and 3 = max <10ggn ,0).

Let a number T > 1 be such that for all classes of functions F which satisfy the above
conditions the class of normalized random sums S, (f) = \/Lﬁ Zl f(&), f e F, defined
]:

37



with the help of a sequence of independent p distributed random variables &1, . . ., &, have
a good tail behaviour at level T*/3. There is a universal constant Ay such that if T > Ay
and the number T has the above property, then the number T = T3/* also has it. The
above result holds for instance with the choice Ay = 64 -10'2 and K = 1.

Proposition 6.2 simply follows from Proposition 7.3. To show this let us first observe
that a class of normalized random sums S,,(f), f € F, has a good tail behaviour at level
Ty = ﬁ if this class of functions F satisfies the conditions of Proposition 7.3. Indeed,

in this case P (sup 1S, (f)| > Ay/no? | < P <sup 1Sn(f)| > \/TE = 0 for all A > Tj.
fer fer

Then the repetitive application of Proposition 7.3 yields that a class of random sums
Sn(f), f € F, has a good tail behaviour at all levels T" > TéBM)j with an index j such
that T(ES/ 47 > Ay if the class of functions F satisfies the conditions of Proposition 7.3.
Hence it has a good tail behaviour for T' = Aé/ ®_ If a class of functions f € F satisfies the
conditions of Proposition 6.2, then the class of functions F = { f= {: ferF } satisfies

the conditions of Proposition 7.3, (actually with & = ¢, and a better parameter D for

the class F). Hence the class of functions S, (f), f € F, has a good tail behaviour at
level T' = Aé/ ®. This implies that the original class of functions F satisfies formula (6.3)
in Proposition 6.2 with 4K, Ay = 4[13/3 and v = %, and this is what we had to show.

Proof of Proposition 7.3. Fix a class of functions F which satisfies the conditions of
Proposition 7.3 together with two independent sequences &1,...,&, and €1,...,¢&, of
independent random variables, where ; is p-distributed, P(e; = 1) = P(e; = —1) = 3,
1 < j < n, and investigate the conditional probability

0
1
2

A
> =

1 n
P(f7A’£17"'7£n):P ﬁ ;ejf(é-j) - 6\/50-2 gl?"'agn

for all functions f € F, A > T and values ({1, . ..,&,) in the condition. By the Hoeffding
inequality formulated in Theorem 3.4

L A%not
P(f, Al&1, ..., &) < 2exp{—252(3:;’£1"”7£n)} (7.6)
with .
S2(f w1, x,) = %;F(Ij), ferF
Let us introduce the set
H=H(A) = {(azl,...,xn): sup S2(f, 1, .., Tn) > (1 +A4/3) 0—2}. (7.7)
feF
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I claim that s s
P((&1,.. &) €H) < e i A>T (7.8)

(The set H plays the role of the small exceptional set, where we cannot provide a good
estimate for P(f, A|¢1,...,&,) for some f € F.)

To prove relation (7.8) let us consider the functions f = f(f), f(z) = f2(z) —
[ f2(x)p( dx), and introduce the class of functions F = {f(f): f € F}. Let us show that

the class of functions F satisfies the conditions of Proposition 7.3, hence the estimate
(7.5) holds for the class of functions F if A > T4/3,

The relation [ f(z)u(dz) =0 Clearly holds. The condltlon sup | f(z)] < & < 1 also
holds1fsup|f( )|§4,ar1dff2 p(de) < [ fAa)p(de) < = [ f2(x) (dx)ﬁi'—é<
2if f € F. It remained to show that F is an Lg dense class with exponent L and
parameter D. For this goal we need a good estimate on [(f(z) — g(z))*p(dz), where
f, g€ F,and pis an arbltrary probability measure.
Observe that [(f(z) — g(x))?p(dz) < 2 [(f*(z) — ¢*(x))?p(dz) + Zf f2

2

9 (x )) p(dr) < 2(Sup(|f( )|+ lg(z )l) (f(f(l’)—g( )) (p (dl’)+ﬂ da)) < [(f
g(x))2p(dx) for all f,g € F, f = f(f), § = g(g) and probability measure p, Where

p = p;“. This means that if {fi,..., fin} is an e-dense subset of F in the space
La(X, X, p), then {f1,..., fin} is an e-dense subset of F in the space Ly(X, X, p), and
not only F, but also F is an Ls-dense class with exponent L and parameter D.

An application of the conditions of Proposition 7.3 for the number A3 > T4/3
and the class of functions F yields that

P((&1,...,6,) € H) =P | sup lZf(f)(gj)+%ZEf2(€j) > (1—|—A4/3> 52
j=1

(5 ) >A4/3 1/2 ;2 SB—A2/3n02

IN
s
1 N
=z
Si-
M- 1
—~

Y

i.e. relation (7.8) holds.
By formula (7.6) and the definition of the set H given in (7.7) the estimate

P(f, A1, ... &) < 2e” A1 g (66 ¢ H (7.9)

holds for all f € F and A>T > 1. (Here we used the estimate 1 + A3 < 2A4/3.) Let
us introduce the conditional probability

A
P(F,Alg,... &) =P suprsj (&) = 5vno®| €1, 6

feF

holds for all (&1,...,&,) and A > T. We shall estimate this conditional probabil-
ity with the help of relation (7.9) if (&1,...,&,) ¢ H. Given some set consisting of
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n points (z1,...,x,) in the space (X, X') let us introduce the measure v = v(x1,...,zy,)

n (X, X) which is concentrated in the points z1,...,z,, and v({z;}) = % for all
points z;, j =1,...,n. If [ f?(z)v(dz) < 6?2 for a function f, then f Z gif(z;)] <
n'/2 [|f(z)|v(dx) < n'/25. Since the condition no? > K(L+3)logn in Prop081t10n 7.3

also 1mphes that no? > 1 (if the constant K is chosen sufficiently large), the above es-
timate implies that if f and g are two functions such that [(f — g)*v(dz) < 62 with

5—é?l,then \}ﬁzlgjf(xj) f26jg($g)|ﬁ7§Afa
J:

Let us fix some (random) point (&1,...,&,) ¢ H, consider the measure v =
v(&,...,&) corresponding to it, and choose a o0-dense subset {f1,...,fm} of F in
the space La(X, X', v) with § = 1 < § = £, whose cardinality m satisfies the inequal-

ity m < D§~L. This is p0831ble because of the Lo-dense property of the class F.
(This is the point where the Lo-dense property of the class of functions F is ex-

ploited in its full strength.) The above facts imply that if —= e f(&)] = g\/ﬁoz
=1

n
eifi(&)| > %\/ﬁaz for some function f; of
j=1

for some function f € F, then Ln

the d-dense subset {fi,..., fn} of F with the fixed point (&1,...,&,) ¢ H. Hence

P(F, Al &, .., &) < > P(fi, Al ..., &) with these functions fi,..., fi,, and rela-
I=1

tion (7.9) yields that

P(F,Al&1, ... &) < 2D(6n)ke A o™/ 140 i (¢ ¢,) ¢ Hand A>T.

This inequality together with Lemma 7.2 (under the restriction that A > Ay > S’F‘C >
3v/2) and estimate (7.8) imply that

1 A
P sup f§ >Anl/2 2| <4P | —= sup eif(&)] > “pll25?

< 8D(6n)Le=A*Pno? /144 4 yo=A*Pno® yp g >
(7.10)
By the conditions of Proposition 7.3 the inequality no? > K (L + 8)logn = KLlogn +
K log(max(D, 1)) holds. Hence the first term at the right-hand side of (7.10) can be
bounded by

8D(6n)L€—A2/3TLO’2/144 S 6—141/2710'2 . 8D(6n)L€—A1/2nO’2

< e=4*no® g pplpL-4'%) max(D, 1)~

if A>T > Ay > 64-10'2 and K > 1. (With such parameters m A2 > Al/2

and e—A""no® < p-LAY? max (D, 1)‘A1/2.) With such a choice of the parameters the
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inequality f’/\?{i < \/i’(‘? > < Ay < A, needed for the validity of relation (7.2), also holds.
og

The second term at the right-hand side of (7.10) be bounded as de=A*Pno” < 1o—A""no”
with the above choice of the numbers Ay and K.

[\V]

By the above calculation formula (7.10) yields the inequality

1 -~ 1/2. 2
P | —sup g f&)| > Ant/2p2 | < e Ao
v ger |0

if A > T, and the constants Ay and K are chosen sufficiently large. For instance
Ap =64-10'? and K = 1 is an appropriate choice.

8. Formulation of the main results of this work.

This section contains the main results of this work about the the tail distribution of
multiple stochastic integrals and of their supremum. The supremum results were for-
mulated in Section 4 in the special case of one-fold integrals together with their version
about the supremum of appropriate classes of normalized sums of independent and
identically distributed random variables with zero expectation. Estimates about the
tail distribution of multiple stochastic integrals with respect to a normalized empirical
measure have a natural version for U-statistics. Such estimates can be considered as
the multivariate counterpart of estimates on sums of independent random variables. It
will turn out natural to concentrate on tail distribution estimation for a special class
of U-statistics, called the degenerate U-statistics. The definition of U-statistics and
degenerate U-statistics will be introduced in this section. U-statistics are natural mul-
tivariate versions of sums of independent (and identically distributed) random variables.
Degenerate U-statistics have some additional special properties. They can be considered
as the multivariate analogs of sums of independent and identically distributed random
variables with zero expectation. The proof of the results presented in this section re-
quires a more detailed study of the properties of U-statistics, a problem which is of
special interest in itself. This will be the subject of the next section.

A Gaussian counterpart of the above results will also be presented. Some estimates
will be formulated about multiple Wiener—Ito6 integrals and the supremum of such inte-
grals. They are the natural Gaussian analogs of the results about degenerate U-statistics
and multiple integrals with respect to normalized empirical measures. Wiener—It6 in-
tegrals will be introduced, and their properties will be discussed only in Section 10.
Their study yields an invaluable help in understanding the properties of U-statistics
and multiple integrals with respect to normalized empirical measures. This section is
closed with the presentation of a two-dimensional version of Example 3.2 which shows
that certain conditions in the estimates of this Section cannot be omitted.

Let us consider a sequence of independent and identically distributed random vari-
ables &1, ..., &, with values in a measurable space (X, X'). Let u denote the distribution
of the random variables &;, and introduce the empirical distribution of the sequence
&1,...,&, defined in (4.5). Given a measurable function f(z1,...,z;) on the k-fold
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product space (X*, X*) consider its integral J, x(f) with respect to the k-fold product
of the normalized empirical measure \/n(u, — p) defined in formula (4.8). In the defini-
tion of this integral the diagonals x; = z;, 1 < 7 <[ < k, were omitted from the domain
of integration. The following Theorem 8.1 can be considered as the multiple integral
version of Bernstein’s inequality formulated in Theorem 3.1.

Theorem 8.1. (Estimate on the tail distribution of a multiple random integral
with respect to a normalized empirical distribution). Let us take a measurable
function f(x1,...,x) on the k-fold product (X*, X*) of a measurable space (X, X) with
some k > 1 together with a non-atomic probability measure p on (X, X) and a sequence
of independent and identically distributed random variables &1, .. ., &, with distribution p
on (X, X). Let the function f satisfy the conditions

”fHOO = sup |f(‘/1"17 oo ,I'k)| S ]-7 (81)
r;€X, 1<5j<k

and

918 = [ Plare.oou(de) .. u(dmy) < o° 52)

with some constant 0 < o < 1. There exist some constants C = Cy, > 0 and o = ay, > 0,
such that the random integral J,, (f) defined by formulas (4.5) and (4.8) satisfies the
inequality

P(|Jnk(f)] > u) < Cmax (e‘a(“/”)z/k,e_a(”uz)l/(kﬂ)) (8.3)

for all w > 0. The constants C' = Cj, > 0 and o = ay, > 0 in formula (8.3) depend only
on the parameter k.

Theorem 8.1 can be reformulated in the following equivalent form.

Theorem 8.1’. Under the conditions of Theorem 8.1

)2/k

P(|Jp i (f)] > u) < Cema/e for all 0 < u < nF/2gk+1 (8.3)

with a number o, 0 < o < 1, satisfying relation in (8.2) and some universal constants
C=C, >0, a=a, >0, depending only on the multiplicity k of the integral Jp, 1 (f).

Theorem 8.1 clearly implies Theorem 8.1’, since in the case u < nk/2gk+1 the
first term is larger than the second one in the maximum at the right-hand side of for-
mula (8.3). On the other hand, Theorem 8.1 implies Theorem 8.1 also if u > n*/2gk+1,
Indeed, in this case Theorem 8.1’ can be applied with ¢ = (un*k/Q)l/(kH) >oifu<
n¥/2 hence also condition 0 < & < 1 is satisfied. This yields that P (|J, (f)| > u) <
C’exp{—a (%)z/k} = C’exp{—a(nuz)l/(k+1)} if nF/2 > 4 > nb/2¢5+1 and rela-
tion (8.3) holds in this case. If u > n*/2, then P(|J, x(f)| > u) = 0, and relation (8.3)
holds again.

Theorem 8.1 or Theorem 8.1" state that the tail probability P(|J, x(f)] > )
of the k-fold random integral J,, x(f) can be bounded similarly to the probability
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P(|const. on®| > wu), where 7 is a random variable with standard normal distribution
and the number 0 < o < 1 satisfies relation (8.2), provided that the level v we consider
is less than n*/20%+1. As we shall see later (see Corollary 1 of Theorem 9.4), the value
of the number 02 in formula (8.2) is closely related to the variance of J,, x(f). At the
end of this section an example is given which shows that the condition u < n¥/2g%+1 ig
really needed in Theorem 8.1’

The next result, Theorem 8.2, is the generalization of Theorem 4.1 for multiple
random integrals. In its formulation the notions of Lo-dense classes and countably
approximability introduced in Section 4 are applied.

Theorem 8.2. (Estimate on the supremum of multiple random integrals
with respect to an empirical distribution). Let us have a non-atomic probability
measure p on a measurable space (X, X) together with a countable and Lo-dense class
F of functions f = f(x1,...,2k) of k variables with some parameter D and exponent
L, L > 1, on the product space (X*, X*) which satisfies the conditions

1 fllee = sup |f(x1,...,zk)| <1, forall f € F (8.4)
z;€X, 1<j<k

and

1f15=Ef(&,....&) = /f2(x1,...,xk),u(dm1) op(dry) < o forall f e F
(8.5)

with some constant 0 < o < 1. Then there exist some constants C = C(k) > 0,
a=ak) >0 and M = M(k) > 0 depending only on the parameter k such that the
supremum of the random integrals Jn, 1(f), f € F, defined by formula (4.8) satisfies the
mequality

P (sup | Jn k()] = u) < CDexp {_a <E)2/k}
fer ’

2/k 2
if no? > <E> > M(L—l—ﬁ)3/2 log —,
o o

(8.6)

where = max (ll‘;gD,O) and the numbers D and L agree with the parameter and
gn

exponent of the Lo-dense class F.

The condition about the countable cardinality of the class F can be replaced by
the weaker condition that the class of random variables Jy 1 (f), f € F, is countably
approximable.

To formulate such a version of Theorems 8.1 and 8.2 which corresponds to the
results about sums of independent random variables in the case & = 1 the following
notions will be introduced.

Definition of U-statistics. Let us consider a function f = f(x1,...,x5) on the
k-th power (X* X*) of a space (X,X) together with a sequence of independent and
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tdentically distributed random variables &1, ...,&,, n > k, which take their values in
this space (X, X). The expression

Lip(f) = - > f&s-s8) (8.7)
|

T (lisenli): 1K1 <n, j=1,...,k,
lj7£lj/ if j#5'

1s called a U-statistic of order k with the sequence &1,...,&,, and kernel function f.

Remark. In later calculations sometimes we shall work with U-statistics with kernel
functions of the form f(x,,,...,zy,) instead of f(x1,...,xx), where {uy,...,ux} is an
arbitrary set with different elements. The U-statistic with such a kernel function will
also be defined, and it equals the U-statistic with the original kernel function f defined
in (8.7), i.e.

Ik (f(Tuys- s 2uy) = Ink(f(z1, ..., 2k)). (8.7)

(Observe that if we define the function fr(x1,...,2x) = f(Zra), ..., Tr@)) for all per-
mutations 7 of the set {1,...,k}, then I,, x(fx) = In.x(f), hence the above definition is
legitimate.) Such a definition is natural, and it simplifies the notation in some calcula-
tions. A similar convention will be introduced about Wiener—It6 integrals in Section 10.

Some special U-statistics, called degenerate U-statistics, will be also introduced.
They can be considered as the natural multivariate version of sums of identically dis-
tributed random variables with expectation zero. This notion will be defined together
with canonical kernel functions, because they are closely related to each other.

Definition of degenerate U-statistics. A U-statistic I, (f) of order k with a se-
quence of independent and identically distributed random wvariables &1, ...,&, s called
degenerate if its kernel function f(x1,...,xx) satisfies the relation

E(f(€177£k)|£1 :33]_,.--,53'_1 :xj—lvgj-l—l :xj+17"'7£k :mk) =0
foralll1<j<kandzxs € X, s+#j.

Definition of a canonical kernel function. A function f(z1,...,x) taking values
in the k-fold product of a measurable space (X,X) is called a canonical function with
respect to a probability measure p on (X, X) if

/f(xl,...,:cj_l,u,zj+1,...,xk)u(du):O forall1<j<k and z,€ X, s #j.
(8.8)

For the sake of more convenient notations in the future we shall speak also of U-
statistics of order zero. We shall write [,, o(c) = ¢ for any constant ¢, and I, o(c) will
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be called a degenerate U-statistic of order zero. A constant will be considered also as a
canonical function with zero arguments.

It is clear that a U-statistic I,, x(f) with kernel function f and independent -
distributed random variables &1, ..., &, is degenerate if and only if its kernel function is
canonical with respect to the probability measure p. Let us also observe that

for all functions of k variables.

The next two results, Theorems 8.3 and 8.4, deal with degenerate U-statistics. The-
orem 8.3 is the U-statistic version of Theorem 8.1 and Theorem 8.4 is the U-statistic
version of Theorem 8.2. Actually Theorem 8.3 yields a sharper estimate than Theo-
rems 8.1, because it contains more explicit and better universal constants. I shall return
to this point later.

Theorem 8.3. (Estimate on the tail distribution of a degenerate U-statistic).
Let us have a measurable function f(xi,...,x1) on the k-fold product (X*, X*), k >
1, of a measurable space (X,X) together with a probability measure p on (X, X) and
a sequence of independent and identically distributed random variables &1, ... ,&, with
distribution p on (X,X). Let us consider the U-statistic Iy »(f) of order k with this
sequence of random wvariables &1, ...,&,. Assume that this U-statistic is degenerate,
i.e. its kernel function f(z1,...,x) is canonical with respect to the measure p. Let us
also assume that the function f satisfies conditions (8.1) and (8.2) with some number
0 < o < 1. Then there ezist some constants A = A(k) > 0 and B = B(k) > 0 depending
only on the order k of the U-statistic I, 1, (f) such that

u2/k

052/k (1 +B (un*k/Qo-f(kJrl))l/k)

P(Em ™ 2|1, 1(f)] > u) < Aexp{ — (8.10)
for all 0 < u < nk/2gk+1,
Let us also formulate the following simple corollary of Theorem 8.3.

Corollary of Theorem 8.3 Under the conditions of Theorem 8.3 there exist some
universal constants C = C(k) > 0 and oo = (k) > 0 that

u

2/k
P(kIn™* 2L, x(f)| > u) < Cexp {—a (—) } for all 0 < u < n*/2¢*+1 (8.10)
o

The following estimate holds about the supremum of degenerate U-statistics.

Theorem 8.4. (Estimate on the supremum of degenerate U-statistics). Let us
have a probability measure p on a measurable space (X, X) together with a countable and
Lo-dense class F of functions f = f(x1,...,xk) of k variables with some parameter D
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and exponent L, L > 1, on the product space (X*, X*) which satisfies conditions (8.4)
and (8.5) with some constant 0 < o < 1. Let us take a sequence of independent p
distributed random variables &1, ..., &,, and consider the U statistics L, 1, (f) with these
random variables and kernel functions f € F. Let us assume that all these U-statistics
I.k(f), f € F, are degenerate, or in an equivalent form, all functions f € F are
canonical with respect to the measure p. Then there exist some constants C = C(k) > 0,
a=alk) >0 and M = M(k) > 0 depending only on the parameter k such that the
mequality

P <sup n M2\ L, (f)] > “) < ODexp {_a <g>2/k}

fer (8.11)

2/k 9
if no?>(2)7 = M(L+ )2 10g
g g

log D
logn >’

holds, where 3 = max < O) and the number D and L agree with the parameter and

exponent of the Lo-dense class F.

The condition about the countable cardinality of the class F can be replaced by the
weaker condition that the class of random variables n_k/QIn,k(f), f € F, is countably
approximable.

I also formulate a Gaussian counterpart of the above results. To do this I need
some notions that will be introduced in Section 10. In that section the white noise
with a reference measure p will be defined. It is an appropriate set of jointly Gaussian
random variables indexed by the measurable sets A € X’ of a measurable space (X, X),
and it also depends on a o-finite measure p on (X, X) called the reference measure of
the white noise.

In Section 10 it will be also shown that given a white noise py with a non-atomic

o-additive reference measure p on a measurable space (X, X') and a measurable function
f(x1,...,zx) of k variables on the product space (X*, X*) such that

/fQ(ml, o xpp(dey) . op(dey) < 0% < 0o (8.12)

a k-fold Wiener-Ito integral of the function f with respect to the white noise pyy

Zuk(f) = %/f(:vl,...,xk)uw(dxl)...pw(d:vk) (8.13)

can be defined, and the main properties of this integral will be proved. It will be seen
that Wiener-It6 integrals have a similar relation to degenerate U-statistics and multiple
integrals with respect to normalized empirical measures as normally distributed random
variables to partial sums of independent random variables. Hence it is useful to find
the analogs of the previous estimates in this section to the distribution of Wiener-It6
integrals. The subsequent Theorems 8.5 and 8.6 contain such results.
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Theorem 8.5. (Estimate on the tail distribution of a multiple Wiener—Ito
integral). Let us fiz a measurable space (X,X) together with a o-finite non-atomic
measure p on it, and let pyw be a white noise with reference measure p on (X, X). If
f(z1,...,21) is a measurable function on (X%, X*) which satisfies relation (8.12) with
some 0 < 0 < o0, then

1 /u

PIIZs(F)] > 0 < Con{ -5 (4)"] (5.14)

for all uw > 0 with some constants C = C(k) depending only on k.

Theorem 8.6. (Estimate on the supremum of Wiener—Ité integrals). Let F
be a countable class of functions of k variables on a measurable space (X, X) such that

/fz(.rl,...,a:k)u(da:l) ..pu(dry) <o withsome 0 <o <1 forall feF

with some non-atomic o-additive measure p on (X, X). Let us assume that there exist
some constants D > 1 and L > 0 such that for all0 < e <1 a subset {f1,...,fm} CF
can be chosen with m = m(e) < De™% elements for which

min /(f(:cl,...,xk)—fj(xl,...,xk))Zu(dxl)...u(dxk) <e? forall feF.

1<j<m

Take a white noise pyw on (X, X) with reference measure j, and define the Wiener—Ito
integrals Z,, 1, (f) for all f € F. Fiz some 0 < e < 1. The inequality

2/k
P <sup KNZ, . (f)] > u) < CDexp {_1 ((1 —€)u) }
feF 2 o

(8.15)
2 1

if u> MLF 27k 24 (logk/2 -+ logk/2 —)
o €

holds with some universal constants C = C(k) >0, M = M (k) > 0.

Formula (8.15) yields an almost as good estimate for the supremum of Wiener—It6
integrals with the choice of a small ¢ > 0 as formula (8.14) for a single Wiener—Ito6
integral. But the lower bound imposed on the number u in the estimate (8.15) depends
on ¢, and for a small number € > 0 it is large.

The subsequent result presented in Example 8.7 may help to understand why The-
orems 8.3 and 8.5 are sharp. Its proof and the discussion of the question about the
sharpness of Theorems 8.3 and 8.5 will be postponed to Section 13.

Example 8.7. (A converse estimate to Theorem 8.5). Let us have a o-finite
measure [ on some measure space (X, X) together with a white noise pyw on (X, X)
with counting measure p. Let fo(x) be a real valued function on (X,X) such that
[ fo(z)?u(dz) =1, and take the function f(z1,...,x5) = ofo(z1) -+ fo(zk) with some
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number o > 0 together with the Wiener—Ité integral Z, ,(f) introduced in formula
(8.13).
Then the relation [ f(z1,...,25)% u(dzy)... p(dzy) = o? holds, and the Wiener—
Ito integral Z,, 1;(f) satisfies the inequality
C

PRNZ i (f)| > u) > ——7——exp {—1 (E)Q/k} for all u >0 (8.16)

u o
o

with some constant C > 0.

The above results show that multiple integrals with respect to a normalized em-
pirical measure or degenerate U-statistics satisfy some estimates similar to those about
multiple Wiener—Ito integrals, but they hold under more restrictive conditions. The dif-
ference between the estimates in these problems is similar to the difference between the
corresponding results in Section 4 whose reason was explained there. Hence they will be
only briefly discussed here. The estimates of Theorem 8.1 and 8.3 are similar to that of
Theorem 8.5. Moreover, for 0 < u < en*/26%+1 with a small number & > 0 Theorem 8.3
yields an almost as good estimate about degenerate U-statistics as Theorem 8.5 yields
for a Wiener—Ito6 integral with the same kernel function f and underlying measure pu.
Example 8.7 shows that the constant in the exponent of formula (8.14) cannot be im-
proved, at least there is no possibility of an improvement if only the Ls-norm of the
kernel function f is known. Some results discussed later indicate that the estimate of
Theorem 8.3 can neither be improved.

The main difference between Theorem 8.5 and the results of Theorem 8.1 or 8.3
is that in the latter case not only an Ly but also an L., norm is imposed on the
kernel function f, and the validity of the estimate is stated only under the condition
u < nk/2gk+1 Tt can be shown that the condition about the L., norm of the kernel
function cannot be dropped from the conditions of these theorems, and as a version of
Example 3.2 presented at the end of this section shows, in the case u > n*/2g5+1 the
left-hand side of (8.10) may satisfy only a much weaker estimate. This estimate will be
given only for k = 2, but with some work it can be generalized for general indices k.

Theorems 8.2, 8.4 and 8.6 show that for the tail distribution of the supremum of a
not too large class of degenerate U-statistics or multiple integrals a similar upper bound
can be given as for the tail distribution of a single degenerate U-statistic or multiple
integral, only the universal constants may be worse in the new estimates. However, they
hold only under the additional condition that the level at which the tail distribution
of the supremum is estimated is not too low. A similar phenomenon appeared already
in the results of Section 4. Moreover, such a restriction had to be imposed in the
formulation of the results here and in Section 4 for the same reason.

In Theorem 8.2 and 8.4 an Ls-dense class of kernel functions was considered, and
this meant that the class of random integrals or U-statistics we consider in this result is
not too large. In Theorem 8.6 a similar, but weaker condition was imposed on the class
of kernel functions. They had to satisfy a similar condition, but only for the reference
measure g of the white noise appearing in the Wiener—It6 integral. A similar difference
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appears in the comparison of Theorems 4.1 or 4.1’ with Theorem 4.2, and this difference
has the same reason in the two cases.

I finish this section with the proof of the following Example 8.8 which is a multi-
variate version of Example 3.2. For the sake of simplicity I restrict my attention to the
case k = 2.

Example 8.8. (A converse estimate to Theorem 8.3). Let us take a sequence of
mdependent and identically distributed random variables &1, .. .,&, taking values in the
plane X = R? such that & = (n;,1,mj,2), M1 and 02 are independent random variables,
P(gja = 1) = P(;a = 1) = %, P(na = 0) = 1= % and P(n;2 = 1) = P(n
1) =% foralll < j < n. Introduee the function f(a: y) = f((z1,22), (y1,y2)) =
1Yo + Tay1, T = (21,72) € R%, y = (y1,92) € R2, and define the U-statistic

Lis(f)= Y (jamka +me1ns2)
1<) k<n, j£k

of order 2 with the above kernel function f and sequence of independent random variables
&,..,6,. Then I, Q(f) 5 a degenemte U-statistic. If u > Bino?> with some appropriate
constant 31 > 1, By 'n > wu > Boyn=2 with a sufficiently large fized number By > 0 and
1 >g2>1 il 10() then the estimate

P(n~I,5(f) > u) Zexp{ —Bnl/3u 2/3log< ¢ )} (8.17)

nos
holds with some B > 0.

Remark: The main content of the above example is that in the case £ = 2 the condition
2 < no? cannot be dropped from Theorem 8.3. Let us observe that if we dlsregard
the value of the universal constants in our estimates, then in the case u = no® the
right-hand side of (8.17) has the same order as Theorem 8.3 suggests. (In th1s example
[ 3z, y)p(dz)u(dy) = 2E(n;j1n;2)* = o2, where  is the distribution of (1;,1,7;2).) If
the probability in (8.17) at the same level u is considered for such a modified version of
Example 8.8 where the same construction is taken, but with a much smaller parameter
o2, then the probability at the right-hand side of (8.17) has a relatively small decrease,
and the estimate of Theorem 8.3 does not hold any longer. Let me also remark that
under some mild additional restrictions the estimate (8.17) can be slightly improved, the
term log can be replaced by logZ/ 3 in the exponent of the right-hand side of (8.17). To get
such an improvement some additional calculation is needed where the numbers u; and
uo have to be replaced by v; = 8nl/3y2/3 logfl/?’ (#) and vy = —nQ/3 1/3 log1/3 ( o )

nos

It is simple to check that the U-statistic introduced in the above example is de-
generate because of the independence properties of the model and the relation En;; =
Enjo = 0. In the proof of the estimate (8.17) the results of Section 3, in particular
Example 3.2 can be applied for the sequence 7,1, j = 1,2,...,n. Beside this, the fol-
lowing result holds from the theory of large deviations: If Xq,..., X, are independent
and identically distributed random variables, P(X; = 1) = P(X; = —1) = £, then for
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any number 0 < a < 1 there exists some numbers C; = C1(«) > 0 and Cy = Cy(a) > 0

such that P (Z X; > u) > 016_02“2/" for all 0 < u < an.

7j=1

Proof of Example 8.8. The inequality

P Lo (f) > ) 2 P2 3 mi | | Domia | > 20w | = P (23 njange > nu
j=1 j=1

j=1

holds. Because of the independence of the random variables 7,1 and n;2 the first
probability at the right-hand side of (8.18) can be bounded from below with the choice
v1 = 4n'/3u?/3 and vy = %n2/3u1/3 by means of Example 3.2. (The estimate of Example
3.2 can be applied with the choice y = v, since the relation v; > 4no? holds if u >
Bino? with B; > 1, and the remaining conditions 0 < o2 < % and n > 3v; > 6 also hold
under the conditions of Example 8.8.) This estimate together with the large-deviation
result mentioned after the remark imply that

n n n n
P2 an,l Z?’]j’Q >2nu | > P an71 >uv | P an’2 > U2
Jj=1 Jj=1 Jj=1 j=1
2

> exp {—Blvl log (%) — BQ%} > exp {—Bgn1/3u2/3 log (LS)}

no

with appropriate constants By > 1, By > 0 and B3 > 0. On the other hand, by applying
Bennett’s inequality, more precisely its consequence given in formula (3.4) for the sum
of the random variables X; = 27, 17n; 2 at level nu instead of level u we get the following
upper bound for the second term at the right-hand side of (8.18).

n
u
Pl2 E 17]j,177j,2 >nu | <exp {—Knu log F}
j:

< exp {—234n1/3u2/3 log <L3> } )

no
since nu > Bn'/3u?/? > Bno?, and the estimate (3.4) is applicable if B is sufficiently

large. In this case also the constant Bj can be chosen sufficiently large in the last
inequality. The above estimates imply the statement of the example.
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9. Some results about U-statistics.

This section contains the proof of the Hoeffding decomposition theorem, an important
result about U-statistics. It states that all U-statistics can be represented as a sum
of degenerate U-statistics of different order. This representation can be considered as
the natural multivariate version of the decomposition of a random variable as the sum
of a random variable with expectation zero plus a constant (which can be interpreted
as a random variable of zero variable). Some important properties of the Hoeffding
decomposition will also be proved. The properties of the kernel function of a U-statistic
will be compared to those of the kernel functions of the U-statistics in its Hoeffding
decomposition.

If the Hoeffding decomposition of a U-statistic is taken, then the Ly and L,.-norms
of the kernel functions appearing in the U-statistics of the Hoeffding decomposition will
be bounded by means of the corresponding norm of the kernel function of the original
U-statistic. It will be also shown that if a class of U-statistics defined with the help
of an Ly-dense class of kernel functions (and the same sequence of independent and
identically distributed random variables) is considered, and the Hoeffding decomposition
of all of these U-statistics is taken, then the kernel functions of the degenerate U-
statistics appearing in these Hoeffding decompositions also constitute an Ly-dense class.
Another important result of this section is Theorem 9.4. It gives a decomposition of
a k-fold random integral with respect to a normalized empirical measure to the linear
combination of degenerate U-statistics. This result makes possible to derive Theorem 8.1
from Theorem 8.3 and Theorem 8.2 from Theorem 8.4, and it is also useful in the proof
of Theorems 8.3 and 8.4.

Let us first consider the Hoeffding’s decomposition. In the special case k = 1 it

n
states that the sum S,, = §; of independent and identically distributed random

1

J
n

variables can be rewritten as S, = > (¢ — E¢;) + (Z E¢; |, ie. as the sum of
j=1 j=1

independent random variables with zero expectation plus a constant. For the sake of
a simpler terminology in the sequel a constant will be considered as a degenerate U-
statistic of order zero, and the notation I, o(c) = ¢ will be applied for a constant c. I
wrote down the above trivial formula, because Hoeffding’s decomposition is actually its
adaptation to a more general situation. To understand this let us first see how to adapt
the above construction to the case k = 2.

In this case a sum of the form I, o(f) = > f(&;,&k) has to be considered.

1<) k<n,j#k )

Write f(&5,8k) = [f(§5:&k) — E(f(&5,8)IEk)] + E(F(&5,86)1Ek) = f1(§5, &) + f1(&k)
with f1(&5, &) = f(&,&k) — E(f (&, &k)ISk), and f1(&k) = E(f (&, k)|Ek) to make the

conditional expectation of fi(§;,&x) with respect to & equal zero. Repeating this pro-
cedure for the first coordinate we define fo(&;,&r) = f1(&5,&k) — E(f1(&5,&k)|€;) and
f2(&5) = E(f1(&5,8k)[&5)- Let us also write f1(&x) = [f1(&k) — Ef1(§k)] + Ef1(&k) and
f2(&5) = [f2(&5) — Ef2(&5)] + Ef2(&;). Simple calculation shows that I, o(f2) is a de-
generate U-statistics of order 2, and the identity I, 2(f) = In2(f2) + In1((n — 1)(f1 —
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Ef)+La((n—=1)((f2— Ef2))+n(n—1)E(f1 + f2) yields the decomposition of I, 5(f)
into a sum of degenerate U-statistics of different orders.

Hoeffding’s decomposition can be obtained by working out the details of the above
argument in the general case. But it is simpler to calculate the appropriate conditional
expectations with the help of the kernel functions of the U-statistics. To carry out
such a program in the study of U-statistics of order k the following notations will be
introduced.

Let us consider the k-fold product (X*, X*, 1*) of a measure space (X, X, 1) with
some probability measure u, and define for all integrable functions f(z1,...,xx) and
indices 1 < j < k the projection P;f of the function f to its j-th coordinate as

(ij)(.’ﬁl,..-,$j_1733j+17...,Ik) :/f(ml,,xk),u(dx]), 1 S] < k. (91)

Let us also define the operators Q; = I — Pj i.e. Q;f = f — P;f for all integrable
functions on f on the space (X*, X* u*¥), 1 < j < k. In the definition (9.1) P;f is a
function not depending on the coordinate x;, but in the definition of ); we introduce the
fictive coordinate z; to make the expression @, f = f — P; f meaningful. The following
result holds.

Theorem 9.1. (Hoeffding decomposition). Let f(x1,...,z5) be an integrable
function on the k-fold product space (X*, X%, u¥) of a space (X, X, ) with a probability
measure (. It has such a decomposition

f= > fv, with fy(z;,jeV)= I »&lIle| fe,.. o)
Ve{l,... k} Je{l.. k}\V  jEV
(9.2)
for which all functions fy, V. .C {1,...,k}, in (9.2) are canonical with respect to the
probability measure p, and the function fy depends on arguments x;, j € V.

Let &1,...,&, be a sequence of independent p distributed random wvariables, and
consider the U-statistics I, x(f) and I, |v|(fv) corresponding to the kernel functions f,
fv defined in (9.2) and random variables &1, .. .,&,. Then

KL (f)= Y, (—=V)n—|VI=1)-(n=k+1)|V|IL v (fv) (9.3)

is a representation of I, 1 (f) as a sum of degenerate U-statistics, where |V| denotes the
cardinality of the set V.. (The product (n — |V|)(n — V| —=1)---(n—k + 1) is defined
as 1 for V.= {1,...,k}, i.e. if |V| = k.) This representation is called the Hoeffding
decomposition of I, 1 (f).

k
Proof of Theorem 9.1. Write f = [] (P;+@;)f. By carrying out the multiplications in
j=1
this identity and applying the commutativity of the operators P; and @); for different in-
dices j we get formula (9.2). To show that the functions fy in formula (9.2) are canonical
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let us observe that this property can be rewritten in the form P;fy = 0 (in all coordi-
nates z,, s € V'\ {j} if j € V). Since P; = P?, and the identity P;Q; = P; — P =0
holds for all j € {1,...,k} this relation follows from the above mentioned commutativ-

ity of the operators P; and Q);, as P; fy = ( I1 Py ] QS> P;Q;f =0. By
se{l,....,k}\V seVA\{j}
applying identity (9.2) for all terms f(j,,...,§;,) in the sum defining the U-statistic

I, 1(f) and then summing them up we get relation (9.3).

In the Hoeffding decomposition we rewrote a general U-statistic in the form of a
linear combination of degenerate U-statistics. In many applications of this result we still
we have to know how the properties of the kernel function f of the original U-statistic
are reflected in the properties of the kernel functions fi, of the degenerate U-statistics
taking part in the Hoeffding composition. In particular, we need a good estimate on
the Lo and L., norm of the functions fy by means of the corresponding norm of the
function f. Moreover, if we want to prove estimates on the tail distribution of the
supremum of U-statistics I, x(f) for a nice class of kernel functions f € F which is an
Lo-dense class of functions with some exponent L and parameter D, then we may need
a similar estimate on the class of kernel functions fy, f € F, with some V € {1,... k}
appearing in the Hoeffding decomposition of these functions. We have to show that this
class of functions is also Lo-dense, and we also need a good bound on the exponent and
parameter of this Ls-dense class. The next result formulates such a statement.

Theorem 9.2. (Some properties of the Hoeffding decomposition). Let us con-
sider a square integrable function f(x1,...,x1) on the k-fold product space (X*, X*, u*)
and take its decomposition defined in formula (9.2). The inequalities

/f‘%(xj, jev) H p(drj) < /f2(ac1, cooxp)p(dey) .o p(dey) (9.4)
JjeVv
and

sup |fv(ay, j € V) <2V sup |f(an,. )] (9-4°)
xj,jGV $J,1§j§k

hold for all V-C {1,...,k}. (In particular, f§ < [ f*(21,...,2x)p(d2y) ... p(dxy) for
V=40.)

Let us consider an Lo-dense class F of functions with parameter D and exponent
L on the space (X* X*), take the decomposition (9.2) of all functions f € F, and
define the classes of functions Fy = {2-Wlfy: f e FY for all V .C {1,...,k} with the
functions fy taking part in this decomposition. These classes of functions Fy are also
Ly-dense with the same parameter D and exponent L for all V C {1,...,k}.

Theorem 9.2 will be proved as a consequence of Proposition 9.3 presented below.
To formulate it first some notations will be introduced:

Let us consider the product (Y x Z,) x Z) of two measurable spaces (Y,)) and
(Z, Z) together with a probability measure p on (Z, Z) and the operator

Pf(y)=P.f(y) = /f(y,Z)u(dz), yeyY, zeZ (9.5)
5
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defined for those y € Y for which the above integral is finite. Let I denote the identity
operator on the space of functions on Y x Z, i.e. let I f(y,z) = f(y,z), and introduce
the operator @ =Q, =1I—-P=1—-PF,

Quf(:2) = (I — P)f(y:2) = f(y.2) — Puf(y.2) /f% (dz), (9.6)

defined for those points (y,z) € Y x Z whose first coordinate y is such that the ex-
pression P, f(y) is meaningful. (Here, and in the sequel a function g(y) defined on the
space (Y,)) will be sometimes identified with the function g(y, z) = g(y) on the space
(Y x Z,Y x Z) which actually does not depend on the coordinate z.) The following
result holds:

Proposition 9.3. Let us consider the direct product (Y x Z,Y x Z) of two measure
spaces (Y,Y) and (Z,Z) together with a probability measure y on the space (Z,Z2).
Take the transformations P, and Q, defined in formulas (9.5) and (9.6). Given any
probability measure p on the space (Y,Y) consider the product measure p X p on (Y X
Z,Y x Z). Then the transformations P, and Q,,, as maps from the space Lo(Y X Z,Y X
Z,uxp) to Lo(Y, Y, p) and Lo(Y x Z,Y X Z, p X i) respectively, have a norm less than
or equal to 1, 1.e.

[ Putiotan) < [ 220 dpd do), (9.7)

and

[ Qurtw.2Potdu(a /&y, il dz) (9.8)

for all functions f € Loy(Y X Z,Y X Z,p X ).

If F is an La-dense class of functions f(y, z) in the product space (Y x Z,Y x 2),

with pammeter D and exponent L, then also the classes F,, = {P.f, f € F} and

= { Quf (f P.f), f € F} are Ly-dense classes with the same exponent L and
pammeter D in the spaces (Y,Y) and (Y x Z,Y x Z) respectively.

The following corollary of Proposition 9.3 is formally more general, but it is a simple
consequence of this result. Actually we shall need this corollary.

Corollary of Proposition 9.3. Let us consider the product (Y1 X Z X Yo, Y1 X Z X Vs)
of three measurable spaces (Y1,Y1), (Z,2) and (Ya,Ys) with a probability measure
on the space (Z,Z) and a probability measure p on Y1 X Y3, Y1 X Va), and define the
transformations

Puf(y1,y2) = /f(yl,zayz)ﬂ(dz), yEY, 2€ 2, y2 €Yo (9.5")
and
Quf(y,2,y2) = (I — Pu)f(y1,2,y2) = f(y1,2,92) — Puf(y1,2,y2)

9.6/
:f(yl,z,yz)—/f(yl,z,yg),u(dz), y1€Y1, ZEZ, y2€YP2 ( )
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for the measurable functions f on the space Y1 X Z X Yy integrable with respect the
measure p X p. Then

/Puf(yl,yz)zp( dyy, dy2) < /f(y,Z)z(p X p)(dyy, dz, dys), (9.7)

for all probability measures p on (Y1 x Y2, Y1 X Vo), where pX u is the product of the prob-
ability measure p on (Y1 X Yo, V1 x Vo) and p on (Z, 2), i.e. pX u({y1,z,y2): (y1,y2) €
A,z € B}) = p(A)u(B) for all A€ Y1 X Vo, B € Z, and p X p is its unique extension
as a probability measure on (Y1 X Z X Ya,)1 X Z x Y5). Also the inequality

/Quf(yl,z,yz)%(dyl, dyz)p(dz) < /f(yl,z,yz)%(dyl, dy2)p( dz) (9.8

holds for all functions f € Lo(Y X Z,Y X Z,p X p).

If F is an La-dense class of functions f(y1,z,y2) in the product space (Y1 X Z %
Ya, Vi X ZxYs), with parameter D and exponent L, then also the classes F,, = {P,f, f €
F} and G, = {53Q.f = 3(f — Puf), f € F} are La-dense classes with exponent L and
parameter D in the spaces (Y1 X Yo, V1 X Vo) and (Y1 X Z x Y3, V1 X Z X Va) respectively.

This corollary is a simple consequence of Proposition 9.3 if we apply it with (Y,)) =
(Y1 x Y2, V1 x)s) and take the natural mapping f((y1,v2),2) — f(y1,z,y2) of a function
from the space (Y x Z,Y x Z) to a function on (Y7 X Z x Y5, x Z x )s). Beside
this, we apply that measure on (Y7 X Z x Y2, )1 X Z X Vs) which is the image of the
product measure p x p with respect to the map induced by the above transformation
on the space of measures.

Proposition 9.3, more precisely its corollary implies Theorem 9.2, since it implies
that the operators Ps, Qs, 1 < s < k, applied in Theorem 9.2 do not increase the Ly (p)
norm of a function f, and it is also clear that the norm of P; is bounded by 1 the norm
of Qs = I — P, is bounded by 2 as an operator from L., spaces to L., spaces. The
corollary of Proposition 9.3 also implies that if F is an Ly-dense class of functions with

parameter D and exponent L, then the same property holds for the classes of functions
Fp, ={Psf: f € F}and Fo, = {3Qsf: f € F}, 1<s <k These relations together

with the identity fy = | [] Ps I1 Qs | f imply Theorem 9.2.
seV se{l,...,k}\V

Proof of Proposition 9.3. The Schwarz inequality yields that P,(f)* < [ f(y,2)*u(dz),
and integrating this inequality with respect to the probability measure p(dy) we get
inequality (9.7). Also the inequality

/ Quf (Y, 2)*p(dy)pu(dz) = / [f(y,2) — Puf(y, 2))?p(du)u(dz) < / fy, 2)?p(dy) p(dz)

holds, and this is relation (9.8). This follows for instance from the observation that the
functions f(y, z) — P, f(y,2) and P, f(y, z) are orthogonal in the space Lo(Y x Z,Y X

Z,px p).
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Let us consider an arbitrary probability measure p on the space (Y,)). To prove
that F,, is an Lp-dense class with parameter D and exponent L if the same relation
holds for F we have to find for all 0 < ¢ < 1 aset {fi,...,fm} C Fu, 1 < j <m
with m < De™F elements, such that mf f fi— f)?dp <¢&? for all f € F,. Buta

similar property holds for F in the space Y x Z with the probability measure p x pu.
This property together with the Lo contraction property of P, formulated in (9.7) imply
that F,, is an Lo-dense class.

To prove that G, is also Ly-dense with parameter D and exponent L under the same
condition we have to find for all numbers 0 < € < 1 and probability measures p on Y x Z
asubset {g1,...,9m} C G, with m < De~! elements such that <1nf [(g;—9)*dp < &

for all g € G,,.

To show this let us consider the probability measure p = 5(p+ p x p) on (Y x
Z,Y x Z), where p is the projection of the measure p to (Y,)), i.e. p(A) = p(A x Z)
for all A € Y, take a class of function Fy(e,p) = {f1,..., fm} C F with m < De~L
elements such that 1<1§1£mf(fj — f)?dp < €2 for all f € F, and put {g1,...,9m} =

N

{3Quf1,--.,3Qufm}. All functions g € G, can be written in the form g = £Q,, f with

some f € F, and there exists some function f; € Fy(e, p) such that [(f — fm)? dp

Hence to complete the proof of Proposition 9.3 it is enough to show that [ ( l f

Quf)dp < [( f f)? dp for all palrs f, f € F. This inequality holds, since [ 1(Q.f —
wl —
wlf—

>—I~l>~

Quf)?dp < [5(f = F)?dp+ [ 5(Puf — Puf)?dp, and [(P.f - szdp=f(
P f)2 dp < [( f f)2d(pxp) by formula97 The above relations imply that [ 1(Q

Quf)?dp < [(f = f)?*5d(p+px p) = [(f — f)*dp as we have claimed.

Now we shall discuss the relation between Theorem 8.1 and Theorem 8.3 and
between Theorem 8.2 and Theorem 8.4. First we shall show that Theorem 8.1 (or
Theorem 8.1") is equivalent to the corollary of Theorem 8.3 which contains the esti-
mate (8.10") instead of the slightly stronger estimate (8.10) formulated in Theorem 8.3.
We also claim that Theorems 8.2 and 8.4 are equivalent. Both in Theorem 8.2 and in
Theorem 8.4 we can restrict our attention to the case when the class of functions F is
countable, since the case of countably approximable classes can be simply reduced to
this situation. Let us remark that integration with respect to the measure p,, — p in
the definition (4.8) of the integral J,, x(f) yields some kind of normalization which is
missing in the definition of the U-statistics I,, 5 (f). This is the cause why degenerate U-
statistics had to be considered in Theorems 8.3 and 8.4. The deduction of the corollary
of Theorem 8.3 from Theorems 8.1" or of Theorem 8.4 from Theorem 8.2 is fairly simple
if the underlying probability measure p is non-atomic, since in this case the identity
Ik (f) = Jnk(f) holds for a canonical function with respect to the measure p. Let us
remark that the non-atomic property of the measure p is needed in this argument not
only because of the conditions of Theorems 8.1’ and 8.2, but since in the proof of the
above identity we need the identity [ f(x1,...,z5)p(dz;) = 0 in the case when the do-
main of integration is not the whole space X but the set X \{z1,...,2;_1,%j41,..., Tk}

The case of possibly atomic measures y can be simply reduced to the case of non-
atomic measures by means of the following enlargement of the space (X, X, ). Let us in-
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troduce the product space (X, X, 1) = (X, X, u) x ([0,1], B, \), where B is the o-algebra
and ) is the Lebesgue measure on [0, 1]. Define the function f((z1,u1),..., (zx,ux)) =
f(z1,...,21) in this enlarged space. Then I, x(f) = L, x(f), the measure i = pu x A
is non-atomic, and f is canonical with respect to fi if f is canonical with respect topu.
Hence the corollary of Theorem 8.3 and Theorem 8.4 can be derived from Theorems 8.1
and 8.2 respectively by proving them first for their counterpart in the above constructed
enlarged space with the above defined functions.

Also Theorems 8.1" and 8.2 can be derived from Theorems 8.3 and 8.4 respectively,
but this demands some additional work. For this goal let us observe that a random
integral J, ,(f) can be written as a sum of U-statistics of different order, and it can
also be expressed as a sum of degenerate U-statistics if Hoeffding’s decomposition is
applied for each U-statistic in this sum. We show that the coefficients of the degenerate
U-statistics in the above representation have relatively small coefficients. This result is
formulated in the following Theorem 9.4. To make its content more understandable I
describe it in the special case of two-fold random integrals in a more explicit form in
Corollary 2 of Theorem 9.4.

Theorem 9.4. (Decomposition of a multiple random integral with respect
to a normalized empirical measure to a linear combination of degenerate
U-statistics). Let a non-atomic measure u be given on a measurable space (X, X)
together with a sequence of independent, u-distributed random variables &1, . ..,&,. Take
a function f(x1,...,x) of k variables on the space (X, X*) such that

/fQ(ml, oo xp)p(der) . op(deg) < oo

and consider the empirical distribution function w, of the sequence &1, . .., &, introduced
in (4.5) together with the k-fold random integral Jy i (f) of the function f defined in
(4.8). The identity

Tok(f)= Y ClkV)n V2L v (fv) (9.9)
k}

holds with the set of (canonical) functions fv(x;, j € V) (with respect to the measure
w) defined in formula (9.2) together with some real numbers C(n,k, V), V- C {1,...,k},
where I, |v|(fv) denotes the (degenerate) U-statistic of order |V'| with the random vari-
ables &1,...,&, and kernel function fy. The constants C(n,k,V) in formula (9.9)
satisfy the inequality |C(n,k, V)| < C(k) with some constant C(k) depending only on
the order k of the integral J,, (f). The relations nli_)rréo C(n,k, V) = C(k,V) hold with
some appropriate constant such that 0 < |C(k,V)| < oo, and C(n,k,{1,...,k}) =1 for
V={1,...,k}.

Remark: Some considerations show that the coefficients C(n,k,V) in formula (9.9)
depend only on the cardinality |V| of the set V, i.e. C(n,k,V) = C(n,k,|V|) can be
written. This fact will be not applied in this work.
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Theorems 8.1" and 8.2 can be simply derived from Theorems 8.3 and 8.4 respectively
with the help of Theorem 9.4. Indeed, to get Theorem 8.1" observe that formula (9.9)
implies the inequality

Pldar(Pl>w < Y }P(n-'v'/zun,.v.(fv)r>m> (9.10)

Vcil,..k

with a constant C(k) satisfying the inequality C(n,k,|V]) < C(k) for all coeflicients
C(n,k,|V]) in (9.9). Hence Theorem 8.1’ follows from Theorem 8.3 and relations (9.4)
and (9.4") in Theorem 9.2 by which the Lo-norm of the functions fy is bounded by
the Lo-norm of the function f and the L.-norm of fy is bounded by the 2!VI-times
the Loo-norm or f. It is enough to estimate each term at the right-hand side of (9.10)
by means of Theorem 8.3. It can be assumed that 2¥C(k) > 1. Let us first assume

that also the inequality sr{zy; = 1 holds. In this case formula (8.3") in Theorem 8.1’

can be obtained by means of the estimation of each term at the right-hand side of
2/s 2/k
(9.10). Observe that exp {—a <m> } < exp {—a (W) } for all s < k

if sr6(e = 1. In the other case, if 5rzfss < 1, formula (8.3") holds again with a
sufficiently large C' > 0, because in this case its right-hand side is greater than 1.

