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Preface

One of the most important problems in probability theoryhs tnvestigation of
the limit distribution of partial sums of appropriately naalized random variables.
The case where the random variables are independent ig ¥eéll understood.
Many results are known also in the case where independenepliced by an
appropriate mixing condition or some other “almost indefeace” property. Much
less is known about the limit behaviour of partial sums oflyedependent random
variables. On the other hand, this case is becoming more ane important, not
only in probability theory, but also in some applicationstatistical physics.

The problem about the asymptotic behaviour of partial sufrdependent ran-
dom variables leads to the investigation of some very caraf@d transformations
of probability measures. The classical methods of prolghiieory do not seem
to work for this problem. On the other hand, although we aitevetry far from a
satisfactory solution of this problem, we can already preseme nontrivial results.

The so-called multiple Wiener-étintegrals have proved to be a very useful tool
in the investigation of this problem. The proofs of almostiglorous results in this
field are closely related to this technique. The notion oftipld Wiener—I6 inte-
grals was worked out for the investigation of non-lineardiimnals over Gaussian
fields. It is closely related to the so-called Wick polynolsiahich can be consid-
ered as the multi-dimensional generalization of Hermitgmpamials. The notion of
Wick polynomials and multiple Wiener-étintegrals were worked out at the same
time and independently of each other. Actually, we discussodified version of
the multiple Wiener—h integrals in greatest detail. The technical changes rmkede
the definition of these modified integrals are not esser@althe other hand, these
modified integrals are more appropriate for certain ingastons, since they enable
us to describe the action of shift transformations and tdyappme sort of random
Fourier analysis. There is also some connection betweetiphelViener—I6 inte-
grals and the classical stochastit ilhtegrals. The main difference between them is
that in the first case deterministic functions are integtassd in the second case
so-called non-anticipating functionals. The consequefhdeis difference is that no
technical difficulty arises when we want to define multipleer—16 integrals in
the multi-dimensional time case. On the other hand, a ldags of nonlinear func-
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viii Preface

tionals over Gaussian fields can be represented by meansltpleniWiener—IH
integrals.

In this work we are interested in limit problems for sums opeledent random
variables. It is useful to consider this problem togethetviis continuous time
version. The natural formulation of the continuous timesi@n of this problem can
be given by means of generalized fields. Consequently wéhalgmto discuss some
questions about generalized fields.

| have not tried to formulate all the results in the most gahfarm. My main
goal was to work out the most important techniques needetfianrivestigation
of such problems. This is the reason why the greatest pahi®fitork deals with
multiple Wiener—Id integrals. | have tried to give a self-contained expositbthis
subject and also to explain the motivation behind the result

| had the opportunity to participate in the Dobrushin—Sg&ninar in Moscow.
What | learned there was very useful also for the preparatidhi® Lecture Note.
Therefore | would like to thank the members of this seminamfbat | could learn
from them, especially P. M. Bleher, R. L. Dobrushin and YaStai.

Some additional remarks.

This text is a slightly modified version of my Lecture Nétiltiple Wiener—Id in-
tegrals with applications to limit theorenmuiblished in the_ecture Notes in Math-
ematicsseries (number 849) of the Springer Verlag in 1981. | decidechake a
special lecture on the basis of this work in the first semestdre university course
in 2011-2012 at the University of Szeged. Preparing for lideyved how difficult
the reading of formulas in this Lecture Note is. These diffies arose because this
Lecture Note was written at the time when thg<Tprogram still did not exist, and
the highest technical level of typing was writing on an IBMcahae that enabled
one to type beside the usual text also mathematical formBlatsthe texts written
in such a way are very hard to read. To make my text more readat#cided to
retype it by means of thegkK program. This demanded some changes. It implied
e.g. to follow such partly typographical partly linguistides by which one does not
start a sentence with a formula. Besides, it suggested naullate the basic defini-
tions in a (typographically) more explicit form and not asexplanation inside the
text. When typing this work | also tried to rethink what | hadtven, to correct the
errors and to make the proofs more understandable. It wasising and a little bit
shocking to meet my old personality by studying my old Leethiote and to rec-
ognize how much | have changed. Now | would expose many deted different
way. Naturally | would also make many changes by taking imtmoant the results
proved since the time | wrote this note. Nevertheless | gettd make no essential
changes in the text, to restrict myself to the correctiorheférrors | found, and to
give a more detailed explanation of the proofs where | fait this useful. (There
were many such places.) In doing so | was influenced by a Rupstaverb which
says: ‘Luchshe vrag khoroshego'. | tried to follow the aévaf this proverb. (I do
not know of an English counterpart of it, but it has a Frenafsiom: ‘Le mieux est
'ennemi du bien’.)
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I made only one exception. | decided to explain those badiom®and results
in the theory of generalized functions which were appliedhia older version of
this work in an implicit way. In particular, | tried to explaihow one gets with
the help of this theory those results about the so-calledtsgieaepresentation of
the covariance function of stationary random fields thatuehtormulated under
the nameBochner’s theorerandBochner—Schwartz theoreihis extension of the
text is contained in the attachments to Chapter 1 and 3. Irotiggnal version |
only referred to a work where these notions and results caiolel. But now |
found such an approach not satisfactory, because thesmsand results play an
important role in some arguments of this work. Hence | fedtt tto make a self-
contained presentation of the subject | have to explain tinemore detail.

Budapest, 15 August 2011
Péter Major






Chapter 1
On a limit problem

We begin with the formulation of a problem which is importaoth for probability
theory and statistical physics. The multiple Wiengd-ttegral proved to be a very
useful tool at the investigation of this problem.

We shall consider a set of random variabigsn € Z,, whereZ, denotes the-
dimensional integer lattice, and we shall study their prige. Such a set of random
variables will be called ay-dimensional) discrete random field. We shall be mainly
interested in so-called stationary random fields. Let ualréteir definition.

Definition of discrete (strictly) stationary random fields. A set of random vari-
ablesé,, n€ Z,, is called a (strictly) stationary discrete random field if

(Enlv R Enk) é (En1+m7 L) Enk+m)

forallk=1,2,...and n,...,nx, me Z,, where2 denotes equality in distribution.

Let us also recall that a discrete random fi&ldn € Z,, is called Gaussian if for
every finite subsefny,...,n} C Zy the random vecto(én,,..., &) is normally
distributed.

Given a discrete random fielf}, n € Z,, we define for alN = 1,2, ... the new
random fields

ZV=A'Y & N=12.., nez, (1.1)
jeBY
where

BN ={j: jeZy, nIN<|jV<(nDrNi=12...,v},

andAy, Ay > 0, is an appropriate norming constant. The superscdphotes the
i-th coordinate of a vector in this formula. We are interestethe question when
the finite dimensional distribution of the random fielff$ defined in (1.1) have a
limit as N — 0. In particular, we would like to describe those random fiedjs
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n € Zy, which appear as the limit of such random fief}s This problem led to the
introduction of the following notion.

Definition of self-similar (discrete) random fields. A (discrete) random field,
n e Zy, is called self-similar with self-similarity parameter if the random fields
ZN defined in (1.1) with their help and the choicg A N satisfy the relation

A
(&g &n) = (2o Zh) (1.2)
foralN=1,2,... and n,...,ng € Zy.

We are interested in the choidg, = N9 with somea > 0 in the definition of
the random variableZ) in (1.2), because under slight restrictions, relation)(1.2
can be satisfied only with such norming constafsts A central problem both in
statistical physics and in probability theory is the dgstton of self-similar fields.
We are interested in self-similar fields whose random véggbave a finite second
moment. This excludes the fields consisting of i.i.d. rand@mables with a non—
Gaussian stable law.

The Gaussian self-similar fields and their Gaussian ranggtiaiction are fairly
well known. Much less is known about the non-Gaussian casepfoblem is hard,

because the transformations of measures Béerinduced by formula (1.1) have
a very complicated structure. We shall define the so-callkdslinated fields be-
low. (More precisely the fields subordinated to a statior@ayssian field.) In case
of subordinated fields the Wiener&lintegral is a very useful tool for investigating
the transformation defined in (1.1). In particular, it erablis to construct non—
Gaussian self-similar fields and to prove non-trivial lithieorems. All known re-

sults are closely related to this technique.

LetX,, n € Z,, be a stationary Gaussian field. We define the shift transftoms
Tm, M€ Zy, over this field by the formuld@, X, = Xy.m for alln,me Z,. Let 77
denote theeal Hilbert space consisting of the square integrable randamahlas
measurable with respect to timealgebraz = %(X,, n € Z,). The scalar product
in 27 is defined as&,n) = E&n, &, n € 2. The shift transformation&,, me Z,,
can be extended to a group of unitary shift transformatiores 7’ in a natural
way. Namely, if§ = f(Xn,,...,Xq ) then we defindmé = f(Xa,+m, ..., Xnm)- It
can be seen thal€ || = ||Tné||, and the above considered random varialflese
dense insZ. (A more detailed discussion about the definition of shitm@pors and
their properties will be given in Chapter 2 inRemarkafter the formulation of
Theorem 2C. Here we shall define the shift, m e Z,, of all random variables
& which are measurable with respect to thalgebraz(X,, n € Z,), i.e. £ does
not have to be square integrable.) Helj@g|| can be extended to the whole space
2 by Ly continuity. It can be proved that the norm preserving tramsétionsTy,

m € Z,, constitute a unitary group ig?’, i.e. Toam = Ta T for all n, me Z,,, and
To = Id. Now we introduce the following

Definition of subordinated random fields. Given a stationary Gaussian field, X
n € Zy, we define the Hilbert space®” and the shift transformations,fme Z,,
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over 77 as before. A discrete stationary fiedd is called a random field subordi-
nated to X if &y € 27, and & = &namforalln, me Z,,.

We remark tha€g determines the subordinated fielflscompletely, since,, =
Théo. Later we give a more adequate description of subordinagétsfby means of
Wiener—Ib integrals. Before working out the details we formulate ¢batinuous
time version of the above notions and problems. In the cantis time case it is
more natural to consider generalized random fields. To éx{fiie idea behind such
an approach we shortly explain a different but equivalersicdption of discrete
random fields. We present them as an appropriate set of ramdoables indexed
by the elements of a linear space. This shows some similaiitythe generalized
random fields to be defined later.

Let ¢n(x), n € Zy, n= (ng,...,ny), denote the indicator function of the cube
M —2m+3)x-x[n,—1,n +13), with centem= (ny,...,n,) and with edges
of length 1, i.e. lethy(X) = 1, X = (X1,...,%,) € R”, if nj — 3 < x; < nj+ 1 for all
1< j <v,and letpn(x) = 0 otherwise. Define the linear spadeof functions orR¥
consisting of all finite linear combinations of the fof§iej ¢, (x), nj € Zy, with the
above defined functionf, (x) and real coefficients;. Given a discrete random field
&n, N € Zy, define the random variablég$) for all ¢ € @ in the following way.
Puté(¢) = > Cién; if P(X) =3¢ n, (x). In particular,& (¢n) = &, for all n € Z,,.
The identity& (c1¢ +co) = c1& (@) + & () also holds for alp, ¢ € @ and real
numbersc; andco.

Let us also define the functigh™Aw)(x) = 2 () for all functions¢ € @ and
positive integerdN = 1,2, ..., with some appropriately chosen constafgs> 0.

Observe tha€ (¢N) = ZN with the random variabl@\ defined in (1.1). Al
previously introduced notions related to discrete randeihdgican be reformulated
with the help of the set of random variabléég), ¢ € @. Thus for instance the
random fieldy, n € Z,, is self-similar with self-similarity parameter if and only if

E(PNNDY L g(p)forall g € ®andN = 1,2, ... (To see why this statement holds
observe that the distributions of two random vectors adraed only if every linear
combination of their coordinates have the same distribufidnis follows from the
fact that the characteristic function of a random vectoedgines its distribution.)

It will be useful to define the continuous time version of déte random fields
as generalized random fields. The generalized random figldserdefined as a set
of random variables indexed by the elements of a linear spafnctions. They
show some similarity to the class of random varialdég), ¢ € @, defined above.
The main difference is that instead of the spdta different linear space is chosen
for the parameter set of the random field. We shall choosedfeaked Schwartz
space for this role.

Let ¥ = .4, be the Schwartz space of (real valued) rapidly decreasingoth
functions onR". (See e.g. [15] for the definition of,. | shall present a more de-
tailed discussion about the definition of the spacein the adjustment to Chap-
ter 1.) Generally one takes the space of complex valuedjlsagecreasing, smooth
functions as the spac#’, but we shall denote the spacereél valued rapidly de-
creasing, smooth functions by if we do not say this otherwise. We shall omit the
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subscriptv if it leads to no ambiguity. Now we introduce the notion of gealized
random fields.

Definition of generalized random fields.We say that the set of random variables
X(¢), ¢ €., is ageneralized random field over the Schwartz sp#cef rapidly
decreasing, smooth functions if:

(@) X(app1+axp2) =arX(P1)+ axX(¢2) with probability 1 for all real numbers
a; and @ and¢1 € .7, ¢2 € .7. (The exceptional set of probability 0 where this
identity does not hold may depend on &, ¢1 and ¢>.)

(b)  X(¢n) = X(¢) stochastically ifpp, — ¢ in the topology of7.

We also introduce the following definitions.

Definition of stationarity and Gaussian property of a generdized random field.
On the notion of convergence of generalized random fields inistribution. The

generalized random field % {X(¢), ¢ € .7} is stationary if X ¢) £ X(Ti¢) for
all ¢ € . andte RV, where Tg (x) = ¢ (x—1). Itis Gaussian if X¢) is a Gaussian
random variable for allp € .. The relation X 2, Xp as n— oo holds for a sequence
of generalized random fields;,Xn=10,1,2, ..., if X,(¢) g, Xo(¢) for all ¢ € .7,
whereZ denotes convergence in distribution.

Given a stationary generalized random fi¥lénd a functiorA(t) > 0,t > 0, on
the set of positive real numbers we define the (stationangam fieldsx for all
t > 0 by the formula

XA9)=X(0), pes,  wheregr(=AD 9 (F). (13
We are interested in the following

Question. When does a generalized random field éist such that X Z X* as
t — oo (orast— 0)?

In relation to this question we introduce the following

Definition of self-similarity. The stationary generalized random field X is self-

similar with self-similarity parametea if XA(¢) 4 X(¢) forall ¢ €. andt>0
with the function A&t) =t“.

To answer the above question one should first describe thergjemed self-
similar random fields.

We try to explain the motivation behind the above definitiddiyen an ordinary
random fieldX(t),t € R, and a topological spaeg consisting of functions over"
one can define the random variabl®) = [rv ¢ (1)X(t) dt, ¢ € &. Some difficulty
may arise when defining this integral, but it can be overcanalinteresting cases.
If the space#’ is rich enough, and this is the casedif= .7, then the integrals
X(9), ¢ € &, determine the random proceéd ). The set of random variableq ¢),
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¢ € .7, is a generalized random field in all nice cases. On the oted hthere are
generalized random fields which cannot be obtained by iat&gy ordinary random
fields. In particular, the generalized self-similar randfieids we shall construct
later cannot be interpreted through ordinary fields. Thevalgfinitions of various
properties of generalized fields are fairly natural, coesity what these definitions
mean for generalized random fields obtained by integratidonary fields.

The investigation of generalized random fields is simplentthat of ordinary
discrete random fields, because in the continuous case yoraetry is available.
Moreover, in the study or construction of discrete randotdgigeneralized random
fields may play a useful role. To understand this let us rentzak if we have a
generalized random fiel(¢), ¢ € .7, and we can extend the spagécontaining
the test functiong to such a larger linear spac& for which @ ¢ 7 with the
above introduced linear spadg then we can define the discrete random fi{¢),
¢ € @, by a restriction of the space of test functions of the gdire@ random
field X(¢), ¢ € .7. This random field can be considered as the discretizatitmeof
original generalized random fieXl(¢), ¢ € .~.

We finish this chapter by defining the generalized subordthaandom fields.
The we shall explain the basic results about the Schwartzesgaand generalized
functions in a separate sub chapter.

Let X(¢), ¢ € .7, be a generalized stationary Gaussian random field. The for-
mulaTX(¢)) = X(Ti¢), Ttd(X) = ¢ (x—1), defines the shift transformation for all
t € RV. Let# denote the real Hilbert space consisting of #he- Z(X(¢), ¢ € .¥)
measurable random variables with finite second moment. fifietiansformation
can be extended to a group of unitary transformations g¢esimilarly to the dis-
crete case.

Definition of generalized random fields subordinated to a geeralized station-
ary Gaussian random field.Given a generalized stationary Gaussian random field
X(¢), ¢ € .7, we define the Hilbert spacg# and the shift transformations;,T

t € RV, over.Z as above. A generalized stationary random fiél@), ¢ € .7, is
subordinated to the field ¢§), ¢ € .7, if £(¢) € 77 and T (¢) = E(Tr@) for all

¢ €. andtc R, and E&¢,) — &(¢))> — Oif ¢, — ¢ in the topology of7.

1.1 A brief overview about some results on generalized funins

Let us first describe the Schwartz spacésind.~#° in more detail. The spacg’® =
()¢ consists of those complex valued functionsvofariables which decrease at
infinity, together with their derivatives, faster than armglymomial degree. More
explicitly, ¢ € . for a complex valued functiogh of v variables if

ot
K K, o Qv

Xl ..-XV W(b(Xl,...,Xv) SC(kl,...,kv,ql,.“,qv)
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for all pointx = (xg,...,%y) € R¥ and vectorgky,...,ky), (q1,...,qy) with non-
negative integer coordinates with some constdki, . .. ,ky,q1,...,qy) which may
depend on the functiog. This formula can be written in a more concise form as

IXDY¢ (x)| < C(k,q) with k= (kq,...,k,) andq= (qu,...,q),

ag+g
wherex = (xg,...,%), X = X...x¥ and D9 = %“11._.7‘5;' The elements of the

space. are defined similarly, with the only difference that they azal valued
functions.

To define the space®” and.° we still have to define the convergence in them.
We say that a sequence of functighise .7¢ (or ¢, € .) converges to a function
¢ if

lim sup(L+ [x%)*|D%n(x) — DY (x)| = 0.
N=%ycRY

forallk=1,2,... andg= (gs,...,qyv). It can be seen that the limit functighis
also in the space”® (or in the space”).

A nice topology can be introduced in the spag& (or .#’) which induces the
above convergence. The following topology is an appropicabice. Let a basis of
neighbourhoods of the origin consist of the sets

U(kae)={9: max1+[x?)¥ D% ()| <e

withk=0,1,2,..., 9= (qs,...,qv) with non-negative integer coordinates ang
0, where|x|? = x2 +--- +x2. A basis of neighbourhoods of an arbitrary function
¢ € .7 (or ¢ €.¥) consists of sets of the forgh+U (k, g, €), where the class of sets
U(k,q,€) is a basis of neighbourhood of the origin. The fact that thevemgence
in . has such a representation, (and a similar result holds ire saiher spaces
studied in the theory of generalized functions) has a grepbitance in the theory
of generalized functions. We also have exploited this faGhapter 6 of this Lecture
Note. Topological spaces with such a topology are calleditzdnly normed spaces.

The space of generalized function$’ consists of thecontinuouslinear maps
F.: . —CorF: .#¢— C, whereC denotes the linear space of complex numbers.
(In the study of the spacg”’ we omit the upper indeg, i.e. we do not indicate
whether we are working in real or complex space when thisesans problem.) We
shall write the mag-(¢), F € ./ and¢ € . (or ¢ € .°) in the form(F, ¢).

We can define generalized functiofisc .’ by the formula

(F.$) :/qu(x)dx forallpe.# orpe.°

with a functionf such thatf (1 [x|2)~P|f (x)| dx < e with somep > 0. (The upper
script — denotes complex conjugate in the sequel.) Suchidnats are called reg-
ular. There are also non-regular functionals in the sp#teAn example for them
is the d-function defined by the formulgd, ¢) = ¢ (0). There is a good description
of the generalized functioris € ., (see the book I. M. Gelfand and G. E. Shilov:
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Generalized functions, Volume 2, Chapter 2, Chapter 4)waudo not need this
result, hence we do not discuss it here. Another importaestpn in this field that
we omit is about the interpretation of a usual function asreegaized function in
the case when it does not define a regular functioirbecause of its strong sin-
gularity in some points. In such cases some regularizatonbe applied. It is an
important problem in the theory of generalized functionfirtd the appropriate gen-
eralized functions in such cases, but it does not appeaeisttidy of the problems
in this work.

The derivative and the Fourier transform of generalized:fions are also de-
fined, and they play an important role in some investigatibmshe definition of
these notions for generalized functions we want to preséeveld definition if nice
regular functionals are considered for which these notiwaie already defined in

classical analysis. Such considerations lead to the deﬁrﬂ%j F.¢)=—(F, g—)‘z)

of the derivative of generalized functions. We do not disdbss definition in more
detail, because here we do not work with the derivatives négdized functions.

The Fourier transform of generalized functionSimppears in our discussion, al-
though only in an implicit form. The Bochner-Schwartz therordiscussed in Chap-
ter 3 actually deals with the Fourier transform of geneealifunctions. Hence the
definition of Fourier transform will be given in more detail.

We shall define the Fourier transform of a generalized fonchy means of a
natural extension of the Parseval formula, more expliciflg simplified version of
it, where the same identity

L 09a00dx= s [ Tt

is formulated withf(u) = [z €Y f(x)dx and glu) = v €“¥g(x)dx. But now
we consider a pair of functlor(a‘ g) with different propernes We demand thiat
should be an integrable function, agd .#°. (In the original version of the Parseval
formula bothf andg areL, functions.)

The proof of this identity is simple. Indeed, since the fimety € . can be
calculated as the inverse Fourier transform of its Founandformge .7°, i.e.

g(x) = ¥g(u) du, we can write
/ei(””g(u)du} dx

/f(x) dx_/f [

='/g<u)[(2;)v/eux> ()dx} du

Let us also remark that the Fourier transfofm- f is a bicontinuous map from
¢ to &°. (This means that this transformation is invertible, anthbbe Fourier
transform and its inverse are continuous maps frgthto .C.) (The restriction
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of the Fourier transform to the spacé of real valued functions is a bicontinuous
map from.” to the subspace a¥° consisting of those functionse .~ for which
f(—x) = f(x) forallxe R".)

The above results make natural the following definition af Hourier trans-
form F of a generalized functioR € ..

(F,$) = (2m)"(F,¢) forall ¢ € C.

Indeed, ifF € .7’ thenF is also a continuous linear map oA, i.e. it is also an
element of”’. Besides, the above proved version of the Parseval forrmybéies
that if we consider an integrable functidron R’ both as a usual function and as a
(regular) generalized function, its Fourier transformeagrin the two cases.

There are other classes of test functions and spaces ofadiegedrfunctions stud-
ied in the literature. The most popular among them is theesgaaf infinitely many
differentiable functions with compact support and its dsdce?’, the space of
continuous linear transformations on the spatgThese spaces are generally de-
noted byZ and %’ in the literature, although just the book [15] that we use&s o
main reference in this subject applies the notatiéhand.#” for them.) We shall
discuss this space only very briefly.

The space? consists of the infinitely many times differentiable fucts with
compact support. Thus it is a subspaces6f A sequencep, € Z,n=12,...,
converges to a functiog, if there is a compact se&& ¢ RV which is the support
of all these functionsp,, and the functiongp, together with all their derivatives
converge uniformly to the functioy and to its corresponding derivatives. It is not
difficult to see that alsg € 2, and if the function#, converge ta in the space7,
then they also converge tbin the space”’. Moreover,Z is an everywhere dense
subspace of”. The space?’ consists of the continuous linear functionalszn

The results describing the behaviour@fand 2’ are very similar to those de-
scribing the behaviour of” and.s”’. There is one difference that deserves some
attention. The Fourier transforms of the functionsZirmay not belong t@7. The
class of these Fourier transforms can be described by méaome results in com-
plex analysis. A topological spacg” can be defined on the set of Fourier trans-
forms of the functions from the spac¢e If we want to apply Fourier analysis in the
spaceZ, then we also have to study this spa#eand its dual spac€”. | omit the
details.



Chapter 2
Wick polynomials

In this chapter we consider the so-called Wick polynomialsnulti-dimensional
generalization of Hermite polynomials. They are closelstexl to multiple Wiener—
Itd integrals.

LetX,t € T, be a set of jointly Gaussian random variables indexed byanpa
eter sefl. LetEX = 0 for allt € T. We define the real Hilbert spaceg and. 7
in the following way: A square integrable random variablénis7# if and only if
it is measurable with respect to tleealgebraz = #(X;, t € T), and the scalar
product in.#Z is defined agé,n) =E&n, &, n € 2. The Hilbert spaceq C 7
is the subspace of” generated by the finite linear combinatigns; X;, tj € T. We
consider only such sets of Gaussian random varialés which 777 is separable.
OtherwiseX;, t € T, can be arbitrary, but the most interesting case for us imwhe
T =% orZ,,andX,t € T, is a stationary Gaussian field.

LetY1,Yo,... be an orthonormal basis i##7. The uncorrelated random variables
Y1,Y2,... are independent, since they are (jointly) Gaussian. Maeov

BYYa,...) = B(X, tET).

Let Hn(x) denote then-th Hermite polynomial with leading coefficient 1, i.e. let
Hn(X) = (—1)“&2/2%(@)‘2/2). We recall the following results from analysis and
measure theory.
Theorem 2A. The Hermite polynomials tix), n=0,1,2,..., form a complete or-
thogonal system inj_(R,@, ﬁe*xz/zdx). (Here Z denotes the Bores-algebra
on the real line.)

Let (Xj, Zj, 1), i = 1,2,..., be countably many independent copies of a prob-
ability space(X, 2", u). (We denote the points of; by x;.) Let (X*, 2, u%) =

M (Xj, Zj, uj). With such a notation the following result holds.
=1
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Theorem 2B.Let ¢o, ¢1,-.., $o(X) = 1, be a complete orthonormal system in the
Hilbert space L(X, 2", u). Then the functiong] ¢y, (X;), where only finitely many
j=1

indices k differ from 0, form a complete orthonormal basis if(K®, 2™, u®).

Theorem 2C.Let ¥, Y>,... be random variables on a probability spa(@, <7, P)
taking values in a measurable spaeg 27). Leté be areal valued random variable
measurable with respect to tlealgebra (Y1, Ys,...), and let(X*, 2°®) denote
the infinite productX x X x ---, 2" x 2" x ---) of the spacgX, 2Z") with itself.
Then there exists a real valued, measurable function f osphee(X*, 2°) such
thatE = f(Yl,Yz, . )

Remark.Let us have a stationary random fieXd(w), n € Z,. Theorem 2C en-
ables us to extend the shift transformati@n, defined asTmXn(w) = Xntm(w),

n, me Zy, for all random variableg (w), measurable with respect to thealgebra
PB(Xn(w), n€ Zy). Indeed, by Theorem 2C we can wréw) = f (X,(w), n€ Zy),

and defin€Tné (w) = f(Xnim(w), n € Zy). We still have to understand, that al-
though the functionf is not unique in the representation of the random vari-
able & (w), the above definition oTé (w) is meaningful. To see this we have to
observe that iff{(Xp(w), n € Zy) = f2(Xn(w), n € Zy) for two functions f; and

fo with probability 1, then alsdi(Xnim(w), n € Zy) = f2(Xntm(w), n € Zy) with
probability 1 because of the stationarity of the random fi§Jttw), n € Z, . Let us

also observe thaf (w) 4 Tmé (w) for all me Z,. Besides,Ti, is a linear operator
on the linear space of random variables, measurable wifect$o theo-algebra
P (Xn, n € Zy). If we restrict it to the space of square integrable randorabées,
then Ty, is a unitary operator, and the operatdps m € Z,, constitute a unitary
group.

Let a stationary generalized fieldl= {X(¢), ¢ € .7} be given. The shiff;¢ of
a random variabl€, measurable with respect to timealgebraz(X(¢), ¢ € .7)
can be defined for all € RV similarly to the discrete case with the help of The-
orem 2C and the following result. § € Z(X(¢), ¢ € .#) for a random vari-
able &, then there exists such a countable suljget ¢»,...} C . (depending on
the random variablé) for which & is B(X(¢1), X(¢2),...) measurable. (We write
E(w) = F(X(¢1)(w),X(¢2)(w),...) with appropriate functiond, and ¢; € .7,
$2 €.7,..., and define the shif;é asTi&(w) = f(X(Ti¢1)(w), X(Tid2)(w),...),
whereTi ¢ (x) = ¢ (x—t) for ¢ € .7.) The transformation%, t € R, are linear op-
erators over the space of random variables measurableegitiect to ther-algebra
B(X(9), ¢ € ) with similar properties as their discrete counterpart.

Theorems 2A, 2B and 2C have the following important consegee

Theorem 2.1.Let ¥1,Y>,... be an orthonormal basis in the Hilbert spacé de-
fined above with the help of a set of Gaussian random variakles€ T. Then
the set of all possible finite products kY, ) ---Hj, (Y, ) is a complete orthogonal
system in the Hilbert spac#” defined above. (Herejit) denotes the j-th Hermite
polynomial.)
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Proof of Theorem 2.1By Theorems 2A and 2B the set of all possible prod-
ucts [ Hy (xj), where only finitely many indiceg; differ from 0, is a com-
j=1

S
plete orthonormal system ih; | R®, %%, [ e\% dxj |. SinceB(X, teT) =
j=1 ver
P#(Y1,Y2,...), Theorem 2C implies that the mappifigks, Xz, ...,) — f(Y1,Yz,...)
) 7X2/2
; - ; © e ] _
is a unitary transformation frorh, | R*, # ,j|;|l o dx; | to 7. (We call a

transformation from a Hilbert space to another Hilbert gpanitary if it is norm
preserving and invertible.) Since the image of a completieogional system un-
der a unitary transformation is again a complete orthogsystem, Theorem 2.1 is
proved. O

Let s7zn C 27, n=1,2,..., (with the previously introduced Hilbert space’)
denote the Hilbert space which is the closure of the lineacsonsisting of the
element$h (X, . .., %), whereR, runs through all polynomials of degree less than
or equal ton, and the integem and indicedy, ...ty € T are arbitrary. Let’ =
o consist of the constant functions, and & = 72n© #~n_1,N=1,2,...,
wheres denotes orthogonal completion. It is clear that the Hillspeices73 given
in this definition agrees with the previously defined Hiltsgraces4. If &1,...,ém€E
4, and Py(Xq,...,Xm) is a polynomial of degre@, thenPy(&1,...,&m) € H#n.
Hence Theorem 2.1 implies that

H = Ao+ A+ Hot -+, (2.1)

where+ denotes direct sum. Now we introduce the following

Definition of Wick polynomials. Given a polynomial Px, ..., xn) of degree n and
a set of (jointly Gaussian) random variablés, ..., &y € 71, the Wick polynomial
:P(&1,...,&m): is the orthogonal projection of the random variablé&p, ..., &m)
to the above defined subspa#g of the Hilbert spaces” .

