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7. On the original Wiener–Itô integral. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8. Non-central limit theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9. History of the problem. Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

i



Introduction.

One of the most important problems in probability theory is the investigation of the
limit distribution of partial sums of appropriately normalized random variables. The
case where the random variables are independent is fairly well understood. Many results
are known also in the case where independence is replaced by an appropriate mixing
condition or some other “almost independence” property. Much less is known about
the limit behaviour of partial sums of really dependent random variables. On the other
hand, this case is becoming more and more important, not only in probability theory,
but also in some applications in statistical physics.

The problem about the asymptotic behaviour of partial sums of dependent ran-
dom variables leads to the investigation of some very complicated transformations of
probability measures. The classical methods of probability theory do not seem to work
for this problem. On the other hand, although we are still very far from a satisfactory
solution of this problem, we can already present some nontrivial results.

The so-called multiple Wiener–Itô integrals have proved to be a very useful tool
in the investigation of this problem. The proofs of almost all rigorous results in this
field are closely related to this technique. The notion of multiple Wiener–Itô integrals
was worked out for the investigation of non-linear functionals over Gaussian fields. It is
closely related to the so-called Wick polynomials which can be considered as the multi-
dimensional generalization of Hermite polynomials. The notion of Wick polynomials
and multiple Wiener–Itô integrals were worked out at the same time and independently
of each other. Actually, we discuss a modified version of the multiple Wiener–Itô inte-
grals in greatest detail. The technical changes needed in the definition of these modified
integrals are not essential. On the other hand, these modified integrals are more ap-
propriate for certain investigations, since they enable us to describe the action of shift
transformations and to apply some sort of random Fourier analysis. There is also some
connection between multiple Wiener–Itô integrals and the classical stochastic Itô inte-
grals. The main difference between them is that in the first case deterministic functions
are integrated, and in the second case so-called non-anticipating functionals. The con-
sequence of this difference is that no technical difficulty arises when we want to define
multiple Wiener–Itô integrals in the multi-dimensional time case. On the other hand,
a large class of nonlinear functionals over Gaussian fields can be represented by means
In,k(f) of multiple Wiener–Itô integrals.

In this work we are interested in limit problems for sums of dependent random
variables. It is useful to consider this problem together with its continuous time version.
The natural formulation of the continuous time version of this problem can be given by
means of generalized fields. Consequently we also have to discuss some questions about
generalized fields.

I have not tried to formulate all the results in the most general form. My main
goal was to work out the most important techniques needed in the investigation of such
problems. This is the reason why the greatest part of this work deals with multiple
Wiener–Itô integrals. I have tried to give a self-contained exposition of this subject and
also to explain the motivation behind the results.
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I had the opportunity to participate in the Dobrushin–Sinai seminar in Moscow.
What I learned there was very useful also for the preparation of this Lecture Note.
Therefore I would like to thank the members of this seminar for what I could learn from
them, especially P. M. Bleher, R. L. Dobrushin and Ya. G. Sinai.

Some remarks to this text.

This text is a slightly modified version of my Lecture Note Multiple Wiener–Itô integrals
with applications to limit theorems published in the Lecture Notes in Mathematics series
(number 849) of the Springer Verlag in 1981. I decided to make a special lecture on
the basis of this work in the first semester of the university course in 2011–2012 at the
University of Szeged. Preparing for it I observed how difficult the reading of formulas
in this Lecture Note is. These difficulties arose because this Lecture Note was written
at the time when the TEX program still did not exist, and the highest technical level of
typing was writing on an IBM machine that enabled one to type beside the usual text
also mathematical formulas. But the texts written in such a way are very hard to read.
To make my text more readable I decided to retype it by means of the TEX program.
This demanded some changes. It implied e.g. to follow such partly typographical partly
linguistic rules by which one does not start a sentence with a formula. Beside this, it
suggested to formulate the basic definitions in a (typographically) more explicit form
and not as an explanation inside the text. When typing this work I also tried to rethink
what I had written, to correct the errors and to make the proofs more understandable.
It was surprising and a little bit shocking to meet my old personality by studying my
old Lecture Note and to recognize how much I have changed. Now I would expose many
details in a different way. Naturally I would also make many changes by taking into
account the results proved since the time I wrote this note. Nevertheless I decided to
make no essential changes in the text, to restrict myself to the correction of the errors I
found, and to give a more detailed explanation of the proofs where I felt that it is useful.
(There were many such places.) In doing so I was influenced by a Russian proverb which
says: ‘Luchshe vrag khoroshego’. I tried to follow the advice of this proverb. (I do not
know of an English counterpart of it, but it has a French version: ‘Le mieux est l’ennemi
du bien’.)

I made only one exception. I decided to explain those basic notions and results in
the theory of generalized functions which were applied in this work in an implicit way. In
particular, I tried to explain how one gets with the help of this theory those results about
the so-called spectral representation of the covariance function of stationary random
fields that I have formulated under the name Bochner’s theorem and Bochner–Schwartz
theorem. This extension of the text is contained in the attachments to Sections 1 and 3.
In the original version I only referred to a work where these notions and results can be
found. But now I found such an approach not satisfactory, because these notions and
results play an important role in some arguments of this work. Hence I felt that to
make a self-contained presentation of the subject I have to explain them in more detail.

Budapest, 15 August 2011

Péter Major
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1. On a limit problem.

We begin with the formulation of a problem which is important both for probability
theory and statistical physics. The multiple Wiener–Itô integral proved to be a very
useful tool at the investigation of this problem.

We shall consider a set of random variables ξn, n ∈ Zν , where Zν denotes the
ν-dimensional integer lattice, and we shall study their properties. Such a set of random
variables will be called a discrete (ν-dimensional) random field. We shall be mainly
interested in so-called stationary random fields. Let us recall their definition.

Definition of discrete (strictly) stationary random fields. A set of random vari-

ables ξn, n ∈ Zν , is called a (strictly) stationary discrete random field if (ξn1 , . . . , ξnk
)

∆
=

(ξn1+m, . . . , ξnk+m) for all k = 1, 2, . . . and n1, . . . , nk, m ∈ Zν , where
∆
= denotes equal-

ity in distribution.

Let us also recall that a discrete random field ξn, n ∈ Zν , is called Gaussian if
for every finite subset {n1, . . . , nk} ⊂ Zν the random vector (ξn1 , . . . , ξnk

) is normally
distributed.

Given a discrete random field ξn, n ∈ Zν , we define for all N = 1, 2, . . . the new
random fields

ZNn = A−1
N

∑

j∈BN
n

ξj , N = 1, 2, . . . , n ∈ Zν , (1.1)

where

BNn = {j: j ∈ Zν , n(i)N ≤ j(i) < (n(i) + 1)N, i = 1, 2, . . . , ν},

and AN , AN > 0, is an appropriate norming constant. The superscript i denotes the
i-th coordinate of a vector in this formula. We are interested in the question when the
finite dimensional distribution of the random fields ZNn defined in (1.1) have a limit as
N → ∞. In particular, we would like to describe those random fields Z∗

n, n ∈ Zν , which
appear as the limit of such random fields ZNn . This problem led to the introduction of
the following notion.

Definition of self-similar (discrete) random fields. A (discrete) random field ξn,
n ∈ Zν , is called self-similar with self-similarity parameter α if the random fields ZNn
defined in (1.1) with their help and the choice AN = Nα satisfy the relation

(ξn1 , . . . , ξnk
)

∆
= (ZNn1

, . . . , ZNnk
) (1.2)

for all N = 1, 2, . . . and n1, . . . , nk ∈ Zν .

We are interested in the choice AN = Nα with some α > 0 in the definition
of the random variables ZNn in (1.2), because under slight restrictions, relation (1.2)
can be satisfied only with such norming constants AN . A central problem both in
statistical physics and in probability theory is the description of self-similar fields. We
are interested in self-similar fields whose random variables have a finite second moment.
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This excludes the fields consisting of i.i.d. random variables with a non–Gaussian stable
law.

The Gaussian self-similar fields and their Gaussian range of attraction are fairly
well known. Much less is known about the non-Gaussian case. The problem is hard,

because the transformations of measures over RZν induced by formula (1.1) have a very
complicated structure. We shall define the so-called subordinated fields below. (More
precisely the fields subordinated to a stationary Gaussian field.) In case of subordinated
fields the Wiener–Itô integral is a very useful tool for investigating the transformation
defined in (1.1). In particular, it enables us to construct non–Gaussian self-similar fields
and to prove non-trivial limit theorems. All known results are closely related to this
technique.

Let Xn, n ∈ Zν , be a stationary Gaussian field. We define the shift transformations
Tm, m ∈ Zν , over this field by the formula TmXn = Xn+m for all n, m ∈ Zν . Let
H denote the real Hilbert space consisting of the square integrable random variables
measurable with respect to the σ-algebra B = B(Xn, n ∈ Zν). The scalar product in
H is defined as (ξ, η) = Eξη, ξ, η ∈ H. The shift transformations Tm, m ∈ Zν , can be
extended to a group of unitary shift transformations over H in a natural way. Namely,
if ξ = f(Xn1 , . . . , Xnk

) then we define Tmξ = f(Xn1+m, . . . , Xnk+m). It can be seen
that ‖ξ‖ = ‖Tmξ‖, and the above considered random variables ξ are dense in H. (A
more detailed discussion about the definition of shift operators and their properties will
be given in Section 2 in a Remark after the formulation of Theorem 2C. Here we shall
define the shift Tmξ, m ∈ Zν , of all random variables ξ which are measurable with
respect to the σ-algebra B(Xn, n ∈ Zν), i.e. ξ does not have to be square integrable.)
Hence ‖Tm‖ can be extended to the whole space H by L2 continuity. It can be proved
that the norm preserving transformations Tm, m ∈ Zν , constitute a unitary group in
H, i.e. Tn+m = TnTm for all n, m ∈ Zν , and T0 = Id. Now we introduce the following

Definition of subordinate fields. Given a stationary Gaussian field Xn, n ∈ Zν , we
define the Hilbert spaces H and the shift transformations Tm, m ∈ Zν , over H as before.
A discrete stationary field ξn is called a random field subordinated to Xn if ξn ∈ H, and
Tnξm = ξn+m for all n, m ∈ Zν .

We remark that ξ0 determines the subordinated fields ξn completely, since ξn =
Tnξ0. Later we give a more adequate description of subordinates fields by means of
Wiener–Itô integrals. Before working out the details we formulate the continuous time
version of the above notions and problems. In the continuous time case it is more natural
to consider generalized random fields. To explain the idea behind such an approach we
shortly explain a different but equivalent description of discrete random fields. We
present them as an appropriate set of random variables indexed by the elements of a
linear space. This shows some similarity with generalized random fields.

Let ϕn(x), n ∈ Zν , n = (n1, . . . , nν), denote the indicator function of the cube
[n1 − 1

2 , n1 + 1
2 ) × · · · × [nν − 1

2 , nν + 1
2 ), with center n = (n1, . . . , nν) and with edges

of length 1, ie. let ϕn(x) = 1, x = (x1, . . . , xν) ∈ Rν , if nj − 1
2 ≤ xj < nj + 1

2 for all
1 ≤ j ≤ ν, and let ϕn(x) = 0 otherwise. Define the linear space Φ of functions on Rν

consisting of all finite linear combinations of the form
∑
cjϕnj (x), nj ∈ Zν , with the
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above defined functions ϕn(x) and real coefficients cj . Given a discrete random field
ξn, n ∈ Zν , define the random variables ξ(ϕ) for all ϕ ∈ Φ in the following way. Put
ξ(ϕ) =

∑
cjξnj if ϕ(x) =

∑
cjϕnj (x). In particular, ξ(ϕn) = ξn for all n ∈ Zν . The

identity ξ(c1ϕ+ c2ψ) = c1ξ(ϕ) + c2ξ(ψ) also holds for all ϕ,ψ ∈ Φ and real numbers c1
and c2.

Let us also define the function ϕ(N,AN )(x) = 1
A(N)ϕ( xN ) for all functions ϕ ∈ Φ

and positive integers N = 1, 2, . . . , with some appropriately chosen constants AN > 0.

Observe that ξ(ϕ
(N,AN )
n ) = ZNn with the random variable ZNn defined in (1.1). All

previously introduced notions related to discrete random fields can be reformulated
with the help of the set of random variables ξ(ϕ), ϕ ∈ Φ. Thus for instance the
random field ξn, n ∈ Zν is self-similar with self-similarity parameter α if and only if

ξ(ϕ(N,Nα))
∆
= ξ(ϕ) for all ϕ ∈ Φ and N = 1, 2, . . . . (To see why this statement holds

observe that the distributions of two random vectors agree if and only if every linear
combination of their coordinates have the same distribution. This follows from the fact
that the characteristic function of a random vector determines its distribution.)

It will be more useful to define the continuous time version of discrete random
fields as generalized random fields. The generalized random fields will be defined as a
set of random variables indexed by the elements of a linear space of functions. They
show some similarity to the class of random variables ξ(ϕ), ϕ ∈ Φ, defined above. The
main difference is that instead of the space Φ a different linear space is chosen for the
parameter set of the random field. We shall choose the so-called Schwartz space for this
role.

Let S = Sν be the Schwartz space of (real valued) rapidly decreasing, smooth
functions on Rν . (See e.g. [15] for the definition of Sν . I shall present a more detailed
discussion about the definition of the space S in the adjustment to Section 1.) Gen-
erally one takes the space of complex valued, rapidly decreasing, smooth functions as
the space S, but we shall denote the space of real valued, rapidly decreasing, smooth
functions by S if we do not say this otherwise. We shall omit the subscript ν if it leads
to no ambiguity. Now we introduce the notion of generalized random fields.

Definition of generalized random fields. We say that the set of random vari-
ables X(ϕ), ϕ ∈ S, is a generalized random field over the Schwartz space S of rapidly
decreasing, smooth functions if:

a) X(a1ϕ1 + a2ϕ2) = a1X(ϕ1) + a2X(ϕ2) with probability 1 for all real numbers a1

and a2 and ϕ1 ∈ S, ϕ2 ∈ S. (The exceptional set of probability 0 where this identity
does not hold may depend on a1, a2, ϕ1 and ϕ2.)

b) X(ϕn) ⇒ X(ϕ) stochastically if ϕn → ϕ in the topology of S.

We also introduce the following definitions.

Definition of stationarity and Gaussian property of a generalized random
field. On the notion of convergence of generalized random fields in distribu-

tion. The generalized random field X = {X(ϕ), ϕ ∈ S} is stationary if X(ϕ)
∆
= X(Ttϕ)

for all ϕ ∈ S and t ∈ Rν , where Ttϕ(x) = ϕ(x−t). It is Gaussian if X(ϕ) is a Gaussian
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random variable for all ϕ ∈ S. The relation Xn
D→ X0 as n → ∞ holds for a sequence

of generalized random fields Xn, n = 0, 1, 2, . . . , if Xn(ϕ)
D→ X0(ϕ) for all ϕ ∈ S, where

D→ denotes convergence in distribution.

Given a stationary generalized random field X and a function A(t) > 0, t > 0,
on the set of positive real numbers we define the (stationary) random fields XA

t for all
t > 0 by the formula

XA
t (ϕ) = X(ϕAt ), ϕ ∈ S, where ϕAt (x) = A(t)−1ϕ

(x
t

)
. (1.3)

We are interested in the following

Question. When does a generalized random field X∗ exist such that XA
t

D→ X∗ as
t→ ∞ (or as t→ 0)?

In relation to this question we introduce the following

Definition of self-similarity. The stationary generalized random field X is self-similar

with self-similarity parameter α if XA
t (ϕ)

∆
= X(ϕ) for all ϕ ∈ S and t > 0 with the

function A(t) = tα.

To answer the above question one should first describe the generalized self-similar
random fields.

We try to explain the motivation behind the above definitions. Given an ordinary
random field X(t), t ∈ Rν , and a topological space E consisting of functions over Rν

one can define the random variables X(ϕ) =
∫
Rν ϕ(t)X(t) dt, ϕ ∈ E . Some difficulty

may arise when defining this integral, but it can be overcome in all interesting cases. If
the space E is rich enough, and this is the case if E = S, then the integrals X(ϕ), ϕ ∈ E ,
determine the random process X(t). The set of random variables X(ϕ), ϕ ∈ S, is a gen-
eralized random field in all nice cases. On the other hand, there are generalized random
fields which cannot be obtained by integrating ordinary random fields. In particular,
the generalized self-similar random fields we shall construct later cannot be interpreted
through ordinary fields. The above definitions of various properties of generalized fields
are fairly natural, considering what these definitions mean for generalized random fields
obtained by integrating ordinary fields.

The investigation of generalized random fields is simpler than that of ordinary
discrete random fields, because in the continuous case more symmetry is available.
Moreover, in the study or construction of discrete random fields generalized random
fields may play a useful role. To understand this let us remark that if we have a
generalized random field X(ϕ), ϕ ∈ S, and we can extend the space S containing
the test function ϕ to such a larger linear space T for which Φ ⊂ T with the above
introduced linear space Φ, then we can define the discrete random field X(ϕ), ϕ ∈ Φ, by
a restriction of the space of test functions of the generalized random field X(ϕ), ϕ ∈ T .
This random field can be considered as the discretization of the original generalized
random field X(ϕ), ϕ ∈ S.

4



We finish this section by defining the generalized subordinated random fields.
Let X(ϕ), ϕ ∈ S, be a generalized stationary Gaussian random field. The formula
TtX(ϕ)) = X(Ttϕ), Ttϕ(x) = ϕ(x − t), defines the shift transformation for all t ∈ Rν .
Let H denote the real Hilbert space consisting of the B = B(X(ϕ), ϕ ∈ S) measurable
random variables with finite second moment. The shift transformation can be extended
to a group of unitary transformations over H similarly to the discrete case.

Definition of generalized random fields subordinated to a generalized sta-
tionary Gaussian random field. Given a generalized stationary Gaussian random
field X(ϕ), ϕ ∈ S, we define the Hilbert space H and the shift transformations Tt,
t ∈ Rν , over H as above. A generalized stationary random field ξ(ϕ), ϕ ∈ S, is subor-
dinated to the field X(ϕ), ϕ ∈ S, if ξ(ϕ) ∈ H and Ttξ(ϕ) = ξ(Ttϕ) for all ϕ ∈ S and
t ∈ Rν , and E[ξϕn) − ξ(ϕ)]2 → 0 if ϕn → ϕ in the topology of S.

Attachment to Section 1. A brief overview about some results on generalized func-
tions.

Let us first describe the Schwartz spaces S and Sc in more detail. The space Sc = (Sν)c
consists of those complex valued functions of ν variables which decrease at infinity,
together with their derivatives, faster than any polynomial degree. More explicitly,
ϕ ∈ Sc for a complex valued function ϕ of ν variables if

∣∣∣∣x
k1
1 · · ·xkν

ν

∂q1+···+qν

∂xq11 . . . ∂xqν
ν
ϕ(x1, . . . , xν)

∣∣∣∣ ≤ C(k1, . . . , kν , q1, . . . , qν)

for all point x = (x1, . . . , xν) ∈ Rν and vectors (k1, . . . , kν), (q1, . . . , qν) with non-
negative integer coordinates with some constant C(k1, . . . , kν , q1, . . . , qν) which may
depend on the function ϕ. This formula can be written in a more concise form as

|xkDqϕ(x)| ≤ C(k, q) with k = (k1, . . . , kν) and q = (q1, . . . , qν),

where x = (x1, . . . , xν), x
k = xk11 · · ·xkν

ν andDq = ∂q1+···+qν

∂x
q1
1 ...∂xqν

ν
. The elements of the space

S are defined similarly, with the only difference that they are real valued functions.

To define the spaces S and Sc we still have to define the convergence in them. We
say that a sequence of functions ϕn ∈ Sc (or ϕn ∈ S) converges to a function ϕ if

lim
n→∞

sup
x∈Rν

(1 + |x|2)k|Dqϕn(x) −Dqϕ(x)| = 0.

for all k = 1, 2, . . . and q = (q1, . . . , qν). It can be seen that the limit function ϕ is also
in the space Sc (or in the space S).

A nice topology can be introduced in the space Sc (or S) which induces the above
convergence. The following topology is an appropriate choice. Let a basis of neighbour-
hoods of the origin consist of the sets

U(k, q, ε) =
{
ϕ: max

x
(1 + |x|2)k|Dqϕ(x)| < ε

}
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with k = 0, 1, 2, . . . , q = (q1, . . . , qν) with non-negative integer coordinates and ε > 0,
where |x|2 = x2

1 + · · · + x2
ν . A basis of neighbourhoods of an arbitrary function ϕ ∈ Sc

(or ϕ ∈ S) consists of sets of the form ϕ + U(k, q, ε), where the class of sets U(k, q, ε)
is a basis of neighbourhood of the origin. The fact that the convergence in S has such
a representation, (and a similar result holds in some other spaces studied in the theory
of generalized functions) has a great importance in the theory of generalized functions.
We also have exploited this fact in Section 6 of this Lecture Note. Topological spaces
with such a topology are called countably normed spaces.

The space of generalized functions S ′ consists of the continuous linear maps F : S →
C or F : Sc → C, where C denotes the linear space of complex numbers. (In the study
of the space S ′ we omit the upper index c, i.e. we do not indicate whether we are
working in real or complex space when this causes no problem.) We shall write the map
F (ϕ), F ∈ S ′ and ϕ ∈ S (or ϕ ∈ Sc) in the form (F,ϕ).