Theorem 8.2 can be similarly derived from Theorem 8.4 by observing that re-
lation (9.10) remains valid if |J, x(f)| is replaced by sup |J, x(f)| and |1, jv(fv)| by
ferF

sup |I,,|v|(fv)| in it, and we have the right to choose the constant M in formula (8.6)
verv

of Theorem 8.2 sufficiently large. The only difference in the argument is that beside
formulas (9.4) and (9.4") the last statement of Theorem 9.2 also has to be applied in
this case. It tells that if F is an Ly-dense class of functions on a space (X*, X¥), then
the classes of functions Fy = {27 VI f: f € F} are also Ly-dense classes of functions
for all V- C {1,...,k} with the same exponent and parameter.

Next I make some comments about the content of Theorem 9.4. The expression
Jn 1k (f) was defined as a k-fold random integral, where the diagonals were omitted from
the domain of integration. We have integrated with respect to the signed measure
n, — i, which means some kind of normalization. Thus it is not surprising that J,, x(f)
has a tail distribution behaviour similar to that of degenerate U-statistics. Theorem 9.4
has such a consequence. Formula (9.9) expresses the random integral J,, 5 (f) as a linear
combination of degenerate U-statistics of different order. This is similar to the Hoeffding
decomposition of the U-statistic I, x(f) where the same functions fy appear. But the
coefficients C(n, k, |V[)n~IVI/2 of the terms I,, jv(fyv) in the expansion (9.9) are small.
On the other hand, they do not have to disappear. In particular, the expansion (9.9)
may contain a non-zero constant term, in which case the expected value EJ,, ;(f) is not
equal to zero. But even in this case it can be bounded by a number not depending on
the sample size n. Next I show an example for such a random integral .J,, o(f) where

EJn,Q(f) 7é 0.

Let us choose a sequence of independent random variables &;,...,§, with uni-
form distribution on the unit interval, let pu, denote its empirical distribution, let
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f = f(z,y) denote the indicator function of the unit square, i.e. let f(x,y) = 1 if
0<z,y <1, and f(z,y) = 0 otherwise. Let us consider the random integral J, o(f) =
n fw;éy f(x,y)(pn(dz)— dz)(pn( dy)—dy), and calculate its expected value EJ,, o(f). By
adjusting the diagonal x = y to the domain of integration and taking out the contribu-
tion obtained in this way we get that EJ, o(f) = nE(fO1 (pin (dz) — p(dz))> —n2- &=
—1. (The last term is the integral of the function f(x,y) on the diagonal z = y with
respect to the product measure p,, X i, which equals (g, —pt) X (4, — ) on the diagonal.)

Now I turn to the proof of Theorem 9.4.

Proof of Theorem 9.4. Let us first introduce the (random) probability measures p(*),
1 <1 < n, concentrated in the (single) sample points &, i.e. let pV(A) = 1if & € A,

and pW(A) =0if & ¢ A, A€ A, 1 <1 <n. Then p, —p =23 (u¥ —p), and

hE

=1

formula (4.8) can be rewritten as

ngy:ﬁ%ﬁ > /f@b”wm) (9.11)

(1177lk) ISZJS’H,, 1S]Sk7

(1) (dwy) = p(dan)) .. (10 (day) = pu( da))

To rearrange the above sum in a way more appropriate for us let us introduce the class
of all partitions P = Py of the set {1,2,...,k}. For a partition P = {Ry,..., Ry}

Ri={1,... .k}, RRNR =0,1<j<l<u,thesets R;, 1 < j < u, will be called
U j J J j J
=1

the components of the partition P. Given a sequence (l1,...,l;), 1 <1; <n,1<j <k,
of length k let Py (ly,...,lx) denote that partition of the set {1,...,k} in which two
points s and t, 1 < s,t < k, belong to the same component of this partition if and only
if [y = l;. For a partition P € Py let us define the set H(P) = H,(P) consisting of
sequences (I1,...,l;) with 1 <; <mforalll <j <kasH(P)={(l,...,lk): 1<
i <n, 1<j<k Pg(y,... Iy) = P}

Let us rewrite formula (9.11) in the form

T n(f) = @ 3 3 / f@1, . an) (9.12)

pPeP (ll,...,lk)Z (ll,,lk)eH(P)

(6 (d21) = p(dan)) ... (W) (day) = p(day))

Let us remember that the diagonals x5 = x4, s # t, were omitted from the domain
of integration in the formula defining J,, x(f). This implies that if [; = [, for some s # t,
then the measure p's) ( da,) ) (dx,) has zero measure in the domain of integration. We
have to understand the cancellation effects caused because of this fact. It will be shown
that because of these cancellations the expression in formula (9.12) can be rewritten as a
linear combination of degenerate U-statistics with not too large coefficients. Beside this,
it will be seen from the calculations that the same degenerate U-statistics I, |v|(fv)
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appear in the representation of J, x(f) as in formula (9.2). This is a natural approach,
but the detailed proof demands some rather unpleasant calculations.

Let us fix some partition P € P and investigate the integrals in the internal sum
at the right-hand side of (9.12) corresponding to the sequences (l1,...,lx) € H(P).
For the sake of a better understanding let us first consider such a partition P € P
which has a component of the form {1,...,s} with some s > 2. The products of
measures by which we have to integrate in this case contain a part of length s of the
form (u(dz1) — p(dz1)) ... (1O (dzs) — pu(dz,)) This part of the product measure can
be rewritten in the domain of integration as

S

D (=)l dan) - p(daya)p D (dag)p(degia) - p(dag) + (=1)°p(der) - p(das)

j=1

= Z p(dey) ... p(da; 1) (u (day) — p(dae)p(dej) .. p( des)
+ (=)%Y (s = Dp(dxy) . .. p(dxy). (9.13)

Here we have exploited that all other terms of this product disappear in the domain
of integration which does not contain the diagonals. Let us also observe that the term
(=1)*"Y(s — D)p(dz1) . .. p(dz;) appears n-times if we sum up for all 1 <1 < n. We
have assumed that s > 2, since the case s = 1 is slightly different. In this case only the
term (Y (dxy) — p(dxy) appears, i.e. have to put no additional term consisting only of
(deterministic) measures .

More generally, let us fix some partition P = {Ry,..., R,}, consider the integral
corresponding to a sequence (ly,...,l;) € H(P) in the internal sum of (9.12), and let
us rewrite it as the sum of integrals with respect to product measures with components
of the form pu{s)(dx,) — p(dx,) or u(dxs), where all measures pl's) appearing in a
product measure are different. Such a representation can be given, similarly to the
calculation leading to relation (9.13), only the notations will be more complicated. To
write down what we get first we define a set 7 (P) whose elements are certain subsets of
{1,...,k} depending on the partition P = {Ry, ..., R,} together with a subset 7 (P) of
it. The elements of the set 7 (P) are all those sets {j1,...,Ju} C {1,...,k}, v/ < u, for
which the numbers ji,..., j.s belong to different components of the partition P. Let
T (P) C T(P) consist of those sets V = {j1,...,ju } € T(P) which satisfy the following
additional condition: If some components R, = {b;}, 1 < t < w, of the partition P
consists of only one point, then all sets V belonging to 7 (P) C 7 (P) contain this point
b.. With the help of the above quantities we can write in the case (I1,...,l;) € H(P),
similarly to the calculation in (9.13), that

/fazl,..., ) (1 dr) = ()} () () — () (9.14)
= Y avip) [ S H(u(lj)(dxj)—ﬂ(dwj)> [T wldey)

VET(P) Je{l,.. k\V
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with some appropriate finite constants «(V, P). These constants could be calculated
explicitly, but it is enough for us to know that they depend only on the partition P and
the set V € T(P). On the other hand, it is important to observe that a term with non-
zero coefficient a(V, P) appears at the right-hand side of (9.14) only for V € 7 (P). The
class of functions 7 (P) was introduced, because they have this property. This relation
holds, since in the case of a one-point component R; = {b;} of the partition P only the
term ") (dxy,) — p( day,) appears in the component of product of measures in (9.14),
and a component of the form p( dzp, ) is missing. Hence the product I p(dzj)
Jre{l,. KNV
cannot appear at the right-hand side of (9.14) if V ¢ T (P).

Let me remark that at the right-hand side of (9.14) [ was written and not [, i.e.
the diagonal was not omitted from the domain of integration. This is allowed, since
the measure p is non-atomic, and this also has the consequence that the sample points
&1, ..., &, are different with probability 1.

Formula (9.14) can be rewritten, by expressing its right-hand side with the help of
the random variables & instead of the measures p() as

// flxi, ... xp) (M(ll)(dﬂﬁl) - M(d$1)> </‘(lk)(dxk) - dek)) (9.15)

= Z a(V, P) H P,u,j’ H Qu,j f(flja .7 S V)

VeT(P) Je{l,.. . k}\V JjeEV

if (lh,...,lk) € H(P). Here Q, ; = I — P, ; is the operator @, defined in (9.6"), with
the choice Y; which is the product of the first 5 — 1 components of X*, Z is the j-th
component and Y5 is the product of the last k — j components of the product space
X*. The operator P, j is the operator P, defined in (9.5’) with the choice of Y; as the
product of the first 7 — 1, Z the j-th component and Y5 as the product of the last k — 5’
components of the space X*. To see why formula (9.15) holds we have to understand
that integration with respect to (u(')(dz;) — p(dx;)) means the application of the
operator @), ; and then putting the value &, in the argument x;, while integration
with respect to p(dz;) means the application of the operator P, ;. Beside this, the
operators (), ; and P, j are exchangeable.

Fix some partition P € Py, a set V € 7 (P) and sum up the expressions at the
right-hand side of (9.15) with this set V for all sequences (l1,...,lx) € H(P). We get
that

a(V,P) > T Py I] Qus | £(&,. 5 € V) =a(V.P k)L, v (fv)
(L1, lk)EH(P) \J €{l,...k}\V  jEV
(9.16)
where I, |v|(fy) is the U-statistic of order |V'| with the kernel function
fr(zj,jeV)= II P llQui]rf (9.17)

j'e{1,... . kE}\V JEV
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with that function on f(x1,...,zx) which is considered in Theorem 9.4 and some appro-
priate coefficients a(V, P, k,n) at the right-hand side of (9.16). These coefficients could
be explicitly calculated. We do not need an explicit formula for a(V, P, k,n), but we
shall need the inequality |a(V, P, k,n)| < D(k)n?"V) where 3(P,V) = u — |V] is the
number of those components R;, 1 < j < u, of the partition P for which R; NV = 0,
(here u denotes the cardinality of the partition P), and the constant D (k) < oo depends
only on the multiplicity k of the integral J,, 1 (f).

To show that |a(V, P, k,n)| < D(k)n®V) let us observe that if we fix the coordi-
nates [;, j € V, in an arbitrary way and sum up the expression at left-hand side of (9.16)
for the remaining indices I/, j* ¢ V, then we get the term depending on the variables
&,, J €V, in the sum defining the U-statistic I,, |v/|(fv) multiplied by a(V, P, k,n).
Hence to get a good estimate on &(V, P, k,n) the number of the vectors (I;,j ¢ V) tak-
ing part in the summation at the left-hand side of (9.16) has to be well bounded. For
this aim let us consider the class of vectors (y,...,l;) € H(P). Two coordinates [, and
lj» must agree if their indices j and j” belong to the same component of the partition
P. Beside this, if the number j is contained in such a component R, of the partition P
for which R, NV # 0, then the coordinate [; of these vectors is fixed. Hence the value
lj» of those non-fixed coordinates whose indices j' belong to the same component R,
of the partition P agree and only such components R; have to be considered for which
R, NV = (. This yields the upper bound n?"Y) for the number of possible choices of
the indices l;/, j° ¢ V. A more careful consideration shows that the finite limit

C(k,V,P) = lim n ?PVaV,Pk,n), |C(k,V,P)| <, (9.18)

n—oo

also exists.

We get by applying relations (9.12) and (9.15) and summing up relation (9.16) first
for all V' € 7(P) for a partition P € Py, and then for all P € P that the identity

_ 1 ,
Tok(f)= Y  n |V|/20(n,k:,V)H > &, jeV)  (9.19)
vc{1,2,....k} 1<l <n,

Li#L if j#§ for jEV

holds with the functions fy(z;, j € V) defined in (9.17) for all V' C {1,...,k} and
some appropriate coefficients C'(n, k, V). We shall show that these coefficients satisfy
the inequality |C(n,k, V)| < C(k) with some constant C(k) > 0. Beside this, it is
not difficult to see that the identity C'(n,k,{1,...,k}) = 1 holds. To see the estimate
|C(n,k, V)| < C(k) observe that n~IVI/2C(n, k,|V]) can be written as a sum of finitely
many terms, (their number is less than a number depending only on k) such that all
of them can be bounded by a number of the form W < D(k)n=k/2+8(PV) with

some partition P and the number G(P, V') introduced after formula (9.16) with some

P € P, and V € T(P). Hence it is enough to show that —% + B(P,V) < —%, ie.

B(P,V) < k_TW' if V€ T(P). This relation clearly holds, since 3(P,V) is the number
of components of such a partition of a set with less than or equal to k — |V elements
whose components have at least 2 elements.
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Relation (9.19) can be rewritten as J, x(f) = >, C(n,k, V)n_|V|/2In7|V|(fV),
VC{l,2,...k}
where I, |y (fv) is the U-statistic with the random variables 1,...,&, and the kernel
function fy defined in (9.17). This kernel function agrees with the function fy defined
in (9.2). We have also seen that the coefficients C(n, k, V') satisfy the inequality stated
in Theorem 9.4. Relation (9.18) together with the bound on the terms G(P, V') also imply
that the finite limits nlLrI;O C(n,k, V)= C(k,V) also exist. Theorem 9.4 is proved.

Two corollaries of Theorem 9.4 will be formulated. The first one explains the
content of conditions (8.2) and (8.5) in Theorems 8.1—8.4.

Corollary 1 of Theorem 9.4. If I,, .(f) is a degenerate U-statistic of order k with
some kernel function f, then

B (0 r) = MRS D fovn e, amutden) -l da)

< H/fz(ajl,...,xk)u(dxl)...u(d:tk), (9.20)

where i is the distribution of the random variables taking part in the definition of the U -
statistic I, 1 (f), and Sym f is the symmetrization of the function f. The k-fold multiple
random integral Ji ,,(f) with an arbitrary square integrable kernel function f satisfies
the inequality

EJ,1(f)? < C_’(k)/f2(x1,...,mk),u(dml)...u(dxk)

with some constant C(k) depending only on the order k of the integral J,, 1(f).
Proof of Corollary 1 of Theorem 9.4. The identity

E(n_k/2In,k(f))2 = (k')%nk Z /Ef(£l17 SR 7£lk)f(£l/17 s ,gl;c) (921)

holds, where the prime in Z/ means that summation is taken for such pairs of k-tuples
(s eesli), (4,205 0,), 1< 15,0 < n, for which [; # l; and I} # l;-, if j # 5. The
degeneracy of the U-statistic I, x(f) implies that Ef(&,,...,&,)f (&1, .- ,&;c) = 0 if
the two sets {l1,...,{x} and {l},...,[} } differ. This can be seen by taking such an index
l; from the first k-tuple which does not appear in the second one, and by observing that
the conditional expectation of the product we consider equals zero by the degeneracy
condition of the U-statistic under the condition that the value of all random variables
except that of § ., is fixed in this product. On the other hand,

Ef(€see s ) f (€ &) = / @1,y ) f(Enayse o gy ) . il dy)

if (I4,...,0.) = (w(ly),...,7(l)) with some (7w(1),...,7(k)) € IIj, where II; denotes
the set of all permutations of the set {1,...,k}. By summing up the above identities for
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all pairs (I1,...,l;) and (I1,...,l}) and by applying formula (9.21) we get the identity
at the left-hand side of formula (9.20). The second relation in (9.20) is obvious.

The bound for J,, x(f) follows from Theorem 9.4, formula (9.4) in Theorem 9.2 by
which the Ly-norm of the functions fy is not greater than the Ly-norm of the function f
and the bound that formula (9.20) yields for the second moment of the degenerate U-
statistics n_|V|/21n,|V|(fV) appearing in the expansion (9.9).

In Corollary 2 the decomposition (9.9) of a random integral J, o(f) of order 2 is
described in an explicit way.

Corollary 2 of Theorem 9.4. Let the random integral Jy, 2(f) satisfy the conditions
of Theorem 9.4. In this case formula (9.9) can be written in the following explicit form:

Jn2(f) = %In,2(f{1,2}) - % n1(fry) — % n1(fi2y) — fo (9.9")

with the functions

oy (@) = f(o.y) - / F (gl de) - / £, y)u( dy) + / £,y dyu dy),
fay(z) = /f(w,y)u(dy) —/f(:v,y)u(dﬂf)u(d%
Far) = [ an(dn) [ Fepu(doutdy)

and fo = [ fz,y)p(dz)u(dy).
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10. Multiple Wiener—It6 integrals and their properties.

In this section I present the definition of multiple Wiener—It6 integrals and some of its
most important properties needed in the proof of the results in Section 8. First the
notion of the white noise with some reference measure will be introduced, then multiple
Wiener—It6 integrals with respect to a white noise with some non-atomic reference
measure will be defined. A most important result in the theory of multiple Wiener—Ito
integrals is the so-called diagram formula presented in Theorem 10.2A which enables
us to write the product of two Wiener—Ito integrals in the form of a sum of Wiener—Ito
integrals. Its proof is given in Appendix B.

Another interesting result about Wiener-Ito6 integrals, formulated at the end of this
section in Theorem 10.5 states that the class of random variables which can be written
in the form of a sum of Wiener—Ito integrals of different order is sufficiently rich. All
random variables with finite second moment which are measurable with respect to the
o-algebra generated by the (Gaussian) random variables appearing in the underlying
white noise in the construction of multiple Wiener—Ito integrals can be written in such a
form. This result explains why it is natural to expect a result like the diagram formula.
The product of two Wiener—Ito integrals is also measurable with respect to the o-algebra
generated by the random variables in the underlying white noise, hence if we know that
such a product is square integrable, then Theorem 10.5 implies that it can be written as
the sum of multiple Wiener—Ito integrals of different order. What makes the diagram
formula especially useful is the fact that it yields an explicit representation of a product
of Wiener—Ito6 integrals in the form of a sum of Wiener—Ito integrals. I shall also give
a heuristic explanation of the diagram formula which may explain why it has the form
appearing in Theorem 10.2A. It also helps to find the analogs of the diagram formula
for (random) integrals with respect to the product of normalized empirical measures.
Such a result will be useful later.

Once the diagram formula is proved, it is not difficult to generalize it to the product
of finitely many Wiener—Ito integrals. This generalization, formulated in Theorem 10.2,
will be also called the diagram formula. It has an important corollary about the cal-
culation of the moments of Wiener—It6 integrals. Theorem 8.5 can be proved relatively
simply by means of this corollary.

I shall give the proof of two other results about Wiener—It6 integrals in Appendix C.
The first one, Theorem 10.3, is called 1t6’s formula for Wiener—Ito integrals, and it
explains the relation between multiple Wiener-It6 integrals and Hermite polynomials
of Gaussian random variables. This result is a relatively simple consequence of the
diagram formula and some basic recursive relations about Hermite polynomials.

The other result proved in Appendix C, Theorem 10.4, is a limit theorem about
a sequences of appropriately normalized degenerate U-statistics, where the limit is a
multiple Wiener—It6 integral. This result is interesting for us, because it helps to com-
pare Theorems 8.3 and 8.1 with their one-variate counterpart, Bernstein’s inequality. In
the one-variate case Bernstein’s inequality provides a comparison of the distribution of
sums of independent random variables and normal distribution functions, i.e. the limit
distribution in the central limit theorem. Theorem 8.3 yields a similar result about de-
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generate U-statistics. Its comparison with Theorem 8.5 and the limit theorem proved in
Appendix C about the limit distribution of degenerate U-statistics show that degenerate
U-statistics satisfy an estimate similar to Bernstein’s inequality. The upper bound in
it is similar to the estimate on the tail-distribution of the limit distribution of normal-
ized degenerate U-statistics, which equals to the distribution of an appropriate multiple
Wiener—It6 integral. The estimate of Theorem 8.1 about multiple integrals with respect
to normalized empirical distribution functions also have a similar interpretation.

My Lecture Note [28] contains a rather detailed description of Wiener—Ito integrals.
But in that work the emphasis was put on the study of a slightly different version of it.
The original version introduced here was also only briefly discussed there, not all details
were worked out. In particular, the diagram formula needed in this work was formulated
and proved only for modified Wiener—Ito integrals. I shall discuss the difference between
these random integrals together with the question why a different version of Wiener—Ito
integrals was introduced in [28] at the end of the section.

To define multiple Wiener—It6 integrals first the notion of a white noise has to be
introduced. This is done in the following definition.

Definition of a white noise with some reference measure. Let us have a o-finite
measure p on a measurable space (X, X). A white noise with reference measure p is
a Gaussian random field pw = {uw(A): A € X, u(A) < oo}, i.e. a set of jointly
Gaussian random wvariables indezxed by the above sets A, which satisfies the relations

Epw (A) =0 and Epw (A)pw (B) = p(AN B).
It is worth making some comments about this definition.

Remark: In the definition of a white noise sometimes also the property puw (AU B) =
pw (A) + pw (B) with probability 1 if AN B = 0, and u(A) < oo, u(B) < oo is
mentioned. But this condition can be omitted, because it follows from the remaining
properties of the white noise. Indeed, simple calculation shows that E(uw (AU B) —
pw(A) — pw(B))? = 0if AN B =), hence puw (AU B) — puw (A) — uw (B) = 0 with
probability 1 in this case. It also can be observed that if some sets A,..., A € X,
p(A;) < oo, 1 <j <k, are disjoint, then the random variables py (4;), 1 < j <k, are
independent because of the uncorrelatedness of these jointly Gaussian random variables.

It is not difficult to see that for an arbitrary reference measure p on a space (X, X)
a white noise py with this reference measure really exists. This follows simply from
Kolmogorov’s fundamental theorem, by which if the finite dimensional distributions of
a random field are prescribed in a consistent way, then there exists a random field with
these finite dimensional distributions.

Now I turn to the definition of multiple Wiener—It6 integrals with respect to a
white noise with some reference measure. First I introduce the class of functions whose
Wiener-1t6 integrals with respect to a white noise puy with a non-atomic reference
measure u will be defined.

Let us consider a measurable space (X, X), a non-atomic o-finite measure p on it
and a white noise puy on (X, X) with reference measure u. Let us define the classes
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of functions H,, x, k = 1,2,..., consisting of functions of k variables on (X, X’) by the
formula

Hurk = {f(a:l, ooxk): f(z1, ..., xp) is an X* measurable, real valued
(10.1)
function on X*, and/fQ(:El, cosxp)p(dey) . p(dey) < oo}.

The k-fold Wiener-It6 integrals of the functions f € H, , with respect to the white
noise py will be defined in a rather standard way. First they will be defined for some
simple functions, called elementary functions, then it will be shown that the integral
for this elementary functions have an Lo contraction property which makes possible to
extend it to the class of functions in H,, 1.

Let us first introduce the following class of elementary functions H,, . of k variables.
A function f(x1,...,zx) on (X%, X*) belongs to H,, i, if there exist finitely many disjoint
measurable subsets Aq,..., Ay, 1 < M < oo, of the set X (i.e. A;NA; =0if j#j')
such that p(A,) < oo for all 1 < j < M, and the function f has the form

(c(j1,--y k) i (z1,...,25) € Aj, X -+ X Aj,
with some indices (ji,...,Jx), 1<js <M, 1<s<k,
flzy,. .. o) = such that all numbers jq,..., j; are different

0 if(xl,...,xk)gé U Ajlx"'XAjk

(J15esdk): 155 <M, 1<s<E,
and all ji,...,jk are different.

\

(10.2)
with some real numbers ¢(ji,...,Jk), 1 < js < M, 1 < s < k, if all ji,...,jr are
different numbers. This means that the function f is constant on all k-dimensional
rectangles A;, X --- x Aj;, with different, non-intersecting edges, and it equals zero on

the complementary set of the union of these rectangles. The property that the support
of the function f is on the union of rectangles with non-intersecting edges is sometimes
interpreted so that the diagonals are omitted from the domain of integration of Wiener—
Ito integrals.

The Wiener-1t6 integral of an elementary function f(zi,...,zx) of the form (10.2)
with respect to a white noise py with the (non-atomic) reference measure p is defined
by the formula

/f(:z;l, coosxp)pw (dzy) .o pw (dag)

- Z (s de)pw (Asy) - pw (4j,)- (10.3)

1<js <M, 1<s<k
all j1,...,Jk are different

(The representation of the function f in (10.2) is not unique, the sets A; can be divided
to smaller disjoint sets, but its Wiener—It6 integral defined in (10.3) does not depend
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on its representation.) The notation

Zyk(f) = %/f(xl,...,:z:k)uw(d:vl)...uw(dxk), (10.4)

will be used in the sequel, and the expression Z,, 1 (f) will be called the normalized
Wiener—It6 integral of the function f. Such a terminology will be applied also for the
Wiener-Ito integrals of all functions f € H, » to be defined later.

If f is an elementary function in H,, ;, defined in (10.2), then its normalized Wiener—
It6 integral defined in (10.3) and (10.4) satisfies the relations

EE'Z, ,(f) =0,
E(k'Zu,k(f))Q = Z Z C(jla'"7jk)c(.j7r(1)7"'7.j7r(k))

(J1,--50k) 1< <M, 1<s<k, m€ll)
and all j1,...,jk are different.

E:uVV(Ajl) o pw (Ajk)NW (Ajwu)) SRy 22 % (Aj‘n'(k)) (10'5)

= k:!/SymfZ(gsl,...,xk)u(dxl)...u(dxk)
§k:!/fQ(xl,...,xk)u(dxl)...u(da:k)7

where IIj, denotes the set of all permutations 7 = {7 (1),...,m(k)} of the set {1,... k},

and Symf(xlaaxk):% ZH f('rﬂ‘(l)a"wxw(k))‘
melly

The identities written down in (10.5) can be simply checked. The first relation
follows from the identity Epw (A;,) - - pw (A;, ) = 0 for disjoint sets A;,, ..., A;,, which
holds, since the expectation of the product of independent random variables with zero
expectation is taken. The second identity follows similarly from the identity

Euw (Azy) - pw (A ) pw (Ajy) -+ pw (A5 ) = 0
if the sets of indices {j1,...,Jx} and {j1,..., ]} are different,
Epw (Aj)) - pw (A ) mw (Ajp) - pw (Ajr ) = p(Ay,) -+ - p(A;,)
if {j1,.- - gk} = {d1s - o dk ) Les i §1 = drys o0 Tk = Tk
with some permutatation 7 € Il,

which holds because of the facts that the py measure of disjoint sets are independent
with expectation zero, and Euy (A)? = u(A). The remaining relations in (10.5) can be
simply checked.

It is not difficult to check that

EZu1(f)Zur(9) =0 (10.6)
for all functions f € H, » and g € H, » if k # k', and
Zuk(f) = Zuk(Sym f) (10.7)
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for all functions f € H,, .

The definition of Wiener—Ito integrals can be extended to general functions f €
H,.r with the help of the estimate (10.5). But to carry out this extension we still
have to know that the class of functions Hu,k is a dense subset of the class H, ; in the
Hilbert space Lo(X*, X%, u*), where p* is the k-th power of the reference measure p
of the white noise py . 1 briefly explain how this property of H,, x can be proved. The
non-atomic property of the measure p is exploited at this point.

To prove this statement it is enough to show that the indicator function of any
product set A; x --- x Ay such that p(A4;) < oo, 1 < j < k, but the sets A,..., A
may be non-disjoint is in the Ly(u*) closure of H,, ;. In the proof of this statement it
will be exploited that if p is a non-atomic measure, then for all ¢ > 0 and 1 < j < k the
set A; can be represented as a finite union A; = |J B, s of disjoint sets B, s such that

S

1(Bjs) < e.) By means of these relations the product A; x --- x A, can be written
in the form

Arxoox A= | Buw x-ox Brw (108)

S1,.--,8k

with some sets Bj s, such that u(Bjs,) < € for all sets in this union. Moreover, we

may assume, by refining the partitions of the sets A; if this is necessary that any two

sets Bj s, and By o in this representation are either disjoint, or they agree. Take such
J

a representation of A; x --- x A, and consider the set we obtain by omitting those
products By s, X -+ X By, from the union at the right-hand side of (10.8) for which
B, = Bjﬁj_for some 1 < ¢ < j < k. The indicator function of the remaining set is
in the class ‘H,, . Hence it is enough to show that the distance between this indicator
function and the indicator function of the set A; x --- x Ay, is less than const. € in the
Lo (1) norm with some const. which may depend on the sets A1, ..., Az, but not on &.
Indeed, by letting ¢ tend to zero we get from this relation that the indicator function
of the set A; x Ay X --- x Ay is in the closure of 7'_@,1@ in the Lo (") norm.

3Sj

Hence to prove the desired property of ’Flu,k it is enough to prove the following
statement. Take the representation (10.8) of A; x --- x Ay (which depends on ¢€) and
an arbitrary pair of integers ¢ and j such that 1 < ¢ < j < k. Then the sum of the
measures (¥ (Bys, X -++ X By, ) of those sets By s, X - -+ X By, at the right-hand side
of (10.8) for which B; s, = Bj s, is less than const.e. To prove such an estimate observe

(1) For the sake of simplicity let us call a o-finite measure p on a measurable space
(X, X) non-atomic if for all sets A € X such that u(A) < oo and numbers € > 0 there is

N

a finite partition A = |J B of the set A with the property u(Bs) < e forall1 < s < N.
s=1

The original definition of a non-atomic measure is a formally weaker statement. It calls

a measure p non-atomic if for all A such that 0 < p(A) < oo there exists a B C A with
the property 0 < u(B) < pu(A). But the original definition of the non-atomic measure
implies the property suggested in this footnote. (See e.g. Example 49 at the end of
Chapter 2 in [*].) I omit the proof of this non-trivial statement, because it is a little bit
outside from the direction of the present work.
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that the ;¥ measure of such a set can be bounded by the ;/*~! measure of the set we
obtain by omitting the ¢-th term from the product defining it in the following way:

k k—1
% (BLSl X X Bk,sk) <eu (B1781 X X Bi—LSifl X Bi+173i+1 X X Bkvsk)'

Let us sum up this inequality for all such sets By s, X --- X By s, at the right-hand side
of (10.8) for which B;, = Bj,. The left-hand side of the inequality we get in such
a way equals the quantity we want to estimate. The expression at its right-hand side

is less than ¢~ [[  p(Ay), since e-times the p*~! measure of such disjoint sets are
1<s<k, s#i

summed up in it which are contained in the set A; X -+ X A;_1 X Aj11 X -+ X Ag. In

such a way we get the estimate we wanted to prove.

Knowing that H,, ) is a dense subset of H, ; in La(u*) norm we can finish the
definition of k-fold Wiener-ito integrals in the standard way. Given any function f €
H,.k, a sequence of functions f,, € H, x, n =1,2,..., can be defined in such a way that
[1f(@1, . yzg) = fa(z, oo @) Pu(dey) ..o p(dog) — 0 as n — oo. By relation (10.5)
the normalizations Z,, i (f,) of the already defined Wiener-It6 integrals of the functions
fny,m=1,2,..., constitute a Cauchy sequence in the space of square integrable random
variables on the probability space, where the white noise is given. (Observe that the
difference of two functions from the class H,, x also belongs to this class.) Hence the
limit nleréo Z,,1(fn) exists in Ly norm, and this limit can be defined as the normalized

Wiener-1t6 integral Z, ,(f) of the function f. The definition of this limit does not
depend on the choice of the approximating functions f,, hence it is meaningful. It can
be seen that relations (10.5) and (10.6) remain valid for all functions f € H, ;. The
following Theorem 10.1 describes the properties of multiple Wiener—It6 integrals. It
contains already proved results. The only still non-discussed part of this Theorem is
Property f) of Wiener—It6 integrals. But it is easy to check this property by observing
that one-fold Wiener—It6 integrals are (jointly) Gaussian, they are measurable with
respect to the o-algebra generated by the white noise puyy. Beside this, the random
variable py (A) for a set A € X, pu(A) < oo, equals the (one-fold) Wiener—It6 integral
of the indicator function of the set A.

Theorem 10.1. (Characterization of multiple Wiener—It6 integrals). Let
a white noise puw be given with some non-atomic o-additive reference measure on
a measurable space (X,X). Then the k-fold Wiener—Ité integral of all functions in
the class H,, i, introduced in formula (10.1) can be defined, and its normalized version
Zus(f) =35 [ f(@1, ... zi)pw (dzy) ... pw (dxy) satisfies the following relations:

a) Z,x(af+08g) =aZ, (f)+8Z,k(g) for all f,g € H, x and real numbers o and 3.

b) If Ay, ..., Ay are disjoint sets, u(A;) < oo, then the function fa,, . a, defined by the

relation fa,, . A (x1,...,x8) =1ifxy € Ay, ..., 2 € Ak, fa,,.. A, (@1,...,08) =
0 otherwise, satisfies the identity

1

Zugo(Far (@, wk)) = pw (An) - pw (Ak).
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1 1
EZu(f) =0, and EZ2,(f) = —lISym fI3 < I1f13

for all f € H, i, where ||f13 = [ f2(z1,...,2x)u(dzr) ... p(dog) is the square of
the Ly morm of a function f € H, k.

d) Relation (10.6) holds for all functions f € H, and g € H, p if k # K.
e) Relation (10.7) holds for all functions f € H,, .

f) The Wiener—Ité integrals Z,, 1(f) of order k =1 are jointly Gaussian. The small-
est o-algebra with respect to which they are all measurable agrees with the o-algebra
generated by the random variables puw (A), A € X, u(A) < 0o, of the white noise.

We have defined Wiener—Ito integrals of order k for all k = 1,2,.... For the sake
of completeness let us introduce the class H, o for & = 0 which consists of the real
constants (functions of zero variables), and put Z, o(c) = c. Because of relation (10.7)
we could have restricted our attention to Wiener—Ito integrals with symmetric kernel
functions. But it turned out more convenient to work also with Wiener—Ito integrals of
not necessarily symmetric functions.

Now I formulate the diagram formula for the product of two Wiener—Ito integrals.
For this goal some notations have to be introduced. To present the product of the
multiple Wiener-Ito integrals of two functions f(x1,...,2,) € H,, and g(x1,...,27) €
H,,; in the form of sums of Wiener-Ito integrals a class of diagrams I' = I'(k, 1) will
be defined. The diagrams v € I'(k, ) have vertices (1,1),...,(1,k) and (2,1),...,(2,1),
and edges ((1,71),(2,41)), - -+, ((1,7s), (2, 7%)) with some 1 < s < min(k,[). The indices
J1s---,Js in the definition of the edges are all different, and the same relation holds for
the indices j1,...,j%. All such diagrams 7 belongs to I'(k, ). The set of vertices of the
form (1,7), 1 < j < k, will be called the first row, and the set of vertices of the form
(2,7"), 1 < j' <, the second row of a diagram. We demanded that edges of a diagram
can connect only vertices of different rows, and at most one edge may start from each
vertex of the diagram.

Given a diagram v € I'(k, ) with the set of edges
E(v) ={(1,71),(2,51)), -, ((1,4s), (2,45)}

let Vi(7) = {(L 1), (LI} {(L )y (1,0} and Va(9) = {(2,1),..., (2,00} \
{(2,71),---,(2,75)} denote the set of vertices in the first and in the second row of the di-
agram -y respectively from which no edge starts. Put a4 (1,5) = (2,7) if ((1,7),(2,5")) €
E(v) and a~(1, j) = (1, j) if the diagram ~ contains no edge of the form ((1, j), (2,5')) €
E(7y). In words, the function o, (-) is defined on the vertices of the first row of the dia-
gram 7, it replaces a vertex to the vertex it is connected to by an edge of the diagram if
there is such a vertex, and it does not change those vertices from which no edge starts.
Put |y| = k+1—2s, i.e. || equals the number of vertices in v from which no edge starts.
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Given two functions f(z1,...,2x) € H,r and g(z1,...,2;) € H,, let us introduce their
product
F(z(1,1), - T(1,k) T(2,1)5 - - - T(2,0))
= Ff,g($(1,1)= s T(1,E) T(2,1) - - ,90(2,1)) (10.9)
= fxaa), - Tm)g( @@y, T)

together with its modification

Fy(za ,: (L,j) € Vi(), z2,1) -+ T2,0))

(10.9a)
= f($a7(1,1), e ,%7(1,@)9@(2,1), e ,x(z,Z)).

(Here the function f(x1,...,7) is replaced by f(z(1,1),...,2(1,%)) and the function
g(x1,...,21) by g(x(2,1),-..,%2,)).) With the help of the above introduced sets Vi(7),
Va(y) and function a.,(-) let us introduce the functions F, = F,(f,g) as

F’y(x(l,j)ax@,j’): (17.]) € ‘/1(’7)’ (27j/) € ‘/2(’)/))
= /Fv(@’aw(l,j): (1,7) € Vi(7), 22,1y, - - - T(2,1))

H M(dl‘(z,j))
(Q,j)E{(271),.--,(2,0}\‘/2(’Y)

(10.10)

for all diagrams v € I'(k,1). In words: We take the product defined in (10.9), then if
the index (1,75) of a variable x(; ;) is connected with the index (2,j’) of some variable
T (2,5, by an edge of the diagram -, then we replace the variable x(; ;) by (2 j-) in this
product. Finally we integrate the function obtained in such a way with respect to the
arguments with indices from the set {(2,1),...,(2,0)} \ Va(y). It is clear that F, is a
function of || variables. It depends on those coordinates whose indices are such vertices
of v from which no edge starts.

For the sake of simpler notations we shall also consider Wiener-It6 integrals with
such kernel functions whose variables are more generally indexed. If the k-fold Wiener—
It6 integral with a kernel function f(z1,...,xy) is well-defined, then we shall say that
the Wiener—It6 integral with kernel function f(xy,,...,Zy, ), where {uy,...,ux} is an
arbitrary set with k different elements, is also well defined, and it equals the Wiener—Ito
integral with the original kernel function f(x1,...,xx). (We have right to make such a
convention since the value of a Wiener—Ito integral does not change if we permute the
indices of the variables of the kernel function in an arbitrary way.) In particular, we
shall speak about the Wiener-Ito6 integral of the function F, defined in (10.10) without
reindexing its variables z(; jy and x( -y ‘in the right way’. Now we can formulate the
diagram formula for the product of two Wiener—Ito integrals.

Theorem 10.2A. (The diagram formula for the product of two Wiener—
It6 integrals). Let a non-atomic o-finite measure p be given on a measurable space
(X, X) together with a white noise pyw with reference measure p, and take two func-
tions f(x1,...,2k) € Hur and g(x1,...,2;) € Hyuy. (The classes of functions H,, 1, and
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H,.,1 were introduced in (10.1).) Let us consider the class of diagrams I'(k,l) introduced
above together with the functions F., v € I'(k,l), defined by formulas (10.9), (10.9a)
and (10.10) with its help. They satisfy the inequality

[Ey]l2 < [[fll2llgllz  for ally € T'(k, 1), (10.11)

where the Lo norm of a (generally indezed) function h(xy,,...,x,,) is defined as

I = [ B2l o) ).

Beside this, the product Z, 1(f)Z,.1(g) of the normalized Wiener-Ité integrals of the
functions f and g (the notation Z,,  was introduced in (10.4)) satisfies the identity

(K1 Zy e () (1124 (9)) = Z Y 1 (F) = Z V' Z 1y (Sym Fy ). (10.12)
~er (k,l) YET (k1)

Theorem 10.2A will be proved in Appendix B. The following consideration yields
a heuristic explanation for it. Actually, it can also be considered as a sketch of proof.

In the theory of general It6 integrals when stochastic processes are integrated with
respect to a Wiener processes, one of the most basic results is Itd’s formula about
differentiation of functions of It6 integrals. It has a heuristic interpretation by means
of the informal ‘identity’ dW? = dt. In the case of general white noises this ‘identity’
can be generalized as puw (dx)? = u(dz). Next we present a rather informal ‘proof’ of
the diagram formula on the basis of this ‘identity’ and the fact that the diagonals are
omitted from the domain of integration in the definition of Wiener—Ito integrals.

In this ‘proof’ we fix two numbers £ > 1 and [ > 1, and consider the product of
the Wiener—Ito integrals of the functions f and g of order k and [. This product is a
bilinear form of the functions f and g. Hence it is enough to check formula (10.12)
for a sufficiently rich class of functions. It is enough to consider functions of the form
flz,...,xk) = Ia, (1) -+ L4, (z) and g(z1,...,21) = Ip,(x1) - - Ip,(2;) with disjoint
sets A1, ..., Ax and disjoint sets By, ..., B;, where I 4(z) is the indicator function of a set
A. (It is exploited at this point that the functions f and g disappear at the diagonals.)

Let us divide the sets A; into the union of small disjoint sets D](.m), 1 < j < k with
some fixed number 1 < m < M in such a way that M(Dj(-m)) < & with some fixed € > 0,
and the sets B; into the union of small disjoint sets F’ j(m), 1 < j <[, with some fixed
number 1 < m < M, in such a way that ,u(Fj(m)) < ¢ with some fixed € > 0. Beside

this, we also require that two sets Dj(-m) and F j(,m )

should be either disjoint or they
should agree. (The sets D](-m) are disjoint for different indices, and the same relation
holds for the sets F j(,m l).)

Then the identity

k M M
Rz =11 (Z Mwwﬁ-m))) and  1Z,.1(9) = [ (Z uW(F;fn’))) ,

'=1 \m'=1
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holds, and the product of these two Wiener—It6 integrals can be written in the form of a
sum by means of a term by term multiplication. Let us divide the terms of the sum we
get in such a way into subgroups indexed by the diagrams v € I'(k,[) in the following
k l /
way: Each term in this sum is a product of the form J] MW(DJ(mj)) II uW(Fj(,mj)). Let
j=1 j'=1

it belong to the subgroup indexed by the diagram ~ with edges ((1, j1), (2,41)), ... , and
((1,7s),(2,7%)) if the elements in the pairs (D;le , Fj1 D U (D;:js , szé) agree, and
otherwise all terms are different. Then letting ¢ — 0 (and taking partitions of the sets
D; and F)js corresponding to the parameter ¢) the sums of the terms in each subgroup
turn to integrals, and our calculation suggests the identity

(K Zuu (MW Za(9) = Y 2, (10.13)

~yel(k,l)

with

Zy = /f(%wu,m,--wwavu,k))g(fc(zg),---,33(2,1)) (10.13a)

,LLV[/( dxow(l,l)) .o -NW( dwaw(l,k)),UW( dl‘(g@)) ce ,uw( dx(g,l))

with the function o (-) introduced before formula (10.9). The indices a(1,j) of the
arguments in (10.13a) mean that in the case o (1,5) = (2,j’) the argument x(; ;) has
(

to be replaced by (3 ;1. In particular, pw (dzaa j))pw (dze ) = ,uW(da:(z’j,))Q =
p(dz (2 jry) in this case because of the ‘identity’ pw (dz)? = p(dz). Hence the above
informal calculation yields the identity Z, = [y[!Z, ,|(Fy). Thus relations (10.13)

and (10.13a) imply formula (10.12).

Similar heuristic argument can be applied to get formulas for the product of in-
tegrals of normalized empirical distributions or Poisson processes, only the starting
formula py (dx)? = p(dx) changes in these cases, some additional terms appear which
modify the final result. I return to this question in the next section.

It is not difficult to generalize Theorem 10.2A with the help of some additional
notations to a diagram formula about the product of finitely many Wiener—Ito6 integrals.
Let us consider m > 2 Wiener-1It6 integrals k,!Z,, x (f,), of functions fy(z1,...,zx,) €
Hyk,, of order k, > 1, 1 < p < m, and define a class of diagrams I' = I'(k1, ..., k) in
the following way.

The diagrams v € I' = T'(kq, ..., k) have vertices of the form (p,r), 1 < p < m,
1 <r < k,. The set of vertices {(p,r): 1 < r < k,} with a fixed number p will be
called the p-th row of the diagram . A diagram v € I' = I'(kq,..., k,) may have
some edges. All edges of a diagram connect vertices from different rows, and from each
vertex there starts at most one edge. All diagrams satisfying these properties belong
to I'(k1,...,kn). If a diagram ~ contains an edge of the form ((p1,7r1), (p2,72)) with
p1 < pe, then (p1,r1) will be called the upper and (ps,r2) the lower end point of this

edge. Let E(y) = {((pgu),ﬁ“)), (pgu),réu))), p§“) < pgu), 1 < u < s} denote the set of
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all edges of a diagram ~ (the number of edges in v was denoted by s), and let us also
introduce the sets V*(y) = {((p} () ) 1 < wu < s}, the set of all upper end points and

Vb (y) = {((pgu), réu)), 1<u< s}, the set of all lower end points of edges in a diagram
7. Let V.=V(y) ={(p,r): 1 <p<m,1 <r <k,} denote the set of all vertices of ~,
and let |y| = k1 + -+ -+ ky — 2| E(7)] be equal to the number of vertices in 7 from which
no edge starts. Let us also define the function . (p,r) for a vertex (p,r) of the diagram
7 in the following way: o, (p,r) = (p,7), if there is some pair of integers (p, 7) such that
((p,7), (p,7)) € E(y) and p < p, i.e. (p,r) € V*(y) and ((p,7),(P,7)) € E(7), and put
a~(p,r) = (p,r) for (p,r) € V(7)\ V*(7). In words, the function a.,(-) was defined on
the set of vertices V() in such a way that it replaces an upper end point of an edge
with the lower end point of this edge, and it does not change the remaining vertices of
the diagram.

With the help of the above quantities the appropriate multivariate version of the
functions given in (10.9), (10.9a) and (10.10) can be defined. Put

Frpmy,: 1<p<m1<r<ky)=Fp 5. (Zprn,: 1<p<m,1<r<k,)

.....

m

(10.14)
H (@(p,1)s > T(p,ky) )

Ey(x(pry,: (p,r) €V(Y) \ V*(y H (T (1) - - -+ T (prkey) ) (10.14a)
and

Ey (2 (0,7) € VNN (VP(v) UVH(7))

_ / (2 (1) eVOANVPR) T wldeg):
(1) EV(7) (10.15)

With the help of the above notations the diagram formula for the product of arbitrarily
many Wiener—It6 integrals can be formulated.

Theorem 10.2. (The diagram formula for the product of finitely many
Wiener—Ité integrals). Let a non-atomic o-finite measure p be given on a mea-
surable space (X, X) together with a white noise puw with reference measure . Take
m > 2 functions fp(x1,...,7x,) € Hyk, with some order k, > 1, 1 < p < m. Let us
consider the class of diagrams I'(k1, ..., k) introduced above together with the functions
F,,veTl'(ki,... k), defined by formulas (10.14), (10.14a) and (10.15) with its help.

The Lo-norm of these functions satisfies the inequality

172 < T[] Ifollz for ally € T(ka, ... k). (10.16)

p=1
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m

Beside this, the product [] Z,,(fp) of the normalized Wiener—Ité integrals of the
p=1

functions fp, 1 < p < m, satisfies the identity

H kp!Zp.k, (fp) = Z Y1 Z 11 (Fr) = Z Y1 Z 1y (Sym Fy).
p=1

’YEF(kl,...,km) ’YEF(kl,...,k‘m)
(10.17)

Theorem 10.2 can be relatively simply derived from Theorem 10.2A by means of
induction with respect the number of terms whose product we consider. We still have
to check that with the introduction of an appropriate notation Theorem 10.2A remains
valid also in the case when the function f is a constant.

Let us also consider the case when f = c and g € H, ;. In this case we apply the
convention Z, o(c) = ¢, define the class of diagrams I'(0,/) that consists only of one
diagram  whose first row is empty, its second row contains the vertices (2,1),...,(2,1),
and it has no edges. Beside this, we define F,(2(21),...,2Z@21)) = cg(2@2,1),---»T(2,1))
in this case. With such a convention Theorem 10.2A can be extended to the case of the
product of two Wiener—Ito integrals of order £ > 0 and [ > 1. Theorem 10.2 can be
derived from this slightly generalized result by induction.

By statement c) of Theorem 10.1 all Wiener—It6 integrals of order k£ > 1 have
expectation zero. This fact together with Theorem 10.2 enable us to compute the
expectation of a product of Wiener—Ito integrals. Theorem 10.2 makes possible to
rewrite a product of Wiener—Ito integrals as a sum of Wiener—It6 integrals. Then its
expectation can be calculated by taking the expected value of each term and summing
them up. Only constant terms yield a non-zero contribution to this expectation. These
constant terms agree with the functions F, corresponding to diagrams with no free
vertices. The next corollary writes down the result we get in such a way.

Corollary of Theorem 10.2 about the expectation of a product of Wiener—
Ito integrals. Let a non-atomic o-finite measure p be given on a measurable space
(X, X) together with a white noise pyw with reference measure . Take m > 2 functions
fo(x1,...,7k,) € Hug,, and consider their Wiener—Ito integrals Z,, . (fp), 1 <p < m.
The expectation of the product of these random variables satisfies the identity

E (ﬁ kplzﬂ,kp(fp)) = Y P, (10.18)

’yef‘(kl ,...,k‘m)

where T'(ky, ..., kmn) denotes the set of all such diagrams v € I'(ky, ..., k) which have
no free vertices, i.e. |y| = 0. Such diagrams will be called closed in the sequel. (If

U(k1, ..., k) is empty, then the sum at the right-hand side of (10.17) equals zero.) The
functions F for v € I'(ki1,..., k) are constants, and they satisfy the inequality

B < T Ifollz for ally € T(ky,. .. k). (10.19)

p=1
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Proof of the Corollary. Relation (10.18) is a straight consequence of formula (10.17),
part ¢) of Theorem 10.1 and the identity Z,o(Fy) = Fy, if |y| = 0. Relation (10.19)
follows from (10.16).

The next result I formulate, It0’s formula for multiple Wiener—Ito6 integrals, can also
be considered as a consequence of the diagram formula. It will be proved in Appendix C.

Theorem 10.3. (Itd’s formula for multiple Wiener—Ité integrals). Let a non-
atomic o-finite measure p be given on a measurable space (X, X') together with a white
noise py with reference measure . Let us take some real valued, orthonormal func-
tions p1(x), ..., ©m(x) on the measure space (X, X,u). Let Hi(u) denote the k-th
Hermite polynomial with leading coefficient 1. Take the one-fold Wiener—Ito integrals
Ny = Zua(pp), 1 < p < m, and introduce the random variables Hy, (1,), 1 < p < m,

P
with some integers k, > 1,1 <p <m. Put K, = ) ky, 1 <p <m, Ko =0. Then

j=1
M, ---,Nm are independent, standard normal random variables, and the identity

Ky

H Hy, (np) = Kn!Z, K, H H ©p(T5)
p=1

p=1 \j=K,_ 1+1

(10.20)

m Kp
= Kn'Zus, |[Sym [ ]| I ol@)
p=1 \j=K,_1+1

holds. In particular, for a single real valued function ¢(x) such that [ ¢*(z)u(dz) =1

H, ( / so(x)uw(dl‘)> = [t elonm () o (dn). (021)

I also formulate a limit theorem about the distribution of normalized degenerate
U-statistics. The limit distribution in this result can be described by means of multiple
Wiener—It6 integrals. It will be proved in Appendix C.

Theorem 10.4. (Limit theorem about normalized degenerate U-statistics).
Let us consider a sequence of degenerate U -statistics I, 1, (f) of orderk, n =k, k+1,...,
defined in (8.7) with the help of a sequence of independent and identically distributed
random variables &1,&a, ... taking values in a measurable space (X,X) with a non-
atomic distribution p and a kernel function f(x1,...,xk), canonical with respect to
the measure u, defined on the k-fold product (X*, X*) of the space (X, X) for which
[ f2(z1,...,zk)p(dey) ... pu(dey) < oo. Then the sequence of normalized U-statistics
n_k/zlmk(f) converges in distribution, as n — oo, to the k-fold Wiener—Ité integral

Zur) =7 [ Flaree o (@) (A
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with kernel function f(x1,...,xr) and a white noise puw with reference measure f.