It is clear that Wick polynomials of different degree arehogonal. Given some
&1,...,&m € o4 define the subspace®.n(&y,...,&m) C #n,n=1,2,..., as the
set of all polynomials of the random variablés ..., é;, with degree less than or
equal ton. Let 5#o(&1,...,ém) = 50(&1,...,Em) = 5%, and I4(&1,...,.¢m) =
(&1, &m) © Hn_1(&1, ..., &m). With the help of this notation we formulate
the following

Proposition 2.2.Let P(xy,...,Xn) be a polynomial of degree n. Then the random
polynomial : P(&1,...,&ém): equals the orthogonal projection of(&;,...,&m) to
Ha(&1s -, ém).

Proof of Proposition 2.2Let : P(&1,...,&m): denote the projection of the random
polynomialP(&1,...,&m) to H4(&1,. .., &m). Obviously

P(fl? ey Em)_ . P(El7 ey Em) € %én—l(fla ey Em) g 1%éﬂ—l’
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Hence in order to prove Proposition 2.2 it is enough to shawfdr alln € 7%,

E:P(é1,....ém): n =0, (2.2)

since this means thaP(¢y,...,&m): is the orthogonal projection &f(&1,...,ém) €
%n '[0 %nfl.
Let €1,&,... be an orthonormal system i¥#7, also orthonormal tdy, ..., &m,

m o) .
and such thay,...,&m, €1, &, ... formabasisinA. If n = Ei'i Mn s}(‘ with such
=1 j=1

exponentd; andk; thaty | 4 5 kj < n— 1, then (2.2) holds for this random variable
n because of the independence of the random varidplasde;. Since the linear
combinations of such are dense iZZ,_1, formula (2.2) and Proposition (2.2) are
proved. ad

Corollary 2.3. Letéq,...,ém be an orthonormal system i3, and let
P(X1,...,Xm) = Zle’,_',jmle . x,JTT

be a homogeneous polynomial, i.e. lgtH- - - jm = n with some fixed number n for
all sets(j,..., jm) appearing in this summation. Then

P&, ém) =) CjjmHja (§1) -+ Hj (Sm).-

In particular,
(&M =Hp(§) fEesq, andEE2 =1

Remark Although we have defined the Wick polynomial (of degrgdor all poly-
nomials P(&1,...,&ém) of degreen, we could have restricted our attention only
to homogeneous polynomials of degmeesince the contribution of each terms
c(jl,...jm)Ell-uEr'Tgﬂ of the polynomialP(&1,...,&m) such thatly 4 --- +1m < n
has a zero contribution in the definition of the Wick polynahiP(é&y,...,&m): .

Proof of Corollary 2.3 Let the degree of the polynomiBlben. Then

P(Ela o Em) - Z le,... JmHll(El) e HJm(Em) S %n—l(fla ceey Em)» (23)

sinceP(&1,...,Xm) — 3 Cj;.....imHj1 (é1) - - - Hj, (ém) is @ polynomial whose degree is
m

less tham. Letn = E'll--- Im 51 <n—1.Then
i=1

m
ENHj, (&1) -+ Hip(&m) = |‘|E&“H;i<a> =0,
i=
sincel; < j;i for at least one indek Therefore

Ef] zcj17~-~=ijjl(El)"'Hjm(fm) =0. (2-4)
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Since every element af#Zp_1(é1,...,&ém) can be written as the sum of such
elementsn, relation (2.4) holds for alh € 5#2,_1(é1,...,ém). Relations (2.3)
and (2.4) imply Corollary 2.3. a0

The following statement is a simple consequence of the puswviesults.

Corollary 2.4. Letéy, &>, ... be an orthonormal basis i##7. Then the random vari-
ables H, (é1)---Hj, (&), k=1,2,..., j1+---+ jk =n, form a complete orthogonal
basis in4,.

Proof of Corollary 2.4t follows from Corollary 2.3 that
Hiy (81) - Hj (&) = &t g e s forallk=1,2,...

if j1+---+ jx = n. These random variables are orthogonal, and all Wick palyno
mials :P(&1,...,&m): of degreen of the random variable&;, &,,... can be repre-
sented as the linear combination of such terms. Since thése pplynomials are
dense in/4, this implies Corollary 2.4. O

The arguments of this chapter exploited heavily some ptgseof Gaussian
random variables. Namely, they exploited that the lineanlzioations of Gaussian
random variables are again Gaussian, and in Gaussian dasgamality implies
independence. This means in particular, that the rotafiarstandard normal vector
leaves its distribution invariant. We finish this chaptethnan observation based on
these facts. This may illuminate the content of formula)®dm another point of
view. We shall not use the results of the subsequent cordides in the rest of this
work.

LetU be a unitary transformation ovef3. It can be extended to a unitary trans-
formation% over 77 in a natural way. Fix an orthonormal basig &2, ... in 77,
and defineZ1 = 1, @/EHEL‘E = (U&,)1--- (U, ). This transformation can
be extended to a linear transformati@n over # in a unique way. The trans-
formation% is norm preserving, since the joint distributions(éf,,¢j,,...) and
(Uéj,,Uéj,,...) coincide. Moreover, itis unitary, sint&€1,U &>, ... is an orthonor-
mal basis in7j. It is not difficult to see that iP(xa, ..., %) is an arbitrary polyno-
mial, andni,nz...,Nm € 54, thenZP(n1,...,Nm) = P(UNa,...,UnNm). This re-
lation means in particular that the transformati@ndoes not depend on the choice
of the basis in7. If the transformations, and %% correspond to two unitary
transformationd); andU, on /73, then the transformatiof?; %% corresponds to
U1U,. The subspaces/Z,, and therefore the subspacés remain invariant under
the transformation% .

The shift transformations of a stationary Gaussian field, their extensions to
2 are the most interesting examples for such unitary trangftionsU and% . In
the terminology of group representations the above fastsheaformulated in the
following way: The mappind) — % is a group representation 0f(.7#1) over .77,
whereU (71) denotes the group of unitary transformations o%r. Formula (2.1)
gives a decomposition of7 into orthogonal invariant subspaces of this representa-
tion.






Chapter 3
Random spectral measures

Some standard theorems of probability theory state thattheslation function
of a stationary random field can be expressed as the Fouaiesform of a so-
called spectral measure. In this chapter we construct sorandeasure with the
help of these results, and express the random field itseli@&ourier transform
of this random measure in some sense. We restrict ourse\tas Gaussian case,
although most of the results in this chapter are valid foiteaty stationary random
field with finite second moment if independence is replacedrbiyogonality. In the
next chapter we define the multiple Wieneé-htegrals with respect to this random
measure. In the definition of multiple stochastic integtiaésGaussian property will
be heavily exploited. First we recall two results about thectral representation of
the covariance function.

Given a stationary Gaussian fied, n € Z,, or X(¢), ¢ € ., we shall assume
throughout the paper th&X, = 0, EX? = 1 in the discrete an&X(¢) = 0 in the
generalized field case.

Theorem 3A. (Bochner.)Let X, n € Z,, be a discrete (Gaussian) stationary field.
There exists a unique probability measure Gler, i)V such that the correlation
function r(n) = EXoXn = EXX«1n, N € Zy, k€ Zy, can be written in the form

f(n) = /émX)G(dx), 3.1)
where(-,-) denotes scalar product. Further(@) = G(—A) for all A € [—m, T)".
We can identify[—r, )V with the torusR /2mnZ,. Thus e.g—(—m,...,—1) =
(—m,...,—m).

Theorem 3B. (Bochner-Schwartz.} et X(¢), ¢ € .7, be a generalized Gaussian
stationary random field ove#” = .#,. There exists a unique-finite measure G on
RY such that

EX(9)X(W) = ./‘cﬁ(x)ll_/(x)G(dx) forall ¢, ye.7, (3.2)

15
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where” denotes Fourier transform anccomplex conjugate. The measure G has the
properties GA) = G(—A) for all A € #Y, and

/(1+ IX|)"G(dx) < e with an appropriate r> 0. (3.3)

Remark.The above formulated results are actually not the BochnerBarthner—
Schwartz theorem in their original form, they are their @nsences. In an Adjust-
ment to Chapter 3 | formulate the classical form of theserémas, and explain how
the above formulated results follow from them.

The measur& appearing in Theorems 3A and 3B is called the spectral measur
of the stationary field. A measu® with the same properties as the measGre
in Theorem 3A or 3B will also be called a spectral measures T&iminology is
justified, since there exists a stationary random field withctral measuré for all
suchG.

Let us now consider a stationary Gaussian random field @tisar generalized
one) with spectral measu®. We shall denote the spate([—m, m)¥,8",G) or
Lo(RY,2",G) simply byLZ. Let 77 be the real Hilbert space defined by means of
the stationary random field, as it was done in Chapter 2£§€tenote its complex-
ification, i.e. the elements of/;® are of the formX +iY, X,Y € J#, and the scalar
product is defined d9(1—|— iY1,Xo+ in) =EXi X2+ EY1Y2—|—i(EY1X2 - EX1Y2). We
are going to construct a unitary transformatiofitom Lé to #°. We shall define
the random spectral measure via this transformation.

Let ¢ denote the Schwartz space of rapidly decreasing, smoatfplea val-
ued functions with the usual topology of the Schwartz spgidee elements of”°
are of the formp +iy, ¢, Y € .7.) We make the following observation. The finite
linear combinations c,e(™ are dense ihZ in the discrete field, and the functions
¢ € ¢ are dense irIL(Z3 in the generalized field case. In the discrete field case this
follows from the Weierstrass approximation theorem, whstdtes that all contin-
uous functions orjl—m, )V can be approximated arbitrary well in the supremum
norm by trigonometrical polynomials. In the generalizeddfiease let us first ob-
serve that the continuous functions with compact suppertianse in_é. We claim
that also the functions of the spageare dense ihZ, whereZ denotes the class of
(complex valued) infinitely many times differentiable ftioos with compact sup-
port. Indeed, ifp € 2 is real valuedg(x) > 0 for all x e R, [¢(x)dx= 1, we
defineg(x) =t"¢ (¥), andf is a continuous function with compact support, then
fx ¢y — f uniformly ast — . Here« denotes convolution. On the other hand,
fx¢ € 2 forallt >0. HenceZ C .#°is dense irL3.

Finally we recall the following result from the theory of ttibutions. The map-
ping ¢ — ¢ is an invertible, bicontinuous transformation fram® into .. In
particular, the set of functiong, ¢ € .7, is also dense iné.

Now we define the mapping

(3 ed™)) = 3 coXe (34)
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in the discrete case, where the sum is finite, and

(o +ig) =X(9)+iX(y), ¢, e (3.5
in the generalized case.
Obviously,
|5 cne ¢ - TS Cotn / M XG( dx)
and

1941012, = 1809500 ~i6 0000 +IPOOF) + PROFIG(c
— EX(9)2~EX($)X(W) +EX($)X(9) +EX(W)?
= E(X() +iX(9)])%

This means that the mappihdrom a linear subspace OE to 771° is norm preserv-
ing. Besides, the subspace whéneas defined is dense lré since the space of
continuous functions is densel’u@ if G is a finite measure on the tor& /2nZ,,
and the space of continuous functions with a compact sugpdense i.% (R) if
the measurés satisfies relation (3.3). Hence the mappingan be uniquely ex-
tended to a norm preserving transformation frof to 7. Since the random
variablesX, or X(¢) are obtained as the image of some element ficgnun-
der this transformation, is a unitary transformation frorhé to °. A unitary
transformation preserves not only the norm, but also théasgaoduct. Hence
[ F(X)9(x)G(dx) =EI(f)I(g) forall f,ge LZ.

Now we define the random spectral meastggA) for all A € %Y such that
G(A) < o by the formula

Zg(A) = (Xn),

wherexa denotes the indicator function of the getlt is clear that

(i) The random variableZg(A) are complex valued, jointly Gaussian random
variables. (The random variables RgA) and ImZg(A) with possibly different
setsA are jointly Gaussian.)

(i) EZs(A)=0,

(i) EZs(A)Zs(B) =G(ANB),

n n
(iv) 3 Zo(Aj) =Zc | U Aj | if Ag,..., Ay are disjoint sets.
=1 j=1

Also the following relation holds.
V) Zo(A)=Zo(-A).
This follows from the relation
() I(f)=I1(f_)forall f € L, wheref_(x) = f(—x).
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Relation (V) can be simply checked if is a finite trigonometrical polynomial
in the discrete field case, or ff = @, ¢ € ., in the generalized field case. (In
the casef = @, ¢ € .7°, the following argument works. Put(x) = ¢1(x) +i@2(x)
with ¢1,¢2 € 7. Thenl (f) = X(¢1) +iX(¢2), and f_(X) = §1(—x) —id2(—x) =
P19 +i(—F2(x), hencel (f) =X($1)+iX (—¢2) = X(¢1) —iX(¢2) =I(F).) Then
a simple limiting procedure implies vin the general case. Relation (iii) follows
from the identityEZg(A)Zg(B) = El(xa)l (X8) = [ Xa(X) Xx8(X)G(dXx) = G(ANB).
The remaining properties @g(-) are simple consequences of the definition.

RemarkProperty (iv) could have been omitted from the definitionafdom spec-
tral measures, since it follows from property (iii). To shtiws it is enough to check
that if A, ..., Ay are disjoint sets, and property (iii) holds, then

(oo (30 (<[4

Now we introduce the following

Definition of random spectral measure.Let G be a spectral measure. A set of
random variables &(A), G(A) < «, satisfying (i)—(v) is called a (Gaussian) random
spectral measure corresponding to the spectral measure G.

Given a Gaussian random spectral mea&igreorresponding to a spectral mea-
sure G we define the (one-fold) stochastic integrfaf (x)Zg(dx) for an appro-
priate class of functiond. Let us first consider simple functions of the form
f(X) = S Cixa (X), where the sum is finite, an@(A;) < o for all indicesi. In this
case we define

/f(x)ZG(dx) = 3 6 Za(A).
Then we have

2

e|[ 109200 =3 oEiGAnA) = [IT0Pe(d. (36

Since the simple functions are densel_@, relation (3.6) enables us to define
[ f(X)Zs(dx) forall f € LZ via Lo-continuity. It can be checked that the expressions

Xo= [eMZe(dx, nez, (3.7)

and

X(9)= [ $(0Ze(d¥, €7, (3.8

defined with the help of the above defined (random) integrdbpectral measui&s
are Gaussian stationary random discrete and generalidddnfign spectral mea-
sureG.

We also have
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/f(x)zG(dx) —I(f) forall f el

if we consider the previously defined mappirid) with the stationary random fields
defined in (3.7) and (3.8). Now we formulate the following

Theorem 3.1.For a stationary Gaussian random field (a discrete or geneeal
one) with a spectral measure G there exists a unique Gausaiasiom spectral
measure & corresponding to the spectral measure G on the same prathegjilace
as the Gaussian random field such that relation (3.7) or (Bd@ls in the discrete
or generalized field case respectively.

Furthermore

[ PB(Xn, ne Zy) in the discrete field case,
#(Ze(A), G(A) <) = {@(X((p), ¢ € .7) in the generalized field case@'g)

If a stationary Gaussian random fiefd, n € ,, or X(¢), ¢ € ., and a random
spectral measurgg satisfy relation (3.7) or (3.8), then we say that this random
spectral measure is adapted to this Gaussian random field.

Proof of Theorem 3.1Given a stationary Gaussian random field (discrete or statio
ary one) with a spectral measu® we have constructed a random spectral mea-
sureZg corresponding to the spectral meas@eMoreover, the random integrals
given in formulas (3.7) or (3.8) define the original statignandom field. Since all
random variableZs(A) are measurable with respect to the original random field,
relation (3.7) or (3.8) implies (3.9).

To prove the uniqueness, it is enough to observe that becétise linearity and
L, continuity of stochastic integrals relation (3.7) or (3r8plies that

Za(A) = | X(9Za(0X) = 1 (xa

for a Gaussian random spectral measure corresponding sp#wtral measuré
appearing in Theorem 3.1. d

Finally we list some additional properties of Gaussian camd@pectral measures.

(vi) The random variables R&;(A) are independent of the random variables
ImZg(A).

(vii) Random variables of the forrdg(AU (—A)) are real valued. If the sets
ALU(=A1),...,AnU(—Ap) are disjoint, then the random variabBs(A;),. . .,
Zg(An) are independent.

(vii)y If An(—A) =0, then R&g(—A) = ReZg(A), ImZg(—A) = —ImZg(A),
and the (Gaussian) random variablesZB@A) and ImZg(A) are independent
with expectation zero and varianGgA) /2.

These properties easily follow from (i)—(v). Sin@&g(-) are complex valued
Gaussian random variables, to prove the above formulatddpendence it is
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enough to show that the real and imaginary parts are unetecel We show, as
an example, the proof of (vi).

EReZ6(AIMZ(B) = 1 E(Zo(A) + Zo(A)) (Zs(B) - Zo(B)
~ TE(Zo(A) + Zo(~A) (Zo(~B) ~ Zo(B)
1

1
= EG(AH (=B)) — EG(Am B)
1

+$G((—A) N(-B))— zG((-A)NB) =0

for all pairs of setdA andB such thaiG(A) < «, G(B) < =, sinceG(D) = G(—D)
forall D € 88Y. The fact thaZg(AU (—A)) is real valued random variable, and the
relations R&g(—A) = ReZg(A), ImZg(—A) = —ImZg(A) under the conditions
of (viii) follow directly from (v). The remaining statemeof (vii) and (viii) can be
proved similarly to (vi) only the calculations are simplerthis case.

The properties of the random spectral meagigrbsted above imply in particular
that the spectral measu@@ determines the joint distribution of the corresponding
random variableZs(B), B € #".

3.1 On the spectral representation of the covariance funabin of
stationary random fields

The results formulated under the name of Bochner and BoeBebivartz theorem
(I'write this, because actually | presented not these timesi®ut an important con-
sequence of them) have the following content. Given a fieiten measur& on
the torusR¥ /2rZ, one can define a (Gaussian) discrete stationary field wittecor
lation function satisfying (3.1) with this measuge For an even measufg on R"
satisfying (3.3) there exists a (Gaussian) generalizewstay field with correlation
function defined in formula (3.2) with this measu®e The Bochner and Bochner—
Schwartz theorems state that the correlation functionldfGaussian) discrete sta-
tionary fields, respectively of all stationary generalifiettds can be represented in
such a way. Let us explain this in more detalil.

First | formulate the following

Proposition 3C.Let G be a finite measure on the torus/RnZ, such that GA) =
G(—A) for all measurable sets A. Then there exists a Gaussianal&sstationary
field X, n € Zy, with expectation zero such that its correlation functigm)r=
EXXkin, N K € Zy, is given by formula (3.1) with this measure G.

Let G be a measure on“Rsatisfying (3.3) and such that(@) = G(—A) for all
measurable sets A. Then there exists a Gaussian statioeasralized field X¢),
¢ € .7, with expectation EXp) = Ofor all ¢ € . such that its covariance function
EX(¢)X(¢), ¢,y € .7, satisfies formula (3.2) with this measure G.
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Moreover, the correlation function(n) or EX(¢)X(y), ¢,y € .#, determines
the measure G uniquely.

Proof of Proposition 3CBy Kolmogorov’s theorem about the existence of ran-
dom processes with consistent finite dimensional distiébstit is enough to prove
the following statement to show the existence of the Gansdigcrete stationary
field with the demanded properties. For any poin{s...,n, € Z, there exists a
Gaussian random vectQKnl,...,an) with expectation zero and covariance ma-
trix EXn; Xn, = r(nj —n). (Observe that the function(n) is real valuedy(n) =
r(—n), because of the evenness of the spectral meds)relence it is enough to
check that the corresponding matrix is positive definit, ¥. cjcr(nj —ng) >0
ik

for all real vectors(cy,...,Cp). This relation holds, becau’sg cjCr(nj —ny) =
ik
[13ci€MX2G(dx) > 0 by formula (3.1).
j

It can be proved similarly that in the generalized field cdserd exists a
Gaussian random field with expectation zero whose covaidanction satis-
fies formula (3.2). (Let us observe that the relat®M) = G(—A) implies that
EX(¢)X(y) is areal number for alp, @ € .7, sinceEX(¢)X(y) = EX(9)X(y)
in this case. In the proof of this identity we exploit tHak) = f(—x) for a real val-
ued functionf.) We also have to show that a random field with such a distdhut
is a generalized field, i.e. it satisfies properties (a) apdiflen in the definition of
generalized fields. It is not difficult to show thatdf, — ¢ in the topology of the
space?, thenE[X(¢n) — X(¢)]? = [ |Bn(X) — §(x)|°G(dx) — 0 asn — o, hence
property (b) holds. (Here we exploit that the transformatpo— ¢ is bicontinuous
in the space?’.) Property (a) also holds, because, as it is not difficultimok with
the help of formula (3.2),

E[auX($1) +a2X(92) — X(¢ (211 + a292))*
= [ |oudi00 + 2020 — (augi T 202)(0)| Gl =0,

Itis clear that the Gaussian random field constructed in auehy is stationary.

Finally, as we have seen in our considerations in the mait) tiee correlation
function determines the integrdlf (x) G(dx) for all continuous function$ with a
bounded support, hence it also determines the me&sure O

The Bochner and Bochner—Schwartz theorems enable us tothhbthe corre-
lation function of all stationary (Gaussian) fields (digerer generalized one) can
be presented in the above way with an appropriate spectaéuneG. To see this
let us formulate these results in their original form.

To formulate Bochner’s theorem first we introduce the follogvnotion.

Definition of positive definite functions.Let f(x) be a (complex valued) function
onZy (or on R’). We say that () is a positive definite function if for all param-
eters p, complex numbers,c..,c, and points x,...,Xp in Zy (or in RY) the in-
equality
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p p
Cjckf(Xj —x) >0
2,2,
holds.

A simple example for positive definite functions is the fuantf(x) = &t
wheret € Z, in the discrete, antle RY in the continuous case. Bochner’s theorem
provides a complete description of positive definite funrcsi.

Bochner's theorem. (Its original form.) A complex valued function(X) defined on
Z, is positive definite if and only if it can be written in the fofifx) = [ €Y G(dx)
for all x € Z, with a finite measure G on the torus’ RmnZ,. The measure G is
uniquely determined.

A complex valued function(X) defined on R is continuous in the origin and
positive definite if and only if it can be written in the forrtxf = [ €¥G(dx) for
all x € RV with a finite measure G on'RThe measure G is uniquely determined.

It is not difficult to see that the covariance functigm) = EXXx1n, (EX, = 0),
k,n € Z,, of a stationary (Gaussian) random field is a positive definite func-
tion, smcez cjckr(nj —nk) = E| chXn |2 > 0 for any vector(cy,...,cp). Hence

Bochner’s theorem can be apphed for it. Besides, the matin) = r (—n) together
with the uniqueness of the measu@eappearing in Bochner’s theorem imply that
the identityG(A) = G(—A) holds for all measurable se®& This implies the result
formulated in the main text under the name Bochner’s theorem

The Bochner—Schwartz theorem yields an analogous repetgenof positive
definite generalized functions ier’ as the Fourier transforms of positive general-
ized functions in#”. It also states a similar result about generalized funstiothe
space?’. To formulate it we have to introduce some definitions. Rivsethave to
clarify what a positive generalized function is. We introduhis notion both in the
spaces”’ and%’, and then we characterize them in a Theorem.

Definition of positive generalized functions A linear functional Fe .’ (or F €
2') is called a positive generalized function if for all sughe . (or ¢ € 2) test
functions for whichp (x) > Oforallx € RV (F,¢) > 0.

Theorem about the representation of positive generalizedihctions. All positive
generalized functions E .7’ can be given in the forrtF, ¢ ) = [ ¢ (x) u( dx), where

u is a polynomially increasing measure orf,R.e. it satisfies the relatiorf (1 +
IX|?)"Pu(dx) < o with some p> 0. Similarly, all positive generalized functions in
2' can be given in the forniF,¢) = [ ¢ (X)u(dx) with such a measurg on R’
which is finite in all bounded regions. The positive generdifunction F uniquely
determines the measugein both cases.

We also introduce a rather technical notion and formulagsalt about it. Let us
remark that ifp € ¢ andy € .7, then also their produdiy € .. The analogous
result also holds in the spa¢e
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Definition of multiplicatively positive generalized functions. A generalized func-
tion.# € .7 (or F € 2') is multiplicatively positive if F,¢@) = (F,|¢|?) > 0 for
all ¢ € € (orin ¢ € 2).

Theorem about the characterization of multiplicatively positive generalized
functions. A generalized function [ .’ (or F € 2') is multiplicatively positive if
and only if it is positive.

Now | introduce the definition of positive definite generatifunctions.

Definition of positive definite generalized functionsA generalized functiofr €
<" (or F € 2') is positive definite if(F,¢ x¢*) > 0 for all ¢ € .7° (of ¢ € 2),
whereg*(x) = ¢ (—x), and« denotes convolution, i.g.x¢*(x) = [ ¢ (1) (t — x) dt.

We refer to [15] for an explanation why this definition of pog@ definite gen-
eralized functions is natural. Let us remark thapify € .#¢, then¢ * @ € .7C,
and the analogous result holdsgh The original version of the Bochner—Schwartz
theorem has the following form.

Bochner—Schwartz theorem. (Its original form.)Let F be a positive definite gen-
eralized function in the space”’ (or 2’). Then it is the Fourier transform of a
polynomially increasing measuge on R’, i.e. the identity(F,¢) = [ @ (x) u(dx)
holds for all ¢ € 7€ (or ¢ € 2) with a measureu that satisfies the relation
[(1+|x2)~Pu(dx) < o with an appropriate p> 0. The generalized function F
uniguely determines the measyre On the other hand, ifi is a polynomially in-
creasing measure on"Rthen the formuldF,¢) = [ ¢ (X)u(dx) with ¢ € .7¢ (or

¢ € 2) defines a positive definite generalized function F in thespd’ (or 2').

Remarklt is a remarkable and surprising fact that the class of pesitefinite gen-
eralized functions are represented by the same class ofinesasin the spaces”’
and Z'. (In the representation of positive generalized functithesclass of mea-
suresu considered in the case 6 is much larger, than in the case.6f.) Let us
remark that in the representation of the positive definiteegalized functions i’
the functiond we integrate is not in the clasg, but in the space? consisting of
the Fourier transforms of the functionsin

It is relatively simple to prove the representation of pesitdefinite general-
ized functions given in the Bochner—Schwartz theorem fer ¢dtass.”’. Some
calculation shows that i is a positive definite generalized function, then its
Fourier transform is a multiplicatively positive genezalil function. Indeed, since
the Fourier transform of the convolutign+ /(x) equalsd (t) Ji(t), and the Fourier
transform ofg*(x) = ¢ (—x) equalsf (t), the Fourier transform o x ¢*(x) equals
@ (1) (t). Hence the positive definitiveness property of the germadlfunctionF
and the definition of the Fourier transform of generalizedctions imply that
(F,$8) = (2m)V(F,¢ = ¢*) > 0 for all ¢ € .7°. Since every function of”° is
the Fourier transfornd of some functiong € .7 this implies thatF is a mul-
tiplicatively positive and as a consequence a positive igdimed function in.””.
Such generalized functions have a good representatiorthathelp of a polynomi-
ally increasing positive measuge Since(F,¢) = (2rm)~Y(F, §) it is not difficult
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to prove the Bochner-Schwartz theorem for the sp#¢eavith the help of this fact.
The proof is much harder if the spaé¥ is considered, but we do not need that
result.

The Bochner—Schwartz theorem in itself is not sufficient ¢satibe the cor-
relation function of a generalized random fields. We stika@nother important
result of Laurent Schwartz which gives useful informatidioat the behaviour of
(Hermitian) bilinear functionals in”® and some additional information about the
behaviour of translation invariant (Hermitian) bilineanttionals in this space. To
formulate these results first we introduce the following migbn.

Definition of Hermitian bilinear and translation invariant Hermitian bilinear
functionals in the space.”°. A function B¢, ), ¢, € ¢, is a Hermitian bi-
linear functional in the space”® if for all fixed ¢ € .° B(¢, ) is a continuous
linear functional of the variabley in the topology of¢, and for all fixedp € .¢
B(¢, ) is a continuous linear functional of the variablein the topology of7°.

A Hermitian bilinear functional Bg, ) in .¢ is translation invariant if it does
not change by a simultaneous shift of its variabpeand ¢, i.e. if B(¢ (x), ¢(x)) =
B(¢(x+h),(x+h)) forallh e R".

Definition of positive definite Hermitian bilinear function als. We say that a Her-
mitian bilinear functional B¢, ¢) in .~ is positive definite if Bp,¢) > 0 for all
o e 7.

The next result characterizes the Hermitian bilinear asasiation invariant Her-
mitian bilinear functionals in”°.

Theorem 3D. All Hermitian bilinear functionals Bg, () in . can be given in
the form Bo, ) = (F1,¢(X)@(y)), ¢, € ¢, where k is a continuous linear
functional on.”¢ x .#¢, i.e. it is a generalized function i,

A translation invariant Hermitian bilinear functional i¥’® can be given in the
form Z(¢, @) = (F,¢ «y*), ¢,y € .C, where Fe .7, ¢*(x) = P(—x), and *
denotes convolution.

The Hermitian bilinear form Bp, /) determines the generalized functions F
uniquely, and if it is translation invariant, then the samade told about the gen-
eralized function F. Besides, for all functionals €.72"" and F € .7’ the above
formulas define a Hermitian bilinear functional and a traatsbn invariant Hermi-
tian bilinear functional ins”° respectively.

Let us consider a Gaussian generalized random Xé{f), ¢ € .7, with expec-
tation zero together with its correlation functiB¢, ) = EX¢)X(y), ¢, @ € 7.
More precisely, let us consider the complexificatl®1 +i¢2) = X(¢p1) +iX (¢2)
of this random field and its correlation functi&o¢, ) = EX(¢)X(y), ¢, € C.
This correlation functioB(¢, @) is a translation invariant Hermitian bilinear func-
tional in ., hence it can be written in the for®(¢, ) = (F, ¢ * ¢*) with an
appropriaté= € .. MoreoverB(¢,$) > 0 for all ¢ € .7¢, and this means that the
generalized functiofr € . corresponding td(¢, () is positive definite. Hence
the Bochner—Schwartz theorem can be applied for it, aneéltigithat
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EX(O)IX(W) = [#-9(6(d) = [ FRFXG(dx forall g,y e

with a uniquely determined, polynomially increasing measa on RV. Now we
prove with the help of these results Theorem 3B.

Proof of Theorem 3BNe have already proved relations (3.2) and (3.3) with thp hel
of some results about generalized functions. To complet@tbof of Theorem 3B
we still have to show tha is an even measure. In the proof of this statement we
exploit that for a real valued functiop € . the random variablX(¢) is also real
valued. Hence i, Y € .7, thenEX(¢)X () = EX(¢)X(y). Besides$(—x) =

@ (x) and@(—x) = P(x) in this case. Hence

J8008006(a = [ 500809 G(c
— [ #0880 = [$00F(0 6 (dx)

forall ¢, €., whereG—(A) = G(—A) for all A€ Y. This relation implies that
the measure& andG~ agree. The proof of Theorem 3B is completed. ad






Chapter 4
Multiple Wiener-It 0 integrals

In this chapter we define the so-called multiple Wienéritegrals, and we prove
their most important properties with the help di'# formula, whose proof is post-
poned to the next chapter. More precisely, we discuss indégpter a modified
version of the Wiener—dtintegrals with respect to a random spectral measure rather
than with respect to a random measure with independentrnvarts. This modi-
fication makes it necessary to slightly change the definitibthe integral. This
modified Wiener—Ib integral seems to be a more useful tool than the originabone
the Wick polynomials, because it enables us to describedtieneof shift transfor-
mations.