We can define generalized functions F ∈ S ′ by the formula (F,ϕ) =
∫
f(x)ϕ(x) dx

for all ϕ ∈ S or ϕ ∈ Sc with a function f such that
∫

(1+|x|2)−p|f(x)| dx <∞ with some
p ≥ 0. (The upper script¯denotes complex conjugate in the sequel.) Such functionals
are called regular. There are also non-regular functionals in the space S ′. An example
for them is the δ-function defined by the formula (δ, ϕ) = ϕ(0). There is a rather good
description of the generalized functions F ∈ S ′, (see the book I. M. Gelfand and G.
E. Shilov: Generalized functions, Volume 2, Chapter 2, Section 4), but we do not need
this result, hence we do not discuss it here. Another important question in this field
that we omit is about the interpretation of a usual function as a generalized function in
the case when it does not define a regular functional because of its strong singularity
in some points. In such cases some regularization can be applied. It is an important
problem to find the appropriate generalized functions in such cases, but it does not
appear in the study of the problems of this work.

The derivative and the Fourier transform of generalized functions are also defined,
and they play an important role in some investigations. In the definition of these notions
for generalized functions we want to preserve the old definition if nice regular functionals
are considered for which these notions were already defined in classical analysis. Such
considerations lead to the definition (

∂j

∂xj
F,ϕ) = −(F, ∂ϕ∂xj

) of the derivative of general-

ized functions. We do not discuss this definition in more detail, because here we do not
work with the derivatives of generalized functions.

The Fourier transform of generalized functions in S′ appears in our discussion,
although only in an implicit form. The Bochner-Schwartz theorem discussed in Section 3
actually deals with the Fourier transform of generalized functions. Hence the definition
of Fourier transform will be given in more detail.

We shall define the Fourier transform of a generalized function by means of a natural
extension of the Parseval formula, more explicitly of a simplified version of it, where the
same identity ∫

Rν

f(x)g(x) dx =
1

(2π)ν

∫

Rν

f̃(u)g̃(u) du

is formulated with f̃(u) =
∫
Rν e

i(u,x)f(x) dx and g̃(u) =
∫
Rν e

i(u,x)g(x) dx. But now we
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consider a pair of functions (f, g) with different properties. We demand that f should
be an integrable function, and g ∈ Sc. (In the original version of the Parseval formula
both f and g are L2 functions.)

The proof of this identity is simple. Indeed, since the function g ∈ Sc can be
calculated as the inverse Fourier transform of its Fourier transform g̃ ∈ Sc, i.e. g(x) =

1
(2π)ν

∫
e−i(u,x)g̃(u) du, we can write

∫
f(x)g(x) dx =

∫
f(x)

[
1

(2π)ν

∫
e−i(u,x)g̃(u) du

]
dx

=

∫
g̃(u)

[
1

(2π)ν

∫
ei(u,x)f(x) dx

]
du =

1

(2π)ν

∫
f̃(u)g̃(u) du.

Let us also remark that the Fourier transform f → f̃ is a bicontinuous map from
Sc to Sc. (This means that this transformation is invertible, and both the Fourier
transform and its inverse are continuous maps from Sc to Sc.) (The restriction of the
Fourier transform to the space S of real valued functions is a bicontinuous map from S
to the subspace of Sc consisting of those functions f ∈ Sc for which f(−x) = f(x) for
all x ∈ Rν .)

The above results make natural the following definition of the Fourier transform F̃
of a generalized function F ∈ S ′.

(F̃ , ϕ̃) = (2π)ν(F,ϕ) for all ϕ ∈ Sc.

Indeed, if F ∈ S ′ then F̃ is also a continuous linear map on Sc, i.e. it is also an element
of S ′. Beside this, the above proved version of the Parseval formula implies that if we
consider an integrable function f on Rν both as a usual function and as a (regular)
generalized function, its Fourier transform agrees in the two cases.

There are other classes of test functions and spaces of generalized functions studied
in the literature. The most popular among them is the space D of infinitely many differ-
entiable functions with compact support and its dual space D′, the space of continuous
linear transformations on the space D. (These spaces are generally denoted by D and D′

in the literature, although just the book [15] that we use as our main reference in this
subject applies the notation K and K′ for them.) We shall discuss this space only very
briefly.

The space D consists of the infinitely many times differentiable functions with
compact support. Thus it is a subspace of S. A sequence ϕn ∈ D, n = 1, 2, . . . ,
converges to a function ϕ, if there is a compact set A ⊂ Rν which is the support of all
these functions ϕn, and the functions ϕn together with all their derivatives converge
uniformly to the function ϕ and to its corresponding derivatives. It is not difficult to
see that also ϕ ∈ D, and if the functions ϕn converge to ϕ in the space D, then they
also converge to ϕ in the space S. Moreover, D is an everywhere dense subspace of S.
The space D′ consists of the continuous linear functionals in D.

The results describing the behaviour of D and D′ are very similar to those describing
the behaviour of S and S ′. There is one difference that deserves some attention. The

7



Fourier transforms of the functions in D may not belong to D. The class of these
Fourier transforms can be described by means of some results in complex analysis. A
topological space Z can be defined on the set of Fourier transforms of the functions
from the space D. If we want to apply Fourier analysis in the space D, then we also
have to study this space Z and its dual space Z ′. I omit the details.

2. Wick polynomials.

In this section we consider the so-called Wick polynomials, a multi-dimensional gen-
eralization of Hermite polynomials. They are closely related to multiple Wiener–Itô
integrals.

Let Xt, t ∈ T , be a set of jointly Gaussian random variables indexed by a parameter
set T . Let EXt = 0 for all t ∈ T . We define the real Hilbert space H1 and H in the
following way: A square integrable random variable is in H if and only if it is measurable
with respect to the σ-algebra B = B(Xt, t ∈ T ), and the scalar product in H is defined
as (ξ, η) = Eξη, ξ, η ∈ H. The Hilbert space H1 ⊂ H is the subspace of H generated by
the finite linear combinations

∑
cjXtj , tj ∈ T . We consider only such sets of Gaussian

random variables Xt for which H1 is separable. Otherwise Xt, t ∈ T , can be arbitrary,
but the most interesting case for us is when T = Sν or Zν , and Xt, t ∈ T , is a stationary
Gaussian field.

Let Y1, Y2, . . . be an orthonormal basis in H1. The uncorrelated random variables
Y1, Y2, . . . are independent, since they are (jointly) Gaussian. Moreover, B(Y1, Y2, . . . ) =
B(Xt, t ∈ T ). Let Hn(x) denote the n-th Hermite polynomial with leading coefficient 1,

i.e. let Hn(x) = (−1)nex
2/2 dn

dxn (e−x
2/2). We recall the following results from analysis

and measure theory.

Theorem 2A. The Hermite polynomials Hn(x), n = 0, 1, 2, . . . , form a complete or-

thogonal system in L2

(
R,B, 1√

2π
e−x

2/2 dx
)
. (Here B denotes the Borel σ-algebra on

the real line.)

Let (Xj ,Xj , µj), j = 1, 2, . . . , be countably many independent copies of a prob-
ability space (X,X , µ). (We denote the points of Xj by xj .) Let (X∞,X∞, µ∞) =
∞∏
j=1

(Xj ,Xj , µj). With such a notation the following result holds.

Theorem 2B. Let ϕ0, ϕ1, . . . , ϕ0(x) ≡ 1, be a complete orthonormal system in the

Hilbert space L2(X,X , µ). Then the functions
∞∏
j=1

ϕkj (xj), where only finitely many

indices kj differ from 0, form a complete orthonormal basis in L2(X
∞,X∞, µ∞).

Theorem 2C. Let Y1, Y2, . . . be random variables on a probability space (Ω,A, P ) taking
values in a measurable space (X,X ). Let ξ be a real valued random variable measurable
with respect to the σ-algebra B(Y1, Y2, . . . ), and let (X∞,X∞) denote the infinite product
(X × X × · · · ,X × X × · · · ) of the space (X,X ) with itself. Then there exists a real
valued, measurable function f on the space (X∞,X∞) such that ξ = f(Y1, Y2, . . . ).
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Remark. Let us have a stationary random field Xn(ω), n ∈ Zν . Theorem 2C enables us
to extend the shift transformation Tm, defined as TmXn(ω) = Xn+m(ω), n, m ∈ Zν , for
all random variables ξ(ω), measurable with respect to the σ-algebra B(Xn(ω), n ∈ Zν).
Indeed, by Theorem 2C we can write ξ(ω) = f(Xn(ω), n ∈ Zν), and define Tmξ(ω) =
f(Xn+m(ω), n ∈ Zν). We still have to understand, that although the function f is not
unique in the representation of the random variable ξ(ω), the above definition of Tmξ(ω)
is meaningful. To see this we have to observe that if f1(Xn(ω), n ∈ Zν) = f2(Xn(ω), n ∈
Zν) for two functions f1 and f2 with probability 1, then also f1(Xn+m(ω), n ∈ Zν) =
f2(Xn+m(ω), n ∈ Zν) with probability 1 because of the stationarity of the random

field Xn(ω), n ∈ Zν . Let us also observe that ξ(ω)
∆
= Tmξ(ω) for all m ∈ Zν . Beside this,

Tm is a linear operator on the linear space of random variables, measurable with respect
to the σ-algebra B(Xn, n ∈ Zν). If we restrict it to the space of square integrable random
variables, then Tm is a unitary operator, and the operators Tm, m ∈ Zν , constitute a
unitary group.

Let a stationary generalized field X = {X(ϕ), ϕ ∈ S} be given. The shift Ttξ
of a random variable ξ, measurable with respect to the σ-algebra B(X(ϕ), ϕ ∈ S)
can be defined for all t ∈ Rν similarly to the discrete case with the help of Theo-
rem 2C and the following observation: If ξ ∈ B(X(ϕ), ϕ ∈ S) for a random vari-
able ξ, then there exists such a countable subset {ϕ1, ϕ2, . . . } ⊂ S (depending on
the random variable ξ) for which ξ is B(X(ϕ1), X(ϕ2), . . . ) measurable. (We write
ξ(ω) = f(X(ϕ1)(ω), X(ϕ2)(ω), . . . ) with appropriate functions f , and ϕ1 ∈ S, ϕ2 ∈
S, . . . , and define the shift Ttξ as Ttξ(ω) = f(X(Ttϕ1)(ω), X(Ttϕ2)(ω), . . . ), where
Ttϕ(x) = ϕ(x− t) for ϕ ∈ S.) The transformations Tt, t ∈ Rν , are linear operators over
the space of random variables measurable with respect to the σ-algebra B(X(ϕ), ϕ ∈ S)
with similar properties as their discrete counterpart.

Theorems 2A, 2B and 2C have the following important consequence.

Theorem 2.1. Let Y1, Y2, . . . be an orthonormal basis in the Hilbert space H1 defined
above with the help of a set of Gaussian random variables Xt, t ∈ T . Then the set of
all possible finite products Hj1(Yl1) · · ·Hjk(Ylk) is a complete orthogonal system in the
Hilbert space H defined above. (Here Hj(·) denotes the j-th Hermite polynomial.)

The proof of Theorem 2.1. By Theorems 2A and 2B the set of all possible products
∞∏
j=1

Hkj (xj), where only finitely many indices kj differ from 0, is a complete orthonor-

mal system in L2

(
R∞,B∞,

∞∏
j=1

e
−x2

j
/2

√
2π

dxj

)
. Since B(Xt, t ∈ T ) = B(Y1, Y2, . . . ),

Theorem 2C implies that the mapping f(x1, x2, . . . , ) → f(Y1, Y2, . . . ) is a unitary trans-

formation from L2

(
R∞,B∞,

∞∏
j=1

e
−x2

j
/2

√
2π

dxj

)
to H. (We call a transformation from a

Hilbert space to another Hilbert space unitary if it is norm preserving and invertible.)
Since the image of a complete orthogonal system under a unitary transformation is
again a complete orthogonal system, Theorem 2.1 is proved.
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Let H≤n ⊂ H, n = 1, 2, . . . , (with the previously introduced Hilbert space H)
denote the Hilbert space which is the closure of the linear space consisting of the elements
Pn(Xt1 , . . . , Xtm), where Pn runs through all polynomials of degree less than or equal
to n, and the integer m and indices t1, . . . , tm ∈ T are arbitrary. Let H0 = H≤0

consist of the constant functions, and let Hn = H≤n ⊖ H≤n−1, n = 1, 2, . . . , where
⊖ denotes orthogonal completion. It is clear that the Hilbert space H1 given in this
definition agrees with the previously defined Hilbert space H1. If ξ1, . . . , ξm ∈ H1,
and Pn(x1, . . . , xm) is a polynomial of degree n, then Pn(ξ1, . . . , ξm) ∈ H≤n. Hence
Theorem 2.1 implies that

H = H0 + H1 + H2 + · · · , (2.1)

where + denotes direct sum. Now we introduce the following

Definition of Wick polynomials. Given a polynomial P (x1, . . . , xm) of degree n
and a set of (jointly Gaussian) random variables ξ1, . . . , ξm ∈ H1, the Wick polynomial
:P (ξ1, . . . , ξm): is the orthogonal projection of the random variable P (ξ1, . . . , ξm) to the
above defined subspace Hn of the Hilbert space H.

It is clear that Wick polynomials of different degree are orthogonal. Given some
ξ1, . . . , ξm ∈ H1 define the subspaces H≤n(ξ1, . . . , ξm) ⊂ H≤n, n = 1, 2, . . . , as the set of
all polynomials of the random variables ξ1, . . . , ξm with degree less than or equal to n.
Let H≤0(ξ1, . . . , ξm) = H0(ξ1, . . . , ξm) = H0, and Hn(ξ1, . . . , ξm) = H≤n(ξ1, . . . , ξm) ⊖
H≤n−1(ξ1, . . . , ξm). With the help of this notation we formulate the following

Proposition 2.2. Let P (x1, . . . , xm) be a polynomial of degree n. Then :P (ξ1, . . . , ξm):
equals the orthogonal projection of P (ξ1, . . . , ξm) to Hn(ξ1, . . . , ξm).

The proof of Proposition 2.2. Let : P̄ (ξ1, . . . , ξm): denote the projection of P (ξ1, . . . , ξm)
to Hn(ξ1, . . . , ξm). Obviously

P (ξ1, . . . , ξm)− : P̄ (ξ1, . . . , ξm): ∈ H≤n−1(ξ1, . . . , ξm) ⊆ H≤n−1.

Hence in order to prove Proposition 2.2 it is enough to show that for all η ∈ H≤n−1

E : P̄ (ξ1, . . . , ξm): η = 0, (2.2)

since this means that : P̄ (ξ1, . . . , ξm): is the orthogonal projection of P (ξ1, . . . , ξm) ∈
H≤n to H≤n−1.

Let ε1, ε2, . . . be an orthonormal system in H1, also orthonormal to ξ1, . . . , ξm,

and such that ξ1, . . . , ξm, ε1, ε2, . . . form a basis in H1. If η =
m∏
i=1

ξlii
∞∏
j=1

ε
kj

j with such

exponents li and kj that
∑
li +

∑
kj ≤ n− 1, then (2.2) holds for this random variable

η because of the independence of the random variables ξi and εj . Since the linear
combinations of such η are dense in H≤n−1, formula (2.2) and Proposition (2.2) are
proved.
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Corollary 2.3. Let ξ1, . . . , ξm be an orthonormal system in H1, and let P (x1, . . . , xm) =∑
cj1,...,jmx

j1 · · ·xjmm be a homogeneous polynomial, i.e. let j1 + · · · jm = n with some
fixed number n for all sets (j1, . . . , jm) appearing in this summation. Then

:P (ξ1, . . . , ξm): =
∑

cj1,...,jmHj1(ξ1) · · ·Hjm(ξm).

In particular,
: ξn: = Hn(ξ) if ξ ∈ H1, and Eξ2 = 1.

Remark. Although we have defined the Wick polynomial (of degree n) for all polynomi-
als P (ξ1, . . . , ξm) of degree n, we could have restricted our attention only to homogeneous
polynomials of degree n, since the contribution of each terms c(j1, . . . jm)ξl11 · · · ξlmm of
the polynomial P (ξ1, . . . , ξm) such that l1 + · · ·+ lm < n has a zero contribution in the
definition of the Wick polynomial :P (ξ1, . . . , ξm): .

Proof of Corollary 2.3. Let the degree of the polynomial P be n. Then

P (ξ1, . . . , ξm) −
∑

cj1,...,jmHj1(ξ1) · · ·Hjm(ξm) ∈ H≤n−1(ξ1, . . . , ξm), (2.3)

since P (ξ1, . . . , xm)−∑ cj1,...,jmHj1(ξ1) · · ·Hjm(ξm) is a polynomial whose degree is less

than n. Let η = ξl11 · · · ξlmm ,
m∑
i=1

li ≤ n− 1. Then

EηHj1(ξ1) · · ·Hjm(ξm) =
m∏

i=1

Eξlii Hji(ξi) = 0,

since li < ji for at least one index i. Therefore

Eη
∑

cj1,...,jmHj1(ξ1) · · ·Hjm(ξm) = 0. (2.4)

Since every element of H≤n−1(ξ1, . . . , ξm) can be written as the sum of such elements
η, relation (2.4) holds for all η ∈ H≤n−1(ξ1, . . . , ξm). Relations (2.3) and (2.4) imply
Corollary 2.3.

The following statement is a simple consequence of the previous results.

Corollary 2.4. Let ξ1, ξ2, . . . be an orthonormal basis in H1. Then the random vari-
ables Hj1(ξ1) · · ·Hjk(ξk), k = 1, 2, . . . , j1 + · · · + jk = n, form a complete orthogonal
basis in Hn.

Proof of Corollary 2.4. It follows from Corollary 2.3 that

Hj1(ξ1) · · ·Hjk(ξk) =: ξj11 · · · ξjkk : ∈ Hn for all k = 1, 2, . . .
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if j1 + · · · + jk = n. These random variables are orthogonal, and all Wick polynomials
:P (ξ1, . . . , ξm): of degree n of the random variables ξ1, ξ2, . . . can be represented as the
linear combination of such terms. Since these Wick polynomials are dense in Hn, this
implies Corollary 2.4.

The arguments of this section exploited heavily some properties of Gaussian random
variables. Namely, that the linear combination of Gaussian random variables is again
Gaussian, and in Gaussian case orthogonality implies independence. This means, in
particular, that the rotation of a standard normal vector leaves its distribution invariant.
We finish this section with an observation based on these facts. This may illuminate
the content of formula (2.1) from another point of view. We shall not use the results of
the subsequent considerations in the rest of this work.

Let U be a unitary transformation over H1. It can be extended to a unitary trans-
formation U over H in a natural way. Fix an orthonormal basis ξ1, ξ2, . . . in H1, and
define U1 = 1, Uξl1j1 · · · ξ

lk
jk

= (Uξj1)
l1 · · · (Uξjk)lk . This transformation can be extended

to a linear transformation U over H in a unique way. The transformation U is norm
preserving, since the joint distributions of (ξj1 , ξj2 , . . . ) and (Uξj1 , Uξj2 , . . . ) coincide.
Moreover, it is unitary, since Uξ1, Uξ2, . . . is an orthonormal basis in H1. It is not
difficult to see that if P (x1, . . . , xm) is an arbitrary polynomial, and η1, η2 . . . , ηm ∈ H1,
then UP (η1, . . . , ηm) = P (Uη1, . . . , Uηm). This relation means in particular that the
transformation U does not depend on the choice of the basis in H1. If the transfor-
mations U1 and U2 correspond to two unitary transformations U1 and U2 on H1, then
the transformation U1U2 corresponds to U1U2. The subspaces H≤n and therefore the
subspaces Hn remain invariant under the transformations U .

The shift transformations of a stationary Gaussian field, and their extensions to
H are the most interesting examples for such unitary transformations U and U . In
the terminology of group representations the above facts can be formulated in the fol-
lowing way: The mapping U → U is a group representation of U(H1) over H, where
U(H1) denotes the group of unitary transformations over H1. Formula (2.1) gives a
decomposition of H into orthogonal invariant subspaces of this representation.
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3. Random spectral measures.

Some standard theorems of probability theory state that the correlation function of a
stationary random field can be expressed as the Fourier transform of a so-called spectral
measure. In this section we construct a random measure with the help of these results,
and express the random field itself as the Fourier transform of this random measure in
some sense. We restrict ourselves to the Gaussian case, although most of the results in
this section are valid for arbitrary stationary random field with finite second moment
if independence is replaced by orthogonality. In the next section we define the multiple
Wiener–Itô integrals with respect to this random measure. In the definition of multiple
stochastic integrals the Gaussian property will be heavily exploited. First we recall two
results about the spectral representation of the covariance function.

Given a stationary Gaussian field Xn, n ∈ Zν , or X(ϕ), ϕ ∈ S, we shall assume
throughout the paper that EXn = 0, EX2

n = 1 in the discrete and EX(ϕ) = 0 in the
generalized field case.

Theorem 3A. (Bochner) Let Xn, n ∈ Zν , be a discrete (Gaussian) stationary field.
There exists a unique probability measure G on [−π, π)ν such that the correlation func-
tion r(n) = EX0Xn = EXkXk+n, n ∈ Zν , k ∈ Zν , can be written in the form

r(n) =

∫
ei(n,x)G( dx), (3.1)

where (·, ·) denotes scalar product. Further G(A) = G(−A) for all A ∈ [−π, π)ν .