Remark. The limit behaviour of degenerate U-statistics I,, x(f) with an atomic measure
1 which satisfy the remaining conditions of Theorem 10.4 can be described in the follow-
ing way. Take the probability space (U,U, \), where U = [0, 1], U is the Borel o-algebra,
and A is the Lebesgue measure on it. Introduce a sequence of indepedent random vari-
ables 71,72, . .. with uniform distribution on the interval [0, 1], which is independent also
of the sequence &1, &2, . ... Define the product space (X, X, 1) = (X xU, X xU,pux N\
together with the functlon f(@,. .. ,Tx) = f((z1,u1), ..., (l‘k, ug)) = f(z1,...,2) with
the notation = (x,u) € X xU, and §; = (§,n;), j =1,2,.... Then I,, x(f) = L x(f)
(with the above defined function f and fi distributed random variables éj) Beside this,
Theorem 10.4 can be applied for the degenerate U-statistics In,k(f), n=12....

In the next result I give an interesting representation of the Hilbert space consisting
of the square integrables functions measurable with respect to a white noise py . An
isomorphism will be given with the help of Wiener—Ito integrals between this Hilbert
space and the so-called Fock space to be defined below. To formulate this result first
some notations will be introduced.

Let HO r C Hu r denote the class of symmetric functions in the space H, x,
k=0,1,2,. f € H, is in its subspace H&k if and only if f(zy1,...,zr) =
Sym f(z1,... ,xk). Let us introduce for all £ = 0,1,2,... the Hilbert space G consist-
ing of those random variables 7 (on the probability space where the white noise pyy is
defined) which can be written in the form

n=2Z,r(f k'/f X1y Tk pw (day) ... pw (deg)  with some f EH%H

It follows from part a) and c) of Theorem 10.1 that the map f — Zu k(f) is a
linear transformation of HY ; to Gi, and L3 = EZ? () for all f € H),,, where
| fll2 denotes the usual Lo-norm of the function f with respect to the k-fold power of
the measure p. By the definition of Wiener—Ito integrals the set G; consists of jointly
Gaussian random variables with expectation zero. The spaces 'H,, ¢ and Gy consist of the
real constants. Let us define the space Exp (H,,) of infinite sequences f = (fo, f1,...),

o0

fr € Hgyk, k =0,1,2,..., such that ||f]3 = %ka”% < o0. The space Exp (H,,)

with the natural addition and multiplication by a constant and the above introduced
norm || f||2 for f € Exp(H,) is a Hilbert space which is called the Fock space in the
literature.

Let G denote the class of random variables of the form
:ZZ ,k(fk)7 f:(f07f17f27"')EEXP(HH>'
k=0

The next result describes the structure of the space of random variables G. It is useful
for a better understanding of Wiener—Ito integrals, but it will be not used in the sequel.
In its proof I shall refer to some basic measure theoretical results.
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Theorem 10.5. (Isomorphism of the space of square integrable random vari-
ables measurable with respect to a white noise with a Fock space). Let a
non-atomic o-finite measure j be given on a measurable space (X,X) together with
a white noise pyw with reference measure p. Let us consider the class of functions
Hg,k, k=0,1,2,..., and Exp (H,) together with the spaces of random wvariables Gy,

k =0,1,2,..., and G defined above. The transformation Z: Z(f) = > Z,k(fx),
k=0

[ = (fo, fi, f2,...) € Exp(H,), is a unitary transformation from the Hilbert spaces
Exp (HM) to G. The Hilbert space G consists of all random variables with finite second
moment, measurable with respect to the o-algebra generated by the random wvariables
uw(A), A e X, u(A) < co. This o-algebra agrees with the o-algebra generated by the
random variables Z,,1(f1), fi € H, ;.-

Proof of Theorem 10.5. Properties a) and c) in Theorem 10.1 imply that the transforma-
tion fr. — Z,x(fx) is a linear transformation of H{, , to G, and || frll5 = EZ,.x(f)*.
Beside this, EZ, 1 (f)Z.r (f},) =0if fi € Hg,m and f;, € ’Hg’k, with k # k' by prop-
erties d) and c¢). (The latter property is needed to guarantee this relation also holds if

k=0 or k' =0.) From these relations follows that the map Z: Z(f) = > Z, 1(fx),
k=0

f=(fo, f1, f2,...) € Exp (H,) is an isomorphism between the Hilbert spaces Exp (H,,)
and G.

It remained to show that G contains all random variables with finite second moment,

measurable with respect to the corresponding o-algebra. Let g;(u), j =1,2,..., be an
orthonormal basis in H}, ; = H,, 1, and introduce the random variables 7; = Z,,1(g;),
j =1,2,.... By Itd’s formula for Wiener—It6 integrals (Theorem 10.3) these random

variables are independent with standard normal distribution, and all expressions of the
form H,, (n;,)...H,, (n;,) with 7y +--- 4+ 7, = k are in the space Gy, where H,(-)
denotes the Hermite polynomial of order r with leading coefficient 1. To prove the
desired statement by means of these relations we still need the following results from
the classical analysis:

a) Hermite polynomials constitute a complete orthonormal system in the Ly-space on
the real line with respect to the standard normal distribution. (This result will be
proved in Section C in Proposition C2.)

b) If a random variable ¢ is measurable with respect to the o-algebra generated by
some random variables 11,79, ..., then there exists a Borel measurable function
f(x1,29,...) on the infinite product of the real line (R°°, B>) in such a way that

C=f(n,m2,...).

This means in our case that any random variable ( measurable with respect to

the o-algebra generated by the random variables n; = Z,1(g;), j = 1,2,..., can be
written in the form ¢ = f(n1,72,...) with the above introduced independent, standard
normal random variables 71,72, .... If it has finite second moment, then the function

f appearing in its representation has finite Lo-norm with respect to the infinite power
of the standard normal distribution. Hence some results about orthogonal basis on
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product spaces make possible to expand the function f with respect to product of
Hermite polynomials, and this yields that

C=> el o) Hey(njy) - He (1)

with some coefficients ¢(j1,71, ..., js,Ts) such that

YUy | Hey ()2 [y, ()] < oo

(Actually it is known that || Hy(u)||? = k!, but here we do not need this knowledge.)
The above relations yield the desired representation of a random variable ¢ with
finite second moment, if it is measurable with respect to the o-algebra generated by the

random variables in G;. Indeed, the identity ( = > (i holds with
k=0

Ck = Z C(thl?'"7j87r8)H7"1<77j1)"'Hrs(njs)v
T1+"'+Ts:k

and (i € G by Ito’s formula.

To complete the proof it is enough to remark that the o-algebra generated by the
random variables 71,72,... and puw (A), A € X, u(A) < oo agree, as it was stated in
part f) of Theorem 10.1.

The results about Wiener—Ito integrals discussed in this Section are useful in the
study of non-linear functionals of a set of jointly Gaussian random variables defined
by means of a white noise. In my Lecture Note [28] similar problems were discussed,
but in that work a slightly different version of Wiener—Ito integrals was introduced.
The reason for it was that that the solution of the problems studied in [28] demanded
different methods.

In work [28] stationary Gaussian random fields were considered, and the main prob-
lem studied there was the description of the limit distribution of certain sequences of
non-linear functionals of such Gaussian random fields. In a stationary Gaussian random
field a shift operator can be introduced. The shift of all random variables measurable
with respect to the underlying stationary Gaussian random field can be defined. In [28§]
we needed a technique which helps in working with the shift operator.The Fourier anal-
ysis is a useful tool in the study of the shift operator. In paper [28] it was tried to
unify the tools of multiple Wiener—It6 integrals and Fourier analysis. This led to the
definition of a slightly different version of Wiener—Ito integrals.

The idea behind this definition was the observation that not only the correlation
function of a stationary Gaussian field can be expressed by means of the Fourier trans-
form of its spectral measure, but also a random spectral measure can be constructed
whose Fourier transform expresses the stationary Gaussian process itself. After the in-
troduction of this random spectral measure a version of the multiple Wiener—Ito6 integral
can be defined with respect to it, and all square integrable random variables measurable
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with respect to the o-algebra generated by the underlying Gaussian stationary random
field can be expressed with its help. Moreover, it enables us to apply the methods
of multiple Wiener—It6 integrals and Fourier analysis simultaneously. In [28] such a
method was worked out. The modified Wiener—It6 integral introduced there shows a
behaviour similar to that of the original Wiener—Ito integral, only it has to be taken
into account that the random spectral measure behaves not like a white noise, but as
its ‘Fourier transform’. I omit the details which can be found in [28].

The spaces Gy consisting of all k-fold Wiener—Ito integrals were introduced also
in [28], and this had for a special reason. In that work the Hilbert space of square
integrable functions, measurable with respect to the underlying stationary Gaussian field
was studied together with the shift operator acting on it, which are unitary operators
on this Hilbert space. It was useful to decompose this Hilbert space to the direct sum of
orthogonal subspaces, invariant with respect to the shift operator. The spaces G, were
elements of such a decomposition.

In the present work no shift operator was defined, and no limit theorem was studied
for non-linear functionals of a Gaussian field. Here the introduction of the spaces G was
useful because of a different reason. In the study of our problems we shall need good
estimates on the 2p-th moment of random variables, measurable with respect to the
underlying white noise for all positive integers p. As it will be shown, the high moments
of the random variables in the spaces G with different indices k£ show an essentially
different behaviour. For a large number p the p-th moment of a random variable in Gy
behaves similarly to that of the k-th power £* of a Gaussian random variable £ with zero
expectation. An estimate of this type will be formulated in Proposition 13.1 or in its
consequence, in formula (13.2) and in a partial converse of this result, in Theorem 13.6.

11. The diagram formula for products of degenerate U-statistics.

There is a natural analog of the diagram formula for the products of Wiener—Ito integrals
both for the products of multiple integrals with respect to normalized empirical measures
and for the products of degenerate U-statistics. These two results are closely related.
They express the products of multiple random integrals or of degenerate U-statistics
as a sum of multiple random integrals or degenerate U-statistics respectively. In this
work the diagram formula for multiple integrals with respect to a normalized empirical
measure will be discussed only at an informal level, while a complete proof of the
analogous result about degenerate U-statistics will be given. The reason for such an
approach is that the diagram formula for the product of degenerate U-statistics is more
useful in the study of the problems discussed in this work.

We want to get good estimates about the high moments both of multiple random
integrals and of degenerate U-statistics. In the case of degenerate U-statistics the di-
agram formula yields an explicit formula for these moments. It expresses the product
whose expected value has to be calculated as a sum of degenerate U-statistics of differ-
ent order. Beside this the expected value of all degenerated U-statistics of order £ > 1
equals zero. Hence the expected value we are interested in equals the sum of the zero
order terms appearing in the diagram formula.
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The analogous problem about the moments of multiple integrals with respect to
a normalized empirical measure is more difficult. The diagram formula enables us to
express these moments as the sum of the expectation of multiple random integrals of
different order also in this case. But the expected value of random integrals of order
k > 1 with respect to a normalized empirical distribution may be non-zero. It is shown
in an example presented before the proof of Theorem 9.4 that this is really possible.

First I give an informal description of the diagram formula for the product of
two random integrals with respect to a normalized empirical measure. Its analog, the
diagram formula for the product of two Wiener—Ito integrals can be described in an
informal way by means of formulas (10.13) and (10.13a) together with the ‘identity’
pw (dz)? = pu(dz) in their interpretation. The diagram formula for the product of two
multiple integrals with respect to a normalized empirical measure has a similar repre-
sentation. (Observe that in the definition of the random integral J,, x(-) given in for-
mula (4.8) the diagonals are omitted, similarly to the case of Wiener—Ito6 integrals, from
the domain of integration.) In this case such a version of formulas (10.13) and (10.13a)
can be applied, where the random integrals Z, ; are replaced by J, 1, and the white
noise measures uy are replaced by the normalized empirical measures v,, = /n(u, — ).
But the analog of the ‘identity’ uw (dx)? = p( dz) needed in the interpretation of these
formulas has a different form. Namely, it states that v,(dr)? = p(dz) + \/Lﬁyn(da:).

Let us ‘prove’ this new ‘identity’.

Take a small set A, i.e. a set A such that p(A) is very small, write down the
identity v, (A)? = np, (A)? + np(A)? — 2np, (A)u(A), and observe that only a second
order error is committed if the terms nu(A)? and 2npu, (A)u(A) are omitted at the right-
hand side of this identity. Moreover, also a second order error is committed if np, (A)?
is replaced by u,(A), because it has second order small probability that there are at
least two sample points in the small set A. On the other hand, nu,(A)? = u,(A)
if A contains only zero or one sample point. The above considerations suggest that
va(dw)? = pn(de) = p(dz) + 7= [Vn(pn(dz) — p(dz))] = p(dz) + J=va(dz). (This
means that in the ‘identity’ expressing the square v,(dz)? of a normalized empirical
measure a correcting term \/Lﬁvn(dx) appears. If the sample size n — oo, then the
normalized empirical measure tends to a white noise with counting measure u, and this
correcting term disappears.)

In paper [31] the diagram formula for the product of two multiple integrals with
respect to a normalized empirical measure is proved with a different notation. It says
that the identity suggested by the above heuristic argument really holds. This result
may also help in the proof of the diagram formula for degenerate U-statistics. But a
direct proof of this result seems to be simpler.

In the proof of the diagram formula for the product of two degenerate U-statistics
first we write this product as the sum of U-statistics. Then by applying Hoeffding’s
decomposition for each term in this sum the product of two degenerate U-statistics can
also be written as a sum of degenerate U-statistics. Actually we apply a slightly refined
version of the Hoeffding decomposition where we exploit that we took the product of
two degenerated U-statistics. Such a calculation yields the diagram formula for the

82



product of two degenerate U-statistics. With the help of a good notation and some
additional work also the product of several degenerate U-statistics can be written as
the sum of appropriate degenerate U-statistics. In such a way we get the general form
of the diagram formula for the product of degenerate U-statistics.

In this section I formulate the diagram formula for the product of two and finitely
many degenerate U-statistics together with an estimate about the Lo-norm of the kernel
functions of the degenerate U-statistics appearing in the diagram formula, and a formula
about the expectation of products of degenerate U-statistics. To formulate these results
some new notations have to be introduced. The proofs of the results in this section are
postponed to the next section.

In the formulation of the diagram formula for the product of degenerate U-statistics
a more general class of diagrams have to be considered than in the case of multiple
Wiener—It6 integrals. We shall define these new diagrams under the name coloured
diagrams, and the kernel functions of the U-statistics appearing in the diagram formula
will be introduced with their help.

A class of coloured diagrams T'(kq,...,k,,) will be defined whose vertices will be
the pairs (p,r), 1 <p <m, 1 <r < k,, and the set of vertices (p,r), 1 <r < k,, with
a fixed number p will be called the p-th row of the diagram. To define the coloured
diagrams of the class I'(k1, ..., k) first the notions of chain and coloured chain will be
introduced. A sequence 8 = {(p1,71),---,(Ps,7s)} with 1 < p; < py < -+ <ps <m
and 1 < r, <k, forall 1 < u < s will be called a chain. The number s of the
pairs (py,7,) in this sequence, denoted by ¢(3), will be called the length of the chain
B. Chains of length ¢(3) = 1, i.e. chains consisting only of one element (p;,r;) are also
allowed. We shall define a function ¢(3) = £1 which will be called the colour of the
chain 3, and the pair (3, ¢()) will be called a coloured chain. We shall allow arbitrary
colouring ¢(f3) = £1 of a chain with the only restriction that a chain of length 1 can
only get the colour —1, i.e. ¢(8) = -1 if ¢(5) = 1.

A coloured diagram v € I'(k1,...,km), v = {B(l1),...,B(ls)} is a partition of the
set {(p,7): 1 <p<m, 1<r <k,} tothe union of some coloured chains 3(l1),. .., 5(ls),
i.e. each vertex (p,r) is the element of exactly one chain §(l;) € . Beside this, each
chain 3(l;) of a diagram ~ has a colour ¢,(5(l;)) = £1. The set I'(k1, ..., ky,) consists
of all partitions of the set of vertices {(p,7),1 <p <m, 1 <r <k,} to coloured chains,
where an arbitray colouring of the chains with the numbers £1 is allowed with the only
restriction that for a chain 5 € v of length ¢(5) = 1 of a diagram v € I'(k1,...,kmn)
¢y(B) = —1. Here we introduced an indexation of the chains § € « of a diagram ~ with
some integers 1 < I3 < ls < --- < ls. It turned out useful to fix such an indexation
(depending on the diagram ~ of these chains, and to define the objects we need in our
later considerations with its help. It was also useful to allow more general indexation
with numbers [1,...,[ls and not with the numbers 1,...,s.

We shall also introduce an enumeration of the vertices of a coloured diagram v €
[(ki,..., k) with the help of the enumaration of its chains. Given a coloured diagram
v=(B(l),...,B(s)) € T'(k1,..., k) we define the indices - (p, r) of its vertices in the
following way. Put o, (p,r) = [; to a vertex (p,r) if (p,r) € B(l;). We shall split the set
of indices {ly,...,ls} of the chains contained in a coloured diagram ~ into two disjoint
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sets O(v) = {l;: 1 < j < s,¢4(B(l;)) = —1}, called the set of open indices of the
diagram v and C(y) = {l;: 1 < j <'s, ¢y(B(l;)) = 1}, called the set of closed indices of
the diagram ~. We shall also list the elements of O(7) in an increasing order, i.e. write
O() ={li,.. .. Lo}, i <la < -+ <ljo(y)- (We shall denote the cardinality of a
finite set A by | A| in the sequel.) We defined the coloured diagrams and introduced their
open and closed indices, because, as we shall see, in the diagram formula such degenerate
U-statistics appear which are defined with the help of these coloured diagrams, and the
indices of the arguments of the U-statistic corresponding to the coloured diagram v are
closely related to the chains of v with colour —1, hence to the open indices of ~.

In the diagram formula we express the product [] I, ,(fp) of degenerate U-
p=1
statistics with canonical kernel functions f, of k, variables as the sum of appropriate
degenerate U-statistics. The kernel functions of the degenerate U-statistics appering in
this representation of the product of degenerate U-statistics will depend on the above
defined coloured diagrams v, and they will be denoted by F, v € I'(k1, ..., kp). In the
definition of these functions F’, we shall apply the operators introduced below.

Given a function h(xy,,...,2,,) with coordinates in the space (X, X’) (the indices
ui,...,u, are all different, otherwise they can be chosen in an arbitrary way) and a
probability measure ;1 on the space (X, &) let us introduce its transforms P,;h and
Qu;h, 1 < j <r, by the formulas

(Pu;h) (2w w € {ug, ..o ur} \ {uy}) = /h(azul,...,a:ur)u(dxuj), 1<j5<r (11.1)
and

(Qu ) (@ars s ) = h(@ays - 20,) — /hml, oz n(dr,,), 1<j<r.

(11.2)
(These formulas are very similar to the definition of the operators P; and @Q; introduced
in formula (9.1) before the proof of the Hoeffding decomposition.)

First we consider the product of two degenerate U-statistics, i.e. the case m = 2.
Let us have a measurable space (X, X') with a probability measure p on it together with
two measurable functions fi(x1,...,2zx,) and fa(x1,...,2k,) of k1 and ko variables on
this space which are canonical with respect to the measure pu. Let &1,&,... be a
sequence of (X, X') valued, independent and identically distributed random variables
with distribution p. We want to express the product I, k, (f1)In k,(f2) of degenerate
U-statistics defined with the help of the above random variables and kernel functions f;
and fy as a sum of degenerate U-statistics. For this goal we introduce some notations.

Given two functions fi(z1,...,2k, ) and fa(z1,...,2k,) and a coloured diagrams
~v € I'(kq1, ko) consisting of s coloured chains (1), ..., 5(ls) we define the function

(frofo), (@, - va) = fil®a, 1), - Tay (1,E)) f2(Tay (2,1), - -+ Tay (2.82)); (11.3)

where a(p,r) denotes the index of the vertex (p,r) of the diagram ~ in their above
defined enumeration a. (In formula (11.3) all arguments of the functions f; and f,
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have different indices. But the indices a (1, ) and a(2, ;') may agree for some pairs
(7,7"). This happens if the vertices (1,7) and (2, j’) belong to the same chain 3 € v of
length 2.) Let us also define the function

(fl Of2>’y(l'lpu lp € 0(7)) = H H Qp fl o f2) (xlu s 7xls)7 (11'4)

peC(v) P€O2(7)

with the operators P, and @), defined (with a different indexation) in formulas (11.1)
and (11.2), where C(v) is the set of indices of the closed diagrams of 7, and O2(y) C
O(7), defined as Oz(vy) = {l: ¢, (6) = —1, and ¢(B(l) = 2}, is the set of indices of
the chains of v with colour —1 and length 2. are the above defined sets of open and
closed indices of the diagram . The function (f; o f2), depends only on the arguments
indexed by open vertices of the diagram ~. Let us also remark that the operators P,
and @, in formula (11.4) are exchangeable, hence it is not important in what order we
apply them.

The function F,(f1, f2) we apply in the formulation of the diagram formula in the
special case when the product of two degenerate U-statistics is considered is similar to
the function (fiof2),. We need a small technical step for its definition. We want to work
with such a function whose variables are indexed with the numbers 1,2, ..., |O(y)| while
the indices of the function f o f2), are the elements of the set O(y) = {l1,.. lJO(»y)\}
Hence we define the function ¢ = ¢, on the set O(y) defined by the formula t(l ) =7,
1 <7 <|O(%)], and introduce the function

Fy(f1, fo)(x1, 22, .., 21009))) = (f1 0 fa)y(®e1,)5 lp € O(7)) (11.5)

Next we formulate the diagram formula for the product of two degenerate U-
statistics with the help of the above defined quantities.

Theorem 11.1. (The diagram formula for the product of two degenerate U-
statistics). Let a sequence of independent and identically distributed random variables
&1,&2, ... be given with some distribution p on a measurable space (X, X) together with
two bounded canonical functions fi(x1,...,xk,) and fa(x1,...,zk,) with respect to the
probability measure p on the product spaces (X*1,X*1) and (X*2, X*2) respectively.
Let us take the class of coloured diagrams T'(ky,ks) introduced above together with the
functions Fy(f1, f2) defined in formulas (11.1)—(11.5).

For all v € T' Fy(f1, f2)y is a canonical function with respect to the measure p
with |O(7)| arguments, where O(vy) and C(vy) denote the set of open and closed indices
of the diagram ~y. The product of the degenerate U-statistics I, i, (f1) and L k,(f2),
n > max(ky, k2), defined in (8.7) can be expressed as

(n_kl/zkﬂfn,kl(fl))( _“/kalfn,kg(fz))

IC(vI
Z 1 ( +]> n=WO/2 =IO (N, 600 (B (frs f2))

vED(k1,k2) J=1
(11.6)
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with W(y) = k1 + ko — |O(%)| — 2|C(y)| and s(y) = |O()| + |C(y)| (which equals the
number of coloured diagrams in 7y), where Z/(n) means that summation is taken only

for such coloured diagrams v € T'(ky, ko) which satisfy the inequality s(y) < n, and

ICMI

[I equals 1 in the case |C(y)| = 0. The term I, |0y (Fy(f1, f2)) can be replaced by
j=1

L, j0(y)|(SymF, (f1, f2)) in formula (11.6).
Consider the Ly-norm of the functions Fy(fi1, f2) defined by the formula

17 (frs f2)lI5 = 1 (fr 0 f2)y 112 = /(f1 o fa)3 (21, by € OM) [ nlda,).

lpe0()

The inequality

1 (f1s f)lle = [[(f1 0 fa)rylle < [l frll2ll foll &f W(y) =0 (11.7)

holds for this norm. The condition W (vy) = 0 in formula (11.7) means that the diagram
v € I'(k1, k2) has no chains 3 of length £(3) = 2 with colour ¢, (8) = —1. In the case of
a general diagram v € T'(ky, ko) the inequality

I, (f1s f2)ll2 = 11(f1 0 f2)rll2 < 2% min(|| fill2, || f2]12) (11.8)

holds if the Loo-norm of the functions f1 and fo satisfies the inequalities ||f1]lcc < 1
and || fallco < 1. Relations (11.7) and (11.8) also hold for non-canonical functions fi
and fs.

Inequality (11.7) is actually a repetition of estimate (10.11) about the diagrams
appearing in the case of Wiener—It6 integrals. Inequality (11.8) yields a weaker bound
about the Lo-norm || F%,(f1, f2)|l2 = ||(f1 © f2)~]|2 for a general diagram . In particular,
it depends not only on the Ls-norm, but also on the L.,-norm of the functions f;
and fy. This is closely related to the fact that in the estimates on the distribution of
U-statistics, — unlike the case of Wiener—It6 integrals, — a condition is imposed not
only on the Lo-norm of the kernel function f, but also on its Lo,-norm. I return to this
question later.

Remark 1. The expression W(vy) = ki + ko — |O()| — 2|C(v)| appearing in formu-
las (11.6), (11.7) and (11.8) has the following content. It equals the number of those
diagrams ((l;) € v for which ¢(5(l;)) = 2, and ¢ (8(l;)) = —1. Indeed, if W () denotes
the number of such chains, and W (7) equals the number of chains 3(l;) € « for which
£(B(;)) = 1 (and as a consequence c,((3(l;)) = —1), then W () + W(vy) = |O(v)|, and
2W (v)+ W (y) +2|C(y)| = k1 + k2. These identities imply the statement of this remark.

Remark 2. The term I, |o¢)(F(f1, f2)) appeared in the sum at the right-hand side
of (11.6) only if the condition s(y) < n was satisfied. This restriction in the summation
had a technical character, which has no great importance in our investigations. It is
related to the fact that a U-statistic I, x(f) exists only if n > k. As a consequence,
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some U-statistics disappear at the right-hand side of (11.6) if the sample size n of the U-
statistics is relatively small. The term I, |0y (F~(f1, f2)) appeared in (11.6) through

the Hoeffding decomposition of a U-statistic with kernel function (f; o f2) - defined
in (11.3). This function has s(v) arguments, and the U-statistic corresponding to it
appears in our calculations only if the sample size n is not smaller than this number.

Let us recall the convention introduced after the definition of canonical degenerate
U-statistics by which I,, o(c) is a degenerate U-statistic of order zero, and I,, o(c) = ¢ for
a constant c. By applying this convention we write F, ((f1, f2) = f10f2 in relation (11.6)
for those diagrams v for which |O(v)| = 0, i.e. ¢y(8) = 1 for all chains 8 € v. We
shall introduce another convention which implies that Theorem 11.1 is valid also in the
degenerate case when the function f;, = ¢ with a constant ¢, and k; = 0. In this case
I'(ky, k2) consists of only one diagram v containing the chains 8; = {j} of length one
and colour ¢, ({j}) = —1, 1 < j < ky. We define I(F,(f1, f2)) = cf2 in this case. Beside
this, we have W(v) = k1 + k2 — |O(7)| — 2|C(v)| = 0, |O(y)| = k2, and |C(y)| = 0.
Hence formula (11.6) remains valid also in the case k; = 0. We have introduced this
convention because the following inductive argument leading to the proof of the diagram
formula for the product of degenerate U-statistics in the general case is valid under such
a convention.

Let us turn to the formulation of the general form of the diagram formula for the
product of degenerate U-statistics. First I define a function F, = F.,(f1,..., fm) for each
coloured diagram 7 € I'(ky, ..., ky,) and collection of canonical functions (with respect
to a probabality measure p on a measurable space (X, X)) fi,..., fm with ki, ...,
and k,, variables. These functions F, will be the kernel functions of the degenerate U-
statistics at the right-hand side of the diagram formula.

These functions F, will be defined by induction with respect to the number m
of the components in the product. For m = 2 we have already defined the function
F,(f1, f2). Let the functions Fy(fi,..., fm—1) be defined for each coloured diagram
v €T(k1,...,km—1). Todefine F,(fi,..., fm) for a coloured diagram v € I'(k1, ..., k)
first we define the predecessor vy, = Ypr(v) € I'(k1, ..., km—1) of 7. We shall define the
coloured diagram -y, together with an appropriate indexation of its element with the
help of the enumeration of the elements of . Roughly speaking, the elements of v, are
the the restrictions of the chains contained in v to the first m — 1 rows of the diagram,
ie. totheset {(p,r): 1<p<m—1,1<r <k}

To define precisely the predecessor 7,, of v let us divide first the chains of the
coloured diagram v = {5(l1),...,0(ls)} € I'(k1,..., k) into two disjoint subsets v =
Y1 U e, defined as v1 = {8(l;): B(l;) € v, 8(;) N {(m,1),...,(m,kn)} # 0} and
v2 = {B(;): B() € v, B(;) N {(m,1),...,(m,kn)} = 0}, i.e. a coloured chain § € v
belongs to 77 if it contains a vertex from the last row {(m,1),...,(m,ky,)} of the
diagram, and it belongs to 79 if it does not contain such a vertex. We define with the
help of the chains 3(I;) € v1 the chains 8,,(I;) = 5(l;) \ {(m,1),...,(m, k,)} and with
the help of the chains 3(l;) € 72 the chains 3,,(I;) = B(l;). (For those chains 8(l;) € 11
which consist only of one vertex of the form (m,r), 1 <r < k,,, the corresponding chain
Bpr(l;) would be the empty set. These empty sets are omitted from the set of chains
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Bpr(1;) € vpr.) The set of all above defined chains (3,,(l;) provides a partition of the set
of vertices {(p,r): 1 <p<m—1,1<r <k,}. The diagram ~,, will consist of these
chains (3,,(l;). To complete the definition of the coloured diagram ~,, we still have to
define the colour ¢, (B,-(l;)) of these chains.

We define the colour of these chains by the formulas ¢, (Bpr(1;)) = —1if B(l;) € 71,
and c,,, (Bpr(l;)) = cy(B(l5)) if B(l;) € 2. In such a way we defined the predecessor
Yor € T'(k1,..., km—1) of the diagram ~ € I'(ky, ..., k,,). Moreover we gave an indexa-
tion of the chains of ~,, with the help of the indexation of the chains of 1.

With the help of the coloured diagram ~,, € I'(k1, ..., ky—1) we can define the func-
tion F,, = F,, (fi,..., fm—1) which is a function of |O(yp,)| variables z1, ..., Z|0(y,.)|-
We shall define the function F., = F,(f1,..., fm) similarly to the definition of F,(fi, f2)
given by formulas (11.3), (11.4) and (11.5) in the case m = 2. In this case F,  plays
the role of the function f; and f,, the role of the function f;. To define the function
F,(f1,..., fm) we still have to define a coloured diagram v, = ve(7) € T(|O(Ypr)|, km)
that we shall call the closing diagram of «. The heuristic content of the diagram -~
is that it contains the additional information we need to reconstruct the diagram
v € T'(k1,...,kmn) if we know its predecessor 7,,. We shall define it together with
an enumeration of its chains that depends on the enumeration of the chains of the
diagram .

To define the diagram -y, let us first consider the listing O(vp,) = {l1, .-, j0(v,.)(}-
1<lhi<ly<--< l‘o(ym, of the indices of the open indices of the diagram =, in
increasing order. Let us fix a vertex (1,7), 1 < j < |O(7,,)| in the first row of .. We
shall denote the chain of v, containing this vertex by B.(l;), and define it together
with its colour in the following way. Let us consider the (open) chain 8,,(I;) together
with its ‘continuation’ 3(l;). Clearly, B,.(I;) C B(l;). If B(l;) € v, then B(l;) =
Bpr(1;) U {(m,r;)} with some integer 1 < r; < ky,. In this case we define the chain
containing the vertex (1, j) as the diagram 8. (l;) = {(1,5), (2,7;)} with this number r;,
and it gets the colour ¢, (Ba(L;)) = ¢y (B(1;)). If B(l;) € Y2, then B,.(I;) = B(l;), and
we define the chain containing the vertex (1, j) as the chain B.;(;) = {(1, )} of length 1
and with colour ¢, (Bu(l;)) = —1.

We still have to consider those vertices (2,7) of I'(|O(ypr)|; km), 1 < r < ki, for
which there exists a chain 3(l;y) € 7 such that 3(l¢)) = {m,7)}, because these are
the vertices of the of the set of vertices {(1,7): 1 < j < [O(ypr)|U{(2,7): 1 <7 < kp,}
which are not contained in the previously defined chains (. (l;). To cover these vertices
with an (appropriately indexed) chain of 7 let us define the chains B.;(l;()) = {(2,7)}
with the colour ¢, , (8.(l;())) = —1 for such vertices (2,7). The above defined coloured
chains provide a partition of the set {(1,7): 1 < j < [O(7pr)|U{(2,7): 1 <71 < kp},
and they are the elements of the coloured diagram ~,;.

We shall define the function F.(f1,..., fm) with the help of the above introduced
diagrams 7, and 7 in the following way. Put, similarly to formula (11.3),

(F’Vpr(fb .- -afm—l) o fm),y(xlla .- -;xls)

(11.9)
= chl (xo"ycl(lvl)’ T ’xa'ycl(1v|0(7pr)|))fm(x0"ycl(271)’ T ,aja"/pr (kaM))’
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where s = s(7¢) is the number of the chains contained in 7. The indices l1,[5. .., and
ls of the variables at the left-hand side of (11.9) agree with the indices of the chains of
the diagram 7, and «., (p,r) denotes the index of the vertex (p,r) of the diagram 7
which is induced by the enumeration of the indices of the chains in v.;. Next we define
with the help of formula (11.9), similarly to the relation (11.4), the function

(var(flv ooy fm—1)0 fm)v(xpa p € O(ya))

- H By H Qp (F’Ypr(f17"'7fm_1of’”"f)»y(mp’ p € O(va) UC(a))
peC(ver)  PEO2(Ver)

(11.10)
with the operators P, and @), defined (with a different indexation) in formulas (11.1)
and (11.2), where the sets O(v,;) and C'(~y) are the sets of open and closed indices of the
diagram ., and the set Oz () (for a general diagram with two rows) was defined after
formula (11.4). The function (¥, (f1,..., fm—1)© fm), depends only on the arguments
indexed by the open indices of the diagram ~,,;.

The function F,(fi,..., fm) will be defined by means of a reindexation of the
arguments of the function (F, (f1,...,fm-1)° fm)y(z1,, I, € O(va)) which will be
made to get a function with arguments x1,22,...,7|0(y,,)- It is defined, similarly to
formula (11.5), as

Ey(fi, - fm) (@1, 2, T 10(va))) = (Fhpe (f15 -5 fme1) © )y (@01, 1 € O(ya)),

(11.11)
where the indices ¢(/,) are defined in the following way. We list the open indices of the
diagram -, in an increasing order as O(ve) = {l1, -, oy} It <l2 <+ <{0(va))5

and define the function ¢(-) on the set O(v¢) as t(l,) = p for 1 < p < |0(ya)|.

To complete the definition of the function Fy(fi,..., fi,) observe that |O(vy)| =
|O()|. (Even the sets O(v.) and O(7) agree with the enumeration of the chains of
these two diagrams we have chosen.) Hence we can write

F’y(fly ey fm)(ib’l,:l,’g, e 7x|0(’7cl)|> = F’y(fb e ,fm)(xl,:cg, e 7:1:‘0(7”)' (1112)

To formulate the general form of the diagram formula for the product of degenerate
U-statistics we introduce some quantities which will be the version of the quantites
appearing in the coefficients of the right-hand side of (11.6) in Theorem 11.1. Put

W)= > (B)-D+ > (WBU)—2), yeT (k... kpn), (11.13)

1,€0(7) 1,eC(7)

where /() denotes the length of the chain g.

To define the next quantity we need let us first introduce the following notation.
Given a chain 8 = {(p1,71),-.-,(pi,7)}, 1 < p1 < pa < -+ < p; < m, in the set
{(p,r): 1 <p<m,1<r <k,} let us define its upper level u(3) = p1, and its deepest
level d(3) = l,. Let us define with their help for all diagrams v € I'(ky,...,ky,) and
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integers p, 1 < p < m, the sets Bi(v,0) = {8: 8 € v, ¢, () = 1,d(B) = p}, and
Ba(v,p) = {B: B €7,¢4(8) = —1,d(B) < pU{B: B €, ulB) <p,dB) > p}, ie.
B1(7,p) consists of those chains § € T' which have colour 1, all their vertices are in the
first p rows of the diagram, and contain a vertex in the p-th row, while By(+y, p) consists
of those chains € ~ which have either colour —1, and all their vertices are in the
first p rows of the diagram, or they have (with an arbitrary colour) a vertex both in the
first p rows both in the remaining rows of the diagram. Put Bi(v,p) = |Bi(v,p)| and
Bs(vy,p) = |Ba(vy,p)|. With the help of these numbers we define

By (7.p) .
ﬁp (n—Bl(%p)—Bz(%p)ﬂ
n

In(7,p) = (11.14)

Jj=1

for all 2 < p < m and diagrams v € I'(ky, ..., kn).
Theorem 11.2 will be formulated with the help of the above notations.

Theorem 11.2 (The diagram formula for the product of several degenerate U-
statistics). Let a sequence of independent and identically distributed random variables
£1,&2, ... be given with some distribution p on a measurable space (X, X) together with
m > 2 bounded functions fp(x1,...,xy,) on the spaces (XFe, Xkr), 1 < p < m, canoni-
cal with respect to the probability measure p. Let us consider the class of coloured dia-
grams I'(ki, ..., kn,) together with the functions Fy = F.,(f1,..., fm), v € D(k1,..., km),
defined in formulas (11.9)—(11.12) and the constants W () and J,(v,p), 1 < p < m,
given in formulas (11.13) and (11.14).

The functions Fy(fi,..., fm) are canonical with respect to the measure (1 with
|O(7)| variables, and the product of the degenerate U-statistics I 1, (fp), 1 < p < m,
n > max ky, defined in (8.7) can be expressed as

1<psm
T r(n,m) [ _
[In "2k L, (fr) = > (H Jn(%p)>n W/
p=1 YET (K1,eeykm) \P=2 (11~15)
n_|O(7)‘/2|0(7)|!In,|0('y)|(F’Y(f17'"afm>)’
where Z'(n’m) means that summation is taken for those v € T'(ki,...,ky) which

satisfy the relation By(v,p) + Ba(v,p) < n for all 2 < p < m with the quantities
Bi(vy,p) and Bs(~,p) introduced before the definition of J,(7v,p) in (11.14). The terms
L jo)|(Fy(f1s- -5 fm)) at the right-hand side of formula (11.15) can be replaced by

Ly o) (Sym Ey(fi, ..., fm))-

In Theorem 11.2 the product of such degenerate U-statistics were considered, whose
kernel functions were bounded. This also implies that all functions F’, appearing at the
right-hand side of (11.15) are well-defined (i.e. the integrals appearing in their definition
are convergent) and bounded. In the applications of Theorem 11.2 it is useful to have
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more information about the behaviour of the functions F,. We shall need some good
bound on their Lo-norm. Such a result is formulated in the following

Lemma 11.3. (Estimate about the L;-norm of the kernel functions of the
U-statistics appearing in the diagram formula). Let m functions f,(x1,...,7x,)
be given on the products (X*», X*r) of some measurable space (X, X), 1 < p < m, with
a probability measure p on it, which satisfy inequalities (8.1) and (8.2) (if the index k is
replaced by the index k, in them), but these functions need not be canonical. Let us take
a coloured diagram v € I'(k1, ..., k), and consider the function Fy(fi,..., fm) defined
by formulas (11.9)—(11.12). The La-norm of the function F,(f1,..., fm) (with respect
to the power of the measure p to the space where Fy(f1,..., fm) is defined) satisfies the
mequality
”F’Y(flv ceey fm)HQ < 2W(’7) H ||fp||27

peU(7)

where W () is given in (11.13), and the set U(y) C {1,...,m} is defined in the following
way. Let us define for a coloured chain 8 = {(l1,71),(l2,72),...,(ls,75)} € v with
1<l <. <ls <m the set of its interior levels as and Int (B) = {lo, ..., ls—1,1ls}
if ¢4(B) = —1 and Int(B) = {lo,...,ls—1} if ¢4(B) = 1. Then we define U(y) =

{1,...,m}\(UInt(ﬁ)>.

BEY

The last result of this section is a corollary of Theorem 11.2. In this corollary we give
an estimate on the expected value of product of degenerate U-statistics. To formulate
this result we introduce the following terminology. Let us call a (coloured) diagram
v € I'(k1,... k) closed if ¢, (3) = 1 for all chains 3 € v. Let us denote the set of all
closed diagrams by T'(k1, ..., ky). Observe that F.(fi,..., fn) is constant (a function
of zero variable) for all closed diagram v € T'(k1, ..., kn), and L, k) (Fy(f1,-- -, fm)) =
F,(f1,..., fm) in this case. Now we formulate the following result.

Corollary of Theorem 11.2 about the expectation of a product of degenerate
U-statistics. Let a finite sequence of functions fp(x1,...,71,), 1 < p < m, be given on
the products (X*», X¥*r) of some measurable space (X, X) together with a sequence of
independent and identically distributed random variables with value in the space (X, X)
which satisfy the conditions of Theorem 11.2.

Let us apply the notation of Theorem 11.2 together with the notion of the above
introduced class of closed diagrams I'(ky, ..., ky). The identity

E(H kp!n—kp/un,kp(fkp)) = Z/(n’m) (H

Jn(%p)> n~W/2. Fw(flv ooy fm)
p=1 veD(k1,....km) \P=1

(11.16)
holds. This identity has the consequence

E (H kp!n_kp/2ln,kp (fkp)>

p=1

< Y T WORE(f, . fa)l. (1117)
’YEf‘(kl ..... km)
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Beside this, if || fpll2 < o for all 1 < p < m, then the numbers Fy(fi,..., fm) at the
right-hand side of (11.17) satisfy the inequality

1Fy(frse s fn)| <2V OGN for all v € T(ky, ..o k). (11.18)

In formula (11.18) the same number W (~y) and set U(~) appear as in Lemma 11.3. The
only difference is that in the present case cy(B) =1 for all chains B € v which appear
in the definition of U(7).

Remark: We have applied a different terminology for diagrams in this section and in
Section 10, where the the theory of Wiener-Ito integrals was discussed. But there
is a simple relation between the terminology of these sections. If we take only those
diagrams from the diagrams considered in this section which contain only chains of
length 1 or 2, and beside this the chains of length 1 have colour —1, and the chains
of length 2 have colour 1, then we get the diagrams considered in the previos section.
Moreover, the functions F, = F,(fi,..., fm) are the same in the two cases. Hence
formula (10.18) in the Corollary of Theorem 10.2 and formula (11.17) in the Corollary
of Theorem 11.2 make possible to compare the moments of Wiener—Ito integrals and
degenerate U-statistics.

The main difference between these estimates is that formula (11.17) contains some
additional terms. They are the contributions of those diagrams v € T'(k1,. .., k) which
contain chains 3 € v with length £(3) > 2. These are those diagrams vy € ['(ky,. .., kn)
for which W(v) > 1. The estimate (11.18) given for the terms F, corresponding to
such diagrams is weaker, than the estimate given for the terms F, with W (v) = 0, since
U(y)] < m if W(y) > 1, while |U(y)| = m, if W(y) = 0. On the other hand, such
terms have a coefficient n="V(7)/2 at the right-hand side of formula (11.17). A closer
study of these formulas may explain the relation between the estimates given for the
tail distrtibution of Wiener—It6 integrals and degenerate U-statistics.
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12. The proof of the diagram formula for U-statistics.

In this section the results of the previous section will be proved. First I prove its main
result, the diagram formula for the product of two degenerate U-statistics.

Proof of Theorem 11.1. In the first step of the proof the product k1!L,, x, (f1)ko!Ip 1, (f2)
of two degenerate U-statistics will be rewritten as a sum of not necessarily degenerate
U-statistics. In this step a term by term multiplication is carried out for the product
kil i, (f1)ko'Ip i, (f2), and the terms of the sum obtained in such a way are put in
different classes indexed by the (non-coloured) diagrams with two rows of length k;
and ko. This step is very similar to the heuristic argument leading to formulas (10.13)
and (10.13a) in our explanation about the diagram formula for Wiener-1t6 integrals.

To carry out this step of the proof consider all sets of pairs

{(ulaull)7 s (urau;)}7 1<r< min(klakQ),

with the following properties: 1 < wuy < ug < -+ < u, < ky, the numbers v}, ..., u!. are
different, and 1 < ul, < ko, for all 1 < s < r. To a set of pairs {(u1,u}),..., (u.,u.)}
with these properties let us correspond the following diagram J((uy,u}), ..., (u,,u.)) €

['(ky1, ko), where T'(ky, k2) denotes the set of (non-coloured) diagrams with two rows
of length k1 and ko. The diagram 7((ui,u}),..., (ur,u.)) has two rows, {1,...,k1},
and {2,...,ko}, its chains of length 2 are the sets {(1,us),(2,u})}, 1 < s < r, and
beside this it contains the chains {(1,7)}, r € {1,...,k1} \ {u1,...,u,}, and {(2,7)},
re{l,..., ka}\{u},...,u.} of length 1. All (non-coloured) diagrams 4 € I'(ky, k2) can
be represented in the form 5 = J((uq,u)),..., (u.,u))) with the help of a set of pairs
{(u1,u)),..., (up,u.)}, 1 <7 < min(ky, ko), with the above properties in a unique way.

To make the notation in the subsequent discussion simpler we fix, similarly to the
case of coloured diagrams, an indexation of the chains of a diagram 4 € T'(k1, ko), and
we define with its help an indexation of the vertices of this diagram 7, too. Let us take
the following natural indexation. Consider the diagram 5 = J((uq,u)),..., (uy,ul)) €
['(k1, ko) which has s(§) = ki + ko — 7 chains. The chain 3 € ¥ containing the
vertex (1,7) gets the index j, i.e. (1,7) € B(j) for 1 < j < k;. To define the in-
dex of the remaining chains of 4 which are chains of length 1 of the form (2,j) with
je{l,... ka} \ {uf,...,ul} let us take the list {l1,... (g, v}, 1 <1y < - <lp,_p, of
the elements of the set {1,...,ko}\ {u],...,u.} in an increasing order. Then we define
the indices of the remaining chains by the formula B(ks +j) = {(2,1;)}), 1 < j < ko —1.
After this we define the indexation of the vertices of the diagram + by the formula
as(p,r) = | with that index [ for which (p,r) € B(l). Let us also define the sets
Vi=Vi(y)={1,...; k1 + ke —r}\{u1,...,u,} and Vo = Vo(7) = {u1,...,u}, i.e. ¥}
is the set of indices of the chains of 4 of length 1, and V5 is the set of indices of the
chains of 4 of length 2.

Let us consider the product kil i, (f1)k2!ln k,(f2), and rewrite it in the form
of the sum we get by carrying out a term by term multiplication in this expression.
We put the terms obtained in such a way into disjoint classes indexed by the the di-
agrams 4 € ['(k1, k2) in the following way: A product fi(&,,. .. i ) 2(EGrs e ,§j;€2)
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/

belongs to the class indexed by the diagram 5((uy,u}), ..., (uy,u.)) with the parame-
ters (uy,u)),..., (up,ul), 1 < r < min(ky, ke), where 1 < uy < ug < -+ < up < ky,
the numbers v}, ..., u. are different, and 1 < u, < ko, for all 1 < s < r if the indices
Jlse+ s JkisJ1s -+ Jp, in the arguments of the variables in fi(-) and fa(-) satisfy the
relation j,, = j;,s , 1 < s < r, and there is no more coincidence between the indices

Jiy- - 7jk17jj/la o 7j]/42'
It is not difficult to see by applying the above partition of the terms in the product
k1L, iy (f1)ke!Iy i, (f2), and exploiting that each diagram of I'(kq, k2) can be written in

the form 7((uy,u}),..., (ur,ul)) in a unique way that the identity
_ _ /(n) _ _ -
n kl/2kl!In,k1 (f1)k2'n 7€2/2In71€2 (f2) — Z n (k1+k2)/23(7)!1n,s("y) ((fl o f2)'7)
JED (k1 ,k2)
(12.1)

holds, where the functions (f; o f2)s are defined in formula (11.3), s(¥) denotes the

number of chains (of length 1 or 2) in 4, and the notation Z'(n) means that summation
is taken only for such diagrams 4 € T'(k;, k2) for which n > s(¥). (Let me remark that
although formula (11.3) was defined for coloured diagrams, the colours of the chains
played no role in it.)

Relation (12.1) is not appropriate for our purposes, since the functions (fi o f2)5
in it may be non-canonical. To get the desired formula, Hoeffding’s decomposition will
be applied for the U-statistics I,, 55)((f1 © f2)5) appearing at the right-hand side of
formula (12.1). This decomposition becomes slightly simpler because of some special
properties of the function (f; o f2)5 related to the canonical property of the initial
functions f; and fs.

To carry out this procedure let us observe that a function f(x,,,...,z,,) is canon-
ical if and only if P, f(%u,,...,%y,) = 0 with the operator P, defined in (11.1) for all
indices us, 1 < s < k. Beside this, the condition that the functions f; and f5 are canon-
ical implies the relation P,(f1 o f2)5 = 0 for v € V;(¥) for all diagrams 74 € [(ky, ko),
and this relation remains valid if the function (f; o f2)5 is replaced by such functions
which we get by applying the product of some transforms P, and Q,., v € P,, with

the transforms P and () defined in formulas (11.1) and (11.2).

Beside this, the transforms P, or ), are exchangeable with the operators P, or
Q. ifv#v', P,+@Q,) = I, where I denotes the identity operator, and P,Q, = 0, since
P,Q, = P, — P? = 0. The above relations make possible the following decomposition
of the function (f; o f2)5 for all ¥ € ['(k1, k2) to the sum of canonical functions (just as
it was done in the Hoeffding decomposition):

(fiof2)s = [[ (Po+@Qu)(Fro fa)s

veEVs
=2 (112 Il @|(iek)y= > (ficf)
ACV2 \veA  veVz\A ~ET(7) (12.2)

where the function (f; o f2), is defined in formula (11.4), and I'(¥) denotes the set of
those coloured diagrams v € I'(kq, ko) which consist of those chains (with a colour 1) as
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the non-coloured diagram 5. (Clearly, s() = s(¥) for the number of chains of v and 7 if
(

v € I'(¥).) Indeed, given a set A C Vo, we have ([[ P, [] @Qu)(fio f2)3 = (fiof2),
vEA  weVL\A

with that coloured diagram v € I'(y) whose chains with colour —1 are the chains (1) € ¥
with [ € V5 \ A, and summing up this identity for all A C V5, we get relation (12.2). The
function (f; o f2) corresponding to the coloured diagram obtained with the help of the
set A has |O(7y)| = k1 + ko — |A| variables, where |O(7)| is the number of open indices
in ~.

Let us consider the functions F,(fi, f2), v € I'(k1,k2), defined in (11.5) which
means a reindexation of the functions (fi o f2) to get functions with variables z, ...,
T|0(y)|- We claim that

_(k1+k2)/2|0( )"In 5(%) ((flon)’_Y)
= 3 B 2RICON g (O U 0y (s (Frs £2)) (12.3)

ver (%)

with J,(v) = 11if |C(y)| =0, and

|C(7)] )
e =11 (“=2) it om0 (129

5 n
Jj=1

for all 4 € ['(ky, k2).
Since I, jo(y)| (F~(f1, f2)) = In,jo(y) (f1 © f2)y) relation (12.3) follows from rela-
tion (12.2) just as formula (9.3) follows from formula (9.2) in the proof of the Hoeffding

decomposition. Let us understand why the coefficient n/¢(¥).J,, () appears at the right-
hand side of (12.3).

This coefficient can be calculated in the following way. Take a general term (f; o
f2)7(&,» lu € O(y)) in the U-statistic |O(y)|!1,, j0(y)|((f1 © f2)4), and calculate the

number of terms (f; o fa)5 (€515 &5 - ..,fj;m) in the U-statistic |O(%)[',,55)((f1 © f2)5)
for which the sequence of indices (j1, ..., j. (ﬁ)) satisfies the relation j; = j;, for alll, €
O(7). I claim that it equals nl®™MLJ, (y). Tt can be seen that this number n!CM\J,, (v)
appears as the coefficient at right-hand side of (12.3).

Indeed, we have to calculate the number of such sequences j1, jj, . . ., j. ) for which

the value j; = ji, is prescribed for the indices [, € O(7), and the other elements of
the sequence can take arbitrary integer value between 1 and n with the only restriction
that all elements of the sequence ji, 75, ..., j;( ) must be different. The number of such

sequences equals (1~ [0(7)])(n— |0()| — 1)+ (n—|C()| ~ |0()|+1) = Ju(1)nl.
(In this calculation we exploited the fact that |O(v)| 4+ |C(v)] = s(v).)