Let G be the spectral measure of a stationary Gaussian field ¢tisor gener-
alized one). We define the followirmgal Hilbert spaces7y' and. g, n=1,2,....
We havef, € 7 if and only if fy = fa(X1,...,%), Xj €R", j=1,2,...,n,is a
complex valued function af variables, and

@  fa(=x1,...,—%Xn) = falX1,..., %),
) fnll2 = [1fa(Xe, .-, %) |?G(dxq) ... G(d¥,) < .

Relation (b) also defines the norm mZG” The subspace?y' C %ZG” contains
those functiond, € ¢ which are invariant under permutations of their arguments,
ie.

(© fn(xn(l),...,xn(n))) = fn(Xa,...,%n) for all e My, wherell, denotes the
group of all permutations of the s€t,2,...,n}.

The norm in# is defined in the same way as . Moreover, the scalar
product is also similarly defined, namelyfif g € J7Z', then

(f,9) :/f(xl,...,xn)g(xl,..‘,xn)G(dxl)...G(dxn)

:/f(xl,...,xn)g(—xl,...,—xn)G(dxl)...G(dxn).

27
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Because of the symmeti@(A) = G(—A) of the spectral measurd,g) = (f,qg),
i.e. the scalar produdtf,g) is a real number for alf, g € ZZ. This means that
A is areal Hilbert space. We also defing? = 72 as the space of real constants
with the norm||c|| = |c|. We remark that# is actually then-fold direct product
of jfé while 7' is then-fold symmetrical direct product 0%%1 Condition (a)
means heuristically th&f, is the Fourier transform of a real valued function.
Finally we define the so-called Fock space E4p whose elements are se-
quences of function$ = (fo, f1,...), fp € S foralln=0,1,2,..., such that

fes]

1
||f||2: E ﬁ||fn||2<°°-
n=0""

Given a functionf € %’76” we define Synf as

1
Symf (Xq,..., X)) = — f (X105« » Xyzn) ) -
o n;n (1) -+ X(n)
Clearly, Symf € 22, and
[Symf|[ </ f]. (4.1)

Let Zg be a Gaussian random spectral measure corresponding tpebtrad
measures on a probability spaceQ, <7, P). We shall define the-fold Wiener—I1H
integrals

1 —
I6(fn) = E./ Fa(X, . Xn)Zo (A1) .. Z6(d%,)  for o € A

and .
Ic(f) = zOIG(fn) for f = (fo, f1,...) € ExpsG.
n—

We shall see thalig(f,) = Ig(Symfy) for all f, € 2. Therefore, it would have
been sufficient to define the Wienei-lintegral only for functions in/Zg'. Nev-
ertheless, some arguments become simpler if we workh In the definition of
Wiener-Io integrals first we restrict ourselves to the case when tbetsgd measure
is non-atomic, i.eG({x}) = 0 for all x € R. This condition is satisfied in all inter-
esting cases. However, we shall later show how one can get tiils restriction.

First we introduce the notion of regular systems for soméectbns of subsets
of RY, define a subclas{' C /7' of simple functions with their help, and define
the Wiener—Ib integrals for the functions of this subclass.

Definition of regular systems and the class of simple functits. Let
2 ={4j, j=+1,£2,...,£N}

be a finite collection of bounded, measurable sets ‘inififlexed by the integers
+1,...,=N. We say thatZ is a regular system if\j = —A_j, andAjN A = O if
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j#Iforall j,I =+1,+£2...,+£N. A function fe ' is adapted to this system
2 if f(Xq,...,%) is constant on the sei§j, x Aj, x --- x Aj,, ji ==£1,...,£N,
I =1,2,...,n, it vanishes outside these sets and also on the sets fohjhic L |/
for some £ 1. N

A function fe g is in the class#Y of simple functions, and a (symmetric)
function fe ¢ is in the class%;”c_(‘ of simple symmetric functions if it is adapted
to some regular systetd = {4;, j =+1,...,£N}.

Definition of Wiener-Itd integral of simple functions.Let a simple function £

¢ be adapted to some regular systefis= {Aj, j+1,...,£N}. Its Wiener—Id
integral with respect to the random spectral measugd<defined as

/f(xl,...7xn)ZG(dx1)...ZG(dxn) (4.2)
=nllg(f) = Z f(Xjgs - >Xin)Z6(8jy) -+~ Za(4j,),
ji=x1...=N
1=1,2,....n
where %, € 4, j=+1,...,£N,I=1,...,n.

We remark that although the regular systemto which f is adapted, is not
uniquely determined (the elements @f can be divided to smaller sets), the in-
tegral defined in (4.2) is meaningful, i.e. it does not dependhe choice of%.
This can be seen by observing that a refinement of a regulégrsyg to which
the functionf is adapted yields the same value for the sum defimirig(f) in
formula (4.2) as the original one. This follows from the aility of the random
spectral measur&g formulated in its property (iv), since this implies that bac
term f(Xj,,...,Xj,)Zc(4j,) - --Zc(4j,) in the sum at the right-hand side of for-
mula (4.2) corresponding to the original regular systemaégjthe sum of all such
termsf (x;,,... ,xjn)ZG(AJf/l) o ~ZG(AJfﬁ) in the sum corresponding to the refined par-
tition forwhichAJf/1 XX By CAj X X Ay

By property (vii) of the random spectral measures all présiuc

Z(4yj,) - Zs(4j,)

with non-zero coefficient in (4.2) are products of indeperidandom variables.
We had this property in mind when requiring the conditiort the functionf van-
ishes on a produdj, x --- x 4j, if jj = £j for somel # I’. This condition is
interpreted in the literature as discarding the hypergagne= x, andx = —x,
I,I'=1,2,...,n,1 #1’, from the domain of integration. (Let us observe that in this
case, — unlike to the definition of the original Wieneb-Ihtegrals discussed in
Chapter 7, — we omitted also the hyperplangs- —x; and not only the hyper-
planesqy = x. | #1’, from the domain of integration.) Property (a) of the funos

in &' and property (v) of the random spectral measures implylg@t) = Ig(f),

i.e.lg(f) is areal valued random variable for dllc 7. The relation
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Elg(f)=0, forfe 0 n=12,... (4.3)

also holds. LetZ = /#0NAR. If f € A2, then Syt € 72, and
lc(f) =lg(Symf). (4.4)

Relation (4.4) follows immediately from the observatioatths(4j,) - - - Zg(4;,) =
Z6(Anjy)) - Zs(Apyjy) for all e I1,. We also claim that

1 a
EIG(f)ZSEHfHZ for f e .22, (4.5)
and 1
EIG(f)Z:HHfHZ for f e 72 (4.6)

Because of (4.1) and (4.4) it is enough to check (4.6).
Let 2 be a regular system of sets®Y, ji,..., jn andks,...,k, be indices such
thatj; # £j, k # £k if | #1’. Then

EZ5(4)) - Zo(4jn)Z6(Bky) - Zo(Aky)

:{G(Aj1)~~-G(Ajn) it {1, dn} = {ke, o kal
0 otherwise.

To see the last relation one has to observe that the produtheoieft-hand
side can be written as a product of independent random Vesidlecause of prop-
erty (vii) of the random spectral measures{Ji,..., jn} # {ki,...,kn}, then there
is an indexl such that eithelj, # £k for all 1 <1’ < n, or there exists an index
I”, 1 <1" <n, such thatjj = —kp.. In the first cas&g(4j,) is independent of the
remaining coordinates of the vecttfg(4},),...,Zc(4j,),Zc(Ax,); - - -, Zs(Ax,)),
andEZg(4;,) = 0. Hence the expectation of the investigated product eqeats
as we claimed. If} = —k; with some indext’, then a different argument is needed,
sinceZg(4;,) andZg(—4;,) are notindependent. In this case we can state that since
jp# i if p#1, andky # i if q# 1, the vecto(Zg(4),), Ze(—A4j,)) is indepen-
dent of the remaining coordinates of the above random veCtoithe other hand,
the productZg(4;,)Zs(—A4j,) has zero expectation, sin€&Zg(4j)Zc(—4j,) =
G(4j, N (—4j,)) = 0 by property (iii) of the random spectral measures and tlze re
tion A;, N (—A4;,) = 0. Hence the expectation of the considered product eqeats z
also in this case. i j1,..., jn} = {Ki,....ka}, then

n n

EZ6(0) + Z6(0, Z6(B)  ZolB,) = [ EZ6(0y)Z0(A3) = [ 614,

Therefore for a functiorf € /7
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Elg(f :< ) > > Xy X)) F (g3 %)
EZ5(4),) - Z6(4j)Z6(A) -+ Z6(Ak,)
( )z|fxu, X, PG(4) -+ G(Ay)

1
= 1100 X PB(d) - Bl a) = 12

We claim that Wiener—t integrals of different order are uncorrelated. More ex-
plicitly, take two functionsf € jf” andf’ ¢ jf” such than # '. Then we have

Els(f)la(f)=0 if fe D, f'c Y, andn#n. (4.7)

To see this relation observe that a regular systenan be chosen is such a way that
both f andf’ are adapted to it. Then a similar, but simpler argument apréagous
one shows that

EZG(AJl) T ZG(Ajn)ZG(Ak1> o ZG(Akn/) =

for all sets of indiceq j1,..., jn} and{ky,...,ky} if n=n’, hence the sum express-
ing Elg(f)lg(f’) in this case equals zero.

We extend the definition of Wienerélintegrals to a more general class of ker-
nel functions with the help of the following Lemma 4.1. Thésd simple result,
but unfortunately it contains several small technical ifletahich make its reading
unpleasant.

Lemma 4.1.The class of simple functiomg@ is dense in the (real) Hilbert space
¢, and the class of symmetric simple functiefi' is dense in the (real) Hilbert
spaces¢.

Proof of Lemma 4.1t is enough to show tha#{' is dense in the Hilbert spacé,
since the second statement of the lemma follows from it byadstrd symmetriza-
tion procedure.

First we reduce the result of Lemma 4.1 t&tatement Aand then to &tate-
ment B Finally we proveStatement BIn Statement Ave claim that the indicator
function xa of a bounded seA € %‘?”"Lsuch thatA = —A can be well approximated

by a function of the fornmg = xg € 7', wherexg is the indicator function of an
appropriate seB. Actually we formulateStatement An a more complicated form,
because only in such a way can we reduce the statement algogodal approx-
imability of a general, possibly complex valued functibre 2% by a function in

g € ¢ to Statement A

Statement ALet A € 2" be a bounded, symmetric set, i.e. fet= —A. Then for

anye > 0 there is a functiog € 7 such thag = xg with some seB € A", i.e.
g is the indicator function of a s&, such that the inequalityfg — xa|| < € holds
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with the norm of the spacé/!'. (Herexa denotes the indicator function of the get
and we havea € #¢.)

If the setA can be written in the formA = A; U (—Az) with such a sef\; for which
the sets”A; and —A; have a positive distance from each other, péA1, —A;) =

inf  p(xy) > d, with somed > 0, wherep denotes the Euclidean distance
XA, YE—AL

in R", then a good approximation gfa can be given with such a functian=
XBu(-B) € 22 for which the setd3 and —B are separated from each other. More
explicitly, for all € > 0 there is a seéB € 4" such thaB C Af/z ={x: p(x,A1) <

%}, 9= XBu(-B) € j?G” andG"(A1AB) < §. Here AAB denotes the symmetric
difference of the seté andB, andG" is then-fold direct product of the spectral
measureG on the spa&é&”". (The above properties of the sBtimply that the

functiong = xg,(_p) € ¢ satisfies the relatiofig — xa|| < €.)

To justify the reduction of Lemma 4.1 ®tatement Aet us observe that if two
functionsf; € 77 andf, € 7' can be arbitrarily well approximated by functions

from g in the norm of this space, then the same relation holds forliaear
combinationcs f; + ¢, f, with real coefficients; andc. (If the functionsf; are ap-
proximated by some functiorgs € 7', i = 1,2, then we may assume, by applying
some refinement of the partitions if it is necessary, thatapgroximating func-
tionsg; andg; are adapted to the same regular partition.) Hence the pboeftahe
arbitrarily good approximability of a functiof € J7' by functionsg € J#Z' can
be reduced to the proof about the arbitrarily good approkitita of its real part
Ref € ¢ and its imaginary part Imh € 7. Moreover, since the real part and
imaginary part of the functiori can be arbitrarily well approximated by such real
or imaginary valued functions from the spag&l’ which take only finitely many
values, the desired approximation result can be reducetetadse wheri is the
indicator function of a sef € 4" such thatA = —A (if f is real valued), or it
takes three values, the valuen a setdy € #", the value—i on the set-A, and

it equals zero o™ \ (AL U (—A1)) (if f is purely imaginary valued). Besides, the
inequalitiesG"(A) < « andG" (A1) < « hold. We may even assume thaandA;
are bounded sets, becaG¥A) = K"Elo G"(AN[—K,K]"), and the same argument

applies forA;.

Statement Ammediately implies the desired approximation result mfilst case
when f is the indicator function of a s& such thatA = —A. In the second case,
when such a functior is considered that takes the valugisand zero, observe that
the set\; = {x: f(x) =i} and—As = {x: f(x) = —i} are disjoint. Moreover, we
may assume that they have positive distance from each b#eayse there are such
compact set&y C A;, N=1,2,..., for which NIi_r]goG”(A\ (KnU(—=Kn)) =0, and

the two disjoint compact set§y and —Ky have positive distance. This enables us
to restrict our attention to the approximation of such fions f for which A; =

{x: f(x) =i} =Ky and—A; = {x: f(x) = —i} = —Ky with one of the above
defined set¥y with a sufficiently large indeXN. To get a good approximation in
this case, takéd; = Ky and apply the second part 8tatement Aor the indicator
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functionxa = Xknu(—Kn) with the ch0|ceA1 = Kn. We get that there exists a function
9= XBu(-B) € j’f” such thaB C A1 2 with a numberd > 0 for which the relation
p(Kn,—Kn) > 0 holds andG"(A1AB) < 2. Then we define with the help of the
above seB the functiong € 7 asg(x) =i if xe B, g(x) = —i if xe —Bandg(x) =

0 otherwise. The definition of the functiayg-) is meaningful, sinc&N (—B) =0,
and it yields a sufficiently good approximation of the fupatif (-).

In the next step we reduce the proof@tatement Ao the proof of a result called
Statement BWe show that to prov&tatement At is enough to prove the good
approxi_mability of some very special (and relatively sigjpindicator functions

X € ¢ by afunctiong € 7.
Statement BLet B = D1 x --- x Dy be the direct product of bounded s&tge %"
such thatD; N (—Dj) =0 for all 1 < j < n. Then for alle > O there is a seff C
BU(—-B), F € " such thaxr € ¢, and|| Xg () — XF || < €, with the norm of
the spacery.

To deduceStatement Arom Statement Bet us first remark that we may reduce

our attention to such sefsin Statement Aor which all coordinates of the points in
the setA are separated from the origin. More explicitly, we may asstime existence

n
of a numbem > 0 with the propertyANK(n) = 0, whereK(n) = U Kj(n) with
j=1

Ki(n)={(xt,...,xn): x €R",1=1,...,n, p(xj,0) < n}. To see our right to make
such a reduction observe that the relat@{0}) = 0 implies that Iirg\G“(K(n)) =
n—

0, hence IirgG”(A\ K(n)) = G"(A). At this point we exploited a weakened form of
n—
the non-atomic property of the spectral measbreaamely the relatio({0}) =

First we formulate a result which we prove somewhat lated, strow that the
proof of Statement Acan be reduced to that @tatement Bwith its help. We
claim that for all numberg > 0, d > 0 and bounded setd € " such that
A= —A andAUK(n) = 0 there is a finite sequence of bounded sjts %",

j ==£1,...,£N, with the following properties. The selis are disjoint,B,j = —B;j,
j ==+1,...,%N, each seB; can be written in the forns; = D\’ x DY with
Dﬁ‘) S andDi(;” (fD( )) 0 forall1<j<Nand1<k<n,the diame-
terd(Bj) = sup{p(x,y): x,ye BJ} of the setsB; has the bound(B;) < 5 for all

1< j <N, and finally the seB = U (BjUB_;) satisfies the relatio@"(AAB) < &.

Indeed, since we can choozse 0 arbitrarily small, the above result together with
the application ofStatement Bor all functlonst“U -B)) , 1< j <N, supplies an

N
arbitrarily good approximation of the functigq by a function of the formy g, €
=1

a — N a
& in the norm of the spacez. Moreover, the random variabl§g xg, € g
=1
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agrees with the indicator function of the s(\‘et Fj,sincethe set8, j =+1,...,£N,
=1

are disjoint, andj C BjUB_;. J

If the setA can be written in the formh = A; U (—Aq) such thap(Ag, —As1) > 9,
then we can make the same construction with the only modditdhat this time
we demand that the seBg satisfy the relatior(B;) < & with somed < $ for all
1 < j <N. We may assume th#&n (B; UB_j) # 0 for all indicesj, since we can
omit those set8; UB_j which do not have this property. SindéB;) < %, a setB;
cannot intersect botA; and —A;. By an appropriate indexation of the s&swe

N
haveB; cAf/2 andB_;j C (—A1)%?forall1< j <N.ThentheseB= |J (BjNF)
=1

and the functiorg = xg g, satisfy the second part Statement A
To find a sequencBj, j = £1,..., %N, for a setA such thatA = —A, andAU
K(n) = 0 with the properties needed in the above argument obshateltere is

a sequence of finitely many bounded sBisof the formB; = D(lj) x -+ x DY,

Dl“) € %", whose uniorB = |JB; satisfies the relatioB"(AAB) < 5. Because of
the symmetry properth = —A of the setA we may assume that these sBjshave
such an indexation with both positive and negative intefmrsvhich Bj = —B_;.
We may also demand th&; N A # 0 for all setsB;j. Besides, we may assume, by

dividing the setle(j) appearing in the definition of the sel#s into smaller sets if
this is needed that their diametda(lDl(”) <max(J, %). This implies because of the

relationANK (1) = 0 thatD) N (~DV) = 0 for all j and 1< | < n. The above
constructed sef8; may be not disjoint, but with the help of their appropriatefier
splitting and a proper indexation of the sets obtained it suway we get such a
partition of the seB which satisfies all conditions we demanded. For the sake of
completeness we present a partition of theBsefth the properties we need.

Let us first take the following partition d¥ for all 1 <1 < n with the help of
the setle(”, 1< j < N. For a fixed numbek this partition consists of all sefsﬁl)

of the formD}{" = N Flrj(j), where the indices are sequence(1),...,r(N))
1<j<N

of lengthN with r(j) = 1,2 0r3,1< j <N, andFl(jl) = Dl(j), Hsz) = —D|(j>’ Flf)) =

R\ (Dl(j> U (—D,(”)). ThenB can be represented as the union of those sets of the
form 55}) X ooe X 5§:) which are contained iB.

Proof of statement BTo prove this result we show that for al> 0 there is a
regular systen¥ = {4, | =+1,...,+N} such that all set®; and—Dj, 1 < j <n,
appearing in the formulation &tatement Ban be expressed as the union of some
elements), of 2, andG(4)) < e for all 4, € 2.

First we prove a weakened version of this statement. We shatlere is a
regular systen = {A/,| = +1,...,+N’} such that all set®; and—D; can be
expressed as the union of some sitof 2. But we have no control on the mea-
sureG(4/) of the elements of this regular system. To get such a regykies
we define the setd’(&s, 1 < |s| < n) = D§ N (~Dy)é1N---NDE& N (—Dy)&n for
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all vectors(gs, 1 < |s| < n) such thates = +1 for all 1 < |s| < n, and the vector
(&, 1 < |s| < n) contains at least one coordinate, andD!* =D, D! = R’\ D
for all setsD € #Y. Then taking an appropriate reindexation of the g8{gs, 1 <
|s| < n) we get a regular syster® with the desired properties. (In this construc-
tion the setd/(&s, 1 < |s| < n) are disjoint, and during their reindexation we drop
those of them which equal the empty set.) To see fhatith a good indexation
is a regular system observe that for a Agt= A’(&5, 1 < |[s| < n) € Z we have
—A =A(e_5,1< |5 <n) € 2, andA/ N (-4]) C Djn(—Dj) = 0 with some
index 1< j < n. (We had to exclude the possibilityy = —A,.) B

Next we show that by appropriately refining the above regsjfatem? we can
get such a regular systetn = {4, | = +1,...,+N} which satisfies also the prop-
erty G(4,) < ¢ for all 4 € 2. To show this let us observe that there is a finite

n
partition{Eg,...,E } of J (DjU(—Dj)) such thalG(Ej) < eforall1<j<I.In-
=1

n
deed, the closure @ = (J (D;U(—Dj)) can be covered by open sétsC R’ such
j=1

thatG(H;) < ¢ for all setsH; because of the non-atomic property of the mea&yre
and by the Heyne—Borel theorem this covering can be chosén fisith the help of

n
these setsl; we can get a partitiofiEs, ... ,E } of | (D;U(—Dj)) with the desired
=1

properties.

Then we can make the following construction with the helphef above setg;
and4/. Take a pair of elementg)/,A’ ) = (4/,—-4/), of 2, and split up the set/
with the help of the setE; to the union of finitely many disjoint sets of the form
A j =A/NEj. ThenG(4, ;) < ¢ for all sets, j, and we can write the sét | as the
union of the disjoint sets-4; ;. By applying this procedure for all paifg)/,A’ )
and by reindexing the sef§ j obtained by this procedure in an appropriate way we
get a regular syster® with the desired properties.

Let us writeBU (—B) as the union of products of sets of the fafmg x --- x 4
with sets4; € 2, 1< j <n, and let us discard those products for whigh= +I;/
for some pair(j, '), j # j’. We define the sef about which we claim that it satis-

fies Property B as the union of the remaining sitsx --- x A;,. Thenxg € g
Hence to prove thetatement Biolds with this seF if € > 0 is chosen sufficiently
small it is enough to show that the sum of the ter@(g),, ) ---G(4,,) for which
lj = =1}, with somej # j' is less tham?eM"~, whereM = maxG(D; U (-Dj)) =
2maxG(Dj). To see this observe that for a fixed péjrj’), j # j’, the sum of all
productsG(4,)---G(4y,) such that; =1, can be bounded bgM"~*, and the same
estimate holds if summation is taken for products with thepprtyl; = —I;:. In-

deed, each term of this sum can be bounded®y* ( n 4, |, and the
1<p<n, p#j
events whos&"~! measure is considered in the investigated sum are dispint.
side this their union is in the product set [T  (Dp,UD_p), whose measure is
1<p=n, p#]
bounded byM"1. Lemma 4.1 is proved O
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As the transformatiomg(f) is a contraction from%%G” into L2(G, <7, P), it can

uniquely be extended to the closuresg, i.e. to%ZG”. We define the-fold Wiener—
It integral in the general case via this extension. The egmeks(f) is a real val-
ued random variable for afl € .7, and relations (4.3), (4. 4) (4.5), (4.6) and (4.7)

remain valid forf, f' € %”" or f € /7 instead off, f' ¢ %”” of f e ff” Rela-
tions (4.6) and (4 7) |mpIy that the transformank@n Exp% — L%(Q, 427 ,P) is
an isometry. We shall show that also the following resultsol

Theorem 4.2.Let a stationary Gaussian random field be given (discreteenm-g
eralized one), and letgZdenote the random spectral measure adapted to it. If we
integrate with respect to thisgZ then the transformationgl: Expszg — 27 is
unitary. The transformatiofn!)¥2lg: #2 — 4 is also unitary.

In the proof of Theorem 4.2 we need an identity whose proob&poned to the
next chapter.

Theorem 4.3. (I0’'s formula.) Let ¢1,...,¢m, ¢ € ji”Gl 1<j<m, be an
orthonormal system in4. Let some positive integers,j.., jm be given, and
let j1+---+ j;m = N. Define for all i=1,...,N the function gas g = ¢ for
i+ t+js1<i<ji+-+js 1<s<m. (In particular, g = ¢1 for 0 <i < j.)

([ oaton) . ozson)

:/gl<xl>mgN<xN>ze<dxl)---ze<de)
— [ symigs(a)-+- o ()] Za( ) -+ Za(doy)

(Hj(x) denotes again the j-th Hermite polynomial with leading Goieit 1.)

Proof of Theorem 4.2Me have already seen thatis an isometry. So it remains to
show that it is a one to one map from Exf to . and from.J# to /2.

The one-fold integralg(f), f € /&, agrees with the stochastic integtaf)
defined in Chapter 3. Hencls(€(™)) = X(n) in the discrete field case, and
lc(§) = X(¢), ¢ € 7, in the generalized field case. Henkg ¢ — 4 is
a unitary transformation. Lepy, ¢2,... be a complete orthonormal basisjﬁfel.
Thenéj = [¢;(X)Za(dx), j = 1,2,..., is a complete orthonormal basis i .
Itd’s formula implies that for all sets of positive integdis, ..., jm) the random
variableHj, (&1) - - - Hj,,(ém) can be written as § + - - - + jm-fold Wiener—Id inte-
gral. Therefore Theorem 2.1 implies that the image of E&pis the whole space
2, andlg: EXpJ# is unitary.

The image of/ containss#,, because of Corollary 2.4 anai$ formula. Since
these images are orthogonal for differenformula (2.1) implies that the image of
& coincides withJz,. Hence(n!)l/ZIG: HE — 4 is a unitary transformation.
O
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The next result describes the action of shift transfornmatio .7#. We know by
Theorem 4.2 that al) € 27 can be written in the form

n_fo+z /fn X1, %) Za(dx) ... Zo( dx%) (4.8)

with f = (fo, f1,...) € Exp#% in a unique way, wheré&g is the random measure
adapted to the stationary Gaussian field.

Theorem 4.4.Letn € 2 have the form (4.8). Then
T ="foty ﬁ/é“%ﬁ“*xm fa(X0, - %) Za (1) . .. Za(dxy)
n=1""

for allt € RV in the generalized field and for all¢ Z, in the discrete field case.

Proof of Theorem 4.8Because of formulas (3.7) and (3.8) and the definition of the
shift operatofT; we have

T, (/é<“=x>ze(dx)> — TiXo = Xt :/é“aX)é(“-rX)zG(dx), tezZy,

and because of the identifyp (x) = [ e (u—t)du= &t (x) for ¢ € .7

—/é“‘ Ze(dx), ¢ec.”, teR’,

in the discrete and generalized field cases respectivehcéle

Tt(/f(x) > /e'“‘ XZo(dx) if f e

forallt € Z, in the discrete field and for alle RV in the generalized field case. This
means that Theorem 4.4 holds in the special case whiera one-fold Wiener—t
integral. Letfi(x),..., fn(X) be an orthogonal system Wel The set of functions
dtXf1(x),...,e0¥ f(x) is also an orthogonal system ifz. (t € Z, in the dis-
crete and € RY in the generalized field case.) Hencé'dtformula implies that
Theorem 4.4 also holds for random variables of the form

n= H,l(/fl zde> </fm )

and for their finite linear combinations. Since these lineanbinations are dense
in 2 Theorem 4.4 holds true. m|

The next result is a formula for the change of variables inn&fiel® integrals.



38 4 Multiple Wiener-I6 integrals

Theorem 4.5.Let G and G be two non-atomic spectral measures such that G is
absolutely continuous with respect t6, @nd let dx) be a complex valued function
such that

9(x) = 9(—x),
_ dG(x)
|92(X)| - dG(X)

For every f= (fo, f1,...) € Exp#, we define
fl(X1, .- %) = fa(Xa, ., X0)9(X1) - g(%n), n=121,2,...., fi=fo.

Then f = (fy, f{,...) € ExpZg, and
oty [ L1 dx)... Zs(d
°+n;/ﬁ D0y X0 Za(dx) . Zo(dx)
© 1
L4y 2 [l nZe(da) . Zo(dx),
nzln.

where % and Zy are Gaussian random spectral measures corresponding to G
and G.

Proof of Theorem 4.8Me have|| f) || = || fnl|c, hencef’ € Expi4y . Let @1, @2, . ..
be a complete orthonormal systemift. Theng;, ¢5,. .., ¢;(x) = ¢j(x)g(x) for
all j =1,2,... is a complete orthonormal system%. All functions f, € g
can be written in the fornf(xy,..., %)) = 3 Cj,,....jnSYM(¢j, (X1) - - - §j, (Xn)). Then
(X1, %) = 3 Cjy, . jn SYM(@], (1) - -~ @], (%)) Rewriting all terms

[ Symi(@1,00)-+- 0 06))Za(0) .. Ze( )

and
/Sym(¢jl(x1)~-~¢jn(xn))ZG/(dx1)...ZG/(,dxn)

by means of ib’s formula we get thaf and f’ depend on a sequence of independent
standard normal random variables in the same way. Theoreim groved. a0

For the sake of completeness | present in the next Lemma 4themtype of
change of variable result. | formulate it only in that simpéese in which we need it
in some later calculations.

Lemma 4.6.Define for all t> 0 the (multiplication) transformation:X = tx either
from R’ to R’ or from the torus[—m, ) to the torus[—tm,tm)". Given a spec-
tral measure G on Ror on [, m)" define the spectral measure Gn R’ or on
[—trr,trm)¥ by the formula G(A) = G(#) for all measurable sets A, and similarly
define the functionyf (xq,...,X) = fk(txa,...,tx) for all measurable functionsy f
of k variables, k=1,2,..., with x; € RV or xj € [—m, )" forall 1 < j <k, and put
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for = fo. If f = (fo, f1,...) € Exp#G, then § = (foy, f1y,...) € Exp#g,, and
il 1
fo+ Z /Efn(xlw"axn)ZG(dX]_)...ZG(d)(n)
=

s foﬁni;/fnyt(xl,..‘,xn)za(dxl)...za(dm),

where z and Z; are Gaussian random spectral measures corresponding to G
and G.

Proof of Lemma 4.6t is easy to see thdt = (foy, f1y,...) € EXpiZs,. Moreover,
we may define the random spectral measigein the identity we want to prove by
the formulaZg, (A) = Zg(%). But with such a choice o, we can write even=

instead ofé in this formula. O

The next result shows a relation between Wick polynomiats\aliener—I6 in-
tegrals.

Theorem 4.7.Let a stationary Gaussian field be given, and lgtdenote the ran-
dom spectral measure adapted to it. L€kR...,Xm) = 3 Cj,,....j.Xj; - - Xj, b€ @ ho-
mogeneous polynomial of degree n, and lgt h,hm € #Z. (Here j, ..., jnare n
indices such that < jy <mforall1<| <n.Itis possible that|j= j- also if | #£1".)
Define the random variable§ = [ h;(x)Zg(dx), j =1,2,...,m, and the function

P(Ul, ey Un) = Zle,_”,jnhjl(ul) cee hjn(un). Then

TP, Em): :/5(u1,...,un)ZG(dul)...ZG(dun).