We can identify [−π, π)ν with the torus Rν/2πZν . Thus e.g. −(−π, . . . ,−π) =
(−π, . . . ,−π).

Theorem 3B. (Bochner–Schwartz) Let X(ϕ), ϕ ∈ S, be a generalized (Gaussian)
stationary random field over S = Sν , which satisfies the condition E(X(ϕn)−X(ϕ))2 →
0 if ϕn → ϕ in the topology of the Schwartz space S. There exists a unique σ-finite
measure G on Rν such that

EX(ϕ)X(ψ) =

∫
ϕ̃(x)

¯̃
ψ(x)G( dx) for all ϕ, ψ ∈ S, (3.2)

where ˜ denotes Fourier transform and ¯ complex conjugate. The measure G has the
properties G(A) = G(−A) for all A ∈ Bν , and

∫
(1 + |x|)−rG( dx) <∞ with an appropriate r > 0. (3.3)

Remark. The above formulated results are actually not the Bochner and Bochner–
Schwartz theorem in their original form, they are their consequences. In an Adjustment
to Section 3 I formulate the classical form of these theorems, and explain how the above
formulated results follow from them.
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The measure G appearing in Theorems 3A and 3B is called the spectral measure
of the stationary field. A measure G with the same properties as the measure G in
Theorem 3A or 3B will also be called a spectral measure. This terminology is justified,
since there exists a stationary random field with spectral measure G for all such G.

Let us now consider a stationary Gaussian random field (discrete or generalized one)
with spectral measureG. We shall denote the space L2([−π, π)ν ,Bν , G) or L2(R

ν ,Bν , G)
simply by L2

G. Let H1 be the real Hilbert space defined by means of the stationary
random field, as it was done in Section 2. Let Hc

1 denote its complexification, i.e. the
elements of Hc

1 are of the form X+ iY , X, Y ∈ H1, and the scalar product is defined as
(X1+iY1, X2+iY2) = EX1X2+EY1Y2+i(EY1X2−EX1Y2). We are going to construct
a unitary transformation I from L2

G to Hc
1. We shall define the random spectral measure

via this transformation.

Let Sc denote the Schwartz space of rapidly decreasing, smooth, complex valued
functions with the usual topology of the Schwartz space. (The elements of Sc are of
the form ϕ + iψ, ϕ, ψ ∈ S.) We make the following observation. The finite linear
combinations

∑
cne

i(n,x) are dense in L2
G in the discrete field, and the functions ϕ ∈ Sc

are dense in L2
G in the generalized field case. In the discrete field case this follows from

the Weierstrass approximation theorem, which states that all continuous functions on
[−π, π)ν can be approximated by trigonometrical polynomials. In the generalized field
case let us first observe that the continuous functions with compact support are dense
in L2

G. We claim that also the functions of the space D are dense in L2
G, where D

denotes the class of (complex valued) infinitely many times differentiable functions with
compact support. Indeed, if ϕ ∈ D is real valued, ϕ(x) ≥ 0 for all x ∈ Rν ,

∫
ϕ(x) dx = 1,

we define ϕt(x) = tνϕ
(
x
t

)
, and f is a continuous function with compact support, then

f ∗ ϕt → f uniformly as t → ∞. Here ∗ denotes convolution. On the other hand,
f ∗ ϕt ∈ D for all t > 0. Hence D ⊂ Sc is dense in L2

G.

Finally we recall the following result from the theory of distributions. The mapping
ϕ→ ϕ̃ is an invertible, bicontinuous transformation from Sc into Sc. In particular, the
set of functions ϕ̃, ϕ ∈ S, is also dense in L2

G.

Now we define the mapping

I
(∑

cne
i(n,x)

)
=
∑

cnXn (3.4)

in the discrete case, where the sum is finite, and

I( ˜ϕ+ iψ) = X(ϕ) + iX(ψ), ϕ, ψ ∈ S (3.4′)

in the generalized case.

Obviously,

∥∥∥
∑

cne
i(n,x)

∥∥∥
2

L2
G

=
∑∑

cnc̄m

∫
ei(n−m),xG( dx)

=
∑∑

cnc̄mEXnXm = E
∣∣∣
∑

cnXn

∣∣∣
2

,
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and

‖ ˜ϕ+ iψ‖2
L2

G
=

∫
[ϕ̃(x)¯̃ϕ(x) − iϕ̃(x)

¯̃
ψ(x) + iψ̃(x)¯̃ϕ(x) + ψ̃(x)

¯̃
ψ(x)]G( dx)

= EX(ϕ)2 − iEX(ϕ)X(ψ) + iEX(ψ)X(ϕ) + EX(ψ)2 = E (|X(ϕ) + iX(ψ)|)2 .

This means that the mapping I from a linear subspace of L2
G to Hc

1 is norm preserv-
ing. Beside this, the subspace where I was defined is dense in L2

G, since the space of
continuous functions is dense in L2

G if G is a finite measure on the torus Rν/2πZν , and
the space of continuous functions with a compact support is dense in L2

G(Rν) if the
measure G satisfies relation (3.3). Hence the mapping I can be uniquely extended to
a norm preserving transformation from L2

G to Hc
1. Since the random variables Xn or

X(ϕ) are obtained as the image of some element from L2
G under this transformation,

I is a unitary transformation from L2
G to Hc

1. A unitary transformation preserves not

only the norm, but also the scalar product. Hence
∫
f(x)ḡ(x)G( dx) = EI(f)I(g) for

all f, g ∈ L2
G.

Now we define the random spectral measure ZG(A) for all A ∈ Bν such that
G(A) <∞ by the formula

ZG(A) = I(χA),

where χA denotes the indicator function of the set A. It is clear that

(i) The random variables ZG(A) are complex valued, jointly Gaussian random vari-
ables. (The random variables ReZG(A) and ImG(A) with possibly different sets A
are jointly Gaussian.)

(ii) EZG(A) = 0,

(iii) EZG(A)ZG(B) = G(A ∩B),

(iv)
n∑
j=1

ZG(Aj) = ZG

(
n⋃
j=1

Aj

)
if A1, . . . , An are disjoint sets.

Also the following relation holds.

(v) ZG(A) = ZG(−A).

This follows from the relation

(v′) I(f) = I(f−) for all f ∈ L2
G, where f−(x) = f(−x).

Relation (v′) can be simply checked if f is a finite trigonometrical polynomial in the
discrete field case, or if f = ϕ̃, ϕ ∈ Sc, in the generalized field case. (In the case f = ϕ̃,
ϕ ∈ Sc, the following argument works. Put f(x) = ϕ̃1(x) + iϕ̃2(x) with ϕ1, ϕ2 ∈ S.
Then I(f) = X(ϕ1)+iX(ϕ2), and f−(x) = ¯̃ϕ1(−x)−i ¯̃ϕ2(−x) = ϕ̃1(x)+i(−̃ϕ2(x), hence
I(f−) = X(ϕ1)+iX(−ϕ2) = X(ϕ1)−iX(ϕ2) = I(f).) Then a simple limiting procedure
implies (v′) in the general case. Relation (iii) follows from the identity EZG(A)ZG(B) =
EI(χA)I(χB) =

∫
χA(x)χB(x)G( dx) = G(A ∩ B). The remaining properties of ZG(·)

are simple consequences of the definition.

Remark. Property (iv) could have been omitted from the definition of random spectral
measures, since it follows from property (iii). To show this it is enough to check that if
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A1, . . . , An are disjoint sets, and property (iii) holds, then

E




n∑

j=1

ZG(Aj) − ZG




n⋃

j=1

Aj








n∑

j=1

ZG(Aj) − ZG




n⋃

j=1

Aj




 = 0.

Now we introduce the following

Definition of random spectral measure. Let G be a spectral measure. A set of
random variables ZG(A), G(A) < ∞, satisfying (i)–(v) is called a (Gaussian) random
spectral measure corresponding to the spectral measure G.

Given a Gaussian random spectral measure ZG corresponding to a spectral measure
G we define the stochastic integral

∫
f(x)ZG( dx) for an appropriate class of functions f .

Let us first consider simple functions of the form f(x) =
∑
ciχAi(x), where the sum is

finite, and G(Ai) <∞ for all indices i. In this case we define

∫
f(x)ZG( dx) =

∑
ciZG(Ai).

Then we have

E

∣∣∣∣
∫
f(x)ZG( dx)

∣∣∣∣
2

=
∑

cic̄jG(Ai ∩Aj) =

∫
|f(x)|2G( dx). (3.5)

Since the simple functions are dense in L2
G, relation (3.5) enables us to define∫

f(x)ZG( dx) for all f ∈ L2
G via L2-continuity. It can be checked that the expressions

Xn =

∫
ei(n,x)ZG( dx), n ∈ Zν , (3.6)

and

X(ϕ) =

∫
ϕ̃(x)ZG( dx), ϕ ∈ S, (3.6′)

defined with the help of the above defined (random) integral and spectral measure ZG
are Gaussian stationary random discrete and generalized field with spectral measure G.

We also have ∫
f(x)ZG( dx) = I(f) for all f ∈ L2

G

if we consider the previously defined mapping I(f) with the stationary random fields
defined in (3.6) and (3.6′). Now we formulate the following

Theorem 3.1. For a stationary Gaussian random field (a discrete or generalized one)
with a spectral measure G there exists a unique Gaussian random spectral measure ZG
corresponding to the spectral measure G on the same probability space as the Gaussian
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random field such that relation (3.6) or (3.6′) holds in the discrete or generalized field
case respectively.

Furthermore

B(ZG(A), G(A) <∞) =

{B(Xn, n ∈ Zν) in the discrete field case,

B(X(ϕ), ϕ ∈ S) in the generalized field case.
(3.7)

We shall say that the random spectral measure ZG satisfying Theorem 3.1 together
with a Gaussian random field is adapted to this random field.

Proof of Theorem 3.1. Given a stationary Gaussian random field (discrete or stationary
one) with a spectral measure G, we have constructed a random spectral measure ZG
corresponding to the spectral measure G. Moreover, the random integrals given in
formulas (3.6) or (3.6′) define the original stationary random field. Since all random
variables ZG(A) are measurable with respect to the original random field, relation (3.6)
or (3.6′) implies (3.7).

To prove the uniqueness, it is enough to observe that because of the linearity and
L2 continuity of stochastic integrals relation (3.6) or (3.6′) implies that

ZG(A) =

∫
χA(x)ZG( dx) = I(χA)

for a Gaussian random spectral measure corresponding to the spectral measure G ap-
pearing in Theorem 3.1.

Finally we list some additional properties of Gaussian random spectral measures.

(vi) The random variables ReZG(A) are independent of the random variables ImZG(A).

(vii) Random variables of the form ZG(A∪(−A)) are real valued. If the sets A1∪(−A1),
. . . , An ∪ (−An) are disjoint, then the random variables ZG(A1), . . . , ZG(An) are
independent.

(viii) If A ∩ (−A) = ∅, then ReZG(−A) = ReZG(A), ImZG(−A) = −ImZG(A), and
the (Gaussian) random variables ReZG(A) and ImZG(A) are independent with
expectation zero and variance G(A)/2.

These properties easily follow from (i)–(v). Since ZG(·) are complex valued Gaus-
sian random variables, to prove the above formulated independence it is enough to show
that the real and imaginary parts are uncorrelated. We show, as an example, the proof
of (vi).

EReZG(A)ImZG(B) =
1

4i
E(ZG(A) + ZG(A))(ZG(B) − ZG(B))

=
1

4i
E(ZG(A) + ZG(−A))(ZG(−B) − ZG(B))

=
1

4i
G(A ∩ (−B)) − 1

4i
G(A ∩B)

+
1

4i
G((−A) ∩ (−B)) − 1

4i
G((−A) ∩B) = 0
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for all pairs of sets A and B such that G(A) <∞, G(B) <∞, since G(D) = G(−D) for
allD ∈ Bν . The fact that ZG(A∪(−A)) is real valued random variable, and the relations
ReZG(−A) = ReZG(A), ImZG(−A) = −ImZG(A) under the conditions of (viii) follow
directly from (v). The remaining statements of (vii) and (viii) can be proved similarly
to (vi) only the calculations are simpler in this case.

The properties of the random spectral measure ZG listed above imply in particular
that the spectral measure G determines the joint distribution of the corresponding
random variables ZG(B), B ∈ Bν .

Attachment to Section 3. A more detailed discussion about the spectral representa-
tion of the covariance function of stationary random fields.

The results formulated under the name of Bochner and Bochner–Schwartz theorem (I
write this, because actually I presented not these theorems but an important conse-
quence of them) have the following content. Given a finite, even measure G on the
torus Rν/2πZν one can define a (Gaussian) discrete stationary field with correlation
function satisfying (3.1) with this measure G. For an even measure G on Rν satisfy-
ing (3.3) there exists a (Gaussian) generalized stationary field with correlation function
defined in formula (3.2) with this measure G. The Bochner and Bochner–Schwartz
theorems state that the correlation function of all (Gaussian) discrete stationary fields,
respectively of all stationary generalized fields can be represented in such a way. Let us
explain this in more detail.

First I formulate the following

Proposition 3C. Let G be a finite measure on the torus Rν/2πZν such that G(A) =
G(−A) for all measurable sets A. Then there exists a Gaussian discrete stationary field
Xn, n ∈ Zν , with expectation zero such that its correlation function r(n) = EXkXk+n,
n, k ∈ Zν , is given by formula (3.1) with this measure G.

Let G be a measure on Rν satisfying (3.3) and such that G(A) = G(−A) for all
measurable sets A. Then there exists a Gaussian stationary generalized field X(ϕ),
ϕ ∈ S, with expectation EX(ϕ) = 0 for all ϕ ∈ S such that its covariance function
EX(ϕ)X(ψ), ϕ,ψ ∈ S, satisfies formula (3.2) with this measure G.

Moreover, the correlation function r(n) or EX(ϕ)X(ψ), ϕ,ψ ∈ S, determines the
measure G uniquely.

Proof of Proposition 3C. By Kolmogorov’s theorem about the existence of random pro-
cesses with consistent finite dimensional distributions it is enough to prove the following
statement to show the existence of the Gaussian discrete stationary field with the de-
manded properties. For any points n1, . . . , np ∈ Zν there exists a Gaussian random vec-
tor (Xn1 , . . . , Xnp) with expectation zero and covariance matrix EXnjXnk

= r(nj−nk).
(Observe that the function r(n) is real valued, r(n) = r(−n), because of the evenness of
the spectral measure G.) Hence it is enough to check that the corresponding matrix is
positive definite, i.e.

∑
j,k

cjckr(nj −nk) ≥ 0 for all real vectors (c1, . . . , cp). This relation

holds, because
∑
j,k

cjckr(nj − nk) =
∫
|∑
j

cje
i(nj ,x)|2G( dx) ≥ 0 by formula (3.1).
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It can be proved similarly that in the generalized field case there exists a Gaussian
random field with expectation zero whose covariance function satisfies formula (3.2).
(Let us observe that the relation G(A) = G(−A) implies that EX(ϕ)X(ψ) is a real
number for all ϕ, ψ ∈ S, since EX(ϕ)X(ψ) = EX(ϕ)X(ψ) in this case. In the proof

of this identity we exploit that
¯̃
f(x) = f̃(−x) for a real valued function f .) We also

have to show that a random field with such a distribution is a generalized field, i.e.
it satisfies properties a) and b) given in the definition of generalized fields. It is not
difficult to show that if ϕn → ϕ in the topology of the space S, then E[X(ϕn)−X(ϕ)]2 =∫
|ϕ̃n(x)− ϕ̃(x)|2G( dx) → 0 as n→ ∞, hence property b) holds. (Here we exploit that

the transformation ϕ → ϕ̃ is bicontinuous in the space S.) Property a) also holds,
because, as it is not difficult to check with the help of formula (3.2),

E[a1X(ϕ1) + a2X(ϕ2) −X(ϕ(a1ϕ1 + a2ϕ2)]
2

=

∫ ∣∣a1ϕ̃1(x) + a2ϕ̃2(x) − ( ˜a1ϕ1 + a2ϕ2)(x)
∣∣2G( dx) = 0.

It is clear that the Gaussian random field constructed in such a way is stationary.

Finally, as we have seen in our considerations in the main text, the correlation
function determines the integral

∫
f(x)G( dx) for all continuous functions f with a

bounded support, hence it also determines the measure G.

The Bochner and Bochner–Schwartz theorems enable us to show that the corre-
lation function of all stationary (Gaussian) fields (discrete or generalized one) can be
presented in the above way with an appropriate spectral measure G. To see this let us
formulate these results in their original form.

To formulate Bochner’s theorem first we have to introduce the following notion.

Definition of positive definite functions. Let f(x) be a (complex valued) function
on Zν (or on Rν). We say that f(·) is a positive definite function if for all parameters p,
complex numbers c1, . . . , cp and points x1, . . . , xp in Zν (or in Rν) the inequality

p∑

j=1

p∑

k=1

cj c̄kf(xj − xk) ≥ 0

holds.

A simple example for positive definite functions is the function f(x) = ei(t,x), where
t ∈ Zν in the discrete, and t ∈ Rν in the continuous case. Bochner’s theorem provides
a complete description of positive definite functions.

Bochner’s theorem. (Its original form) A complex valued function f(x) defined on
Zν is positive definite if and only if it can be written in the form f(x) =

∫
ei(t,x)G( dx)

for all x ∈ Zν with a finite measure G on the torus Rν/2πZν . The measure G is uniquely
determined.
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A complex valued function f(x) defined on Rν is continuous and positive definite
if and only if it can be written in the form f(x) =

∫
ei(t,x)G( dx) for all x ∈ Rν with a

finite measure G on Rν . The measure G is uniquely determined.

It is not difficult to see that the covariance function r(n) = EXkXk+n, (EXn = 0),
k, n ∈ Zν , of a stationary (Gaussian) random field Xn is a positive definite function,
since

∑
j,k

cj c̄kr(nj−nk) = E|∑
j

cjXnj |2 > 0 for any vector (c1, . . . , cp). Hence Bochner’s

theorem can be applied for it. Beside this, the relation r(n) = r(−n) together with the
uniqueness of the measure G appearing in Bochner’s theorem imply that the identity
G(A) = G(−A) holds for all measurable sets G. This implies the result formulated in
the main text under the name Bochner’s theorem.

The Bochner–Schwartz theorem formulates an analogous representation of positive
definite generalized functions in S ′ as the Fourier transforms of positive generalized
functions in S ′ together with an analogous result about generalized functions in the
space D′. To formulate it we have to introduce some definitions. First we have to
clarify what a positive generalized function means. We introduce this notion both in
the space S ′ and D′, and then we characterize them in a Theorem.

Definition of positive generalized functions. A linear functional F ∈ S ′ (or
F ∈ D′) is called a positive definite generalized function if for all such ϕ ∈ S (or
ϕ ∈ D) test functions for which ϕ(x) ≥ 0 for all x ∈ Rν (F,ϕ) ≥ 0.

Theorem about the representation of positive generalized functions. All pos-
itive generalized functions F ∈ S ′ can be given in the form (F,ϕ) =

∫
ϕ(x)µ( dx),

where µ is a polynomially increasing measure on Rν , i.e. it satisfies the relation
∫

(1 +
|x|2)−pµ( dx) < ∞ with some p > 0. Similarly, all positive generalized functions in D′

can be given in the form (F,ϕ) =
∫
ϕ(x)µ( dx) with such a measure µ on Rν which

is finite in all bounded regions. The generalized function F uniquely determines the
measure µ in both cases.

We also need the introduction of a technical notion and a result related to it. Let
us remark that if ϕ ∈ Sc and ψ ∈ Sc, then also their product ϕψ ∈ Sc. The analogous
result also holds in the space D.

Definition of multiplicatively positive generalized functions. A generalized
function F ∈ S ′ (or F ∈ D′) is multiplicatively positive if (F,ϕϕ̄) = (F, |ϕ|2) ≥ 0
for all ϕ ∈ Sc (or in ϕ ∈ D).

Theorem about the characterization of multiplicatively positive generalized
functions. A generalized function F ∈ S ′ (or F ∈ D′) is multiplicatively positive if and
only if it is positive.

Now I introduce the definition of positive definite generalized functions.

Definition of positive definite generalized functions. A generalized function
F ∈ S ′ (or F ∈ D′) is positive definite if (F,ϕ∗ϕ∗) ≥ 0 for all ϕ ∈ Sc (of ϕ ∈ D), where
ϕ∗(x) = ϕ(−x), and ∗ denotes convolution, i.e. ϕ ∗ ϕ∗(x) =

∫
ϕ(t)ϕ(t− x) dt.
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We refer to [15] for an explanation why this definition of positive definite generalized
functions is natural. Let us remark that if ϕ,ψ ∈ Sc, then ϕ ∗ ψ ∈ Sc, and the
analogous result holds in D. The original version of the Bochner–Schwartz theorem has
the following form.

Bochner–Schwartz theorem. (Original form) Let F be a positive definite general-
ized function in the space S ′ (or D′). Then it is the Fourier transform of a polynomially
increasing measure µ on Rν , i.e. the identity (F,ϕ) =

∫
ϕ̃(x)µ( dx) holds for all ϕ ∈ Sc

(or ϕ ∈ D) with a measure µ that satisfies the relation
∫

(1 + |x|2)−pµ( dx) < ∞ with
an appropriate p > 0. The generalized function F uniquely determines the measure µ.
On the other hand, if µ is a polynomially increasing measure on Rν , then the formula
(F,ϕ) =

∫
ϕ̃(x)µ( dx) with ϕ ∈ Sc (or ϕ ∈ D) defines a positive definite generalized

function F in the space S ′ (or D′).