Let us observe that k1 + ko — 2|C(v)| = |O(v)| + W(y) with the number W ()
introduced in the formulation of Theorem 11.1. Hence

n~(k1tk2)/2 ) |C)] — ), =W (7)/2),=10()]/2
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Let us replace the left-hand side of the last identity by its right-hand side in (12.3), and
let us sum up the identity we get in such a way for all 4 € I'(ky, ko) such that s(y) < n.
The identity we get in such a way together with formulas (12.1) and (12.4) imply the
identity (11.6). Clearly, I,, |0(y)|(Fy(f1, f2)) = In,jo(+) (SymE, (f1, f2)), hence the term
L 0(7)|(F5(f1, f2)) can be replaced by I,, |0(+)|(SymF,(f1, f2)) in formula (11.6). We
still have to prove inequalities (11.7) and (11.8).

Inequality (11.7), the estimate of the Lp-norm of the function (fi o f2), follows
from the Schwarz inequality, and actually it agrees with inequality (10.11), proved at
the start of Appendix B. Hence its proof is omitted here.

To prove inequality (11.8) let us introduce, similarly to formula (11.2), the operators

Qu; (T Tu,) = h(:z:ul,...,xur)+/h(:cul,...,qu)u(d:1;uj), 1<j<r (12.5)

in the space of functions h(z,,,...,z,,) with coordinates in the space (X,X). (The
indices uy, ..., u, are all different.) Observe that both the operators Quj and the opera-
tors P, defined in (11.1) are positive, i.e. these operators map a non-negative function
to a non-negative function. Beside this, @, < Quj, and the norms of the operators

Qu,
2

and P,; are bounded by 1 both in the Li(u), the Ly(x) and the supremum norm.

Let us define the function

(frofo)y(w jeot)) = I & I Q) Uoh),le iecmuom)
JjeC(y)  j€02(7)
(12.6)
with the notation of Section 11. The function (f; o f2), was defined with the help of

(f10 f2)7 similarly to (fi o f2), defined in (11.4), only the operators (); were replaced
by Qj in its definition.
In the proof of (11.8) it may be assumed that || fi||2 < || f2]|2. The properties of the

operators P, and @, listed above together with the condition sup |fa(z1,...,2x)] <1
imply that

(f1 0 fo)y] < (fal 0| fol)y < (Ifil01)s, (12.7)

where ‘<’ means that the function at the right-hand side is greater than or equal to the
function at the left-hand side in all points, and the term 1 in (12.7) denotes the function
which equals identically 1. Because of the identity ||F,(f1, f2)ll2 = |[(f1 © f2)]|2 and
relation (12.7) it is enough to show that

[([f1] 0 1)4[]2 = II 2 1] Q| 1Ah@e,ay e @il

JjeC(y)  j€02(v) 9
< 2O fil2.

(12.8)
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to prove relation (11.8). But this inequality trivially holds, since the norm of all opera-
tors P; in formula (12.8) is bounded by 1, the norm of all operators @; is bounded by 2
in the Lo(p) norm, and |O2(7y)| = W(y).

Proof of Theorem 11.2. Theorem 11.2 will be proved with the help of Theorem 11.2 by
induction with respest to the number of degenerate U-statistics kp!L, x, (fp), 1 < p < m.
Formula (11.15) holds for m = 2 by Theorem 11.1. To prove it for a general parameter m
let us first fix a coloured diagram 5 € I'(ky, ..., k,—1) and consider the set of diagrams
of m rows which are its ‘continuation’, i.e. let

@) ={v:vyel(ki,....kn), Ypr =7}

(Here we work with the diagrams +,, and 7, introduced for a diagram v € I'(ky, ..., k)
in the previous section.) I claim that

n 1O 2|0V 1005y (Fs (frs - s fno1)) - 0% 2k g (fin)

|C(7cl)|
IS (M) W (rer) /2 (12.9)

vel'(v) J=1

0 ICON2|0(N)) U 100y (Fy (f1s - -5 Fi))s

where Z( " means that summation is taken for such € ['(%) for which s(y.) < n,

1C(ver)l
and [ equals 1, if |C(ya)| = 0.
=1

Relation (12.9) can be checked by applying Theorem 11.1 for the pair of functions
F5(fi,..., fm-1) and f,,. To get it we have to understand that there is a mutual
correspondence between the coloured diagrams v € I'(|O(¥)], ky,) and the class of di-
agrams {vq: v € I'(¥)}. Indeed, for each v € I'(¥) there corresponds a diagram
Yer € T(|O()], k). On the other hand, given a fixed enumeration of the chains of the
diagram 4 we can correspond to all diagrams v € I'(|O(%)|, k) a diagram (v') € T'(¥)

/

such that v(7")e = 7.

This diagram 7(7) can be defined in the following way. Let I1,ls, ... ,l_|o(7)| be the
indices of the chains with colour —1 of the diagram 4. Then the the chains of colour 1 of
7 will be chains of colour 1 of (1), too. If the vertex (1, ) of the diagram " is contained
in a chain of length 1, then the diagram (') contains the chain $(I;) with colour —1.
If this vertex is contained in a chain {(1,j), (2,7;)} € 7' of length 2, then (") contains
the diagram ((I;) U {(m,r;)} with the same colour as the chain {(1 J),(2,7;)} has in
~'. Finally, if the vertex (2,7) is contained in the chain {(2,r)} of length 1 in 4/, then
{(m,r)} will be a chain of length 1 of (') with colour —1. In such a way we get such
a diagram (') € I'(¥) for which v(v")s = /. (The above construction of the set v(v')
depends on the enumeration of the chains of the diagram 74, but we get the same class
of diagrams for two different enumerations of 7 if we take the diagrams v(v') for all

7 €TI0, km)-)
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We get relation (12.9) by applying Theorem 11.1 for the product

n IO 2|0 0091 (Fs (f1s - fn1)) - 5 2k L g (fin)

and writing all diagrams v € T'(|O(¥)|, k) in the form ~., where 7. is the closing
diagram of the diagram v(v’) € I'(¥) defined in the previous paragraph.

Relation (11.15) for the parameter m can be proved with the help of relation (12.9)
and the inductive assumption by which it holds for m — 1. Indeed, let us multiply

m—1
formula (12.9) by [[ Jn.(3,p)n~" /2 and sum up this identity for all such diagrams
p=2
v €T(k1,...,km—1) for which By(v,p) + Ba2(¥,p) < n for all 2 < p <m — 1. Then the
sum of the terms at the left-hand side equals the left-hand side of formula (11.15) for

parameter m.

I claim that the sum of the terms at the right-hand side equals the right-hand side of
formula (11.15) for parameter m. To see this it is enough to check that for all v € T'(¥) we

m—1 IChedl ,
have W(5) + W (va) = W (vpr) + W(va) = W(y), H2 Jn(Ypesp) 11 (n (;Y:z)-f—]) _
p:

j=1
m [C(ve)l
IT Ju(v,p), where J] =1, if |C(v4)| =0, and the relation By (v,p) + Ba2(7y,p) < n
p=2 j=1

holds for all 2 < p < m if and only if Bi(Vpr,p) + B2(Vpr,p) < n for all 2 < p <
m — 1, and s(yz) < n. But these relations can be simply checked. The identity
about the function W () can be checked by taking into account the definition of the
diagrams -y, and 7., in particular the colouring of the chains in these diagrams. The
remaining relations can be proved with the help of the observation that for a diagram
v € T'(k1,- s km) Bi(Ypr,p) = B1(v,p) and Ba(ypr, p) = Ba(v,p) forall2 <p <m—1.
Beside this |C(v.)| = Bi(y,m) and |O(ye)| = Ba(y, m). Theorem 11.2 is proved.

Proof of Lemma 11.3. The proof is similar to that of formula (11.8) at the end of
Theorem 11.1. Let us define the functions Fy(fi,..., fp), v € I'(k1,..., kp), recursively
for all 2 < p < m similarly to the definition of the functions F,(f1,..., fp) with the
difference that the operator Q,, = I — P, is replaced by Quj = I + P,; in the new
definition. Then we have |E,(f1,..., fm)| < Fy(Ifil,---,|fm|) in all points. Hence
IF(f1y s fo)ll2 S NES(fis-- -5 fm)l2, and to prove Lemma 11.3 it is enough to show
that

I (Al 1Dl <270 T Ifolle iy € Dk, k) (12.10)
peU(7)

with the same number W () and set U(v) which were considered in Lemma 11.3. Re-
lation (12.10) will be proved by induction with respect to m.

Relation (12.10) holds for m = 2. Indeed, if W(y) = 0, then U(y) = {1,2}, we
have F., = F,, and formula (11.7) supplies the estimate. If W () > 1, then U(vy) = {1},
and actually in the proof of relation (11.8) we proved this relation.
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In the case m > 2 this inequality will be proved by induction with the help of the
identity

LTRSS [ ) R V )

peC(yer)  PEO2(ver) (12.11)

(e (Lol L fmmal 0 fml)., (29, 2 € O(3a) U C(et)

cl

2

In the case W(vy) = 0 we have U(y) = U(ypr) U {m}, W(y) = W(7e), and for-
mula (2.11) contains no operator @,. In this case inequality (12.10) follows from the
representation of ||F.(|fi],...,|fm|)]|2 given in (12.11), relation (11.7) and from the

inductive hypothesis by which inequality (12.10) holds for ||(F,,, (|fil.- -, [fm-1])|l2-

In the case W (vy) > 0 we have U(y) = U(vpr), W(vy) = W(ypr) + W(va), and
inequality (12.10) can be proved similarly to the case W () = 0 with the only difference
that in this case instead of (11.7) we have to apply that strengthened version of (11.8)
which is contained in formula (12.10) in the special case m = 2. Lemma 11.3 is proved.

The corollary of Theorem 11.2 is a simple consequence of Theorem 11.2 and Lem-
ma 11.3.

Proof of the corollary of Theorem 11.2. Observe that F, is a function of |O(y)| ar-
guments. Hence a coloured diagram ~ € ['(k1,..., k) is in the class of closed di-
agrams, i.e. v € I'(ki,...,ky) if and only if F,(f1,..., fm) is a constant. Thus

formula (11.16) is a simple consequence of relation (11.15) and the observation that
EIn,|O(’y)|(F’y(f17 Ce 7fm)> =0 if |O(’Y)| > 1, ie. if Y ¢ F(l{?l, ce ,km), and

In,O(’y)(F’y(flv . ,fm)) = F’y(fly cee fm) if AS f(kl, RN km)

Relations (11.17) and (11.18) follow from relation (11.16) and Lemma 11.3.
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13. The proof of Theorems 8.3, 8.5 and Example 8.7.

This section contains the proof of the estimates on the distribution of a multiple Wiener—
Ito integral or degenerate U-statistic formulated in Theorems 8.5 and 8.3 together with
the proof of Example 8.7. Beside this, also a multivariate version of Hoeffding’s in-
equality (Theorem 3.4) will be proved here. The latter result is useful in the estimation
of the supremum of degenerate U-statistics. The estimate on the distribution of a
multiple random integral with respect to a normalized empirical distribution given in
Theorem 8.1 is omitted, because, as it was shown in Section 9, this result follows from
the estimate of Theorem 8.3 on degenerate U-statistics. This section will be finished
with a separate part Section 13 B, where the results proved in this section are discussed
together with the method of their proofs and some recent results.

The proof of Theorems 8.5 and 8.3 is based on a good estimate on high moments of
Wiener—It6 integrals and degenerate U-statistics. These estimates follow from the corol-
laries of Theorems 10.2 and 11.2. Such an approach slightly differs from the classical
proof in the one-variate case. The natural one-variate version of the problems discussed
here is an estimate about the tail distribution of a sum of independent random vari-
ables. The latter estimate is generally proved by giving a good bound on the moment
generating function of the sum. Such a method does not always work in the multivariate
case, because, as later calculations will indicate, there is no good moment-generating
function estimate for U-statistics or multiple Wiener—Ito6 integrals of order £ > 3. Actu-
ally, the moment-generating function of a Wiener—Ito integral of order k > 3 is always
divergent, because the tail behaviour of such a random integral is similar to that of
the k-th power of a Gaussian random variable. On the other hand, good bounds on
the moments EZ?M of a random variable Z for all positive integers M (or at least for
a sufficiently rich class of parameters M) together with the application of the Markov
inequality for Z2M and an appropriate choice of the parameter M yield a good estimate
on the distribution of Z.

Propositions 13.1 and 13.2 give estimates on the moments of Wiener—Ito integrals
and degenerate U-statistics.

Proposition 13.1. (Estimate of the moments of Wiener—It6 integrals). Let
f(x1,...,xK) be a function of k variables on some measurable space (X, X) that satis-
fies formula (8.12) with some o-finite measure p. Take the k-fold Wiener—Ité integral
Z,1(f) of this function with respect to a white noise pyw with reference measure p. The
mequality

E®|Z (DM <1-3-5---(2kM —1)0*™  for all M =1,2, ... (13.1)

holds.

By Stirling’s formula Proposition 13.1 implies that

kM
E(RNZ,6(f))?M < %gw <A (g) (kM)FM 52M (13.2)
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for any A > V2 if M > M, = My(A). Formula (13.2) can be considered as a sim-
pler, better applicable version of Proposition 13.1. It can be better compared with the
moment estimate on degenerate U-statistics given in (13.3).

Proposition 13.2 provides a similar, but weaker inequality for the moments of nor-
malized degenerate U-statistics.

Proposition 13.2. (Estimate on the moments of degenerate U-statistics).
Let us consider a degenerate U -statistic I, ,(f) of order k with sample size n and with
a kernel function f satisfying relations (8.1) and (8.2) with some 0 < 0% < 1. Fiz
a positive number n > 0. There erist some universal constants A = A(k) > /2,
C = C(k) > 0 and My = My(k) > 1 depending only on the order of the U-statistic
I, 1 (f) such that

2M 2

kM
E (n_k/2k!In7k( f)) <A1+ Cym)*M <—) (kM) 52M

(&

(13.3)
for all integers M such that kMy < kM < nno?.

In formula (13.3) such a constant C = C(k) can be chosen which does not depend
on the order k of the U-statistic I,, 1 (f). For instance C =4 is an appropriate choice.

Theorem 13.2 yields a good estimate on E (n_k/Qk!In’k(f))QM with a fixed expo-

nent 2M with the choice n = £ With such a choice of the number 7 formula (13.3)

no

2M
yields an estimate on the moments E (n_k/ 2k, k(f )) comparable with the estimate
on the corresponding Wiener-Ito integral if M < no?, while it yields a much weaker
estimate if M > no?.

Now I turn to the proof of these propositions.

Proof of Proposition 13.1. Proposition 13.1 can be simply proved by means of the
Corollary of Theorem 10.2 with the choice m = 2M, and f, = f for all 1 < p < 2M.
Formulas (10.18) and (10.19) yield that

M
E (k:!ka(f)QM) < (/fQ(xl,...,a:k),u(dxl) . .u(da:k)) Do (k)| < [Dons(k)|o*M,

where |T257(k)| denotes the number of closed diagrams « in the class I'(k, ..., k) intro-
———
2M times

duced in the corollary of Theorem 10.2. Thus to complete the proof of Proposition 13.1
it is enough to show that |Tops (k)| < 1-3-5---(2kM — 1). But this can easily be seen
with the help of the following observation. Let ['ps(k) denote the class of all graphs
with vertices (I,7), 1 <1 < 2M, 1 < j < k, such that from all vertices ([, 7) exactly
one edge starts, all edges connect different vertices, but edges connecting vertices (I, 7)
and (I, ') with the same first coordinate [ are also allowed. Let |T2p7(k)| denote the
number of graphs in Taps(k). Then clearly [Toa (k)| < |Taas(k)|. On the other hand,
Tons (k) =1-3-5---(2kM — 1). Indeed, let us list the vertices of the graphs from
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[oar(k) in an arbitrary way. Then the first vertex can be paired with another vertex in
2kM — 1 way, after this the first vertex from which no edge starts can be paired with
2kM — 3 vertices from which no edge starts. By following this procedure the next edge
can be chosen 2kM — 5 ways, and by continuing this calculation we get the desired
formula.

Proof of Proposition 13.2. Relation (13.3) will be proved by means of relations (11.17)
and (11.18) in the Corollary of Theorem 11.2 with the choice m = 2M and f, = f for
all 1 < p < 2M. The class of closed coloured diagrams I'(k, M) = T'(k,..., k) will be
partitioned into subclasses T'(k, M,r), 1 < r < kM, where G(M, k,r) contains those
closed diagrams v € I'(k, M) for which W () = 2r. Let us recall that W (v) was defined

n (11.13), and in the case of closed diagrams W(y) = >  (¢(8) — 2). For a diagram
Bey
v € T'(k, M), W(v) is an even number, since W (v) + 2s(y) = 2kM, where s(vy) denotes

the the number of chains in ~.

First we prove an estimate about the cardinality of I'(M, k,r). We claim that there
exist some constant A = A(k) > 0 and threshold index My = My(k) depending only
the order k of the U-statistic In, k(f) such that

2k M 2\ M rad
\T(k,M,r)| < A o - (kM) "2°" forall0 <r < kM (13.4)

if A> Ag(k) and M > My(k).

To prove formula (13.4) map all diagrams v € I'(k, M,r) to a paired diagram
T(vy) in such a way that T'(y) # T(y') if v # 4/, and the number of paired dia-
grams T'(vy), v € T'(k, M,r), obtained in such a way can be well bounded. (We call
a diagram a paired diagram, if all its chains have length 2, i.e. the set of its vertices
is partitioned into pairs {(p,r), (p’,7’)}, with p # p’. To define these paired diagrams

first we introduce the set W(y) = ﬁU {(p2(B),7m2(B)), ..., (ps—1(8),rs—1(0B))}, where

€y
B =A{P1(0),r1(8)), -, (s (8),rs(6))} with 1 < p1(8) <pa(B) <--- < ps(F) <2M for
all B € v, i.e. W(7) is the set of vertices we get by omitting the first and last vertices of

all chains 3 € v, and then taking the union of the vertices of these diminished chains.
Observe that W (v)| = W(y) for a closed diagram.

We take a copy (p,r,C) of all elements (p,r) € W(~) of a diagram v € T'(k, M, r),
and define the set of vertices V(T'(y)) of the paired diagram T'(y) as a set of vertices con-
sisting of 2M rows, and the p-th row of this set is {(p, 1),..., (p, kp) }U{(p, 7, C): (p,7) €
W(7)} for all 1 < p < 2M. Then we define the paired diagram 7'(y) on the set V (T'(7))
in the follwing way. Given a chain 8 = {(p1(8),r1(8)),..., (ps(B),7rs(B))} € ~, with
1 <pi(B) < p2AB) < -+ < ps(B) < 2M, we correspond to it the following sets of pairs
(chains of length 2) in V(T'(v)):

{((pr(B),71(8)), ((p2(8), 72(8), OV}, {((p2(5), m2(8)), ((p3(8), 73(8), OV}, - - -,
{((ps—2(8),75-2(8)), (Ps—1(8), 75-1(B), OV}, {((Ps-1(8), 75-1(8)), ((ps(8), 75 (B) }-
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(In the case ¢(3) = 2, we map [ to itself.) Defining these pairs of vertices for all 5 € v
we get the paired diagram T'(y) with the desired properties.

The number of the above defined sets V(T'(7)), v € I'(k, M, r), is less than or equal
to (2';{”), and each of these sets V(T'(vy)) has 2kM + 2r vertices. Hence the number of
paired diagrams with vertices in a fixed set V(T'(y)) is bounded by 1-3--5-(2kM —2r—1).

The above considerations provide the bound

(13.5)

2kM
2r ) 2kMAr(EM + )l

'k, M <
k02,0 < (%)

oM\ (2kM + 2r)!
1-3-5--~(2kM—|—2r—1):< >( + 2r)

Stirling’s formula yields that % <A (%)kMM (KM +7)kEM+7 with some con-

stant A > V2 if M > M, with some M, = My(A). Since r < kM we can write

(M + r)FMAT < (BM)FM (14 22" (2kM)"™ < (kM)*M+7¢r2r. The above calcula-
tion together with (13.5) imply inequality (13.4).

For a diagram v € I'(k, M,r) W(v) = 2r, and beside this the cardinality of the
set U(y) defined in the formulation of Lemma 11.3 satisfies the inequality |U(y)| >
2M — W(y) = 2M — 2r. Hence by relation (11.18) n=W/2|F,| < 22rp=7alV0II <
2% (no?) " oM < 22 (kM) oM for v € T'(k, M, ) if kM < nno? and 02 < 1.

This estimate together with relation (11.17) imply that for kM < nno?

oM kM
E (n—k/%un,k(fk)) < S WO R < STID(k, M, )2 (kM) M.
~yeT'(k,M) r=0
Hence by formula (13.4)
oM 9\ kM EMorng )
E(n ™ 2RL () <A (g) (kDM 2M 3™ < ” ) (4y/m)°
r=0

=4 (g) Ry (1 4 4y

if kMo < kM < nno?. Thus we have proved Proposition 13.2 with C' = 4.
It is not difficult to prove Theorem 8.5 with the help of Proposition 13.1.

Proof of Theorem 8.5. By formula (13.2) which is a consequence of Proposition 13.1
and the Markov inequality

P(KZ,(f)] > u) < (13.6)

E(RZu ()™ _ | (2kMo®* M
u2M - €u2/k

with some constant A > /2 if M > My with some constant My = My(A), and M is an
integer.
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Put M = M(u) = 5~ (%)Q/k, and M = M (u) = [M], where [x] denotes the integer
part of a real number x. Choose some number uq such that i (%)Q/k > My +1. Then
relation (13.6) can be applied with M = M (u) for u > g, and it yields that

2k Mo2/k\ .
P(|E'Z,k(f)] >u) < A (%) < e FM < Aeke=RM
eu

2/k
:Aekexp{—% <ﬂ) } if u > ug.
o

Relation (13.7) means that relation (8.14) holds for u > wug with the pre-exponential
coefficient Ae*. By enlarging this coefficient if it is needed it can be guaranteed that
relation (8.14) holds for all w > 0. Theorem 8.5 is proved.

(13.7)

Theorem 8.3 can be proved similarly by means of Proposition 13.2. Nevertheless,
the proof is technically more complicated, since in this case the optimal choice of the
parameter in the Markov inequality cannot be given in such a direct form as in the
proof of Theorem 8.5. In this case the Markov inequality is applied with an only almost
optimal choice of the parameter M.

Proof of Theorem 8.3. The Markov inequality and relation (13.3) with n = % imply

that "
E (k%21 4 (£))*"
’U,2M

P(kin ™21 1 (f)] > u) <
kM (13.8)

vio | \u

u

2
1 vVEkM 2/k
<Al=-2kM <1+C i > (%)
e
for all integers M > M, with some My = My(A).
Relation (8.10) will be proved with the help of estimate (13.8) first in the case
D << n¥/25* with a sufficiently large constant D = D(k,C) > 0 depending on k

and the constant C' in (13.8). To this end let us introduce the number M by means of
the formula

_ 1 /u\2/k 1 1 su\2/k 1
EM = — [ — - = —
2 <a’) 1 _|_B(%)1/k 2 <a> 1 +B (un*k/Qa*(kJrl))l/k

no

with a sufficiently large number B = B(C) > 0 and M = [M], where [x] means the
integer part of the number z.

Observe that VEM < (%)Uk, fv}; AZ < (un—k/Qa—(kH))l/k <1, and

_\ 2 _

vVkM vV kM 1/k

1+Ck— < 1+Bk— <1+B (un_k/za_(k“))
Vno Vno
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with a sufficiently large B = B(C') > 0 if £ < nk/2gk . Hence

é.sz <1+C\/\/g>2 (%)Q/k < é-QkM <1+C\/\/g>2 (Z)Q/k
(13.9)
1 <1+C ) 1

€ 1+ B (un—F/2g—(+D) 1/k

if £ < n*/20*. 1If the inequality D < “ also holds with a sufficiently large D = D(B, k) >
0, then M > My, and the conditions of inequality (13.8) hold. This inequality together
with inequality (13.9) yield that

P(EW ™ 21, 1.(f)] > u) < Ae "M < Aeke kM

if D < & < n¥/2g* i.e. inequality (8.10) holds in this case with a pre-exponential
constant Ae¥. By increasing the pre-exponential constant Ae* in this inequality we get
that relation (8.10) holds for all 0 < 2 < n¥/2g*. Theorem 8.3 is proved.

Example 8.7 is a relatively simple consequence of 1t0’s formula for multiple Wiener—
Ito integrals.

Proof of Example 8.7. We may restrict our attention to the case k£ > 2. Itd’s for-
mula for multiple Wiener-It6 integrals, more explicitly relation (10.21), implies that the
random variable k!Z, (f) can be expressed as k!Z, (f) = oH ([ fo(z)pw (dz)) =
oHy(n), Where Hy(z) is the k-th Hermite polynomial with leading coefficient 1, and
n = [ fo(z)uw(dz) is a standard normal random variable. Hence we get by exp101t1ng
that the coefficient of z¥~! in the polynomial Hy(z) is zero that P(k!|Z, x(f)] > u) =
P(|Hi(n)] = %) > P (|n*| — DIn*~2| > ) with a sufficiently large constant D > 0 if
% > 1. There exist such positive constants A and B that

(k=2)/k
P -t > 2 2 P (1> e a (2)7) it m
g o
Hence

Texpd —1 (2)¥/F
PRIz >0 = P (1> (5) " (14 4(2)77)) 2 ¢ ?{)”’“(:)1 )

with an appropriate C' > 0 if 2> B. Since P(k!|Z,r(f)| > 0) > 0, the above inequality
also holds for 0 < g < B if the constant C' > 0 is chosen sufficiently small. This means
that relation (8.16) holds.

In this section also the multivariate version of Hoeffding’s inequality will be proved.
Before its formulation some notations will be introduced.
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Let us fix two positive integers k and n and some real numbers a(ji, ..., ji) for all
sequences of arguments {j1,...,jx} such that 1 < 5;, < n, 1 <1 < k, and j; # jy if
S

With the help of the above real numbers a(-) and a sequence of independent random

variables €1, . ..,&,, P(e; = 1) = P(g; = —=1) = 1, 1 < j < n, the random variable
V= > a(fiy - Jk)Ej " €4y (13.10)
(j1,--dr): 1<5;<n for all 1<I<k,
i if LA

and number
52 = > a®(ju, ..., jr)- (13.11)
(J1ye-sdr): 1< <n for all 1<I<k,
G i 1A
will be introduced.
With the help of the above notations the following result can be formulated.

Theorem 13.3. (The multivariate version of Hoeffding’s inequality). The
random variable V' defined in formula (13.10) satisfies the inequality

1 2/k
P(|V]| >u) < Cexp {—5 (%) } for allu >0 (13.12)

with the constant S defined in (13.11) and some constants C > 0 depending only on the
parameter k in the expression V.

Theorem 13.3 will be proved by means of two simple lemmas. Before their formu-
lation the random variable

Z = Z ’a(jlv"'7jk)|77j1 © Mk (13'13)
(G1,sdn): 1<41<n for all 1<I<Kk,
iy if 1A
will be introduced, where 7y,...,n, are independent random variables with standard
normal distribution, and the numbers a(ji,. .., ji) agree with those in formula (13.10).

The following lemmas will be proved.

Lemma 13.4. The random variables V and Z introduced in (13.10) and (13.13) satisfy
the inequality
EVM < EZ?M  forall M =1,2,.... (13.14)

Lemma 13.5. The random variable Z defined in formula (13.13) satisfies the inequality
EZ*M <1.3.5...(2kM — 1)S*™M  for all M = 1,2, ... (13.15)
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with the constant S defined in formula (153.11).

Proof of Lemma 13.4. We can write, by carrying out the multiplications in the expres-
sions EV?M and EZ?M | by exploiting the additive and multiplicative properties of the
expectation for sums and products of independent random variables together with the
identities Es?k“ =0 and E’n?kJrl =0 for all k=0,1,... that

2M : , 2m 2m
EV=Y = E A(gr, -y dsmay . my) Eel - Bl (13.16)
(j17"'ajl7mla--~’ml):
1Sj5§'ﬂ, msZL ISSSla my+---+my=kM

and
EZ*M — > B(j1, .- jima, ... omy)Ens™ - Enf™ (13.17)
(J1yesd1, M1,y ymy):
1Sj5§'ﬂ, msZL 1S5Sla m1++ml:kM
with some coefficients A(jq,..., 75, m1,...,my) and B(ji,...,Ji, m1,...,m;) such that

|A(j1, e ,jl,ml, Ce ,ml)\ S B(jb e ,jl,ml, e ,ml). (1318)

The coefficients A(-,-,-) and B(-,-,-) could be expressed explicitly, but we do not need
such a formula. What is important for us is that A(-,-,-) can be expressed as the sum of
certain terms, and B(-,-,-) as the sum of the absolute value of the same terms. Hence
relation (13.18) holds. Since Ee?™ < En;™ for all parameters j and m formulas (13.16),
(13.17) and (13.18) imply Lemma 13.4.

Proof of Lemma 13.5. Let us consider a white noise W (-) on the unit interval [0, 1]
with the Lebesgue measure A on [0, 1] as its reference measure, i.e. let us take a set of
Gaussian random variables W (A) indexed by the measurable sets A C [0, 1] such that
EW(A) =0, EW(A)W(B) = A(AN B) with the Lebesgue measure A for all measurable
subsets of the interval [0, 1]. Let us introduce n orthonormal functions ¢1(z),. .., @, ()
with respect to the Lebesgue measure on the interval [0, 1], and define the random
variables 1, = [ ;(z)W(dz), 0 < j < n. Then n,...,n, are independent random
variables with standard normal distribution, hence we may assume that they appear
in the definition of the random variable Z in formula (13.13). Beside this, the identity
Njy N = [ e (@1) -4 (xe)W(dz1) ... W(dzy) holds for all k-tuples (j1,...,jk),
such that 1 < jg3 < n for all 1 < s < k, and the indices ji, ..., js are different.
This identity follows from It6’s formula for multiple Wiener—It6 integrals formulated in
formula (10.20) of Theorem 10.3.

Hence the random variable Z defined in (13.13) can be written in the form

7= /f(ml, )W (dzy) .. W day)
with the function

f(z1,... zp) = > (i - Je) ey (@1) - - 5, (@)
(1, rdi): 1<, <n for all 1<I<k,
gy if 1A
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Because of the orthogonality of the functions ¢;(x)
52:/ fA(zy,...,xp)dey ... doy.
[0,1]%

Lemma 13.5 is a straightforward consequence of the above relations and formula (13.1)
in Proposition 13.1.

Proof of Theorem 13.3. The proof of Theorem 13.3 with the help of Lemmas 13.4
and 13.5 is an almost word for word repetition of the proof of Theorem 8.5. By
Lemma 13.4 inequality (13.15) remains valid if the random variable Z is replaced by
the random variable V' at its left-hand side. Hence the Stirling formula yields that

2kM)! 2\ "M
E 2M < EZ2M < ( 2M < “ M kM g2M
VM < < gmgams <C(Z)  tas

for any C > /2 if M > My(A). As a consequence, by the Markov inequality the

estimate AL
EV2M okM [ S\**
P(|V|>u) < <’ ( . (E) (13.19)

holds for all C' > v/2 if M > My(C). Put kM = kM(u) = 1 (2)*" and M = M(u) =

[M], where [x] denotes the integer part of the number z. Let us choose a threshold

number ug by the identity 5 (“—§)2/k = My(C) + 1. Formula (13.19) can be applied

with M = M (u) for u > ug, and it yields that

_ 1 2/k
P(|V| > u) < Ce ™™ < Cefe™ M = Ce¥ exp {—5 (%) } if u > uyp.

The last inequality means that relation (13.12) holds for u > wg if the constant C' is
replaced by Ce* in it. With the choice of a sufficiently large constant C' relation (13.12)
holds for all u > 0. Theorem 13.3 is proved.

13. B) A SHORT DISCUSSION ABOUT THE METHODS AND RESULTS.

A comparison of Theorem 8.5 and Example 8.7 shows that the estimate (8.15) is sharp.
At least no essential improvement of this estimate is possible which holds for all Wiener—
Ito integrals with a kernel function f satisfying the conditions of Theorem 8.5. This
fact also indicates that the bounds (13.1) and (13.2) on high moments of Wiener-Ito
integrals are sharp. It is worth while comparing formula (13.2) with the estimate of
Proposition 13.2 on moments of degenerate U-statistics.

Let us consider a normalized k-fold degenerate U-statistic n=*/2k!I,, ,(f) with some
kernel function f and a p-distributed sample of size n. Let us compare its moments with
those of a k-fold Wiener-Ito integral k!Z,, (f) with the same kernel function f with
respect to a white noise uy with reference measure p. Let o denote the Lo-norm of the
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kernel function f. If M < eno? with a small number € > 0, then Proposition 13.2 (with
an appropriate choice of the parameter n which is small in this case) provides an almost
as good bound on the 2M-th moment of the normalized U-statistic as Proposition 13.1
provides on the 2M-th moment of the corresponding Wiener—Ito integral. In the case
M < Cno? with some fixed (not necessarily small) number C' > 0 the 2M-th moment
of the normalized U-statistic can be bounded by C(k)™ times the natural estimate on
the 2M-th moment of the Wiener—Ito6 integral with some constant C'(k) > 0 depending
only on the number C'. This can be so interpreted that in this case the estimate on the
moments of the normalized U-statistic is weaker than the estimate on the moments of
the Wiener-It6 integral, but they are still comparable. Finally, in the case M > no?
the estimate on the 2M-th moment of the normalized U-statistic is much worse than
the estimate on the 2M-th moment of the Wiener—Ito integral.

A similar picture arises if the distribution of the normalized degenerate U-statistic
Fo(u) = P(n "2k, 1 (f)] > u)
is compared to the distribution of the Wiener—It6 integral
G(u) = P(E 2k (f)] > u).

A comparison of Theorems 8.3 and 8.5 shows that for 0 < u < en®/2¢%*! with a small
e > 0 an almost as good estimate holds F),(u) as for G(u). In the case 0 < u < nk/2gk+1
the behaviour of Fj,(u) and G(u) is similar, only in the exponent of the estimate on
F,,(u) in formula (8.10) a worse constant appears. Finally, if u > n*/2¢**! then — as
Example 8.8 shows, at least in the case k = 2, — the (tail) distribution function F,(u)
satisfies a much worse estimate than the function G(u). Thus a similar picture arises as
in the case when the estimate on the tail-distribution of normalized sums of independent
random variables, discussed in Section 3, is compared to the behaviour of the standard
normal distribution in the neighbourhood of infinity. To understand this similarity
better it is useful to recall Theorem 10.4, the limit theorem about normalized degenerate
U-statistics. Theorems 8.3 and 8.5 enable us to compare the tail behaviour of normalized
degenerate U-statistics with their limit presented in the form of multiple Wiener—Ito
integrals, while the one-variate versions of these results compare the distribution of sums
of independent random variables with their Gaussian limit.

The above results show that good bounds on the moments of degenerate U-statistics
and multiple Wiener—It6 also provide a good estimate on their distribution. To under-
stand the behaviour of high moments of degenerate U-statistics it is useful to have
a closer look at the simplest case k = 1, when the moments of sums of independent
random variables with expectation zero are considered.

Let us consider a sequence of independent and identically distributed random vari-

n
ables &1,...,&, with expectation zero, take their sum S, = > &, and let us try to
=1

J
give a good estimate on the moments ES?M for all M = 1,2,.... Because of the
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independence of the random variables {; and the condition E¢; = 0 the identity

ES*M — > B¢ - BE- (13.20)

(F1s-erdssliye-asls)
ikt je=2M, j, >2, for all 1<u<s

lu#lLy,, if uFtu’

holds. Simple combinatorial considerations show that a dominating number of terms
at the right-hand side of (13.20) are indexed by a vector (ji,...,Jjnm; l1,--.,ln) such

that j, = 2 for all 1 <u < M, and the number of such vectors is equal to (]C_,) (22%)! ~
nM % The last asymptotic relation holds if the number n of terms in the random

sum S,, is sufficiently large. The above considerations suggest that under not too re-
strictive conditions ES?M ~ (naQ)M é?}ﬁi = E"I,%];/[za where 02 = F¢? is the variance
of the terms in the sum S,,, and n,, denotes a random variable with normal distribution
with expectation zero and variance u. The question arises when the above heuristic

argument gives a right estimate.

For the sake of simplicity let us restrict our attention to the case when the absolute
value of the random variables &; is bounded by 1. Let us observe that even in this case
the above heuristic argument holds only under the condition that the variance o of the
random variables ; is not too small. Indeed, let us consider such random variables &;, for
which P({; =1) =P, =—1) = %2, P(&; =0) =1—0?. Then these random variables
¢; have variance o2, and the contribution of the terms Eff-M , 1 <7 <n, to the sum in

(13.20) equals no?. If 02 is very small, then it may happen that no? > (na2)M S\%}i,

and the approximation given for ES2M in the previous paragraph does not hold any
longer. Hence the asymptotic relation for a very high moment ES?M suggested by the
above heuristic argument may only hold if the variance o2 of the summands satisfies an
appropriate lower bound.

In the proof of Proposition 13.2 a similar picture appears in a hidden way. In
the calculation of the moments of a degenerate U-statistic the contribution of certain
(closed) diagrams, more precisely of some integrals defined with their help, has to be
estimated. Some of these diagrams (those in which all chains have length 2) appear also
in the calculation of the moments of multiple Wiener—Ito6 integrals. In the calculation of
the moments of sums of independent random variables the terms consisting of products
of second moments play such a role in the sum in formula (13.20) as the ‘nice’ diagrams
consisting of chains of length 2 play in the calculation of the moments of degenerate
U-statistics in formula (11.17). In nice cases the remaining diagrams do not give a
much greater contribution than these ‘nice’ diagrams, and we get an almost as good
bound for the moments of a normalized degenerate U-statistic as for the moments of
the corresponding multiple Wiener—Ito integral. The proof of Proposition 13.2 shows
that such a situation appears under very general conditions.

Let me also remark that there is an essential difference between the tail behaviour
of Wiener—It6 integrals and normalized degenerate U-statistics. A good estimate can
be given on the tail distibution of Wiener—Ito6 integrals which depends only on the Ls-
norm of the kernel function, while in the case of normalized degenerate U-statistics the
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corresponding estimate depends not only on the Lo-norm but also on the L., norm of
the kernel function. In Theorem 8.3 such an estimate is proved. Moreover, it can be
shown that this dependence of the estimate on the L., norm of the kernel function is
essential, it appears not only in this result.

For k > 2 the distribution of k-fold Wiener-1t6 integrals are not determined by the
Lo-norm of their kernel functions. This is an essential difference between Wiener—Ito
integrals of order £ > 2 and k = 1. In the case k = 1 a Wiener-Ito integral is a
Gaussian random variable with expectation zero, and its variance equals the square of
the Lao-norm of its kernel function. Hence its distribution is completely determined by
the Lo-norm of its kernel function. On the other hand, the distribution of a Wiener—Ito
integral of order £ > 2 is not determined by its variance. Theorem 8.5 yields a ‘worst
case’ estimate on the distribution of Wiener—Ito integrals if we have a bound on their
variance. In the statistical problems which provided the main motivation for this work
such estimates are needed, but it may be interesting to know what kind of estimates
are known about the distribution of a multiple Wiener—It6 integral or degenerate U-
statistic if we have some additional information about its kernel function. Some results
will be mentioned in this direction, but several technical details will be omitted from
their discussion.

H. P. Mc. Kean proved the following lower bound on the distribution of multiple
Wiener—Ito6 integrals. (See [28] or [41].)

Theorem 13.6. (Lower bound on the distribution of Wiener—It6 integrals).
All k-fold Wiener—Ité integrals Z,, i (f) satisfy the inequality

2/k

P(|Zux(f)| > u) > Ke= (13.21)

with some numbers K = K(f,u) >0 and A= A(f,u) > 0.

The constant A in the exponent Au?/* of formula (13.21) is always finite, but Mc. Kean’s
proof yields no explicit upper bound on it. The following example shows that in certain
cases if we fix the constant K in relation (13.21), then this inequality holds only with a
very large constant A > 0 even if the variance of the Wiener—It6 integral equals 1.

Take a probability measure p and a white noise uy with reference measure p on
a measurable space (X, X), and let @1, ps,... be a sequence of orthonormal functions
on (X, X) with respect to this measure u. Define for all L = 1,2, ..., the function

L
fl@r,.mp) = fo(oy,. o) = (R)YVPLTY2Y (@) - - @ () (13.22)
j=1

and the Wiener—Ito integral

Zuil§) = Zus(F2) = 35 [ Frlonsc o (don) oo (d).

Then Eng(f) = 1, and the high moments of Z, ;(f) can be well estimated. For a
large parameter L these moments are much smaller, than the quantities suggested by
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Proposition 13.1. (The calculation leading to the estimation of the moments of Z,, 1 (f)
will be omitted.) These moment estimates also imply that if the parameter L is large,
then for not too large numbers u the probability P(|Z, x(f)| > ) has a much better
estimate than that given in Theorem 8.5. As a consequence, for a large number L and
fixed number K relation (13.21) may hold only with a very big number A > 0.

We can expect that if we take a Gaussian random polynomial P(&y, ..., &,) whose
arguments are Gaussian random variables &1, . .., &,, and which is the sum of many small
almost independent terms, then a similar picture arises as in the case of a Wiener—
It integral with kernel function (13.22) with a large parameter L. Such a random
polynomial has an almost Gaussian distribution by the central limit theorem, and we can
also expect that its not too high moments behave so as the corresponding moments of a
Gaussian random variable with expectation zero and the same variance as the Gaussian
random polynomial we consider. Such a bound on the moments has the consequence
that the estimate on the probability (P(&q,...,£,) > u) given in Theorem 8.5 can be
improved if the number u is not too large. A similar picture arises if we consider Wiener—
It6 integrals whose kernel function satisfies some ‘almost independence’ properties. The
problem is to find the right properties under which we can get a good estimate that
exploits the almost independence property of a Gaussian random polynomial or of a
Wiener—Ito6 integral. The main result of R. Latala’s paper [26] can be considered as a
response to this question. I describe this result below.

To formulate Latala’s result some new notions have to be introduced. Given a finite
set A let P(A) denote the set of all its partitions. If a partition P = {By,...,Bs} €
P(A) consists of s elements then we say that this partition has order s, and write
|P| = s. In the special case A = {1,...,k} the notation P(A) = P will be used.
Given a measurable space (X, X) with a probability measure p on it together with a
finite set B = {b1,...,b;} let us introduce the following notations. Take j different
copies (Xp,, X, ) and pp,., 1 < r < j, of this measurable space and probability measure
indexed by the elements of the set B, and define their product (X(5), x(B) ;(B)) =

(H X, , H X, s H b, ) The points (24, , . .., 2s,) € XB) will be denoted by z(?) €

X®B) in the sequel Wlth the help of the above notations I introduce the quantities
needed in the formulation of the following Theorem 13.7.

Let a function f = f(x1,...,2%) be given on the k-fold product (X%, X%, u*)
of a measurable space (X, X) with a probability measure pu. For all partitions P =
{Bi1,...,Bs} € Py of the set {1,...,k} consider the functions g, (:L'(BT)) on the space
X(Br) 1 <r < s, and define with their help the quantities

a(P) = a(P, f,u) = sup / Frssm)gn (#50) g (289 pdan) . plday);
91;--,9s
where supremum is taken for such functions ¢1,...,9s, g X?" — R!

for which /gf <a:(B")> (Br) (dx(B )> <1 foralll<r<s,
(13.23)
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and put

s =  max 1<s<k. (13.24)

PcPy, |P|l=s

In Latalas estimation of Wiener—Ito integrals of order k£ the quantities ag, 1 < s < k,
play a similar role as the number 2 in Theorem 8.5. Observe that in the case |P| = 1,
e if P = {1,...,k} the identity a®(P) = [ f*(z1,...,2)pu(dx1). .. u(dzy) holds,
which means that a; = 0. The following estimate is valid for Wiener-Ito integrals of
general order.

Theorem 13.7. Latala’s estimate about the tail-distribution of Wiener—Ito
integrals. Let a k-fold Wiener-Ité integral Z,, 1.(f), k > 1, be defined with the help of
a white noise pyw with a non-atomic reference measure p and a kernel function f of
k-variable such that [ f?(x1,...,z)p(dz1) ... p(deg) < oo. There is some universal
constant C(k) < oo depending only of the order k of the random integral such that the
mequalities

B )P < (€00 pax 0120 (13.25)
and 2/
P(|Zui(f)| > u) < C(k) exp {—ﬁ min, <ai) } (13.26)

hold for all M = 1,2,... and u > 0 with the quantities o, defined in formulas (13.23)
and (13.24).

Inequality (13.26) is a simple consequence of (13.25). In the special case when o <
M=6=Y/2 for all 1 < s < k, then inequality (13.25) says that the moment EZ, »(f)*M
has the same magnitude as the 2M/-th moment of a standard Gaussian random variable
multiplied by a constant, and it implies a good estimate on P(|Z, x(f)| > u) given
in (13.26). Actually the result of Theorem 13.7 can be reduced to the special case
when o, < M~6=1/2 for all 1 < s < k. Thus it can be interpreted so that if the
quantities ag of a k-fold Wiener—Ito integral are sufficiently small, then these ‘almost
independence’ conditions imply that the 2M-th moment of this integrals behaves like a
one-fold Wiener—It6 integral with the same variance.

Actually Latala formulated his result in a different form, and he proved a slightly
weaker result. He considered Gaussian polynomials of the following form:

) 1 . . 1 k
P(SJ(S)?:[S]S”?]-SSSIC):H Z a(.]lamjk:)gj(l) .J(k)’
" (J1sendin) i 155 <n, 1<5<k

(13.27)

where 5](-8), 1 <j3 <nand1l < s < k, are independent standard normal random

variables. Latala gave an estimate about about the moments and tail-distribution of
such random polynomials.

The problem about the behaviour of such random polynomials can be reformulated

as a problem about the behaviour of Wiener—Ito integrals in the following way: Take a
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measurable space (X, X') with a non-atomic measure p on it. Let Z, be a white noise

with reference measure p, let us choose a set of orthogonal functions hgfg) (x), 1 <j<n,
1 < s <k, on the space (X, X) with respect to the measure p, and define the function

fl@n, . o) = = > aljts - gy (w0) - () (13.28)

D (J1yendn): 1<5s<n, 1<s<k

together with the Wiener-It6 integral Z, ,(f). Since the random integrals fj(.s) =

fh;s)(a;)Zu(dx), 1 <j<n,1<s <k, are independent, standard Gaussian random
variables, it is not difficult to see with the help of 1t6’s formula (Theorem 10.3 in this
work) that the distributions of the random polynomial P(fj(s), 1<j<n1<s<k)
and Z, 1(f) agree. Here we reformulated Latala’s estimates about random polynomials

of the form (13.27) to estimates about Wiener—It6 integrals with kernel function of the
form (13.28).

These estimates are equivalent to Latala’s result if we restrict our attention to the
special class of Wiener—It6 integrals with kernel functions of the form (13.28). But
we have formulated our result for Wiener—Ito integrals with a general kernel function.
Latata’s proof heavily exploits the special structure of the random polynomials given
in (13.27), the independence of the random variables §§S) for different parameters s in
it. (It would be interesting to find a proof which does not exploit this property.) On the
other hand, this result can be generalized to the case discussed in Theorem 13.7. This
generalization can be proved by exploiting the theorem of de la Pena and Montgomery
Smith about the comparision of U-statistics and decoupled U-statistics (formulated in
Theorem 14.3 of this work) and the properties of the Wiener—It6 integrals. I omit the
details of the proof.

Latala also proved a converse estimate in [26] about random polynomials of Gaus-
sian random polynomials which shows that the estimates of Theorem 13.7 are sharp. We
formulate it in its original form, i.e. we restrict our attention to the case of Wiener—Ito
integrals with kernel functions of the form (13.28).

Theorem 13.8. A lower bound about the tail distribution of Wiener—Ito6
integrals. A random integral Z,, ;.(f) with a kernel function of the form (13.28) satisfies
the inequalities

1<s<k

B2l 1) = () ma <Ms/2as>)2M,

and
U

2/s
PUZus(1)] > ) 2 s ex0 {_c(k) i () }

forall M =1,2,... andu > 0 with some universal constant C (k) > 0 depending only on
the order k of the integral and the quantities o, defined in formula (13.23) and (13.24).

Let me finally remark that there is a counterpart of Theorem 13.7 about degener-
ate U-statistics. Such a result can be found in paper [1] of Adamczak. Here we do not
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discuss this result, because it is far from the main topic of this work. We only remark
that some new quantities has to be introduce the formulate this result. The appearance
of these conditions is related to the fact that in an estimate about the tail-behaviour
of a degenerate U-statistic we need an estimate not only on the Ls-norm but also on
the supremum norm of the kernel function. In a sharp estimate the estimate about the
supremum of the kernel function has to be replaced by a more complex system of con-
ditions, just as the condition about the Lo-norm of the kernel function was replaced by
a condition about the quantities o, 1 < s < k, defined in formulas (13.23) and (13.24)
in Theorem 13.7.

14. Reduction of the main result in this work.

The main result of this paper is Theorem 8.4 or its multiple integral version Theorem 8.2.
It was shown in Section 9 that Theorem 8.2 follows from Theorems 8.4. Hence it is
enough to prove Theorem 8.4. It may be useful to study this problem together with its
multiple Wiener-I1t6 integral version, Theorem 8.6.

Theorems 8.6 and 8.4 will be proved similarly to their one-variate versions, Theo-
rems 4.2 and 4.1. In the proof of Theorem 8.6 the estimates on the tail distribution of
a Gaussian random variable has to be replaced by the estimate of Theorem 8.5 about
the tail distribution of multiple Wiener—Ito integrals. After this the same chaining ar-
gument can be applied as in the proof of Theorem 4.2. No new difficulties arise. On the
other hand, in the proof of Theorem 8.4 several new difficulties have to be overcome. I
start with the proof of Theorem 8.6.

Proof of Theorem 8.6. Fix a number 0 < € < 1, and let us list the elements of the
countable set F as fi, fo,.... For all p = 0,1,2,... let us choose, by exploiting the
conditions of Theorem 8.6, a set F, = {fa(1,p)-- .,fa(mp,p)} C F of function with

m, < 2D2Cr+HLc~Ls=L glements in such a way that 1<i'nf J(f = fagip)?du <

SJIs>myp
2718202 for all f € F with some let fo(j,) € Fp, and beside this f, € F,. For
all indices a(j,p), p = 1,2,..., 1 < j < m,, choose a predecessor a(j’,p — 1), j' =

J'(4,p), 1 < j" < my_1, in such a way that the functions f,(;,) and fu(; ,—1) satisfy
the relation [ |fu(jp) — fa(rp—n|>dp < 20?274 Theorem 8.5 with the choice
i =1(p) =2~ P ey and & = 5(p) = 272P"2¢0 yields the estimates

P(A(j,p)) =P (n_k/%!\zn,k(fa(j,p) — Jfagrp-)l 2 2_(1+p)5u)
1 21\ 2/* , (14.1)
<Cexp{—= , 1<j<my,

2 o

forallp=1,2,..., and

oy o\ 7
P(B(s)) =P (n_k/Qk!’Zn,k(fa(o,s))‘ > (1 — g) u) < Cexp _% <(1_—§)> ’

1§3§m0.

115



Since all f € F is the element of at least one set F,, p = 0,1,2,..., (f, € Fp), the
definition of the predecessor of an index a(j,p) and of the events A(j,p) and B(s) in
formulas (14.1) and (14.2) together with the previous estimates imply that

P <sup 02 Z, ()] 2 u) <r[UUacnuU B
s=1

fer

<22 PGP+ P(BG) (14.3)

o0 1 2P+1 2/k
< ];2CD2(2P+4)L6_LO'_L exp {—5 < > u)

1 (1 — é) u 2k
+2°CDe Lo Lexpl —= (—2>

Standard calculation shows that if w > MLF/2¢=%/24 (logk/2 24 logk/2 %) with a suf-

o

ficiently large constant M, then the inequalities

1 2/k 2/k
2 o 2 o

hold for all p=1,2..., and

2/k 2/k
1_c¢ _
2 o 2 o

These inequalities together with relation (14.3) imply relation (8.15). Theorem 8.6 is
proved.

The proof of Theorem 8.4 is harder. In this case the chaining argument in itself does
not supply the proof, since Theorem 8.3 gives a good estimate about the distribution
of a degenerate U-statistic only if it has a not too small variance. The same difficulty
appeared in the proof of Theorem 4.1, and the method applied in that case will be
adapted to the present situation.