Remarklf Pis a polynomial of degrem, then it can be written &= P, + P>, where
P1 is a homogeneous polynomial of degreendP; is a polynomial of degree less
thann. Obviously,

. P(El7"-7fm): = Pl(flv"wfm):
Proof of Theorem 4.7t is enough to show that
& &t = [ i) (un)Za(duw) .. Za(du)
If hy,...,hn € %”é are orthonormal, (all functions, have norm 1, and if # I,
thenh, andh, are either orthogonal dy = hy/), then this relation follows from a

comparison of Corollary 2.3 withdts formula. In the general case an orthonormal
systemhy, . .., hy can be found such that

m _
hjz Cj,khk; j:l,...,m
2

with some real constantg . Setng = | HjZG(dx). Then
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: EJl .. 'Ejn: = <kzlcjl’kr’k> .. (kzlcjn’krlk> .

= > Ciuki ' Cinkn My Mg’
kn

Kiyeees

> le.kl'“Cjn,qu/Hkl(ul)"'Hkn(un)ze(dul)---ze(dlh)
kn

(ST

- /hjl(ul)-~~hjn(un)ZG(du1)...ZG(dun)

as we claimed. a

We finish this chapter by showing how the Wienebtitegral can be defined if
the spectral measui@ may have atoms. We do this although such a construction
seems to have a limited importance as in most applicatiomsestriction that we
apply the Wiener— integral only in the case of a non-atomic spectral meaGure
causes no serious problem. If we try to give this definitiomindifying the original
one, then we have to split up the atoms. The simplest way wedféor this splitting
up, was the use of randomization.

Let G be a spectral measure BH, and letZg be a corresponding Gaussian spec-
tral random measure on a probability spae <7, P). Let us define a new spectral
measures = G x /\[_%ﬂ%] onRV*t1 where)\[_%.%] denotes the uniform distribution

on the interval—3, 3. If the probability spacéQ, «7, P) is sufficiently rich, a ran-

dom spectral measui®; corresponding t& can be defined on it in such a way
that Zg(A x [-3,3]) = Za(A) for all Ae 8. For f € 7% we define the func-
tion f € %”G” by the formulaf (y1,...,yn) = f(X1,..., %) if yj is the juxtaposition
(xj,Uj), X €RY, uj € RY, j=1,2,....n. Finally we define the Wiener-atintegral
in the general case by the formula

[ 1000 Za(dx) . Zo(dx) = [ iy o) Za(d) - Z(dyn).

(What we actually have done was to introduce a virtual newdioateu. With the
help of this new coordinate we could reduce the general aasieetspecial case
whenG is non-atomic.) IfG is a non-atomic spectral measure, then the new defini-
tion of Wiener—Ib integrals coincides with the original one. It is easy toakhthis
fact for one-fold integrals, and therdl$ formula proves it for multiple integrals. It
can be seen with the help obls formula again, that all results of this chapter re-
main valid for the new definition of Wiener8lintegrals. In particular, we formulate
the following result.

Given a stationary Gaussian field &t be the random spectral measure adapted
toit. All f € ¢ can be written in the form

f(X17 oo »Xn) = z Citpnin ¢jl(xl) T ¢jn(Xn) (4.9)
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with some functiong; € 77, j =1,2,.... Defineé; = [ ¢;(X)Zs(dXx). If f has the
form (4.9), then

/f(xl,...,xn)ZG(dxl)...ZG(dxn) = Zle,‘_ﬂjn 1€yt -

The last identity would provide another possibility for aéfig Wiener—Id integrals.






Chapter 5

The proof of It &’s formula. The diagram formula
and some of its consequences

We shall prove ib’s formula with the help of the following
Proposition 5.1.Let f € /% and he #Z. Let us define the functions

f>k<h(xl,...,xk_l,xk+1,...,xn):/f(xL...,xn)h(xk)G(d)@, k=1,...,n,

and
fh(Xe, ..., Xn+1) = F(Xa, -+, Xn)N(Xnt1)-

Then fx h, k=1,...,n, and fh are in#Z~* and .#2"** respectively, and their
k
norm satisfies the inequalityf >|§h|\ < || f]|-|Ih|| and|| fh|| < || f||-||h||. The relation

n

nllg(f)lg(h) = (n+1)!g(fh)+ z (n—lg(f >k<h)
k=1

holds true.

We shall get Proposition 5.1 as the special case of the diagwanula formu-
lated in Theorem 5.3.

Remark.There is a small inaccuracy in the formulation of Lemma 5.% &n-
sidered the Wiener-8tintegral of the functionf x h with arguments,. .., Xk_1,
k

Xki1,- - - »Xn, While we defined this integral for functions with arguments.. ., X, _1.
We can correct this inaccuracy for instance by reindexiegvriables off x h and
k

working with the function
(f >|§ h)/(X]_7 e ,Xn,]_) =f >k< h(Xak(l), e aXak(kfl)vxak(kJrl)a e ,Xak(n))

instead off >k< h, whereay(j) = jfor1 < j<k-—1,anday(j)=j—1fork+1<
j<n
We also need the following recursion formula for Hermiteymamials.

43
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Lemma 5.2.The identity
Hn(X) = XHn-1(X) = (n—1)Hp_2(x) for n=1,2,...,

holds with the notation H; (x) = 0.

Proof of Lemma 5.2.

a2 9 e e d —x2/2
Ho() = (-2 (e7/2) = —e2 (Hn-109e™/2)

d
=X anl(x) - &anl(x).
Since %Hn,l(x) is a polynomial of orden — 2 with leading coefficienh — 1 we
can write

n-3
%(Hn_l(x) = (N—1)Hp_2(x) + J;)c,- Hj (x).

To complete the proof of Lemma 5.2 it remains to show that el#st expansion
all coefficientscj are zero. This follows from the orthogonality of the Hernptaly-
nomials and the calculation

[ /21,00 S 1000x= — [ 1005 (e /2H, ) x

_ / e /2,1 (X)Pj11(x)dx=0

with the polynomialP; 1(x) = xH;(x) — dQXH,- (x)oforderj+1forj<n-3. O

Proof of Theorem 4.3 via Proposition 5.%e prove Theorem 4.3 by induction.
Theorem 4.3 holds foN = 1. Assume that it holds foN — 1. Let us define the
functions

f(X1,. ., XN—1) = 91(X1) - - ON—1(XN—1)
h(x) = gn(X).
Then

3= [ o)+ on(xn)Zo(dx) . Zo( )

N-1

= Nlg(fh) = (N=1)ts(F)la(n) — § (N=2)!lg(f xh)
k=1

by Proposition 5.1. We can show with the help of our inductigpothesis that
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3 =ty [ 01002009 -+ Hyp (] g 9200 )
Hin-1 [ 600260 [ dnix1Za(ds
~Cim= Dt ([ 0102600 ) -y ([ 0102600
i 2 [ 0m(9Z6(89)).

whereH;, _»(x) =H_1(x) =0 if j;m = 1. This relation holds, since

f >k< h(Xl, ey X1 Xk 1y e - ,XNfl) = /gl(Xl) s ngl(XN—l)(Pm(Xk)G(ka)

_ {0 if KSN—jm
Tl on(X) O (k1) Ok (K1) - On-1(w-1) EN— jm<k<N-—-1

Hence Lemma 5.2 implies that

0 = T #:920( ) [ [ 8020t 2)) [ omixizat s

~(im— M2 ( / ¢m<x>ze<dx)>} —ﬂH,—s ( / ¢s(x>ze(dx>),

as claimed. a

Let us fix some functionb; € 74%,... hm € ij”"‘. In the next result, in the so-
called diagram formula, we express the produdts(hy) - --nm!lg(hm) as the sum
of Wiener—I9 integrals. This result contains Proposition 5.1 as a apease. There
is no unigue terminology for this result in the literaturee ¥hall follow the notation
of Dobrushin in [7].

We shall use the term diagram of ordes, . ..,ny) for an undirected graph of
ni + - - -+ nm vertices such that its vertices are indexed by the pairste§ers(j,I),
I=1,....m, j=1,... n, with the properties that no more than one edge enters
into each vertex, and edges can connect only pairs of veftjgd1) and(j»,1») for
whichly # 15, Letl” =T (ny,...,ny) denote the set of all diagrams. Given a diagram
ye " |yl denotes the number of edgesyinLet there be given a set of functions
hy e 0, .. hme fG”"‘ Sometimes we denote the variables of the funchion
by x(j instead of;, i.e. we writeh; (X)), .-, X 1)) instead oy (xg,..., Xy ). Put
N =ni+---+ nym. We introduce the function dfl variables corresponding to the
vertices of the diagram by the formula

m

h(xjn, 1=1....m j=1....n)= |_lh|(x(]-7|), i=1....n).
|=
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Fixing a diagramy € I" we enumerate the variables; ) in such a way that the
vertices into which no edges enter will have the numbegs.1. N — 2|y| and the
vertices connected by an edge will have the numipeaad p+ |y|, wherep=N —
2ly|+1,...,N—1y|. In such a way we have defined the functigmy, ...,Xy) (with

an enumeration of the indices of the variables dependindgnemliagramy). After
this definition of the functiomn(xs, ..., Xy) we take that function dil — |y| variables
which we get by replacing the argumer{gs |, , by the arguments Xy_2jyj+p, 1 <

p < |y. Then we get the function, appearing in the diagram formula by integrating

|yl
this function by the product measug G(dXy_zjy+p)-
p=1

More explicitly, we write

hy (X1, -, Xn—2]y)) :/"'/h(xla~~~7XN—\y\7_XN—2|y|+1>~Ha_XN—M)
G(dXn—2)y+1) - -- G(AXy—y))- (5.1)

The functionh, depends only on the variabl&s, ..., Xn_2), i.€. it is independent
of how the vertices connected by edges are indexed. Indeéallows from the
evenness of the spectral measure that by interchangingndieess ands+ y of
two vertices connected by an edge does not change the vale witegrah,. Let

us now considetg(hy). The functionh, may depend on the numbering of those
vertices ofy from which no edge starts, but Symand therefordg(h,) does not
depend on it. Now we formulate the following

Theorem 5.3. (Diagram formula.) For all functions h € %’@1,. e yz@m,
ny,....,nm=212,..., the following relations hold:

— m
(A)  hy e and|h,| < 7 |Ihj forall yer.
J

=1
(B) m! |G(h1) e I’]m”(_;(hm) = ygr(N — Z‘VD! |G(hy).

Remark.In the special casen = 2, n; = n, np = 1 Theorem 5.3 coincides_with
Proposition 5.1. To see this it is enough to observeftfiak) = h(x) for all h € 2.

Proof of Theorem 5.3t suffices to prove Theorem 5.3 in the special case 2.
Then the casen > 2 follows by induction.

We shall use the notatiom = n, np = m, and we writexy, ..., Xn+m instead of
X1.1)s+ > X(n1),X(1,2) - - -» X(m,2)- It IS clear that the functioh,, satisfies Property (a)
of the classes%”GJ defined in Chapter 4. We show that Part (A) of Theorem 5.3 is
a consequence of the Schwartz inequality. To prove thisesti on the norm dfy,
it is enough to restrict ourselves to such diagrants which the verticegn, 1) and
(m2), (n—1,1)and(m—1,2),...,(n—k,1) and(m—Kk,2) are connected by edges
with some 0< k < min(n,m). In this case we can write
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2
Iy (X1, ... Xn—k—1,Xn415 - - - Xnpm—k—1) |

'/hl le a hZ(Xn+l7 axn+m7k717—xn7k7-~~a—xn)

2
Gy k) .. G(dxa)

< [ 1m0 PG00 - Glcx)
/ e (X2, -+ Xor ) [2G( %) « - G( A m)

by the Schwartz inequality and the symme8y—A) = G(A) of the spectral mea-
sureG. Integrating this inequality with respect to the free vhalés we get Part (A)
of Theorem 5.3. N

In the proof of Part (B) first we restrict ourselves to the cadenh; € 77

andhy € J7%". Assume that they are adapted to a regular sysiem {4, | =
+1,...,£N} of subsets oR" with finite measurés. We may even assume that all
Aj e .@ satisfy the inequalit$s(4;) < € with somee > 0 to be chosen later, because
otherwise we could split up the seds into smaller ones. Let us fix a poinf € A
inall setsAj € . PutK; = sup|hi(x)|,i = 1,2, and letA be a cube containing afl;.

X

We can write
| = n||G(h1 m'IG h2 Z h1 ull? U]n hz(ukl, Ukm)
Zg(4j,) - Zs(8j,) Ze(Dxy) - Zo (D)

with the numbersyj, € Aj, anduy, € Ay, we have fixed, where the summation in

zl goes through a” pairs(jla'-wjn)’(kla"'vkm))i jp7 kf € {:l:l,,:l:N}, p:
1,...,n,r=1,...,m such that, # =jyandk # +krif p# porr #r.
Write

| = Z S (Ui, Ui (U - Uky)
ye
Zg(4j,) Z(4j,)Ze (D) - Z6 (k)

whereyY contains those terms gf' for which j, =k or j, = —k; if the vertices
(1,p) and(2,r) are connected iy, and j, # %k if (1,p) and(2,r) are not con-
nected. Let us define the sets

A1 =Ai(y) ={p: pe{l,...,n}, and no edge starts frofp,1) in y},
Ay = Ap(y)={r: re{l,...,m}, and no edge starts frofn, 2) in y}

and

B=B(y) ={(p.r): pe{L....,n}, re{l, ...m}
(p,1) and(r,2) are connected ip}
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together with the mapr: {1,....n}\ A1 — {1,...,m}\ Ay defined as
a(p)=r if (p,r)eB forall pe{1,...,n}\As. (5.2)

Let XY denote the value of the inner sup¥ for somey € I" in the last summation
formula, and write it in the form

sV=3'+5)
with
=V =S (U, )b, U T Ze(45,) [ Ze(d)
peAg refy
E (Zo(4),)Z6(4 )
(p.r)eB
and

5 =3 (U, U (U U |'/l Zs(4j,) [ Ze(4k)
pEAL refy

M Z6(4,)Zs(4) ~E (( M zemj,])zemk,))] .

(p,r)eB p,r)eB

The random variableg) and =) are real valued. To see this observe that if the
sum defining these expressions contains a term with argsmgntand4y , then

it also contains the term with argumentg};, and —4y, . This fact together with
property (v) of the random spectral measdgeand the analogous property of the

functionshy andh; imply that>) = >} andX) = >J. Hence these random variables
are real valued. As a consequence, we can b¢andn—2|y|)!lg(hy) — =} and>)
by means of their second moment.

We are going to show tha} is a good approximation ah+m-—2|y|)!lg(hy),
and Z%’ is negligibly small. This implies thatn + m— 2|y|)!lg(h,) well approxi-
matesX”. The proofs are based on some simple ideas, but unfortyrthtel de-
scription demands a complicated notation which makes tkaiting unpleasant.

To estimate(n+m— 2|y|)!lg(h,) — =) we rewrite>) as a Wiener— integral
with a kernel function adapted to the regular systernwhich is close tdy,. To find
this kernel function we rewrite the sum defini&g by first fixing the variablesj,,

p € Aq, andug, r € Ay, and summing up by the remaining variables, and after this
summing by the variables fixed at the first step. We get that

2= Z hy1(ip, PEAL K, T € A2)
jp: 1<|jp|<Nfor all peAq
ki 1<|ke|[<N for all reAy

Zc(4jp) [ Z6(4x) (5:3)

PEAL reAy
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with a functionhy, ;1 depending on the argumengs, p € Ay, andk;, r € Ay, with
valuesjp, kr € {£1,...,£N} defined with the help another functidy» described
below. It also depends on the argumengs p € A, andk:, r € Ay, with values
jp. ke € {£1,...,£N}. More explicitly, formula (5.3) holds with the functiom, 1
defined as

hy1(jp, PE AL ke, T €A2) =0 (5.4)

if the numbers in the sett-j,: pe At} U{£k : r € A} are not all different, and

hy1(jp, PE AL ki, T € A2) =hy2(jp, PEAL ki, T €A) (5.5)

if all numbers+jp,, p € Ay, andtk., r € Ay are different, where we define the
function hys(jp, p € A1, ki, r € Ap) for all sequencegp, p € Ar andk;, r € Ay,
with jp,k € {£1,...,£N} (i.e. also in the case when some of the argum¢pis
p € A1, orke, r € Ay, agree) by the formula

hy,Z(jpa pe Aq, kr7 re AZ) = zy’lhl(uh,...,an)hz(ukl,. . .,Ukm)
- [ E(Ze(4),)Ze(4)) - (5.6)

(p,r)eB

The value of the sunzV-r1 in formula (5.6) which depends on the argumejys
pe€ Ag, andk;, r € Ay, is defined in the following way. We sum up for such sequences
(j1,---,Jn) @and(ky,...,kn) whose coordinates withe A; andq € A; are fixed, and
whose coordinates with indicgse {1,...,n} \ Ay andr € {1,...,m} \ Ay satisfy
the following conditions. PUC = {%jp, p € A1} U{xk;, 1 € A>}. We demand that
all numbersj, andk; with indicesp € {1,...,n} \ Ay andr € {1,...,m} \ A; are
such thatjp, k € {+1,...,£N}\ C. To formulate the remaining conditions let us
write all numbers € {1,...,m}\ Az in the formr = a(p), p€ {1,...,n}\ A; with
the mapa defined in (5.2). We also demand that only such sequencesicippe
summation whose coordinates= k,(p,) satisfy the conditiorky () = +jp for all
pe{1,...,n}\ A1 Beside this, all numbets j,, p€ {1,...,n}\ Az, must be differ-
ent. The summation i ! is taken for all such sequencgs p € {1,...,n} andk,

r € {1,...,m}, whose coordinates with € {1,...,n} \ Ay andr € {1,... . m} \ Ay
satisfy the above conditions.

Formula (5.6) can be rewritten in a simpler form. To do thisui first observe
that the conditiork,(,) = &, can be replaced by the conditiép ;) = —jp in it,
and we can writé5(4;,,) instead of the ternk Zs (4j,)Zc (4, ) (with (p,r) € B) in
the product at the end of (5.6). This follows from the factt6ds(4;,)Zc (4, ) =
EZs(A),)2 = 0 if k = jp andEZs(4),)Z6(Ay ) = EZs(4),Z6(~4),) = G(4j,)
if k- = —]jp. Beside this, the expression in (5.6) does not change if e ta
summation for all such sequences for which the numbewith coordinatep
{1,...,n} \ Atakes all possible valuej, € {+1,...,£N}, because in such a way
we only attach such terms to the sum which equal zero. Thiewsl from the
fact that both functiond; and hy are adapted to the regular systerm hence
ha(uj,, ..., Uj,)h2(Uk, - ., Uk,) = O if for an indexp € {1,...,n} \ Ay jp = £jy
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with p# p’ or jp, = —k. with (p,r) € B, and beside this there exists some Ay
such thatj, = k.

The above relations enable us to rewrite (5.6) in the follmuivay. Let us define
that mapa ! on the set{1,...,m} \ A, which is the inverse of the map defined
in (5.2), i.e.a=%(r) = pif (p,r) € B. With this notation we can write

hy2(ip: PE AL, ke, 1 € Ag)
= z ha(uj,,... uj) (U, r € Az,—Ujail(r), re{l,....m\Ay)
ip, PE{1,...n}\Aq,
1<|jp|<N for all indicesp
G(4j,)- (5.7)
pe{l,...,n}\Aq

Formula (5.7) can be rewritten as

hyﬁz(jp, pe A]_, kr, r e Az) (58)
- /hl(ujp7 peAla va pe {17"'an}\A1)
ho(U, r € Ao, —Xg-1(y, T € {1,....m}\ Ag) |'| G(dxp).

We define with the help ohy 1 and h,» two new functions orR™M-2V)v
with argumentsxy, ..., Xp m-2/y- The first one will be the kernel function of the
Wiener-I6 integral expressing{’, and the second one will be equal to the func-
tion hy defined in (5.1). We define these functions in two steps. Infitise step
we reindex the arguments of the functidms, andh,, y to get functions depend-
ing on sequencess,..., jnym-2)y- FOr this goal we list the elements of the sets
A1 and Az asAr = {p1,..., Prjy} With 1 < pp < p2 < -+ < pppy < N and
A = {rl,...,rm,M} with 1 <rp <rz <--- <ry, <m and define the maps
Bi: At —{1,...,n—y|} andB2: Ay — {n—|y|+1,....,n+m—2|y|} by the
formulasfBi(p) =1if1 <l <n—y, 1<l <n—|y, andB(r) =1+n—1y|,
1<I<m-—ly,if n—|y|+1<I <n+m-2|y|. We define with the help of the
mapsPB; and B, the functions

hya(jss - inem-2y) = Bya(gyra) -5 Igun-iv)) KBo(@) - -+ Kgp(me 1))

and

hya(is,-- - Inem-2iy1) = Ny 2(igyry)s - Igyn-1y)) KBo (1) - > Kepme 1))

where the arguments of the functiongs andh, 4 are sequenceg, ..., jnim-2)y,
with js€ {£1,...,£N} forall1 <s<n+m-2Jy|.

With the help of the above functions we define the followingdiionsh, s and
hy,6 on R(n+m—2|y\)v_
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hy,3(j17~->jn+m72|y\) if x € Aiw
hy75(X1,...,Xn+m,2‘y‘): forall 1< §n+m—2|)/|
0 otherwise,
and
hy,4(jla~~~,jn+m72|y\) if % GA]p
hy’G(Xl,...,Xner,z‘y‘): forall1 <1 <n+4+m-2]y|
0 otherwise.

It follows from relation (5.4) and the definition of the furant hy, 5 (with the help

of the definition of the functionk,; andhy 3) thath, s € 77, and it is adapted to
the regular systen. Then relations (5.3) and the definitionlnfs also imply that
2/ = (n+m—2|y)!Ig(hys).

On the other hand, | claim that the functibpdefined in (5.1) satisfies the iden-
tity hy, = hye. Actually a slightly weaker statement would suffice for usvould be
enough to show that the functid® can be obtained by a permutation of the indices
of the variables irhy ¢, because the value of a Wiened-integral does not change
by a reindexation of the variables of the kernel functiortin i

To prove the desired identity let us write up the expressifinthg the function
hy in the present case. First we define the functigxy, ..., X, m) (depending on
the diagrany) which is applied in the definition df,. To do this we introduce some
notations.

PutAr={j1,- . jn-yh 1< it <je < - <jn i AL, nP\AL = {l1,. Ty d
1<hh<lp<- <lpjy, andAp = {j’l,...,j;n_‘yl}, 1<jj<ijh<-< jl/v\'
{1,...,m}\ Ay = {Ill"">|r/n—|y\}' 1I<li<li< < I(n_M, and define with their help
the following functions. Define the functigBy(-) on the sef1,...,n} asp(k) = pif
k= jp€Ag, andB(k) =n+m-2|y|+qif k=Iq € {1,...,n}\ A;. Define similarly
the functiond(-) on the se{n+1,...,n+m} asd(k) = p+|y| if k—n= j, € Ax.

If k—=n= Ia_ e{1,....m}\ Ay, the_n there_ is an edgey,ly) € B of_ the_diagramy,
and we defing(k) = n—|y| + p with the indexp of the numbet, in this case.

With the help of the above notations we can define the fundtiag, . .., Xn+m)
which takes part in the definition &, in formula (5.1) as

h(X]_, . 7Xn+m) = hl(XB(l)a .. aXB(n))hZ(X5(n+1)a . ,X5(n+m)).

To define the kernel function of the integral in (5.1) obseha the sef{d(n+
1),...,6(n+m)} agrees with the sefn—|y|+1,....,n+m=2|y|}u{n—|y| +
1,...,n+m} = CLUC,. Putd(k) = (k) if d(k) € C1 and d(k) = (k) — |y] if
0(k) € Cy. Let us also introduce(j) =1if n—|y+1<j<n+m-2y, and
e(j)=-1if n+m—2]y|+1 < j <n+m-—|y|. With such a notation we can write

h(XL < Xngme |yl T Xnem=2y|+1s s _Xn+mf\y\)

= hl(Xﬁ(l), .. ,xﬁ<n>)h2(£(5(n+ 1))Xg(n+l)’ ceey 5(5(ﬂ+ m))Xg(Mm))
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as the kernel function in the integral (5.1) defining the tiorehy(xq, .. ., X m-2)y|)
in the present case.

By formula (5.1) we can calculate the functibp(xa, ..., X, m-2)y) by inte-
grating the above defined functidixy, . . ., Xnym—|yi» —Xn+m—2yi+1> - - -» —Xnsm—|y|)
with respect to the measu@(dxy_z)yj+1) --- G(dxy_y|)- By comparing this for-
mula with the definition of the functioh, » defined in (5.8) together with the defini-
tion of the functionshy, 4 andh, s with its help one can see that the identitys = hy,
holds.

Observe that the functidm, disappears also in such poirts, . . ., Xn m-2)) for
which x € 4, for all 1 <1 <n+m-2|y| with such indicesj; for which some of
the numbers in the sgttj1,...,4j,_|y} or inthe sef{+j,_ |11, Einrm-2)y(}
agree. This fact together with the identily = h, ¢ and the relation between the
functionshy s and hye (implied by the definition of the functioim,; in formu-
las (5.4) and (5.5)) yield the identity

hy(Xas -+ Xnpm-2py) = Ny s (X4, - Xnemo2)y) + 0y, 7(Xas - Xnm-2)y))
with
hy,?(xla e axn+m72|y\)
hy(X1, .., %rm-2)y)  if there existindiceg;, 1 <|[j| <N,
1<1 <n+m-2Jy| suchthaty € 4;,, 1< <n+m-2y|,

all numbers= jy,...,+jn o, are different,
all numbers= j,_ 141, -, £inem-2)y are different,

and{ijlw--,ijnf\y\} ﬁ{ijn—ly\Jrl,---aijner—ZM} # 0
0 otherwise.

SinceZ) = (n+m-2ly|)!lg(hys), we have
(n+m—2|y)li(hy) — Z{ = (n+m—2Jy|)lIs(hy7),

and
E(Z) — (n+m—2|y)!g(hy))* < (n+m—2]y)![(h,7)]?

with the norm|| - | in .72 ™2V,
On the other hand,

suplhy7(Xa, - -, Xnem-2/y)| < suplhy(Xa, .., Xim-21)| < KiKoLM,

with K1 = suplhy|, K2 = suplhz|, andL = G(A), whereAis a fixed cube containing
all Aj. Hence
(=]~ (n+m=2y))lls(hy))? < Cufl(hy7)||?
S CZZ/IG(Ajl) e G(Ajner—ZM)
< CsupG(4;) <Ce, (5.9)
i
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where the summatiofi” goes for such sequences. . ., jnim-2)y» 1 < [ji| <N for
all 1 <1 <n+m-2Jy|, for which all numberstji,...,+j,_, are different, the
same relation holds for the elements of the sequenge|; (1, - .-, = jnim-2)y, and

{£in - E oy 0 {E syt Elngm-zy } # 0.

The constant€;, C, andC may depend on the functiog, hy, and spectral mea-
sureG, but they do not depend on the regular systgirhence in particular on the
parametek. In the verification of (5.9) we can exploit that each termhe sum
5" is a product which contains a factefA;)? < eG(4;). Here an argument can be
applied which is similar to the closing step in the proof ofitrea 4.1, to the final
argument in the proof dbtatement B

Now we turn to the estimation &())2. It can be expressed as a linear combi-
nation of terms of the form

ok ip ke p,p e {L,...,n}, r,ie{1,....m}) (5.10)

_E<( Zs(4j,) [ Zs(4x) ZG(AJE)J] Ze(Ak,)>
peA; reAy PEAL ref

L I_)lBZG(Ajp)ZG(Akr)_E |_| ZG(AJp)ZG(Akr)]
pr)e

(p.r)eB

[ Z5(4j5)Z6(A) —E ZG(Aja)ZG(Akr)] )
(pr)eB (p.)eB

Wherezg’ depends on such sequences of numlers:, jp, ki with indices 1<
p,p<nand 1< r,r <mforwhich jp, ki, jp ke {£1,..., =N} for allindicesp,r, p
andr, jp =k or jp = —k: if (p,r) € B, otherwise all numbers j,, k. are differ-
ent, and the same relations hold for the indifzgandkrif pis replaced by andr is
replaced by . Moreover the absolute value of all coefficients in thisdineombina-
tion which depend on the functiohg andh; is bounded by sujti (x)|? sup|hz(x)|2.

We want to show that for most sets of argumefijis k:, jp, ki) the expression
Z%’ equals zero, and it is also small in the remaining cases.

Let us fix a sequence of argumeriis k;, jp, ke of Zg, and let us estimate its
value with these arguments. Define the sets

o ={jp: peA}U{k: reA} and ;z/_:{jg: peAtU{ke e}

We claim that>) equals zero ife7 # —</. In this case there exists an index
| € o such that—I| ¢ «. Let us carry out the multiplication in (5.10). Because
of the independence properties of random spectral measasproduct in this
expression can be written as the product of independerdriaand the indepen-
dent factor containing the terfig(4) has zero expectation. To see this observe
that the set); appears exactly once among the arguments of the t&x(4;,)
andZg(4y, ), and none of these terms contains the argumeht= A_,. Although
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—| ¢ o7, it may happen that € «7. In this case the product under investigation
contains the independent factg (4 )? with EZg(4)2 = 0. If | ¢ <7, then there
are two possibilities. Either this product contains an petelent factor of the form
Zs(4y) with EZg(4)) = 0, or there is a paifp,r) € B such that(jg, kr) = (£, £l),
and an independent factor of the fo#tg(4))Zg(+A_)Za(+4,) with the property
EZs(A)Zs(+A_1)Zs(+4)) = 0 appears. HencE} = 0 in this case.

Let _
F = U {Jpka} and 7 = U {(Jﬁkai}

(pr)eB (pr)eB

A factorization argument shows again that the expressio(b.ih0) equals zero
if the sets.Z U (—.%) and .% U (—%) are disjoint. We can restrict ourselves to
the cases = —«7, and in this caset« is disjoint both of # U (—.%#) and
Z U (=), and the product under investigation contains the indegeinfactor

N Zc(4j,)Zc(8)—E [1 Zs(4j,)Zs(4 ) with expectation zero.
(pr)eB (pr)eB

Moreover, if. 7 U (—.%) and.Z U (—f_) are not disjoint, (and?” = —), then
the absolute value of the expression in (5.10) can be estthfedm above by

Ce[G(4;,) G4k )G(A;,)G(Ay,) (5.11)

with a universal constai@ < « depending only on the parameterandm, where
the indicesjp, ki, jp, ki are the same as in (5.10) with the following difference:
All indices appear in (5.11) with multiplicity 1, and if botihdicesl and —I are
present in (5.10), then one of them is omitted form (5.11)rédwer, for alljp, k;,

jp andkrone of termsG(ALj, ), G(A+k ), G(ALj;) andG(Ary-) really appears in
this product. The multiplying terns appears in (5.11), since by carrying out the
multiplications in (5.10) and factorizing each term, we ti&it all non-zero terms
have a factor either of the form

EZc(A)?Zs(—A)% = E(ReZa(A)? +1mZg(A)?)?
— EReZg(A)*+EImZg(A)* + 2EReZ(A)?EImZs(A)? = 8G(A)?

or of the form (E|Z(4)[2)° = G(4)2, and G(4) < ¢ for all A € 2. (We did
not mention the possibility of an independent factor of thenf EZs(A)* or
EZs(A)3Zs(—A) with A € 2, because as some calculation sholZg(A)* =0
andEZs(A)3Zs(—A) =0.)