Remark. It is a remarkable and surprising fact that the class of positive definite gener-
alized functions are represented by the same class of measures µ in the spaces S ′ and
D′. (In the representation of positive generalized functions the class of measures µ con-
sidered in the case of D′ is much larger, than in the case of S ′.) Let us remark that in
the representation of the positive definite generalized functions in D′ the function ϕ̃ we
integrate is not in the class D, but in the space Z consisting of the Fourier transforms
of the functions in D.

It is relatively simple to prove the representation of positive definite generalized
functions given in the Bochner–Schwartz theorem for the class S ′. Some calculation
shows that if F is a positive definite generalized function, then its Fourier transform is a
multiplicatively positive generalized function. Indeed, since the Fourier transform of the
convolution ϕ∗ψ(x) equals ϕ̃(t)ψ̃(t), and the Fourier transform of ϕ∗(x) = ϕ(−x) equals
ϕ̃(t), the Fourier transform of ϕ∗ϕ∗(x) equals ϕ̃(t)¯̃ϕ(t). Hence the positive definitiveness
property of the generalized function F and the definition of the Fourier transform of
generalized functions imply that (F̃ , ϕ̃ ¯̃ϕ) = (2π)ν(F,ϕ ∗ ϕ∗) ≥ 0 for all ϕ ∈ Sc. Since
every function of Sc is the Fourier transform ϕ̃ of some function ϕ ∈ Sc this implies that
F̃ is a multiplicatively positive and as a consequence a positive generalized function in S ′.
Such generalized functions have a good representation with the help of a polynomially
increasing positive measure µ. Since (F,ϕ) = (2π)−ν(F̃ , ϕ̃) it is not difficult to prove
the Bochner–Schwartz theorem for the space S ′ with the help of this fact. The proof is
much harder if the space D′ is considered, but we do not need that result.

The Bochner–Schwartz theorem in itself is not sufficient to describe the correla-
tion function of a generalized random fields. We still need another important result
of Laurent Schwartz which gives useful information about the behaviour of (Hermi-
tian) bilinear functionals in Sc and some additional information about the behaviour of
translation invariant (Hermitian) bilinear functionals in this space. To formulate these
results first we introduce the following definition.

Definition of Hermitian bilinear and translation invariant Hermitian bilinear
functionals in the space Sc. A function B(ϕ,ψ), ϕ,ψ ∈ Sc, is a Hermitian bilinear
functional in the space Sc if for all fixed ψ ∈ Sc B(ϕ,ψ) is a continuous linear functional
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of the variable ψ in the topology of Sc, and for all fixed ϕ ∈ Sc B(ϕ,ψ) is a continuous
linear functional of the variable ψ in the topology of Sc.

A Hermitian bilinear functional B(ϕ,ψ) in Sc is translation invariant if it does
not change by a simultaneous shift of its variables ϕ and ψ, i.e. if B(ϕ(x), ψ(x)) =
B(ϕ(x+ h), ψ(x+ h)) for all h ∈ Rν .

Definition of positive definite Hermitian bilinear functionals. We say that a
Hermitian bilinear functional B(ϕ,ψ) in Sc is positive definite if B(ϕ,ϕ) ≥ 0 for all
ϕ ∈ Sc.

The next result characterizes the Hermitian bilinear and translation invariant Her-
mitian bilinear functionals in Sc.
Theorem 3D. All Hermitian bilinear functionals B(ϕ,ψ) in Sc can be given in the
form B(ϕ,ψ) = (F1, ϕ(x)ψ(y)), ϕ,ψ ∈ Sc, where F1 is a continuous linear functional
on Sc × Sc, i.e. it is a generalized function in S2ν

′.

A translation invariant Hermitian bilinear functional in Sc can be given in the
form B(ϕ,ψ) = (F,ϕ ∗ ψ∗), ϕ,ψ ∈ Sc, where F ∈ S,, ψ∗(x) = ψ(−x), and ∗ denotes
convolution.

The Hermitian bilinear form B(ϕ,ψ) determines the generalized functions F1, and
if it is translation invariant then also the generalized function F uniquely. Beside this,
for all functionals F1 ∈ S2ν ′ and F ∈ S ′ the above formulas define a Hermitian bilinear
functional and a translation invariant Hermitian bilinear functional in Sc respectively.

Let us consider a Gaussian generalized random field X(ϕ), ϕ ∈ S, with expectation
zero together with its correlation function B(ϕ,ψ) = EXϕ)X(ψ), ϕ,ψ ∈ S. More
precisely, let us consider the complexification X(ϕ1 + iϕ2) = X(ϕ1) + iX(ϕ2) of this
random field and its correlation function B(ϕ,ψ) = EX(ϕ)X(ψ), ϕ,ψ ∈ Sc. This
correlation function B(ϕ,ψ) is a translation invariant Hermitian bilinear functional in
Sc, hence it can be written in the form B(ϕ,ψ) = (F,ϕ ∗ ψ∗) with an appropriate
F ∈ S ′. Moreover, B(ϕ,ϕ) ≥ 0 for all ϕ ∈ Sc, and this means that the generalized
function F ∈ S ′ corresponding to B(ϕ,ψ) is positive definite. Hence the Bochner–
Schwartz theorem can be applied for it, and it yields that

EX(ϕ)X(ψ) =

∫
˜ϕ ∗ ψ∗(x)G( dx) =

∫
ϕ̃(x)

¯̃
ψ(x)G( dx) for all ϕ, ψ ∈ Sc

with a uniquely determined, polynomially increasing measure G on Rν . To prove Theo-
rem 3B we still have to show that G is an even measure. In the proof of this statement
we exploit that for a real valued function ϕ ∈ S the random variable X(ϕ) is also real
valued. Hence if ϕ,ψ ∈ S, then EX(ϕ)X(ψ) = EX(ϕ)X(ψ). Beside this ϕ̃(−x) = ¯̃ϕ(x)

and ψ̃(−x) =
¯̃
ψ(x) in this case. Hence

∫
ϕ̃(x)

¯̃
ψ(x)G( dx) =

∫
¯̃ϕ(x)ψ̃(x)G( dx)

=

∫
ϕ̃(−x)¯̃ψ(−x)G( dx) =

∫
ϕ̃(x)

¯̃
ψ(x)G−( dx)
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for all ϕ,ψ ∈ S, where G−(A) = G(−A) for all A ∈ Bν . This relation implies that the
measures G and G− agree. The proof of Theorem 3B is completed.

4. Multiple Wiener–Itô integrals.

In this section we define the so-called multiple Wiener–Itô integrals, and we prove their
most important properties with the help of Itô’s formula, whose proof is postponed
to the next section. More precisely, we discuss in this section a modified version of
the Wiener–Itô integrals with respect to a random spectral measure rather than with
respect to a random measure with independent increments. This modification makes
it necessary to slightly change the definition of the integral. This modified Wiener–Itô
integral seems to be a more useful tool than the original one or the Wick polynomials,
because it enables us to describe the action of shift transformations.

Let G be the spectral measure of a stationary Gaussian field (discrete or generalized
one). We define the following real Hilbert spaces H̄n

G and Hn
G, n = 1, 2, . . . . We have

fn ∈ H̄n
G if and only if fn = fn(x1, . . . , xn), xj ∈ Rν , j = 1, 2, . . . , n, is a complex

valued function of n variables, and

(a) fn(−x1, . . . ,−xn) = fn(x1, . . . , xn),

(b) ‖fn‖2 =
∫
|fn(x1, . . . , xn)|2G( dx1) . . . G( dxn) <∞.

Relation (b) also defines the norm in H̄n
G. The subspace Hn

G ⊂ H̄n
G contains those

functions fn ∈ H̄n
G which are invariant under permutations of their arguments, i.e.

(c) fn(xπ(1), . . . , xπ(n))) = fn(x1, . . . , xn) for all π ∈ Πn, where Πn denotes the group
of all permutations of the set {1, 2, . . . , n}.
The norm in Hn

G is defined in the same way as in H̄n
G. Moreover, the scalar product

is also similarly defined, namely if f, g ∈ H̄n
G, then

(f, g) =

∫
f(x1, . . . , xn)g(x1, . . . , xn)G( dx1) . . . G( dxn)

=

∫
f(x1, . . . , xn)g(−x1, . . . ,−xn)G( dx1) . . . G( dxn).

Because of the symmetry G(A) = G(−A) of the spectral measure (f, g) = (f, g), i.e.
the scalar product (f, g) is a real number for all f, g ∈ H̄n

G. This means that H̄n
G is a

real Hilbert space. We also define H0
G = H̄0

G as the space of real constants with the
norm ‖c‖ = |c|. We remark that H̄n

G is actually the n-fold direct product of H1
G, while

Hn
G is the n-fold symmetrical direct product of H1

G. Condition (a) means heuristically
that fn is the Fourier transform of a real valued function.

Finally we define the so-called Fock space ExpHG whose elements are sequences
of functions f = (f0, f1, . . . ), fn ∈ Hn

G for all n = 0, 1, 2, . . . , such that

‖f‖2 =
∞∑

n=0

1

n!
‖fn‖2 <∞.
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Given a function f ∈ H̄n
G we define Sym f as

Sym f(x1, . . . , xn) =
1

n!

∑

π∈Πn

f(xπ(1), . . . , xπ(n)).

Clearly, Sym f ∈ Hn
G, and

‖Sym f‖ ≤ ‖f‖. (4.1)

Let ZG be a Gaussian random spectral measure corresponding to the spectral mea-
sure G on a probability space (Ω,A, P ). We shall define the n-fold Wiener–Itô integrals

IG(fn) =
1

n!

∫
fn(x1, . . . , xn)ZG( dx1) . . . ZG( dxn) for fn ∈ H̄n

G

and

IG(f) =
∞∑

n=0

IG(fn) for f = (f0, f1, . . . ) ∈ ExpHG.

We shall see that IG(fn) = IG(Sym fn) for all fn ∈ H̄n
G. Therefore, it would have been

sufficient to define the Wiener–Itô integral only for functions in Hn
G. Nevertheless, some

arguments become simpler if we work in H̄n
G. In the definition of Wiener–Itô integrals

first we restrict ourselves to the case when the spectral measure is non-atomic, i.e.
G({x}) = 0 for all x ∈ Rν . This condition is satisfied in all interesting cases. However,
we shall later show how one can get rid of this restriction.

First we define a subclass ˆ̄H
n

G ⊂ H̄n
G of simple functions, and define the Wiener–Itô

integrals for the functions of this subclass.

Let D = {∆j , j = ±1,±2, . . . ,±N} be a finite collection of bounded, measurable
sets in Rν indexed by the integers ±1, . . . ,±N . We say that D is a regular system if
∆j = −∆−j , and ∆j ∩∆l = ∅ if j 6= l for all j, l = ±1,±2, . . . ,±N . A function f ∈ H̄n

G

is adapted to this system D if f(x1, . . . , xn) is constant on the sets ∆j1 ×∆j2 ×· · ·×∆jn ,
jl = ±1, . . . ,±N , l = 1, 2, . . . , n, it vanishes outside these sets and also on the sets for

which jl = ±jl′ for some l 6= l′. A function f ∈ H̄n
G is in the class ˆ̄H

n

G of simple functions
if it is adapted to some regular systems D = {∆j , j ± 1, . . . ,±N}, and its Wiener–Itô
integral with respect to ZG is defined as

∫
f(x1, . . . , xn)ZG( dx1) . . . ZG( dxn)

= n!IG(f) =
∑

jl=±1,...,±N
l=1,2,...,n

f(xj1 , . . . , xjn)ZG(∆j1) · · ·ZG(∆jn), (4.2)

where xj ∈ ∆j , j = ±1, . . . ,±N . We remark that although the regular system D
to which f is adapted, is not uniquely determined (the elements of D can be divided
to smaller sets), the integral defined in (4.2) is meaningful, i.e. it does not depend
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on the choice of D. This can be seen by observing that a refinement of a regu-
lar system D adapted to the function f yields the same value for the sum defining
n!IG(f) in formula (4.2) as the original one. This follows from the additivity of the
random spectral measure ZG formulated in its property (iv), since this implies that
each term f(xj1 , . . . , xjn)ZG(∆j1) · · ·ZG(∆jn) in the sum at the right-hand side of for-
mula (4.2) corresponding to the original regular system equals the sum of all such terms
f(xj1 , . . . , xjn)ZG(∆′

j′1
) · · ·ZG(∆′

j′n
) in the sum corresponding to the refined partition

for which ∆′
j′1
× · · · × ∆′

j′n
⊂ ∆j1 × · · · × ∆jn .

By property (vii) of the random spectral measures all products ZG(∆j1) · · ·ZG(∆jn)
with non-zero coefficient in (4.2) are products of independent random variables. We had
this property in mind when requiring the condition that the function f vanishes on a
product ∆j1 × · · · ×∆jn if jl = ±jl′ for some l 6= l′. This condition is interpreted in the
literature as discarding the hyperplanes xl = xl′ and xl = −xl′ , l, l′ = 1, 2, . . . , n, l 6= l′,
from the domain of integration. Property (a) of the functions in H̄n

G and property (v)

of the random spectral measures imply that IG(f) = IG(f), i.e. IG(f) is a real valued

random variable for all f ∈ ˆ̄H
n

G. The relation

EIG(f) = 0, for f ∈ ˆ̄H
n

G, n = 1, 2, . . . (4.3)

also holds. Let Ĥn
G = Hn

G ∩ ˆ̄H
n

G. If f ∈ ˆ̄H
n

G, then Sym f ∈ Ĥn
G, and

IG(f) = IG(Sym f). (4.4)

Relation (4.4) follows immediately from the observation that ZG(∆j1) · · ·ZG(∆jn) =
ZG(∆π(j1)) · · ·ZG(∆π(jn)) for all π ∈ Πn. We also claim that

EIG(f)2 ≤ 1

n!
‖f‖2 for f ∈ ˆ̄H

n

G, (4.5)

and

EIG(f)2 =
1

n!
‖f‖2 for f ∈ Ĥn

G. (4.5′)

Because of (4.1) and (4.4) it is enough to check (4.5′).

Let D be a regular system of sets in Rν , j1, . . . , jn and k1, . . . , kn be indices such
that jl 6= ±jl′ , kl 6= ±kl′ if l 6= l′. Then

EZG(∆j1) · · ·ZG(∆jn)ZG(∆k1) · · ·ZG(∆kn)

=

{
G(∆j1) · · ·G(∆jn) if {j1, . . . , jn} = {k1, . . . , kn},
0 otherwise.

To see the last relation one has to observe that the product on the left-hand side
can be written as a product of independent random variables because of property (vii)
of the random spectral measures. If {j1, . . . , jn} 6= {k1, . . . , kn}, then there is an index l
such that either jl 6= ±kl′ for all 1 ≤ l′ ≤ n, or there exists an index l′, 1 ≤ l′ ≤ n, such
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that jl = −kl′ . In the first case ZG(∆jl) is independent of the remaining coordinates of

the vector (ZG(∆j1), . . . , ZG(∆jn), ZG(∆k1), . . . , ZG(∆kn)), and EZG(∆jl) = 0. Hence
the expectation of the investigated product equals zero, as we claimed. If jl = −kl′ with
some index l′, then a different argument is needed, since ZG(∆jl) and ZG(−∆jl) are
not independent. In this case we can state that since jp 6= ±jl if p 6= l, and kq 6= ±jl if
q 6= l′, the vector (ZG(∆jl), ZG(−∆jl)) is independent of the remaining coordinates of

the above random vector. On the other hand, the product ZG(∆jl)ZG(−∆jl) has zero

expectation, since EZG(∆jl)ZG(−∆jl) = G(∆jl ∩ (−∆jl)) = 0 by property (iii) of the
random spectral measures and the relation ∆jl ∩ (−∆jl) = ∅. Hence the expectation of
the considered product equals zero also in this case. If {j1, . . . , jn} = {k1, . . . , kn}, then

EZG(∆j1) · · ·ZG(∆jn)ZG(∆k1) · · ·ZG(∆kn) =

n∏

l=1

EZG(∆jl)ZG(∆jl) =

n∏

l=1

G(∆jl).

Therefore for a function f ∈ Ĥn
G

EIG(f)2 =

(
1

n

)2∑∑
f(xj1 , . . . , xjn)f(xk1 , . . . , xkn)

EZG(∆j1) · · ·ZG(∆jn)ZG(∆k1) · · ·ZG(∆kn)

=

(
1

n!

)2∑
|f(xj1 , . . . , xjn)|2G(∆j1) · · ·G(∆jn) · n!

=
1

n!

∫
|f(x1, . . . , xn)|2G( dx1) · · ·G( dxn) =

1

n!
‖f‖2.

We claim that Wiener–Itô integrals of different order are uncorrelated. More ex-

plicitly, take two functions f ∈ ˆ̄H
n

G and f ′ ∈ ˆ̄H
n′

G such that n 6= n′. Then we have

EIG(f)IG(f ′) = 0 if f ∈ ˆ̄H
n

G, f ′ ∈ ˆ̄H
n′

G , and n 6= n′. (4.6)

To see this relation observe that a regular system D can be chosen is such a way that
both f and f ′ are adapted to it. Then a similar, but simpler argument as the previous
one shows that

EZG(∆j1) · · ·ZG(∆jn)ZG(∆k1) · · ·ZG(∆kn′ ) = 0

for all sets of indices {j1, . . . , jn} and {k1, . . . , kn′} if n 6= n′, hence the sum expressing
EIG(f)IG(f ′) in this case equals zero.

We show that ˆ̄H
n

G is dense in H̄n
G (and Ĥn

G is dense in Hn
G). First we show that this

property can be reduced to Statement A formulated below. In Statement A we reduce
the statement about the good approximability of a general function f ∈ H̄n

G to the
good approximability of the indicator function χA of a bounded set A ∈ Bnν such that
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A = −A by a function of the form g = χB ∈ ˆ̄H
n

G. (Observe that χA ∈ H̄n
G for a bounded

set A ∈ Bnν if and only if A = −A.) However, we have to formulate Statement A in a
more complicated form, because only in such a way can we reduce the statement about
the good approximability of a general, possibly complex valued function f ∈ H̄n

G by a

function in g ∈ ˆ̄H
n

G to Statement A.

Statement A. Let A ∈ Bnν be a bounded, symmetric set, i.e. let A = −A. Then for any

ε > 0 there is a function g ∈ ˆ̄H
n

G such that g = χB with some set B ∈ Bnν , i.e. g is
the indicator function of the set B, which satisfies the inequality ‖g−χA‖ < ε with the
norm of the space H̄n

G. (Here χA denotes the indicator function of the set A, and have
χA ∈ H̄n

G.) Moreover, if the set A can written in the form A = A1 ∪ (−A1) with such a
set A1 for which the sets A1 and −A1 have a positive distance from each other, i.e. there
is a number δ > 0 such that ρ(A1,−A1) = inf

x∈A1, y∈−A1

ρ(x, y) > δ, where ρ denotes the

Euclidean distance in Rnν , then a good approximation of χA can be given with such a

function g = χB∪(−B) ∈ ˆ̄H
n

G which has some additional good properties. Namely, there

is a set B ∈ Bnν such that B ⊂ A
δ/2
1 = {x: ρ(x,A1) ≤ δ

2}, Gn(A1 ∆B) < ε
2 , where

A∆B denotes the symmetric difference of the sets A and B, and Gn is the n-times

direct product of the spectral measure G on the space Rnν , and g = χB∪(−B) ∈ ˆ̄H
n

G.

These properties of the set B imply that the function g = χB∪(−B) ∈ ˆ̄H
n

G satisfies the
relation ‖g − χA‖ < ε.

To justify this reduction to Statement A let us observe that if two functions f1 ∈ H̄n
G

and f2 ∈ H̄n
G can be arbitrary well approximated by functions from ˆ̄H

n

G in the H̄n
G

norm, then the same relation holds for any linear combination c1f1 + c2f2 with real

coefficients c1 and c2. (If the functions fi are approximated by some functions gi ∈ ˆ̄H
n

G,
i = 1, 2, then we may assume, by applying some refinement of the partitions if it is
necessary, that the regular partitions appearing in the definition of the approximating
functions are the same.) Hence the proof about the arbitrary good approximability of a

function f ∈ H̄n
G by functions g ∈ ˆ̄H

n

G can be reduced to the proof about the arbitrary
good approximability of its real part Re f ∈ H̄n

G and its imaginary part Im f ∈ H̄n
G.

Moreover, since the real part and imaginary part of the function f can be arbitrary
well approximated by such real or imaginary valued functions from the space H̄n

G which
take only finitely many values, the desired approximation result can be reduced to the
case when f is the indicator function of a set A ∈ Bnν such that A = −A (if f is real
valued), or it takes three values, the value i on a set A1 ∈ Bnν , the value −i on the
set −A1, and it equals zero on Rnν \ (A1 ∪ (−A1)) (if f is purely imaginary valued).
Beside this, the inequalities Gn(A) < ∞ and Gn(A1) < ∞ hold. We can even assume
that A and A1 are bounded sets, because Gn(A) = lim

K→∞
Gn(A ∩ [−K,K]nν), and the

same argument applies for A1.