A multivariate version of Proposition 6.1 will be proved in Proposition 14.1, and
Theorem 8.4 will be reduced to a simpler statement formulated in Proposition 14.2
with its help. This result is the natural multivariate version of Proposition 6.2. Propo-
sition 6.2 was proved by an appropriate induction procedure with the help of some
symmetrization argument. This procedure will be adapted to the present case, but at
this point some new difficulties arise.
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The symmetrization argument in the one-variate case was based on a symmetriza-
tion lemma (Lemma 7.1), where the distribution of a sum of independent random vari-
ables with expectation zero was bounded by the distribution of the difference of two
independent copies of this sum. There exists a multivariate version of this result about
degenerate U-statistics, but it has some unpleasant properties. Instead of an indepen-
dent copy of the original U-statistic such modified versions of it have to be considered,
where the random variables in some arguments of the kernel function of the original
U-statistic have to be replaced by an independent copy, while in other arguments of the
kernel function the original random variables have to be preserved. Several such expres-
sions have to be handled simultaneously, and this causes some problems. This difficulty
can be slightly diminished by introducing so-called decoupled U-statistics and working
with them. There is a result of de la Pena and Montgomery—Smith which enables us to
reduce the estimation of U-statistics to the estimation of decoupled U-statistics. The
behaviour of decoupled U-statistics is very similar to that of the original U-statistics, but
the application of the multivariate version of the symmetrization argument is simpler
when decoupled U-statics are considered. In the next section the problems arising at the
adaptation of the symmetrization argument to the present problem will be explained in
more detail.

The notion of decoupled U-statistics will be introduced, and by means of a result
of de la Penia and Montgomery—Smith Proposition 14.2 will be reduced to a version of
it, Proposition 14.2", which states a similar estimate about decoupled U-statistics. This
result of de la Pena and Montgomery—Smith will be proved in Appendix D.

A result formulated in Proposition 14.1 can be proved in almost the same way as its
one-variate version, Proposition 6.1. The only essential difference is that now we have
to apply a multivariate version of the Bernstein’s inequality. Theorem 14.1 contains the
information we can get by applying Theorem 8.3 together with the chaining argument.
It has a similar structure to Proposition 6.1. Its main content, inequality (14.4), yields
a good estimate on the supremum of degenerated U-statistics if the supremum is taken
for an appropriate finite subclass F5 of the original class of kernel functions F. The
class of kernel functions F3 is a relatively dense subclass of F in the Ly norm, and it
also has some other good properties.

In the formulation of Proposition 14.1 two parameters A > 2% and M > My(A, k)
will be introduced. Their introduction may seem at first sight unnatural, they make
the notation more complicated. But they turned out to be useful quantities, they
help to fit the parameters in Propositions 14.1 and 14.2 when we want to apply them
simultaneously to reduce Theorem 8.4 to Proposition 14.2.

Proposition 14.1. Let the k-fold power (X*, X*) of a measurable space (X,X) be
given together with some probability measure p on (X,X) and a countable Lo-dense
class F of functions f(x1,...,71) of k variables on (X*, X*) with parameter D and
exponent L, L > 1, whose elements satisfy the following properties. All functions f € F
are canonical with respect to the measure p, and they satisfy conditions (8.4) and (8.5)
with some real number 0 < o < 1. Take a sequence of independent p-distributed random
variables &1, ...,&,, n > max(k,2), and consider the (degenerate) U-statistics I, 1(f),
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f € F, defined in formula (8.7). Let us fix some number A > 2F.
For all sufficiently large numbers M > My(A, k) the following relation (depending

on the numbers A and M) holds: For all numbers u > 0 such that no? > (;)Q/k >

MLlog; a number ¢ = a(u), 0 <o <o <1, and a collection of functions Fz =

{fi,. ., fm} C F withm < D&—% elements can be chosen in such a way that the sets

D;={f:feF [|f—fil*du <%}, 1 <j<m, satisfy the relation |J D; = F, and
j=1

the (degenerate) U-statistics I, x(f), f € Fsu), satisfy the inequality

/
P< sup 0 M2\ L, o (f)] = %) < QC’Dexp{—a( v )2 k} (14.4)

FEF5(w) 10Ac0c

2/k 9
if no? > <E> > MLlog —
o o

with the constants a = a(k), C = C(k) appearing in formula (8.10") of the Corollary of
Theorem 8.3 and the exponent L and parameter D of the Lo-dense class F.

. » 2/k _ 2/k 2/3
The inequalities 4(%&) / > ng? > & (Aia') % and na? > M 10(5);@;%” also

hold, provided that no? > (%)Q/k > M(L + )3/?log 2 2 with = max <l°iD , 0).

Proof of Proposition 14.1. Let us list the elements of the countable set F as f1, fa,....
For all p = 0,1,2,... let us choose, by exploiting the Ls-density property of the
class F, a set F, = {fa(1,p)>--- ,fa(mp,p)} C F with m, < D2%*Ls=L clements in
such a way that 1<ijrifm J(f = fagp))?dp < 27 452 for all f € F. For all indices

a(j;p)v p = 1a2a"'7 1< j < Myp, choose a predecessor (I(j P — 1)7 j/ = j (]7p>7
1 <j" <my_1, in such a way that the functions f,(; ) and fo(js ,—1) satisfy the relation

o 2
[ 1 fatip) = fairp—1)|? dp < 02274P~1 Then the inequalities [ (f“(“’) J;““ ”””) dp <
< 1 hold. The Corollary of

fa(j,p) ($17"'?$k)_fa(j/7p_1)(Il,...,:rk)

402274 and sup 5

z;€X,1<5<k
Theorem 8.3 yields that

. —k/2 2_(1+p)u
P(A(4,p)) = P n "Lk (fatip) — fairp—1)] = 1
2Py \ 2/* 2Py \ 2/* (14.5)
<C — _ if 4no?27% >
< exp{ o (SAU) } if 4no (8Aa> ,

1<3j<m,, p=1,2,...,

and

P(B(s)) = P (n™" 2| L (fo.)| =

N——

u \2/k
<C’exp{—o¢(2?> }, 1 < s < mg,

U
24 Ao
u
240

if no >( )Z/k. (14.6)
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Introduce an integer R = R(u), R > 0, which satisfies the relations

9(4+2/k)(R+1) (i)m > 92H6/kp a2 > 9(4+2/k)R (L)M
AO' - - )

Ao

and define 62 = 27462 and F5 = Fp (this is the class of functions F,, introduced at
the start of the proof with p = R). (As no? > (%)Q/k, and A > 2% by our conditions,
there exists such a positive integer R.) The cardinality m of the set F5 is clearly not

greater than D5~L, and |J D; = F. Beside this, the number R was chosen in such a
j=1

way that the inequalities (14.5) and (14.6) hold for 1 < p < R. Hence the definition of

the predecessor of an index a(j, p) implies that

R mp mo

_ (& .

P sup n "L i(f) > < | <P U UAGp U Bs)
fe}—& A =1 = —
p=1j5=1 s=1
R mp mo o0 2P 2/k
<S03 PG+ Y PER) < 3D bep o (2
p=1j=1 s=1 p=1
L B u \2/k
+ CDo™ " exp { Q@ (—2;10) } .

If the condition (%)2/ g > ML3/? log% holds with a sufficiently large constant M (de-
pending on A), then the inequalities

2Py \ 2/* 2Py \ 2/*
2pL _—L . _ < 97P _ -
2P o exp{ a(g 0) } <2 exp{ a(lO 0)

hold for all p =1,2,..., and
o) Y <o o (i)
o expy —« 5 o <exps —a T0do .
Hence the previous estimate implies that
) 9Py, 2/k
< CcD27? — —

Do {_a <1oixa>2/k} < 20D exp {_O‘ (101/01(;)2%} |

and relation (14.4) holds.
The relations

e

P sup n*2|L, 1 (f)] >
feFs

Ao

= () () = () () e ()
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hold. Hence no? < 4 (i‘—)z/k. Beside this, as no? > 2(4+2/k)R-2-6/k (_j%)z/k

A 7R217

Qi

2/k 1 u \2/k
~2 _ o—4R_ 2 —2-6/k . 92R/k (i) 4 <_)
=2 > 2 2 - > - i
ne noe = Ao 64 \Ao
2> M 2/3(L4p) logn
1000A%/3
This inequality clearly holds under the conditions of Proposition 14.1if o < n~1/3,

since in this case log 2 > log” , and ng? > & (4 )2/]C > LAYRM(L + B)*/?log 2 >

s AYFM(L 4 B)logn > M /10(&;1@;%” if M = M(A, k) is chosen sufficiently large.

If o > n~'/3, then the inequality 24+2/k) R (£) 2k < 9246/kpa2 can be applied.
] 4/(4+2/k)

It remained to show that no

5 , and
no

L \2/k
This implies that 24 > 2=4(2+6/k))/(4+2/k) [w
2—16/3

~2 —4R_ 2 2\1— u\2/k|7 4 2

Since no? > (£)?/* > (L 4+ 3)3/2, and no? > n'/3, the above estimates yield that
2/3 2/3
(no?)' 7 [(2)7*]" = o) [(2)7F] 7, and no? = A5 ()13 [(2)7]

A48 2/3 M?/3(L+3)logn
50 1/9( ) (L+05) = 10(00,4@3 =

A multivariate analog of Proposition 6.2 is formulated in Proposition 14.2, and it
will be shown that Propositions 14.1 and 14.2 imply Theorem 8.4.

Proposition 14.2. Let a probability measure p be given on a measurable space (X, X)
together with a sequence of independent and p distributed random variables &1, ...,&,
and a countable Lo-dense class F of canonical (with respect to the measure p) kernel
functions f = f(x1,...,x,) with some parameter D and exponent L on the product
space (X*, X*). Let all functions f € F satisfy conditions (8.1) and (8.2) with some
0 < 0 < 1. Let us consider the (degenerate) U-statistics I, (f) with the random
sequence &1, . . ., &, and kernel functions f € F. There exists a sufficiently large constant
K = K(k) together with some numbers C = C(k) > 0, v = v(k) > 0 and threshold
index Ag = Ag(k) > 0 depending only on the order k of the U-statistics such that if

no? > K(L+ 3)logn with 3 = max (ﬁggg , O), then the degenerate U-statistics L, 1 (f),
f € F, satisfy the inequality

P (sup In =21, 1. (f)] > Ank/QakH) < CemrA#no? if A > Ap. (14.7)
fer

Proposition 14.2 yields an estimate for the tail distribution of the supremum of
degenerate U-statistics at level u > Aonk/2ak+1, i.e. in the case when Theorem 8.3 does
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not give a good estimate on the tail-distribution of the single degenerate U-statistics
taking part in the supremum at the left-hand side of (14.7).

Formula (8.11) will be proved by means of Proposition 14.2 with the choice o =
o = & (u) defined in Proposition 14.1 and the classes 7 = D;, more precisely the classes
F = {g fi, g€eD; } of functions introduced also in Proposition 14.1, where f; is the

function appearing in the definition of the class of functions D;. Clearly,

" (S“p w2 L (f)] 2 “) =" (Sup w2 ()] = %)

feF FEFs

e (552 (3 31)1).

where m is the cardinality of the set of functions F5 appearing in Proposition 14.1. We
want to show that if first A and then M > My(A, k) are chosen sufficiently large in
Proposition 14.1, then the second term at the right-hand side of formula (14.8) can be
well bounded by means of Proposition 14.2, and Theorem 8.4 can be proved by means
of this estimate.

(14.8)

m
+ Z P | sup n=k/2
j=1 geD;

To carry out this program let us choose a number Ag in such a way that Ag > A

and %21(1)/2’“ > % with the numbers Ay, K and v in Proposition 14.2, put A =

max(2¥t2 Ay, 2%), and apply Proposition 14.1 with this number A. Then by Propo-
2/k
>

sition 14.1 and the choice of the numbers A and Ay also the inequality (%)
A7 52 > (4A0)?/*1n5? holds, hence u > 4Agn*/25**1 with the number & in Proposi-
tion 14.1. This implies that ( 2A) u>q > AgnF/25k+1 Ag > Ay, and by replacing
the expression (% — %) u by Agn*/%5 k“ in the probabilities of the sum in the second
term at the right-hand side of (14.8) we enlarge them.

The numbers u considered in these estimations satisfy the condition no?/k >
(%)Q/k > M(L + 3)3/?log 2 imposed in Proposition 14.1 with some appropriately
chosen constant M. Choose the number M > Mjy(A, k) in Proposition 14.1 (it can
also play the role of the number M in formula (8.11) of Theorem 8.4) in such a way

2/3
that it also satisfies the inequality M 10((%1@;%” > K(L + )logn with the number

K appearing in the conditions of Proposition 14.2. With such a choice the inequality

g2 > M2/130(0L0:@;ogn > K(L + f3)logn holds, and Proposition 14.2 can be applied to

bound the terms in the sum at the right-hand side of (14.8). It yields the estimate

4D, ’ 2 =\2 24
s (fj > g) ‘ > Aonk/za“l) < G A ne?

f

< P | sup n~k/2
9€D;

forall 1 <j <m. ( ¢ g € Dy, is an Ly-dense class
with parameter D and exponent L.) Hence Propos1t10n 14.1 (relation (14.4) together
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with the inequality m < D& ~%) and formula (14.7) with A = Ay imply that

P (sup n 21, (F)] > u) < 2CDexp {—a (10;1
o

)2/k} +CDgFem A 7,
fer

(14.9)
To get the result of Theorem 8.4 from inequality (14.9) its second term at the right-
hand side has to be replaced by a more appropriate expression where, in particular,
the coefficient 7~ disappears. The condition ng? > K(L + 3)logn implies that & >
n~1/2, and by our choice of Ay we have 714(1)/21:”&2 > %7@2 > Llogn > 2Llog %, i.e.

Al/ 5 . o _
L < erAy* e’ /2, By the estimates of Proposition 14.1 ng? > —614 (—;;‘ )2/k. The above
g

relations imply that 5_Le_7gc1)/2k”52 < 6_7‘43/%”62/2 < exp {— X 14_1(1)/2kf_1_2/k (H)Q/k}.

128 o
Hence relation (14.9) yields that

P (sup n_k/2|ln,k(f)| > u)

ferF

< S (e L -
= ZCDeXp{ (104)2 <a> } +CD€XP{ g0 A (a> )

and this estimate implies Theorem 8.4.

Thus to complete the proof of Theorem 8.4 it is enough to prove Proposition 14.2,
which is a multivariate analog of Proposition 6.2. The proof of Proposition 6.2 was based
on a symmetrization argument. This argument can be better applied in the solution of
the present problem if we work with so-called decoupled U-statistics. I introduce this
notion together with its randomized version which will be useful in the subsequent part,
where some symmetrization arguments will be applied.

Similarly to the one-variate case we shall also apply symmetrization type argument
in the study of U-statistics. This will make possible the reduction of the estimation
of (decoupled) U-statistics given in formula (14.10) to the estimation of randomized
(decoupled) U-statistics given in formula (14.11).

The definition of decoupled and randomized decoupled U-statistics. Let us
have k independent copies 59), e ﬁbj), 1 <5 <k, of a sequence &1,...,&, of inde-
pendent and identically distributed random variables taking their values in a measurable
space (X, X) together with a measurable function f(x1,...,x) on the product space

(X%, X% with values in a separable Banach space. The decoupled U-statistic I, x(f)

determined by the random sequences Eij), ceey 7(3'), 1 < j <k, and kernel function f is
defined by the formula

fi(f) = 1 3 AGRENCOT (14.10)

(ll,...,lk): 1§lj S'I’L, j:].,...,k,
il if j#5

122



Let us have beside the sequences E%j), . ,&(Lj), 1 < j <k, and function f(x1,...,xx)
a sequence of independent random wvariables € = (e1,...,ey), Ple; = 1) = P(g; =
-1) = %, 1 <1 < n, which is independent also of the sequences of random wvariables

fgj), - ,@Sj), 1 < j < k. The randomized decoupled U-statistic I, x(f,c) (depending on

the random sequences fij), . ,5,(3), 1 < j <k, the kernel function f and the randomiz-
ing sequence €1, ...,&y,) is defined by the formula

- 1 1 k

k) = > e e (6. 60). (14.11)

T (liseni): 11 <n, j=1,...,k,
il if j#5'

A decoupled or randomized decoupled U-statistics (with real valued kernel function)
will be called degenerate if its kernel function is canonical. This terminology is in full
accordance with the definition of (usual) degenerate U-statistics.

A result of de la Penia and Montgomery—Smith will be formulated below. It gives an
upper bound for the tail distribution of a U-statistic by means of the tail distribution of
an appropriate decoupled U-statistic. It also has a generalization, where the supremum
of U-statistics are bounded by the supremum of decoupled U-statistics. The theorem
of de la Pena and Montgomery—Smith will be proved in Appendix D. It enables us to
reduce Proposition 14.2 to a version formulated Proposition 14.2’, where the supremum
of decoupled U-statistics has to be bounded. This problem is simpler than the original
one.

Before the formulation of the theorem of de la Pena and Montgomery—Smith I
make some remark about it. It considers more general U-statistics with kernel functions
taking values in a separable Banach space, and it compares the norm of Banach space
valued U-statistics and decoupled U-statistics. (Decoupled U-statistics were defined
with general Banach space valued kernel functions, and the definition of U-statistics
can also be generalized to separable Banach space valued kernel functions in a natural
way.) This result was formulated in such a general form for a special reason. Its more
general form helped a general form for a special reason. Its more general form helped
to derive formula (14.13) of the subsequent theorem from formula (14.12). It can be
exploited in the proof of formula (14.13) that the constants in the estimate (14.12) do
not depend on the Banach space, where the kernel function f takes its values.

Theorem 14.3. (Theorem of de la Pena and Montgomery—Smith about the
comparison of U-statistics and decoupled U-statistics). Let us consider a se-
quence of independent and identically distributed random variables &1, . . ., &, with values
in a measurable space (X, X) together with k independent copies f%j), e ,féj), 1 <5<k,
of this sequence. Let us also have a function f(x1,...,xx) on the k-fold product space
(X*, X)) which takes its values in a separable Banach space B. Let us take the U-
statistic and decoupled U -statistic I, x(f) and I, x(f) with the help of the above random

sequences &1, ..., &, ij), cee 53), 1 <j <k, and kernel function f. There exist some
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constants C = C(k) > 0 and v = (k) > 0 depending only on the order k of the
U -statistic such that

P ([l (HIl > w) < CP (| Lo ()] > yu) (14.12)

for allu > 0. Here || -|| denotes the norm in the Banach space B where the function f
takes its values.

More generally, if we have a countable sequence of functions fs, s =1,2,..., taking

their values in the same separable Banach-space, then

P< sup | In.x(fs)l > u) < C’P( sup || Lk (fs)| > 7u) . (14.13)

1<s<o00 1<s<o00

Now I formulate the following version of Proposition 4.2.

Proposition 14.2". Let a probability measure p be given on a measurable space (X, X)
together with a sequence of independent and p distributed random wvariables &1, ... ,&,
and a countable Ly-dense class F of canonical (with respect to the measure ) kernel
functions f = f(x1,...,xk) with some parameter D and exponent L on the product
space (X%, X*). Let all functions f € F satzsfy condztzons (8.1) and (8.2) with some

0 <o < 1. Let us take k independent copies 5] ...,§n ), 1 < j <k, of the random
sequence &1, ..., &, and consider the decoupled U -statistics I, x(f), f € F, defined with
their help in formula (14.10).

There exists a sufficiently large constant K = K (k) together with some number
v = (k) > 0 and threshold index Ay = Ao(k) > 0 depending only on the order k
of the decoupled U-statistics I, x(f), f € F, such that if no? > K(L + 3)logn with

f = max <11°gD 0) then the (degenerate) decoupled U-statistics I, 1.(f), f € F, satisfy

the following version of inequality (14.7):

P <sup n* 2\ L ()] > Ank/2ak+1> < e~ vAY*no” if A> Ap. (14.14)
feF

It is clear that Proposition 14.2" and Theorem 14.3, more explicitly formula (14.13)
in it imply Proposition 14.2. Hence the proof of Theorem 8.4 was reduced to Proposi-
tion 14.2" in this section. The proof of Proposition 14.2" is based on a symmetrization
argument. Its main ideas will be explained in the next section.

124



15. The strategy of the proof for the main result of this work.

In the previous section the proof of Theorem 8.4 was reduced to that of Proposition 14.2’.
Proposition 14.2" is a multivariate version of Proposition 6.2, and its proof is based on
similar ideas. Proposition 6.2 was proved by means of Proposition 7.3 in which an
inductive procedure was carried out. In the proof of Proposition 14.2" this argument
is applied in a more sophisticated situation. To understand how to apply it let us first
observe that relation (14.14) in Proposition 14.2 holds for A > Ay = o~ ++1) if the
absolute value of the functions in the class F is bounded in the supremum norm by 1.
Indeed, in this case n~*/2|I, ,(f)| < n*/? with probability 1 for all functions f € F,
hence the probability at the left-hand side of (14.14) equals zero. A most important
step of the proof of Proposition (14.2") will be the right formulation of an appropriate
inductive argument in Proposition 15.3, which is a natural multivariate anagogue of
Proposition 7.2. In this proposition such classes of function F are considered which
satisfy some nice properties. It will be shown that if all classes of functions with these
properties satisfy relation (14.14) for all numbers A > Ay with some sufficiently large
threshold A, then they also satisfy this relation with a smaller threshold A < Ay. The
detailed formulation of Proposition 15.3 will be given later.

By a successive application of Proposition 15.3 it can be shown that the esti-
mate (14.14) holds not only for Ag = o=+ but also for a much smaller threshold
number Ag. Proposition 14.2" contains the estimate that can be obtained with the help
of Proposition 15.3. This proposition is a natural multivariate version of Proposition 7.3,
and also their proofs are similar. However, there is an essential difference between them.
The proof of Proposition 7.3 contains a relatively simple symmetrization argument, but
it is not clear how to adapt it to the case of Proposition 15.3. The greatest difficulties in
the proof appeared at this point. In particular, the proof of Proposition 15.3 demanded
the formulation of another inductive argument presented in Proposition 15.4. These
two Propositions will be proved simultaneously.

This section contains the formulation of Propositions 15.3 and 15.4 together with
two lemmas which are useful in their proof. It is also shown that Proposition 14.2
follows from these Propositions.

To understand the difficulty about the adaptation of the symmetrization argument
to the new case better it is useful to recall how it was applied in the proof of Proposi-
n

tion 6.2. In that result the supremum of a class of sums ) f(&;) had to be bounded,
j=1

where §;, 1 < j < n, were independent and identically distributed random variables,

and the supremum was taken for the elements f of a nice class of functions F. In the

symmetrization argument of Proposition 6.2 this problem was reduced to the estimation

of the supremum of appropriately randomized versions of the above sums. More explic-

n
itly, in the new problem the supremum of sums of the form ) ¢;f(§;) was considered,
j=1
where ¢;, P(e; =1) = P(g; = —1) = %, are independent random variables, independent
also of the random variables £;, 1 < j < n.

In the proof of Proposition 14.2" we want to find such a multivariate version of this
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argument where the estimation of the supremum of decoupled U-statistics defined in
formula (14.10) is reduced to the estimation of the supremum of randomized decoupled
U-statistics defined in formula (14.11). We want to do this by means of an appropriate
adaptation of the method applied in the one-variate case.

The symmetrization argument in the proof of Proposition 6.2 had two important
ingredients. The first one was the observation that if an independent copy &i,...,&,
of the original random variables &1,...,&, is taken, which is independent also of the

randomizing sequence €1, . . ., €,, then the joint distribution of the sums » [f(£;)—f(5)]
j=1

(depending on the class F of the functions f) and of the sums 21 e;[f(&5) = f(£))] agree.
=

This was the step, where the randomizing terms ¢; appeared. The other ingredient was
n
Lemma 7.1 that enabled us to compare the supremum of the sums »_ [f({;) — f(&})] and
j=1

> f(&). Lemma 15.1 formulated below can be considered as the multivariate version

of the first step in this proof. To formulate it some notations have to be introduced.

Let Vj, denote the set of all sequences e(1),...,e(k)} of length k such that e(j) = +1
or g(j) = —1forall 1 < j < k. Let m(v), v = (e(1),...,e(k)) € Vg, denote the
number of digits —1 in the sequence v. Let a (real valued) function f(z1,...,z) of k
variables be given on a measurable space (X, X') together with a sequence of independent
and identically distributed random variables &1, ..., &, with values in the space (X, X)

and 2k independent copies §§j’1),...,fﬁbj’1) and §§j’_1),..., T(Lj’_l), 1 <5 <k, of this
sequence. Let us have beside them another sequence ¢ = (e1,...,&,), Pe; = 1) =
P(e; = —1) = , of independent random variables, also mdependent of all previously

introduced random variables. With the help of the above quantities we introduce the
random variables

L) =2 3 (- > A GRL) ICERY

T VeV (I1,0l): 1<l <,y v=1,...,k,
1Al if rr’
and
ymv (L,v(1)) (k,v(k))
”Mk klz ) Z €l 7 kf<€ 7...,5
VEVy (1, lp): 1<l.<n, r=1,....k,
1-#l,. if r#r’

(15.2)
The number m(v) in the above formulas denotes the number of the digits —1in the £1

sequence v of length k, hence it counts how many random variables § (3.1 , 1 <j <k, were

replaced by the ‘secondary copy’ & l(j Dforave Vi in the inner sum in formulas (15.1)
r (15.2).
The following result holds.
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Lemma 15.1. Let us consider a (non-empty) class of functions F of k wvariables
f(z1,...,2) on the space (X* X*) together with the random variables I, x(f) and
I5 . (f) defined in formulas (15.1) and (15.2) for all f € F. The joint distributions of

the set of random variables {I,, x(f); f € F} and {fflk(f), f € F} agree.

Formulas (15.1) and (15.2) show some similarity to the formula by which Stieltjes
measures are defined in the k-dimensional space by means of a functions of k variables.

Proof of Lemma 15.1. 1 even claim that for any fixed sequence u = (u(1),...,u(n)),
u(l) = £1, 1 <1 < n, of length n, the conditional distribution of the field {fg L) fe
F} under the condition that (e1,...,e,) = u = (u(1),...,u(n)) agrees with the distri-
bution of the field of {1, x(f); f € F}.

Indeed, the random variables fn,k( f), f € F, defined in (15.1) are functions of a

random vector with coordinates ( l(j) }U)) = ( (j’l), l(j’_l)), 1<1<n,1<j<k,and
the distribution of this random vector does not change if the coordinates ( l(j ) 7l(j )) =
( l(j’l), l(j’_l)) with such indices (I, j) for which u(l) = —1 (and the index j is arbitrary)
are replaced by (7l(j ) l(j )) = ( l(j’_l), l(j’l)), and the coordinates ( l(j ) 7l(j )) with such
indices (I, j) for which u(l) = 1 are not changed. As a consequence, we carry out a

measure preserving transformation by replacing the original vector ( l(j ) _l(] )), 1<l <n,
1 < j < k, in the definition of the expression I, x(f) in (15.1) for all f € F by this
modified vector. On the other hand, I claim that the distribution of the random field
we get by means of the above transformation of the field fnk( f), [ € F, agrees with
the conditional distribution of the random field I¢ , (f), f € F, defined in (15.2) under
the condition that (e1,...,&,) = u with u = (u(l);. —yu(n)).

To prove the last statement let us observe that the conditional distribution of the
random field fka(f), f € F, under the condition (e1,...,&,) = u is the same as that
of the random field we obtain by putting u; = ¢;, 1 < [ < n, in all coordinates ¢;
of the random variables I . x(f). On the other hand, the random variables we get in
such a way agree with the random variables we get by carrying out the above described
transformation for the random variables fn,k( f), only the terms in the sums defining
these random variables are listed in a different order. Lemma 15.1 is proved.

In the proof of Proposition 6.2 which can be considered the one-variate version of
Proposition 14.2" we needed a symmetrization Lemma, formulated in Lemma 7.2. This
lemma cannot be applied in the present case, because its (independence type) conditions
do not hold in the problem we are considering. Hence we need a new, generalized version
of this result which will be formulated in Lemma 15.2. It can be applied in the proof of
Proposition 14.2’, too.

Lemma 15.2. (Generalized version of the Symmetrization Lemma.) Let Z,
and Z,, p = 1,2,..., be two sequences of random wvariables on a probability space
(Q, A, P). Let a o-algebra B C A be given on the probability space (2, A, P) together
with a B-measurable set B and two numbers a > 0 and 8 > 0 such that the random
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variables Z,, n =1,2,..., are B measurable, and the inequality
P(|Z,) < a|B)(w) > B forallp=1,2,... ifwe B (15.3)

holds. Then

1 _
P(sup \Z]>04+u> = (sup \Zp—Zp]>u)+(1—P(B)) for all u > 0.
1<p<oo ﬁ 1<p<oo
(15.4)

Proof of Lemma 15.2. Put 7 = min{p: |Z,| > a+u) if there exists such an index p > 1,
and put 7 = 0 otherwise. Then

P({r=p}nB)< /{ - %P(lZpl <alB)dP = %P({T =p}n{lZ,[ <a}nB)

PH{r=p}n{|Z,— Zy| >u}) forallp=1,2,....

\QIH

Hence

P( sup |Zp\>a+u)—(1—P(B))§P({ sup \Zp\>a+u}ﬂB)

1<p<oo 1<p<oo

oo

1 _
=) PHr=p;nB) SEZ {r =p}0{lZp = Zp| > u})
p=1 p=1
SlP( sup |Zp—Zp|>u).
ﬁ 1<p<oo

Thus Lemma 15.2 is proved.

The proof of Lemma 15.2 was relatively simple, but its application may cause
some problems. The main difficulty is to check condition (15.3) which is an analogue
of condition (7.1) in Lemma 7.1. Let us recall that in condition (15.3) a conditional
probability with respect to such a o-algebra B is bounded in an appropriate way, for
which the random variables Z,, p = 1,2,..., are B-measurable. So the behaviour of
the conditionial probability we have to estimate in an application of Lemma 15.2 also
depends on the relation between the random variables Z,, and Zp.

Proposition 14.2" will be proved by means of the following program. A backward
induction procedure will be applied with the help of Proposition 15.3 formulated below
which implies formula (14.14). To formulate Proposition 15.3 first we introduce a notion
that we call the good tail behaviour for a class of decoupled U -statistics. Proposition 15.3
is a natural multivariate analog of Proposition 7.3. It will be proved by means of a
symmetrization argument with the help of Lemma 15.2. This lemma will be applied
with some appropriately defined random variables Z,, Z, and o-algebra B. In the proof
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of Proposition 15.3 formula (15.3) has to be checked in an appropriate setting. This
will be done by means of a good estimate of the conditional second moments E(Z2|B).

In the proof of Proposition 7.3 a similar method was applied. In that proof for-
mula (7.1) was checked for some random variables Z,, by means of the estimation of
their second moments £Z2. But while the estimation of the second moments needed in
the proof of formula (7.1) was simple, the estimation of the conditional second moments
needed in the proof of Proposition 15.3 is the most difficult part of the proof. To carry
out this estimation a new notion will be introduced under the name good tail behaviour
for a class of integrals of decoupled U -statistics. We shall formulate another result in
Proposition 15.4 which is related to this notion. Propositions 15.3 and 15.4 will be
proved simultaneously.

To formulate Propositions 15.3 and 15.4 the following two notions will be intro-
duced.

Definition of good tail behaviour for a class of decoupled U-statistics. Let
some measurable space (X, X) be given together with a probability measure p on it. Let
us consider some countable class F of functions f(x1,...,x) on the k-fold product
(XF*, Xk of the space (X, X). Fix some positive integer n > k and a positive number
0 <o <1, and take k independent copies fij), e ,giﬁ'), 1 <7 <E, of a sequence of inde-
pendent p-distributed random variables &1, . .., &,. Let us introduce with the help of these
random variables the decoupled U-statistics I, (f), f € F, defined in formula (14.10).
Given some real number T > 0 we say that the set of decoupled U -statistics determined
by the class of functions F has a good tail behaviour at level T (with parameters n and
o2 which are fized in the sequel) if

P (sup In 2L, 1 (f)] > Ank/QakH) < exp {—Al/%nUQ} for all A>T. (15.5)
fer

Definition of good tail behaviour for a class of integrals of decoupled U-
statistics. Let us have a product space (X* x Y, X% x V) with some product measure
pF x p, where (X*, X* 1*) is the k-fold product of some probability space (X, X, 1), and
(Y, Y, p) is some other probability space. Fix some positive integer n > k and a positive
number 0 < o < 1, and consider some countable class F of functions f(x1,...,2k,y) on
the product space (X* <Y, X% x Y, u¥ x p). Take k independent copies Sg‘j), . ,gﬁﬁ'), 1<
j <k, of a sequence of independent, u-distributed random variables &1,...,&,. For all
fE€F andy €Y let us define the decoupled U-statistics I, k(f,y) = Lk (f,) by means
of these random variables 59), cee éj), 1 < j <k, the kernel function f,(z1,...,z5) =
f(z1,...,21,y) and formula (14.10). Define with the help of these U-statistics I, x(f,y)
the random integrals

Hoilf) = / Loi(f0)0(dy), feF. (15.6)
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Choose some real number T > 0. We say that the set of random integrals H,, 1 (f),
f € F, have a good tail behaviour at level T (with parameters n and o? which we fix in
the sequel) if

P (sup n_an,k(f) > A2nka2k+2> < exp {—Al/(2k+1)na2} forall A>T. (15.7)
feF

Propositions 15.3 and 15.4 will be formulated with the help of the above notions.

Proposition 15.3. Let us fix a positive integer n > k, a real number 0 < o <
2=+ and a probability measure p on a measurable space (X, X) together with a
countable Lo-dense class F of canonical kernel functions f = f(x1,...,x) (with re-
spect to the measure p) on the k-fold product space (X*, X*) which has exponent L > 1
and parameter D. Let us also assume that all functions f € F satisfy the condi-

tions  sup  |f(@r,.omp)] < 20, [ mu(de) . p(day) < o,
r;eX,1<j<k

and no? > K(L + 3)logn with an appropriately chosen fived number K = K (k) with
log D
ﬂzmax(loggn,O).
Choose the constant K = K(k) (and the sample size n) in the condition no?® >
K(L + B)logn sufficiently large. Then there is some real number Ay = Ag(k) > 1
such that if for all classes of functions F which satisfy the above conditions the sets of

decoupled U -statistics I, x(f), f € F, have a good tail behaviour at level T4/3 for some
T > Ap, then they also have a good tail behaviour at level T .

Proposition 15.4. Fiz some positive integer n > k and real number 0 < o < 2~ (++1)
and let us have a product space (X*xY, X* xY) with some product measure u* x p, where
(XF X% uF) is the k-fold product of some probability space (X, X, p), and (Y, p) is
some other probability space. Let us have a countable Lo-dense class F of canonical
functions f(xq,...,71,y) on the product space (X* x Y, X% x Y, u¥ x p) with some
exponent L > 1 and parameter D. Let us also assume that the functions f € F satisfy
the conditions

sup (@1, )| < 27 FY (15.8)
z; €X,1<j<k,yeY

and
[ P gl den u(dno(dy) < 0 forall § € F. (15.9)

Let the inequality no? > K(L + ()logn hold with a sufficiently large, appropriately
chosen number K = K (k) and = max <1°gD O).

logn’

Then there exists some number Ay = Ao(k) > 1 such that if for all classes of
functions F which satisfy the above conditions the random integrals Hy 1 (f), f € F,
defined in (15.6) have a good tail behaviour at level TZR+1V/2k with some T > Ay, then
they also have a good tail behaviour at level T'.
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Remark: In the conditions of Proposition 15.4 the notion of canonical functions appeared
in a slightly more general form than it was defined in formula (8.8). We say that a
function f(z1,...,xx,y) on the product space (X* x Y, X% x Y, u¥ x p) is canonical if

/f(a:l,...,a;j_l,u,mj+1,...,xk,y)u(du) =0
forall1<j<k,zse€ X, s#jandyeY

and
/f(a:l,...,a:k,y)p(dy):() forallz; € X, 1 <j<k.

Let me also remark that the estimate (15.7) we have imposed in the definition
of the property ‘good tail behaviour for a class of integrals of U-statistics’ is fairly
natural. We have applied the natural normalization, and with such a normalization it

is natural to expect that the tail distribution of sup n*anyk( f) behaves similarly to
feF

that of const. (m)k)2, where 7 is a standard normal random variable. Formula (15.7)

expresses such a behaviour, only the power of the number A in the exponent at the

right-hand side was chosen in a non-optimal way. Formula (15.5) in the formulation

of the property ‘good tail behaviour for a class of decoupled U-statistics’ has a similar

interpretation. It says that sup [n~*/21I, »(f)| behaves similarly to const.o|n*| with a
€F

standard normal random varfiable 7.

We wanted to prove the property of good tail behaviour for a class of integrals of
decoupled U-statistics under appropriate, not too restrictive conditions. Let me remark
that in Proposition 15.4 we have imposed beside formula (15.8) a fairly weak condition
(15.9) about the Lo-norm of the function f. Most difficulties appear in the proof,
because we did not want to work with a more restrictive condition.

It is not difficult to derive Proposition 14.2" from Proposition 15.3. Indeed, let
us observe that the set of decoupled U-statistics determined by a class of functions F
satisfying the conditions of Proposition 15.3 has a good tail-behaviour at level Ty =
o~ +1) since under the conditions of this Proposition the probability at the left-hand
side of (15.5) equals zero for A > ¢~ +1)  Then we get from Proposition 15.3 by
induction with respect to the number j, that this set of decoupled U-statistics has
a good tail-behaviour also for all T > T0(3/4)] = o~ DG/ for § = 0,1,2,... if
o~ (EHDE/AT > Ay, (Observe that o < 1 under the conditions of Proposition 15.3,
since 02 < 272(k+1) in this case.) This implies that if a class of functions F satisfies
the conditions of Proposition 15.3, then the set of decoupled U-statistics determined
by this class of functions has a good tail-behaviour at level T = Aé/ 3, i.e. at a level
which depends only on the order k of the decoupled U-statistics. This result implies
Proposition 14.2’, only it has to be applied not directly for the class of functions F
appearing in it, but these functions have to be multiplied by a sufficiently small positive
number depending only on k.
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Similarly to the above argument an inductive procedure yields a corollary of Propo-
sition 15.4 formulated below. Actually, we shall need this corollary of Proposition 15.4.

Corollary of Proposition 15.4. If the class of functions F satisfies the conditions
of Proposition 15.4, then there exists a constant Ay = Ag(k) > 0 depending only on k
such that the class of integrals H, 1 (f), f € F, defined in formula (15.6) have a good
tail behaviour at level Ag.

The main difficulty in the proof of Proposition 15.3 arises in the application of the
symmetrization procedure corresponding to Lemma 7.2 in the one-variate case. This
difficulty can be overcome by means of Proposition 15.4, more precisely by means of its
corollary. It helps us to estimate the conditional variances of the decoupled U-statistics
we have to handle in the proof of Proposition 15.3. The proof of Propositions 15.3
and 15.4 apply similar arguments, and they will be proved simultaneously. The fol-
lowing inductive procedure will be applied in their proof. First Proposition 15.3 and
then Proposition 15.4 is proved for £ = 1. If Propositions 15.3 and 15.4 are already
proved for all k' < k for some number k, then first we prove Proposition 15.3 and then
Proposition 15.4 for this number k.

The proof both of Proposition 15.3 and 15.4 applies a symmetrization argument
that will be proved in the next section. In the subsequent section Propositions 15.3
and 15.4 will be proved with its help. They imply Proposition 14.2", hence also Theo-
rem 8.4.

16. A symmetrization argument.

The proof of Propositions 15.3 and 15.4 applies some ideas similar to the argument
in the proof of Proposition 6.2. But here some additional technical difficulties have
to be overcome. As a first step, two results formulated in Lemma 16.1A and 16.1B
will be proved. They can be considered as a symmetrization argument analogous to
Lemma 7.2 in the proof of Propositions 6.2. Lemma 16.1A will be applied in the proof
of Proposition 15.3 and Lemma 16.1B in the proof of Proposition 15.4. This section
contains their proofs. Because of the inductive structure of our proofs we may assume
in their proof for parameter k£ that Propositions 15.3 and 15.4 (and their consequences)
hold for k&’ < k.

Lemma 16.1A is a natural multivariate version of Lemma 7.2. Lemma 7.2 enables
us to replace the estimation of the distribution of the supremum of a class of sums of
independent random variables to the estimation of the distribution of the supremum of
the randomized version of these sums. Lemma 16.1 enables to reduce the estimation
of the supremum of degenerate U-statistics to the estimation of the distribution of the
distribution of the supremum of the randomized degenerate U-statistics corresponding
to them. The supremum of the randomized degenerate U-statistics we have to bound
to prove Theorem 15.3 can be investigated, similarly to the proof of Proposition 6.2, by
means of the multi-dimensional version of Hoeffding’s inequality given in Theorem 13.3.
The case of Lemma 16.1B is more complicated. In this result the probability investigated
in Proposition 15.4 is bounded by the distribution of the supremum of some random
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variables W (f), f € F, which will be defined in formula (16.7). The expressions W (f)
are rather complicated, and it is worth while to study them more closely. This will
be done in the proof of Corollary of Lemma 16.1B which yields a more appropriate
bound for the expression we want to estimate in Proposition 15.4. This corollary will
be applied in the sequel.

The proof of Lemmas 16.1A and 16.1B is similar to that of Lemma 7.2. First
we introduce k additional independent copies & ¢d ) ey _,(lj ) of the k (independent and
identically distributed) sequences & G ) e ,57(3 ), 1 § J < k, and construct with their help
some appropriate expressions which have the same distribution as the randomized sums
we shall work with in the proof of Lemmas 16.1A and 16.1B. This statement will be
formulated and proved in Lemmas 16.2A and 16.2B. These results enable us to reduce
the problems we are interested in to some simpler questions which can be studied with
the help of Lemmas 16.3A and 16.3B. In Lemma 16.3A the conditional variance of a
random variable is estimated under some appropriate conditions. This estimate together
with the generalized form of the symmetrization Lemma, Lemma 15.2, enable us to
prove Lemma 16.1A. Lemma 16.1B can be proved similarly, but here the conditional
distribution of a more complicated expression has to be estimated. This estimate can
be proved with the help of Lemma 16.3B. In Lemma 16.3B the conditional expectation
of the absolute value of an appropriate expression is bounded.

The main results of this section are the following two lemmas.

Lemma 16.1A. Let F be a class of functions on the space (X, X*) which satisfies the
conditions of Proposition 15.3 with some probability measure p. Let us have k indepen-

dent copies f(J) cee T(Lj), 1 <5 <k, of a sequence of independent p distributed random
variables &1, ..., &, and a sequence of independent random variables € = (e1,...,&n),
P(e; = 1) = P(e; = =1) = £, 1 < | < n, which is independent also of the random
sequences f(J) cee 7(3), 1 < j < k. Consider the decoupled U -statistics I_n’k(f), ferF,

defined with the help of these random variables by formula (14.10) together with their
randomized version I: ; (f) defined in formula (14.11).

There ezists some constant Ag = Ag(k) > 0 such that the inequality

P (supn k/2 !Ink f)| > Ank/20k+1> < 2Mip (sup ’I_f”c(f ’ > 27 (k+D Apk s k+1>
fer fer

1 A1/(2k—=1)_ 2
+2knk 1e A no*/k

(16.1)
holds for all A > Ay.

It may be worth remarking that the second term at the right-hand side of for-
mula (16.1) yields a small contribution to the upper bound in this relation because of
the condition no? > K (L + 3) logn with a sufficiently large constant K = K (k).

To formulate Lemma 16.1B first some new quantities have to be introduced. Some
of them will be used somewhat later. The quantities IV 1 (f,y) introduced in the sub-
sequent formula (16.2) depend on the sets V' C {1,...,k}, and they are the natural
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adaptations of the inner sum terms in formula (15.1). Such expressions are needed in
the formulation of the symmetrization result applied in the proof of Proposition 15.4.
Their randomized versions I 7(1‘/,55)( f,y), introduced in formula (16.5), correspond to the

inner sum terms in formula (15.2). The integrals of these expressions will be also intro-
duced in formulas (16.3) and (16.6).

Let us consider a class F of functions f(x1,...,7x,y) € F on a space (X* x Y, X* x
Y, u* x p) which satisfies the conditions of Proposition 15.4. Let us take 2k independent

copies §(]) . ,5(]) f(J) e ,553), 1 <7 <k, of a sequence of independent p distributed

random variables &1, ..., & together with a sequence of independent random variables
(e1,...,6n), Ples = 1) = P(e; = —1) = 3, 1 <1 < n, which is also independent
of the previous random sequences. Let us introduce the notation 51(3 - §l(3 )

l(j’_l) = El(j), 1<1<n,1<j<k Forall subsets V C {1,...,k} of the set {1,...,k}
let |V | denote the cardinality of this set, and define for all functions f(z1,...,z%,y) € F
and V C {1,...,k} the decoupled U-statistics

Ty =5 > PP gD ) 162)

T (lnyenly): 11 <n, j=1,...,k
£l if j#5

where 0;(V) =+1,1<j <k, §;(V)=1if j € V,and 6;(V) = —1if j ¢ V, together
with the random variables

HY ((f) = / IV (f9)o(dy). feF (16.3)

Put
Lg(foy) = I M (), How(f) = HE M (), (16.4)

i.e. Inx(f,y) and H, x(f) are the random variables IV, (f,y) and H) ,(f) with V =
{1,...,k} which means that these expressions are defined with the help of the random

variables fl(j) (J Di<j<k 1<i<n
Let us also deﬁne the ‘randomized version’ of the random variables I X w(f,y) and
HX L(f) as

I (fy) = kl > L kf(5(1‘51(V’),...,§<’“‘5k(v)> y) fer.
(I1,ele): 1< <n, j=1,....k
Ly i 55
(16.5)
and
HY(f) = / 1O (Fy)%(dy), e F, (16.6)

where §;(V)=1if jeV,and 6;(V)=—-1if je {1,...,k}\ V.
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Let us also introduce the random variables

2

W(f) = / S OV ()| pldy), feF (16.7)

With the help of the above notations Lemma 16.1B can be formulated in the following
way.

Lemma 16.1B. Let F be a set of functions on (X* x Y, X% x )) which satisfies the
conditions of Proposition 15.4 with some probability measure uk x p. Let us have 2k
independent copies 5{’i1, L EFL 1 <G <k, of a sequence of independent pu distributed
random variables &1, ..., &, together with a sequence of independent random variables
€l,..,6n, Plej =1) = Plg; = -1) = %, 1 < j < n, which is independent also of the
previously considered sequences.

Then there exists some constant Ay = Ao(k) > 0 such that if the integrals H,, 1 (f),
f € F, determined by this class of functions F have a good tail behaviour at level
TEEHD/2E for some T > Ay, (this property was defined in Section 15 in the definition of
good tail behaviour for a class of integrals of decoupled U -statistics before the formulation
of Propositions 15.8 and 15.4), then the inequality

- A2
P (Sup |Hp k1 (f)] > A2n2ko_2(k:+1)> < 2P (Sup ‘W(f)‘ > 7n2k02(k+1)>

feF feF (16.8)

+ 22k+1nk—1e—A1/2kn02/k

holds with the random wvariables Hy, i (f) introduced in the second identity of relation

(16.4) and with W (f) defined in formula (16.7) for all A > T.

A corollary of Lemma 16.1B will be formulated which can be better applied than
the original lemma. Lemma 16.B is a little bit inconvenient, because the expression at
the right-hand side of formula (16.8) contains a probability depending on sup |W(f)],

fer

and W (f) is a too complicated expression. Some new formulas (16.9) and (16.10) will be
introduced which enable us to rewrite W (f) in a slightly simpler form. These formulas
yield such a corollary of Lemma 16.B which is more appropriate for our purposes. To
work out the details first some diagrams will be introduced.

Let G = G(k) denote the set of all diagrams consisting of two rows, such that each
row is the set {1,...,k}, and the diagrams of G contain some edges {(j1,71) .., (Js, 75) },
0 < s < k, connecting some point (vertex) of the first row with some point (vertex) of
the second row. The vertices ji,...,Js which are end points of some edge in the first
row are all different, and the same relation holds also for the vertices ji, ..., . in the
second row. Given some diagram G € G let e(G) = {(j1,41) - -, (Js, j%)} denote the set
of its edges, and let v1(G) = {j1,...,Js} be the set of those vertices in the first row and
v2(G) = {j1,-..,J.} the set of those vertices in the second row of the diagram G from
which an edge of G starts.
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Given some diagram G € G and two sets Vi,V C {1,...,k}, we define the
following random variables H, »(f|G, Vi, V2) with the help of the random variables
gj’l),..., G 9’_1),..., O=D 1 <j<k ande = (€1,...,&n) taking part in the
definition of the random variables W (f):

H, x(f|G, V1, Vo) = > I = Il =

(L seenslioy U750 slh)e Jje{l,....kN\v1(G) je{1,....k}\v2(G)
1Slj§n’lj7élj/ lf];é]/algjajléka
1<l <n, I ;él’, if j#5',1<4,5' <k,

1=l 1f (4,3 Ee(G) AU, i (5,57)¢e(G)

51 (V5 k.85 (V5
g [ SE O gy

P g o dy) (16.9)

where 6,;(V1) = 1if j € Vi, 6;(V1) = —1if j ¢ Vi, and §,;(Vo) = 1 if j € Vo, 6;(V2) = —
if 7 ¢ V5. (Let us observe that if the graph G contains s edges, then the product of
the e-s in (16.9) contains 2(k — s) terms, and the number of terms in the sum (16.9)
is less than n2*7%.) As the Corollary of Lemma 16.1B will indicate, in the proof of
Proposition 15.4 the expression H,, (f|G,Vi,V2) has to be estimated. This can be
done by means of Theorem 13.3, the multivariate version of Hoeffding’s inequality. But
the estimate we get in such a way will be rewritten in a form more appropriate for our
inductive procedure. This will be done in the next section.

The identity

W(f) = > (—)MHVal g, 4 (F1G VAL V) (16.10)
Geg, V1, Vo c{1,..., k}

will be proved.
To prove this identity let us write first

W)= > (~pMlv / I () IS (fLy)p(dy).

Vi,VoC{1,...,k}

Then let us express the products I_y(b‘j/,i’s) (f, y)f%ﬁ’e) (f,y) by means of formula (16.5). Let
k k
us rewrite this product as a sum of products of the form iz [] e, f(--) I ev f(--+)
j=1 i=1 "
and let us define the following partition of the terms in this sum. The elements of this
partition are indexed by the diagrams G € G, and if we take a diagram G € G with
the set of edges e(G) = {(j1,71),-- -, (Js»J%)}, then the term of this sum determined by
the indices ly,..., 1, I}, ..., 1} belongs to the element of the partition indexed by this
diagram G if and only if I;, = l;-, for all 1 < wu < s, and no more numbers between the

indices Iy,...,lx, [} ... 1}, may agree. Since g, e, = 1forall 1 <u < s and the set of
Ju
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indices of the remaining random variables ¢;, is {l;: j € {1,...,k} \ v1(G)}, the set of
indices of the remaining random variables &/ is {7 €{1,...,k} \v2(G)}, we get by

integrating the product féf/,i’e)(f, y)I_g/,vf:’a)(f, y) with respect to the measure p that

/ I ENICEO (foy)p(dy) = > Has(f1G, V2, Va)

Geg

for all V1,V5 € {1,...,k}. The last two relations imply formula (16.10).

Since the number of terms in the sum of formula (16.10) is less than 24¥k!, this
relation implies that Lemma 16.1B has the following corollary:

Corollary of Lemma 16.1B. Let a set of functions F satisfy the conditions of Propo-
sition 15.4. Then there exists some constant Ay = Ag(k) > 0 such that if the integrals
H, k(f), f € F, determined by this class of functions F have a good tail behaviour at
level TCRHD/2E for some T > Ay, then the inequality

P | sup |H,1(f)] > A*n? g2(k+D
feF
<2 P H G.Vi. V- A? 2k _2(k+1)
< Z sup |Hp 1, (f|G, V1, 2>|>24k+1k:'n o
GEG, V1,VaC{1,....k} fer !
4 22k 1= AT ek

(16.11)
holds with the random wvariables Hy i (f) and H, i (f|G,Vi,V2) defined in formulas
(16.4) and (16.9) for all A>T.

In the proof of Lemmas 16.1A and 16.1B the result of the following Lemmas 16.2A
and 16.2B will be applied.

Lemma 16.2A. Let us take 2k independent copies
&Y€Y and gV gD, 1<<k,

of a sequence of independent p distributed random variables &1, ... ,&, together with a
sequence of independent random variables (1,...,&,), P(e; = 1) = P(e; = —1) = 3,
1 <1 <n, which is also independent of the previous sequences.