Let us expres&(Z))? as the linear combination of the quantitiE, and let us
bound each terrﬁ%’ in the above way. This supplies an upper bouncE‘()I%’)2 by
means of a sum of terms of the form (5.11). Moreover, someideration shows
that each of these terms appears only with a multiplicitg E&nC(n,m) with an
appropriate constai(n,m). Hence we can write

n+m
E(2))? <KEKZC(n,m)Ce y

r=1 ja,.ir

"

G(4jy)---G(4j),



5 The proof of 16’s formula. The diagram formula and some of its consequences 55

where the indicegs, ..., jr € {£1,...,£N} in the sumy" are all different, and
Kj =suplhj(x)|, j = 1,2. Hence

n+m

E(5))?<Cie 5 G(A) <Cpe
r=1

with some appropriate constarts and C,. Because of the inequality (5.9), the

identity n!lg(h)mlig(hp) = 5 (=) + Z&) and the last relation one has
yel

2
E (n!IG(hl)m!IG(hz) — Z(n+m—2|y|)!lg(hy)>
ye

2
—E <Z (2)+ %) — (n+m—2y})! |G(hv))>
ye

SCs( E((m+n—2|V|)!|G(hv)—zf)2+E(Z§/)2> <Cue.
Ve

Sinceg > 0 can be chosen arbitrarily small, Part B is proved in the ispease
hy € %Gn’ hy € %Gm.

If hy € j‘/@ andh, € ,%%m, then let us choose a sequence of functionse }L”G“
andhy; € ;fém such thahy; — by andrlz_yr — hy in the norm of the spaceﬁ”_cg1 and
&" respectively. Define the functiorg(r) andhy(r) in the same way as,, but
substitute the pair of functior{$, hp) by (hyr,hz) and(hy, hy) in their definition.
We shall show by the help of Part (A) that

Elle(hy)le(hz) —la(hur)le(hzr)| — 0O,

and
Ellg(hy) —lg(hy(r))| =0 forallyerl
asr — o. Then a simple limiting procedure shows that Theorem 5.8sr all
hy € 728 andhy € 22
We have

Ellg(hy)le(h2) —la(hyr)la(hzr)|
<E[(lg(h1 —hyr))la(h2)[ +E[lg(hir)lc(hz —hzr)]
1

<~ (b = o[V gl Y2+ [z — e 2 e ) — O,

and by Part (A) of Theorem 5.3
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Ells(hy) —la(hy(r)| < E[lg(hy) — I (Ay(r))| +Ella(hy(r)) —Ia(hy(r))|
<|lhy— hv(r)Hl/z +[[hy(r) — hv(r)Hl/Z
< [lhg — Py [[Y2 g2 4 || b — Fiar || Y2 g |2 — O

Theorem 5.3 is proved. ad

We formulate some consequences of Theorem 5.3 Letl” denote the set of
complete diagrams, i.e. let a diagrama I if an edge enters in each vertexjofWe
haveEl(hy,) =0forallye " \I", since (4.3) holds for aff € 778, n> 1. Ifyer,
thenl(hy) € 2. Leth, denote the value df(h,) in this case. Now we have the
following

Corollary 5.4. For all hy € 7#2%,..., y € 2™

Eny! |G(h1) s nm!IG(hm) = z_hy.
yel

(The sum on the right-hand side equals zeio it empty.)

As a consequence of Corollary 5.4 we can calculate the exji@ctof products
of Wick polynomials of Gaussian random variables.

Let Xcj, EXj =0, 1<k<p, 1< <ng, be a sequence of Gaussian ran-
dom variables. We want to calculate the expected value oWk polynomials
P X1 Xk, 1< k < p, if we know all covarianceEXk,jXKj*: a((k, j), (kJ)),
1<kk,<p, 1<]<ng, 1<]j<ng. Forthis goal let us consider the class of closed
diagramsl™ (ky,...,kp), and define the following quantity(A) depending on the
closed diagramg and the sef of all covariance€ X j X 7= a((k, j), (k. j))

V(A) = M a((k,j), (k,1), yer.

((k,}),(k.})) is an edge of
With the above notation we can formulate the following resul

Corollary 5.5. Let X j, EXj =0,1 <k < p,1 < j <k, be a sequence of Gaussian
random variables. Let@k, j), (K, j)) = EX X5 1<k k <p,1<j<n,1<j<

nk denote the covariances of these random variables. Therxfflexted value of the
product of the Wick polynomiatsXy 1 --- Xk n,: » 1 <k < p, can be expressed as

p
E : xk,l s XK, . = V(A)
(kl_l' A > VG’:(%mJ%)

with the above defined quantitig6A). In the case whef (ky, ..., kp) is empty, e.g.
if k4 --- +kp is an odd number, the above expectation equals zero.

Remark.In the special case wheXc; = --- = X¢n, = Xk, and E><k2 =1 for all
indices 1< k < p Corollary 5.5 provides a formula for the expectation of the
product of Hermite polynomials of standard normal randomaides. In this case
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we havea((k, j), (k, j)) = a(k,k) with a functiona(-,-) not depending on the ar-
gumentsj and j, and the left-hand side of the identity in Corollary 5.5 dqua
EHn, (X1) -~~an(Xp) with standard normal random variablXg, ..., X, with cor-
relationsE XX = a(k, k).

Proof of Corollary 5.5.We can represent the random variablgg in the form
Xej = ¥ Ck j,pép With some appropriate coefficientg; ,, whereéy, &, ... is a se-
P

quence of independent standard normal random variablé¢Z (Iox) denote a ran-
dom spectral measure corresponding to the one-dimenspeatral measure with
density functiong(x) = %T for x| < m, andg(x) = O for |[x| > . The random in-
tegrals [ €P*Z(dx), p = 0,41,+2,..., are independent standard normal random
variables. Defindy j(x) = zckjj,peipx, k=1,...,p, 1< j < ng. The random vari-

p

ablesX, j can be identified with the random integrglsy j(x)Z(dx), k=1,...,p,
N n
1< j < n, since their joint distributions coincide. P(X1, ..., X, ) = ﬁ hicj(X;).
=1
It follows from Theorem 4.7 that
Xt Xen: = / Pi(e, .. X )Z(X0) .. Z( A% ) = il (X, X))
for all 1 <k < p. Hence an application of Corollary 5.4 yields Corollary.ZJme

only has to observe thaf’, h j (X)hi ;(x) dx=a((k, j), (k. |)) forall k, k=1,...,p
and 1< j <n. m|

Theorem 5.3 states in particular that the product of Widb@rintegrals with
respect to a random spectral measure of a stationary Gadsdas belongs to the
Hilbert spaces# defined by this field, since it can be written as a sum of Wiener—
Itd integrals. This means a trivial measurability conditiang also that the product
has a finite second moment, which is not so trivial. Theore3raBtually gives the
following non-trivial inequality. B

Leth; € ij”l,. ., hme %gm. Let|I (n1,ng,...,Nm,Nm)| denote the number of
complete diagrams ifi (N1, Ny, ..., Nm, Nm), and put
|7 (n1,N1, ..., Nm,Nm)|

ny! - N ’

C(nlv"'anm) -

In the special case; = --- = np=nletC(n,m) =C(ny,...,Nm). Then

Corollary 5.6.

E [(m!a())?-- (Nm!la(hm))?]
<C(ng,...,nm)E(nt!lg(h)?- - (Nl E (I (hm))?.

In particular,

E [(n!lg(h))®™] < C(n,m)(E(n!lg(h))®)™ if he L.
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Corollary 5.6 follows immediately from Corollary 5.4 by dping it first for the
sequencéy, hy,..., hm, hy and then for the pain;, hj which yields that

E(njlic(hy)?=ni!fhj|%, 1<j<m

One only has to observe thit,| < [[hy|?- - ||hm||? for all complete diagrams by
Part (A) of Theorem 5.3.

The inequality in Corollary 5.6 is sharp.®is a finite measure arg < Hgl,. .
hm € Hgm are constant functions, then equality can be written in Camp5.6. We
remark that in this casks(hy),...,lc(hm) are constant times the-th,..., ny-th
Hermite polynomials of the same standard normal randonabki Let us empha-
size that the consta@(ny,...,ny) depends only on the parametess. .. ,ny and
not on the form of the functions, ..., hy. The functionC(ny, ..., ny) is monotone
in its arguments. The following argument shows that

Cni+1ny,....,np) >C(Ng,...,NM)

Let us call two complete diagrams (ny, Ny, ...,Nm,Nm) or in I (N3 +1,n; +
1,...,nm,Nm) equivalent if they can be transformed into each other by péng the
vertices(1,1),...,(1,ng) in I (Ng,Nnq,...,Nm,Nm) Or the verticeg1,1),...,(1,n +
1 inF(ni+1,n+1,....,nmNm). The equivalence classes havg elements in
the first case andn; + 1)! elements in the second one. Moreover, the number of
equivalence classes is less in the first case than in the deomn (They would
agree if we counted only those equivalence classes in tiimd@ase which contain

a diagram wher¢l,n; + 1) and(2,n,,1) are connected by an edge. Hence

1
— I (ng,ng.....npp ) | < —————F(ng+1.ng+1.....np, N,
n1!| (17 1, s Hm, m)‘_(nl_’_l)l‘ (l"’ 5 1+ 5 s Him, m)|

as we claimed.
The next result may better illuminate the content of Corgli6.

Corollary 5.7. Let &1, .., & be a normal random vector, and R, ..., X) a poly-
nomial of degree n. Then

E [P(&1,....&)% <C(nm)(n+1)™ (EP(&L, ..., &))"

with the constan€(n, m) introduced before Corollary 5.6.

The multiplying constan€(n, m)(n+ 1)™ is not sharp in this case.

Proof of Corollary 5.7.We can write€j = [ f;(x)Z(dx) with somef; € 72, j =
1,2,...,k, whereZ(dx) is the same as in the proof of Corollary 5.5. There exist
someh; € ), j=0,1,...,n, such that

P(&1,...,&) = S j'(hj).
1 k IZD ]
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Then
n

n 2m m
EP(&L,.... &) =E ( ifn(h; ) < +1)'“E[ i h»))Z]
(&1, &) { J;J i) ] (n J;(J (hj

<(n+1)" pl+--an:mC(pl7 ..., Pn)(El(hg)2)Po - (Enll (hy)?)Pn Dl po!

m!

<(+)"Cnm) Y (El(h)®)™--- (El(nthn)?)P m!

p1+--FpPn=m pll e pn'

m

= (n+1)"C(n,m) [T E(j!1(h))?]" = (n+1)"C(n,m) (EP(&1, ..., &))"

O






Chapter 6

Subordinated random fields. Construction of
self-similar fields

Let Xy, n € Z,,, be a discrete stationary Gaussian random field, and lettigom
field &4, n € Z,, be subordinated to it. Leédg denote the random spectral measure
adapted to the random fiels,. By Theorem 4.2 the random variabig can be
represented as

21
éo= f0+kzlﬁ/fk(xlw«-an)ZG(dX1)~~ZG(ka)

with an appropriatef = (fo, f1,...) € ExpJ% in a unique way. This formula to-
gether with Theorem 4.4 yields the following

Theorem 6.1.A random fieldé,,, n € Z,,, subordinated to the stationary Gaussian
random field X, n € Z,, can be written in the form

En=fot+ S E/éwﬁ“'ﬂk) fe(Xe,. .., X)Za(dx) ... Za(dX), ne€Z,, (6.1)
k=1""

with some f= (fo, f1,...) € Exps#s, where G is the spectral measure of the field
Xn, and Z; is the random spectral measure adapted to it. This represiemnt is
unique. It is also clear that formula (6.1) defines a suboatkal field for all fe
Exp 4.

If the spectral measur@ has the propert({x: X, = u}) =0 for allu € R! and
1< p<v, wherex=(xg,...,Xy) (this is a strengthened form of the non-atomic
property), then the functions

feXas- %) = fXase ) Ko T+ - %), k=12,

are meaningful, as functions in the measure sg&, 2%V, G¥), where§n(x) =
g(nx) ﬁ P 1

' neE Zy, denotes the Fourier transform of the indicator function
=0

v
of the v-dimensional unit cubg] [n(P),n(P) + 1]. Then the random variabl§, in
p=1

61
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formula (6.1) can be rewritten in the form
(o) 1 - .
én="fot+ 3 E/Xn(xl—F"'+Xk)fk(xly-~-an)ZG(dX1)--~ZG(ka)-
K=1 "

Hence the following Theorem 8 can be considered as the continuous time version
of Theorem 6.1.

Theorem 6.1'. Let a generalized random fielfl(¢), ¢ € ., be subordinated to
a stationary Gaussian generalized random fielthX ¢ € .. Let G denote the
spectral measure of the field(¥), and let Z be the random spectral measure
adapted to it. Theg (¢) can be written in the form

E(¢) = fo-$(0) + f k—ll /@(Xl"r"'+Xk)fk(xl7-~-an)ZG(dX1)--~ZG(ka)7
LK

(6.2)
where the functionsyfare invariant under all permutations of their variables,

fk(*Xl,...,*Xk):fk(Xl,...,Xk), k:1725"'7

and
o) 1 g
S E/(1+|x1+---+xk|2)*r’|fk<x1+--~+xk)\2cs(o|x1)...G(olxk) <o (6.3)
k=17 -

with an appropriate number p 0. This representation is unique.
Contrariwise, all random field§(¢), ¢ € .7, defined by formulas (6.2) and (6.3)
are subordinated to the stationary, Gaussian random figldi )X¢ € .77

Proof of Theorem 6/1 The proof based on the same ideas as the proof of Theo-
rem 6.1, but here we also adapt some arguments from the tloé@egneralized
functions. (See [15].) In particular, we exploit the followg continuity property of
generalized random fields and subordinated generalizeldnafields. Ifg, — ¢ in
the topology of the Schwartz spacé, andX(¢), ¢ € .7, is a generalized random
field, thenX(¢n) = X(¢) stochastically. IX(¢), ¢ € .7, is a generalized Gaussian
random field, then also the relati@iX (¢n) — X(¢)]? — 0 holds in this case. Simi-
larly, if £(¢), ¢ €., is a subordinated generalized random field, éne- ¢, then
E[&(¢n) — &()]2 — by the definition of subordinated fields.

It can be seen with some work that a random fild), ¢ € .7, defined by (6.2)
and (6.3) is subordinated %(¢). One has to check that the definition&f¢) in
formula (6.2) is meaningful for ap € ., because of (6.3 (Ti¢) = Tt & (¢) for all
shiftsT;, t € RV, by Theorem 4.4, and also the following continuity propértyds.
For alle > 0 there is a small neighbourhoétlof the origin in the space” such that
if ¢ =¢1— do € H for somegy, ¢ € .7 thenE[E (1) — & (¢2)]2 = EE(d)? < £2.

Since the Fourier transfor@(-) — @ (-) is a bicontinuous map i, to prove
the above continuity property it is enough to check &t¢)? < €2 if § € H for
an appropriate small neighbourhobidof the origin in.”. But this relation holds



6 Subordinated random fields. Construction of self-similar fields 63

with the choiceH = {¢: (1+ [x?)P|p(x)| < %2 for all x € RV} with a sufficiently
largeK > 0 because of condition (6.3).

To prove that all subordinated fields have the above reptratem observe that
the relation

o1
—y = [ Y, ..., dx)...Zo(d 6.4
E0)= %ot 3 i1 [Yorl o x0Zo(d) - Zo(d)  (64)

holds for all¢ € . with some(Y¥ 0, % 1,...) € Exps# depending on the func-
tion ¢. We are going to show that these functidks, can be given in the form

(-/J¢,k(X1,...,Xk) = fk(Xl,...,Xk) -@(X1+-~~—|—Xk), k= :I.,Z,...7
with some functiond, € #*, and

o= fo-¢(0)

for all ¢ € . with a sequence of functiorg, f1,... not depending omp.

To show this let us choosegds € . such thato(x) > 0 for allx € RV. (We can
make for instance the choidg(x) = e **).) We claim that the finite linear com-
binationsy apdo(x—tp) = 3 apTi,Po(x) are dense in”. To prove this it is enough
to show that the functiongy whose Fourier transform@ have a compact support
can well be approximated by such linear combinations, ecthese functiong
are dense in”. (The statement that these functiapisare dense in” is equiva-
lent to the statement that their Fourier transfaprare dense in the spacfé c.c
consistin% of the Fourier transforms of the (real valuedicfions in the space”.)
We have 5 € ¢ for such functiong, where.#*¢ denotes the Schwartz-space of
complex valued, at infinity strongly decreasing, smoothcfioms again, because
Po(X) # 0, and has a compact support. There exists a funcgon.” such that
X= % (Here we exploit that the space of Fourier transforms oftinetions from

. agrees with the space of those functidrs.7 ¢ for which f (—x) = f(x).) There-

fore Y(x) = x * po(X) = [ X (t)do(x—t)dt, wherex denotes convolution. It can be

seen by exploiting this relation together with the rapidrdase ofy and¢g together

of its derivatives at infinity, and approximating the inteigiefining the convolution

by an appropriate finite sum that for all integers 0, s> 0 and real numbers > 0

there exists a finite linear combinatig(x) = Prs¢(X) = S apo(x—tp) such that
P

(1+ X% |W(x) — P(x)| < € for all xe R’, and the same estimate holds for all deriva-
tives of (x) — (x) of order less than.

| only briefly explain why such an approximation exists. Sorak&ulation en-
ables us to reduce this statement to the case whhery x ¢ with a functiony € 2,
which has compact support. To give the desired approximati@ose a small num-
berd > 0, introduce the cub& = A(d) =[-9,0)" C R and define the vectors
k(d) = (2k19,...,2k,0) € R for all k = (ki,...,ky) € Zy. Given a fixed vector
x € RV let us define the vectar(x) € R” for all u € RV asu(x) = x+ k(J) with that
vectork € Z, for which x+k(d) —u € A, and putggx(u) = ¢o(u(x)). It can be
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seen thatl(x) = x * ¢ox(x) is a finite linear combination of numbers of the form
Po(x—tx) (with ty = k(d)) with coefficients not depending o Moreover, ifd > 0

is chosen sufficiently small (depending ns ande), then(x) = {r s¢(x) has all
properties we demanded.

The above argument implies that there is a sequence of unsafi; s which
converges to the functiog in the topology of the space’. As a consequence, the
finite linear combination§ apdo(x—tp) are dense in”.

Define

- W¢o7k(X1, e ,Xk)

)
- . k=1,2..., andfg= 70
Po(Xg + -+ )

$0(0)

If ¢(X) =Y apdo(X—1tp) =3 apTi,Po(x), and the sum defining is finite, then by
Theorem 4.4

fie(X1, ..., %)

,f(d)) — (z ap) f0.¢0(0)+ i %/Zapei(tp,X1+...+Xk)(ﬁo(Xl+..._|_Xk)
=K b
fe(Xas - X0 Za(dX) - .. Zo(dX)
= f0'¢(0)+kzllji/(ﬁ(ler'"+Xk)fk(xly-~-axk)ZG(Xm)---ZG(dN()-

Relation (6.4) holds for alp € .7, and there exists a sequenfgx) = 5 aﬁ)j) Po(x—
p

t,()”) € .7 satisfying (6.2) such thap; — ¢ in the topology of.”. This implies
that imE[&(¢;) — &(¢)]> — 0, and in particulaiElg(Ws x — $jkfk)? — 0 with
Pik(Xe,..., %) = Pj(xa+---+x) asj — wforallk=1,2,.... (To carry out some
further argument we restrict the domain of integration tmarued sef.) We get
that

/A|w¢,k(x1,...,xk) (a4 T, %) [2G(dx) ... G(dx) — O
asj — oo for all k and for all bounded se#s € R<. On the other hand,
18000 = §0a+ X+ X PG( e . Glen) — O,

sinced;(x) — ¢ (x) — 0 in the supremum norm @#; — ¢ in the topology of’, and
the propertydo(x) > 0 (of the functionfp appearing in the definition of the function
fi) together with the continuity offip and the inequalityElg(fok fk)? < « imply
that [, | fu(X1,- -, %)|?G(dx1) ... G(d%) < « on all bounded setA. The last two
relations yield that

W¢’k(X1,...,Xk) :¢(X1+~~-+Xk)fk(X1,...,Xk), k=12,...,

since both sides of this identity is the limit of the sequence
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Pi(xe+ - +x0) fe(Xe, ..., %), J=12,...

in the Lék norm, whereGY denotes the restriction of the meas@eto the set.
Similarly,
Ws,0 = $(0)fo.
These relations imply (6.2).

To complete the proof of Theorem16 we show that (6.3) follows from the
continuity of the transformatiofr: ¢ — &(¢) from the space¥ into the space
L%(Q,,P).

We recall that the transformatiop — ¢ is bicontinuous in°. Hence for a
subordinated fiel& (¢), ¢ € .7, the transformationp — &(¢) is a continuous
map from the space of the Fourier transforms of the functiortbe space¥” to
L?(Q,.<7,P). This continuity implies that there exist some integers 0,r > 0 and
real numbeid > 0 such that if

2yp| O 5 forall

thenEE(¢)2 < 1.

Let us choose a functioy € . such thaty has a compact suppom(x) =
Y(—x), P(x) > 0forallxe RV, andy(x) = 1if [x| < 1. (There exist such functions.)
Define the functiongm(x) = C(1+ |x[?)"Py(2). Then¢y € ., since its Fourier
transformgy, is an even function, and it is in the spagé being an infinite many
times differentiable function with compact support. Moren ¢, satisfies (6.5) for
allm=1,2,... ifthe numbelC > 0 in its definition is chosen sufficiently small. This
numberC can be chosen independentlyrof (To see this observe thét + [x?|)~P
together with all of its derivatives of order not bigger thacan be bounded by

(1C+(I?<’\r2)>') with an appropriate consta@{p,r).) Hence

EE (B = 3 i [ 1B+ 50 2 T+ X9 PO Gl < 1

forallm=12,....
As $m(x) — C(|1+ |x|?)~P asm — oo, andi(x) > 0, anm — oo limiting proce-
dure in the last relation together with Fatou’s lemma implgtt

CZ%/(” X1+ 4%)[2) P f(Xa, -+ %) [PG(dx) ... Gdx) < 1.

Theorem 61’ is proved. O

We shall call the representations given in Theorems 6.1 atidi& canonical
representation of a subordinated field. From now on we otsturselves to the case
E&, =0 orEE(¢) = O respectively, i.e. to the case whén= 0 in the canonical
representation. If
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1
HOESY E/<ﬁ(x1+---+xk)fk(x1,...,xk)zG(olxl)...zG(olxk),
k=1"
then

E(d)tA) :kglé/;(vw /di(t(xﬁ—...+xk))fk(x1,...,xk)ZG(dxl)...Zg(dxk)

with the functiong{* defined in (1.3). Define the spectral meas@eby the formula
Gt(A) = G(tA). Then we have by Lemma 4.6

E<¢ﬁ>ék§ e [ B0t 0 () Za (). Za (0w,

=1

If G(tB) =t?G(B) with somex > O forallt >0andB € B", fx(Axy,...,Ax) =
AVKK=A £ (xq,..., %), andA(t) is chosen ad\(t) = t%, then Theorem 4.5 (with the

choiceG'(B) = G(tB) = t2<G(B)) implies thaté ($) 2 & (¢). Hence we obtain the
following

Theorem 6.2.Let a generalized random fiefl ¢ ) be given by the formula
00 1 .
E9)= Y 5 [ B0+ Hxflx . Ze(d) . Zo(d). (66)
r=i

If fe(AX,...,AX) = AV KK fy (xq,..., %) forall k, (xq,...,x) € RV andA >0,
G(AA) = A%XG(A) for all A > 0and Ac %", thené is a self-similar random field
with parameter.

The discrete time version of this result can be proved in #mesway. It states
the following

Theorem 6.2. If a discrete random field,, n € Z,,, has the form
> 1 /.
&=y E/Xn(x1+-~-+x.<)fk(x1,...,xk)ze(clxl)...zG(olxk), nezy, (6.7)
k=1 K

and f(Axq,...,Ax) = AV KK f(xq,..., %) for all k, G(AA) = A2XG(A), thené&,
is a self-similar random field with parameter.

Theorems 6.2 and.B enable us to construct self-similar random fields. Never-
theless, we have to check whether formulas (6.6) and (6e/#nhaaningful. The hard
part of this problem is to check whether

Z%/|)~(n(xl+"'+Xk)|2|fk(X17---,Xk)\zG(dxl)...G(dxk) <o,

or whether
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Z%/W(xl—k---+xk)|2|fk(x1,...,xk)|2G(dxl)...G(dxk) <o forall¢e.7.

To investigate when these expressions are finite is a ratlidrgroblem in the gen-
eral case. The next result enables us to prove the finiteriekes®e expressions in
some interesting cases.

Let us define the measué

G(A):/sz""a(|§|> dx  Ac %", 6.8)

wherea(-) is a non-negative, measurable and even function orvitienensional
unit sphereS,_1, andk > 0. (The conditionk > 0 is imposed to guarantee the
relationG(A) < o for all bounded seté € %Y.) We prove the following

Proposition 6.3.Let the measure G be the same as in formula (6.8).

(@) Ifthe function &) is bounded on the unit spherg_§, and { > 2« > 0, then

D(n)=/|)"(n(x1+--~+xk)\ZG(dx1)...G(d>q<)<oo forall neZ,
and

D(9) = [ 160+ +%)PG(dx)...G(dx)
SC/(l+\X1+---+xk)|2)*pG(dx1)...G(dxk) <o

forall ¢ € . and p> % with some C=C(¢, p) < .

(b) Ifthere is a constant G 0 such that &x) > C in a neighbourhood of a point
Xo € Sy_1, and either2k <0 or 2k > { then the integrals [n) are divergent,
and the same relation holds for((p) with somep € ..

Proof of Proposition 6.3. Proof of Part (a)
We may assume thatfx) = 1 for allx € S,_1. Define

JK,k(X):/X+ . X|X1|2K‘V-~\xk|2’<—vdx1...o|><k, xeRY,
1T =

for k > 2, wheredx; ... dx denotes the Lebesgue measure on the hyperpglane
X = X, and letd, 1(X) = [x/?~V. We have

Jek(AX) = |A[KEVHRDVY L (), = [APXV Ik (X), xeRY A >0,

because of the homogeneity of the integral. We can writealrs of (6.8) with
ax)=1

D(n) = [, 150092 cx (69)
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and

D(9) = [, 1600 ickx

We prove by induction ok that

Jek(X) < C(k, k) |xZkv (6.10)
with an appropriate consta@{(k,k) < « if { > 2k > 0.
We have
30 = [Iescay)lx—y>dy
Hence

Jek < C(K,k— 1)/|y|(2K(k—1)_v|X7y|2K_vdy

2K—vV

dy = C(k,k)[x|2*V,

_ C(K’k_1)|X|2Kk7v /|y|(2K(kfl)7v ‘X‘ _

since [ |y| (2K (k-1)-v “—;“ —y’ ’ dy < co.

The last integral is finite, since its integrand behaves ab zsymptotically
asCly|**~D~V, at the pointe= % € S,_1 asCyly —€[*"" and at infinity as
Csly|?*=2v. Relations (6.9) and (6.10) imply that

1
———dx
1+ X

< C//// |X(1)|2Kk7v . 1 dx
- XD|= max [x| B 1+ |x1}2
1<I<v

' Vv
D(n) < C’/ [Xo(X)[|x/#* v dx < c”/|x|2Kk*v |-!
|=

0 o
_ Z C//// ////
p=0 Ix(1|= max x|, 2P<|x(D)|<2pP+1 Ix(1|= max [x('[,|xD)|<1
1<I<v 1<l<v

The second term in the last sum can be simply bounded by aasdnsinceB =
v

x| = (I 5(D) S xl < (1)|2kk—v 1

X [xF] = max x|, [X7] < 1} C{x: [x| <v/V}, and|xV| N Tz =

const|x|2<k~V on the seB. Hence
0 (2 K ) o) 1 v
< p(2kk—v )
D(n) 7(:1;02 Um 1+X2dx] LGy < o
We have|¢ (x)| < C(1+ [x?|)~P with someC > 0 andD > 0 if ¢ € .. The proof

of the estimat®(¢) < « for ¢ € . is similar but simpler.

Proof of Part (b).Define, similarly to the functiod, « the function
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X X
Ik ka(X) :/ |x1|2"“’a(1> ~-~|xk|2"“’a<k) dxg...dx, XxeR
Xg-+e X=X xa X

wheredx; ... dx, denotes the Lebesgue measure on the hyperpiane - +xx = x.
Since

X=y 2K—V
Jeralx Z/ Tkt ( > X—Y| dy
K, ,a( ) y: \y\<(%+a)\x|.\ny\<(%+U)|X\ K a( ) |X y‘ | |

with an arbitrarya > 0 an argument similar to the one in Part (a) shows that

3 > C(k,K)|XZKv if £ > 2k >0,
kka) | Z e if Kk <Oor2x >y

if ﬁ is close to such a poing € S,_1 in whose small neighbourhood the function
a(-) is separated from zero. Singg,(x)|2 > 0 for almost allx € RV,

n) :/‘Xn(x)|2JK,k7a(X)dX: 00

under the conditions of Part (b). Similafy(¢) = « if |§(x)|> > O for almost all
x € RV. We remark that the conditions in Part (b) can be weakenedouid have
been enough to assume tlaéx) > 0 on a set of positive Lebesgue measurg,in;.

O

Theorem 6.2 and.& together with Proposition 6.3 have the following

Corollary 6.4. The formulae

M
én = Xn(X1+ -+ +X)
2,/ %ot

and

:k§1/¢<xl+~--+xk> Iﬁ(w ek ()

Ze(dx)...Zo(dx), ¢ €7,

define self-similar random fields with self-similarity paratera if G is defined by
formula (6.8), the parameter satisfies the inequality < a < v, and the functions
a(+) (in the definition of the measure(Gin (6.8), by(-),...k(-) are bounded even
functions on $_;.