Hence Statement A immediately implies the desired approximation result in the
first case when f is the indicator function of a set A. In the second case, when such
a function f is considered that takes the values ±i and zero, observe that the sets
A1 = {x: f(x) = i} and −A1 = {x: f(x) = −i} are disjoint. Moreover, we may assume
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that they have positive distance from each other, because there are such compact sets
AN ⊂ A, N = 1, 2, . . . , for which lim

N→∞
Gn(A \AN ) = 0, and two disjoint compact sets

have positive distance. Then the approximation result also holds in the second case
if we take the approximation of the pair (A1,−A1) by the pair (B,−B) appearing in
Statement A, and define g(x) = i if x ∈ B, g(x) = −i if x ∈ −B and g(x) = 0 otherwise.

In the next step we reduce the proof of Statement A to the proof of a result
formulated under the name Statement B. We show that to prove Property A it is enough
to prove the good approximability of some very special indicator functions χB ∈ H̄n

G by

a function g ∈ ˆ̄H
n

G. We have to handle such sets B ∈ Bnν where the proof is simpler.

Statement B. Let B = D1×· · ·×Dn be the direct product of bounded sets Dj ∈ Bν such
that Dj ∩ (−Dj) = ∅ for all 1 ≤ j ≤ n. Then for all ε > 0 there is a set F ⊂ B ∪ (−B),

F ∈ Bnν such that χF ∈ ˆ̄H
n

G, and ‖χB∪(−B)−χF ‖ ≤ ε, with the norm of the space H̄n
G.

To deduce Statement A from statement B let us first remark that we may reduce
our attention to such sets A in Statement A for which all coordinates of the points of
the set A are separated from the origin. More explicitly, we may assume the existence

of a number η > 0 with the property A ∩ K(η) = ∅, where K(η) =
n⋃
j=1

Kj(η) with

Kj(η) = {(x1, . . . , xn): xl ∈ Rν , l = 1, . . . , n, ρ(xj , 0) ≤ η}. To see our right to make
such a reduction observe that the relation G({0}) = 0 implies that lim

η→0
Gn(K(η)) = 0,

hence lim
η→0

Gn(A \K(η)) = Gn(A). At this point we exploited a weakened form of the

non-atomic property of the spectral measure G, namely the relation G({0}) = 0.

To prove Statement A with the help of Statement B it is enough to show that for all
numbers ε > 0 and bounded sets A ∈ Bnν such that A = −A there is a finite sequence of
bounded sets Bj ∈ Bnν , j = ±1, . . . ,±N , such that the sets Bj are disjoint, B−j = −Bj ,
j = ±1, . . . ,±N , each set Bj can be written in the form Bj = D

(j)
1 × · · · × D

(j)
n with

D
(j)
k ∈ Bν , and D

(−j)
k ∩ (−D(j)

k ) = ∅ for all 1 ≤ j ≤ N and 1 ≤ k ≤ n, and finally the

set B =
N⋃
j=1

(Bj ∪B−j) satisfies the relation Gn(A∆B) ≤ ε. Indeed, since we can choose

ε > 0 arbitrary small, the application of Statement B for all pairs (Bj ,−Bj) supplies

an arbitrary good approximation of the function χA by a function of the form χB̄ ∈ ˆ̄H
n

G

in the norm of the space H̄n
G.

If the set A can be written in the form A = A1 ∪ (−A1) such that ρ(A1,−A1) > δ,
then we can show the existence of a good approximation of the set A with the extra
properties formulated in Statement A in the following way. We may assume that all sets
Bj in the above sequence have a non-empty intersection with the set A. Otherwise the
pair (Bj , B−j) could have been omitted from this sequence. We may also assume, by
applying a refinement of the sets Bj if it is necessary that all sets Bj have a diameter less
that δ

4 . Then for a pair (Bj , B−j) one of these sets has a non-empty intersection with A1

and an empty intersection with −A1, while the other set has a non-empty intersection
with −A1 and an empty intersection with A1. Take the indexes of these sets so that
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Bj ∩A1 6= ∅. Then it is not difficult to see that the application of Statement B for the
pairs (Bj , B−j) with such an indexation supplies this part of Statement A.

To find a sequence Bj with the above properties for a set A satisfying the conditions
of Statement A observe that there is a sequence of finitely many bounded sets Bj of the

form Bj = D
(j)
1 × · · · × D

(j)
n , D

(j)
l ∈ Bν , whose union B =

⋃
Bj satisfies the relation

G(n)(A∆B) < ε
2 . Because of the symmetry property A = −A of the set A we may

assume that these sets Bj have such an indexation with both positive and negative
integers for which Bj = −B−j . We may also demand that Bj ∩ A 6= ∅ for all sets Bj .

Beside this, we may assume, by dividing the sets D
(j)
l appearing in the definition of the

sets Bj into smaller sets if this is needed that their diameter ρ(D
(j)
l ) = sup

x∈D(j)

l

ρ(x, 0) < η
2 .

This implies because of the relation A ∩ K(η) = ∅ that D
(j)
l ∩ (−D(j)

l ) = ∅ for all
1 ≤ l ≤ n. Because of these properties of the sets Bj it can be seen that with the
help of their appropriate further splitting the set B can be represented as the union of
disjoint sets Bj indexed by some numbers j = ±1, . . . ,±N such that Bj = −B−j for

all 1 ≤ j ≤ N , and the pairs (Bj , B−j) have the additional property D
(j)
l ∩ (−D(j)

l ) = ∅
for all 1 ≤ l ≤ n, and this is what we had to show. For the sake of completeness we
present a partition of the set B with the properties we need.

Let us first take the following partition of Rν for all 1 ≤ l ≤ n. For a fixed number l

this partition consists of all sets D̄
(l)
r of the form

⋂
j>0

F
r(j)
l,j , where r(j) = 1, 2 or 3, and

F
(1)
l,j = D

(j)
l , F

(2)
l,j = −D(j)

l , F
(3)
l,j = Rν \ (D

(j)
l ∪ (−D(j)

l )). Then B can be represented

as the union of those sets of the form D̄
(1)
r1 × · · · × D̄

(n)
rn which are contained in B.

To prove Statement B first we show that for all ε̄ > 0 there is a regular system
D = {∆l, l = ±1, . . . ,±N} such that all sets Dj and −Dj , 1 ≤ j ≤ n, can be expressed
as the union of some elements ∆l of D, and G(∆l) ≤ ε̄ for all ∆l ∈ D.

First we show that there is a regular system D̄ = {∆′
l, l = ±1, . . . ,±N ′} such that

all sets Dj and −Dj can be expressed as the union of some sets ∆′
l of D̄. But we say

nothing about the measure G(∆′
l) of the elements of this regular system. To get such

a regular system we define the sets ∆′(εs, 1 ≤ |s| ≤ n) = Dε1
1 ∩ (−D1)

ε−1 ∩ · · · ∩Dεn
n ∩

(−Dn)
ε−n for all vectors (εs, 1 ≤ |s| ≤ n) such that εs = ±1 for all 1 ≤ |s| ≤ n,

and the vector (εs, 1 ≤ |s| ≤ n) contains at least one coordinate +1, and D1 = D,
D−1 = Rν \ D for all sets D ∈ Bν . Then taking an appropriate reindexation of the
sets ∆′(εs, 1 ≤ |s| ≤ n) we get a regular system D̄ with the desired properties. (In this
construction the sets ∆′(εs, 1 ≤ |s| ≤ n) are disjoint, and during their reindexation we
drop those of them which equal the empty set.) To see that D̄ with a good indexation
is a regular system observe that for a set ∆l = ∆′(εs, 1 ≤ |s| ≤ n) ∈ D̄ we have
−∆l = ∆′(ε−s, 1 ≤ |s| ≤ n) ∈ D̄, and ∆l ∩ (−∆l) ⊂ Dj ∩ (−Dj) = ∅ with some index
1 ≤ j ≤ n. (We had to exclude the possibility ∆l = −∆l.)

Next we show that by appropriately refining the above regular system D̄ we can
get such a regular system D = {∆l, l = ±1, . . . ,±N} which satisfies also the property
G(∆l) ≤ ε̄ for all ∆l ∈ D. To show this let us observe that there is a finite partition
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{E1, . . . , El} of
n⋃
j=1

(Dj ∪ (−Dj)) such that G(Ej) ≤ ε̄ for all 1 ≤ j ≤ l. Indeed,

the closure of D =
n⋃
j=1

(Dj ∪ (−Dj)) can be covered by open sets Hi ⊂ Rν such that

G(Hi) ≤ ε̄ for all sets Hi because of the non-atomic property of the measure G, and by
the Heyne–Borel theorem this covering can be chosen finite. With the help of these sets

Hi we can get a partition {E1, . . . , El} of
n⋃
j=1

(Dj ∪ (−Dj)) with the desired properties.

Then we can make the following construction with the help of the above sets Ej .
Take a pair of elements (∆′

l,∆
′
−l) = (∆′

l,−∆′
l), of D̄, and split up the set ∆′

l with the
help of the sets Ej to the union of finitely many disjoint sets of the form ∆l,j = ∆′

l∩Ej .
Then G(∆l,j) < ε̄ for all sets ∆l,j , and we can write the set ∆′

−l as the union of the
disjoint sets −∆l,j . By applying this procedure for all pairs (∆′

l,∆
′
−l) and by reindexing

the sets ∆l,j obtained by this procedure in an appropriate way we get a regular system
D with the desired properties.

Let us write B∪(−B) as the union of products of sets of the form ∆l1×· · ·×∆ln with
sets ∆lj ∈ D, 1 ≤ j ≤ n, and let us discard those products for which lj = ±lj′ for some
pair (j, j′), j 6= j′. We define the set F about which we claim that it satisfies Property B

as the union of the remaining sets ∆l1 ×· · ·×∆ln . Then χF ∈ ˆ̄H
n

G. Hence to prove that
Statement B holds with this set F if ε̄ > 0 is chosen sufficiently small it is enough to show
that the sum of the terms G(∆l1) · · ·G(∆ln) for which lj = ±lj′ with some j 6= j′ is less
than n2ε̄Mn−1, where M = maxG(Dj ∪ (−Dj)) = 2maxG(Dj). To see this observe
that for a fixed pair (j, j′), j 6= j′, the sum of all products G(∆l1) · · ·G(∆ln) such
that lj = lj′ can be bounded by ε̄Mn−1, and the same estimate holds if summation
is taken for products with the property lj = −lj′ . Indeed, each term of this sum

can be bounded by ε̄Gn−1

(
∏

1≤p≤n, p 6=j
∆lp

)
, and the events whose Gn−1 measure is

considered in the investigated sum are disjoint. Beside this their union is in the product
set

∏
1≤p≤n, p 6=j

(Dp ∪D−p), whose measure is bounded by Mn−1.

As the transformation IG(f) is a contraction from ˆ̄H
n

G into L2(G,A, P ), it can

uniquely be extended to the closure of ˆ̄H
n

G, i.e. to H̄n
G. We define the n-fold Wiener–Itô

integral in the general case via this extension. The expression IG(f) is a real valued
random variable for all f ∈ H̄n

G, and relations (4.3), (4.5), (4.5′) remain valid for

f, f ′ ∈ H̄n
G or f ∈ Hn

G instead of f, f ′ ∈ ˆ̄H
n

G of f ∈ Ĥn
G. Relations (4.5′) and (4.6)

imply that the transformation IG: ExpHG → L2(Ω,A, P ) is an isometry. We shall
show that also the following result holds.

Theorem 4.1. Let a stationary Gaussian random field be given (discrete or generalized
one), and let ZG denote the random spectral measure adapted to it. If we integrate
with respect to this ZG, then the transformation IG: ExpHG → H is unitary. The
transformation (n!)1/2IG: Hn

G → Hn is also unitary.
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In the proof of Theorem 4.1 we need an identity whose proof is postponed to the
next section.

Theorem 4.2. (Itô’s formula) Let ϕ1, . . . , ϕm, ϕj ∈ H1
G, 1 ≤ j ≤ m, be an

orthonormal system in L2
G. Let some positive integers j1, . . . , jm be given, and let

j1 + · · · + jm = N . Define for all i = 1, . . . , N the function gi as gi = ϕs for
j1 + · · · + js−1 < i ≤ j1 + · · · + js, 1 ≤ s ≤ m. (In particular, gi = ϕ1 for 0 < i ≤ j1.)
Then

Hj1

(∫
ϕ1(x)ZG( dx)

)
· · ·Hjm

(∫
ϕm(x)ZG( dx)

)

=

∫
g1(x1) · · · gN (xN )ZG( dx1) · · ·ZG( dxN )

=

∫
Sym [g1(x1) · · · gN (xN )]ZG( dx1) · · ·ZG( dxN )

(Hj(x) denotes again the j-th Hermite polynomial with leading coefficient 1.)

Proof of Theorem 4.1. The one-fold integral IG(f), f ∈ H1
G, agrees with the stochas-

tic integral I(f) defined in Section 3. Hence IG(ei(n,x)) = X(n) in the discrete field
case, and IG(ϕ̃) = X(ϕ), ϕ ∈ S, in the generalized field case. Hence IG: H1

G → H1

is a unitary transformation. Let ϕ1, ϕ2, . . . be a complete orthonormal basis in H1
G.

Then ξj =
∫
ϕj(x)ZG( dx), j = 1, 2, . . . , is a complete orthonormal basis in H1

G. Itô’s
formula implies that for all sets of positive integers (j1, . . . , jm) the random variable
Hj1(ξ1) · · ·Hjm(ξm) can be written as a j1+· · ·+jm-fold Wiener–Itô integral. Therefore
Theorem 2.1 implies that the image of ExpHG is the whole space H, and IG: ExpHG

is unitary.

The image of Hn
G contains Hn, because of Corollary 2.4 and Itó’s formula. Since

these images are orthogonal for different n, formula (2.1) implies that the image of Hn
G

coincides with Hn. Hence (n!)1/2IG: Hn
G → Hn is a unitary transformation.

The next result describes the action of shift transformations in H. We know by
Theorem 4.1 that all η ∈ H can be written in the form

η = f0 +

∞∑

n=1

1

n!

∫
fn(x1, . . . , xn)ZG( dx1) . . . ZG( dxn) (4.7)

with f = (f0, f1, . . . ) ∈ ExpHG in a unique way, where ZG is the random measure
adapted to the stationary Gaussian field.

Theorem 4.3. Let η ∈ H have the form (4.7). Then

Ttη = f0 +

∞∑

n=1

1

n!

∫
ei(t,x1+···+xn)fn(x1, . . . , xn)ZG( dx1) . . . ZG( dxn)

for all t ∈ Rν in the generalized field and for all t ∈ Zν in the discrete field case.
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Proof of Theorem 4.3. Because of formulas (3.6) and (3.6′) and the definition of the
shift operator Tt we have

Tt

(∫
ei(n,x)ZG( dx)

)
= TtXn = Xn+t =

∫
ei(t,x)ei(n,x)ZG( dx), t ∈ Zν ,

and because of the identity T̃tϕ(x) =
∫
e(i(u,x)ϕ(u− t) du = ei(t,x)ϕ̃(x) for ϕ ∈ S

Tt

(∫
ϕ̃(x)ZG( dx)

)
= TtX(ϕ) = X(Ttϕ) =

∫
ei(t,x)ϕ̃(x)ZG( dx), ϕ ∈ S, t ∈ Rν ,

in the discrete and generalized field cases respectively. Hence

Tt

(∫
f(x)ZG( dx)

)
=

∫
ei(t,x)f(x)ZG( dx) if f ∈ H1

G

for all t ∈ Zν in the discrete field and for all t ∈ Rν in the generalized field case.
This means that Theorem 4.3 holds in the special case when η is a one-fold Wiener–Itô
integral. Let f1(x), . . . , fm(x) be an orthogonal system in H1

G. The set of functions
ei(t,x)f1(x), . . . , e

i(t,x)fm(x) is also an orthogonal system in H1
G. (t ∈ Zν in the discrete

and t ∈ Rν in the generalized field case.) Hence Itô’s formula implies that Theorem 4.3
also holds for random variables of the form

η = Hj1

(∫
f1(x)ZG( dx)

)
· · ·Hjm

(∫
fm(x)ZG( dx)

)

and for their finite linear combinations. Since these linear combinations are dense in H,
Theorem 4.3 holds true.

The next result is a formula for the change of variables in Wiener–Itô integrals.

Theorem 4.4. Let G and G′ be two non-atomic spectral measures such that G is
absolutely continuous with respect to G′, and let g(x) be a complex valued function such
that

g(x) = g(−x),

|g2(x)| =
dG(x)

dG′(x)
.

For every f = (f0, f1, . . . ) ∈ ExpHG, we define

f ′n(x1, . . . , xn) = fn(x1, . . . , xn)g(x1) · · · g(xn), n = 1, 2, . . . , f ′0 = f0.

Then f ′ = (f ′0, f
′
1, . . . ) ∈ ExpHn

G′ , and

f0 +
∞∑

n=1

∫
1

n!
fn(x1, . . . , xn)ZG( dx1) . . . ZG( dxn)

∆
= f ′0 +

∞∑

n=1

1

n!

∫
f ′n(x1, . . . , xn)ZG′( dx1) . . . ZG′( dxn),
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where ZG and ZG′ are Gaussian random spectral measures corresponding to G and G′.

Proof of Theorem 4.4. We have ‖f ′n‖G′ = ‖fn‖G, hence f ′ ∈ ExpHG′ . Let ϕ1, ϕ2, . . .
be a complete orthonormal system in H1

G. Then ϕ′
1, ϕ

′
2, . . . , ϕ′

j(x) = ϕj(x)g(x) for

all j = 1, 2, . . . is a complete orthonormal system in H1
G′ . All functions fn ∈ Hn

G

can be written in the form f(x1, . . . , xn) =
∑
cj1,...,jnSym (ϕj1(x1) · · ·ϕjn(xn)). Then

f ′(x1, . . . , xn) =
∑
cj1,...,jnSym (ϕ′

j1
(x1) · · ·ϕ′

jn
(xn)). Rewriting all terms

∫
Sym (ϕj1(x1) · · ·ϕjn(xn))ZG( dx1) . . . ZG(, dxn)

and ∫
Sym (ϕ′

j1(x1) · · ·ϕ′
jn(xn))ZG′( dx1) . . . ZG′(, dxn)

by means of Itô’s formula we get that f and f ′ depend on a sequence of independent
standard normal random variables in the same way. Theorem 4.4 is proved.

For the sake of completeness I present in the next Lemma 4.5 another type of
change of variable result. I formulate it only in that simple case in which we need it in
some later considerations.

Lemma 4.5. Define for all t > 0 the (multiplication) transformation Ttx = tx either
from Rν to Rν or from the torus [−π, π)ν to the torus [−πt, πt)ν . Given a spectral
measure G on Rν or on [−π, π)ν define the spectral measure Gt on Rν or on [−πt, πt)ν
by the formula Gt(A) = G(At ) for all measurable sets A, and similarly define the function
fk,t(x1, . . . , xk) = fk(tx1, . . . , txk) for all measurable functions fk of k variables, k =
1, 2, . . . , with xj ∈ Rν or xj ∈ [−π, π)ν for all 1 ≤ j ≤ k, and put f0,t = f0. If
f = (f0, f1, . . . ) ∈ ExpHG, then ft = (f0,t, f1,t, . . . ) ∈ ExpHGt , and

f0 +

∞∑

n=1

∫
1

n!
fn(x1, . . . , xn)ZG( dx1) . . . ZG( dxn)

∆
= f0,t +

∞∑

n=1

1

n!

∫
fn,t(x1, . . . , xn)ZGt( dx1) . . . ZGt( dxn),

where ZG and ZGt are Gaussian random spectral measures corresponding to G and G′.

Proof of Lemma 4.5. It is easy to see that ft = (f0,t, f1,t, . . . ) ∈ ExpHGt . Moreover, we
may define the random spectral measure ZGt in the identity we want to prove by the
formula ZGt(A) = ZG(At ). But with such a choice of ZGt we can write even = instead

of
∆
= in this formula.

The next result shows a relation between Wick polynomials and Wiener–Itô inte-
grals.

Theorem 4.6. Let a stationary Gaussian field be given, and let ZG denote the random
spectral measure adapted to it. Let P (x1, . . . , xm) =

∑
cj1,...,jnxj1 · · ·xjn be a homoge-

neous polynomial of degree n, and let h1, . . . , hm ∈ H1
G. (Here j1, . . . , jn are n indices
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such that 1 ≤ jl ≤ m for all 1 ≤ l ≤ n. It is possible that jl = jl′ also if l 6= l′.)
Define the random variables ξj =

∫
hj(x)ZG( dx), j = 1, 2, . . . ,m, and the function

P̃ (u1, . . . , un) =
∑
cj1,...,jnhj1(u1) · · ·hjn(un). Then

:P (ξ1, . . . , ξm): =

∫
P̃ (u1, . . . , un)ZG( du1) . . . ZG( dun).

Remark. If P is a polynomial of degree n, then it can be written as P = P1 + P2,
where P1 is a homogeneous polynomial of degree n, and P2 is a polynomial of degree
less than n. Obviously,

:P (ξ1, . . . , ξm): =:P1(ξ1, . . . , ξm):

Proof of Theorem 4.6. It is enough to show that

: ξj1 · · · ξjn: =

∫
hj1(u1) · · ·hjn(un)ZG( du1) . . . ZG( dun).