Let F be a class of functions which satisfies the conditions of Proposition 15.3.
Introduce with the help of the above random variables for all sets V- C {1,...,k} and
functions f € F the decoupled U -statistic

7 1 1,60(V k6, (V
L) =4 > f(gl(1 VDL gk ))) (16.12)
T (lnyenl): 1K1 <0y G=1,..0,k,
Ll if 5
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and its ‘randomized version’

(Ve 1 )
I’r(L‘,//; )(f):E Z gh"'glkf (51(1176 (V))7"'7£l(f76k(‘/))>a f€f7
T (lnyenly): 11 <0, G=1,...,k,
£l if j#5
(16.12")

where §;(V) ==x1, and §;(V)=1ifj eV, and 6;(V)=—-1if je {1,... .k} \ V.

Then the sets of random variables

S(H= Y. VL, feF, (16.13)
vci{l,...k}
and
Sh= S VIV, fer (16.13)
vc{l,...k}

have the same joint distribution.

Lemma 16.2B. Let us take 2k independent copies
g7, g0 and 7TV, g0TY, 1< <,

of a sequence of independent p distributed random wvariables &1, ...,&, together with a
sequence of independent random variables (e1,...,&,), P(e; = 1) = P(e; = —1) = 1,
1 <1 < n, which is also independent of the previous sequences. Let F be a class of
functions of k variables satisfying the conditions of Proposition 15.4. For all functions
feF andV € {1,...,k} consider the decoupled U -statistics I_Xk(f, y) defined by for-

mula (16.2) with the help of the random variables 59’1), - ,57(1‘7’1) and 59’*1), . ,5,(1].’71),
and define with their help the random variables

2

W(f) = / S OV ()| ody), feF (16.14)

Vc{l,.. .k}

Then the random vectors {W (f): f € F} defined in (16.14) and {W (f): f € F} defined
in (16.7) have the same distribution.

Proof of Lemmas 16.2A and 16.2B. Lemma 16.2A actually agrees with the already
proved Lemma 15.1, only the notation is different. The proof of Lemma 16.2B is very
similar to the proof of Lemma 15.1. It can be shown that even the following stronger
statement holds. For any +1 sequence (uq, ..., u,) of length n the conditional distribu-
tion of the random field W(f), f € F, under the condition (e1,...,e,) = (u1,...,uy,)
agrees with the distribution of the random field W (f), f € F.

_ To see this relation let us first observe that the conditional distribution of the field
W (f) under this condition agrees with the distribution of the random field we get by
replacing the random variables ¢; by v; for all 1 <[ < n in formulas (16.5) and (16.7).
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Beside this, we get, by replacing the vectors ( l(j’l), ;97_1)) by ( l(j’_l), l(j’l)) for those
indices (j,0) for which u(l) = —1 (independently of the value of the parameter j),
and not modifying these vectors with coordinates (I, j) such that u(l) = 1 a measure
preserving transformation of the distribution of the random vector consisting of the
random variables ( l(J’l),El(J’_l)), 1 <1<n,1<j<k. This implies that also the
distribution of the field W(f), f € F, defined in (16.14) agrees with the distribution of
the field we obtain by carrying out the above transformation in the elements of the field
W(f), f € F. But the set of random variables obtained by means of this transformation
agrees with the set of random variables introduced in the previous paragraph to describe
the conditional distribution of W(f), f € F. (These random variables are defined by
the same sums, only the terms in these sums are listed in a different order.) These facts
imply Lemma 16.2B.

In the next step Lemma 16.3A will be formulated and proved.

Lemma 16.3A. Let us consider a class of functions F satisfying the conditions of
Proposition 15.3 with parameter k, and the random variables IV (f), feF, VC
{1,...,k}, defined in formula (16.12). Let B = B(éj’l), LY 1) 1 < j < k) denote
the o-algebra generated by the random variables 5;3’1), . (J’l) 1 <j <k, ie. by the
random sequences with second coordinate 1, 1 < j < k:, i the upper indices. For all

V c{l,....k}, V#{1,... k}, there exists a number Ay = Ao(k) > 0 such that the
mequality

! (f”lel?: E (I ,.(f)? B) > 2—(3k+3)A2n2k0_2k:+2> < ph—le—AY " Vne®/k (16.15)

holds for all A > Ay.

Proof of Lemma 16.3A. Let us first consider the case V = (). In this case the estimate
E (I_g,k(f)Q‘ B) = B (I2,(/)?) < #r0® < n®¢+2 holds for all f € F. Tn the above
calculation it was exploited that the functions f € F are canonical, which implies certain
orthogonalities, and beside this the inequality no? > 1 holds. The above relations imply
that for V = () the probability at the left-hand side of (16.15) equals zero if the number
Ay is chosen sufficiently large, i.e. the inequality (16.15) holds in this case.

To avoid some complications in the notation let us first restrict our attention to
sets of the form V = {1,...,u} with some 1 < u < k, and prove relation (16.15) for
such sets. For this goal let us introduce the random variables

— 1 1,1 w,1) p(ut1,— k,—1
L (Folurtse o) = o 3 f(g( T Y S WY 2 >)
ll,...,lu :
1§lj(§n, j:l),...,u
lj7élj’ if j#5'
for all f € F, i.e. we fix the last kK — u coordinates fl(:jll’ e 5 ) of the random
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variable [ X (f) and sum up with respect the first u coordinates. Then we can write

2
E(I_Xk'(f)2|8) =F Z I?{,k(.f?lu-i-lv"'?lk) B
(Lug1selp): 1<;<n j=u+1,...,k,
Ly if 55
= > E (LY (f lus1, -, 1k)?| B) .
(lLug1seoooli): 1<1<n, j=u+1,....k, (16.16)
LA i 75
The last relation follows from the identity
E (I_’r‘:k‘(f7 lu+17 s 7lk)l_7‘z/:k(f7 li},+1’ s 7“{:)‘ B) =0
if (lus1y--5 k) # (L1, - -, 13,), which relation holds, since f is a canonical function.

It follows from relation (16.16) that

w: sup E (I_Xk(f)2‘ B) (w) > 9~ (Bk+3) 422k 52k+2

feF ’
- A2p2k o 2k+2
. 14 2
- U {w ?g?_—E<In7k(f7lu+l’.”’lk) ‘B) (w) > W .
Tt 1seslie):
1<l <n, j=u+1,..., k.
ALy if j#5
(16.17)

The probability of the events in the union at the right-hand side of (16.17) can be
estimated with the help of the Corollary of Proposition 15.4 with parameter u < k
instead of k. (We may assume that Proposition 15.4 holds for u < k.) We claim that
this corollary yields that

< e AT mwe® (1618

B A2nktu 2k+2
v 2 -
P <]ch2 E (I 4 (fylugrs 5 1)? | B) > 9(3k+3) >

Let us show that if a class of functions f € F satisfies the conditions of Propo-
sition 15.3 then it also satisfies relation (16.18). For this goal introduce the space
(Y, V,p) = (XF~u xF~v k=) the k — u-fold power of the measure space (X, X, p),
and for the sake of simpler notations write y = (241, ...,x) for a point y € Y. Let us
also introduce the class of those function JF in the space (X% x Y, X% x Y, u* x p) which
can be written in the form f(z1,...,24,y) = f(x1,...,2%) with y = (Tyy1,...,7%) and
some function f(z1,...,zr) € F. If the class of function F satisfies the conditions of
Proposition 15.3 (with parameter k), then the class of functions F satisfies the condi-
tions of Proposition 15.4 with parameter v < k. Hence the Corollary of Proposition 15.4
can be applied for the class of functions F by our inductive hypothesis. We shall apply

140



it for decoupled U-statistics with this class of kernel functions and parameters u and
n —u (instead of k and n), and we define the expressions I, ,_..(f) and H,_, . (f) with
the help of the following v independent random sequences of independent p-distributed
random variables of length n — u: flm = §l(J’1), 1<j<u,le{l,....n}\{lus1,- -, lk},
where the set of numbers {l,,41,...,[x} is the set of indices appearing in formula (16.18).
(Actually to get a notation consistent with the definition of these expressions in Sec-

tion 15 we have to reindex these random variables él(j ) to get random sequences indexed
by I =1,...,n —u.) With such a choice

Bt 018) = (5) [ hurotan) = () w1619

with the function f € F for which the identity f(z1,...,74,y) = f(1,..., ;) holds
with y = (2y+41,...,2,) and the function H(-) defined in (15.6). The Corollary of
Proposition 15.4 yields that

(16.20)

P (sup (TL - u)—an_u7u(]E) > A2 (n . u)uo_2u—|—2> S e_Al/(2u+1)(n_u)02
fer

for A > Ap(u).

It is not difficult to derive formula (16.18) from relations (16.19) and (16.20). It
2, ktu 2k+2

Aﬂw in the probability at the left-hand side
of (16.18) can be replaced by A? (’“!)2 (n — u)?“0?**2. This statement holds, since

2 2 _k4+u 2k+42
A% (BN (n — w)?uo?et? < A2 (u,) n2tgut? < ‘42<;—+3)+ if the constant K in the

condition no? > K logn of Proposition 15.3 is chosen sufficiently large.
Relations (16.17) and (16.18) imply that

is enough to check that the level

P|sup E ( ’B) > 9~ (3k43) 2,2k 52642 ) < pk—ue—AY * (n—u)o?
feF N
Since e~A" " (n—wo? —AVEE Ino? ki < b — 1 and n > k inequality (16.15)

holds for a set V' of the form V=A{L,...,u}, 1 <u<k.

The case of a general set V' C {1, ..., k}, 1 < |V| <k, can be handled similarly,
only the notation becomes more complicated. Moreover, the case of general sets V' can
be reduced to the case of sets of form we have already considered. Indeed, given some set
V c{l,...,k}, 1 <|V]| <k, let us define a new class of function Fy, we get by applying
a rearrangement of the indices of the arguments x1,...,z; of the functions f € F in
such a way that the arguments indexed by the set V' are the first |V| arguments of the
functions fir € Fy, and put V = {1,...,|V]}. Then the class of functions Fy also
satisfies the condition of Proposition 15.3, and we can get relation (16.15) with the set
V by applying it for the set of function Fy, and set V.
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Now we prove Lemma 16.1A. It will be proved with the help of Lemma 16.2A, the
generalized symmetrization lemma 15.2 and Lemma 16.3A.

Proof of Lemma 16.1A. First we show with the help of the generalized symmetrization
lemma, i.e. of Lemma 15.2 and Lemma 16.3A that

_ A
P | sup n=*/2 Lok ()] > AnP2R ) < oP [ sup |S(f)| > =nFoktt
fer fer 2 (16.21)

_ _ 1/(2k—1) 2
1 okpk—l,-A no?/k

with the function S(f) defined in (16.13). To prove relation (16.21) introduce the

random variables Z(f) = Iilkk}(f) and Z(f) = — > (—1)|V|I_Xk(f)
VC{l,....k}, V#{1,....k}
for all f € F, the o-algebra B considered in Lemma 16.3A and the set

B= () {w: sup B (I (f)?| B) (w) < 2—<3k+3>A2n2ka2k+2} _
Vc{l,.. k} fer
V£{1,... k}

Observe that S(f) = Z(f) — Z(f), f € F, B € B, and by Lemma 16.3A the
inequality 1 — P(B) < okpk—le=AY " na/k 16145 To prove relation (16.21) apply
Lemma 15.2 with the above introduced random variables Z(f) and Z(f), f € F, (both
here and in the subsequent proof of Lemma 16.1B we work with random variables
Z() and Z() indexed by functions f € F, hence these functions play the role of the
parameter p when Lemma 15.2 is applied) random set B and a = énkak“, u =
2nFok+1 Tt is enough to show that

P (|Z(f)| > gnkak+1|8) (w) < % forall f € F ifweB. (16.22)

But P (fqllvll(f)| > 2_(k+1)Ankak+1|B> (w) < 27+ for all functions f € F and sets
Vc{l,....,k}, V #{1,...,k}, if w € B by the ‘conditional Chebishev inequality’,
hence relations (16.22) and (16.21) hold.

Lemma 16.1A follows from relation (16.21), Lemma 16.2A and the observation that
the random variables I T(L‘,/lf) (f), f € F, defined in (16.12’) have the same distribution for

all V.C {1,...,k} as the random variables I_,iyk(f), defined in formula (14.11). Hence
the definition (16.13) of the random variables S(f), f € F, implies the inequality

feF 2

A _
P <sup 1S(f)| > —nkakH) <2okp (sup |I,§k(f)| > 2_(k+1)Ankak+1> .
fer

Lemma 16.1A is proved.
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Lemma 16.1B will be proved with the help of the following Lemma 16.3B, which is
a version of Lemma 16.3A.

Lemma 16.3B. Let us consider a class of functions F satisfying the conditions of
Proposition 15.4 and the random variables IV (fy), feF, VC{l,... k}, defined in

formula (16.2). Let B = B(&; GO el 1< < k) denote the o-algebra generated
by the random variables gi“), e ,5,(3’1), 1 < j <k, i.e. by those random wvariables

which appear in the definition of the random variables ka(f, y) and ka(f) introduced
in formulas (16.2) and (16.3), and have second argument 1 in their upper indez.

a) Then for allV C {1,...,k}, V #{1,...,k}, there exists a number Ay = Ao(k) >0
such that the inequality

P | sup E(HY,(f)|B) > o—(4k+4) g(2k—1)/k 2k 2k+2 | _ pk—1,—A"* no?/k
fer ’
(16.23)

holds for all A > Ay.
b) Given two subsets Vi,Vo C {1,...,k} of the set {1,...,k} define the integrals (of

random kernel functions)

a0 (f) = /|IV1( NIV(fy)lp(dy), feF, (16.24)

with the help of the functions ]Vk (f,y) defined in (16.2). If at least one of the sets
Vi and Va is not the set {1,... k:} then there exists some number Ag = Ag(k) >0
such that if the integrals Hn,k(f), f € F, determined by this class of functions F
have a good tail behaviour at level T2F+1V/2k for some T > Ay, then the inequality

P (Sup E(H(Vl,V2 (f)|8) > 2—(2k+2)A2n2kU2k+2> < 2nk—1e—Al/2kn02/k (16.25)
feF

holds for all A > T.

Proof of Lemma 16.3B. Part a) of Lemma 16.3B can be proved in almost the same way
as Lemma 16.3A. Hence I only briefly explain the main step of the proof. In the case
V = 0 the identity E(H) ,(f)|B) = E(H) ,(f)) holds, hence it is enough to show that

2 2k _2k42

E(H) .(f)) < ”k‘,’ < 22— for all f € F under the conditions of Proposition 15.4.
(These relations hold, because the functions of the class F are canonical.) The case of
a general set V., V £ () and V # {1,...,k}, can be reduced to the case V- ={1,...,u}
with some 1 < u < k.

Given a set V = {1,...,u} let us define the random variables
- 1 1,1 w1) a(utl,—1 k,—1
IT‘L/vk(fulu—Fl?"'alk?y):H Z f(g( )7 "7£l(u )7€l(u+1 )7>€l(k )7y>
(I1,--., lu)
1<l;<n, j=1,..., [
LiALy if j#35’



for all f € F. It can be shown that because of the canonical property of the functions

ferF

E(EGUPIB) = Y [ Bl | B) pldy)

Tug1seenli):
1<l;<n, j=utl,....k,

LAl it j#5

and the proof of part a) of Lemma 16.3B can be reduced to the inequality

B A@k=1)/ky k+u ;2k+2
P (sup E (/I»,‘L/k(ﬂ lug1s ol y)2p(dy)’ B) > 9(4k+4)

feF

_A(Qk—l)/2(2u+1)k(n_u)o_2

<e

This inequality can be proved, similarly to relation (16.18) in the proof of Lemma 16.3A
with the help of the Corollary of Proposition 15.4. Only here we have to work in the
space (X% x Y, X% x Y, u* x p) where Y = XF~ U xY, V=X xY p=puk~"xp
with the class of function F so that we identify a function f(zq,...,xk,y) € F with
flx1,. .. 20, §) = f(z1,...,2k,y) so that § = (yt1,.-.,2k,y). I omit the details.

Part b) of Lemma 16.3B will be proved with the help of Part a) and the inequality

1/2 1/2
sup E(H' " (£)B) < <sup E(Hﬁm)rﬁ)) (sup E(H,Y,z(f)w))
feF feF feF

which follows from the Schwarz inequality applied for integrals with respect to condi-
tional distributions. Let us assume that Vi # {1,...,k}. The last inequality implies
that

P (sup E(H’,(l‘/]i,VQ)(f)llg) > 2—(2k‘—|—2)A2n2k‘0,2k—|—2)
feF '

<P (sup E(HXlk(fﬂB) > 2_(4k+4)A(2k_1)/kn2ka2k+2>
ferF ’

+P (sup E(H.(f)|B) > A(2k+1)/kn2k02k+2>
fex '

Hence the estimate (16.23) together with the inequality

P <JS¢1€’1£)__E(HXQI§(JC)’B) > A(2k+1)/kn2ko_2k+2> < nk—le=AY**no® (16.26)

imply relation (16.25). Relation 16.26 follows from Part a) of Lemma 16.3B if Vo #
{1,...,k} and A > 1 since in this case the level AZF+1)/kp2k52k+2 can he replaced
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by the larger number 2~ (4642 A(Zk=1)/kp2k;2k+2 ip the probability of formula (16.26).
In the case Vo = {1,...,k} it follows from the conditions of Part b) of Lemma 16.3B.
Indeed, since AGk+1)/2k > pEk+1)/2k 1y the conditions of Proposition 15.4 the esti-
mate (15.7) holds if the number A is replaced in it by A*+1)/2k (at both side of the
inequality), and this relation implies inequality (16.26) in this case.

Now we turn to the proof of Lemma 16.1B.

Proof of Lemma 16.1B. By Lemma 16.2B it is enough to prove that relation (16.8)
holds if the random variables W (f) are replaced in it by the random variables W (f)
defined in formula (16.14). We shall prove this by applying the generalized form of

the symmetrization lemma, Lemma 15.2, with the choice of Z(f) = HT(L‘;’V)( ),V =
{L....k}, Z(5) = Z() = W(f), f € F, B =BE,....&0" 1< j < k) a=
‘%n%ang, u = %n%anH and the set

B = ﬂ {w: sup E(HT(LY;’VQ)(fﬂB)(w) < 2_(2k+2)A2n2ka2k+2} )
(V17V2): %e{laak}7 j:1725 fej:
Vl;é{:[,,k} or VQ;&{l,,k’}

By Lemma 16.3B the inequality 1 — P(B) < 92k+1ph—1o—A*"no®/k 15145, Observe

that Z(f) = HT(L"_/k’V)(f) = H, ;(f) for all f € F. Hence to prove Lemma 16.1B with
the help of Lemma 15.2 it is enough to show that

_ A2
P (120 > Gt

1
B) (w) < 5 forall f € Fifwe B. (16.27)
To prove this relation observe that because of the definition of the set B

_ A2
Vi, Ve
E(1Z(f)IB)(w) < > EH(£)B)(w) < g
(Vl,VQ): V}'E{l,...,k‘}, j:1,2,
Vi#{1,....k} or Va{1,...,k}

if w e B for all f € F. Hence the ‘conditional Markov inequality’ implies inequal-
ity (16.27). Lemma 16.1B is proved.
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17. The proof of the main result.

This section contains the proof of Proposition 15.3 together with Proposition 15.4. They
complete the proof of the main result of this work, of Theorem 8.4.

A.) THE PROOF OF PROPOSITION 15.3.

The proof of Proposition 15.3 is similar to that of Proposition 6.2. It applies an induc-
tion procedure with respect to the parameter k. In the proof of Proposition 15.3 for
parameter k we may assume that Propositions 15.3 and 15.4 hold for © < k. In the
proof we want to give a good estimate on the expression

P | sup |I; . (f)] > 9~ (k+1) gpkgh+l
feF 7

appearing in the estimate (16.1) of Lemma 16.1A. To estimate this probability we
introduce (using the notation of Proposition 15.3) the functions

; 1
Sahe’ 1<isni<i<h=5 3 (e af)). feF
) (GENISE

1<l;<n, j=1,....k,
Ll i ]
(17.1)

with xl(j ) € X,1<1<n,1< 75 <k. Then we estimate the probability we are interested
in with the help of this quantity similarly to the argument applied in the solution of the
corresponding problem in the proof of Proposition 6.2.

Fix some number A > T and define the set H C X"

H:H(A):{(xl(j),lglgn, 1<j<k):
| (17.2)

sup Sfl’k(f)(xlm, 1<i<n, 1<j<k)> 2kA4/3nk02}.

feF

We want to show that

Plw: (P (w),1<j<n 1<j<k)eH}) <2k A" ira>T (17.3)

Relation (17.3) will be proved by means of the Hoeffding decomposition (Theo-
rem 9.1) of the U-statistics with kernel functions f2(z1,...,zx), f € F, and by the
estimation of the sum this decomposition yields. More explicitly, write (applying for-
mula (9.2) in Theorem 9.1)

Pl o)=Y felzjjeV) (17.4)



with fv(z;,7 € V) = ] P; [1 Q;f*(z1,...,xx), where P; is the projection defined
j¢vV eV

in formula (9.1) and Q; = I — P; is also the same operator as the operator @); in

formula (9.2).

The functions fy appearing in formula (17.4) are canonical (with respect to the
measure u), and the identity Sfl’k(f)(ﬁl(j) 1 <1< n1<j<k)=IL,x(f* holds for
all f € F with the expression I, ;(-) defined in (14.10). By applying the Hoeffding
decomposition (17.4) for each term f2(§l(11) . ,§(k)) in the expression Sﬁ,k(f) we get
that

(sup 52 (f)(ﬁl(j), 1<1<n, 1<5<k)> QkA4/3nk02>
ferF

; (17.5)
< D P<|kv| sup n* VI L, v (fv)] > A3t )

Vel k} fer

with the functions fy in (17.4). We want to give a good estimate for all terms in the
sum at the right-hand side in (17.5). For this goal first we show that the classes of
functions { fy: f € F} in the expansion (17.4) satisfy the conditions of Proposition 15.4
for all V .C {1,...,k}.

The functions fy are canonical for all V' C {1,...,k}. It follows from the conditions
of Proposition 15.3 that |f?(x1,...,zx)| < 272*+1D and

/f4 Tiy..., (dxl) (dxk:) < 2_(k+1)02'

Hence relations (9.4) and (9.4’) of Theorem 9.2 imply that | sup fy(z;,je V)| <
z;€X,jEV
2702 < 2=(kH+D) for all V C {1,...,k} and [ f2(zj,j € V) [] pu(dx;) <27 kg2 <
JjEV
o?forall V C {1,...,k}. Finally, to check that the class of functions 7y, = {fy: f € F}
is Lo-dense with exponent L and parameter D observe that for all probability measures
p on (XF X*) and pairs of functions f,g € F [(f? — ¢?)%dp < 272 [(f )2 dp.
This implies that if {fi,..., fm}, m < De~L is an E—dense subset of F in the space
Lo(X*, X% p), then the set of functions {2¥fZ ... 2¥f2} is an e-dense subset of the
class of functions F/ = {2¥f2: f € F}, hence F' is also an Ly-dense class of functions
with exponent L and parameter D. Then by Theorem 9.2 the class of functions Fy is
also Lo-dense with exponent L and parameter D for all sets V C {1,...,k}.
For V = (), the function fy is constant, fy = [ f2(z1,...,z5)u(dxy) ... p(dzy) <
o? holds, and Ijv|(fiv|)] = fv < o?. Therefore the term corresponding to V' =  in
the sum at the right-hand side of (15.7) equals zero if Ay > 1 under the conditions of
Proposition 15.3. I claim that the terms corresponding to sets V, 1 < |V| < k, in these
sums satisfy the inequality

%l! _
P (’k_'lnk_lvl sup [ I, v (fv)] > A4/3n'“02>
! feF
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k!
<P supll, i) > AVl <e A’ ip 1 < V] <k
feF v (17.6)

The first inequality in (17.6) holds, since o!VI*1 < o2 for |V| > 1. The second inequal-
ity follows from the inductive hypothesis if |V| < k, since it yields the upper bound
e— (AR IVINY 2V Ing o =AM Pno® 4 40 Ap(k) in Proposition 15.3 is sufficiently
large. In the case V' = {1,...,k} it follows from the inequality A > T and the as-
sumption that U-statistics determined by a class of functions satisfying the conditions
of Proposition 15.3 have a good tail behaviour at level T%/3. Relations (17.5) and (17.6)
together with the estimate in the case V = () imply formula (17.3).

By conditioning the probability P ( ;ik(f)‘ > 2_(k+2)Ank/20k+1) with respect to

the random variables £l(j ), 1<1<n,1< 5 <kwe get with the help of the multivariate
version of Hoeffding’s inequality (Theorem 13.3) that

P (‘I_Zk(f)‘ > 2_(k+2)Ankak+1‘ fl(j)(w) = :L'l(j), 1<i<n,1<j5< k:)

1/k
1 A2n2k g2(k+1)

< Cexpg —= ne (17.7)
)/k!

2 <22k+4sg’k(a:§j), 1<i<n 1<j<k
< Qe TN et gl e Foif (@, 1<1<n, 1<j<k)¢H

with some appropriate constant C' = C'(k) > 0.

Given some points a:(j ) e X,1<1<n,1<j <k, define the probability measures

Pi=0; @, 1<l§n), 1 < j < k, uniformly distributed on the set {acl(J), 1 <1< n}ie.

let pj(z (J)) = ~, 1 <1 <mn. Let us also define the product p = p; x --- x py of these
measures. If f is a function on (X%, X*) such that [ f2dp < 6% with some § > 0, then

f@? 1< <k)|<on*?  for all vectors (Iy,...,It), 1 <1 <n, 1<j <k,

and this implies that P (‘I_gk(f)‘ > (5n3k/2‘ fl(j) = xl(j), 1<1i<n,1<j5< k) = 0 for
such a function f. Introduce the numbers
§ = An F/29=(ht2)ght1 anq § =2 k2 —k=1/2 < 5

(The inequalities § < 1 and § < § hold, since A > Ay > 1, and o > n_l/z.)

Choose a d-dense set Fs = {f1,..., fm} in the space Lo(X* X* p) with m < Dé—% <
2k +2) LS+ (k+1)L/2 elements with # = max (logD 0). Then for all f € F there exists

logn’

some fs € Fs such that [(f — fs)?dp < 6%. Hence

<| w(f = fs\>A2’(’“+2)n’“0’““‘§(”—xl 1<1<n, 1<]<k;)
= P(|uf = )] > 0?2 ) = o 1 << 1<) <)

< P ([Tulf = 1 > 6026 = 1 <1< n 1< < k) =0
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The above relations and formula (17.7) imply that

P (sup T > 27 F D anke™ ) (w) =2l 1 <1< 1< < k:)
feF

< 3 P(ITa] > 2 P antet | g w) = o 1 <t s n 15 <)
fbefé
< 9k +2) Ly ft(k+1)L/2 =27 44/ R AP/ (k) P g (17.8)

if {2, 1<1<n, 1<j<k}¢H.

Relations (17.3) and (17.8) imply that

P | sup |I; . (f)] > 2~ (k+1) Apkghtl
fer 7

< C2(k+2)Lnﬁ+(k+1)L/26—2_4_4/kA2/3kn02 + 2k6—A2/3kk!m2 A>T

(17.9)

Proposition 15.3 follows from the estimates (16.1) and (17.9) if the constant A, together
with the constant K in the condition no? > K(L+ 3)logn are chosen sufficiently large.

In this case these estimates yield an upper bound less than e =4 "#n0? for the probability
at the left-hand side of (15.5).

Now we turn to the proof of Proposition 15.4.
B.) THE PROOF OF PROPOSITION 15.4.

Because of formula (16.11) in the Corollary of Lemma 16.1B to prove Proposition 15.4
i.e. inequality (15.7) it is enough to choose a sufficiently large parameter Ay and to
show that under the conditions of Proposition 15.4 sufficiently large and to show that

P |H (f|G Vi V)l > A2 2k 2(k+1) < 2k+1 _AY/2k,, 2
;1612 ok IR 24k—|—1k'n o =~ e

foral Ge G and Vi,Voe{l,...;k} if A>T > A

(17.10)

with the random variables H,, »(f|G, Vi, V2) defined in formula (16.9).

Let us first prove formula (17.10) in the case when |e(G)| = k, i.e. when all vertices
of the diagram G are end-points of some edge, and the expression H, ;(f|G, Vi, V2)
contains no ‘symmetrizing term’ ;. In this case we apply a special argument to prove
relation (17.10).
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If G is such a diagram for which |e(G)| = k, then the Schwarz inequality yields that

1/2
1 61 (Vh 0k (V1
H, (116, Vi, Vi) < o [P g oty
l
1<l <n 1k<)j<k:
lj7élj’ if j#j'
1/2
1 ¥ k,o
E Z /f 5(1 1(V2)) _ ,f( sz)) )p(dy)
' l17 al
1<l(<n 12)g<k,
LAl if j#5
(17.11)

with 5J(V1) =1 lf] € Vl, 5](‘/—1) =-—1 lfj ¢ ‘/1, and SJ(VQ) =1 lfj € ‘/2, SJ(VQ) =-1
if j ¢ Va.

Relation (17.11) can be proved for instance by bounding first each integral in for-
mula (16.9) by means of the Schwarz inequality, and then by bounding the sum ap-
pearing in such a way by means of the inequality > |a;b;| < (3 a )1/2 > b2)1/2. (Ob-
serve during this calculation that the sets of indices {l1,...,lx} and {l1,..., 1, } agree if
le(G)| = k, only the elements of these sets are listed in different order.)

By formula (17.11)

AQ
w: sup |H, G, Vi, Vo) (w)| > n2k g2 (k+1)
{ sup [ Hi(£16, Vi, Vo) ()] > gy

- {w: sup /f2 5(1 51(V1))( ), ...,fl(f’&k(vl))(w),y)/)(dy)

fEf (ll, 7lk:)
1<1,<n, 1<j<k,
AL it 54

A2n2k0.2(k:+1) k!
24k+1

U {w: sup /f2 6(151%))( ),---,£§f’gk(v2))(w),y)p(dy)

fe]: (lla 7l7€)
1<l <n, 1<5<k,
lj7£lj’ if j#5'

A2n2ko.2(k+1) k!
24k+1 ’

hence

A2
P | sup |H, G, Vi,Va)| > n?k g2 (k+1) 17.12
(fe?—'| Jﬁ'(f‘ 1 2)| 94k+1]| ( )
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1 M) ey o Ao
< 2P sup > hy(€ s 6) >
FEF M (1o li): 1< <, 1<5<k,

Ll if 7'

with the functions hy(z1,...,z5) = [ f2(@1,...,25,9)p(dy), f € F. (In this upper
bound we could get rid of the terms &;(V — 1) and 4,(V2), i.e. on the dependence of the
expression H,, 1(f|G,V1,V2) on the sets Vi and Vs, since the probability of the events
in the previous formula do not depend on them.)

I claim that

P (sup | Lk (hy)] > 2kAnk02> < kAo g A > Ao (17.13)
fer

if the constants Ay and K are chosen sufficiently large in Proposition 15.4. Relation
2k ;2(k+1)

(17.13) together with the relation A?2—3——— > 2¥ An*o? (if the parameter K is suffi-
ciently large) imply that the probability at the right-hand side of (17.12) can be bounded

by 2h+1e=AY*n0® “and the estimate (17.10) holds in the case |e(G)| = k.

Relation (17.13) is similar to relation (17.3) (together with the definition of the
random set H in formula (17.2)), and a modification of the proof of the latter estimate
yields the proof also in this case. Indeed, it follows from the conditions of Proposi-
tion 15.4 that 0 < [hy(z1,...,25)u(dey) ... u(dey) < o for all f € F, and it is
not difficult to check that sup |hs(z1,...,2%)] < 272D and the class of functions
H = {2*h;, f € F} is an Ly-dense class with exponent L and parameter D. Hence by
applying the Hoeffding decomposition of the functions hy, f € F, similarly to formula
(17.4) we get for all V' C {1,...,k} such sets of functions (hy)y, f € F, which satisfy
the conditions of Proposition 15.3. Hence a natural adaptation of the estimate given
for the expression at the right-hand side of (17.5) yields the proof of formula (17.13).
We only have to replace Sy, x(f) by Inx(hy), L. v|(fv) by L, v|((hy)v) and the levels
2k A*/3nk a2 and A*3nFo? by AnFo? and 279 Anko2. Let us observe that each term of
the upper bound we get in such a way can be directly bounded, since by our inductive
hypothesis the result of Proposition 15.3 holds also for k.

In the case e(G) < k formula (17.10) will be proved with the help of the multivariate
version of Hoeffding’s inequality, Theorem 13.3. In the proof of this case an expression,
analogous to S2 , (f) defined in formula (17.1) will be introduced and estimated for
all sets Vi,Vy C {1,...,k} and diagrams G € G such that |e(G)| < k. To define this

expression first some notations will be introduced.
Let us consider the set Jo(G) = Jo(G, k,n),

Jo(G):{(ll,,lk, /1,,l;€) 1§l l’gn, 1§]§]€, lj#lj/ lf‘]#],,

J2 %)
The set Jo(G) contains those sequences (I1,...,lx,1],...,1}) which appear as indices in

the summation in formula (16.9) for a fixed diagram G. We also introduce an appro-
priate partition of it.
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For this aim let us first define the sets M1(G) = {j(1),...,7(k — le(G)|)} =
{L.. kP \0i(G), 5(1) < --- < j(k = [e(G)]), and Ma(G) = {5(1),...,j(k — |e(G])} =
{1,...,k}\ v2(G), 7(1) < --- < 3(k — |e(G]), the sets of those vertices of the first and

second row of the diagram G in increasing order from which no edge starts. Let us also
introduce the set V(G) = V(G,n, k),

V(G) = {(lj(l)a . 7Zj(k—|e(G)|)7 l}(l)? e l](k; le (G)|)) 1< l](p), l;—(,p) < n,

L<p <k —1eG): L) # Lo Gy # Gy T2 #9 1<pp" <k~ e(G)],

Liw) # Gy 1< p.p <k —[e(G)]}

The set V(G) consists of those vectors which can appear as the restriction of some
vector (Iy,...,0, 05, ...,1;) € Jo(G) to the coordinates indexed by the elements of the
set M;(G) U My(G). The elements of V(G) are such vectors whose coordinates are
indexed by the set M1 (G)U M (G), and they take different integer values between 1 and
n. Given a vector v € V(G) put v = (v, v?)) with vV = {v(r), 1 <r <k — |e(G)]|},
and v® = {B(r), 1 <r < k—|e(G)|}, where v and v(?) denote the set of coordinates
of v indexed by the elements of the set M;(G) and Ms(G) respectively. For all vectors
v € V(G) define the set

Eg(v) = {1, I, 13,5 0): 1< <y 1< 15 <, for 1< 5,7 < K,
LAl AT AL 547,
l;=15if (4,]) € e(G) and I; # I if (4, ]) ¢ e(G),
Ly = 0(r), Uy =0(r), 1 <r <k —le(G)|}, veV(G),
where {j(1),...,7(k — |e(G)])} = Mi(G), {J(1),...,75(k — |e(G )|)} = M(G), v =
(00, o) with o0 = (o(1).-.., vk — [e(G)]) and 2@ = (@(1),...,5(k — |e(G)]))
in the last line of this definition.

Given a vector v € V(G), v = (v, v®), the set Eg(v) consists of the following
vectors ¢ = (I1,...,lg,01,..., 1) € Jo(G): For j € M;(G) the coordinate [; agrees with
the corresponding element of vV, for 7 € My(G) the coordinate I7 agrees with the
corresponding element of v(?). The indices of the remaining coordinates of £ can be
partitioned into pairs (js,7s/), 1 < s, < |e(G)]| in such a way that (js,7s) € €(G). The
identity I;, = [} , holds for the elements of these pairs, and the coordinates [js and [];,,
are all different if their coordinates are not elements of one of these pairs. Otherwise,
they can be chosen freely in the set {1,...,n}\ {v®), v},

The sets Eg(v), v € V(G), constitute a partition of the set Jy(G), and the ran-
dom variables H,, »(f|G, V1, V2) defined in (16.9) can be written with their help in the
following way:

k—|e(G)] k—|e(G)]

H, 1 (fIG, V1, Va) = Z H €l H R

’U_('U(l) U<2))€V(G) s=1 s=1
(1,61(V1)) (k.0 (V1)) (17.14)
f(&, 3 )

(lla ;lk7l/ l )EEG(U)

PRRIEE

1,5 (V. k.8, (V;
£( l(’l 1(V2)) o l( % ( 2)) y)p(dy),
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where 63(‘/1) =1 lf_] € ‘/1, 53(‘/1) =-1 lf] ¢ Vl, and SJ(VQ) =1 lfj € ‘/2, SJ(VQ) = —
if ¢ Va.
The inequality

P (S2(FIG, VA, Va) > 22543/ 3n gt ) < ok em A0 g 4> Ag and e(G) < k

(17.15)
will be proved for the random variable

1
2 _ (1,01(V1)) (k,o (Vl))
SHFIGL YA Vi) = sup 11 Z( /fé LB )

’UGV(G) (ll ..... lk,l/ ..... l/ )EEG

2
751 2 6
(17.16)

where 63(‘/1) =1ifj €V, 53(‘/1) =—1ify ¢ Vi, and SJ(VQ) =1ifj € Vs, SJ(VQ) = —
if j ¢ V5. The random variable S?(F|G, V1, Vs) defined in (17.16) plays a similar role in

the proof of Proposition 15.4 as the random variable sup S2 , (f) with S2 , (f) defined
fer 7 ’
in formula (17.1) played in the proof of Proposition 15.3.

To prove formula (17.15) let us first fix some v € V(G) and let us observe that,
similarly to the proof of relation (17.11), the Schwarz inequality implies the relation

> [T g,y

U1yl el ) EEG (v)

2
0 k.8
FE g dy))

< > /f (eI gD ) o((dy)
(ll ..... lk,lll ..... l;)EEG(’l})
751 2 75 2
3 [P oty

(ool B el ) EBG (v)
for all v € V(G). Summing up these inequalities for all v € V(G) we get that

S*(FIG, V1, V)

551 1 ,5 1
< sup Z = 3 FAE D BT ()
fer EV(G) (sl s 1) EEG (0)
1 $ /f (5(1 B §<k B o)
, el
w (Il 1) EEG (v) (17.17)
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1
< sup /f2 (100D B ) o gy

ferx (U1yeli): 1<l <n,1<j<Fk,
Li#Ly 1fj;é]
1 1,51 (V2 k.5 (V-
sup 7 3 /f (B0 (8D gy
(il 77777 lk) ]-Sl §n71§.7§k7
I ;él o if jA£5

To check the second inequality of formula (17.17) let us first observe that it can be

reduced to the simpler relation, where the expression sup is omitted at each place. The
fer
simplified inequality obtained after the omission of the expressions sup can be checked

by carrying out the term by term multiplication between the products of sums appearing
n (17.17). At both sides of the inequality a sum consisting of terms of the form

g [ PO D otag) [ D, o),

(17.18)
appears. It is enough to check that if a term of this form appears in the middle term of
the simplified version formula of (17.17), then it appears with coefficient 1, and it also
appears at the right-hand side of this formula. To see this, observe that each term of
the form (17.18) which appears in the sum we get by carrying out the multiplications
in middle term of (17.17) determines uniquely the index v = (v, v?)) € V(G) in the
outer sum in the original form of this expression for which the product of the inner
sums yields this term. Indeed, that vector v = (v, ) € V(G) (with coordinates
with indices in M;(G)U M, (G)) must be taken for which v(!) agrees with the restriction
of the vector I = (Iy,...,I}) to coordinates with indices in M;(G) and v(?) agrees with
the restriction of the vector (I1,...,lx) to coordinates with indices in My(G). Beside
this, if the multiplication is carried out at the right-hand side of (17.17) then the sum
contains all such terms of the form (17.18) which appeared in the previous sum.

Relation (17.17) implies that

P(S%(F|G, Vi, Vo)) > 22k A%/3p2k 5ty < 2P (Sup Ly g (hy) > 2kA4/3nk(72)
fer

with hy(z1,...,25) = [ f*(21,...,2k,y)p(dy). (Here we exploited that in the last
formula S?(F|G, V1, Vs) is bounded by the product of two random variables whose
distributions do not depend on the sets V; and V5.) Thus to prove inequality (17.15) it
is enough to show that

2P <sup I i(hy) > 2kA4/3nk02) < ohH1e=Ane® yp 4 > 4. (17.19)
fer
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Actually formula (17.19) follows from the already proven formula (17.13), only the
parameter A has to be replaced by A*/3 in it.

With the help of relation (17.15) the proof of Proposition 15.4 can be completed
similarly to Proposition 15.3. It follows from the multivariate version of Hoeffding’s in-
equality, Theorem 13.3 and the representation of the random variable H,, i (f|G, Vi, V2)
in the form (17.14) that

P (|Hn,k(f|G, Vi, Va)| > n2k?k D) L < <n 1 <5< kz) (W)

24k+2k|

< Q2 TPy G2 F1GL VL, V) (w) < 228 AB/3n%R ot and A > A
(17.20)
with an appropriate constant C' = C'(k) > 0 for all f € F and G € G such that |e(G)| < k

and V1,V C {1,...,k}. (Observe that the conditional probability estimated in (17.20)

can be represented in the following way. In a point w € €2 fix the values of fl(J ED (w) for
all indices 1 <! <n and 1 < j < k in the random variable H,, (f|G, V1, V%), and the
conditional probability in this point w equals the probability that the random variable,
(depending on the random variables ¢;, 1 <[ < n), obtained in such a way is greater

than 241ﬁ2k,n o2(k+1) )
Indeed, in this case the conditional probability considered in (17.20) can be bounded
because of the multivariate version of the Hoeffding inequality (Theorem 13.3) by

4,4k jA(k+1) 1/25 4/3 2k j4k 1/2j5 .
C’eXp{ 3 (28k+4(k')12,92(.7-"|G 72 Vg)/(k')2> } < Cexp {—% <1421T+4> } with an
appropriate C' = C(k) > 0, where 2j = 2k — 2|e(G)], and 0 < |e(G)| < k — 1. Since

j < k,no?>1,and also 21“?—;; > 1if Ag is chosen sufficiently large the above calculation
implies relation (17.20).

Let us show that also sup H, x(f|G, V1, V2) can be estimated in the following form:
ferF

n2k02(k+1)

p (sup |H, 1 (f1G, V1, V)| > g 1<i<n 1<) < k) (w)
ferF

24k+1k'

< Cn(3k+2)L/2+56—2*<6+2/’“>A2/3’“m72

if S2(F|G, Vi, Vo)) (w) < 228 A8/3n%k6% and A > A, (17.21)

for all G € G such that |e(G)| < k and V4, Vs C {1,...,k}.

To prove formula (17.21) let us consider two sets V1, Vo C {1,...,k} and a diagram
G such that |e(G)| < k, and take some points x(]’il) 1<1<n,1<j <k, in the
space (X, X') such that if f(j’il)( ) = a:l(]’il) forall 1 <1l <mnand1<j<k, then the
inequality S?(F|G, Vi, Va)(w) < 22k A8/3n2k 54 holds.

Introduce with the help of these points the following probability measures: For all

(1)

1 < j < k define the probability measures v;"* which are uniformly distributed on the

points x(j 95 (Vl)), 1 <1l <n,and V§2) which are uniformly distributed on the points
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xl(j’gj(VQ)), 1 <1<mn,ie letuv < (4,05 (Vl) — 1 and Vg('Q) <{xl(j75j(v2))} _ 1

n n’

1 <1 <n, 1< 5 <k, where 7( _11fj€V1,5j(V1):—1ifj¢V1,and
similarly 0;(V2) = 1if j € V5 and 0;(V2) = —1if j ¢ V5. Let us consider the product
measures a; = 1\ x -+ (1) d = % (2) h d

1 = vy X Xy, Xpand ag = vy’ X X v, ' X p on the product

space (X* x Y, X* x ), where p is that probability measure on (Y,))) which appears
in Proposition 15.4, and define the measure o = %

If f e F and g € F are two functions such that [(f — g)?da < §? with some
d > 0, then we give an upper bound for |H, (f|G, V1, V2)(w) — H, x(g|G, Vi, Va)(w)].
(This bound does not depend on the ‘randomizing terms’ ;(w) in the definition of the
random variable H,, 1 (:|G, Vi, V2).)

In this case [(f — g)*da; < 262, and

/‘f($l(1’61(‘/1)) ) x(kyék(vl)),y) _ g(x(lvél(vl)) ,x(k’ék(vl)),y)Fp( dy) < 252nk,

R R % l1 [ li
/‘f (@D B0 oy RO SR oy < /3802

for all 1 <1<k, and 1 <[; <mn, and the same result holds if all §;(V}) are replaced by
§;(V2), 1 < j < k. Since |f| <1, |g| < 1if f,g € F, the condition [(f — g)?da < §?
implies that

/ FE YD @), g D @), ) £ (W), gD ), y)a( dy)

— g€ @), €5 @), g (€ VP @), T (w), y)p(dy)|
§2\/§5nk/2

for all vectors (l1,...,0,1},...,0}) in that summation which appears in the definition
of H, (|G, V1, V2) in formula (16.9). Hence

| Hoge(F1G. Vi, Vo) (@) — Ho (9]G. Vi, Vo) ()] < 21260772

if f,geF, [(f—g)*da < 6% and such an w € Q is considered for which fl(j’ﬂ)(w) =
s 1<i<n 1<j<k

k/2 _2(k+1)

Put § = %+—7(;'W, and § = n~Gk+2/2 < § ( the inequality 6 < 0 holds,
since o > \/Lﬁ and we may assume that A > A is sufficiently large), choose a J-dense
subset Fs = {fi,..., fm} C F in the Lo(X* x Y, X* x Y, a) space with m < D5~ F <
nBk+2)L/2+8 clements. Then an argument similar to that at the end of the proof of
Proposition 15.3 shows that if such an w € € is taken for which fl(j’il)(w) = xl(]’il) for
all 1 <l <nand1l<j<k, then for all f € F such a function f; € Fs can be chosen
for which [(f — f;)*da < 62, and this inequality implies that |H, x(f|G, V1, Va2) —
H, 1 (fi|G, Vi, Vo) < 2v/26nF/2 = 24,;4%2216,712’“02(’”’1). This inequality together with
relation (17.20) and the bound on the cardinality of the set Fj yield inequality (17.21).
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It follows from relations (17.15) and (17.21) that

A2 2/3k. 2
P H G, V , V > 2k 2(k—|—1) < 2k‘+1 —A no
(?22' nok(f1G VL Vo)l > sqpn™o =

_o—(6+2/k) 42/3k 2 |
_|_Cn(3k+2)L/2+ﬁe 2 A no if A> AO

for all V1, Vo C {1,...,k} also in the case |e(G)| < k — 1. This inequality implies that
relation (17.10) holds also in this case if the constants Ag and K are chosen sufficiently
large in Proposition 15.4. Proposition 15.4 is proved.

18. An overview of the results in this work.

I discuss briefly the problems investigated in this work and recall some basic results
related to them. I also give some references. I also write about the background of these
problems which may explain the motivation for their study.

I met the main problem considered in this work when tried to adapt the method
of proof of the central limit theorem for maximum-likelihood estimates to some more
difficult questions about so-called non-parametric maximum likelihood estimate prob-
lems. The Kaplan—-Meyer estimate for the empirical distribution function with the
help of censored data investigated in the second section is such a problem. It is not
a maximum-likelihood estimate in the classical sense, but it can be considered as a
non-parametric maximum likelihood estimate. In the estimation of the empirical distri-
bution function with the help of censored data we cannot apply the classical maximum
likelihood method, since in this case we have to choose our estimate from a too large
class of distribution functions. The main problem is that there is no dominating mea-
sure with respect to which all candidates which can appear as our estimate have a
density function. A natural way to overcome this difficulty is to choose a smaller class
of distribution functions, to compare the probability of the appearance of the sample
we observed with respect to all distribution functions of this class and to choose that
distribution function as our estimate for which this probability takes its maximum.

The Kaplan—Meyer estimate can be found on the basis of the above principle in
the following way: Let us estimate the distribution function F'(x) of the censored data
simultaneously together with the distribution function G(z) of the censoring data. (We
have a sample of size n and know which sample elements are censored and which are
censoring data.) Let us consider the class of such pairs of estimates (F,,(z),Gp(x))
of the pair (F(z),G(x)) for which the distribution function F,(x) is concentrated in
the censored sample points and the distribution function G,,(x) is concentrated in the
censoring sample points; more precisely, let us also assume that if the largest sample
point is a censored point, then the distribution function G, (z) of the censoring data
takes still another value which is larger than any sample point, and if it is a censoring
point then the distribution function F,,(x) of the censored data takes still another value
larger than any sample point. (This modification at the end of the definition is needed,
since if the largest sample points is from the class of censored data, then the distribution
G(x) of the censoring data in this point must be strictly less than 1, and if it is from
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the class of censoring data, then the value of the distribution function F'(z) of the
censored data must be strictly less than 1 in this point.) Let us take this class of
pairs of distribution functions (F;,(z), G, (x)), and let us choose that pair of distribution
functions of this class as the (non-parametric maximum likelihood) estimate with respect
to which our observation has the greatest probability.

The above extremal problem for the pairs of distribution functions (Fj,(z), G, (x))
can be solved explicitly, (see [25]), and it yields the estimate of Fj,(z) written down
in formula (2.3). (The function G,(z) satisfies a similar relation, only the random
variables X; and Y; and the events d; = 1 and §; = 0 have to be replaced in it.) Then,
as I have indicated, a natural analog of the linearization procedure in the maximum
likelihood estimate also works in this case, and there is only one really hard part of
the proof. We have to show that the linearization procedure gives a small error. The
estimation of this error led to the problem about a good estimate on the tail distribution
of the integral of an appropriate function of two variables with respect to the product of
a normalized empirical measure with itself. Moreover, as a more detailed investigation
showed, we actually need the solution of a more general problem where we have to bound
the tail distribution of the supremum of a class of such integrals. The main subject of
this work is to solve the above problems in a more general setting, to estimate not only
two-fold, but also k-fold random integrals and the supremum of such integrals for an
approriate class of kernel functions with respect to a normalized empirical distribution
for all £ > 1.

The proof of the the limit theorem for the Kaplan—-Meyer estimate explained in
this work applied the explicit form of this estimate. It would be interesting to find such
a modification of this proof which only exploits that the Kaplan—-Meyer estimate is the
solution of an appropriate extremal problem. We may expect that such a proof can
be generalized to a general result about the limit behaviour for a wide class of non-
parametric maximum likelihood estimates. Such a consideration is behind the remark
of Richard Gill I quoted at the end of Section 2.

A detailed proof together with a sharp estimate on the speed of convergence for
the limit behaviour of the Kaplan—-Meyer estimate based on the ideas presented in Sec-
tion 2 is given in paper [37]. Paper [38] explains more about its background, and it
also discusses the solution of some other non-parametric maximum likelihood problems.
The results about multiple integrals with respect to a normalized empirical distribution
function needed in these works were proved in [29]. These results are completely sat-
isfactory for the study in [37], but they also have some drawbacks. They do not show
that if the random integrals we are considering have small variances, then they satisfy
better estimates. Beside this, if we consider the supremum of random integrals of an
appropriate class of functions, then these results can be applied only in very special
cases. Moreover, the method of proof of [29] did not allow a real generalization of these
results, hence I had to find a different approach when tried to generalize them.

I do not know of other works where the distribution of multiple random integrals
with respect to a normalized empirical distribution is studied. On the other hand, there
are some works where the distribution of (degenerate) U-statistics is investigated. The
most important results obtained in this field are contained in the book of de la Pena
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and Giné Decoupling, From Dependence to Independence [7]. The problems about the
behaviour of degenerate U-statistics and multiple integrals with respect to a normalized
empirical distribution function are closely related, but the explanation of their relation
is far from trivial. The main difference between them is that integration with respect to
tn — i instead of the empirical distribution p,, means some sort of normalization, while
this normalization is missing in the definition of U-statistics. I return to this question
later.

The main part of this work starts at Section 3. A general overview of the results
without the hard technical details can be found in [32].

First the estimation of sums of independent random variables or one-fold random
integrals with respect to a normalized empirical distribution and the supremum of such
expressions is investigated in Sections 3 and 4. This question has a fairly big literature.
I would mention first of all the books A course on empirical processes [11], Real Analysis
and Probability [12] and Uniform Central Limit Theorems [13] of R. M. Dudley. These
books contain a much more detailed description of the empirical processes than the
present work together with a lot of interesting results.