The following observation may be useful when we want to prGeeollary 6.4.
We can replacé, by another random field with the same distribution. Thus we ca
write, by exploiting Theorem 4.5,
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<

én= )?n(X1+"'+Xk)ZG/(dX1)...ZG/(ka), neZy,
k=1

with random spectral measurg corresponding to the spectral measGfédx) =
b( ) ?[x| AV O/KG(dx) = a( i )b(F)? x|V 2@k dx In the case of gener-
alized random fields a similar argument can be applied.
Remark 6.5The estimate ody x and the end of the of Part (a) in Proposition 6.3
show that the self-similar random field
M
Xp+ -+ X
= X X)X coid % |Pul =—
£(9) k;/tﬁ( LX) X (|x1+--~+xk|)

IIj <x| |RHvma/K (ﬁ:)) Zo(dx) ... Zs(dx), ¢ €7,

and
n A n{Al k)AL |X1+-~-—|-Xk\

k
|‘l (|x| |KHv=a)/K (X')) Zo(dx)...Za(d%), neZy,
|=

||

are well defined ifG is defined by formula (6.8)a(-), b(-) andu(-) are bounded
even functions org,_1, % < a<v,anda — p< v inthe generalized an%1 <
o — p < v is the discrete random field case. The self-similarity patemof these
random fields isx — p. We remark that in the cage> 0 this class of self-similar
fields also contains self-similar fields with self-simitgrparameter less tha.

In proving the statement of Remark 6.5 we have to check thegiability
conditions needed for the existence of the Wienéritegralsé(¢) and é,. To
check them it is worth remarking that in the proof of Part (BPooposition 6.3
we proved the estimatd (x) < C(k,Kk)|x|>*~V. We want to apply this inequal-
ity in the present case with the choige= Y2%. Then arguing similarly to the
proof of Part (a) of Proposition 6.3 we get to the problem \betthe relations
[1Xn(¥)|2[x[2PH2V=0)=Vdx < 0 and [ | (x)|?|x[2PT2V-0)~Vdx < w if ¢ €.7 hold
under the conditions of Remark 6.5. They can be proved by meftie argument
applied at the end of the proof of Part (a) of Proposition 6.3.

The following question arises in a natural way. When do d#ffeformulas sat-
isfying the conditions of Theorem 6.2 or Theoren2 &lefine self-similar random
fields with different distributions? In particular: Are tiself-similar random fields
constructed via multiple Wiener8tintegrals necessarily non-Gaussian? We can-
not give a completely satisfactory answer for the above tipgsbut our former
results yield some useful information. Let us substitute ghectral measui@ by

G such thatg/(((é)% = |g%(¥)|% g(—x) = g(x) and the functiong | < +(vV=)/kp( 1)
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by b()9(x)1x |-k+(v=a)/k in Corollary 6.4. By Theorem 4.4 the new field has
the same distribution as the original one. On the other h@odollary 5.4 helps
us to decide whether two random variables have different embsn and therefore
different distributions. Let us consider e.g. a moment al odder of the random
variablesé, or & (¢ ) defined in Corollary 6.4. Itis clear that &l > 0. Moreover, if
bk(x) does not vanish for some even numkgthen there existsla, > 0 in the sum
expressing an odd moment&for &(¢). Hence the odd moments &f or £(¢) are
positive in this case. This means in particular that the siefiilar random fields de-
fined in Corollary 6.4 are non-Gaussiarbjfis non-vanishing for some evénThe
next result shows that the tail behaviour of multiple Wietitérintegrals of different
order is different.

Theorem 6.6.Let G be a spectral measure ang A random spectral measure
corresponding to G. For all ke %" there exist some constants & K, > 0 and
Xo > 0 depending on the function h such that

e Ko®™ < P(llg(h)| > x) < g K/

for all x > Xg.

Remark.As the proof of Theorem 6.6 shows the constiptin the upper bound

of the above estimate can be choseiKgs= Cm(EIG(h)Z)*l/ M with a constan€,
depending only on the orden of the Wiener—I integral oflg(h). This means
that for a fixed numbem the constanK, in the above estimate can be chosen as
a constant depending only on the variance of the randomblarig(h). On the
other hand, no simple characterization of the condtant 0 appearing in the lower
bound of this estimate is known.

Proof of Theorem 6.6. (a) Proof of the upper estimate.
We have
P(lla(h)] >x) <X*NE(lg(h)[™N).

By Corollary 5.6

E(le(™M) < C(mN)[E(ls(h)?)]" < C(m N)CY,
and by a simple combinatorial argument we obtain that

— (2Nm—1)(2Nm-3)---1
C(m,N) < 2m! W ,

since the numerator on the right-hand side of this inequaljuals the number of

complete diagram§™ (m,...,m)| if vertices from the same row can also be con-
N——

o 2Ntimes
nected. Multiplying the inequalities

(2nM —2j —1)(2Nm—2j —1—2N)---(2Nm—2j —1—2N(m—1)) < (2N)™m!,

i=1,...,N, we obtain that
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C(m,N) < (2N)™N,

(This inequality could be sharpened, but it is sufficientdar purpose.) Choose a
sufficiently small numbea > 0, and define\ = [ax?/™], where[-] denotes integer
part. With this choice we have

P(llg(h)] > x) < (x2(2a)™)NCY = [Cy(2a)MN < e K™,

if a is chosen in such a way th@g(2a)™ < é Ko = % andx > Xp with an appro-
priatexg > 0.

(b) Proof of the lower estimate.

First we reduce this inequality to the following statemermt Q(xy,...,X)
be a homogeneous polynomial of order(the numberk is arbitrary), andé§ =
(é1,...,é) ak-dimensional standard normal variable. Then

P(Q(&r,..., &) > x) > e & (6.11)

if X > Xo, where the constant§ > 0 andxp > 0 may depend on the polynomial
By the results of Chapter 4 (h) can be written in the form

lg(h) = Cl N Hj, (&) - Hi (&), (6.12)

whereéy, &, ... are independent standard normal random varia@f%sg,j:}‘l‘ are ap-
propriate coefficients, and the right-hand side of (6.12pis/ergent i, sense. Let
us fix a sufficiently large integég, and let us consider the conditional distribution
of the right-hand side of (6.12) under the conditié 1 = Xk11, k12 = Xk42,---»
where the numbers. 1,Xc2,... are arbitrary. This conditional distribution coin-
cides with the distribution of the random varialfd¢&s, . .., &, X1, %2, - - - ) With
probability 1, where the polynomiaD is obtained by substitutingx.1 = X1,
Eki2 = Xk=2,- .. into the right-hand side of (6.12). It is clear that all thessy-
nomialsQ(&1,. .., &, Xk+1,Xk+2, - .. ) are of ordemm if k is sufficiently large. It is
sufficient to prove that

_Kx2/m

P(1Q(&1,- .., &k, Xkq1, Xiq2,--- )| > X) > €

for x > xp, where the constants > 0 andxp > 0 may depend on the polynomial
Write

Q(&1, -+ &k Xk 15 X425+ -+ ) = Q11 -+, €k) + Q2(&n, -+, k)
whereQ; is a homogeneous polynomial of order andQ, is a polynomial of
order less tham. The polynomialQ, can be rewritten as the sum of finitely many

Wiener—I6 integrals with multiplicity less tham. Hence the already proved part of
Theorem 6.6 implies that

P(Qa(&1,...,&) >X) < o @21
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(We may assume that > 2). Then an application of relation (6.11) @ implies
the remaining part of Theorem 6.6, thus it suffices to prove&l(

If Q(+) is a polynomial ofk variables, then there exist sorae> 0 andf3 > 0

such that
X1 Xk
A Q(,...,)‘>a>>[3,
(‘ x| x|

k
where|x|2= 5 %2, andA denotes the Lebesgue measure orktdémensional unit
=1

sphereS,_1. Exploiting that| | andé—‘ are independen% is uniformly distributed

on the unit spher&_1, andP(|§| > x) > ce ¥ for ak-dimensional standard normal
random variable, we obtain that

P(1Q(&1,...,&)| > x) > BP (|§|m < g) e

if the constant& andx are sufficiently large. Theorem 6.6 is proved. ad

Theorem 6.6 implies in particular that Wiene&Hntegrals of different multiplic-
ity have different distributions. A bounded random varéimeasurable with respect
to theo-algebra generated by a stationary Gaussian field can bessqat as a sum
of multiple Wiener—Id integrals. Another consequence of Theorem 6.6 is the fact
that the number of terms in this sum must be infinite.

In Theorems 6.2 and.B we have defined a large class of self-similar fields. The
question arises whether this class contains self-simg#disuch that the distribu-
tions of their random variables tend to one (or zero) at itfifat minus infinity)
much faster than the normal distribution functions do. Tqusstion has been un-
solved by now. By Theorem 6.6 such fields, if any, must be esga@ as a sum of
infinitely many Wiener—Ib integrals. The above question is of much greater impor-
tance than it may seem at first instant. Some consideratigggest that in some
important models of statistical physics self-similar feeldith very fast decreasing
tail distributions appear as limit, when the so-called remaization group transfor-
mations are applied for the probability measure descriliiregstate of the model
at critical temperature. (The renormalization group tfamsations are the transfor-
mations over the distribution of stationary fields inducgddrmula (1.1) or (1.3),
when Ay = N%, A(t) =t% with somea.) No rigorous proof about the existence
of such self-similar fields is known yet. Thus the real prableehind the above
question is whether the self-similar fields interesting dtatistical physics can be
constructed via multiple Wiener-éliintegrals.






Chapter 7
On the original Wiener—It 0 integral

In this chapter the definition of the original WieneB-integral introduced by &
in [18] is explained. As the arguments are very similar tasthof Chapters 4 and 5
(only the notations become simpler) most proofs will be ¢exit

Let a measure spa¢hl,.#, i) with a o-finite measuret be given. Lefu satisfy
the following continuity property: For ab > 0 andA € .Z, u(A) < o, there exist
some disjoint setBj € .7, j =1,...,N, with some integeN such thatu(B;) < €

N
forall1< j <N, andA= |J Bj. We introduce the following definition.

j=1
Definition of (Gaussian) random orthogonal measuresA system of random vari-
ables Z,(A), Ac ., u(A) < =, is called a Gaussian random orthogonal measure
corresponding to the measuteif

(i) Zu(A1),...,Zu(Ac) are independent Gaussian random variables if the sets
Aj e A, U(Aj) <o, j=1,... .k, are disjoint.
(i) EZu(A)=0,EZi(A2 = u(A).

k K
iy zy (_UlAj> = _leu (Ax) with probability 1 if A, ..., A are disjoint sets.
i= j=

Remark.There is the following equivalent version for the definitiohrandom or-
thogonal measures: The system of random variables systeamdbm variables
Zy(A), Ae A, u(A) < », is a Gaussian random orthogonal measure correspond-
ing to the measurg if

(i) Zu(A1),...,Zu(Ay) are (jointly) Gaussian random variables for all s&s=
M, (A <o, j=1,... .k

(i) EZu(A)=0,andEZ,(A)Zy(B) = u(ANB)if A Be ., u(A) <, u(B) <
0,

Itis not difficult to see that properties (i), (ii) and (iiniply relations (i) and (if).
On the other hand, it is clear thaf)@nd (i) imply (i) and (ii). To see that they also
imply relation (iii) observe that under these conditions

75
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if A1,...,Ax are disjoint sets.

The second characterization of random orthogonal measuagshelp to show
that for any measure spa¢M,.#, 1) with a o-finite measureu there exists a
Gaussian random orthogonal measure corresponding to thsumgg:. The main
point in checking this statement is the proof that for anys gat...,Ax € .Z,
H(A)) <o, 1< j <Kk there exists a Gaussian random ve¢iy (A1), ..., Zu(Ax)),
EZ,(A;j) =0, with correlationEZ, (A)Zu (Aj) = (A NA;) forall 1 <i,j <k To
prove this we have to show that the corresponding covariaratex is really posi-
tive definite, i.ey ¢icju(AiNA;) > 0 for an arbitrary vectofcy, . . ., ). But this fol-

N

2
Iowsfromtheobservatloﬂc.cij,mA]() ZC.CJXA,( X) Xa; (X) XC|XA. )’ >0

for all x e M, if we mtegrate this mequallty with respect to the measuri@ the
spaceM.

We define the real Hilbert spac@éjr‘, n=12,.... The space%/;” consists of
the real-valued measurable functions ofdrx --- x M, # x --- x .Z) such that

ntimes ntimes

1912 = [ 150, ) u(dx) ... p(dx) < o

and the last formula defines the norm)ti”. Let.#, denote the subspace in{‘
consisting of the function$ € ., such that

f(X]_,...,Xn) = f<XIT(1)a"'7XT[(n)) for all e I,

Let the spaces%/;0 and %o consist of the real constants with the noffigj| = |c|.
Finally we define the Fock space Exf) which consists of the sequencés=
(fo, f1,...), fn€ £, n=0,1,2,..., such that

21
1117 = Zﬁllfnll2 <.
n=o0""

Given a random orthogonal measuigcorresponding tq, let us introduce the
o-algebraZ = o(Z,(A): Ae ., u(A) <x). Let.# denote the real Hilbert space
of square integrable random variables measurable wittect$p theo-algebra? .

Let #<, denote the subspace that is the closure of the linear spataiiog the
polynomials of the random variabl&g (A) of order less than or equal to Let J#,

be the orthogonal completion of~, 1 to #~,. (The norm is defined a§||? =

E&2in these Hilbert spaces.)

The multiple Wiener—h integrals with respect to the random orthogonal measure
Z,, to be defined below, give a unitary transformation from E#pto 7. We
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shall denote these integrals If{to distinguish them from the Wiener8lintegrals
defined in Chapter 4.

First we define the class of simple functio!%” C %;“. Afunctionf € %;“ isin

%” if there exists a finite system of disjoint séts, ..., An, with Aj € .7, u(4;) <
o, j=1,...,N, such thatf (x1,...,%n) is constant on the sef§, x --- x A, if the

indicesji, ..., jn are disjoint, andf (x1,...,X,) equals zero outside these sets. We
define
-/
/ Fxes ) Zu(dxa) - Zu(dx) = 5 F(Xjpse o0 XG0)Zu(B)y) - Zu(4j)

forfe%‘;“ WherexkeAk,k 1,....N.
Let Ji/” Ji/” N Jif" The random variables

1/ .
IL(f):E/ F(Xa, e X0)Zu(dx0) - Zu (), f €D,
have zero expectation, integrals of different order areagtnal,

IL(f)=1,(Symf), and Synf € A if f € 4,

1 . -
EIL(f)zgﬁHsz if fe), (7.1)

and (7.1) holds with equality if € .7,

It can be seen thagjl” is dense in}i/;” in theL2(u"™) norm. (This is a statement
analogous to Lemma 4.1, but its proof is simpler. Hence icgig{7.1) enables us
to extend the definition of the-fold Wiener—Ib integrals over%/u”. All the above

mentioned relations remain valid ffc ,)Z‘“ is substituted byf € Ji/;”, andf € Ji;u“
is substituted byf € 7. We formulate 1&'s formula for these integrals. It can be
proved similarly to Theorem 4.3 with the help of the diagramiula.

Theorem 7.1. (I©'s formula.) Let ¢1,...,¢m, §j € Jiful forall 1< j<m, bean

orthonormal system inﬂ_ Let some positive integers, j.., jm be given, put 4+
-+ jm=N, and define foralli=1,...,N

g=¢iforl<i<js, and g=¢s forju+--+js1<i<jit+--+js

</¢1 1 Zu( dx) </¢m 1Z,( dx))

:/ G10) -+~ ON ) Zu () . Zy (i)

Then

://Sym[gl(xl)---gN(xN)]Zu(dxl)...Zu(de).
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(Let me remark that the diagram formula (Theorem 5.3) alswaies valid for
this integral if we replace-x; is by x; andG(dx;) by pu(dxj), N-2]y|+1<j <
—ly|, in the definition othy in formula (5.1).)

It can be seen with the help of Theorem 7.1 that the transfiioma

l: Expity — A,

wherel] (f) = E 1,(fa), f=(fo,f1,...) € Exp7y is a unitary transformation,
n=0
and so are the transformatiofrg)¥/21;, from %' to %,

Let us consider the special cadd, .7, u) = (RV,%",A), whereA denotes the
Lebesgue measureRY. A random orthogonal measure corresponding iscalled
the white noise. A randomspectral measureorresponding td , when the Lebesgue
measure is considered as the spectral measure of a geeéifaiz, is also called a
white noise. The next result, that can be considered as amaRtancherel formula,
establishes a connection between the two types of Wiedantigrals with respect
to white noise.

Proposition 7.2.Let f = (fo, f1,...,) € Exp.#, be an element of the Fock space
corresponding to the Lebesgue measure in the Euclideanesfi@ic.#"). Then

f' = (fg,f{,...,) € Exp#; with the functions § = fo and f, = (2rm)~™/2f,,
n=12,..., (where fn(ul,.. Un) = [pw € g fa(Xa,. .., Xn) dXg ... d>q1 with x =
(X1,...,%n) and u= (ug, .. .7un)) and

21
/ (s, ) 23 (0) .. 2y (d)
> o) (0w 2, ().

where 7 (dx) is a white noise as a random orthogonal measure, aptdz) is a
white noise as a random spectral measure.

Proof of Proposition 7.2We have
(2”)7nv/2||f~n||L§ = ||fn||L§v

hencef’ € Exp.7%;.
Let ¢1, @2, ... be a complete orthonormal system_ii'l. Thengi,¢5,... isalsoa
complete orthonormal systemlhﬁ, and if

fa(X1, ..., Xn 2011 ..... @i (Xa) -+ i, (Xn),

then

fr/'|(u17" 7 ZCJ]_ ..... Jn¢]1 ul) ¢J(n(un)'
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Hence an application ofdts formula for both types of integrals, (i.e. Theorems 4.3
and 7.1) imply Proposition 7.2. a0

Finally we restrict ourselves to the case= 1. We formulate a result which reflects

a connection between multiple Wieneg-Ihtegrals and classicaldtintegrals. Let
W(t), a<t < b, be a Wiener process, and let us define the random orthogonal
measureZ(dx) as

Z(A) = / Xa(OW(dx), AcC[ab), Ae %l

Then we have the following

Proposition 7.3.Let f € J{Ar‘[am, whereA [a,b) denotes the Lebesgue measure on
the intervalla,b). Then

/' F(X, %) Z(dX0) ... Z(d%) (7.2)

—nl /: (/; ( </at3 ( atz f(tl,...,tn)W(dtl))W(dtz)) ...>W(drn)> .

Proof of Proposition 7.3Given a functionf %\?ab), let the functionf be defined
as

¢ X, X)) I X <X < s <X
FOa, o X0) = {0 otherwise.

It is not difficult to check Proposition 7.3 for such speciahétionsf %}A"[a b) for
~ n
which the functionf is the indicator function of a rectangle of the forfp [a;,bj)
j=1

with constantsaa < Q < by <ay <hby <--- <ay < by < b Here we exploit the

relationl’(f) =n!l’(f). Beside this, we have to calculate the value of the rightdhan
side of formula (7.2) for such simple functiorfse Jiﬂa‘b). A simple inductive

n
argument shows that it equafg W(bj) —W(aj)]ifa<ay <by <ap <by <--- <
j=1

an < by < b, and it equals zero otherwise. Then a simple limiting procedvith the
help of the approximation of general functionsﬁ}”[am by the linear combinations
of such functions proves Proposition 7.3 in the general.case a0

As a consequence of Proposition 7.3 in the case 1 multiple Wiener—Io in-
tegrals can be substituted by lintegrals in the investigation of most problems. In
the casev = 2 there is no simple definition ofdtintegrals. On the other hand, no
problem arises in generalizing the definition of multiplean&r—I6 integrals to the
casev > 2.






Chapter 8
Non-central limit theorems

In this chapter we investigate the problem formulated ingié@l, and we show
how the technique of Wienerétintegrals can be applied for the investigation of
such a problem. We restrict ourselves to the case of distigdtts, although the
case of generalized fields can be discussed in almost thewgayn&Ve also present
some generalizations of these results which can be provadimilar way. But the
proof of these results will be omitted. They can be found ijn st we recall the
following

Definition 8A. (Definition of slowly varying functions.) A function L(t), t € [to, ),
to > 0, is said to be a slowly varying function (at infinity) if

. L(st)
tlmoW =1 forall s> 0.

We shall apply the following description of slowly varyingrfctions.

Theorem 8A. (Karamata’s theorem.)If a slowly varying function [t) is bounded
on every finite interval, then it can be represented in thenfor

L(t) = a(t)exp{/t:e(ss)ds},

where dt) — ap # 0, and(t) — 0 as t— o, and the functions @) and g(-) are
bounded in every finite interval.

Let Xy, n € Zy, be a stationary Gaussian field with expectation zero andra-co
lation function

r(n) = EXoX, = |n|"a<:|) L(In]), ne Zy, (8.1)

where 0< o < v, L(t) is a slowly varying function, bounded in all finite intervals
anda(t) is a continuous function on the unit spherg_1, satisfying the symmetry

81
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propertya(x) = a(—x) for all x € .#,_1. Let G denote the spectral measure of the
field X,, and let us define the measuf@g, N =1,2,..., by the formula

GN(A)—LT;)G<G>, Ac®’, N=12,.... (8.2)

Now we recall the definition of vague convergence of not nemély finite mea-
sures on a Euclidean space.

Definition of vague convergence of measureket G,, n=1,2,..., be a sequence
of locally finite measures over'Ri.e. let Gy(A) < o for all measurable bounded
sets A. We say that the sequenge/@guely converges to a locally finite measuge G
(in notation G, % Go) if

lim f(x)Gn(dx):/f(x)Go(dx)

n—oo
for all continuous functions f with a bounded support.

We formulate the following

Lemma 8.1.Let G be the spectral measure of a stationary random field with
correlation function (n) of the form (8.1). Then the sequence of measuiesl&
fined in (8.2) tends vaguely to a locally finite measuge The measure ghas the
homogeneity property

Go(A) =t"%Go(tA) forallAe #” andt>0, (8.3)

and it satisfies the identity

/étx ﬁ 1= COSX” Go(dx) 8.4)

a(\iﬁ\)
_ 1o IxDy .1 = xW dx, forallt cR".
[ D ()

We postpone the proof of Lemma 8.1 for a while.
Formulae (8.3) and (8.4) imply that the functiaft) and the numbeux in the
definition (8.1) of a correlation function(n) uniquely determine the measuBg.

v .
Indeed, by formula (8.4) they determine the (finite) measjErlézxcﬁfs)gnGo(dx),

since they determine its Fourier transform. Hence they ditermine the mea-
sure Gg. (Formula (8.3) shows that this is a locally finite measuta}t us also
remark that sinc&y(A) = Gn(—A) forallN=1,2,... andA € £V, the relation
Go(A) = Go(—A), A € #" also holds. These properties of the meassgamply
that it can be considered as the spectral measure of a geedraindom field. Now
we formulate
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Theorem 8.2.Let X, n € Z,, be a stationary Gaussian field with a correlation
function r(n) satisfying relation (8.1). Let us define the stationary ramdieldé; =
Hk(Xj), j € Zy, with some positive integer k, wherg() denotes the k-th Hermite
polynomial with leading coefficient 1, and assume that theupatera appearing
in (8.1) satisfies the relatio® < a < % If the random fields ,;',’; N=12...,

n e Zy, are defined by formula (1.1) withyA= NV—K9/2| (N)k/2 and the above
defined¢; = Hi(X;), then their multi-dimensional distributions tend to thaée¢he
random field 7,

z: :/)”(n(x1+~-+xk)ZGO(dx1)...ZGo(d>q<), neZy.

Here Z;, is a random spectral measure corresponding to the specteasure g
which appeared in Lemma 8.1. The functjgyt-), n= (nM,...,n")), is (similarly
to Chapter 6) the Fourier transform of the indicator functiof thev-dimensional
v

unit cube ] [n(P) n(P) 4-1].

p=1
RemarkThe condition that the correlation function) of the random field,, n €
Zy, satisfies formula (8.1) can be weakened. Theorem 8.2 ananae®il remain
valid if (8.1) is replaced by the slightly weaker condition

. r(n
lim sup () =1
T2 0 neZy, |n>T |n|*0'a(‘%) L(|n|)

where 0< a < v, L(t) is a slowly varying function, bounded in all finite intervals
anda(t) is a continuous function on the unit spherg_1, satisfying the symmetry
propertya(x) = a(—x) forall x € .4, _1.

First we explain why the choice of the normalizing consiagtin Theorem 8.2
was natural, then we explain the ideas of the proof, finallywsek out the details.

It can be shown, for instance with the help of Corollary ShatEH(&)Hk(n) =
E: &% :n* =KI(EEN)K for a Gaussian random vecttf,n) with EE =En =0
andEE? = En? = 1. Hence

K . K Y S R
EE = 3 -0~ e 3 L= (I Lk

N jleB) N jleBY

with the setBy introduced after formula (1.1). Some calculation with thedphof
the above formula shows that with our choiceAgf the expectatiot (ZN)? is sep-
arated both from zero and infinity, therefore this is the retnorming factor. In
this calculation we have to exploit the conditika < v, which implies that in the
sum expressing (z\)? those terms are dominant for whigh- | is relatively large,
more explicitly which are of ordeX. There are consil?¥ such terms.

The field&, is subordinated to the Gaussian fig It is natural to rewrite it in
canonical form, and to expreg4' via multiple Wiener—I integrals. I®'s formula
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yields the relation

&0 = Hi ( / é(”‘”ze(dX)) — [@tnizg(dx) .. Zo(dx),

whereZg is the random spectral measure adapted to the randonXfjelthen

N_ 1 y [l zg(dy)... Zo(dx)
" AN
jeBN

v eiN(x(lj)+-<-+xf<j)) -1

1 ’
= — [ d(NnXxg+-4x) i _
Ay / Dl O+ g

Zo(dxy) ... Za(dx).

Let us make the substitutioyy = Nxj, j = 1,...,k, in the last formula, and let
us rewrite it in a form resembling formula (6.7). To this efet,us introduce the
measure§y defined in (8.2). By Lemma 4.6 we can write

Zr';‘é/fN(yl,7yk))?n(yj_++yk)ZGN(dyl)ZGN(dyk)

with
f v i)+ 1y
N(Y1,~~-aYk)*|:|1 SO ) B )N
=1 (expyid (v +-+y) E—1)N

where Xn(-) is the Fourier transform of the indicator function of the tuoiibe

; (8.5)

|Z| () nl) +1). (It follows from Lemma 8B formulated below and the Fubini
j=1

iheorem that the set, where the denominator of the fundiiodisappears, i.e. the
set wherey\ + ... +ylJ) — 2IN7T with some integet # 0 and 1< j < v has 0
Gn x --- x Gy measure. This means that the functidiysare well defined.) The
functionsfy tend to 1 uniformly in all bounded regions, and the measGigsend
vaguely toGg asN — o« by Lemma 8.1. These relations suggest the following lim-
iting procedure. The limit oZ) can be obtained by substitutirfg with 1 andGy
with Gy in the Wiener—Id integral expressing. We want to justify this formal
limiting procedure. For this we have to show that the Wiehérintegral express-
ing Z\ is essentially concentrated in a large bounded region itdgnt of N. The

L, isomorphism of Wiener—dtintegrals can help us in showing that. The next result
formulated in Lemma 8.3 is a useful tool for the justificatmithe above limiting
procedure.

Before formulating this lemma we make a small digressiowals explained that
Wiener—Id integrals can be defined also with respect to random statidields
Zs adapted to a stationary Gaussian random field whose spew@adures may
have atoms, and we can work with them similarly as in the cdsgon-atomic
spectral measures. Here a lemma will be proved which shostdritthe proof of
Theorem 8.2 we do not need this observation, because if tihelation function of
the random field satisfies (8.1), then its spectral measumenisatomic.
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Lemma 8B. Let the correlation function of a stationary random field, X € Z,,
satisfy the relation (n) < Ajn|~® with some A> Oanda > Oforalln € Z,, n# 0.
\% .
Then its spectral measure G is non-atomic. Moreover, alehgianes 5 ij(l) =d
j=1
defined with some constantsand d have zero G measure.

Proof of Lemma 8BLemma 8B clearly holds itxr > v, because in this case the

spectral measur& has even a density functiag(x) = 5 e (™r(n). On the
neZy
other hand, the-fold convolution of the spectral measu@& with itself (on the

torusRY /2nZy) has Fourier transformi(n)P, n € Z hence in the casp > & this
function is non-atomic. Hence it is enough to show that if ¢bavolutionG x G
is a non-atomic measure, then so is the mea&ufBut this is obvious, because if
there were a poink € RV/2nZ, such thatG({x}) > 0, thenG* G({x+x}) > 0
would hold, and this is a contradiction. (Here addition letaon the torus.) It can
be proved similarly that all hyperplanes have z&rmeasure. ad

Now we formulate the following result.

Lemma 8.3.Let Gy, N=1,2,..., be a sequence of non-atomic spectral measures
on R’ tending vaguely to a non-atomic spectral measuge Get a sequence of
measurable functionsjK= Kn(xa,..., %), N=0,1,2,..., be given such thatiKe

%‘ékN for N=1,2,.... Assume further that the following properties hold: For all
€ > 0 there exist some constants=AA(g) > 0 and Ny = Np(¢&) > 0 and finitely
many rectangles ..., Ry with some cardinality M= M(g) on RV which satisfy

the following conditions (a) and (b) formulated below. (Védl @ set Pe £ a
rectangle if it can be written in the form P L3 x --- x Ly with some bounded open
sets ls € BY, 1 < s< k, with boundarie®Ls of zero G measure, i.e. §dLs) =0
forall 1<s<Kk.)

M
(@) The function Kis continuous on the setB [fA,A}k"\ U P, and Ky — Ko
=1

J_
uniformly on the set B as N- «. Besides, the hyperplaneg x £A have zero
Go measure foralll < p < v.

(0)  JrorglKn(xa,- %) PGn(dx)...Gu(dx) < & if N =0 or N > No, and
Ko(—X1,...,—X¢) = Ko(Xq, ..., %) forall (xq,...,x) € R,

Then K;ejf?ko, and
/KN(Xlw--,Xk)ZGN(Xm)--~ZGN(ka)2/KO(Xlwnan)ZGo(Xm)-~~ZGo(ka)

as N— oo, where= denotes convergence in distribution.

Remark.In the proof of Theorem 8.2 or of its generalization Theorei2 &r-
mulated later a simpler version of Lemma 8.3 with a simpleopmwould suffice.
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We could work with such a version where the rectangledo not appear. We for-
mulated this somewhat more complicated result, becauseibe applied in the
proof of more general theorems, where the limit is given bshsa Wiener—ib in-
tegral whose kernel function may have discontinuities.sTihgseemed to be better
to present such a result even if its proof is more complicatéa proof applies
some arguments of Lemma 4.1. To work out the details it seamée useful to
introduce some metric in the space of probability measuigstwmetricizes weak
convergence. Although it may look a bit too technical, it madssible to carry out
some arguments in a natural way.

Proof of Lemma 8.3Conditions (a) and (b) obviously imply that
[ Kol %) 2 Gol( ). Gol i) < oo

henceKg € jf?GkO. Let us fix ane > 0, and let us choose some> 0, Ng > 0 and
rectangles, ..., Ry which satisfy conditions (a) and (b) with thés Then

2
E U[l_XB(xl,...,xk)]KN(xl,...,xk)zGN(dxl)...zGN(dxk)

<K /Rkv\B\KN(Xl,--~,Xk)|2GN(dX1)---GN(ka) <€’ (8.6)

for N =0 orN > Np, wherexg denotes the indicator function of the &inhtroduced
in the formulation of condition (a).