If h1, . . . , hm ∈ H1
G are orthonormal, (all functions hl have norm 1, and if l 6= l′, then hl

and hl′ are either orthogonal or hl = hl′), then this relation follows from a comparison of
Corollary 2.3 with Itô’s formula. In the general case an orthonormal system h̄1, . . . , h̄m
can be found such that

hj =

m∑

k=1

cj,kh̄k, j = 1, . . . ,m

with some real constants cj,k. Set ηk =
∫
h̄jZG( dx). Then

: ξj1 · · · ξjn: =:

(
m∑

k=1

cj1,kηk

)
· · ·
(

m∑

k=1

cjn,kηk

)
: =

∑

k1,...,kn

cj1,k1 · · · cjn,kn : ηk1 · · · ηkn:

=
∑

k1,...,kn

cj1,k1 · · · cjn,kn

∫
h̄k1(u1) · · · h̄kn(un)ZG( du1) . . . ZG(dun)

=

∫
hj1(u1) · · ·hjn(un)ZG( du1) . . . ZG(dun)

as we claimed.

We finish this section by showing how the Wiener–Itô integral can be defined if the
spectral measure G may have atoms. We do this although such a construction seems
to have a limited importance as in most applications the restriction that we apply the
Wiener–Itô integral only in the case of a non-atomic spectral measure G causes no
serious problem. If we try to give this definition by modifying the original one, then we
have to split up the atoms. The simplest way we found for this splitting up, was the
use of randomization.
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LetG be a spectral measure on Rν , and let ZG be a corresponding Gaussian spectral
random measure on a probability space (Ω,A, P ). Let us define a new spectral measure
Ĝ = G×λ[− 1

2 ,
1
2 ] on Rν+1, where λ[− 1

2 ,
1
2 ] denotes the uniform distribution on the interval

[−1
2 ,

1
2 ]. If the probability space (Ω,A, P ) is sufficiently rich, a random spectral measure

ZĜ corresponding to Ĝ can be defined on it in such a way that ZĜ(A × [−1
2 ,

1
2 ]) =

ZG(A) for all A ∈ Bν . For f ∈ H̄n
G we define the function f̂ ∈ H̄n

Ĝ
by the formula

f̂(y1, . . . , yn) = f(x1, . . . , xn) if yj is the juxtaposition (xj , uj), xj ∈ Rν , uj ∈ R1,
j = 1, 2, . . . , n. Finally we define the Wiener–Itô integral in the general case by the
formula

∫
f(x1, . . . , xn)ZG( dx1) . . . ZG( dxn) =

∫
f̂(y1, . . . , yn)ZĜ( dy1) . . . ZĜ(dyn).

(What we actually have done was to introduce a virtual new coordinate u. With the
help of this new coordinate we could reduce the general case to the special case when
G is non-atomic.) If G is a non-atomic spectral measure, then the new definition of
Wiener–Itô integrals coincides with the original one. It is easy to check this fact for
one-fold integrals, and then Itô’s formula proves it for multiple integrals. It can be seen
with the help of Itô’s formula again, that all results of this section remain valid for the
new definition of Wiener–Itô integrals. In particular, we formulate the following result.

Given a stationary Gaussian field let ZG be the random spectral measure adapted
to it. All f ∈ Hn

G can be written in the form

f(x1, . . . , xn) =
∑

cj1,...,jnϕj1(x1) · · ·ϕjn(xn) (4.8)

with some functions ϕj ∈ H1
G, j = 1, 2, . . . . Define ξj =

∫
ϕj(x)ZG( dx). If f has the

form (4.8), then

∫
f(x1, . . . , xn)ZG( dx1) . . . ZG( dxn) =

∑
cj1,...,jn : ξj1 · · · ξjn: .

The last identity would provide another possibility for defining Wiener–Itô integrals.
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5. The proof of Itô’s formula. The diagram formula and some of its conse-
quences.

We shall prove Itô’s formula with the help of the following

Proposition 5.1. Let f ∈ H̄n
G and h ∈ H̄1

G. Let us define the functions

f ×
k
h(x1, . . . , xk−1, xk+1, . . . , xn) =

∫
f(x1, . . . , xn)h(xk)G( dxk), k = 1, . . . , n,

and
fh(x1, . . . , xn+1) = f(x1, . . . , xn)h(xn+1).

Then f ×
k
h, k = 1, . . . , n, and fh are in H̄n−1

G and H̄n+1
G respectively, and their norm

satisfies the inequality ‖f ×
k
h‖ ≤ ‖f‖ · ‖h‖ and ‖fh‖ ≤ ‖f‖ · ‖h‖. The relation

n!IG(f)IG(h) = (n+ 1)!IG(fh) +

n∑

k=1

(n− 1)!IG

(
f ×
k
h

)

holds true.

Remark. There is a small inaccuracy in the formulation of Lemma 5.1. We considered
the Wiener–Itô integral of the function f×

k
h with arguments x1, . . . , xk−1, xk+1, . . . , xn,

while we defined this integral for functions with arguments x1, . . . , xn−1. We can correct
this inaccuracy by reindexing the variables of f ×

k
h and to work with the function

(f×
k
h)′(x1, . . . , xn−1) = f×

k
h(xαk(1), . . . , xαk(k−1), xαk(k+1), . . . , xαk(n)) instead of f×

k
h,

where αk(j) = j for 1 ≤ j ≤ k − 1 and αk(j) = j − 1 for k + 1 ≤ j ≤ n.

We also need the following recursion formula for Hermite polynomials.

Lemma 5.2.

Hn(x) = xHn−1(x) − (n− 1)Hn−2(x) for n = 1, 2, . . . ,

with the notation H−1(x) ≡ 0.

Proof of Lemma 5.2.

Hn(x) = (−1)nex
2/2 d

n

dxn
(e−x

2/2) = −ex2/2 d

dx

(
Hn−1(x)e

−x2/2
)

= xHn−1(x) −
d

dx
Hn−1(x).

Since d
dxHn−1(x) is a polynomial of order n − 2 with leading coefficient n − 1 we can

write
d

dx
Hn−1(x) = (n− 1)Hn−2(x) +

n−3∑

j=0

cjHj(x).
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To complete the proof of Lemma 5.2 it remains to show that in the last expansion all
coefficients cj are zero. This follows from the orthogonality of the Hermite polynomials
and the calculation∫

e−x
2/2Hj(x)

d

dx
Hn−1(x) dx = −

∫
Hn−1(x)

d

dx
(e−x

2/2Hj(x)) dx

=

∫
e−x

2/2Hn−1(x)Pj+1(x) dx = 0

with the polynomial Pj+1(x) = xHj(x) − d
dxHj(x) of order j + 1 for j ≤ n− 3.

Proof of Theorem 4.2 via Proposition 5.1. We prove Theorem 4.2 by induction. Theo-
rem 4.2 holds for N = 1. Assume that it holds for N − 1. Let us define the functions

f(x1, . . . , xN−1) = g1(x1) · · · gN−1(xN−1)

h(x) = gN (x).

Then

J =

∫
g1(x1) · · · gN (xN )ZG( dx1) . . . ZG( dxN )

= N ! IG(fh) = (N − 1)! IG(f)IG(h) −
N−1∑

k=1

(N − 2)! IG

(
f ×
k
h

)

by Proposition 5.1. The induction hypothesis implies that

J =Hj1

(∫
ϕ1(x)ZG( dx)

)
· · ·Hjm−1

(∫
ϕm−1(x)ZG( dx)

)

Hjm−1

(∫
ϕm(x)ZG( dx)

)∫
ϕm(x)ZG( dx)

− (jm − 1)Hj1

(∫
ϕ1(x)ZG( dx)

)
· · ·Hjm−1

(∫
ϕm−1(x)ZG( dx)

)

Hjm−2

(∫
ϕm(x)ZG( dx)

)
,

where Hjm−2(x) = H−1(x) ≡ 0 if jm = 1. This relation holds, since

f ×
k
h(x1, . . . , xk−1, xk+1, . . . , xN−1) =

∫
g1(x1) · · · gN−1(xN−1)ϕm(xk)G( dxk)

=

{
0 if k ≤ N − jm

g1(x1) · · · gk−1(xk−1)gk+1(xk+1) · · · gN−1(xN−1) if N − jm < k ≤ N − 1.

Hence Lemma 5.2 implies that

J =
m−1∏

s=1

Hjs

(∫
ϕs(x)ZG( dx)

)[
Hjm−1

(∫
ϕm(x)ZG( dx)

)∫
ϕm(x)ZG( dx)

− (jm − 1)Hjm−2

(∫
ϕm(x)ZG( dx)

)]
=

m∏

s=1

Hjs

(∫
ϕs(x)ZG( dx)

)
,
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as claimed.

Let us fix some functions h1 ∈ H̄n1

G , . . . , hm ∈ H̄nm

G . In the next result, in the
so-called diagram formula, we express the product n1!IG(h1) · · ·nm!IG(hm) as the sum
of Wiener–Itô integrals. This result contains Proposition 5.1 as a special case. There is
no unique terminology for this result in the literature. We shall follow the notation of
Dobrushin in [7].

We shall use the term diagram of order (n1, . . . , nm) for an undirected graph of
n1 + · · · + nm vertices such that its vertices are indexed by the pairs of integers (j, l),
l = 1, . . . ,m, j = 1, . . . , nl, with the properties that no more than one edge enters into
each vertex, and edges can connect only pairs of vertices (j1, l1) and (j2, l2) for which
l1 6= l2. Let Γ = Γ(n1, . . . , nm) denote the set of all diagrams. Given a diagram γ ∈ Γ
|γ| denotes the number of edges in γ. Let there be given a set of functions h1 ∈ H̄n1

G , . . . ,
hm ∈ H̄nm

G . Sometimes we denote the variables of the function hl by x(j,l) instead of
xj , i.e. we write hl(x(1,l), . . . , x(nl,l)) instead of hl(x1, . . . , xnl

). Put N = n1 + · · ·+nm.
We introduce the function of N variables corresponding to the vertices of the diagram
by the formula

h(x(j,l), l = 1, . . . ,m, j = 1, . . . , nl) =
m∏

l=1

hl(x(j,l), j = 1, . . . , nl).

Fixing a diagram γ ∈ Γ we enumerate the variables x(j,l) in such a way that the vertices
into which no edges enter will have the numbers 1, 2, . . . , N − 2|γ| and the vertices
connected by an edge will have the numbers p and p + |γ|, where p = N − 2|γ| +
1, . . . , N − |γ|. Let

hγ(x1, . . . , xN−2|γ|) =

∫
· · ·
∫
h(x1, . . . , xN−|γ|,−xN−2|γ|+1, . . . ,−xN−|γ|)

G( dxN−2|γ|+1) . . . G( dxN−|γ|).
(5.1)

The function hγ depends only on the variables x1, . . . , xN−2|γ|, i.e. it is independent of
how the vertices connected by edges are indexed. Indeed, it follows from the evenness
of the spectral measure that by interchanging the indices s and s + γ of two vertices
connected by an edge does not change the value of the integral hγ . Let us now consider
IG(hγ). The function hγ may depend on the numbering of those vertices of γ from
which no edge starts, but Symhγ and therefore IG(hγ) does not depend on it. Now we
formulate the following

Theorem 5.3. (Diagram formula) For all functions h1 ∈ H̄n1

G , . . . , hm ∈ H̄nm

G ,
n1, . . . , nm = 1, 2, . . . , the following relations hold:

A) hγ ∈ H̄n−2|γ|
G , and ‖hγ‖ ≤

m∏
j=1

‖hj‖ for all γ ∈ Γ.

B) n1!IG(h1) · · ·nm!IG(hm) =
∑
γ∈Γ

(N − 2|γ|)!IG(hγ).
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Remark. In the special case m = 2, n1 = n, n2 = 1 Theorem 5.3 coincides with
Proposition 5.1. To see this it is enough to observe that h(−x) = h(x) for all h ∈ H̄1

G.

Proof of Theorem 5.3. It suffices to prove Theorem 5.3 in the special case m = 2. Then
the case m > 2 follows by induction.

We shall use the notation n1 = n, n2 = m, and we write x1, . . . , xn+m instead of
x(1,1), . . . , x(n,1), x(1,2) . . . , x(m,2). It is clear that the function hγ satisfies property (a)

of the classes H̄j
G defined in Section 4. We show that Part A of Theorem 5.3 is a

consequence of the Schwartz inequality. To prove this estimate on the norm of hγ it is
enough to restrict ourselves to such diagrams γ in which the vertices (n, 1) and (m, 2),
(n − 1, 1) and (m − 1, 2), . . . , (n − k, 1) and (m − k, 2) are connected by edges with
some 0 ≤ k ≤ min(n,m). In this case we can write

|hγ(x1, . . . , xn−k−1, xn+1, . . . , xn+m−k−1)|2

=

∣∣∣∣
∫
h1(x1, . . . , xn)h2(xn+1, . . . , xn+m−k−1,−xn−k, . . . ,−xn)

G( dxn−k) . . . G( dxn)

∣∣∣∣
2

≤
∫

|h1(x1, . . . , xn)|2G( dxn−k) . . . G( dxn)

∫
|h2(xn+1, . . . , xn+m)|2G( dxn+m−k) . . . G( dxn+m)

by the Schwartz inequality and the symmetry G(−A) = G(A) of the spectral mea-
sure G. Integrating this inequality with respect to the free variables we get part A) of
Theorem 5.3.

In the proof of part B) first we restrict ourselves to the case when h1 ∈ ˆ̄H
n

G and h2 ∈
ˆ̄H
m

G . Assume that they are adapted to a regular system D = {∆j , j = ±1, . . . ,±N} of
subsets of Rn with finite measure G. We may even assume that all ∆j ∈ D satisfy the
inequality G(∆j) < ε with some ε > 0 to be chosen later, because otherwise we could
split up the sets ∆j into smaller ones. Let us fix a point uj ∈ ∆j in all sets ∆j ∈ D.
Put Ki = sup

x
|hi(x)|, i = 1, 2, and let A be a cube containing all ∆j .

We can write

I = n!IG(h1)m!IG(h2) =
∑′

h1(uj1 , . . . , ujn)h2(uk1 , . . . , ukm)

ZG(∆j1) · · ·ZG(∆jn)ZG(∆k1) · · ·ZG(∆km)

with the numbers ujp ∈ ∆jp and ukr ∈ ∆kr we have fixed, where the summation in
∑′

goes through all pairs ((j1, . . . , jn), (k1, . . . , km)), jp, kr ∈ {±1, . . . ,±N}, p = 1, . . . , n,
r = 1, . . . ,m, such that jp 6= ±jp̄ and kr 6= ±kr̄ if p 6= p̄ or r 6= r̄.

Write

I =
∑

γ∈Γ

∑γ
h1(uj1 , . . . , ujn)h2(uk1 , . . . , ukm)

ZG(∆j1) · · ·ZG(∆jn)ZG(∆k1) · · ·ZG(∆km),

39



where
∑γ

contains those terms of
∑′

for which jp = kr or jp = −kr if the vertices
(1, p) and (2, r) are connected in γ, and jp 6= ±kr if (1, p) and (2, r) are not connected.
Let us define the sets

A1 = A1(γ) = {p: p ∈ {1, . . . , n}, and no edge starts from (p, 1) in γ},
A2 = A2(γ) = {r: r ∈ {1, . . . ,m}, and no edge starts from (r, 2) in γ}

and

B = B(γ) = {(p, r): p ∈ {1, . . . , n}, r ∈ {1, . . . ,m},
(p, 1) and (r, 2) are connected in γ}

together with the map α: {1, . . . , n} \A1 → {1, . . . ,m} \A2 defined as

α(p) = r if (p, r) ∈ B for all p ∈ {1, . . . , n} \A1. (5.2)

Let Σγ denote the value of the inner sum
∑γ

for some γ ∈ Γ in the last summation
formula, and write it in the form

Σγ = Σγ1 + Σγ2

with

Σγ1 =
∑γ

h1(uj1 , . . . , ujn)h2(uk1 , . . . , ukm)
∏

p∈A1

ZG(∆jp)
∏

r∈A2

ZG(∆kr )

·
∏

(p,r)∈B
E
(
ZG(∆jp)ZG(∆kr )

)

and

Σγ2 =
∑γ

h1(uj1 , . . . , ujn)h2(uk1 , . . . , ukm)
∏

p∈A1

ZG(∆jp)
∏

r∈A2

ZG(∆kr )

·


 ∏

(p,r)∈B
ZG(∆jp)ZG(∆kr ) − E


 ∏

(p,r)∈B
ZG(∆jp)ZG(∆kr )




 .

The random variables Σγ1 and Σγ2 are real valued. To see this observe that if the
sum defining these expressions contains a term with arguments ∆jp , and ∆kr , then
it also contains the term with arguments −∆jp and −∆kr . This fact together with
property (v) of the random spectral measure ZG and the analogous property of the

functions h1 and h2 imply that Σγ1 = Σγ1 and Σγ2 = Σγ2 . Hence these random variables
are real valued. As a consequence, we can bound (n +m − 2|γ|)!IG(hγ) − Σγ1 and Σγ2
by means of their second moment.
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We are going to show that Σγ1 is a good approximation of (n+m−2|γ|)! IG(hγ), and
Σγ2 is negligibly small. This implies that (n+m− 2|γ|)!IG(hγ) well approximates Σγ .

To estimate (n+m−2|γ|)!IG(hγ)−Σγ1 we rewrite Σγ1 as a Wiener–Itô integral with
a kernel function adapted to the regular system D which is close to hγ . To find this
kernel function we rewrite the sum defining Σγ1 by first fixing the variables ujp , p ∈ A1,
and ukr , r ∈ A2, and summing up by the remaining variables, and after this summing
by the variables fixed at the first step. We get that

Σγ1 =
∑

jp: 1≤|jp|≤N for all p∈A1

kr: 1≤|kr|≤N for all r∈A2

hγ,1(jp, p ∈ A1, kr, r ∈ A2)
∏

p∈A1

ZG(∆jp)
∏

r∈A2

ZG(∆kr )

(5.3)
with a function hγ,1 depending on the arguments jp, p ∈ A1, and kr, r ∈ A2, with
values jp, kr ∈ {±1, . . . ,±N} defined with the help another function hγ,2 described
below. It also depends on the arguments jp, p ∈ A1, and kr, r ∈ A2, with values
jp, kr ∈ {±1, . . . ,±N}. Formula (5.3) holds with

hγ,1(jp, p ∈ A1, kr, r ∈ A2) = 0 (5.4a)

if the numbers of the set {±jp: p ∈ A1} ∪ {±kr: r ∈ A2} are not all different, and

hγ,1(jp, p ∈ A1, kr, r ∈ A2) = hγ,2(jp, p ∈ A1, kr, r ∈ A2) (5.4b)

if all numbers ±jp, p ∈ A1, and ±kr, r ∈ A2 are different with the function hγ,2(jp, p ∈
A1, kr, r ∈ A2) defined for all sequences jp, p ∈ A1 and kr, r ∈ A2, with jp, kr ∈
{±1, . . . ,±N} (i.e. also in the case when some of the arguments jp, p ∈ A1, or kr,
r ∈ A2, agree) by the formula

hγ,2(jp, p ∈ A1, kr, r ∈ A2) =
∑γ,1

h1(uj1 , . . . , ujn)h2(uk1 , . . . , ukm)

·
∏

(p,r)∈B
E
(
ZG(∆jp)ZG(∆kr )

)
.

(5.5)

The summation
∑γ,1

in formula (5.5) which depends on the arguments jp, p ∈ A1,
and kr, r ∈ A2, is defined in the following way. We sum up for such sequences jp, kr
with indices p ∈ {1, . . . , n} \ A1 and r ∈ {1, . . . ,m} \ A2 which satisfy the following
conditions. Put C = {±jp, p ∈ A1} ∪ {±kr, r ∈ A2}. We demand that all numbers
jp and kr with indices p ∈ {1, . . . , n} \ A1 and r ∈ {1, . . . ,m} \ A2 are such that
jp, kr ∈ {±1, . . . ,±N} \ C. Let us write all numbers r ∈ {1, . . . ,m} \ A2 in the form
r = α(p), p ∈ {1, . . . , n} \ A1, with the map α defined in (5.2). We also demand
that only such kr = kα(p) appear in the summation for which kα(p) = ±jp for all
p ∈ {1, . . . , n}\A1. Beside this, all numbers ±jp, p ∈ {1, . . . , n}\A1, must be different.

The summation in
∑γ,1

is taken for all such sequences jp, p ∈ {1, . . . , n} \ A1 and kr,
r ∈ {1, . . . ,m} \A2 which satisfy the above conditions.

Formula (5.5) can be rewritten in a simpler form. To do this let us first observe that
the condition kα(p) = ±jp can be replaced by the condition kα(p) = −jp in it, and we can
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write G(∆jp) instead of the term EZG(∆jp)ZG(∆kr ) (with (p, r) ∈ B) in the product at
the end of (5.5). This follows from the fact that EZG(∆jp)ZG(∆kr ) = EZG(∆jp)2 = 0
if kr = jp and EZG(∆jp)ZG(∆kr ) = EZG(∆jpZG(−∆jp) = G(∆jp) if kr = −jp. Beside
this, the expression in (5.5) does not change if we take summation for all sequences jp,
p ∈ {1, . . . , n} \A, with jp ∈ {±1, . . . ,±N}, because in such a way we only attach such
terms to the sum which equal zero. This follows from the fact that both functions h1

and h2 are adapted to the regular system D, hence h1(uj1 , . . . , ujn)h2(uk1 , . . . , ukm) = 0
if for an index p ∈ {1, . . . , n} \ A1 jp = ±jp′ with p 6= p′ or jp = −kr with (p, r) ∈ B,
and beside this there exists some r′ ∈ A2 such that jp = ±kr′ .