Section 3 deals with the tail behaviour of sums of independent and bounded random
variables with expectation zero. The proof of two already classical results, Bernstein’s
and Bennett’s inequalities is given there. (Their proofs can be found e.g. in Theo-
rem 1.3.2 of [13] and [5]). We are also interested in the question when they give an
estimate suggested by the central limit theorem. Actually, as it is explained in Sec-
tion 3, Bennett’s inequality gives a bound suggested by a Poissonian approximation of
partial sums of independent random variables. Bernstein’s inequality provides an esti-
mate suggested by the central limit theorem if the variance of the sum is not too small.
(The results in Section 3 explain this statement more explicitly.) If the variance of the
sum is too small, then Bennett’s inequality provides a slight improvement. Moreover,
as Example 3.2 shows, Bennett’s inequality is essentially sharp in this case.

The estimate on the tail distribution of a sum of independent random variables
is weak if this sum has a small variance. This means that in this case the probability
that the sum is larger than a given value may be much larger than the (rather small)
value suggested by the central limit theorem. Such a behaviour may occur, because the
contribution of some unpleasant irregularities to this probability may be non-negligible
in the case of a small variance.

In the study of the supremum of sums of independent random variables a good
control is needed on the tail distribution of the (supremum of) sums of independent
random variables even if they have small variance. (A natural multivariate analog of
this problem appears in the general case.) The solution of this problem turned out
to be the hardest part of this work. The results based on the similar behaviour of
partial sums and their Gaussian counterpart is not sufficient in this case, some new
ideas have to be applied. In the proof of sharp estimates in this case we also use some
kind of symmetrization arguments. The last result of Section 3, Hoeffding’s inequality
presented in Theorem 3.4 is an important ingredient of these symmetrization arguments.
It is also a classical result whose proof can be found for instance in [23].
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Section 4 contains the one-variate version of our main result about the supremum
of the integrals of a class F of functions with respect to a normalized empirical measure
together with an equivalent statement about the distribution of the supremum of a
class of random sums defined with the help of a sequence of independent and identically
distributed random variables. These results are given in Theorems 4.1 and 4.1’. Also
a Gaussian version of them is presented in Theorem 4.2 about the distribution of the
supremum of a Gaussian field with some appropriate properties.

In the above mentioned results we have imposed the condition that the class of
functions F or what is equivalent, the set of random variables whose supremum we
estimate is countable. In the proofs this condition is really exploited. On the other
hand, in some important applications we also need results about the supremum of a
possibly non-countable set of random variables. To handle such cases I introduced the
notion of countably approximable classes of random variables and proved that in the
results of this work the condition about countability can be replaced by the weaker
condition that the supremum of countably approximable classes is taken. R. M. Dudley
worked out a different method to handle the supremum of possibly non-countably many
random variables, and generally his method is applied in the literature. The relation
between these two methods deserves some discussion.

Let us first recall that if a class of random variables S;, t € T', indexed by some index
set T is given, then a set A is measurable with respect to the o-algebra generated by the
random variables S;, t € T, only if there exists a countable subset 7" = T"(A) C T such
that the set A is measurable also with respect to the smaller o-algebra generated by the
random variable Sy, t € T’. Beside this, if the finite dimensional distributions of the
random variables S;, t € T', are given, then by the results of classical measure theory the
probability of the events measurable with respect to the o-algebra generated by these
random variables S;, t € T', is also determined. But we cannot get the probability of all
events we are interested in such a way. In particular, if 7' is a non-countable set, then

the events {w: sup Sy (w) > u} are non-measurable with respect to the above o-algebra,
teT
and generally we cannot speak of their probabilities. To overcome this difficulty Dudley

worked out a theory which enabled him to work also with outer measures. His theory
is based on some rather deep results of the analysis. It can be found for instance in his

book [13].

I restricted my attention to such cases when after the completion of the prob-
ability measure P we can also speak of the real (and not only outer) probabilities

P (Sup Sy > u) I tried to find appropriate conditions under which these probabilities
teT
really exist. More explicitly, we are interested in the case when for all v > 0 there

exists some set A = A, measurable with respect to the o-algebra generated by the
random variables S;, t € T, such that the symmetric difference of the sets A, and
{w: sup S¢(w) > u ¢ is contained in a set measurable with respect to the o-algebra gen-

teT
erated by the random variables S;, ¢t € T, which has probability zero. In such a case
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the probability P (sup Sy > u | can be defined as P(A,). This approach led me to the
teT
definition of countable approximable classes of random variables. If this property holds,

then we can speak about the probability of the event that the supremum of the random
variables we are interested in is larger than some fixed value. I proved a simple but
useful result in Lemma 4.3 which provides a condition for the validity of this property.

The problem we met here is not an abstract, technical difficulty. Indeed, the dis-
tribution of such a supremum can become different if we modify each random variable
on a set of probability zero, although the finite dimensional distributions of the ran-
dom variables we consider remain the same after such an operation. Hence, if we are
interested in the probability of the supremum of a non-countable set of random vari-
ables with described finite dimensional distributions we have to describe more explicitly
which version of this set of random variables we consider. It is natural to look for such
an appropriate version of the random field S, t € T, whose ‘trajectories’ Si(w), t € T,
have nice properties for all elementary events w € (). Lemma 4.3 can be interpreted
as a result in this spirit. The condition given for the countable approximability of a
class of random variables at the end of this lemma can be considered as a smoothness
condition about the ‘trajectories’ of the random field we consider. This approach shows
some analogy to some important problems in the theory of stochastic processes when
a regular version of a stochastic process is considered and the smoothness properties of
its trajectories are investigated.

In our problems the version of the set of random variables Sy, t € T', we shall work
with appears in a simple and natural way. In these problems we have finitely many
random variables ;,...,&, at the start, and all random variables Si(w), t € T, we
are considering can be defined individually for each w as a functional of these random
variables & (w), ..., & (w). We take the version of the random field Sy(w), t € T, we
get in such a way and want to show that it is countably approximable. In Section 4
this property is proved in an important model, probably in the most important model
in possible applications we are interested in. In more complicated situations when our
random variables are defined not as a functional of finitely many sample points, for
instance in the case when we define our set of random variables by means of integrals
with respect to a Gaussian field it is harder to find the right regular version of our
sets of random variables. In this case the integrals we consider are defined only with
probability 1, and it demands some extra work to find their right version. At any rate,
in the problems we are interested in our approach is satisfactory for our purposes, and
it is simpler than that of Dudley; we do not have to follow his rather difficult technique.
On the other hand, I must admit that I do not know the precise relation between the
approach of this work and that of Dudley.

In Section 4 the notion of L,-dense classes, 1 < p < oo, is also introduced. The
notion of Lo-dense classes plays an important role in the formulation Theorems 4.1
and 4.1’. It can be considered as a version of the e-entropy, discussed at many places
in the literature. On the other hand, there seems to be no standard definition of
the e-entropy. The term of Ls-dense classes seemed to be the appropriate notion to
introduce in this work. To apply the results related to Lso-dense classes we also need
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some knowledge about how to check this property in concrete models. For this goal I
discussed here Vapnik—Cervonenkis classes, a popular and important notion of modern
probability theory. Several books and papers, (see e.g. the books [13], [43], [52] and the
references in them) deal with this subject. An important result in this field is Sauer’s
lemma, (Lemma 5.1) which together with some other results, like Lemma 5.3 imply that
several interesting classes of sets or functions are Vapnik—Cervonenkis classes.

I put the proof of these results to the Appendix, partly because they can be found in
the literature, partly because in this work Vapnik—Cervonenkis classes play a different
and less important role than at other places. Here Vapnik-Cervonenkis classes are
applied to show that certain classes of functions are Ls-dense. A result of Dudley
formulated in Lemma 5.2 implies that a Vapnik—Cervonenkis class of functions with
absolute value bounded by a fixed constant is an L;, and as a consequence, also an
Lo-dense class of functions. The proof of this important result which seems to be less
known even among experts of this subject than it would deserve is contained in the main
text. Dudley’s original result was formulated in the special case when the functions we
consider are indicator functions of some sets. But its proof contains all important ideas
needed in the proof of Lemma 5.2.

Theorem 4.2, which is the Gaussian counterpart of Theorems 4.1 and 4.1 is proved
in Section 6 by means of a natural and important technique, called the chaining argu-
ment. This means the application of an inductive procedure, in which an appropriate
sequence of finite subsets of the original set of random variables is introduced, and a
good estimate is given on the supremum of the random variables in these subsets by
means of an inductive procedure. The subsets became denser subsets of the original
set of the random variables at each step of this procedure. This chaining argument is a
popular method in certain investigation. It is hard to say with whom to attach it. Its
introduction may be connected to some works of R. M. Dudley. It is worth mentioning
that Talagrand [51] worked out a sharpened version of it which yields in the investiga-
tion of certain problems a sharper estimate. But it seems to me that in the study of
the problems of this work it does not provide a real improvement.

Theorem 4.2 can be proved in such a way, but this method is not strong enough
to supply a proof of Theorem 4.1. The cause of this weakness is that there is no good
estimate on the probability that a sum of independent random variables is greater than
a prescribed value if these random variables have too small variances. The chaining
argument supplies a much weaker estimate than the result we want to prove under the
conditions of Theorem 4.1. Lemma 6.1 contains the result the chaining argument yields
under these conditions. In Section 6 still another result, Lemma 6.2 is formulated. It
can be considered as a special case of Theorem 4.1 where only the supremum of partial
sums with small variances is estimated. It is also shown that Lemmas 6.1 and 6.2
together imply Theorem 4.1. The proof is not difficult, despite of some non-attractive
details. It has to be checked that the parameters in Lemmas 6.1 and 6.2 can be fitted
to each other.

Lemma 6.2 is proved in Section 7. It is based on a symmetrization argument.
This proof applies the ideas of a paper of Kenneth Alexander [2], and although its
presentation is different from Alexander’s approach, it can be considered as a version
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of his proof.

A similar problem should also be mentioned at this place. M. Talagrand wrote
a series of papers about concentration inequalities, (see e.g. [49] or [50]), and his
research was also continued by some other authors. I would mention the works of
M. Ledoux [27] and P. Massart [40]. Concentration inequalities give a bound about
the difference between the supremum of a set of appropriately defined random variables
and the expected value of this supremum; they express how strongly this supremum is
concentrated around its expected value. Such results are closely related to Theorem 4.1,
and the discussion of their relation deserves some attention. A typical concentration
inequality is the following result of Talagrand [50].

Theorem 18.1. (Theorem of Talagrand.) Consider n independent and identically
distributed random variables &, ..., &, with values in some measurable space (X,X).
Let F be some countable family of real-valued measumble functions of (X, X) such that

Ifllec < b < 0 for every f € F. Let Z = sup Z f(&) and v = E(sup Z 2(&)).
fEF i= fEF i=

Then for every positive number x,

1
P(ZZEZ—HI:)SKeXp{—FEl g(1+%b)}

and

2
x
P(Z>FEZ+x) < Kexpy{——— ¢,
(Z= )< P { 2(c1v + cobe) }
where K, K', ¢1 and ¢y are universal positive constants. Moreover, the same inequalities
hold when replacing Z by —Z.

Theorem 18.1 yields, similarly to Theorem 4.1, an estimate about the distribution of
the supremum for a class of sums of independent random variables. It can be considered
as a generalization of Bernstein’s and Bennett’s inequalities when the distribution of
the supremum of partial sums is estimated. A remarkable feature of this result is
that it assumes no condition about the structure of the class of functions F (like the
condition of Lo-dense property of the class F imposed in Theorem 4.1.) On the other

hand, the estimates in Theorem 18.1 contain the quantity EZ = E | sup >, f(&)
feFi=1

Such an expectation of some supremum appears in all concentration inequalities. As a
consequence, they are useful only if we can bound the expected value of an appropriate
supremum. This is a hard question in the general case. Talagrand’s work [51] deals very
much with such problems, and it contains many interesting results in this direction.
But it seems to solve problems of different sort, and the results of [51] do not help
in the proof of Theorem 4.1. There is a paper [16] which provides a useful estimate
about the expected value of the supremum of random sums under the conditions of
Theorem 4.1. But I preferred a direct proof of this result. Let me remark that the
condition u > const. o logl/ 2 2 with some appropriate constant which cannot be dropped

163



from Theorem 4.1 is related to the magnitude of the expected value EZ of the above
supremum.

The Lo-dense property of the class F implies that the expected value of the
supremum of the normalized random sums considered in Theorem 4.1 is bounded by
const.alogl/ 2 %, and Theorem 4.1 provides a good estimate on the supremum only

above this level.

The main results of this work are presented in Section 8. A weaker version of
Theorem 8.3 about an estimate of the distribution of a degenerate U-statistic was first
proved in a paper of Arcones and Giné in [3]. The result of Theorem 8.3 in the present
form is proved in my paper [35]. Its version about multiple integrals with respect to
a normalized empirical measure formulated in Theorem 8.1 is proved in [31]. This
paper contains a direct proof. On the other hand, Theorem 8.1 can be derived from
Theorem 8.3 by means of Theorem 9.4 of this paper. Theorem 8.5 is the natural
Gaussian counterpart of Theorem 8.3. The limit theorem about degenerate U-statistics,
Theorem 10.4 (and its version about limit theorems for multiple integrals with respect
to normalized empirical measures, Theorem 10.4" in Appendix C) was discussed in this
work to explain better the relation between degenerate U-statistics (or multiple integrals
with respect to normalized empirical measures) and multiple Wiener—It6 integrals. A
proof of this result based on similar ideas as that discussed here can be found in [14].
Theorem 6.6 of my lecture note [28] contains such a weakened version of Theorem 8.5
which does not take into account the variance of the random integral.

Example 8.7 is a natural supplement of Theorem 8.5 which shows that the estimate
of Theorem 8.5 is sharp if only the variance of a Wiener—It6 integral is known. In this
Lecture Note I mentioned the results of papers [1] and [26] without proof. I discussed
mainly the content of [26] and explained its relation to the other work of this paper.
The proof of these papers apply a method different of those of this work. It would be
interesting to prove them with the methods discussed here. These papers contain such a
refinement of Theorems 8.5 and 8.3 respectively whose estimates depend on some other
rather complicated quantities. In some cases they supply a better estimate. On the
other hand in the problems discussed here they have a restricted importance because
their conditions are hard to check.

Theorems 8.2 and 8.4 yield an estimate about the supremum of (degenerate) U-
statistics or of multiple random integrals with respect to a normalized empirical measure
when the class of kernel functions in these U-statistics or random integrals satisfy some
conditions. They were proved in my paper [33]. Earlier Arcones and Giné proved a
weaker form of this result in paper [4], but their work did not help in the proof of
the results of this note. They were based on an adaptation of Alexander’s method
to the multivariate case. Theorem 8.6 contains the natural Gaussian counterpart of
Theorems 8.2 and 8.4.

Example 8.8 in Section 8 shows that the condition u < const.no® imposed in
Theorem 8.3 in the case k = 2 cannot be dropped. The paper of Arcones and Giné [3]
contains another example explained by Talagrand to the authors which also has a similar
consequence. But that example does not provide such an explicit comparison of the
upper and lower bound on the probability investigated in Theorem 8.3 as Example 8.8.

3
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Similar examples could be constructed for all £ > 1.

Example 8.8 shows that at high levels only a very weak (and from practical point
of view not really important) improvement of the estimation on the tail distribution of
degenerate U-statistics is possible. But probably there exists a multivariate version of
Bennett’s inequality Theorem 3.3 which provides such an estimate. Moreover, there is
some hope to get a similar strengthened form of Theorems 8.2 and 8.4 (or of Theorem 4.2
in the one-dimensional case). This question is not investigated in the present work.

Section 9 deals with the properties of U-statistics. Its first result, Theorem 9.1, is
a rather classical result. It is the so-called Hoeffding decomposition of U-statistics to
the sum of degenerate statistics. Its proof first appeared in the paper [22], but it can be
found at many places. The explanation of this work contains some ideas similar to [48]. T
tried to explain that Hoeffding’s decomposition is the natural multivariate version of the
(trivial) decompositon of sums of independent random variables to sums of independent
random variables with expectation zero plus the sum of the expectations of the original
random variables. Moreover, Hoeffding’s decomposition shows some similarity to this
simple decomposition.

Theorem 9.2 and Proposition 9.3 can be considered as a continuation of the investi-
gation of the Hoeffding’s decomposition in Theorem 9.1. They tell how the properties of
the kernel function of the original U-statistic are inherited in the properties of the kernel
functions of the degenerate U-statistics taking part in its Hoeffding decomposition. In
several applications of Hoeffding’s decomposition such results are also needed.

The last result of Section 9, Theorem 9.4, enables us to reduce the estimation of
multiple random integrals with respect to normalized empirical measures to the estima-
tion of degenerate U-statistics. This result is a version of Hoeffding’s decomposition,
where multiple integrals with respect to a normalized empirical distribution are decom-
posed to the sum of degenerate U-statistics. Multiple random integrals with respect to
a normalized empirical measure can be simply written as sums of U-statistics, and by
applying the Hoeffding decomposition for each term of these sums we get the desired
decomposition. Theorem 9.4 yields the result we get in such a way. This formula is very
similar to the original Hoeffding decomposition. The main difference between them is
that the coefficients of the degenerate U-statistics in the decomposition of Theorem 9.4
are relatively small. The cancellation effect caused by integration with respect to a
normalized empirical measure is reflected in the appearance of small coefficients in the
decomposition given in Theorem 9.4. Theorem 9.4 was proved in [33]. The same proof
is given in this note, but some calculations are worked out in more detail.

Theorem 8.1 can be derived from Theorem 8.3 and Theorem 8.2 from Theorem 8.4
by means of Theorem 9.4. The proof of the latter results is simpler. The results of
Sections 10—-12 contain the results needed in the proof of Theorem 8.3 and its Gaussian
counterpart Theorems 8.5 and 8.7. The proof of these results is based on good estimates
of high moments of degenerate U-statistics and multiple Wiener—Ito integrals. The
classical proof of the one-variate counterparts of these results is based on a good estimate
of the moment generating function. This method was replaced by the estimate of the
moments, because the moment generating function of a k-fold Wiener—Ito integral is
divergent for k > 3, and this property is also reflected in the behaviour of degenerate U-
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statistics. On the other hand, good estimates on high moments can replace the estimate
of the moment generating function. A good estimate can be given for all moments of
a Wiener—Ito integral, while we have a good estimate only on not too high moments of
degenerate U-statistics. This is related to the fact that there is a good estimate on the
tail distribution of degenerate U-statistic only for not too large values.

I know of two deep methods to study high moments of multiple Wiener—It6 in-
tegrals. Both of them can be adapted to the study of the moments of degenerate
U-statistics. They deserve a more detailed discussion.

The first one of them is called Nelson’s inequality named after Edward Nelson
who published it in his paper [42]. This inequality simply implies Theorem 8.5 about
multiple Wiener—It6 integrals, although with worse constants. Later Leonhard Gross
discovered a deep and very useful generalization of this result which he published in
the work Logarithmic Sobolev inequalities [19]. In that paper Gross compared two
Markov processes with the same infinitesimal operator but with possibly different initial
distribution, where the second Markov process had stationary distribution. He could
give a sharp bound on the Radon-Nikodym derivative of the distribution of the first
Markov process at a time 7' with respect to the (stationary) distribution of the second
Markov process at time 71" on the basis of the properties of the infinitesimal operator
of the Markov processes. This result made possible to generalize Nelson’s inequality to
more general cases. In particular, such a result may help to prove (a weaker version
of) Theorem 8.3 (with worse universal constants). In a preliminary version of this
Lecture Note [36] that can be found on my homepage I worked out a detailed proof of
Theorem 8.3 on the basis of Gross’ paper. Here I do not go into the details. Let me
also remark that Gross’ method works not only in the study of these problems, but in
several hard problems of the probability theory. (See e.g [20] or [27]). Nevertheless,
in the present note I followed a different method, because this seemed to be better
applicable here.

I applied a method related to the names of Kyoshi Itd6 and Roland L’vovich Do-
brushin. Here the theory of multiple Wiener—1t6 integrals with respect to a white noise
is applied. The notion of this integral was introduced in paper [24]. It is useful, be-
cause every random variable measurable with respect to the o-algebra generated by the
Gaussian random variables of the underlying white noise with finite second moment
can be written as the sum of Wiener—Ito integrals of different order. Moreover, if only
Wiener—It6 integrals of symmetric kernel functions are taken, then this representation
is unique. An important result, the so-called diagram formula, formulated in Theo-
rem 10.2, expresses products of Wiener—Ito integrals as a sum of such integrals. This
result which shows some similarity to the Feynman diagrams applied in the statistical
physics was proved in [9]. Actually this paper discussed a modified version of Wiener—It6
integrals which is more appropriate to study the action of shift operators for non-linear
functionals of a stationary Gaussian field. But these modified Wiener—Ito integrals can
be investigated in almost the same way as the original ones. The diagram formula has
a simple consequence formulated in the form of a corollary of this note which enables
us to calculate the expectation of products of Wiener—It6 integrals, in particular the
moments of a Wiener—Ito6 integral. This result was useful in the proof of Theorem 8.5, in
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the estimation of the tail-distribution of Wiener—It6 integrals. 1t0’s formula for multiple
Wiener-1t6 integrals (Theorem 10.3) was proved in [24].

The diagram formula has a natural and useful analog both for degenerate U-
statistics and multiple integrals with respect to a normalized empirical measure. They
enables us to express the product of degenerate U-statistics and multiple integrals as the
sum of such expressions. These results make possible to adapt several useful methods in
the study of non-linear functionals of a Gaussian random field to the study of non-linear
functionals of normalized empirical measures, and this may be useful in many cases. The
diagram formula was proved for degenerate U-statistics in [35] and for multiple random
integrals with respect to a normalized empirical measures in [31]. Let me remark that
the diagram formula for degenerate U-statistics was formulated in [35] in a different
from than in the present note. In that paper I wanted to formulate the diagram formula
with the help of such diagrams which appear in the diagram formula for Wiener—It6
integrals. I could do this only in a somewhat artificial way. The formulation of this
result with the help of diagrams containing chains as it is done here seems to be more
natural. Let me also remark that the study of results similar to the diagram for did not
get such an attention in the literature that it would deserve in my opinion. I know only
of one work where such questions were investigated. It is the paper of Surgailis [45],
where a version of the diagram formula is proved for Poissonian integrals. The Corollary
of Theorem 11.2 is of special interest for us, because it enables us to prove such moment
estimates which are useful in the proof of Theorem 8.3.

It is worth mentioning that the problems about Wiener—Ito integrals are closely
related to the study of Hermite polynomials or to their multivariate version, to the
so-called Wick polynomials. (See e.g. [28] or [39] for the notion of Wick polynomials.)
Appendix C contains the most important properties of Hermite polynomials needed in
the study of Wiener—Ito6 integrals. In particular, it contains the proof of Proposition C2
which states that the set of all Hermite polynomials is a complete orthogonal system
in the Hilbert space of the functions square integrable with respect to the standard
normal measure. This result can be found for instance in Theorem 5.2.7 of [47]. In the
present proof I wanted to show that this result is closely related to the so-called moment
problem, i.e. to the question when a distribution is determined by its moments uniquely.
This method, with some refinement, can be applied to prove some generalizations of
Proposition C2 about the completeness of orthogonal polynomials with respect to more
general weight functions.

[to’s formula makes a relation between Wiener—Ito integrals and Hermite polyno-
mials. The results about multiple Wiener-Ito integrals have their analogs for Wick
polynomials. Thus for instance there is a diagram formula for the product of Wick
polynomials which also has some interesting generalizations. Such questions are stud-
ied both in probability theory and statistical physics, see [39] and [44]. The relation
between Wiener—It6 integrals and Hermite polynomials also has a natural counterpart
in the study of other multiple random integrals. The so-called Appell polynomials,
(see [46]), appeared in such a way.

Theorems 8.3, 8.5 and 8.7 were proved on the basis of the results in Sections 10-12 in
Section 13. This section also contains the proof of the multivariate version of Hoeffding’s
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inequality, formulated in Theorem 13.3. This result is needed in the symmetrization
argument applied in the proof of Theorem 8.4. A weaker version of it (an estimate with
a worse constant in the exponent) which would be satisfactory for our purposes would
simply follow from a classical result, called Borell’s inequality. But since this result is
not discussed in this note, and I was interested in a proof which yields the best estimate
in the exponent of this estimate I have chosen another proof, given in [34] which is based
on the results of Sections 10-12. Later I have learned that this estimate is contained in
an implicit form also in the paper [6] of A. Bonami.

Sections 14-17 are devoted to the proof of Theorems 8.4 and 8.6. They are based
on a similar argument as their one-variate counterparts, Theorems 4.1 and 4.2. The
proof of Theorem 8.6 about the supremum of Wiener—It6 integrals is based, similarly
to the proof of Theorem 4.2 on the chaining argument. This is a rather general method
which I cannot connect to a definite name. In the proof of Theorem 8.4, the chaining ar-
gument only yields a weaker result formulated in Proposition 14.1 which helps to reduce
Theorem 8.4 to the proof of Proposition 14.2. In the one-variate case a similar approach
was applied, where the proof of Theorem 4.1 was reduced to that of Proposition 6.2 by
means of Proposition 6.1. The next step in the proof of Theorem 8.6 has no one-variate
counterpart. The notion of so-called decoupled U-statistics was introduced, and Propo-
sition 14.2 was reduced to a similar result about degenerate U-statistics formulated in
Proposition 14.2’.

The adjective ‘decoupled’ in the expression decoupled U-statistic refers to the fact
that it is such version of a U-statistic where independent copies of a sequence of inde-
pendent and identically distributed random variables are put into different coordinates
of the kernel function of the U-statistic. Their study is a popular subject of some au-
thors. In particular, the main subject of the book [7] is a comparison of the properties
of U-statistics and decoupled U-statistics. A result of de la Pena and Montgomery—
Smith [8] formulated in Theorem 14.3 helps to reduce some problems about U-statistics
to a similar problem about decoupled U-statistics. In this lecture note the proof of
Theorem 14.3 is given in Appendix D. It follows the argument of the original proof,
but several steps are worked out in detail where the authors gave only a very short
explanation. Paper [8] also contains some kind of converse result of Theorem 14.3, but
as it is not needed in the present work, I omitted its discussion.

Decoupled U-statistics behave similarly to the original U-statistics. Beside this,
the decoupled property makes possible the application of a symmetrization arguments,
and this may be useful in some investigations. For example Proposition 14.2" can be
proved in such a way. Its counterpart about usual U-statistics, Proposition 14.2, cannot
be proved by means of a simple adaptation of this method, but it can be simply derived
from Proposition 14.2" with the help of Theorem 14.3.

The above example shows why the application of the symmetrization method and
the introduction of degenerate U-statistics is useful in the study of certain problems.
But the application of the symmetrization method has its price. Generally, if a (usual or
decoupled) U-statistic is estimated with its help, then this U-statistic is replaced during
the estimation by a larger U-statistic, (by a U-statistic with larger variance), and as
a consequence we cannot get sharp estimates. In particular, the decoupling technique
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and the symmetrization argument made with its help can provide only the proof of a
weakened version of Theorem 8.3 with worse universal constants. This is the reason
why a different proof of this result was given in this work. (The earlier version of this
Lecture Note [36] contains the proof of a weakened version of Theorem 8.3 by means of
a symmetrization argument.)

The proof of Theorem 8.4 was reduced to that of Proposition 14.2" in Section 14.
Sections 15-17 deal with the proof of this result. It was proved in my paper [33]. The
proof is similar to that of its one-variate version Proposition 6.2, but some additional
difficulties have to be overcome. The main difficulty appears as we want to find the mul-
tivariate analog of the symmetrization argument made by means of the Symmetrization
Lemma, Lemma 7.1 and Lemma 7.2 in the one-variate case. In the proof of Proposi-
tion 6.2 we could carry out a symmetrization procedure by investigating the difference
of two independent copies of the random sums we have considered. In the proof of
Proposition 14.2" a more sophisticated construction has to be applied.

In this case Lemma 7.1 is not sufficient for us in its original form. We need a gener-
alization of this result, and this is done in Lemma 15.2. The proof of Lemma 15.2 is not
hard. The real difficulty arises when we want to apply it in our case. In an application
of this lemma formula (15.3) has to be checked, and this means the estimation of some
non-trivial conditional probabilities. The hardest part of the proof of Proposition 14.2’
is related to checking the validity of formula (15.3) when we want to apply Lemma 15.2.
In the analogous relation, in formula (7.1) of Lemma 7.1 it was enough to bound a usual
probability, and this was simple.

Proposition 14.2" was proved by means of an inductive procedure formulated in
Proposition 15.3, which is the multivariate analog of Proposition 6.2. A basic ingredient
of both proofs was a symmetrization argument. But while this symmetrization argument
could be simply applied in the one-variate case, it meant a most serious problem in the
proof of Theorem 15.3. To overcome this difficulty another statement was introduced
in Proposition 15.4. Propositions 15.3 and 15.4 were proved simultaneously by means
of an appropriate inductive procedure. Their proof was based on a refinement of the
arguments in the proof of Proposition 6.2. We also had to exploit our knowledge about
the properties of Hoeffding’s decomposition.
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Appendix A.

The proof of some results about Vapnik—Cervonenkis classes

Proof of Theorem 5.1. (Sauer’s lemma). This result has several different proofs. Here
I write down a relatively simple proof of P. Frankl and J. Pach which appeared in [15].
It is based on some linear algebraic arguments.

The following equivalent reformulation of Sauer’s lemma will be proved. Let us
take a set S = S(n) consisting of n elements and a class € of subsets of S consisting

of m elements Ey,...,E,, C S. Assume that m > mgy + 1 with mg = mg(n, k) =
(3) + (71‘) + -+ (kfl) Then there exists a set F' C S of cardinality & which the class

of sets £ shatters. Actually, it is enough to show that there exists a set F' of cardinality
greater than or equal to k£ which the class of sets £ shatters, because if a set has this
property, then all of its subsets have it. This latter statement will be proved.

To prove this statement let us first list the subsets Xo,...,X,,, of the set S of
cardinality less than or equal to £ — 1, and correspond to all sets E; € £ the vector
ei = (€i1,.-+,€img) 1 <i<m, with elements

1 if X; CE;
€ij = D= 1<i<m, and 1 < j < my.
0 if X; ZE;

Since m > myg, the vectors eq,...,e,, are linearly dependent. Because of the
definition of the vectors e;, 1 < ¢ < m, this can be expressed in the following way:
There is a non-zero vector (f(FE1),..., f(E;)) such that

> f(E)=0 foralll<j<my. (A1)
Eii EngJ

Let F' be a minimal set with the property

Y f(E)=a#o0. (A2)

Such a set F' really exists, since every maximal element of the family {F;: 1 < i <
m, f(E;) # 0} satisfies relation (A2). The requirement that F' should be a minimal set
means that if F' is replaced by some H C F, H # F, at the left-hand side of (A2), then
this expression equals zero. The inequality |F'| > k holds because of relation (A1) and
the definition of the sets X;.

Introduce the quantities

for all H C F.
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Then Zp(F) = «, and for any set of the form H = F'\ {z}, x € F,

Zp(H) = Z f(E;) = Z f(E:) — Z fB)=0-a=—a

E;: E;NF=H E;: E;D E;: E;D

because of the minimality property of the set F'.
Moreover, the identity

Zp(H) = (—1)’a for all H C F such that |H| =|F|—p, 0 <p < |F|. (A3)

holds. To show relation (A3) observe that

p

Zp(H)= > f(E)=> (-1 > Y AE) (A9

E;: E,NnF=H j=0 G: HCGCF, |G|=|H|+j Ei: E;2G

for all sets H C F' with cardinality |H| = |F| — p. Identity (A4) holds since the term

l .
f(E;) is counted at the right-hand side of (A4) > (—1)7 (;) = (1 -1)! = 0 times if
j=0
E;,NF = G with some H C G C F with |G| = |H| + [ elements, 1 < [ < p, while
in the case F; N F = H it is counted once. Relation (A4) together with (A2) and the
minimality property of the set F' imply relation (A3).
It follows from relation (A3) and the definition of the function Zp(H) that for all

sets H C F there exists some set F; such that H = E; N F, i.e. F is shattered by £.
Since |F'| > k, this implies Theorem 5.1.

Proof of Theorem 5.3. Let us fix an arbitrary set F' = {z1,...,2x41} of the set X,
and consider the set of vectors G (F) = {(g9(z1),...,9(xk+1)): g € Gr} of the k + 1-
dimensional space R¥*!. By the conditions of Theorem 5.3 Gi(F) is an at most k-

dimensional subspace of R¥*1. Hence there exists a non-zero vector a = (ay,...,ax 1)
k+1

such that ) ajg(x;) = 0 for all g € G,. We may assume that the set A = A(a) =
i=1

{j: a; < 0,1 <j < k+ 1} is non-empty, by multiplying the vector a by —1 if it is
necessary.
Thus the identity

Z ajg(zj) = Z (—aj)g(z;), for all g € Gx (A5)

jEA Je{1,...,k+1}\A

holds. Put B = {z;: j € A}. Then B C F, and F'\ B # {z: g(z) > 0} N F for all
g € Gi. Indeed, if there were some g € Gy, such that F'\ B = {x: g(z) > 0} N F, then
the left-hand side of the equation (A5) would be strictly positive, its right-hand side
would be non-positive for this g € G, and this is a contradiction.

The above proved property means that D shatters no set F' C X of cardinality k+1.
Hence Theorem 5.1 implies that D is a Vapnik-Cervonenkis class.
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Appendix B. The proof of the diagram formula for Wiener—It6 integrals.

The proof of Theorem (10.2A) (the diagram formula for the product of two Wiener—
It6 integrals) will be started with the proof of inequality (10.11). To show that this
relation holds let us observe that the Cauchy inequality yields the following bound on
the function F, defined in (10.10) (with the notation introduced there):

F’?(x(l,j)vx(lj’)v (17.7) € Vl(’y)v (27]/) € V2(7))

< /f2(xo¢.y(1,1)a~--7-77047(1716)) H p(dzz5))
(2,)€{(2,1),0, (2,1) \Va () (B1)

/92@(2,1)7 e 790(2,1)) H H(dﬂﬂ(z,j))-

(27j)€{(271) 7777 (Zvl)}\V2(7)

The expression at the right-hand side of inequality (B1) is the product of two functions
with different arguments. The first function has arguments z(; ;) with (1, j) € Vi() and
the second one (3 ;1) with (2, j') € Va(7). Integration of both sides in inequality (B1)
by these arguments yields inequality (10.11).

Relation (10.12) will be proved first for the product of the Wiener—Ito6 integrals of
two elementary functions. Let us consider two (elementary) functions f(x1,...,x;) and
g(x1,...,x;) given in the following form: Let some disjoint sets Ay, ..., Ay, p(As) < oo,
1 < s < M, be given together with some real numbers ¢(sq,...,s;) indexed with k-
tuples (s1,...,s), 1 <s; < M, 1 < j < k, such that the numbers s;,...,s; in a
k-tuple are all different. Put f(zi1,...,2x) = ¢(s1,...,5k) on the rectangles Ay, X

- x Ag, with edges As, indexed with the above k-tuples, and let f(zi1,...,2x) = 0
outside of these rectangles. Take similarly some disjoint sets By, ..., By, u(Bi) < oo,
1 <t < M’, and some real numbers d(t1,...,t;), indexed with [-tuples (t1,...,%),
1 <ty <M, 1<j <I such that the numbers t1,...,%; in an [-tuple are different.
Put g(x1,...,2;1) = d(t1,...,t;) on the rectangles B, x --- x By, with edges indexed
with the above introduced [-tuples, and let g(z1,...,2;) = 0 outside of these rectangles.

Let us take some small number £ > 0 and rewrite the above introduced functions

f(z1,...,xx) and g(z1,...,x;) with the help of this number € > 0 in the following way.
M(e)
Divide the sets Ay, ..., Ay to smaller sets Af,..., A5, U AS U A, in such a

way that all sets Af,..., A5, are disjoint, and u(Asg) < 5 1 <s< M( ). Similarly,
M’ (g) M’
take sets Bf, ... ’Bim(e)’ tU B = tU By, in such a way that all sets Bj, .. B?\/l’(e)
are disjoint, and u(Bf) < e, 1 <t < M’'(e). Beside this, let us also demand that
two sets AS and Bf, 1 < s < M(e), 1 <t < M'(e), are either disjoint or they agree.
Such a partition exists for a non-atomic measure p. (See the footnote about non-
atomic measures before formula (10.8).) The above defined functions f(x1,...,zx) and
g(x1,...,x;) can be rewritten by means of these new sets AS and Bj. Namely, let
f(x1,...,21) = c*(51,...,5;) on the rectangles A7 x --- x A with 1 < s; < M(e),
1 < j < k, with different indices s1, ..., sk, where ¢*(s1,...,sk) = ¢(p1,...,px) With
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those indices (p1,...,px) for which A5 x --- x A7 C A, x--- x Ay, . The function
f disappears outside of these rectangles. The function g(z1,...,z;) can be written
similarly in the form g(z1,...,2;) = d*(t1,...,t;) on the rectangles Bf x --- x B, with
1<ty <M'(e),1<j <I, and different indices, t1,..., ;. Beside this, the function g
disappears outside of these rectangles.

The above representation of the functions f and g through a parameter ¢ is useful,
since it enables us to give a good asymptotic formula for the product k!Z,, 1.(f)I!Z,,.1(g)
which yields the diagram formula for the product of Wiener—Ito integrals of elementary
functions with the help of a limiting procedure € — 0.

Fix a small number € > 0, take the representation of the functions f and g with its
help, and write

M2, (DUZui) = Y Z,(e) (B2)

v€ET(k,1)

Y
Z,(e) = 3 ¢ (st SO (s ) (AS,) i (AS ) o (B, - i (BE,),

(B3)
where T'(k,[) denotes the class of diagrams introduced before the formulation of The-
orem 10.2A, and >_7 denotes summation for such k + I-tuples (si,...,8k,t1,...,t),

1<s; <M(),1<j<k and1l <ty <Mf(e),1<j <I for which Aij = B;fj/ if
((1,4),(2,5") € E(7), Le. if it is an edge of v, and otherwise all sets A7 and Bf, are
disjoint. (This sum also depends on ¢.) In the case of an empty sum Z,(g) equals zero.

For all v € I'(k, 1) the expression Z, will be written in the form

Zy(e) = 2ZM(e)+ 2P (e), ~eT(k,1), (B4)
with ,
Z,(yl)(é“) = Z 66(81, Ceey Sk)dg(tl, . ,tl>
I wwa) I ww(s)
J (LHEVI () i (2,0)€Va () (B5)
1T 1(AS)

j: (Lj)E{(171)7“‘7(1’k)}\vl(7)

and

Z§2)(6) = 2705(81, ey SEp)dE(t, .. )
I owwas) 11 ww(B)

J: (L,3)eVa(y) 3 (2,5)€Va(v)

[ 11 v (42,) 11 v (55,

7: (LHe{(1,1),....,(LE)}\Vi(7) 3 (2,5 €{(2,1),.,(2,) ]\ eVa ()
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- I1 (A, (B6)

.j: (l7j)€{(171)7"'7(17k)}\vl (7)

where Vi () and Va(7) (introduced before formula (10.9) during the preparation to the
formulation of Theorem 10.2A) are the sets of vertices in the first and second row of
the diagram ~ from which no edge starts.

I claim that there is some constant C' > 0 not depending on ¢ such that
2
E (\7|!Zum|(Fﬂ,) - Z§1>(s)) < Ce forall v € D(k,1) (B7)

with the Wiener-It6 integral with the kernel function F, defined in (10.9), (10.9a) and
(10.10), and

2
E (Z@(g)) < Cc forall v € T'(k, ). (BS)

Relations (B7) and (B8) imply relation (10.12) if f and g are elementary functions.
Indeed, they imply that

lim | V' Z, 1y (Fy) — Zy ()|, = 0 for all v € T'(k, 1),

and this relation together with (B2) yield relation (10.12) with the help of a limiting
procedure € — 0.

To prove relation (B7) let us introduce the function

F2(2(1,5), T2, (1L,7) € Vi(y), (2,5) € Va(v))
=Fy (x5, 2@, (1,7) € Vi(v), (2,5) € Va(v))
for z(y ;) € A, for all (1,7) € Vi(7),

and x(2 ;1) € Btgj,, for all (2,j) € Va(v)),

if all sets A , (1,7) € Vi(y), and Bi,, (2,7") € Va(v) in the above formula are different.
(As a consequence, they are disjoint.) Put

FX(z(1,5), T2, (1,5) € Vi(v), (2,5") € Va(v)) =0 otherwise.

The function F is elementary, and a comparison of its definition with relation (B5)
and the definition of the function F, yield that

Z5(e) = Y11 Zpu 1y (F).- (B9)
The function F¥ slightly differs from F,, since the function F, need not disappear in
all such points (z(1 j), 72,51, (1,7) € Vi(7), (2,5") € Va(y)) for which there is some

pair (j,j’) such that the relations z(; ;) € A‘;j and (o j) € ij/ hold with such sets for
which A7 = By, while FZ must be zero in such points. On the other hand, in the
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case |y| = max(k,l) —min(k, 1), i.e. if one of the sets V1(vy) or Va(v) is empty, F, = FZ,

1
Z3Y = Y1 Zp0 1 (

It will be shown that in the case |y| = max(k,l) — min(k,l) > 0 the set where
F, # FZ is small, and this implies relation (B7).
M(e) M’ (e)
Let us define the sets A = |J A% and B = |J B{. These sets A and B do not
t=1

s=1

depend on the parameter €. Beside this u(A) < oo, and p(B) < co. Define for all pairs
(Jo, 7o) such that (1,70) € Vi(y), (2,74}) € Va(y) the set

F,), and relation (B7) clearly holds for such diagrams ~.

D(]O?J(/J) = {(x(l,j)vx(Q,j’)a (Lj) € Vl(ﬁ)/)v (27]/) € VZ(P)/))
T(1,jo) € Aijo, T(1,55) € ij{) for some s, and t;; such that A‘;jo = B}

v
0

x(1,5) € Aforall (1,7) € Vi(y), and z(2 ;) € B for all (2,5') € Va(v)}.

Introduce the notation 27 = (x(1;),7@2,;), (1,7) € Vi(v), (2,5) € Va(y)) and put

ko1
D, = {z7: F5(27) # F,(z7)}. The relation D, C 'U1 'U1 D(jo, ji) holds, since if
j=1lj'=
Fs(27) # F,(x7) for some vector 27, then it has some coordinates (1,j0) € Vi(v) and
(2,40) € Va(y) such that z(; ;) € AZ, and x5 € ij(l) with some sets A = ijé,
and the relation in the last line of the definition of D(jo, j) must also hold for this

vector x7, since otherwise F,(z,) = 0 = F>(z,). I claim that there is some constant
C'1 such that

plViOHV2(D (g, 50)) < Cre  for all sets D(jo, j4),

where p!ViMI+IV21 denotes the direct product of the measure p on some copies of the

original space (X, X) indexed by (1,j) € Vi(7) and (2, ') € Va(v). To see this relation

one has to observe that > ,u(AijO ),u(ij, ) < Zg,u(AijO) = epu(A). Thus the set
Az :ngé 0

D(jo, j}) can be covered by the direct product of a set whose p measure is not greater

than ex(A) and of a rectangle whose edges are either the set A or the set B.
The above relations imply that

M|V1(7)|+|V2(7)|(D7) < Coe (B10)

with some constant Cy > 0.

Relation (B9), estimate (B10), the property c¢) formulated in Theorem 10.1 for
Wiener-1It6 integrals and the observation that the function F., = F.(f, g) is bounded in
supremum norm if f and g are elementary functions imply the inequality

2 2
E (11120 (Fy) = Z0(0)) = WPE (Zy o) (By = F£)? < WIF, = FEI3
< KM|V1(7)|+|V2(’Y)|(D7) < Ce.
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This means that relation (B7) holds.
2
To prove relation (B8) write £ <Z§2)(e)> in the following form:

(2) ) E(= = (T ny
E(Z Z Z (1, 8K)d (t1, ..y t)C (81, ..., SK)d (1, ..., 1)) (B11)
EU(Sl,...,Sk,tl,...,tl,gl,...,gk,fh...,tl)
with

U(Sl,...,Sk,tl,...,tl,gl,...,gk,tl,...,tl)

= I wwa) TII wwB)

J: (L) EVA(7) 37 (2,5")€Va(y)
[T wwas) I wwB)
7 (1,7)€Vi(v) 7 (2,7)€EV2(y)
| v (A2) 11 o (B2
g (L,5)e{(1, 1 > (LE) VL (7y) 3 (2,5 €{(2,1),..,(2,) \EVa(y)

- I 45

.j: (17j)e{(171)7”'7(17k)}\vl('7)

11 i (AZ) 11 ww (B;,)

70 (L) e{(1,1),....,(L,E) \Vi(v) 7 (2,7)€{(2,1),...,(2,D)}\eVa(y)

- 11 M(Ai,.)} : (B12)
7 (LHE{(1,1),..,(LE) N\ Vi (7)
The double sum ».7 37 in (B11) has to be understood in the following way. The first
summation is taken for vectors (s1, ..., Sk, t1,...,t;), and these vectors take such values
which were defined in >_” in formula (B3). The second summation is taken for vectors
(81,---,8k,t1,...,1;), and again with values defined in the summation >_".

Relation (B8) will be proved by means of some estimates about the expectation
of the above defined random variable U(-) which will be presented in the following
Lemma B. Before their formulation I introduce the following Properties A and B.

Property A. A sequence si,...,85,t1,...,t1,81,...,8%,t1,...,t;, with elements 1 <
$;, 87 < M(e), for 1 < 5,7 <k, and 1 < tj,ty < M'(e) for 1 < 4,7 <1, satisfies
Property A (depending on a fized diagram ~ and number € > 0) if the sequences of sets
{45, B7,, (1)) € Vi(7),(2,7") € Va(v)} and {45, Bf ,(1,]) € Vi(7),(2,]) € Va(7)}
agree. (Here we say that two sequences agree if they contain the same elements in a
possibly different order.)

Property B. A sequence si,...,Sk,t1,...,t1,81,...,8k,t1,...,t;, with elements 1 <
$;, 87 < M(e), for 1 < 3,7 <k, and 1 < tj,ty < M'(e) for 1 < j.7 <1, satisfies
Property B (depending on a fized diagram v and number € > 0) if the sequences of sets

{45, Br,, (L) € {1, 1), ... .(LE\Vi(y), (2,5) €{(2,1),.... (2D} \ Va(1)}
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and
{45, B, (L)) € {(L1),...,(LE\Vi(9), (2,7) € {(2,1),.... (2D} \ Va(7)}

have at least one common element.

(In the above definitions two sets A5 and Bf are identified if AS = B;.)
Now I formulate the following

Lemma B. Let us consider the function U(-) introduced in formula (B12). Assume that
its arquments 1, ..., 8k, t1,...,t1,81,...,8k,t1,...,1; are chosen in such a way that the
function U(-) with these arguments appears in the double sum >_" >"7 in formula (B11),
ie. A3 = Bty if ((1,4),(2,5") € E(v), otherwise all sets A5, and Bi, are disjoint,

and an analogous statement holds if the coordinates s1, ..., sk, t1,...,t; are replaced by
51y...,8k,t1,...,1;. Then
EU(Sl,...,Sk,tl,...,tl,§1,...,§k,£1,...,fl) =0 (Bl?))

if the sequence of the arguments in U(-) does not satisfies either Property A or Prop-
erty B.

If the sequence of the arguments in U(-) satisfies both Property A and Property B,
then

‘EU(Sl,. . .,Sk,tl,. . ~;tl7§1; .. .,gk,fl,. .. ,tl)’
/
< Ce [T m(AS (A )l B5, ) u(B5)

with some appropriate constant C = C(k,l) > 0 depending only on the number of
variables k and | of the functions f and g. The prime in the product H/ at the right-
hand side of (B14) means that in this product the measure p of those sets AS, . As
ij, and ij/ are considered, whose indices are listed among the arguments sj, 55,15

(B14)

or ty of U(-), and the measure p of each such set appears exactly once. (This means
e.g. that if Aij = ij, or Aij = B¢ for some indices j and j' or 7, then one of the
J
terms between u(Ag;) and M(ij,) or p(B; ) is omitted from the product. For the sake
J

of definitiveness let us preserve the set u(A35)) in such a case.)

The proof of Lemma B. Let us prove first relation (B13). It will be exploited that for dis-
joint sets the random variables uw (As) and pyw (B;) are independent, and this provides
a good factorization of the expectation of certain products. Let us carry out the multipli-
cations in the definition of U(+) in formula (B12), and show that each product obtained
in such a way has zero expectation. If Property A does not hold for the arguments
of U(-), and beside this the arguments si,..., 8k, t1,...,t1,81,...,8%,t1,...,1 satisfy
the remaining conditions of Lemma B, then each product we consider contains a factor
pw (A3, ), (1,Jo) € Vi(y), which is independent of all those terms in this product which
are in the following list: /LW(A;,) with some j # jo, 1 < j <k, or MW(ij/), 1<j5<I,
or pw (A5.) with (1,7) € Vi(v), or pJW(BfJ_,) with (2,7) € Va(v). We will show with the
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help of this property that the expectation of each term has a factorization with a factor
either of the form E,uW(A‘;jO) =0or EuW(AijO )3 = 0, hence it equals zero. Indeed, al-
though the above properties do not exclude the appearance of such a pair of arguments
Ar,, (L7) e {(L1),...,(L,k)\Vi(y) and BE,,, (2,7) € {(2,1),...,(2,0)}\ Va(y) in the
product for which A7, = B, = Ag, » and in such a case a term of the form E NW(AEJ-O)
will not appear in the product, but if this happens, then the product contains a factor
of the form E MW(A;O )3 = 0. Hence an appropriate factorization of each term of EU(-)

contains either a factor of the form E/LW(A;_O) =0or E,uW(AijO )3 =0if U(-) does not
satisfy Property A.

To finish the proof of relation (B13) it is enough consider the case when the ar-
guments of U(-) satisfy Property A, but they do not satisfy Property B. The validity
of Property A implies that the sets {A{ ,j € Vi} U {ij,, j" € Vo} and {A5, j €
Vi}u{B; , j' € Va} agree. The conditions of Lemma B also imply that the elements of
these sets are such sets which are disjoint of the sets A , ij, , A5 and Bti_/ with indices
(1,5), (1,7) € {(1,1),.... (LE)}\ Va(y) and (2,5),(2,7) € {(2,1),..., (2,D)} \ Va(). If
Property B does not hold, then the latter class of sets can be divided into two sub-
classes in such a way that the elements in different subclasses are disjoint. The first
subclass consists of the sets A‘;j and B;fj,, and the second one of the sets AgJ_ and

ij_l with indices such that (1,75),(1,7) € {(1,1),...,(1,k)} \ Vi(y) and (2,5'),(2,7) €
{(2,1),...,(2,0)} \ Va(y). These facts imply that EU(-) has a factorization, which con-
tains the term

E{ 11 pw (AZ) 11 nw (By,)

7 (L7)e{(1,1),..,(L,E) ]\ Vi () 3’ (2,5)e{(2,1),..,(2,)}\e€Va(v)

- 1 uz)| =o.

j: (1,j)€{(1,1) """ (17k)}\vl(7)

hence relation (B13) holds also in this case. The last expression has zero expec-
tation, since if we take such pairs Aij,Bf,. for the sets appearing in it for which
J

that ((1,7),(2,7")) € E(y), i.e. these vertices are connected with an edge of 7, then
Aij = B; in a pair, and elements in different pairs are disjoint. This observation al-

J
lows a factorization in the product whose expectation is taken, and then the identity
Epw (A7) ,UW(ij,) = p(Ag,) implies the desired identity.

To prove relation (B14) if the arguments of the function U(-) satisfy both Prop-
erties A and B consider the expression (B12) which defines U(-), carry out the term
by term multiplication between the two differences at the end of this formula, take ex-
pectation for each term of the sum obtained in such a way, and factorize them. Since
Epw (A)? = u(A), BEpw (A)* = 3u(A)? for all sets A € X, u(A) < oo, some calculation
shows that each term can be expressed as constant times a product whose elements
are those probabilities u(AS) and p(Bg) or their square which appear at the right-hand
side of (B14). Moreover, since the arguments of U(-) satisfy Property B, there will be
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at least one term of the form pu(A%)? in this product. Since u(A5)? < eu(AZ), these
calculations provide formula (B14). Lemma B is proved.

Relation (B11) implies that

E( (2) ) <KZ Z |EU 81,...,Sk,tl,...,tl,gl,...,5@{1,...,{[)‘ (B15)

with some appropriate K > 0. By Lemma B it is enough to sum up only for such terms

U(-) in (B15) whose arguments satisfy both Properties A and B. Moreover, each such

term can be bounded by means of inequality (B14). Let us list the sets A7 , A% , Bi,, B,
J

appearing in the upper bound at the right-hand side of (B14) for all functions U(-)
taking part in the sum at the right-hand side of (B15). Since all fixed sequences of
the sets AS and Bj appear less than C(k, ) times with an appropriate constant C(k, 1)

M(g)

depending only on the order k and [ of the integrals we are considering, and ) pu(A$)+
s=1

M'(e)

> w(B§) = p(A) + u(B) < oo, the above relations imply that

t=1

5 k+l '
E(2(e)) < Cie Y (u(A) + u(B)Y < Ce.
j=1

Hence relation (B8) holds.