SinceB c [-A,Al¥, andGy — G, henceGy x --- x Gn(B) < C(A) with an
appropriate consta@(A) < o forallN =0, 1,.... Because of this estimate and the
uniform convergenc&y — Ko on the seB we have

2
EU(KN(xl,...,xk)_Ko(xl,...,xk))XB(xl,...,xk)zGN(dxl)...zGN(dxk)
gk!/B|KN(X1,...,xk)—Ko(xl,...,xk)|ZGN(dxl)...GN(dxk)<£3 ®8.7)

for N > Nj with someN; = Ny (A, €).
First we shall reduce the proof of Lemma 8.3 to the proof ofréiation

/Ko(xl,...,xk)xB(xl,...7xk)ZGN(dx1)...ZGN(d)q<)
Z)/Ko(Xl,...,Xk)XB(Xl,...,xk)ZGO(dxl)...ZGO(ka). (8.8)

with the help of formulas (8.6) and (8.7), and then we shail/pr(8.8). It is simpler
to carry out this reduction with the help of some metric ongpace of probability
measure which induces weak convergence in this space. Heacal some classi-
cal notions and results about convergence of probabilitgsuees on a metric space
which will be useful in our considerations.
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Definition of Prokhorov metric, and its properties. Given a separable metric
space(X,p) with some metrig let ¥ denote the space of probability measures
on it. The Prokhorov metripp is the metric in the space” defined by the formula
pe(u,v) =inf{e: p(A) <v(Af)+eforall A e o/} for two probability measures
u,v €., where & = {x: p(x,A) < £}. The above definegdp is really a metric
on . (in particular, pp(u,v) = pp(v, 1)) which metricizes the weak convergence
of probability measures in the metric spacé, p), i.e. Uy A Lo for a sequence of
probability measures N-0,1,2, ... if and only if’\IIiLnoo pp(UN, to) = 0.

The results formulated in this definition can be found e.dRrikl. Dudley Dis-
tances of probability measures and random variables. AmthMtatist. 39, 1563—
1572 (1968)). Let us also recall the definition of weak cogesrof probability
measures on a metric space.

Definition of weak convergence of probability measures on a mtric space.A
sequence of probability measurgg, n=1,2,..., on a metric spacéX,p) con-
verges weakly to a probability measureon this space, (in notatiopy X p) if
Amf f(X)Un(dx) — [ f(x)u(dx) for all continuous and bounded functions on the

space(X, p).

| formulated the above result for probability measures iraggal metric space,
but | shall work on the real line. Given a random variaBléet (1(£) denote its

distribution. Let us remark that the convergenfgeg &o asN — o of a sequence
of random variablesé, &1,&>,... is equivalent to the statemept(&n) — u(&o)
or pp(H(én), U(&n)) — 0 asN — . Hence by puttindn = K!lgy (Kn(X1, ..., X)),
N=0,1,2,... we can reformulate the statement of Lemma 8.3 in the follgwiay.
For all € > 0 there exists some indé¥ = N (&) such thaipp(u(én), 1 (éo)) < 4¢
forall N > Ny.

To prove the reduction of Lemma 8.3 to formula (8.8) let ug fsow that for
three random variableS, & andn such thaP(|n| > €) < ¢ the inequality

Pp(H(E+1), 14(E)) < pp(p(E), u(E)) +¢& (8.9)

holds.

Indeed, sinc€w: &(w)+n(w) e A} C {w: &(w) e AAtu{w: |n(w)| > &},
we haveP({ +n € A) < P({ € A®) + ¢ for any setA e % if P(|n| > ¢) <
€. Besides,P(& € A?) < P(& € A¥*9) + & for all & > pp(p(&),u(€))._Hence

P(E+n eA) <P A et 5forall Ac By andd > pp(p(&), u(E)), ie.
pPp(H(&E+n).u(&)) < e+ 9, and this implies the inequalitge (1 (& +n), 1 (E)) <

pp(u(s‘),u(f))%-
Put

&Y = Klgy (Ko(X, -, X) XB(X0, -+ X)),
&7 = Kllgy (Kn(X1, - X) — Ko(Xe, ... %)) XB(X1, - . X)),
&Y = Koy (1= Xa(Xt,- -, %) JKn (X1, - -, %))
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forall N =0,1,2,.... With this notation it follows from relation (8.8) and thecfa
that the Prokhorov metric metricizes the weak convergemae t

pe(U(EW), H(EM)) <& if N> Ni(e)

with some threshold indelX; (¢). Formulas (8.6) and (8.7) together with the Chebi-
shev inequality imply thaP(|E[£]2)| >¢)<eand P(|E,E,3)| >¢) <eif N>Nj(g)

or N = 0 with some threshold indedj(¢). Besides, we havé = Eél) + Eés) and

én = E,E,l) + E,E,z) + 5,5,3) for N=1,2,.... The above mentioned properties of the
random variables we considered together with relation) (@8ly that

(3)

pe(L(En), H(%0) = pr(H(ED + &7 + &), n(Ed” + &%)
< pp <u<éN +&7+ &), uEY) +e
< (&Y + &P n(EY)) +2¢
< pp(H(EV), (&) +3e < 4e

if N> Nj(e) =max(Nj(€),N;(€)). Hence Lemma 8.3 follows from (8.8).

To prove (8.8) we will show thao(xa, ..., Xi) X8 (X1, . .., X) can be well approx-
imated by simple functions frorxﬁfe"0 in the following sense. For al’ > 0 there

exists a simple functiory, € ﬁ’é‘o such that

/
E [ (Kol XX 0+ ~ (3,40 2o ). Gol i) < S
(8.10)
and also
e’
E/ Ko X1, X XB(XL . k)— fgl(Xl,...,Xk))zGN(de_)...GN(ka) < F
(8.11)

if N > Np with some threshold indeXy = Np(€’,Ko(+) Xa(-)). Moreover, this simple
function f./ is adapted to such a regular systém= {A;, j = +1,...,+M} whose
elements have boundaries with z&g measure, i.eGo(dAj) =0 forall 1< |j| <
M.

To prove (8.8) with the help of these estimates first | show thes function

fe € A& satisfies the relation

[ fe0a, 00 Zay (). Zoy (640 2 [ fe (1.0 Zeo (604) .- Zog (0%
(8.12)
asN — o. To prove (8.12) observe that for the regular system= {4j, j =

+1,...,£M} towhich the functiorf, € j‘fG"o is adapted has the propef®y(dAj) =
Oforall j=41,...,+M. Besides, the spectral measu@gare such thaBy Y Go.
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Hence the (Gaussian) random vect@s, (4;), j = +1,...,+M) converge in dis-
tribution to the (Gaussian) random vectdig,(4;), j = +1,...,+=M) asN — oo,
The same can be told about the random variables we get bygtite arguments of
these random vectors to a continuous functionMofariables). Since the integrals
in (8.12) are polynomials of these random vectors, we catyappse results for
them, and they imply relation (8.12).

Put

Ko(X1, .-+, Xk) XB (X1, - - -, Xk) — Fer (X1, ..., %) = ho(Xq, ..., X). (8.13)

By relations (8.10), (8.11) and the Chebishev inequaftik!lg,(ho)| > €') < €
andP(|k!lg, (hg) > €’) < €"if N > No. Sincelgy (Kn(X,...,X)XB(X1, ..., X)) =
loy (fer(X1,. .., %)) + hn(x1,..., %), N =0,1,2,..., the above relations together
with formulas (8.12) and (8.9) (with the numbegrinstead ofe) imply that

1im e (1 (Kilay (Ko(-)Xe(), H(Kgy(Ko( ) Xa())))
= lim pp((K Iy (fer () +ho())), H(KIgy( fer () +ho())))
< Jim pe(p(KlIgy (Ro())), 1 (Kilg (Ro(-))) +2¢' = 26

Since this inequality holds for adf’ > 0 this implies relation (8.8). To complete the
proof of Lemma 8.3 we have to justify relations (8.10) and {3.

Relation (8.10) is actually a version of Lemma 4.1, but itetaa slightly stronger
approximation result under the conditions of Lemma 8.3. §taéement that for all
¢’ the functionKo(-) xg(+) can be approximated with a simple functity(xs, . .., X)
which satisfies (8.10) agrees with Lemma 4.1. But now we wafinht a function
fe which is adapted to such aregular systera- {4, j==+1,...,+M} whose ele-
ments have the additional prope@y(JdA;) = 0 for all indicesj. A function f,, with
these properties can be constructed by means of a slighficagitin of the proof of
Lemma 4.1. Butin the present case we exploit that the funétid-) xg(-) is almost
everywhere continuous with respect to the product mea@ére Go x -+ x Gp.

k times
This property is needed in the first step of the constructidrere we reduce the ap-
proximation result we want to prove to a slightly modifiedsien of Statement A
In this modified version we claim the good approximabilitytbé indicator func-
tion of such set#\ which satisfy not only the properties demandedtatement A
but also the relation&p(dA) = 0 andGo(dA;1) = 0 hold. On the other hand, we
demand the same propeiBy(dB) = 0 about the seB whose indicator function is
the approximating function iStatement ATo carry out the reduction, needed in
this case we approximate the functikip(-) xg(-) with such an elementary function
(a function taking finitely many values) whose level setsehiawundaries with zero
G(‘g = Gg x -+ x Gg measure. This is possible, since the boundaries of thesk lev
sets consist of such points where either the fundtigh) xs(-) takes the value from
an appropriately chosen finite set, or it is discontinuous.
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To complete the reduction of our result to the new versioBtatement Ave still
have to show that if the sét can be written in the fornh = A; U (—Aq) such that
AiN(—A1) =0, andG"(c?A_) 0, then for allp > O there is soméy = A1(n) C A1
such thatGk(A\ (ALU (=A1)) < n, p(Ar,—A1) > 0, andGE(dA;) = 0. Indeed,
there is a compact sé&t C A; such thatG"(Al CK)<3 1. Then also the relation
p(K,—K) =0 > 0 holds. By the Heine—Borel theorem we can find an operGset
such thak ¢ G ¢ K3 with K%/3 = {x: p(x,K) < §}, andG§(dG) = 0. Then the
setA; = A; N G satisfies the desired properties.

After making the reduction of the result we want to prove is thodified version
of Statement Ave can follow the construction of Lemma 4.1, but we chooseathe
step sets with zerGg x - - - x Gg boundary.

A more careful analysis shows that the function construteslich a way sat-
isfies also (8.11) foN > Ny with a sufficiently large threshold indéX,. Here we
exploit thatGy Y Gg. This may enable us to show that the estimates we need in
the construction hold not only with respect to the spectrahsureGy but also
with respect to the spectral measuf@g with a sufficiently large indeXN. We
can get another explanation of the estimate (8.11) by expipthat the function
ho(x1,...,X«) defined in (8.13) is almost everywhere continuous with resethe
measureGyp x --- x Gp. It can be shown that the vague convergence has similar
properties as the weak convergence, hence the above neshatmost everywhere
continuity implies that

l\lliToo ho(Xl,...,Xk)GN(de_)...GN(ka) :/ho(X]_,...,Xk)Go(dX]_)...Go(ka).

O

RemarkWe have formulated this statement in the case wWBgris a spectral mea-
sure onR". But it remains valid ifGy, is a spectral measure on the torus of sigg &
with Cy — o if N — oo if we identify this torus with the sgt-Cy,Cym)¥ C RV in
a natural way.

Now we turn to the proof of Theorem 8.2.

Proof of Theorem 8.2Me want to prove that for all positive integgssreal numbers
C1,...,Cpandn € Zy, | =1,...,p,

;C|Z —> Zq s

since this relation also implies the convergence of the irdirtensional distribu-
tions. Applying the same calculation as before we get withhtalp of Lemma 4.6
that

p
Y Gz = q/ 1% 70 (dxy) .. Za(dX),
=1 AN| 1 JeB

and
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Gz\ é/KN(xl,...,xk)ZGN(dxl)...ZGN(d><k)

with

KN(xl,...,xk): leea ex {( X1+ +Xk)}

p
= (X, %) ) Gk (Xa+ -+ %) (8.14)
=1

with the functionfy defined in (8.5) and the measu@g, defined in (8.2), where
Xn(-) denotes the Fourier transform of the indicator function leé unit cube
M n@,n0 +1), n= (n®,...n)).
j=1

Let us define the function

p
KO(le“'an) = Zq)?m (X1++Xk)
=1

and the measurgs, on R by the formula

A) = [ K. 0 %G (). Gr(6%0)
Ac 2 andN=0,1,..., (8.15)

whereGy is the vague limit of the measur&s,.

To prove Theorem 8.2 it is enough to show that Lemma 8.3 canppéed
with these spectral measur€&, and functionsKy. (We choose no exceptional
rectanglesP; in this application of Lemma 8.3.) Sindéy Y, Go, andKy — Ko
uniformly in all bounded regions iR, it is enough to show, beside the proof
of Lemma 8.1, that the measurgsy, N = 1,2,..., tend weakly to the (neces-
sary finite) measurgp which is also defined in (8.15), (in notatiqmn, X o), i.e.

[ f(X)un(dx) — [ f(x)po(dx) for all continuous and bounded functiohon R,
Then this convergence implies condition (b) in Lemma 8.3rddwer, it is enough
to show the slightly weaker statement by which there existeesfinite measure
[o such thatuy — Lo, since thentio must coincide withuo because of the rela-
tions Gy — Gg andKyn — Ko uniformly in all bounded regions d®", andKy is a
continuous function.

There is a well-known theorem in probability theory abow gguivalence be-
tween weak convergence of finite measures and the convergdrtbeir Fourier
transforms. It would be natural to apply this theorem fornvorg iy X Lo. On the
other hand, we have the additional information that the mnesgy, N =1,2,...,
are concentrated in the cubpsN7, Nm)X", since the spectral measuBeis con-
centrated if—r, ). It is more fruitful to apply a version of the above mentioned
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theorem, where we can exploit our additional informatioe. fdfmulate the follow-
ing

Lemma 8.4.Let 1, Lo, ... be a sequence of finite measures bsich thatuN(R' \
[—CNmCNn)') =0forallN =1,2,..., with some sequenceyG— © as N— oo,
Define the modified Fourier transform

¢N<t>:Aexp{i (“EN”],x)}ume), teR,

where[tCy] is the integer part of the vector C= R. (For an xc R its integer part
[x] is the vector re 2, for which XP) —1 < n(P) < x(P) ifx(P) > 0, and XP) < n(P) <
xP) 4 1ifx(P <0forall p=1,2,...,1.) Iffor all t € R the sequencey(t) tends
to a functiong (t) continuous at the origin, then the measurgsweakly tend to a
finite measurgly, and ¢ (t) is the Fourier transform oflo.

| make some comments on the conditions of Lemma 8.4. Let usrebshat if
the measuregy or a part of them are shifted with a vectot@yu with someu € 7,
then their modified Fourier transforngsg (t) do not change because of the periodic-
ity of the trigonometrical functiongI/>NX) j € ;. On the other hand, these new
measures which are not concentrated-#Cy7t,Cy ), have no limit. Lemma 8.4
states that if the measurgg are concentrated in the cublesCy 17,Cy rr)', then the
convergence of their modified Fourier transforms definedemima 8.4, which is
a weaker condition, than the convergence of their Fourgrsiorms, also implies
their convergence to a limit measure.

Proof of Lemma 8.4The proof is a natural modification of the proof about the
equivalence of weak convergence of measures and the cemoergf their Fourier
transforms. First we show that for &ll> 0 there exits somK = K (&) such that

pun(x: xeR, XY >K)<e forall N>1. (8.16)

As ¢(t) is continuous at the origin there is sodie- 0 such that
|¢(07...,O)—¢(t,07...,0)\<§ if |t] <o. (8.17)

We have
0 <Re[¢n(0,...,0) — ¢n(t,0,...,0)] < 2¢n(0,...,0) (8.18)

forallN=1,2,.... The sequence in the middle term of (8.18) tends to

Re[(0,...,0) — ¢(t,0,...,0)]

asN — co. The right-hand side of (8.18) is a bounded function in theaide N,
since it is convergent. Hence the dominated convergencedahecan be applied.
We get because of the conditi@y — o« and relation (8.17) that
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. [6Cn]/Cn 1
lim = Re[¢pn(0,...,0) — ¢n(t,0,...,0)]dt
N—o /o o)
51 €
= [* 5Rel9(0.....0)~ $(1,0,... 0))dt < £
0

with this & > 0. Hence

im [ L regn(0.....0 0,...,0)d
2> lm [T S Relgn(0.....0)~ dn(t.0.....0) e
[dCN]/C .
— lim <1/ N NRe[l—e'[tCN]X(l’/CN]dt> pn (dx)
N—oco o 0
1 [6Cn]-1 )
— lim /7 Re [1— éx™/N] py(dx)
N—w ) OCy ];, [ }
[6Cn]—1 @)
>Iimsu/ = Re [1— &/ ] iy (dx
= liMSUp | o)) 30 ZO e[ ]uN( )

J:
1 1@l /cy
=i 1- Re
ey AW < 5Cn 1_ax¥/Cn pn(dx)

with an arbitranK > 0. (In the last but one step of this calculation we have exgdbi
[6Cn] -1 o)
that 55- ,Zo Re[1—&X"/O] > 0 for all x(V) ¢ RL.)

Since the measungy is concentrated ifix: xe R, [xY)| < Cym}, and

1oy Re (iefix(l)/ch (1 _ ei[acN]x(l)/cN> )
1_e®/on i(e-X(/2CN _ gk /20
1 CnIT

NECAY S
sin{ 5

if [xV)] < Cnr, (here we exploit thaftsinu| > Z|ul if |u] < Z), hence we have with
the choiceK = 2F

e

£ limsu
— > limsup 5xD

1_
27 Neow J{xV[>K} <

) (b9 > imsupZ (X7 > K).
N—oo

As the measuregy are finite the inequalityy (|x(Y| > K) < ¢ holds for each in-
dexN with a constanK = K(N) that may depend oN. Hence the above inequality
implies that formula (8.16) holds for al > 1 with a possibly larger indeK that
does not depend ax.

Applying the same argument to the other coordinates we fiadftr all € > 0
there exists som@(¢) < o such that



94 8 Non-central limit theorems
iy (R' \[—C(s),C(e)]') <¢ foralN=1,2,....
Consider the usual Fourier transforms
Pn(t) = .| dWpuy(dx), teR.

R

Then

#n(0) -~ u(0)] < 26+ | () _ ON)/On0| 1y (dlx)

[-C(¢).C(e)]

SZ‘I-F%HN(Q)

forall € > 0. Hencedn(t) — ¢n(t) — 0 asN — o, anddn(t) — ¢ (t). (Observe that
un(R) = ¢n(0) — ¢(0) < 0 asN — o, hence the measureg (R are uniformly
bounded, an@y — by the conditions of Lemma 8.4.) Then Lemma 8.4 follows
from standard theorems on Fourier transforms. ad

We return to the proof of Theorem 8.2. We apply Lemma 8.4 @jjh= N and
| = kv for the measuregy defined in (8.15). Because of the middle term in (8.14)
we can write the modified Fourier transfoigyn of the measuregny as

P p
On(tL,. .. 1) :r;;CrCSWN(tl'f‘nr —Ns,...,t+ N —Ng)
with
1 1. .
Un(ta, .. t) = @/GXP 'N((Jl,X1)+"'+(Jk,Xk))

> > exp{i(T,xl+--~+xk)}GN(dxl)...GN(dxk)
peB) qeB)
:|\|2vkc]x.|_(|\l)k > > r(p=a+ju) - r(p—a+ i), (8.19)

peBY geBY

wherejp = [tpN], tp e R, p=1,... k.

The asymptotical behaviour @fiy(t1,...,t) for N — o can be investigated by
the help of the last relation and formula (8.1). Rewriting thst double sum in the
form of a single sum by fixing first the variable= p—q € [-N,N]Y NZ,, and then
summing up fott one gets

LﬂN(tl,...,tk)Z/ fN(tl,...,tk,X)dX
-1

with
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fn (tl, ... 7tk,X)

_ <1_ HX(”NH> <1_ [|x<V>N]> PN+ Jr) PN+ )
N N N-aL(N) N-aL(N)

(In the above calculation we exploited that in the last sunfioafnula (8.19) the
number of pairgp,q) for whichp—q=1= (ly,...,ly) equals(N — |I1])--- (N —
vl).)

It can be seen with the help of formula (8.1) that foraatt O the convergence

fN(tl,...,tk,X) — fo(tl,...,tk,X) (8.20)

holds uniformly with the limit function

a X+t1 a X+t
[x+tq] [ X+t |
fo(tla"'vtkax) = (1_|X<1)|)(l_‘X(V)|) |£+t1]ia) |)§+tkk|a>

k
onthe seke [-1,1)V\ U {x: |[x+tp| > £}.
p=1

We claim that

N t) = ol 80 = [ folty - tox)dx

andyy is a continuous function.
This relation implies thapy A Lo. To prove it, it is enough to show beside
formula (8.20) that

/ fo(ty,...,t,X)dx <C(g), p=1,....,k (8.21)
[x+tp|<e

and

/|+u fn(ts,. . toX)|dx<C(e), p=1...k andN=12... (8.22)
X+tp|<e

with a constan€(¢e) such thatC(e) — 0 ase — 0.
By Holder’s inequality

1/k
/ fo(ty,...,t,X)dx| <C |_| |:/ |X+t||—kadxj|
ettpl<e 1<I<k, I4p L/x€[-1,1]Y

1/k
[/ ‘ |x+tpk“dx] < ClgV/k-a
X+p|<e

with some appropriat€ > 0 andC’ > 0, sincev —ka > 0, anda(-) is a bounded
function. Similarly,
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. 1/
I (IXNJ + i) ¥

[fn(te, . e X)[dx < U ka9
/|X+tp\<€ 1§|£|k.|¢p xe[-1v N7IL(N)K

' Ir([XN] =+ jp)|¥ 1/k
|:'/X+tp<gNkC(L(Np)kdX:| .

It is not difficult to see, by using Karamata’s theorem, tiat(i) is a slowly
varying function which is bounded in all finite intervalsethfor all numberg) > 0
andK > 0 there is a threshold indé¥ and a numbe€ = C(Np, n,K) such that

L(uN) <CuTL(N) forall0<u<K andN > No.

Hence formula (8.1) implies that

F(BN]+ )] = I (XN]+ [5N]) < CNTOL(N) (L x-+4] 977, (8.23)
and
Ir([XN] + jp)[¢ : as B
— = dx<B 14X+t MY dx < B gV—k@a+n)
/‘XHPKS N—KIL(N)k B -\X+tp|<£( I+l ydx<
[r([(XN] + ji)|¥ .
— = dx<B".
/xe[fl,l]" N-KaL(N)k *=

for a sufficiently small constamt > 0 with some constan®,B',B” < « depending
onn andtp, 1< p <k. (Let us remark that (8.23) holds also forN] + ji| < Ky with
someK; > 0 independent oN, i.e. when the argument of ) is relatively small,
becausér(n)| < 1for alln e Z,.) Therefore we get, by choosing grn> 0 such that
k(a+n) < v, the inequality

/Ht PILCRRRRILEE Cev/k-(a+n)
X+tp|<€

with someC < . The right-hand side of this inequality tends to zerceas 0.
Hence we proved beside (8.20) formulae (8.21) and (8.28)efbre also the rela-
tion N — Ho. This means that with our choice of the functidg(-) and measures
Gn all conditions of Lemma 8.3 are satisfied (if we know that dlsmma 8.1
holds), and its application yields Theorem 8.2. Thus we lmeged Theorem 8.2
with the help of Lemma 8.1. O

It remains to prove Lemma 8.1.

Proof of Lemma 8.lIntroduce the notation

v eix(i)_l
Kn¥)=[1]————, N=1,2,...
N( ) ]I:LN(G'X“)/N—]_)

and
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v eIX
_Dl

Let us consider the measurgg defined in formula (8.15) in the special cdse 1,
p=1,¢c,=1.Then

in(A) = [ IKn(9PGr( .

We have already seen in the proof of Theorem 8.2 ﬂmtﬂ Uo with some finite
measurelp, and the Fourier transform ¢f is

a( xtt )
t = 1_ <1> 1_ (V) (‘X_H‘ d
#) /[—1.,1}V( pe1) -+ (=D [x+t|@ X

Moreover, sincéKy (x)|> — |Ko(x)|? uniformly in any bounded domain, it is natu-
ral to expect thaGy — Go with Go(dx) = TotgzHo(dx). But sinceKo(x) = 0 in
some points a direct proof of this statement would be diffiddénce we choose a
different approach to avoid these difficulties. First wevera result about the vague
convergence of the restrictions of the meas@ggo appropriate cubes.

We show that for allT > 1 there is a finite measur&] concentrated on
(—=Tm,Tm)V such that

lim f(x)GN(dx):/f(x)Gg(dx) (8.24)

for all continuous function$ which vanish outside the culfe- T T, T mm)".
Let a continuous functiorfi vanish outside the culie-T 7, T 1)V with someT >
1. LetM = [+]. Then

/f(x)GN(dx) - LT;) - LI\(/II\:) /f (,\'\/'Ix) G (d)
- ?'AZLL((“Q [t (%) P 912y
(2T)° /f 2Tx\Ko( )20 dx)

/ dx asN [
= —
|K X |2 Hol\ o7 ’

because (%x)\KM (x)|~2 vanishes outside the cubert, ",

f(%xﬂKM (X)| 72 — f(2TX)|Ko(x)|~2 uniformly,

(the functionKy(-)~2 is continuous in the cuble-7t, 7Y,) and iy — Lo asN — .
Hence relation (8.24) holds. The measu@$ appearing in (8.24) are consis-
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tent for different parameter§, i.e. G} is the restriction of the measuf@]’ to
the cube(—Trm, Tm)” if T > T. This follows from the fact thaf f(x)G} (dx) =
J f(x)Gg'(dx) for all continuous functions with support {(r-T,T)". It can be seen
with the help of these facts that there is a locally finite mea&y on R¥ such that
Gg is its restriction to the cube-T T, T 1), andGy Y Go.

Let us briefly explain why such a-finite measuresy exists. The main prob-
lem is to show that the natural candidate €y is really a @-additive) measure.
To show this let us represent the measuBgsas the Lebesgue-Stieltjes measures
of appropriate functionéag (x), x € RV. To define these functions let us fix a num-
bera= (ay,...,a,) such that the hyperplanes = a; have zeroG] measures for
all 1< j<vandT. Then we can define the functio® asG/(x,...,xy) =

(-1)9™G] (ﬁ [aj,Xj)>, where a(x) denotes for a vectox = (xq,...,%,) the
number of coordinateg 1 < j < v, such thak; < aj. Then the functionég have
a limit function Gg asT — 0, and Gy can be defined as the Lebesgue—Stieltjes
measure defined by this functiGy.

As Gy — Go, and|Ky (X)|2 — |Ko(x)|2 uniformly in all bounded regions, hence
Un ~ Ho, where lio(A) = [4|Ko(X)|2Go(dX), A € #". Sinceun — Lo the mea-
surestlp and Lo must coincide, i.e.

uo(A):/A\Ko(x)FGo(de Ac 2.

Relation (8.4) expresses the fact tipgtis the Fourier transform qfip.

It remained to prove the homogeneity property (8.3) of thasueeGy. For this
goal let us extend the definition of the measuggiven in (8.2) to all non-negative
real numbersl. It is easy to see that the relati@y, Y, Gg asu — o remains valid.
Hence we get for all fixed > 0 and continuous functions with compact support
that

| LY
/f(x)Go(dx):Jmo 109 Gu( ) = fim, /f(sx)G%(dx)

s“/f(sx)Go(dx) :/f(x)s"Go(dSX).

This identity implies the homogeneity property (8.3)@&jf. Lemma 8.1 is proved.
O

The next result is a generalization of Theorem 8.2.

Theorem 8.2. Let X, n€ Z,, be a stationary Gaussian field with a correlation func-
tionr(n) defined in (8.1). Let k) be a real function with the properties EN,) =0
and EH(X,)? < o. Let us consider the Fourier expansion

8

HX) = 3 ciHj(x), it <o, (8.25)
j=1
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of the function H-) by the Hermite polynomialsHwith leading coefficients 1). Let
k be the smallest index in this expansion such that ©. If 0 < ka < v in (8.1),
and the field % is defined by the field, = H(X,), n€ Z,, and formula (1.1), then
the multi-dimensional distributions of the field$ &ith Ay = NV—ka/2L(N)¥/2 tend

to those of the fields&;;, n € Z,, where the field Zis the same as in Theorem 8.2.

Proof of Theoren8.2'. DefineH’(x) = § cjH;(x) andYN = ﬁ Sy H(X). Be-
j=k+1 BN
cause of Theorem 8.2 in order to prove Theore® 8is enough to show that
E(YN)2—-0 asN — .

It follows from Corollary 5.5 thaEH;(Xa)H (Xm) = Jj j!' (EXXm)! = &jj!r(n—

m)J, whered;) =0if j #1,andd;; = 1if j =1. Hence
E(VN)2 = ; &ty [rs—u)l.
AN j=k+1 steBN

Some calculation yields with the help of this identity anchfiala (8.1) that

E(YN)? = Alﬁ [O(NZV*””"L(N)W) +O(NV)} —0.

Theorem &' is proved. O

Let us consider a slightly more general version of the probievestigated in
Theorem &'. Take a stationary Gaussian random fixg EX, = 0, E)(n2 =1,
n € Z, with a correlation function satisfying relation (8.1), ahe fieldé, = H(Xn),
n € Zy, subordinated to it with a general functiéh(x) such thaEH(X,) = 0 and
EH(Xn)? < . We are interested in the large-scale limit of such randoluisi@ake
the Hermite expansion (8.25) of the functibiix), and letk be the smallest such
index for whichcy # 0 in the expansion (8.25). In Theoren28we solved this prob-
lem if 0 < ka < v. We are interested in the question what happens in the came wh
ka > v. Let me remark that in the cake > v the fieldZ;;, n € Z,, which appeared
in the limit in Theorem &’ does not exist. The Wieneréltintegral definingz;; is
meaningless, because the integral which should be finitadoagitee the existence
of the Wiener—Id integral is divergent in this case. Next | formulate a gahersult
which contains the answer to the above question as a spasil ¢

Theorem 8.5.Let us consider a stationary Gaussian random fiejd KX, = 0,
EX? =1, n € Zy, with correlation function (n) = EXnXmin, mn € Z,. Take a
function H(x) on the real line such that EFK,) = 0 and EH(X,)? < . Take the
Hermite expansion (8.25) of the functior(}), and let k be smallest index in this
expansion such thafg# 0. If

r(n)[¥ < oo, (8.26)

nessy
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then the limit

lim EZN(H))? = lim N7V r'(i—j) = o?l!
N—oo N—oo IEZBN]EZBN

exists for all indices b k, where 2'(H, ) is defined in (1.1) with A= N"/2, and&, =
H, (X») with the I-th Hermite polynomial Hix) with leading coefficient 1. Moreover,
also the inequality

[ee]
0% = Z<c|2I!a|2<oo
|=

holds.