The above relations enable us to rewrite (5.5) in the following way. Let us define
that map α−1 on the set {1, . . . ,m} \ A2 which is the inverse of the map α defined
in (5.2), i.e. α−1(r) = p if (p, r) ∈ B. With this notation we can write

hγ,2(jp, p ∈ A1, kr, r ∈ A2)

=
∑

jp, p∈{1,...,n}\A1,
1≤|jp|≤N for all indices p

h1(uj1 , . . . , ujn)h2(ukr , r ∈ A2,−ujα−1(r)
, r ∈ {1, . . . ,m} \A2)

∏

p∈{1,...,n}\A1

G(∆jp). (5.6)

Formula (5.6) can be rewritten as

hγ,2(jp, p ∈ A1, kr, r ∈ A2)

=

∫
h1(ujp , p ∈ A1, xp, p ∈ {1, . . . , n} \A1)

h2(ukr , r ∈ A2, −xα−1(r), r ∈ {1, . . . ,m} \A2)
∏

p∈{1,...,n}\A1

G( dxp).
(5.7)

We define with the help of hγ,1 and hγ,2 two new functions on R(n+m−2|γ|)ν with
arguments x1, . . . , xn+m−2|γ . The first one will be the kernel function of the Wiener–
Itô integral expressing Σγ1 and the second one will be equal to the function hγ defined
in (5.1). We define these functions in two steps. In the first step we reindex the
arguments of the functions h1,γ and h2, γ to get functions depending on sequences
j1, . . . , jn+m−2|γ|. For this goal we list the elements of the sets A1 and A2 as A1 =
{p1, . . . , pn−|γ|} with 1 ≤ p1 < p2 < · · · < pn−|γ| ≤ n and A2 = {r1, . . . , rm−|γ|} with
1 ≤ r1 < r2 < · · · < pm−|γ| ≤ m and define the maps β1: A1 → {1, . . . , n − |γ|} and
β2: A2 → {n − |γ| + 1, . . . , n +m − 2|γ|} by the formulas β1(pl) = l if 1 ≤ l ≤ n − γ,
1 ≤ l ≤ n−|γ|, and β2(rl) = l+n−|γ|, 1 ≤ l ≤ m−|γ|, if n−|γ|+1 ≤ l ≤ n+m−2|γ|.
We define with the help of the maps β1 and β2 the functions

hγ,3(j1, . . . , jn+m−2|γ|) = hγ,1(jβ1(r1), . . . , jβ1(n−|γ|)), kβ2(1), . . . , kβ2(m−|γ|))

and

hγ,4(j1, . . . , jn+m−2|γ|) = hγ,2(jβ1(r1), . . . , jβ1(n−|γ|)), kβ2(1), . . . , kβ2(m−|γ|)),
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where the arguments of the functions hγ,3 and hγ,4 are sequences j1, . . . , jn+m−2|γ| with
js ∈ {±1, . . . ,±N} for all 1 ≤ s ≤ n+m− 2|γ|.

With the help of the above functions we define the following functions hγ,5 and
hγ,6 on R(n+m−2|γ|)ν .

hγ,5(x1, . . . , xn+m−2|γ|) =





hγ,3(j1, . . . , jn+m−2|γ|) if xl ∈ ∆jl ,

for all 1 ≤ l ≤ n+m− 2|γ|
0 otherwise,

and

hγ,6(x1, . . . , xn+m−2|γ|) =





hγ,4(j1, . . . , jn+m−2|γ|) if xl ∈ ∆jl ,

for all 1 ≤ l ≤ n+m− 2|γ|
0 otherwise.

It follows from relation (5.4a) and the definition of the function hγ,5 (with the help

of the definition of the functions hγ,1 and hγ,3) that hγ,5 ∈ ˆ̄H
n

G, and it is adapted to
the regular system D. Then relations (5.3) and the definition of hγ,5 also imply that
Σγ1 = (n+m− 2|γ|)!I(hγ,5).

On the other hand, I claim that the function hγ defined in (5.1) satisfies the identity
hγ = hγ,6. This statement must be formulated in a more precise form, because the
definition of the function hγ is not unique, we have some freedom in choosing the
indices of its variables. I shall define such a version of hγ which provides an appropriate
enumeration of its variables, and the identity hγ = hγ,6 holds for this version.

In the definition of hγ we shall work with the function ĥ2(xn+1, . . . , xn+m) =
h2(xδ(1), . . . , xδ(m)), with δ(l) = l − n, n + 1 ≤ l ≤ n + m, i.e. we work with a
function with arguments xl+n instead of arguments xl, 1 ≤ l ≤ m. We also replace
the set A2 by its shift Ā2 defined as Ā2 = A2 + n = {r̄1, . . . , r̄m−|γ|} with r̄j = rj + n,
1 ≤ j ≤ m− |γ|, where 1 ≤ r1 < r2 < · · · < rm−|γ| ≤ m are the elements of the set A2.
We define the following two functions ε(·) and η(·) on the set {n+1, . . . , n+m}. We put
ε(l) = 1 if l ∈ Ā2, and ε(l) = −1 if l ∈ {n+1, . . . , n+m}\A2, and we also introduce the
function η(·) defined as η(l) = l if l ∈ Ā2 and η(l) = p with that number p, 1 ≤ p ≤ n,
for which (p, l− n) ∈ B if l ∈ {n+ 1, . . . , n+m} \ Ā2. With the help of these functions
we define the function

ĥγ(xl, l ∈ A1 ∪ Ā2) =

∫
h1(x1, . . . , xn)

ĥ2(ε(n+ 1)xη(n+1), . . . , ε(n+m)xη(n+m))
∏

l∈{1,...,n}\A1

G( dxl),

and define the function hγ by introducing the ‘right’ enumeration of the variables of the

function ĥγ . For this goal we define (similarly to the maps β1 and β2 defined before)
the map β̄: A1 ∪ Ā2 → {1, . . . , n + m − 2|γ|} as β̄(pl) = l for 1 ≤ l ≤ n − |γ|, and
β̄(r̄l) = l + n− |γ| for 1 ≤ l ≤ m− |γ|, where A1 = {p1, . . . , pn−|γ| with 1 ≤ p1 < · · · <
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pn|γ| ≤ n, and Ā2 = A2 +n = {r̄1, . . . , r̄m−|γ|} with n+1 ≤ r̄1 < · · · < r̄m−|γ| ≤ n+m.
Then we define

hγ(x1, . . . , xn+m−2|γ|) = ĥγ(xβ̄(l), l ∈ A1 ∪ Ā2).

To see that hγ,6 = hγ with the above defined function hγ let us first observe that

hγ,6(x1, . . . , xn+m−2|γ|) = hγ,2(jβ1(r1), . . . , jβ1(n−|γ|)), kβ2(1), . . . , kβ2(m−|γ|)),

if xl ∈ ∆jl for all 1 ≤ n+m− 2|γ|. On the other hand, we get, since both functions h1

and h2 are adapted to D, by applying the definition of the functions hγ and ĥγ and

relation (5.7) together with a comparison of the function h2 with ĥ2 and of the pair of
maps β1 and β2 with the map β̄ that

hγ(x1, . . . , xn+m−2|γ|) = hγ(uj1 , . . . , ujn+m−2|γ|
) = ĥγ(uβ̄(l), l ∈ A1 ∪ Ā2)

hγ,2(jβ1(r1), . . . , jβ1(n−|γ|)), kβ2(1), . . . , kβ2(m−|γ|))

if xl ∈ ∆jl for all 1 ≤ n+m− 2|γ|.
By these identities hγ,6(x1, . . . , xn+m−2|γ|) and hγ(x1, . . . , xn+m−2|γ|) agree in such

points (x1, . . . , xn+m−2|γ) for which xl ∈ ∆jl with some jl ∈ {±1, . . . ,±N} for all
1 ≤ l ≤ n+m− 2|γ|. Since both functions hγ,6 equal zero in other points, this implies
that hγ,6 = hγ , as claimed.

Observe that the function hγ disappears also in such points (x1, . . . , xn+m−2|γ|)
for which xl ∈ ∆jl for all 1 ≤ l ≤ n + m − 2|γ| with such indices jl for which some
of the numbers in the set {±j1, . . . ,±jn−|γ|} or in the set {±jn−|γ|+1, . . . ,±jn+m−2|γ|}
agree. This fact together with the identity hγ = hγ,6 and the relation between the
functions hγ,5 and hγ,6 yield the identity

hγ(x1, . . . , xn+m−2|γ|) = hγ,5(x1, . . . , xn+m−2|γ|) + hγ,7(x1, . . . , xn+m−2|γ|)

with

hγ,7(x1, . . . , xn+m−2|γ|)

=





hγ(x1, . . . , xn+m−2|γ|) if there exist indices jl, 1 ≤ |jl| ≤ N,

1 ≤ l ≤ n+m− 2|γ| such that xl ∈ ∆jl , 1 ≤ l ≤ n+m− 2|γ|,
all numbers ± j1, . . . ,±jn−2|γ| are different,

all numbers ± jn−|γ|+1, . . . ,±jn+m−2|γ| are different,

and {±j1, . . . ,±jn−|γ|} ∩ {±jn−|γ|+1, . . . ,±jn+m−2|γ|} 6= ∅
0 otherwise.

Since Σγ1 = (n+m− 2|γ|)!IG(hγ,5), we have

(n+m− 2|γ|)!IG(hγ) − Σγ1 = (n+m− 2|γ|)!IG(hγ,7),
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and
E(Σγ1 − (n+m− 2|γ|)!IG(hγ))

2 ≤ (n+m− 2|γ|)!‖(hγ,7)‖2

with the norm ‖ · ‖ in H̄n+m−2|γ|
G .

On the other hand,

sup |hγ,7(x1, . . . , xn+m−2|γ|)| ≤ sup |hγ(x1, . . . , xn+m−2|γ|)| ≤ K1K2L
|γ|,

with K1 = sup |h1|, K2 = sup |h2|, and L = G(A), where A is a fixed cube containing
all ∆j . Hence

E(Σγ1 − (n+m− 2|γ|)!IG(hγ))
2 ≤ C1‖(hγ,7)‖2 ≤ C2

∑′′
G(∆j1) · · ·G(∆jn+m−2|γ|

)

≤ C sup
j
G(∆j) ≤ Cε,

(5.8)
where the summation

∑′′
goes for such sequences j1, . . . , jn+m−2|γ|, 1 ≤ |jl| ≤ N for

all 1 ≤ l ≤ n+m− 2|γ|, for which all numbers ±j1, . . . ,±jn−|γ| are different, the same
relation holds for the elements of the sequence ±jn−|γ|+1, . . . ,±jn+m−2|γ|, and

{±j1, . . . ,±jn−|γ|} ∩ {±jn−|γ|+1, . . . ,±jn+m−2|γ|} 6= ∅.

The constants C1, C2 and C may depend on the functions h1, h2 and spectral measureG,
but they do not depend on the regular system D, hence in particular on the parameter ε.
In the verification of (5.8) we can exploit that each term in the sum

∑′′
is a product

which contains a factor G(∆j)
2 ≤ εG(∆j). Here an argument can be applied which is

similar to the closing step in the proof of Statement B in the proof of the fact that ˆ̄H
n

G

is dense in the space H̄n
G.

Now we turn to the estimation of E(Σγ2)2. It can be expressed as a linear combi-
nation of terms of the form

Σγ3(jp, kr, jp̄, kr̄, p, p̄ ∈ {1, . . . , n}, r, r̄ ∈ {1, . . . ,m})

= E

(
 ∏

p∈A1

ZG(∆jp)
∏

r∈A2

ZG(∆kr )
∏

p̄∈A1

ZG(∆jp̄)
∏

r̄∈A2

ZG(∆kr̄ )





 ∏

(p,r)∈B
ZG(∆jp)ZG(∆kr ) − E

∏

(p,r)∈B
ZG(∆jp)ZG(∆kr )





 ∏

(p̄,r̄)∈B
ZG(∆jp̄)ZG(∆kr̄ ) − E

∏

(p̄,r̄)∈B
ZG(∆jp̄)ZG(∆kr̄ )



)
,

(5.9)

where Σγ3 depends on such sequences of numbers jp, kr, jp̄, kr̄ with indices 1 ≤ p, p̄ ≤ n
and 1 ≤ r, r̄ ≤ m for which jp, kr, jp̄, kr̄ ∈ {±1, . . . ,±N} for all indices p, r, p̄ and r̄,
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jp = kr or jp = −kr if (p, r) ∈ B, otherwise all numbers ±jp, ±kr are different, and the
same relations hold for the indices jp̄ and kr̄ if p is replaced by p̄ and r is replaced by r̄.
Moreover the absolute value of all coefficients in this linear combination is bounded by
sup |h1(x)|2 sup |h2(x)|2.

We want to show that for most sets of arguments (jp, kr, jp̄, kr̄) Σγ3 equals zero,
and it is also small in the remaining cases.

Let us fix a sequence of arguments jp, kr, jp̄, kr̄ of Σγ3 , and let us estimate its value
with these arguments. Define the sets

A = {jp: p ∈ A1} ∪ {kr: r ∈ A2} and Ā = {jp̄: p̄ ∈ A1} ∪ {kr̄: r̄ ∈ A2}.

We claim that Σγ3 equals zero if Ā 6= −A. In this case there exists an index l ∈ A such
that −l /∈ Ā. Let us carry out the multiplication in (5.9). Because of the independence
properties of random spectral measures each product in this expression can be written
as the product of independent factors, and the independent factor containing the term
ZG(∆l) has zero expectation. To see this observe that the set ∆l appears exactly
once among the arguments of the terms ZG(∆jp) and ZG(∆kr ), and none of these
terms contains the argument −∆l = ∆−l. Although −l /∈ Ā, it may happen that
l ∈ Ā. In this case the product under investigation contains the independent factor
ZG(∆l)

2 with EZG(∆l)
2 = 0. If l /∈ Ā, then there are two possibilities. Either this

product contains an independent factor of the form ZG(∆l) with EZG(∆l) = 0, or
there is a pair (p̄, r̄) ∈ B such that (jp̄, kr̄) = (±l,±l), and an independent factor of the
form ZG(∆l)ZG(±∆−l)ZG(±∆l) with the property EZG(∆l)ZG(±∆−l)ZG(±∆l) = 0
appears.

Let
F =

⋃

(p,r)∈B
{jp, kr} and F̄ =

⋃

(p̄,r̄)∈B
{(jp̄, kr̄}.

A factorization argument shows again that the expression in (5.9) equals zero if the
sets F ∪ (−F) and F̄ ∪ (−F̄) are disjoint. We can restrict ourselves to the case
A = −Ā, and in this case ±A is disjoint both of F ∪ (−F) and F̄ ∪ (−F̄), and the
product under investigation contains the independent factor

∏
(p,r)∈B

ZG(∆jp)ZG(∆kr )−

E
∏

(p,r)∈B
ZG(∆jp)ZG(∆kr ) with expectation zero.

Moreover, if F ∪ (−F) and F̄ ∪ (−F̄) are not disjoint, (and A = −Ā), then the
absolute value of the expression in (5.9) can be estimated from above by

C ε
∏

G(∆jp)G(∆kr )G(∆jp̄)G(∆kr̄ ) (5.10)

with a universal constant C < ∞ depending only on the parameters n and m, where
the indices jp, kr, jp̄, kr̄ are the same as in (5.9) with the following difference: All
indices appear in (5.10) with multiplicity 1, and if both indices l and −l are present
in (5.9), then one of them is omitted form (5.10). The multiplying term ε appears
in (5.10), since by carrying out the multiplications in (5.9) and factorizing each term,
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we get that all non-zero terms have a factor EZG(∆)2ZG(−∆)2 = E( ReZG(∆)2 +
ImZG(∆)2)2 = E ReZG(∆)4 + E ImZG(∆)4 + 2E ReZG(∆)2E ImZG(∆)2 = 8G(∆)2

or
(
E|ZG(∆)|2

)2
= G(∆)2, and G(∆) < ε for ∆ ∈ D. (We did not mention the

possibility of an independent factor of the form EZG(∆)4 or EZG(∆)3ZG(−∆) with
∆ ∈ D, because as some calculation shows, EZG(∆)4 = 0 and EZG(∆)3ZG(−∆) = 0.)

Let us express E(Σγ2)2 as the linear combination of the quantities Σγ3 , and let us
bound each term Σγ3 in the above way. This supplies an upper bound for E(Σγ2)2 by
means of a sum of terms of the form (5.10). Moreover, each of these terms appears only
with a multiplicity less than C(n,m) with an appropriate constant C(n,m). Hence we
can write

E(Σγ2)2 ≤ K2
1K

2
2C(n,m)Cε

n+m∑

r=1

∑

j1,...,jr

′′′
G(∆j1) · · ·G(∆jr ),

where the indices j1, . . . , jr ∈ {±1, . . . ,±N} in the sum
∑′′′

are all different, and
Kj = sup |hj(x)|, j = 1, 2. Hence

E(Σγ2)2 ≤ C1ε

n+m∑

r=1

G(A)r ≤ C2ε

with some appropriate constants C1 and C2. Because of the inequality (5.8), the identity
n!IG(h1)m!IG(h2) =

∑
γ∈Γ

(Σγ1 + Σ2
γ) and the last relation one has

E


n!IG(h1)m!IG(h2) −

∑

γ∈Γ

(n+m− 2|γ|)!IG(hγ)




2

= E


∑

γ∈Γ

(Σγ1 + Σγ2 − (n+m− 2|γ|)! IG(hγ))




2

≤ C3


∑

γ∈Γ

E((m+ n− 2|γ|)! IG(hγ) − Σγ1)2 + E(Σγ2)2


 ≤ C4ε.

Since ε > 0 can be chosen arbitrary small, part B is proved in the special case h1 ∈ ˆ̄H
n

G,

h2 ∈ ˆ̄H
m

G .

If h1 ∈ H̄n
G and h2 ∈ H̄m

G , then let us choose a sequence of functions h1,r ∈ ˆ̄H
n

G and

h2,r ∈ ˆ̄H
m

G such that h1,r → h1 and h2,r → h2 in the norm of the spaces H̄n
G and H̄m

G

respectively. Define the functions ĥγ(r) and hγ(r) in the same way as hγ , but substitute
the pair of functions (h1, h2) by (h1,r, h2) and (h1,r, h2,r) in their definition. We shall
show by the help of Part A) that

E|IG(h1)IG(h2) − IG(h1,r)IG(h2,r)| → 0,
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and
E|IG(hγ) − IG(hγ(r))| → 0 for all γ ∈ Γ

as r → ∞. Then a simple limiting procedure shows that Theorem 5.3 holds for all
h1 ∈ H̄n

G and h2 ∈ H̄m
G .

We have

E|IG(h1)IG(h2) − IG(h1,r)IG(h2,r)|
≤ E|(IG(h1 − h1,r))IG(h2)| + E|IG(h1,r)IG(h2 − h2,r)|

≤ 1

n!m!

(
‖h1 − h1,r‖1/2‖h2‖1/2 + ‖h2 − h2,r‖1/2‖h1,r‖

)
→ 0,

and by part A) of Theorem 5.3

E|IG(hγ) − IG(hγ(r))| ≤ E|IG(hγ) − IG(ĥγ(r))| + E|IG(hγ(r)) − IG(ĥγ(r))|
≤ ‖hγ − ĥγ(r)‖1/2 + ‖hγ(r) − ĥγ(r)‖1/2

≤ ‖h1 − ĥ1,r‖1/2‖h2‖1/2 + ‖h2 − ĥ2,r‖1/2‖h1,r‖1/2 → 0.

Theorem 5.3 is proved.

We formulate some consequences of Theorem 5.3. Let Γ̄ ⊂ Γ denote the set of
complete diagrams, i.e. let a diagram γ ∈ Γ̄ if an edge enters in each vertex of γ. We
have EI(hγ) = 0 for all γ ∈ Γ\ Γ̄, since (4.3) holds for all f ∈ H̄n

G, n ≥ 1. If γ ∈ Γ̄, then
I(hγ) ∈ H̄0

G. Let hγ denote the value of I(hγ) in this case. Now we have the following

Corollary 5.4. For all h1 ∈ H̄n1

G , . . . , hn ∈ H̄nm

G

En1!IG(h1) · · ·nm!IG(hm) =
∑

γ∈Γ̄

hγ .

(The sum on the right-hand side equals zero if Γ̄ is empty.)

As a consequence of Corollary 5.4 we can calculate the expectation of products of
Wick polynomials of Gaussian random variables.

Let Xk,j , EXk,j = 0, 1 ≤ k ≤ p, 1 ≤ j ≤ nk, be a sequence of Gaussian ran-
dom variables. We want to calculate the expected value of the Wick polynomials
:Xk,1 · · ·Xk,nk

: , 1 ≤ k ≤ p, if we know all covariances EXk,jXk̄,̄ = a((k, j), (k̄, ̄)),

1 ≤ k, k̄,≤ p, 1 ≤ j ≤ nk, 1 ≤ ̄ ≤ n̄k. For this goal let us consider the class of closed
diagrams Γ̄(k1, . . . , kp), and define the following quantity γ(A) depending on the closed
diagrams γ and the set A of all covariances EXk,jXk̄,̄ = a((k, j), (k̄, ̄)).

γ(A) =
∏

((k,j),(k̄,̄)) is an edge of γ

a((k, j), (k̄, ̄)), γ ∈ Γ.