To prove Theorem 10.2A in the general case take for all pairs of functions f € H,
and g € H,; two sequences of elementary functions f, € H,x and g, € H,;, n =
1,2,..., such that || f,, — f|l2 — 0 and ||gn, — g]]2 — 0 as n — oco. Let us introduce the
notation F,(f,g) = F, if the function F, is defined with the help of the functions f
and g. It is enough to show that

E\RZ, (/) Z,:(9) — K\ Z, 1 (fo)!'Z,,1(gn)] — 0 as n — oo, (B16)
and

VE ‘Zu N (EFy(f9)) — Z/L,|’7|(F’Y(fnugn))| —0 asn—oo forall y€eI'(k1),
(B17)
since then a simple limiting procedure n — oo, and the already proved part of the
theorem for Wiener—Ito integrals of elementary functions imply Theorem 10.2A.

To prove relation (B16) write

E\R\Z, p, k()11 Z,1(9) — K Z, k(fu) 1V Z,1(gn)|
S KU (E|Zux(f)Zui(g — gn)| + E|Zu i (f = fn)Z01(9n)) |

< B ((BZ2(0) " (BZ2 109 = 9))* + (BZ2,(f = 1) (BZE4(90))')
< RIY2 (I fl12llg = gallz + 11 = Fall2llgnlz)
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Relation (B16) follows from this inequality with a limiting procedure n — oc.
To prove relation (B17) write

|7|'E |Zu |’y\ <f7 )) M |’Y\< (fnagn))‘
< |7|'E |Zu |’Y| (f?g gn ‘ + h/"El |’Y‘ (f - fn7gn))|

< I (EZ2 (P (g - 90)) + ol (BZ2 1 (B (F = Funa)
< (W2 (1 (£ = gl + 15 (F = Fang)l)

1/2

and observe that by relation (10.11) ||Fy(f,g9 — gn)ll2 < | fll2llg — gnll2, and ||F,(f —
frsgn)lle < |If — full2llgnll2- Hence

’7|‘E‘Z,u |’y| (f? )) M|’Y|( ’Y(fnvgn))|
< (VI (I l2llg = gnllz + 1f = fall2llgnll2) -

The last inequality implies relation (B17) with a limiting procedure n — oo. Theorem
10.2A is proved.

Appendix C. The proof of some results about Wiener—Ito integrals.

First I prove Itd’s formula about multiple Wiener—It6 integrals (Theorem 10.3). The
proof is based on the diagram formula for Wiener—Ito6 integrals and a recursive formula
about Hermite polynomials proved in Proposition C. In Proposition C2 I present the
proof of another important property of Hermite polynomials. This result states that
the class of all Hermite polynomials is a complete orthogonal system in an appropriate
Hilbert space. It is needed in the proof of Theorem 10.5 about the isomorphism of
Fock spaces to the Hilbert space generated by Wiener—Ito integrals. At the end of
Appendix C the proof of Theorem 10.4, a limit theorem about degenerated U-statistics
is given.

Proposition C about some properties of Hermite polynomials. The functions

2 dk 2
Hp(z) = (=1)ke” /2@6*90 2 k=0,1,2,... (C1)

are the Hermite polynomials with leading coefficient 1, i.e. Hy(x) is a polynomial of
order k with leading coefficient 1 such that

/Oo Hio(2) Hi () \/1276_902/2 de=0 ifk 41, (C2)

and
/ H(x *902/2 dr =k! forallk=0,1,2.... (C2')
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The recursive relation
Hy(z) =xHp_1(x) — (k — 1)Hp_2(x) (C3)

holds for all k =1,2,....

Remark. It is more convenient to consider relation (C3) valid also in the case kK = 1. In
this case Hq(x) = z, Ho(x) = 1, and relation holds with an arbitrary function H_;(z).

Proof of Proposition C. 1t is clear from formula (C1) that H(x) is a polynomial of order
k with leading coefficient 1. Take [ > k, and write by means of integration by parts

/ Z (o) Hife) =

e /2 dx—/ —Hk )(— 1)ld—l6_12/2 dx
dat

L d Ry

Successive partial integration together with the identity (]Z‘E—kkH k(z) = k! yield that

k
—a:2/2 — I — —x2/2
/ Hy(z)H(z )\/2_ dx = k;/ \/ﬂ —DR e dz.

The last relation supplies formulas (C2) and (C2").

To prove relation (C3) observe that Hy(z) — xHyk_1(z) is a polynomial of order
k — 2. (The term x*~! is missing from this expression. Indeed, if k is an even number,
then the polynomial Hy(x) —xHy_1(z) is an even function, and it does not contain the
term z¥~! with an odd exponent k£ — 1. Similar argument holds if the number k is odd.)
Beside this, it is orthogonal (with respect to the standard normal distribution) to all
Hermite polynomials H;(z) with 0 <1 < k — 3. Hence Hy(x) — xHy_1(z) = CHy_2(x)
with some constant C' to be determined.

Multiply both sides of the last identity with Hy_o(z) and integrate them with
respect to the standard normal distribution. Apply the orthogonality of the polynomials
Hy(z) and Hy_o(x), and observe that the identity

1 2 1 2
/Hk_l(ac)ka_g(m) \/ﬁe*m 12 dx = /H,%l(m) \/ﬁe*m 12de = (k—1)!

holds. (In this calculation we have exploited that Hy_1(x) is orthogonal to Hy_1(z) —
xHy_o(x), because the order of the latter polynomial is less than £ —1.) In such a way
we get the identity —(k — 1)! = C(k — 2)! for the constant C' in the last identity, and
this implies relation (C3).

m

Proof of Ité’s formula for multiple Wiener—Ito integrals. Let K = ) k,, the sum of the
p=1

order of the Hermite polynomials, denote the order of the expression in relation (10.20).
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Formula (10.20) clearly holds for expressions of order K = 1. It will be proved in the
general case by means of induction with respect to the order K.

In the proof the functions f(x1) = 1 (z1) and

Kl—l m Kpfl
9@, v, )= [ ) 1T 1T en@)
j=1 p=2j=Kp—1

will be introduced and the product Z, 1 (f)(Km, — 1)!Z, k,,—1(g) will be calculated by

means of the diagram formula. (The same notation is applied as in Theorem 10.3.
Ki—1
In particular, K = K,,, and in the case K; = 1 the convention ]1_[ p1(zj) = 11is
j=1
applied.) In the application of the diagram formula diagrams with two rows appear.
The first row of these diagrams contains the vertex (1,1) and the second row contains
the vertices (2,1),...,(2,K,, —1). It is useful to divide the diagrams to three disjoint
classes. The first class contains only the diagram vy without any edges. The second class
'y consists of those diagrams which have an edge of the form ((1,1), (2, 7)) with some
1 <j <k; —1, and the third class I'5 is the set of those diagrams which have an edge
of the form ((1,1),(2,7)) with some k; < j < K,, — 1. Because of the orthogonality
of the functions ¢, for different indices s F, = 0 and Z,, g,,—2(Fy) = 0 for v € T's.
The class I'; contains k; — 1 diagrams. Let us consider a diagram ~ from this class
with an edge ((1,1),(2,j0)), 1 < j < ki — 1. We have for such a diagram F, =

m Kp—1
I o1(z2,;) [T II  wp(z(2;)), and by our inductive hypothesis (K, —
]6{135K171}\{]0} p:2j:Kpfl

2)!Z/L,Km—2(F7) = Hk1—2(771) H Hkp(np)' Finally
p=2

m Kp
Kl Zy k., (Fry) = Km!Z, K, H H op(T5)
:1 J Kp 1+1

for the diagram ~y without any edge.
Our inductive hypothesis also imply that

Zyun () (K = 1) Zy k6, -1(9) = mHe,—1(m) [ [ He, (np)-

Let us express K,,!7Z, g, (Fy,) by applying the diagram formula in the above ex-
ample, and express each term appearing in this identity by means of the above written
relations. This calculation together with the observation |I';| = k1 — 1 yield the identity

m K
Kn!Z, k., H H Sop(xj> = Km!Z/th(Fvo)
p:1 p l+1
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= Zu 1 (f)(Km — D2, k,,-1(9) — Z (Km = 2)!Z, K, —2(F)

= Hy,—1(m) [ [ He, (np) — (k1 — 1) Hy, —2(m) [ | He, (np)
= [mHg,—1(m) = (k1 = ) Hg, —2(m)] [ | Hx, (1p)- (C4)
p=2

On the other hand, my Hy, —1(m ) — (k1 —1)Hy,—2(m1) = Hy, (1) by formula (C3). These
relations imply formula (10.20), i.e. It6’s formula.

I present the proof of another important property of the Hermite polynomials in
the following Proposition C2.

Proposition C2 on the completeness of the orthogonal system of Hermite
polynomials. The Hermite polynomials Hy(z), k = 0,1,2,..., defined in formula
(C4) constitute a complete orthonormal system of in the Lo-space of the functions square
integrable with respect to the Gaussian measure \/%76_9”2/2 dx on the real line.

Proof of Proposition C2. Let us consider the orthogonal complement of the subspace
generated by the Hermite polynomials in the space of the square integrable functions
with respect to the measure \/%76_’”2/ 2dx. Tt is enough to prove that this orthogonal
completition contains only the identically zero function. Since the orthogonality of a
function to all polynomials of the form z*, k = 0,1,2,... is equivalent to the orthogo-
nality of this function to all Hermite polynomials Hy(z), k = 0,1,2,..., Proposition C2
can be reformulated in the following form:

If a function g(z) on the real line is such that

o 1
/ z*g(x) \/%e_”ﬂ/2 dr =0 forallk=0,1,2,... (Ch)

and

/ g*(z) \/12_71_6_:62/2 dx < 00, (C6)

then g(x) = 0 for almost all .
Given a function g(z) satisfying (C6) define the (finite) measure v,

Vg(A):/Ag(x)\/%e_mQ/zdx

on the measurable sets of the real line (because of relation (C6) the function g is also L;-
integrable with respect to the Gaussion measure, hence v, is a finite measure) together
with its Fourier transform 74(t) = [*_e"®v,(dx). First I show that Proposition C2
can be reduced to the following statement: If a function g satisfies both (C5) and (C6)
then 74(t) = 0 for all —oo <t < 0.
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Indeed, if there were a function g satisfying (C5) and (C6) which is not identically
zero, then the non-negative functions g™ (x) = max(0, g(z)) and g~ (z) = — min(0, g(x))
would be different. Then also their Fourier transform 7 +(t) and 7, (t) would be dif-
ferent, since a finite measure is uniquely determined by its Fourier transform. (This
statement is equivalent to an important result in probability theory, by which a prob-
ability measure on the real line is determined by its characteristic function.) But this
would mean that 7,(t) = 7+ (t) — 7, () # 0 for some ¢. Hence Proposition C2 can be

reduced to the above statement.

) . (k+1)
Since |e"* — 1 — (itz) — -+ — (Zt,j) < |t(3;€|+$; for all real numbers ¢, z and integer
k=1,2,... we may write because of relation (C5)

17, (1) = '/o; (eiw (i) — e — (itlj)k> (@) 12 g

Vo
0 |t|(k+1)

1 2
—z“/2
—c dx
| V2T
forall k = 1,2,... and real number ¢ if the function g satisfies relation (C5). If it satisfies
both relation (C5) and (C6), then from the last relation and the Schwarz inequality

t12(k+1) 00 ]
|’;g(t)|2 < const. H—/ |x|2(k-|-1) e“”2/2 L

((k+ 1)1? V2T
MQ(kJrl)
= const. —————1-3-5---(2k+ 1)
(k+ 1)
for all real number t and integer £ = 1,2,.... Simple calculation shows that the right-

hand side of the last estimate tends to zero as k — oo. This implies that 74(t) = 0 for
all ¢, and Proposition C2 holds.

I finish Appendix C with the proof of Theorem 10.4, a limit theorem about a
sequence of normalized degenerate U-statistics. It is based on an appropriate represen-
tation of the U-statistics by means of multiple random integrals which makes possible
to carry out an appropriate limiting procedure.

Proof of Theorem 10.4. For all n = 1,2,..., the normalized degenerate U-statistics
n~k/2[, 1.(f) can be written in the form

n_k/zk!lnyk(f) :nk/z/ flay, . . zi)pn(dey) ..o (doy)

= nk/Q/ f(xy, .. zp)(un(dey) — p(dzy)) ... (pn(dzg) — p(dzy)),

(C7)
where i, is the empirical distribution function of the sequence £y, . . ., &, defined in (4.5),
and the prime in f/ denotes that the diagonals, i.e. the points x = (z1,...,x) such

that z; = x; for some pairs of indices 1 < 7,5 < k, j # j’, are omitted from the
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domain of integration. The second identity in relation (C7) can be justified by means
of the identity

/ flz1, .. zk) (un(der) — p(dzy)) ... (pn(dag) — p(dey)) — In g (f)

- 3 <—1)'V'/f(xl,..',xwr[u(da:j) [ n(dz) =0.

V:Ve{l,.. k}, |V|>1 JjEV je{l,...k\V
(C8)

This identity holds for a function f canonical with respect to a non-atomic measure
i, because each term in the sum at the right-hand side of (C8) equals zero. Indeed,
the integral of a canonical function f with respect to pu(dx;) with some index j € V
equals zero for all fixed values x1,...,2;-1,%j41,...,2%. The non-atomic property of
the measure p was needed to guarantee that this integral equals zero also in the case
when the diagonals are omitted from the domain of integration.

We would like to derive Theorem 10.4 from relation (C7) by means of an appropriate
limiting procedure which exploits the convergence of the random fields n'/2(ju, (A) —
w(A)), A € X, to a Gaussian field v(A4), A € X, as n — oco. But some problems arise
if we want to carry out such a program, because the fields n'/ 2(py, — p) converge to a
non white noise type Gaussian field. The limit we get is similar to a Wiener bridge on
the real line. Hence a relation between Wiener processes and Wiener bridges suggests
to write the following version of formula (C7).

Let us take a standard Gaussian random variable 7, independent of the random
sequence &1, &a, . ... For a canonical function f the following version of (C7) holds.

2R L (f) = () (C9)
with
L) = [ ) [Vl () — o)) + o)
o V(e (day) = p(dey)) +np(day)] -

This relation can be seen similarly to (C7).

(C10)

The random measures n'/?(u, — ) + nu converge to a white noise with reference
measure p. Hence Theorem 10.4 can be proved by means of formulas (C9) and (C10)
with the help of an appropriate limiting procedure. More explicitly, I claim that the
following slightly more general result holds. The expressions J], ; (f) introduced in (C10)
converge in distribution to the Wiener—Ito integral k!Z, 1 (f) as n — oo for all functions
f square integrable with respect to the product measure p*. This result also holds
for non-canonical functions f. This limit theorem together with relation (C9) imply
Theorem 10.4.

The convergence of the random variables J;, ; (f) defined in (C10) to the Wiener-It6

integral k!Z, 1.(f) can be easily checked for elementary functions f € ﬂu,k- Indeed, if
A1, ..., Ay are disjoint sets with p(As) < 0o, then the multi-dimensional central limit
theorem implies that the random vectors {v/n((p,(As) — u(As)) +nu(4s), 1 < s < M}
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converge in distribution to the random vector {(uw(4s),1 < s < M}, ie. to a set
of independent normal random variables (s, E(; = 0, 1 < s < M, with variance
E(? = u(As) as n — oo. The definition of the elementary functions given in (10.2)
shows that this central limit theorem implies the demanded convergence of the sequence
gy x(f) to k' Z,, k(f) for elementary functions.

To show the convergence of the sequence JT’l, w(f) to k!Z, 1(f) in the general case,
take for any function f € H,,  a sequence of elementary functions fx € H, x such that
I = fulls = 0 as N = 0c. Then E(Zu(f) = Zun(fn))? = B(Zyalf — fir))? — 0 as
N — oo by Property ¢) in Theorem 10.1. Hence the already proved part of the theorem
implies that there exists some sequence of positive integers, N(n), n = 1,2,..., in
such a way that N(n) — oo, and the sequence J), ; (fn(n)) converges to k!Z,, x(f) in
distribution as n — oo. Thus to complete the proof of Theorem 10.4 it is enough to

show that E(J) (fxm) — T (F)2 = BT (fam) — £)2 = 0 as n — oc.
It is enough to show that

E(J,x(£))? < CIflz for all f € Hyup (C11)

with a constant C' = (), depending only on the order k of the function f and to apply
inequality (C11) for the functions fy(,) — f. Relation (C11) is a relatively simple
consequence of Corollary 1 of Theorem 9.4.
Indeed,
k() = Z nk_W"V“Jn,IVI(fV)

Vc{l,....k}
with

fv(zj, jeV)= /f(acl,...,:r:k) H p(daxjr)

Jre{l,.. . k}\V

and the random integral .J,, 1 (-) defined in (4.8), hence

E( ()P <28 Y (VIPER VD B2y (fv). (C12)

Inequality |[fv]le < |[/f]l2 holds for all sets V' C {1,...,k}, hence an application of
Corollary 1 of Theorem (9.4) to all random integrals .J,, |v|(f) supplies (C12).

The above proof also yields the following slight generalization of Theorem 10.4. Let
us consider a finite sequence of functions f; € H,, ;, 1 < j < k, canonical with respect to
a non-atomic probability measure y. The vectors {n=7/21, ;(f;),1 < j < k}, consisting
of normalized degenerate U-statistics defined with the help of a sequence of independent
p-distributed random variables converge to the random vector {Z,, ;(f;),1 <j <k} in
distribution as n — oo. This result together with Theorem 9.4 imply the following limit
theorem about multiple random integrals J, 1 (f).

Theorem 10.4’. Limit theorem about multiple random integrals with respect
to normalized empirical measures. Let a sequence of independent and identically
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distributed random variables &1,&2, ... be given with some non-atomic distribution p on
a measurable space (X, X) together with a function f(x1,...,xx) on the k-fold product
(X* XF) of the space (X, X) such that

/f2($1,---,$k)u(dx1)...,u(dmk) < 00.

Let us consider for allm = 1,2,... the random integrals J, 1 (f) of order k defined in
formulas (4.5) and (4.8) with the help of the empirical distribution , of the sequence
&1,..., & and the function f. These random integrals Jy 1 (f) converge in distribution,
as n — o0, to the following sum U(f) of multiple Wiener—Ité integrals:

Uify= Y. CkV)Zuv(fv)

V{l,...k }
= Z |V|' /fv zj,jeV) H pw (dxj),
Vc{l,...,k} JEV

where the functions fy(x;5 € V),V C {1,...,k}, are those functions defined in formula
(9.2) which appear in the Hoeffding decomposition of the function f(x1,...,x), the con-
stants C(k, V') are the limits appearing in the limit relation lim C(n,k,V) = C(k,V)

satisfied by the coefficients C(n,k, V) in formula (9.9), and pw is a white noise with
reference measure .

An essential step of the proof of Theorem 10.4 was the reduction of the case of
general kernel functions to the case of elementary kernel functions. Let me make some
comments about it.

It would be simple to make such a reduction if we had a good approximation of a
canonical function with such elementary functions which are alsso canonical. But it is
very hard to find such an approximation. To overcome this difficulty we reduced the
proof of Theoerem 10.4 to a modified version of this result, where instead of a limit
theorem for degenerate U-statistics a limit theorem for the random variables J; , (f)
introduced in formula (C10) has to be proved. In the proof of such a version we could
apply the approximation of a general kernel function with not necessarily canonical
elementary functions. Theorem 9.4 helped us to work with such an approximation.
Another natural way to overcome the above difficulty is to apply a Poissonian approxi-
mation of the normalized empirical measure. Such an approach was applied in [14] and
in [30], where some generalizations of Theorem 10.4 were proved.
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Appendix D. The proof of Theorem 14.3.

A result about the comparison of U-statistics and decoupled U -statistics.

The proof of Theorem 14.3. It will be simpler to formulate and prove a generalized
version of Theorem 14.3 where such generalized U-statistics are considered in which
different kernel functions may appear in each term of the sum. More explicitly, let
¢ = {(n,k) denote the set of all such sequences I = (ly,...,l;) of integers of length k
for which 1 < ; < n, 1 < j < k. To define generalized U-statistics let us fix a set
of functions {f;, 1. (21,...,2x), (I1,...,lx) € £} which map the space (X%, X*) to a
separable Banach space B, and have the property fi, . i (z1,...,25) =0if [; =1 for
some indices j # j’. (The last condition corresponds to that property of U-statistics
that the diagonals are omitted from the summation in their definition.) Let us denote
this set of functions by f(¢) and define, similarly to the U-statistics and decoupled
U-statistics the generalized U-statistics and generalized decoupled U-statistics by the
formulas

Lw(f(0) = - > Sirrtn (Gyse oo, E0) (D1)

"Ly l): 1K1 <n, j=1,..,k

and

La(F(0) = o > foa (609) o2)

T (lnyenl): 1<0<n, j=1,...,k

(with the same independent random variables & and fl(j ), 1<1<n,1<j<k, asin
the definition of the original U-statistics and decoupled U-statistics.)

The following generalization of relation (14.12) will be proved.

P (| L (@) > u) < A(R)P (| ok (f(O)] > ~(k)u) (14.12d)

with some constants A(k) > 0 and y(k) > 0 depending only on the order k of these
generalized U-statistics.

We concentrate mainly on the proof of the generalization (14.12d) of relation
(14.12). Formula (14.13) is a relatively simple consequence of it. Formula (14.12d)
will be proved by means of an inductive procedure which works only in this more gen-
eral setting. It will be derived from the following statement.

Let us take two independent copies fil), e ,&(11) and §§2), cee fﬁ) of our original
sequence of random variables &1, ...,&,, and introduce for all sets V' C {1,...,k} the

function ay(j), 1 < j <k, defined as ay(j) =1if j € V and ay(j) =2 1if j ¢ V. Let
us define with their help the following version of decoupled U-statistics

Luv (f(0) = - > firotn (€000, gl ™)

(l1 ..... lk): 1§lj§n, j:1 ..... k
forall V- C {1,...,k}. (D3)
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The following inequality will be proved: There are some constants C; > 0 and
Dy, > 0 depending only on the order k of the generalized U-statistic I,, x(f(¢)) such
that for all numbers u > 0

P ([ In k()N > u) < > Co P (Di | L e,y (F(O)] > w). (D4)

Vc{l,.. k},1<|V|<k—1

Here |V denotes the cardinality of the set V, and the condition 1 < |V| < k —1 in
the summation of formula (D4) means that the sets V. = () and V = {1,...,k} are
omitted from the summation, i.e. the terms where either ay (j) =1 or ay(j ) = 2 for all
1 < j < k are not considered. Formula (14.12d) can be derived from formula (D4) by
means of an inductive argument. The hard part of the problem is to prove formula (D4).
To do this first the following simple lemma will be proved.

Lemma D1. Let & and n be two independent and identically distributed random vari-
ables taking values in a separable Banach space B. Then

P <\§+7]! > gu) > P(|¢| >u)  for all u> 0.

Proof of Lemma D1. Let &, n and { be three independent, identically distributed random
variables taking values in B. Then

P+ >30) = p (len> 2u) + P (ler > 20) 2 (1= 0+ 0l > 3u)
> P(|§+n+E&+C=n— (> 2u) = P(¢] > u).

To prove formula (D4) we introduce the random variable

Tn,k(f(g)) = % Z fl17 Ll (5(81)7 o (Sk)) Z In,kz,V

(L1sesli), (51500588): vcdl,..,
1<l;<n, s;=1 or s;=2, j=1,...,k,

(D5)
Observe that the random variables I, x(f(¢)), Inko(f(¢)) and I, (1,. k3 (f(£)) are
identically distributed, and the last two random variables are independent of each other.
Hence Lemma D1 yields that

PULAGON > 1) =3P (ILsa7O) + Tty ()] > F)

=sp | |Tao) - Y Lok (FO)| > Su

V:VC{l,....k}, 1<|V|<k—1
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< 3P(3- 2Tk (F(O)]] > u) (D6)

+ > 3PB- 2P L g vy (F(O)] > ).
V:VC{l,. ..k}, 1<|V[<k—1

To derive relation (D4) from relation (D6) a good estimate is needed on the probability
P32 T, 1 (f(0))|| > u). To get such an estimate the tail distribution of || T}, x (f(£))]]
will be compared with that of ||, v (f(¢))|| for an arbitrary set V' C {1,...,k}. This
will be done with the help of Lemmas D2 and D4 formulated below.

In Lemma D2 such a random variable |I,, . v (f(¢))|| will be constructed whose dis-
tribution agrees with that of ||, x,v (f(¢))||. This expression I, . f(¢) will be defined
in formulas (D7) and (D8). It is a random polynomial of some Rademacher functions
€1,...,n. The coefficients of this polynomial are random variables, independent of
the Rademacher functions €1,...,c,. Beside this, the constant term of this polyno-
mial equals T}, x(f(¢). These properties of the polynomial ||I,, r.v (f(¢))|| together with
Lemma D4 formulated below enable us prove such an estimate on the distribution of
| T, (f(£))] that together with formula (D6) imply relation (D4). Let us formulate
these lemmas.

Lemma D2. Let us consider a sequence of independent random wvariables €1,. .., &y,
P(eg = 1) = P(gg = —1) = %, 1 <1 < n, which is also independent of the ran-

2’
dom variables f(l) cee T(Ll and 5(2) ey 7(12) appearing in the definition of the modi-

fied decoupled U -statistics L, v (f(£)) given in formula (D3). Let us define with their
(1) (1) (2) (2)

help the sequences of random wvariables ny”’,...,nn’ and n;7",...,nyn  whose elements

(n (1),7752)) (n z(l)( 1) l( )( 1), 1 <1< mn, are defined by the formula

1 2 1+e 1y 1—¢e .2 11—, ) 1+e @
(" (e0), P (=) = ( sa g £§>+T§)),

ice. let (" (e, n” (e0) = (67.6%) if e = 1, and (0" (e),n” () = (7. &)
if e = —1 1 <1 < n. Then the joint dzstmbutzon of the pair of sequences of ran-
dom variables §(1) 5(1) and ff), cee T(LQ) agrees with that of the pair of sequences
7751), . 7777(1 ) and 77( ) . ,777(1 ), which is also independent of the sequence €1, ...,¢&y,.

Let us fix some V- C {1,...,k}, and introduce the random variable

T 1 ay (1 ay(k

Luky (F(0) = - > fovvote (0o @) (o)
T (lnyenp): 1K1 <0, j=1,..k

where similarly to formula (D3) ay(j)=11ifj €V, and ay(j) =2 if j ¢ V. Then the
identity

P (£(0) (D8)
- % Z (1"1"”21)‘/@1) (1+I{/Sk VElk)fh, 1 (5(51)7"':§(Sk)>

(l]_ ..... lk), (81 ..... Sk)t
1<l;<n, s;j=1 or s;=2, j=1,..., k,

190



holds, where mgj%/ =1 and méj%, =—1ijeV, and mgjg, = —1 and /ig%/ =1ifj¢V,

i.e. /-@gjg/ =3 —2ay(j) and /-@g]%/ = —Iigjz/
Before the formulation of Lemma D4 another Lemma D3 will be presented which
will be applied in its proof.

Lemma D3. Let Z be a random variable taking values in a separable Banach space
B with expectation zero, i.e. let Ex(Z) = 0 for all Kk € B’, where B’ denotes the
(Banach) space of all (bounded) linear transformations of B to the real line. Then

P(llv+ Z|| > ||v]) > iél)_g/ % for all v € B.

Lemma D4. Let us consider a positive integer n and a sequence of independent random

variables €1,...,e,, Pleg = 1) = Plg = —1) = %, 1 <1 < n. Beside this, fix
some positive integer k, take a separable Banach space B and choose some elements
a(li,...,ls) of this Banach space B, 1 < s < k, 1 < l; < n, l; # lj if j # j,

1 <4, <s. With the above notations the inequality

k
Plllo+>° > a(ly, ... 1)y e || > o]l | = ex (D9)

s=1 (ll,...,ls): 1§lj§n, 7j=1,..., S,
Ll it j#

holds for all v € B with some constant ci > 0 which depends only on the parameter k.

Proof of Lemma D2. Let us consider the conditional joint distribution of the sequences of
random variables n§1), e ,7)(1) and 7)(2) ...,7)7(1) under the condition that the random
vector €1,...,e, takes the value of some prescribed +1 series of length n. Observe
that this conditional distribution agrees with the joint distribution of the sequences

(1), .. (1) and & (2) S E€n 2 for all possible conditions. This fact implies the statement

about the joint dlstrlbutlon of the sequences ?7( ),nl( )1 <l < n and their independence

of the sequence €4, ...,&,.

To prove identity (D8) let us fix a set M C {1,...,n}, and consider the case when
eg=1ifle Mandeg = —-1ifl ¢ M. Put Bym(j,l) =1if j € Vandl € M or
j¢Vandl ¢ M, and let By (j,1) = 2 otherwise. Then we have for all (I1,...,[),
1<1; <n,1<j<n,and our fixed set V

Z (1—}—/12 )Vgll) (1+/€Sk veEL) S, <6(81)7---»£(8k)>

(81,5.--,8K): s;=1 or s;=2, j=1,...,k,

_ 2kfl <€(5V M (1, ll)) 5(5\/ M (K, lk)))
17 * k ct Y
(D10)
since the product (1 + /ﬁgl)vall) -(1+ /4:( )Vslk) equals either zero or 2%, and it equals

2% for that sequence (sq,...,sx) for which ngjj),vglj =1 for all 1 < 5 < k. This relation

is equivalent to By ar(j,1;) = s; for all 1 < j < k. (In relation (D10) it is sufficient to
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consider only such products for which [; # ;s if j # j' because of the properties of the
functions fi, .. .-

Beside this, glﬁV’M(l’j) = n;"V(j) foralll1 <l <mand1l < j <k, and as a consequence

1,1 k1l o oo (k
- (gff’V’M( DL gl k>>) = fo (ngl v e >>>,

Summing up the identities (D10) for all 1 < y,...,l; < n and applying the last identity
we get relation (D8), since the identity obtained in such a way holds for all M C

{1,...,n}.

Proof of Lemma DS3. Let us first observe that if £ is a real valued random variable with

zero expectation, then P(§ > 0) > (fggf since (E|€])? = 4(E(E1({€ > 0}))? < 4P(¢ >
0)E£2 by the Schwarz inequality, where I(A) denotes the indicator function of the set A.
(In the above calculation and in the subsequent proofs I apply the convention % = 1.
We need this convention if ££2 = 0. In this case we have, because of the condition

E¢ =0 P(£ =0) =1, hence the above proved identity holds in this case, too.)

Given some v € B, let us choose a linear operator s such that ||<|| = 1 and
k(v) = ||v||. Such an operator exists by the Banach-Hahn theorem. Observe that
{w: v+ Z(W)|| > ||]v]|} D {w: k(v + Z(w)) > k(v)} = {w: K(Z(w)) > 0}. Beside this
Erk(Z) = 0. Hence we can apply the above proved inequality for £ = k(Z), and it yields

that P(|jv+ Z|| > ||v]|) > P(k(Z) > 0) > %. Lemma D3 is proved.

Proof of Lemma D/. Take the class of random polynomials

y=3Y > b(ly, ..., Ls)er, e,

$=1 (l1,...,15): 1<l;<n, j=1,...,s,
AL i G

where g;, 1 <[ < n, are independent random variables with P(e; =1) = P(g; = —1) =
%, and the coefficients b(ly,...,ls), 1 < s < k, are arbitrary real numbers. The proof

of Lemma D4 can be reduced to the statement that there exists a constant ¢, > 0
depending only on the order k of these polynomials such that the inequality

(E|Y|)? > 4c, EY?. (D11)

holds for all such polynomials Y. Indeed, consider the polynomial

Z:Z Z a(ly,...,ls)ey &,

s=1 (I1,...,l5): 1<l;<n, j=1,...,s,
AL i G

and observe that Ex(Z) = 0 for all linear functionals x on the space B. Hence
Lemma D3 implies that the left-hand side expression in (D9) is bounded from below by

Hiélg , %. On the other hand, relation (D11) implies that niélg / % > k.
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To prove relation (D11) first we compare the moments EY? and EY*. Let us
introduce the random variables

Y, = > b(ly,... I ey, e, 1<s<k.
(ll ..... ls): 1§lj§n,j:1 ..... S,
Ll if j#j

We shall show that the estimates of Section 13 imply that
EY} < 2% (EY2)? (D12)

for these random variables Y.

Relation (D12) together with the uncorrelatedness of the random variables Y,
1 < s <k, imply that

k 4 k k
EY*=E (Z Y) <k EY! <2 (EY?)
s=1

s=1 s=1

k 2
< k324k <Z EY82> _ k324k(EY2)2.

s=1

This estimate together with the Holder inequality with p = 3 and ¢ = % yield that
EY? = E|Y|*3|-|Y|?/3 < (BEYYV/3(E|Y])?/3 < k2*/3(EY?)2/3(E|Y])?/3, ie. EY? <
k324 (E|Y])?, and relation (D11) holds with 4c; = k~327%*. Hence to complete the
proof of Lemma D4 it is enough to check relation (D12).

In the proof of relation (D12) it can be assumed that the coefficients b(ly,...,[s)
of the random variable Y, are symmetric functions of the arguments [y, ...,[s, since a
symmetrization of these coefficients does not change the value of Y. Put

B? = > V(ly,... 1), 1<s<k
(l1,..50s): 1<l <n, j=1,...,s,
Ll if j#j'
Then
EY? = s1B2,
and

4s)!
EY*<1.3.5.---(4s—1)B* = ( B*
s — 3-5 (S ) S 225<2S)! S

by Lemmas 13.4 and 13.5. Inequality (D12) follows from the last two relations. In-

deed, to prove formula (D12) by means of these relations it is enough to check that
% < 2% But it is easy to check this inequality with induction with respect to
s. (Actually, there is a well-known inequality in the literature, known under the name
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Borell’s inequality, which implies inequality (D12) with a better coefficient at the right
hand side of this estimate.)

Let us turn back to the estimation of the probability P(3 - 28| T, x(f)| > w).
Let us introduce the o-algebra F = B( l(l),fl@), 1 <1 < n) generated by the random

variables fl(l), ;2), 1 <1 < n, and fix some set V C {1,...,k}. I show with the
help of Lemma D4 and formula (D8) that there exists some constant ¢, > 0 such
that the random variables T}, j f(¢)) defined in formula (D5) and I, kv (f(£)) defined in
formula (D7) satisfy the inequality

P (||2kfn7k’v(f(£))|| > [Tk (fFO)|F) > cx  with probability 1. (D13)

In the proof I shall exploit that in formula (D8) 2" I, j v (f(£)) is represented by a
polynomial of the Rademacher functions €1, ...,e, whose constant term is T}, 1 (f(¢)).
The coefficients of this polynomial are functions of the random variables 51(1) and 51(2) ,
1 <1 < n. The independence of these random variables from ¢;, 1 < [ < n, and the
definition of the o-algebra F yield that

P ([12" Ly (SO > 1T, (£ ()| F)
LS e (6

e ([
’ (ll, lk) (81 ..... Sk)
1<i;<n,s;j=1 or s;=2, j=1,..., k,

>Mhdﬂ@ﬂ“)1<l<n9—12M) (D14)

where P,, means that the values of the random variables gl(l), l(2), 1 <1l <n, are
fixed, (their value depend on the atom of the o-algebra F we are considering) and the
probability is taken with respect to the remaining random variables ¢;, 1 < [ < n.
At the right-hand side of (D14) the probability of such an event is considered that
the norm of a polynomial of order k of the random variables ¢1,...,¢, is larger than
HTn,k(f(ﬁ))(élm, 1 <1< n,j=1,2)|. Beside this, the constant term of this polynomial

equals Tn’k(f(ﬁ))(é“l(j), 1 <1<mn,j=1,2). Hence this probability can be bounded by
means of Lemma D4, and this result yields relation (D13).

As the distributions of I,, . v (f(¢)) and I,, kv (f(£)) agree, relation (D13) implies
that

P@ﬁh&MNmnzlal%)— @2nkwﬂmuz

w

1
5
> P (I T (FON = [Ta O ITua(FO)] = 5 -2F0)

/ P (12" Loy (FO) > [T (FE)IF) P
{w: 1Tk (F(O) (@) [[Z 521 Fu}
> auP(3- 27T £ 2 w).
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The last inequality with the choice of any set V' C {1,...,k}, 1 < |V| <k —1, together
with relation (D6) imply formula (D4).

Relation (14.12d) will be proved together with another inductive hypothesis with
the help of relation (D4) by means of an induction procedure with respect to the order
k of the U-statistic. To formulate the other inductive hypothesis some new quantities
will be introduced. Let W = W(k) denote the set of all partitions of the set {1,...,k}.
Let us fix k independent copies 59 ), cee flj ), 1 < j < k, of the sequence of random
variables &1,...,&,. Given a partition W = (Uy,...,Us) € W(k) let us introduce the
function sy (j), 1 < 7 < k, which tells for all arguments j the index of that element
of the partition W which contains the point j, i.e. the value of the function sy (j),
1 < 5 <k, in a point j is defined by the relation 5 € Vi Let us introduce the
expression

w ()

1 , .
B (F0)) = 3 > oty (€500, 0)

T (lnyenly): 1K1 <0, j=1,...k

for all W € W(k).

An expression of the form I,  w(f(¢)), W € Wy, will be called a decoupled U-statistic
with generalized decoupling. Given a partition W = (Uy,...,Us) € Wy let us call the
number s of the elements of this partition the rank both of the partition W and of the
decoupled U-statistic I, w (f(¢)) with generalized decoupling.

Now I formulate the following hypothesis. For all £ > 2 and 2 < j < k there exist
some constants C(k,j) > 0 and d(k,j) > 0 such that for all W € W, a decoupled
U-statistic I, . w (f(¢)) with generalized decoupling satisfies the inequality

P(|[Lnk.w (FO)I > u) < Clk, 5)P (I[n s (F(O) > (K, 5)u) (D15)
for all 2 < j < k if the rank of W equals j.

It will be proved by induction with respect to k that both relations (14.12d)
and (D15) hold for U-statistics of order k. Let us observe that for k = 2 relation (14.12d)
follows from (D4). Relation (D15) also holds for k = 2, since in this case we have to
consider only the case j = k = 2, and relation (D15) clearly holds in this case with
C(2,2) =1 and §(2,2) = 1. Hence we can start our inductive proof with k& = 3. First I
prove relation (D15).

In relation (D15) the tail-distribution of decoupled U-statistics with generalized
decoupling is compared with that of the decoupled U-statistic I, x(f(¢)) introduced
n (D2). Given the order k of these U-statistics it will be proved by means of a backward
induction with respect to the rank j of the decoupled U-statistics I,  w (f(¢)) with
generalized decoupling.

Relation (D15) clearly holds for j = k£ with C(k, k) = 1 and §(k, k) = 1. To prove
it for decoupled U-statistics with generalized decoupling of rank 2 < 7 < k first the
following observation will be made. If the rank j of the partition W = (Uy,...,U;)
satisfies the relation 2 < 7 < k — 1, then it contains an element with cardinality strictly
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less than k and strictly greater than 1. For the sake of simpler notation let us assume
that the element U; of this partition is such an element, and U; = {t,..., k} with some
2 <t < k—1. The investigation of general U-statistics of rank j, 2 < 57 < k — 1,
can be reduced to this case by a reindexation of the arguments in the U-statistics if
it is necessary. Let us consider the partition W = (Uy,...,U;_1,{t},...,{k}) and the
decoupled U-statistic I,, ;. 1y (f(¢)) with generalized decoupling corresponding to this
partition W. It will be shown that our inductive hypothesis implies the inequality

P e, (fO)I > w) < A(R)P (I, (F ()] > 5(K)u) (D16)
with A(k) = sup A(p), ¥(k) = inf ~(p) if the rank j of W is such that 2 < j <
2<p<k—1 2<p<k—1

k — 1, where the constants A(p) and ~(p) agree with the corresponding coefficients in
formula (14.12d).

To prove relation (D16) (in the case when U; = {t,...,k}) let us define the o-
algebra F generated by the random variables appearing in the first ¢ — 1 coordinates of
these U-statistics, i.e. by the random variables §ZW (J), 1<j<t—1,and1<1; <nfor

all 1 <j<t—1. We have 2 <t < k—1. By our inductive hypothesis relation (14.12d)
holds for U-statistics of order p=k —t+ 1 < k — 1. I claim that this implies that

P(|[ L ew (FO) > ulF) < A(k =t + 1)P (| L w0 (F(O)]] > y(k =t + D)ulF) (D17)

with probability 1. Indeed, by the independence properties of the random variables
O (and V) 1< <k 1< <n,

P (PN > 0lF) = Py ey (Wi (FO] > )
and

P (Lo (PN > 2 = 4 D0lF) = Penwisry -y (i O > (k= 1)),

where Pgiw(j)71§j§t_1 denotes that the values of the random variables flSW(j)(w), 1<

1 <t—1,1<1[ < n, are fixed, and we consider the probability that the appropriate
functions of these fixed values and of the remaining random variables £*w (1) and ¢5w (9)
t < j < k, satisfy the desired relation. These identities and the relation between the
sets W and W imply that relation (D17) is equivalent to the identity (14.12d) for the
generalized U-statistics of order k —t 4+ 1 < k — 1 with kernel functions

Jro e (@, oo k)
= > Fromte GO, D (W), 2, ).

(L1, nle—1): 1<1;<n, 1<5<t—1

Relation (D16) follows from inequality (D17) if expectation is taken at both sides. As
the rank of W is strictly greater than the rank of W, relation (D16) together with our
backward inductive assumption imply relation (D15) for all 2 < j < k.
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Relation (D15) implies in particular (with the applications of partitions of order k
and rank 2) that the terms in the sum at the right-hand side of (D4) satisfy the inequal-
ity P (Di Ly (FO)] > u) < Clh, /)P (| Lun(£(€))]] > Dyu) with some appropriate
Cr >0and Dy >0 forall V C {1,...,k}, 1 <|V| <k —1. This inequality together
with relation (D4) imply that inequality (14.12d) also holds for the parameter k.

In such a way we get the proof of relation (14.12d). Let us prove formula (14.13)
with its help first in the simpler case when the supremum of finitely many functions
is taken. If M < oo functions fi,..., fas are considered, then relation (14.13) for the
supremum of the U-statistics and decoupled U-statistics with these kernel functions can
be derived from formula (14.12) if it is applied for the function f = (f1,..., far) with

values in the separable Banach space Bj; which consists of the vectors (vq,...,vn),
v; € B, 1<j <M, and the norm |[(v1,...,vam)|| = sup [vj] is introduced in it. The
1<j<m

application of formula (14.12) with this choice yields formula (14.13) for this supremum.

Let us emphasize that the constants appearing in this estimate do not depend on the

number M. Since the distribution of the random variables sup ||, x(fs)|| converge to
1<s<M

that of sup ||, x(fs)|, and the distribution of the random variables sup || L.k (f5)|
1<s<0o0 1<s<M

converge to that of sup ank(fs)” as M — oo, relation (14.13) in the general case
1<s<o0

follows from its already proved special case and a limiting procedure M — oc.

Remark. The above proved formula (14.12d) can be slightly generalized. It also holds
if the expressions I, 1y f(£) and I, x(f(£) appearing in this inequality are defined in
a more general way. Namely, they are the random functions introduced in formulas
(D1) and (D2), but the sequences &1, ...,§, and their independent copies £§j), e )
in these formulas are independent random variables which may also be non-identically
distributed. This generalization can be shown without any essential change in the
original proof.

197



References:

1)

2.)

3.)

8.)

9.)
10.)
11.)
12.)
13.)
14.)
15.)

16.)

17.)

18.)

19.)

Adamczak, R. (2006) Moment inequalities for U-statistics. Annals of Probability
34, 2288-2314

Alexander, K. (1987) The central limit theorem for empirical processes over Vapnik—
Cervonenkis classes. Annals of Probability 15, 178-203

Arcones, M. A. and Giné, E. (1993) Limit theorems for U-processes. Annals of
Probability, 21, 14941542

Arcones, M. A. and Giné, E. (1994) U-processes indexed by Vapnik-Cervonenkis
classes of functions with application to asymptotics and bootstrap of U-statistics
with estimated parameters. Stoch. Proc. Appl. 52, 17-38

Bennett, G. (1962) Probability inequality for the sum of independent random vari-
ables. J. Amer. Statist. Assoc. 57, 33-45

Bonami, A. (1970) Etude des coefficients de Fourier des fonctions de LP(G). Ann.
Inst. Fourier (Grenoble) 20 335-402

de la Pena, V. H. and Giné, E. (1999) Decoupling. From dependence to inde-
pendence. Springer series in statistics. Probability and its application. Springer
Verlag, New York, Berlin, Heidelberg

de la Pena, V. H. and Montgomery—Smith, S. (1995) Decoupling inequalities for
the tail-probabilities of multivariate U-statistics. Ann. Probab., 23, 806-816
Dobrushin, R. L. (1979) Gaussian and their subordinated fields. Annals of Proba-
bility 7, 1-28

Dudley, R. M. (1978) Central limit theorems for empirical measures. Annals of
Probability 6, 899-929

Dudley, R. M. (1984) A course on empirical processes. Lecture Notes in Mathe-
mematics 1097, 1-142 Springer Verlag, New York

Dudley, R. M. (1989) Real Analysis and Probability. Wadsworth & Brooks, Pacific
Grove, California

Dudley, R. M. (1998) Uniform Central Limit Theorems. Cambridge University
Press, Cambridge U.K.

Dynkin, E. B. and Mandelbaum, A. (1983) Symmetric statistics, Poisson processes
and multiple Wiener integrals. Annals of Statistics 11, 739-745

Frankl, P. and Pach J. (1983) On the number of sets in null-t-design. European J.
Combinatorics 4 21-23

Giné, E. and Guillou, A. (2001) On consistency of kernel density estimators for
randomly censored data: Rates holding uniformly over adaptive intervals. Ann.
Inst. Henri Poincaré PR 37 503-522

Giné, E., Kwapien, S, Latata, R. and Zinn, J. (2001) The LIL for canonical U-
statistics of order 2. Annals of Probability 29 520-527

Giné, E., Latala, R. and Zinn, J. (2000) Exponential and moment inequalities for
U-statistics in High dimensional probability II. Progress in Probability 47. 13-38.
Birkhauser Boston, Boston, MA.

Gross, L. (1975) Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061-1083

198



20.) Guionnet, A. and Zegarlinski, B. (2003) Lectures on Logarithmic Sobolev inequal-
ities. Lecture Notes in Mathematics 1801 1-134 2. Springer Verlag, New York

21.) Hanson, D. L. and Wright, F. T. (1971) A bound on the tail probabilities for
quadratic forms in independent random variables. Ann. Math. Statist. 42 52-61

22.) Hoeffding, W. (1948) A class of statistics with asymptotically normal distribution.
Ann. Math. Statist. 19 293-325

23.) Hoeffding, W. (1963) Probability inequalities for sums of bounded random vari-
ables. J. Amer. Math. Society 58, 13-30

24.) Ito K. (1951) Multiple Wiener integral. J. Math. Soc. Japan 3. 157164

25.) Kaplan, E.L. and Meier P. (1958) Nonparametric estimation from incomplete data,
Journal of American Statistical Association, 53, 457-481.

26.) Latala, R. (2006) Estimates of moments and tails of Gaussian chaoses. Annals of
Probability 34 2315-2331

27.) Ledoux, M. (1996) On Talagrand deviation inequalities for product measures.
ESAIM: Probab. Statist. 1. 63-87. Available at http://www.emath./fr/ps/.

28.) Major, P. (1981) Multiple Wiener—It6 integrals. Lecture Notes in Mathematics
849, Springer Verlag, Berlin, Heidelberg, New York,

29.) Major, P. (1988) On the tail behaviour of the distribution function of multiple
stochastic integrals. Probability Theory and Related Fields, 78, 419-435

30.) Major, P. (1994) Asymptotic distributions for weighted U-statistics. The Annals
of Probability, 22 1514-1535

31.) Major, P. (2005) An estimate about multiple stochastic integrals with respect to
a normalized empirical measure. Studia Scientarum Mathematicarum Hungarica.
295-341

32.) Major, P. (2005) Tail behaviour of multiple random integrals and U-statistics.
Probability Reviews. 448-505

33.) Major, P. (2006) An estimate on the maximum of a nice class of stochastic integrals.
Probability Theory and Related Fields. 134, 489-537

34.) Major, P. (2006) A multivariate generalization of Hoeffding’s inequality. FElectronic
Communication in Probability 2 (220-229)

35.) Major, P. (2007) On a multivariate version of Bernstein’s inequality Electronic
Journal of Probability 12 966—988

36.) Major, P. (2005) On the tail behaviour of multiple random integrals and degenerate
U-statistics. (First version of this lecture note) http://www.renyi.hu/ major

37.) Major, P. and Rejté, L. (1988) Strong embedding of the distribution function under
random censorship. Annals of Statistics 16, 1113-1132

38.) Major, P. and Rejt6, L. (1998) A note on nonparametric estimations. In the con-
ference volume to the 65. birthday of Miklés Csorgo. 759-774

39.) Malyshev, V. A. and Minlos, R. A. (991) Gibbs Random Fields. Method of cluster
expansion. Kluwer, Academic Publishers, Dordrecht

40.) Massart, P. (2000) About the constants in Talagrand’s concentration inequalities
for empirical processes. Annals of Probability 28, 863-884

199



41.) Mc. Kean, H. P. (1973) Wiener’s theory of non-linear noise. in Stochastic Differ-
ential Equations STAM—-AMS Proc. 6 197-209

42.) Nelson, E. (1973) The free Markov field. J. Functional Analysis 12, 211-227

43.) Pollard, D. (1984) Convergence of Stochastic Processes. Springer Verlag, New York

44.) Rota, G.-C. and Wallstrom, C. (1997) Stochastic integrals: a combinatorial ap-
proach. Annals of Probability 25 (3) 1257-1283

45.) Surgailis, D. (1984) On multiple Poisson stochastic integrals and associated Markov
semigroups. Probab. Math. Statist. 3. no. 2 217-239

46.) Surgailis, D. (2000) Long-range dependence and Appell rank. Annals of Probability
28 478-497

47.) Szegd, G. (1967) Orthogonal Polynomials. American Mathematical Society Collo-
quium Publications. Vol. 23

48.) Takemura, A. (1983) Tensor Analysis of ANOVA decomposition. J. Amer. Statist.
Assoc. 78, 894-900

49.) Talagrand, M. (1994) Sharper bounds for Gaussian and empirical processes. Annals
of Probability 22, 28-76

50.) Talagrand, M. (1996) New concentration inequalities in product spaces. Invent.
Math. 126, 505-563

51.) Talagrand, M. (2005) The general chaining. Springer Monographs in Mathematics.
Springer Verlag, Berlin Heidelberg New York

52.) Vapnik, V. N. (1995) The Nature of Statistical Learning Theory. Springer Verlag,
New York

200



S o

10.
11.
12.
13.
14.
15.
16.
17.
18.

CONTENT

Introduction. ........... . i
Motivation of the investigation. Discussion of some problems. ..
Some estimates about sums of independent random variables. ..
On the supremum of a nice class of partial sums. ..............

Vapnik-Cervonenkis classes and Lo-dense classes of functions.
The proof of Theorems 4.1 and 4.2 on the supremum of random
S 00
The completion of the proof of Theorem 4.1. ...................
Formulation of the main results of this work. ..................
Some results about U-statistics. ............. ... i
Multiple Wiener—Ito6 integrals and their properties. ............
The diagram formula for products of degenerate U-statistics.
The proof of the diagram formula for U-statistics. .............
The proof of Theorems 8.3, 8.5 and Example 8.7. ..............
Reduction of the main result in this work. .....................
The strategy of the proof for the main result of this work. .....
A symmetrization argument. ......... ... o oL
The proof of the main result. ......... ... . ... .. ...
An overview of the results in this work. ........................

Appendix A. The proof of some results about Vapnik—Cervonenkis

ClasSeS. o
Appendix B. The proof of the diagram formula for Wiener—Ito

Integrals. .. ...
Appendix C. The proof of some results about Wiener—Ito inte-
BT AlS.
Appendix D. The proof of Theorem 14.3. ( A result about the
comparison of U-statistics and decoupled U-statistics.) .........

References. . ...

201

1
3
10
15

23

27
34
41
20
64
80
90
95
108
118
125
139
150

162

164

172

180
190