The finite dimensional distributions of the random fief &) defined in (1.1)
with Ay = NY/2 and &, = H(Xn) tend to the finite dimensional distributions of a
random fieldoZ; with the numbero defined in the previous relation, wherg,Z
n € Zy, are independent, standard normal random variables.

Theorem 8.5 can be applied if the conditions of Theore@ Bold with the
only modification that the conditioka < v is replaced by the relatioka > v.
In this case the relation (8.26) holds, and the large-saali¢ of the random field
ZN, n € 7, with normalizationAy = NY/2 is a random field consisting of indepen-
dent standard normal random variables multiplied with thembero. There is a
slight generalization of Theorem 8.5 which also covers #seka = v. In this re-

sult we assume instead of the condition (8.26) ttgt r(n)k = L(N) with a slowly
neBy

varying functionL(-), whereBy = {(ng,...,ny) €Zy: —N<n; <N, 1<j<v},
and some additional condition is imposed which states thaparopriately defined
finite numbera? = lim g, which plays the role of the variance of the random

variables in the Iimi"?ing field, exists. There is a similarga scale limit in this case
as in Theorem 8.5, the only difference is that the normingstamt in this case is
An = NY/2L(N)Y/2. This result has the consequence that if the conditions ef Th
orem 82 hold with the only difference thdta = v instead ofka < v, then the
large scale limit exists with norming constartg = NV/2L(N) with an appropri-
ate slowly varying functiorL(-), and it consists of independent Gaussian random
variables with expectation zero.

The proof of Theorem 8.5 and its generalization that we didfoxanulate here
explicitly appeared in paper [3]. | omit its proof, | only m@agkome short explanation
about it.

In the proof we show that all moments of the random variap:sonverge to
the corresponding moments of the random varialifeasN — c. The moments of
the random variableg) can be calculated by means of the diagram formula if we
either rewrite them in the form of a Wienerélintegral or apply a version of the
diagram formula which gives the moments of Wick polynomiattead of Wiener—
Itd integrals. In both cases the moments can be expresseditydly means of
the correlation function of the underlying Gaussian randietd. The most impor-
tant step of the proof is to show that we can select a spedciallass of (closed)
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diagrams, called regular diagrams in [3] which yield the meantribution to the
momentE (ZN)M, and their contribution can be simply calculated. The dbation

of all remaining diagrams is(1), hence it is negligible. For the sake of simplicity
let us restrict our attention to the cadéx) = Hx(x), and let us explain the definition
of the regular diagrams in this special caseMlis an even number, then take the
partitions{ky,kz}, {ks,ka},...,{km—1,km} Of the set{1,...,M} to subsets consist-
ing of exactly two elements, to define the regular diagrarhgyTare those (closed)
diagrams for which we can choose one of the above partitiorssich a way that
the diagram contains only edges connecting vertices frankif 1-th andks;-th
row with some I< j < % where{kz;_1,kzj} is an element of the partition we have
chosen. IiM is an odd number, then there is no regular diagram.

In Theorems 8.2 and.8 we investigated some very special subordinated fields.
The next result shows that the same limiting field as the ofid@orem 8.2 appears
in a much more general situation.
Let us define the field
1 i :
&= zkﬁ/e'(”l*“'*xl)aj (X1,..., X)) Za(dx1) ... Zg(dXj), n€Zy, (8.27)
=L

whereZg is the random spectral measure adapted to a GaussiarXfietde Z,,
with correlation function satisfying (8.1) withQ a < .

Theorem 8.6.Let the fields £ be defined by formulae (8.27) and (8.1) witk A
NV—ka/2 The multi-dimensional distributions of the field¥ #nd to those of the
field ay(0,...,0)Z; where the field Zis the same as in Theorem 8.2 if the following
conditions are fulfilled:

() ok(xs,...,%) is a bounded function, continuous at the origin, and such tha
ax(0,...,0) #0.
(i)
2
(X lzi (1 /Ng-+4)
aj (N""’ N) N2 _zNe'
jeBl

GN(dX]_)...GN(de) — 0,

@ 1 N-(-ka
j:Z:lﬁ L(N)i—k /ij

where G is defined in (8.2).

Proof of Theorem 8.6The proof is very similar to those of Theorem 8.2 an? .8
The same argument as in the proof of Theore@ Shows that because of condi-
tion (ii) &, can be substituted in the present proof by the following esgion:

1 .
g — E/e'(”‘xﬁ'“*xk)ak(xl,...,xk)ZG(dxl)...ZG(dm(), nez,.

Then a natural modification in the proof of Theorem 8.2 ingplidleorem 8.6. The
main point in this modification is that we have to substithimeasuregy defined
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in formula (8.15) by the following measuge:

TV(A) — 2| (2 X
(A = [ KO 02 fa (e 3| Gn(da) .. Gu(dx),
Aec B

and to observe that because of condition (i) the limit refatin — Lo implies that
in - (0., 0)Ppo. O

The main problem in applying Theorem 8.6 is to check condgi@) and (ii).
We remark without proof that any fiel§, = H(Xsl+n,...,xsp+n), S1,.--,Sp € Ly
andn € Z,, for whichEE? < o satisfies condition (ii). This is proved in Remark 6.2
of [9]. If the conditions (i) or (ii) are violated, then a limof different type may
appear.

Finally we quote such a result without proof. Actually thegir is similar to
that of Theorem 8.2. At this point the general formulatiobemma 8.3 is useful.
(See [24] for a proof.) Here we restrict ourselves to the aasel. The limiting
field appearing in this result belongs to the class of sefifar fields constructed in
Remark 6.5.

Leta,,n=...,—1,0,1,..., be a sequence of real numbers such that

a,=C()nP14o(nB-1) ifn>0 B
an=C(2)|n|P~14o(nB-1) ifn<O 1<p<i (8.28)
Let X,, n=...,—1,0,1,..., be a stationary Gaussian sequence with correlation
functionr(n) = EXoXy = |n|~9L(|n|), 0< a < 1, whereL(-) is a slowly varying
function. Define the field,,n=...,—1,0,1,..., as

9]

éh=> amHk(Xmn). (8.29)

m=—oo

Theorem 8.7.Let a sequencé,, n=...,—1,0,1,..., be defined by (8.28) and
(8.29). Le0<ka <1,0<1-pB— ‘ga < 1, and let one of the following conditions
be satisfied.

(& 0<pB<1land 5 a,=0.
(b) 0>B>-1
(c) B=0,C(1)=-C(2),and Zo|an+¢n| < oo,

Let us define the sequence$ &y formula (1.1) with A = N-F~-ka/2| (N)/2 and
the above defined fielf},. The multi-dimensional distributions of the sequen(ﬁés Z
tend to those of the sequences'@;(a, B,a,b,c), where
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Z3(@.B.kb.0) = [ Raba+-+x)
{b‘X1+"'+Xk|B+iC|X1+"'+Xk|BSign(X1+"'+Xk):|
Ixa| @12 x| @D 2W (dx) . W (dX),
W(-) denotes the white noise field, i.e. a random spectral measumespond-

ing to the Lebesgue measure, and the constants D, b and ¢ firedlexss D=
2r (a)cog $m), and

b=2[C(1)+C(2)]r (—B)sin(E2m), and c=2[C(1) —C(2)]I (—B) cog B3t m)
in casis (a) and (b), and

b= S an andc=C(1)in case (c).

n=—o0






Chapter 9
History of the problems. Comments

Chapter 1.

In statistical physics the problem formulated in this cleapippeared at the investi-
gation of some physical models at critical temperature.s&assion of this problem
and further references can be found in the fourth chaptéreofiarthcoming book of
Ya. G. Sinai [33]. (Here and in the later part of Chapter 9 wkrdit change the text
of the first edition. Thus expressions like forthcoming baacent paper, etc. refer
to the time when the original version of this Lecture Noteegmed.) The first ex-
ample of a limit theorem for partial sums of random variallbgch is considerably
different from the independent case was given by M. Roséninlg28]. Further
results in this direction were proved by R. L. Dobrushin, esken and F. Spitzer,
P. Major, M. Rosenblatt and M. S. Taqqu [7], [8], [9], [24]912[30], [34], [37]. In
most of these papers only the one-dimensional case is @sid.e. the case when
R’ =R, and it is formulated in a different but equivalent way. Toiaj distribution

Nt
of the random variableg ! 5 &;, 0<t < o, is considered.
j=1

Similar problems also éppeared in the theory of infinite iplertsystems. The
large-scale limit of the so-called voter model and of inénparticle branching
Brownian motions were investigated in papers [2], [6], [1[ZB]. It was proved
that in these models the limit is, with a non-typical normation, a Gaussian self-
similar field. The investigation of the large-scale limit wd be very natural for
many other infinite particle systems, but in most cases ttablpm is hopelessly
difficult.

The notion of subordinated fields in the present context fipgieared at Do-
brushin [7]. It is natural to expect that there exists a lactgss of self-similar
fields which cannot be obtained as subordinated fields. Nedess the present
techniques are not powerful enough for finding them.

The approach to the problem is different in statistical jptg/sin statistical
physics one looks for self-similar fields which satisfy soooaditions formulated
in accordance to physical considerations. One tries toritesthese fields with the
help of a power series which is the Radon—Nykodim derivativihe field with re-

105
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spect to a Gaussian field. The deepest result in this diredia recent paper of
P. M. Bleher and M. D. Missarov [1] who can define the requirednfal power
series. This result enables one to calculate severalariticlices interesting for
physicists, but the task of proving that this formal expi@ssdefines an existing field
seems to be very hard. It is also an open problem whether éiss of self-similar
fields constructed via multiple Wienerélintegrals contains the non-Gaussian self-
similar fields interesting for statistical physics. Someests are very skeptical in
this respect. The Gaussian self-similar fields are invatgiin [7] and [32]. A more
thorough investigation is under preparation in [11].

The notion of generalized fields was introduced by I. M. QaldfaA detailed
discussion can be found in the book [15], where the propedieSchwartz spaces
we need can also be found.

In the definition of generalized fields the class of test fiomg.~ can be substi-
tuted by other linear topological spaces consisting ofvakled functions. The most
frequently considered space, beside the spéacés the space” of infinitely many
times differentiable functions with compact support. Irp@a[7] Dobrushin also
considered the spac#" C ., which consists of the functiong € .7 satisfying
the additional relatiorf X't ... x")! ¢ (x) dx= 0, provided thafj; + -+ j, <.
He considered this class of test functions, because themaach more continuous
linear functionals over”" than over.s”, and this property of”" can be exploited
in certain investigations. Generally no problem arisehagroofs if the space of
test functions¥ is substituted by”" or 2 in the definition of generalized fields.

Two generalized fieldX(¢) andX(¢) can be identified iX(¢) 4 X(¢) for all
¢ € .. Let me remark that this relation also implies that the radilthensional
distributions of the random vecto(X(¢1),...,X(¢n)) and(X(¢1),...,X(¢n)) co-
incide for all¢1,.... ¢, € .. As.” is a linear space, this relation can be deduced
from property (a) of generalized fields by exploiting thabtdistribution functions
on R" agree if and only if their characteristic functions agree.

Let.”’ denote the space of continuous linear functionals o¥eand lete/, be
the g-algebra over?’ generated by the sef§¢,a) = {F: F € .v';, F(¢) < a},
where¢ € .7 anda e_Rl are arbitrary. Given a probability spa¢e”’, «7,,P), a
generalized fiel&K = X(¢) can be defined on it by the formu¥(¢)(F) = F(¢),
¢ € .7, andF € . The following deep result is due to Minlos (see e.g. [15]).

Theorem. (Minlos.)Let(X(¢), ¢ €.) be a generalized random field. There exists
a probability measure P on the measurable spagg <7y) such the generalized
fieldX = (X(¢), ¢ €.7) defined on the probability spa¢g, <7, P) by the formula

X(9)(F)=F(¢), ¢ € .7, F €., satisfies the relation ¥ ) 2 X(¢) forall ¢ e
.

The generalized field has some nice properties. Namely property (a) in the def-
inition of generalized fields holds for &l € .”. MoreoverX satisfies the following
strengthened version of property (b):

(b)) limX(¢n) = X(¢) in every point- € .7 if ¢, — ¢ in the topology of#.
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Because of this nice behaviour of the fiédd$ ) most authors define generalized
fields as the version¥ defined in Minlos’ theorem. Since we have never needed
the extra properties of the field we have deliberately avoided the application of
Minlos’ theorem in the definition of generalized random feellinlos’ theorem
heavily depends on some topological propertiesgfnamely that? is a so-called
nuclear space. Minlos’ theorem also holds if the space ofudestions is substituted
by 2 or " in the definition of generalized fields.

Let us finally remark that Lamperti [21] gave an interestihg@racterization of
self-similar random fields. LeX(t), t € R%, be a continuous time stationary random

process, and define the random procésy = X({?ng, t > 0, with somea > 0.

Then, as it is not difficult to see, the random proce¥gs t > 0, anle(J‘O‘,t) ,1>0,
have the same finite dimensional distributions forua# 0. This can be interpreted
so thatY (t) is a self-similar process with parameter> 0 on the half-linet > 0.
Contrariwise, if the finite dimensional distributions oétprocesse¥(t) and Yf;,“,

t > 0, agree for alli > 0, then the process$(t) = @,t € RY, is stationary. These

relations show some connection between stationary andiseilar processes. But
they have a rather limited importance in the investigatifthis work, because here
we are really interested in such random fields which are sanabusly stationary
and self-similar.

Chapter 2.

Wick polynomials are widely used in the literature of st physics. A detailed
discussion about Wick polynomials can be found in [12]. Teets 2A and 2B are
well-known, and they can be found in the standard literatireeorem 2C can be
found e.g. in Dynkin’s book [13] (Lemma 1.5). Theorem 2.1liedo Segal [31]. It
is closely related to a result of Cameron and Martin [4]. Témarks at the end of
the chapter about the content of formula 2.1 are relatedsp [2

Chapter 3.

Random spectral measures were independently introducedréaper and Kol-
mogorov [5], [20]. They could have been introduced by meanStone’s theo-
rem about the spectral representation of one-parametepgiaf unitary operators.
Bochner’s theorem can be found in any standard book on fumaitianalysis, the
proof of the Bochner—Schwartz theorem can be found in [18}.rhe remark that
the same result holds true if the space of test functighis substituted byz.

Chapter 4.

The stochastic integral defined in this chapter is a versfdhai introduced by &

in [18]. This modified integral first appeared in Totoki'ste® note [38] in a special
form. Its definition is a little bit more difficult than the defiion of the original
stochastic integral introduced byd|tbut it has the advantage that the effect of the
shift transformation can be better studied with its help siMesults of this chapter
can be found in Dobrushin’s paper [7]. The definition of Wie#t integrals in the
case when the spectral measure may have atoms is new. Invthesngon of this
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lecture note | worked out many arguments in a more detailed than in the old
text. In particular, in Lemma 4.1 | gave a much more detaibgolanation of the
statement that all kernel functions of Wiene-tegrals can be well approximated
by simple functions.

Chapter 5.

Proposition 5.1 is proved for the original WieneB-lintegrals by b in [18].
Lemma 5.2 contains a well-known formula about Hermite potyrals. The main
result of this chapter, Theorem 5.3, appeared in Dobrushuerk [7]. The proof
given there is not complete. Several non-trivial detaibss@nitted. | felt even neces-
sary to present a more detailed proof in this note when | wadoten its new version.
Theorem 5.3 is closely related to Feynman'’s diagram fornithe result of Corol-
lary 5.5 was already known at the beginning of the XX. centlinyas proved with
the help of some formal manipulations. This formal caldotatwas justified by
Taqgqu in [35] with the help of some deep inequalities. In tleasversion of this
note | formulated a more general result than in the older blege | gave a for-
mula about the moment of products of Wick polynomials andamdy of Hermite
polynomials.

I could not find results similar to Propositions 5.6 and 5.thmliterature of prob-
ability theory. On the other hand, such results are wellkmn statistical physics,
and they play an important role in constructive field thedrnsharpened form of
these results is Nelson’s deep hypercontractive inegquit], which | formulate
below.

LetX;,t € T, andYy,t’ € T’ be two sets of jointly Gaussian random variables on
some probability spac€$2,.«7,P) and(Q, «/’,P’). Let 74 and.»#] be the Hilbert
spaces generated by the finite linear combinatipesX;; andzc,-Yt;. Let us de-
fine the g-algebrasZ = o(X,t € T) and ' = o(Yy,t' € T') and the Banach
spaced p(X) = Lp(Q,4,P), Lp(Y) = Lp(Q",#',P'), 1< p< . Let A be linear
transformation fromy7 to .7 with norm not exceeding 1. We define an operator
I(A): Lp(X) = Ly(Y) forall 1 < p,p’ <« in the following way. If) is a homo-
geneous polynomial of the variabl¥g

then
R tyots . ' is-

rA:n: = ijlb_._’js. (AXy)"1 - (AXg)s: .
It can be proved that this definition is meaningful, f&€A): n: does not depend
on the representation af, andl™ (A) can be extended to a bounded operator from
L1(X) toL1(Y) in a unique way. This means in particular thiatA)é is defined for
all & € Lp(X), p> 1. Nelson's hypercontractive inequality says the follogvinetA
be a contraction fron¥ to 7. Then[l” (A) is a contraction fromq(X) to Ly(Y)
for 1 < q< pprovided that

q—1\Y2
= (1) ©1)
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If (9.1) does not hold, thefi (A) is not a bounded operator frobg(X) to Ly (Y).

A further generalization of this result can be found in [16].

The following discussion may help to understand the rataltietween Nelson’s
hypercontractive inequality and Corollary 5.6. Let us gggelson’s inequality in
the special case whe,t € T) = (Yy,t' € T') is a stationary Gaussian field with
spectral measurg, q = 2, p = 2m with some positive integen, A= c-Id, where
Id denotes the identity operator, and= (2m— 1)~%2, Let .#° and 2#° be the
complexification of the real Hilbert spacegg” and. 7%, defined in Chapter 2. Then
Lo(X) = ¢ = 5 + A+ --- by Theorem 2.1 and formula 2.1. The operator
I"(c-1d) equalsc" - Id on the subspace??. If h, € 42, thenlg(hy) € 2%, hence
the application of Nelson’s inequality for the operafoe c- Id shows that

1/2m 1/2m 1/2

(El(hn)?™) ¢ " (E(T (c-1d)lg(hn))®™) 77" < ¢ " (Elg(hn)?)

Elg(hn)?™ < c 2 (Elg(hn)z)m =(2m-1™ (E|G(hn)2)m‘

This inequality is very similar to the second inequality inrGllary 5.6, only the
multiplying constants are different. Moreover, for langethese multiplying con-
stants are near to each other. | remark that the followingermad form of Nelson’s
inequality could be deduced relatively easily from Conglla.6. LetA: 75 — ¢
be a contractioffA|| = ¢ < 1. Then there exists p= p(c) > 2 such thal” (A) is a
bounded operator fror (X) to L,(Y) for p < p. This weakened form of Nelson’s
inequality is sufficient in many applications.

Chapter 6.

Theorems 6.1, 6.2 and Corollary 6.4 were proved by DobrusHifi. Taqqu proved
similar results in [36], but he gave a different represéatatTheorem 6.6 was
proved by H. P. Mc.Kean in [26]. The proof of the lower boun@sisome ideas
from [14]. Remark 6.5 is from [24]. As Proposition 6.3 alsdlicates, some non-
trivial problems about the convergence of certain integralist be solved when
constructing self-similar fields. Such convergence proisl@re common in statis-
tical physics. To tackle such problems the so-called poweintng method (see
e.g. [22]) was worked out. This method could also be apphigHis chapter. Part (b)
of Proposition 6.3 implies that the self-similarity paraerex cannot be chosen in a
larger domain in Corollary 6.4. One can ask about the belbawifithe random vari-
ablesé; andé (¢) defined in Corollary 6.4 if the self-similarity parametertends
to the critical values. The variance of the random variabl&sand ¢ (¢) tends to
infinity in this case, and the field§, j € Zy, andé(¢), ¢ € .7, tend, after an ap-
propriate renormalization, to a field of independent norraatiom variables in the
discrete, and to a white noise in the continuous case. The pfehese results with
a more detailed discussion will appear in [10].

In a recent paper [19] Kesten and Spitzer have proved a llmeibrem, where
the limit field is a self-similar field which seems not to bejgaio the class of self-
similar fields constructed in Chapter 6. (We cannot howexariude the possibility
that there exists some self-similar field in the class defindtheorem 6.2 with the
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same distribution as this field, although it is given by a ctatgly different form.)
This self-similar field constructed by Kesten and Spitzeéhéonly rigorously con-
structed self-similar field known for us that does not beltithe fields constructed
in Theorem 6.2. | describe this field, and then | make some cemtsn

Let By (t) andB;(t), —0 <t < o, be two independent Wiener processes. (We say
thatB(t) is a Wiener process on the real lingsift), t > 0, andB(—t),t > 0, are two
independent Wiener processes.) Kék,t1,tp), X € R, t; <ty, denote the local time
of the proces®; at the poinix in the intervallt;, t;]. The one-dimensional field

Zn:/K(x,n,n+1)Bz(dx), Nn=...-101....

where the integral in the last formula is ab Integral, is a stationary self-similar
field with self-similarity paramete%.
To see the self-similarity property one has to observe that

K(AY2x, Aty Atp) 2 AY2K (x,ty,tp)  forallxe R, ty <tp, andA >0

because of the relatidBy (Au) 2 A1/2B, (u). Hence

n-1
52 4 nl/z/K(n‘l/Zx, 0,1)Ba(dx) 2 n3/4/K(x, 0,1)By(dx) = n¥*2p.

i=

The invariance of the multi-dimensional distributionsloé fieldZ, under the trans-

formation (1.1) can be seen similarly.
To see the stationarity of the fiek}, we need the following two observations.

(@ K(xst) £ K(x+n(s),0,t —s) with n(s) = —B1(—s). (The form ofn is not
important for us. What we need is that the pajrK) is independent oB,.)
(b) If a(x), —e0 < X < =, is a process independent®, then

/.a(x+u)Bz(dx)é/a(x)Bz(dx) forallue R

It is enough to show, because of Property (a) that

/K(x+l7(s),0,tfs) Bo(dx) é/K(x,O,tfs) Ba(dx).

This relation follows from property (b), because the caodil distributions of the
left and right-hand sides agree under the conditj¢s) = u, u € R%.
The generalized field version of the above figlds the field

Z(¢) = _/ [K(x,o,t)‘;‘f dt] Bo(dX), ¢ ..
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To explain the analogy between the figlgdandZ(¢) we remark that the kernel of
the integral defining,, can be written, at least formally, as

‘ d
K(X7n7n+l) = /X[n,n+l)(u)ajK(X7n7u)du7

althoughK is a non-differentiable function. Substituting the funetix|, .1y by

¢ € ., and integrating by parts (or precisely, considerg’ag as the derivative of
a distribution) we get the above definition2fg).

Using the same idea as before, a more general class of sslfusiields can
be constructed. The integrakdx,n,n+ 1) can be substituted by the local time of
any self-similar field with stationary increments which melépendent oB,. Nat-
urally, it must be clarified first that this local time reallyigts. One could enlarge
this class also by integrating with respect to a self-sinfield with stationary in-
crements, independent Bf. The integral with respect to a field independent of the
field K(x,s,t) can be defined without any difficulty.

There seems to be no natural way to represent the above rdieldmas ran-
dom fields subordinated to a Gaussian random field. On the btre, the local
timesK(x,s,t) are measurable with respectBg, they have finite second moments,
therefore they can be expressed by means of multiple Widbdntegrals with re-
spect to a white noise field. Then the procggstself can also be represented via
multiple Wiener—Id integrals. It would be interesting to know whether the a&bov
defined self-similar fields, and probably a larger class Gfsmilar fields, can be
constructed in a simple natural way via multiple Wiendy-Hitegrals with the help
of a randomization.

Chapter 7.

The definition of Wiener- integrals together with the proof of Theorem 7.1 and
Proposition 7.3 are given byalin [18]. Theorem 7.2 is proved in Taqqu’s paper [37].
He needed this result to show that the self-similar fieldseéefin [9] by means of
Wiener—Ib integrals coincide with the self-similar fields defined &7 by means

of modified Wiener—Ib integrals.

Chapter 8.

The results of this chapter, with the exception of Theorerbsa8d 8.7 are proved
in [9]. Theorem 8.5 is proved in [3] and Theorem 8.7 in [24]eThtter paper was
strongly motivated by [29]. Lemma 8.3 is formulated in a mgemeral form than
Lemma 3 in [9]. The present formulation is more complicatad,it is more useful
in some applications. Let me explain this in more detail. @ifference between
the original and the present formulation of this lemma i¢ bieae we allow that the
integrandKg in the limiting stochastic integral is discontinuous on aafireubset
of R¥, and the function&y may not converge on this set. This freedom can be
exploited in some applications. Indeed, let us consider tag self-similar fields
constructed in Remark 6.5. In cape< 0 the integrand in the formula expressing
these fields is not continuous on the hyperplane - - - +x, = 0. Hence, if we want
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to prove limit theorems where these fields appear as the lmid this happens e.g.
in Theorem 8.7 then we can apply Lemma 8.3, but not its origi@sion Lemma 3
in [9].

The example for non-central limit theorems given by Rosattlih [28] and its
generalization by Taqqu in [34] are special cases of The@&nln these papers
only the special casé,(x) = X2 — 1 is considered. Later Tagqu [37] proved a result
similar to Theorem &', but he needed more restrictive conditions. The obsenvatio
that Theorem &' can be deduced from Theorem 8.2 is from Tagqu [34].

The method of [28] and [34] does not apply for the proof of Tie® 8.2 in the
case ofH(x), k > 3. In these papers it is proved that the moments of the random
variablesz) converge to the corresponding momentsZpf (Actually a different
but equivalent statement is established in these papengs)cbnvergence of the

moments implies the convergenzf EA Z}: if and only if the distribution ofzZ;; is
uniquely determined by its moments.

Theorem 6.6 implies that thenzh moment of &-fold Wiener—Id integral be-
haves similarly to the r-the moment of a Gaussian random variable with zero ex-
pectation, it equalgkno9n/2+0) Hence some results about the so-called moment
problem show that the distribution ofkafold Wiener—I6 integral is determined by
its moments only fok = 1 andk = 2. Therefore the method of moments does not
work in the proof of Theorem 8.2 fdt(x), k > 3.

Throughout Chapter 8 | have assumed that the correlatiastibmof the under-
lying Gaussian field to which our fields are subordinategfati formula (8.1). This
assumption seems natural, since it implies that the spect@sure of the Gaussian
field satisfies Lemma 8.1, and such a condition is needed #ggns substituted
by Zg, in the limit. It can be asked whether in Theorem 8.2 formulagan be sub-
stituted by the weaker assumption that the spectral meadule Gaussian field
satisfies Lemma 8.1. This question was investigated in @edtbf [9]. The investi-
gation of the moments shows that the answer is negative.egs®n for it is that the
validity of Lemma 8.1, unlike that of Theorem 8.2, does nqietel on whether the
spectral measur@ has large singularities outside the origin or not. The dismn
in [9] also shows that the Gaussian case, that is the casegigh= Hi(x) = xin
Theorem 8.2, is considerably different from the non-Gaussiase. A forthcoming
paper of M. Rosenblatt [30] gives a better insight into thevabquestion.

The limiting fields appearing in Theorem 8.2 and 8.6 beloradpecial subclass
of the self-similar fields defined in Theorem 6.2. These tssntlicate that the self-
similar fields defined in formula (6.6) have a much greategeaof attraction if
the homogeneous functiofy in (6.6) is the constant function. The reason for the
particular behaviour of these fields is that the constanttfan is analytic, while
a general homogeneous function typically has a singulatithe origin. A more
detailed discussion about this problem can be found in [24].
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2  The (real) Hilbert space of square-integrable random ketameasurable
with respect to ther-algebra generated by the random variables of a previously
defined Gaussian random field
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H~n  The smallest subspace of the Hilbert spagecontaining the polyomials of
order less than or equal toof the random variables in the underlying Gaussian
field
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hy(-) The kernel function of the Wieneréltintegral appearing in the diagram

_formula and depending on the diagrgm
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Ic(fn) The normalized Wiener-8tintegral of the kernel functiofy, of n variables
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" The class of function which can be the kernel function ohdold Wiener—
It0 integral with respect to a random orthogonal mea&yre
Jifun The subspace ojé/u” consisting of symmetric functions
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times the Lebesgue measure|ert, i)

Z,(-) The random orthogonal measure corresponding to the megsure
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" The space of closed diagrams
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tn > 1 The weak convergence of the probability measyreto the probability
measureu
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Abstract:
Chapter 1

We formulate the main problems discussed in this paperhegetith the most im-

portant notions needed in their discussion. In particuar,introduce the notion
of generalized random fields and also explain at a heuristigl why its introduc-

tion is useful for us. We finish this chapter with a sub-chagitat contains a short
summary about some useful results in the theory of genedhfimctions.

Chapter 2

We introduce the notion of Wick polynomials which are nakumnalti-variate ver-
sions of Hermite polynomials. We present their most impurgaoperties, and we
give with their help a decomposition of the Hilbert space qiare integrable ran-
dom variables measurable with respect to a stationary Geussndom field to the
direct sum of orthogonal, shift invariant subspaces.

Chapter 3

We present the correlation function of a Gaussian statjofiald as the Fourier

transform of a spectral measure and construct with its h€lpaaissian) random
spectral measure. Then we express a stationary Gaussiitsadf as the Fourier

transform of this random spectral measure. We also desthidbenost important

properties of spectral and random spectral measures. Bloésgreavily depend on
a classical result of analysis about the representation-cb#ied positive definite

functions as the Fourier transform of positive measurearit version about gen-
eralized functions. Hence we finish this chapter with a dudypter where we discuss
these results, called Bochner and Bochner—Schwartz timsarethe literature.

Chapter 4

Here we introduce the multiple Wienergiintegrals with respect to a Gaussian ran-
dom spectral measure and prove some important results tisont

Chapter 5

Here we prove the most important result about multiple Wieh@ integrals, the

so-called diagram formula together with some of its conseqges. In the diagram
formula we rewrite the product of Wienerélintegrals in the form of a sum of
Wiener-I integrals and also give a formula (with the help of somerdiats) about

the calculation the kernel-functions of the integrals @y in this sum.

Chapter 6

We give a complete characterization of the so-called subateld random fields of a
stationary Gaussian random field. This result enables usistiuict new, non-trivial
(subordinated) self-similar random fields, i.e. such randields which may appear
as the limit random field in limit theorems. To tell whethee ttormulas defining
these subordinated random fields are meaningful or not we foestecide whether
certain classical integrals are convergent or divergeahdd this chapter contains
some results in this direction.
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Chapter 7.

Here we discuss the original Wiene@-ihtegrals with respect to a random orthogo-
nal measure. We give their most important properties aramkssent some results
about their relation to the Wieneraélintegrals with respect to a random spectral
measure and to the classicd Ihtegrals of a stochastic process.

Chapter 8.

Here we present some non-trivial limit theorem where thétlisna non-Gaussian
self-similar field. The results of the previous chapters reaglain at a heuristic
level why such results should hold. But a rigorous proof dessanuch extra work
whose consequences may be interesting in themselves.