With the above notation we can formulate the following result.
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Corollary 5.5. Let Xk,j, EXk,j = 0, 1 ≤ k ≤ p, 1 ≤ j ≤ nk, be a sequence of
Gaussian random variables. Let a((k, j), (k̄, ̄)) = EXk,jXk̄,̄, 1 ≤ k, k̄,≤ p, 1 ≤ j ≤ nk,
1 ≤ ̄ ≤ n̄k denote the covariances of these random variables. Then the expected value
of the Wick polynomials :Xk,1 · · ·Xk,nk

: , 1 ≤ k ≤ p, can be expressed as

E

(
p∏

k=1

:Xk,1 · · ·Xk,nk
:

)
=

∑

γ∈Γ̄(k1,...,kp)

γ(A)

with the above defined quantities γ(A). In the case when Γ̄(k1, . . . , kp) is empty, e.g. if
k1 + · · · + kp is an odd number, the above expectation equals zero.

Remark. In the special case when Xk,1 = · · · = Xk,nk
= Xk, and EX2

k = 1 for all
indices 1 ≤ k ≤ p Corollary 5.5 provides a formula for the expectation of the product
of Hermite polynomials of standard normal random variables. In this case we have
a((k, j), (k̄, ̄)) = ā(k, k̄) with a function ā(·, ·) not depending on the arguments j and ̄,
and the left-hand side of the identity in Corollary 5.5 equals EHn1(X1) · · ·Hnp(Xp) with
standard normal random variables X1, . . . , Xn with correlations EXkXk̄ = ā(k, k̄).

Proof of Corollary 5.5. We can represent the random variables Xk,j in the form Xk,j =∑
p
ck,j,pξp with some appropriate coefficients ck,j,p, where ξ1, ξ2, . . . is a sequence of

independent standard normal random variables. Let Z( dx) denote a random spectral
measure corresponding to the one-dimensional spectral measure with density function
g(x) = 1

2π for |x| < π, and g(x) = 0 for |x| ≥ π. The random integrals
∫
eipxZ( dx),

p = 0,±1,±2, . . . , are independent standard normal random variables. Define hk,j(x) =∑
p
ck,j,pe

ipx, k = 1, . . . , p, 1 ≤ j ≤ nk. The random variables Xk,j can be identified

with the random integrals
∫
hk,j(x)Z( dx), k = 1, . . . , p, 1 ≤ j ≤ nk, since their joint

distributions coincide. Put ĥk(x1, . . . , xnk
) =

nk∏
j=1

hk,j(xj). It follows from Theorem 4.6

that

:Xk,1 · · ·Xk,nk
: =

∫
ĥk(x1, . . . , xnk

)Z( dx1) . . . Z( dxnk
) = nk!I(ĥk(x1, . . . , xnk

))

for all 1 ≤ k ≤ p. Hence an application of Corollary 5.4 yields Corollary 5.5. One only
has to observe that

∫ π
−π hk,j(x)hk̄,̄(x) dx = a((k, j), (k̄, ̄)) for all k, k = 1, . . . , p and

1 ≤ j ≤ nk.

Theorem 5.3 states in particular that the product of Wiener–Itô integrals with
respect to a random spectral measure of a stationary Gaussian fields belongs to the
Hilbert space H defined by this field, since it can be written as a sum of Wiener–Itô
integrals. This means a trivial measurability condition, and also that the product has a
finite second moment, which is not so trivial. Theorem 5.3 actually gives the following
non-trivial inequality.
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Let h1 ∈ Hn1

G , . . . , hm ∈ Hnm

G . Let |Γ̄(n1, n1, . . . , nm, nm)| denote the number of
complete diagrams in Γ̄(n1, n1, . . . , nm, nm), and put

C(n1, . . . , nm) =
|Γ̄(n1, n1, . . . , nm, nm)|

n1! · · ·nm!
.

In the special case n1 = · · · = nm = n let C̄(n,m) = C(n1, . . . , nm). Then

Corollary 5.6.

E
[
(n1!IG(h1))

2 · · · (nm!IG(hm))2
]
≤ C(n1, . . . , nm)E(n1!IG(h1))

2 · · · (nm!E(IG(hm))2.

In particular,

E
[
(n!IG(h))2m

]
≤ C̄(n,m)(E(n!IG(h))2)m if h ∈ Hn

G.

Corollary 5.6 follows immediately from Corollary 5.4 by applying it first for the se-
quence h1, h1, . . . , hm, hm and then for the pair hj , hj which yields that E(nj !IG(hj))

2 =
nj !‖hj‖2, 1 ≤ j ≤ m. One only has to observe that |hγ | ≤ ‖h1‖2 · · · ‖hm‖2 for all com-
plete diagrams by Part A) of Theorem 5.3.

The inequality in Corollary 5.6 is sharp. If G is a finite measure and h1 ∈ Hn1

G , . . . ,
hm ∈ Hnm

G are constant functions, then equality can be written in Corollary 5.6. We
remark that in this case IG(h1), . . . , IG(hm) are constant times the n1-th, . . . , nm-th
Hermite polynomials of the same standard normal random variable. Let us emphasize
that the constant C(n1, . . . , nm) depends only on the parameters n1, . . . , nm and not
on the form of the functions h1, . . . , hm. The function C(n1, . . . , nm) is monotone in its
arguments. The following argument shows that

C(n1 + 1, n2, . . . , nm) ≥ C(n1, . . . , nm)

Let us say that two complete diagrams in Γ̄(n1, n1, . . . , nm, nm) or in Γ̄(n1 +1, n1 +
1, . . . , nm, nm) are equivalent if they can be transformed into each other by permuting
the vertices (1, 1), . . . , (1, n1) in Γ̄(n1, n1, . . . , nm, nm) or the vertices (1, 1), . . . , (1, n1+1)
in Γ̄(n1+1, n1+1, . . . , nm, nm). The equivalence classes have n1! elements in the first case
and (n1 + 1)! elements in the second one. Moreover, the number of equivalence classes
is less in the first case than in the second one. (They would agree if we counted only
those equivalence classes in the second case which contain a diagram where (1, n1 + 1)
and (2, n1, 1) are connected by an edge. Hence

1

n1!
|Γ̄(n1, n1, . . . , nm, nm)| ≤ 1

(n1 + 1)!
|Γ̄(n1 + 1, n1 + 1, . . . , nm, nm)|

as we claimed.
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The next result, formulated in a more elementary way, may better illuminate the
content of Corollary 5.6.

Corollary 5.7. Let ξ1, . . . , ξk be a normal random vector, and P (x1, . . . , xk) a polyno-
mial of degree n. Then

E
[
P (ξ1, . . . , ξk)

2m
]
≤ C̄(n,m)(n+ 1)m

(
EP (ξ1, . . . , ξk)

2
)m

.

The multiplying constant C̄(n,m)(n+ 1)m is not sharp in this case. Observe that
it does not depend on k.

Proof of Corollary 5.7. We can write ξj =
∫
fj(x)Z( dx) with some fj ∈ H1, j =

1, 2, . . . , k, where Z( dx) is the same as in the proof of Corollary 5.5. There exist some
hj ∈ Hj , j = 0, 1, . . . , n, such that

P (ξ1, . . . , ξk) =
n∑

j=0

j!I(hj).

Then

EP (ξ1, . . . , ξk)
2m = E







n∑

j=0

j!I(hj)




2m

 ≤ (n+ 1)mE




n∑

j=0

(j!I(hj))
2



m

≤ (n+ 1)m
∑

p1+···+pn=m

C(p1, . . . , pn)(EI(h0)
2)p0 · · · (En!I(hn)

2)pn
m!

p1! · · · pn!

≤ (n+ 1)mC̄(n,m)
∑

p1+···+pn=m

(EI(h0)
2)p0 · · · (EI(n!hn)

2)pn
m!

p1! · · · pn!

= (n+ 1)mC̄(n,m)
[∑

E(j!I(hj))
2
]m

= (n+ 1)mC̄(n,m)
(
EP (ξ1, . . . , ξk)

2
)m

.
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6. Subordinated random fields. Construction of self-similar fields.

Let Xn, n ∈ Zν , be a discrete stationary Gaussian random field, and let the random field
ξn, n ∈ Zν , be subordinated to it. Let ZG denote the random spectral measure adapted
to the random field Xn. By Theorem 4.1 the random variable ξ0 can be represented as

ξ0 = f0 +
∞∑

k=1

1

k!

∫
fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk)

with an appropriate f = (f0, f1, . . . ) ∈ ExpHG in a unique way. This formula together
with Theorem 4.3 yields the following

Theorem 6.1. A random field ξn, n ∈ Zν , subordinated to the stationary Gaussian
random field Xn, n ∈ Zν , can be written in the form

ξn = f0 +
∞∑

k=1

1

k!

∫
ei((n,x1+···+xk)fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk), n ∈ Zν , (6.1)

with some f = (f0, f1, . . . ) ∈ ExpHG, where G is the spectral measure of the field Xn,
and ZG is the random spectral measure adapted to it. This representation is unique. It
is also clear that formula (6.1) defines a subordinated field for all f ∈ ExpHG.

If the spectral measure G has the property G({x: xp = u}) = 0 for all u ∈ R1 and
1 ≤ p ≤ k, where x = (x1, . . . , xk) (this is a strengthened form of the non-atomic
property), then the functions

f̄k(x1, . . . , xk) = fk(x1, . . . , xk)χ̃
−1
0 (x1 + · · · + xk), k = 1, 2, . . . ,

are meaningful, as functions in the measure space (Rkν ,Bkν , Gk), where χ̃n(x) =

ei(n,x)
ν∏
p=0

eix(p)−1
ix(p) , n ∈ Zν , denotes the Fourier transform of the uniform distribution

on the ν-dimensional unit cube
ν∏
p=1

[n(p), n(p) + 1]. Then the random variable ξn in

formula (6.1) can be rewritten in the form

ξn = f0 +

∞∑

k=1

1

k!

∫
χ̃n(x1 + · · · + xk)f̄k(x1, . . . , xk)ZG( dx1) . . . ZG( dxk).

Hence the following Theorem 6.1′ can be considered as the continuous time version of
Theorem 6.1.

Theorem 6.1′. Let the generalized random field ξ(ϕ), ϕ ∈ S, be subordinated to the
stationary Gaussian generalized random field X(ϕ), ϕ ∈ S. Let G denote the spectral
measure of the field X(ϕ), and let ZG be the random spectral measure adapted to it.
Then ξ(ϕ) can be written in the form

ξ(ϕ) = f0 · ϕ̃(0) +

∞∑

k=1

1

k!

∫
ϕ̃(x1 + · · ·+ xk)fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk), (6.1′)
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where the functions fk are invariant under all permutations of their variables,

fk(−x1, . . . ,−xk) = fk(x1, . . . , xk), k = 1, 2, . . . ,

and

∞∑

k=1

1

k!

∫
(1 + |x1 + · · · + xk|2)−p|fk(x1 + · · · + xk)|2G( dx1) . . . G( dxk) <∞ (6.2)

with an appropriate number p > 0. This representation is unique.

Contrariwise, all random fields ξ(ϕ), ϕ ∈ S, defined by formulas (6.1′) and (6.2)
are subordinated to the stationary, Gaussian random field X(ϕ), ϕ ∈ S.

Proof of Theorem 6.1′. It is clear that a random field ξ(ϕ), ϕ ∈ S, defined by (6.1′)
and (6.2) is subordinated to X(ϕ). One has to check that the definition of ξ(ϕ) in
formula (6.1′) is meaningful for all ϕ ∈ S, because of (6.2), ξ(Ttϕ) = Ttξ(ϕ) for all
shifts Tt, t ∈ Rν , by Theorem 4.3, and also the following continuity property holds. For
all ε > 0 there is a small neighbourhood H of the origin in the space S such that if
ϕ = ϕ1 − ϕ2 ∈ H for some ϕ1, ϕ2 ∈ S then E[ξ(ϕ1) − ξ(ϕ2)]

2 = Eξϕ)2 < ε2.

Since the Fourier transform ϕ(·) → ϕ̃(·) is a bicontinuous map in S, to prove the
above continuity property it is enough to check that Eξ(ϕ)2 < ε2 if ϕ̃ ∈ H for an
appropriate small neighbourhood H of the origin in S. But this relation holds with the

choice H = {ϕ: (1 + |x|2)p|ϕ(x)| ≤ ε2

K for all x ∈ Rν} with a sufficiently large K > 0
because of condition (6.2).

To prove that all subordinated fields have the above representation observe that
the relation

ξ(ϕ) = Ψϕ,0 +

∞∑

k=1

1

k!

∫
Ψϕ,k(x1, . . . , xk)ZG( dx1) . . . ZG( dxk) (6.3)

holds for all ϕ ∈ S with some (Ψϕ,0,Ψϕ,1, . . . ) ∈ ExpHG depending on the function ϕ.
We are going to show that these functions Ψϕ,k can be given in the form

Ψϕ,k(x1, . . . , xk) = fk(x1, . . . , xk) · ϕ̃(x1 + · · · + xk), k = 1, 2, . . . ,

with some functions fk ∈ Bkν , and

Ψϕ,0 = f0 · ϕ̃(0)

for all ϕ ∈ S with a sequence of functions f0, f1, . . . not depending on ϕ.

To show this let us choose a ϕ0 ∈ S such that ϕ̃0(x) > 0 for all x ∈ Rν . (We
can make for instance the choice ϕ0(x) = e−(x,x).) We claim that the finite linear
combinations

∑
apϕ0(x− tp) =

∑
apTtpϕ0(x) are dense in S. To prove this it is enough

to show that the functions ψ whose Fourier transforms ψ̃ have a compact support can
well be approximated by such linear combinations, because these functions ψ are dense
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in S. (The statement that these functions ψ are dense in S is equivalent to the statement
that their Fourier transform ψ̃ are dense in the space S̃ ⊂ Sc consisting of the Fourier

transforms of the (real valued) functions in the space S.) We have ψ̃
ϕ̃0

∈ Sc for such
functions ψ, where Sc denotes the Schwartz-space of complex valued, at infinity strongly
decreasing, smooth functions again, because ϕ̃0(x) 6= 0, and ψ̃ has a compact support.

There exists a function χ ∈ S such that χ̃ = ψ̃
ϕ̃0

. (Here we exploit that the space of
Fourier transforms of the functions from S agrees with the space of those functions
f ∈ Sc for which f(−x) = f(x).) Therefore ψ(x) = χ ∗ ϕ0(x) =

∫
χ(t)ϕ0(x − t) dt,

where ∗ denotes convolution. It can be seen by exploiting this relation together with
the rapid decrease of χ and ϕ0 together of its derivatives at infinity, and approximating
the integral defining the convolution by an appropriate final sum that for all integers
r > 0, s > 0 and real numbers ε > 0 there exists a finite linear combination ψ̂(x) =

ψ̂r,s,ε(x) =
∑
p
apϕ0(x− tp) such that (1 + |x|s)|ψ(x)− ψ̂(x)| < ε for all x ∈ Rν , and the

same estimate holds for all derivatives of ψ(x) − ψ̂(x) of order less than r. Beside this,

also the relation ψ̂(−x) = ψ̂(x) holds (similarly to the relation ψ(−x) = ψ(x)).

I only briefly explain why such an approximation exists. Some calculation enables
us to reduce this statement to the case when ψ = χ ∗ ϕ0 with a function χ ∈ D,
which has compact support. To give the desired approximation choose a small number
δ > 0, introduce the cube ∆ = ∆(δ) = [−δ, δ)ν ⊂ Rν and define the vectors k(δ) =
(2k1δ, . . . , 2kνδ) ∈ Rν for all k = (k1, . . . , kν) ∈ Zν . Given a fixed vector x ∈ Rν let
us define the vector u(x) ∈ Rν for all u ∈ Rν as u(x) = x + k(δ) with that vector
k ∈ Zν for which x + k(δ) − u ∈ ∆, and put ϕ0,x(u) = ϕ0(u(x)). It can be seen that

ψ̂(x) = χ∗ϕ0,x(x) is a finite linear combination of numbers of the form ϕ0(x− tk) (with
tk = k(δ)) with coefficients not depending on x. Moreover, if δ > 0 is chosen sufficiently

small (depending on r, s and ε), then ψ̂(x) = ψ̂r,s,ε(x) has all properties we demanded.

The above argument implies that there is a sequence of functions ψ̂r,s,ε which
converges to the function ψ in the topology of the space S. As a consequence, the finite
linear combinations

∑
apϕ0(x− tp) are dense in S.

Define

fk(x1, . . . , xk) =
Ψϕ0,k(x1, . . . , xk)

ϕ̃0(x1 + · · · + xk)
, k = 1, 2, . . . , and f0 =

Ψϕ0,0

ϕ̃0(0)
.

If ϕ(x) =
∑
apϕ0(x − tp) =

∑
apTtpϕ0(x), and the sum defining ϕ is finite, then by

Theorem 4.3

ξ(ϕ) =
(∑

ap

)
f0 · ϕ̃0(0) +

∞∑

k=1

1

k!

∫ ∑

p

ape
i(tp,x1+···+xk)ϕ̃0(x1 + · · · + xk)

· fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk),

= f0 · ϕ̃(0) +

∞∑

k=1

1

k!

∫
ϕ̃(x1 + · · · + xk)fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk).
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Relation (6.3) holds for all ϕ ∈ S, and there exists a sequence ϕj(x) =
∑
p
a
(j)
p ϕ0(x −

t
(j)
p ) ∈ S satisfying (6.1′) such that ϕj → ϕ in the topology of S. This implies

that limE[ξ(ϕj) − ξ(ϕ)]2 → 0, and in particular EIG(Ψϕ,k − ϕ̂j,kfk)
2 → 0 with

ϕ̂j,k(x1, . . . , xk) = ϕ̃j(x1 + · · · + xk) as j → ∞ for all k = 1, 2, . . . . (To carry out
some further argument we restricted the domain of integration to a bounded set A.)
Hence

∫

A

|Ψϕ,k(x1, . . . , xk) − ϕ̃j(x1 + · · · + xk)fk(x1, . . . , xk)|2G( dx1) . . . G( dxk) → 0

as j → ∞ for all k and for all bounded sets A ∈ Rkν . On the other hand,

∫

A

|ϕ̃(x1 + · · · + xk) − ϕ̃j(x1 + · · · + xk)|2|fk(x1, · · · , xk)|2G( dx1) . . . G( dxk) → 0,

since ϕ̃j(x) − ϕ̃(x) → 0 in the supremum norm if ϕ̃j → ϕ̃ in the topology of S,
and the property ϕ̃0(x) > 0 together with the continuity of ϕ̃0 and the inequal-
ity EIG(ϕ̂0,kfk)

2 < ∞ imply that
∫
A
|fk(x1, . . . , xk)|2G( dx1) . . . G(dxk) < ∞ on all

bounded sets A. The last two relations yield that

Ψϕ,k(x1, . . . , xk) = ϕ̃(x1 + · · · + xk)fk(x1, . . . , xk), k = 1, 2, . . . .

Similarly,
ψϕ,0 = ϕ̃(0)f0.

These relations imply (6.1′).

To complete the proof of Theorem 6.1′ we show that (6.2) follows from the conti-
nuity of the transformation F : ϕ→ ξ(ϕ) from the space S into the space L2(Ω,A, P ).

We recall that the transformation ϕ → ϕ̃ is bicontinuous in Sc. Hence the trans-
formation ϕ̃ → ξ(ϕ) is a continuous map from the space of the Fourier transforms of
the functions in the space S to L2(Ω,A, P ). This continuity implies that there exist
some integers p > 0, r > 0 and real number δ > 0 such that if

(1 + |x2|)p
∣∣∣∣

∂s1+···+sν

∂x(1)s1 . . . ∂x(ν)sν
ϕ̃(x)

∣∣∣∣ < δ for all s1 + · · · + sν ≤ r, (6.4)

then Eξ(ϕ)2 ≤ 1.

Let us choose a ψ ∈ S such that ψ has a compact support, ψ(x) = ψ(−x), ψ(x) ≥ 0
for all x ∈ Rν , and ψ(x) = 1 if |x| ≤ 1. (There exist such functions.) Define the
functions ϕ̃m(x) = C(1 + |x|2)−pψ( xm ). Then ϕm ∈ S, since its Fourier transform ϕ̃m
is an even function, and it is in the space S being an infinite many times differentiable
function with compact support. Moreover, ϕm satisfies (6.4) for all m = 1, 2, . . . if
the number C > 0 in its definition is chosen sufficiently small. This number C can be
chosen independently of m. (To see this observe that (1+ |x2|)−p together with all of its
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derivatives of order not bigger than r can be bounded by C(p,r)
(1+|x|2)p with an appropriate

constant C(p, r).) Hence

Eξ(ϕm)2 =
∑ 1

k!

∫
|ϕ̃m(x1 + · · · + xk)|2|fk(x1, · · · , xk)|2G(dx1) . . . G(dxk) ≤ 1

for all m = 1, 2, . . . .

As ϕ̃m(x) → C(|1 + |x|2)−p as m → ∞, and ϕ̃k(x) ≥ 0, an m → ∞ limiting
procedure in the last relation together with Fatou’s lemma imply that

C
∑ 1

k!

∫
(1 + |x1 + · · · + xk)|2)−p|fk(x1, · · · , xk)|2G(dx1) . . . G(dxk) ≤ 1.

Theorem 6.1′ is proved.

We shall call the representations given in Theorems 6.1 and 6.1′ the canonical
representation of a subordinated field. From now on we restrict ourselves to the case
Eξn = 0 or Eξ(ϕ) = 0 respectively, i.e. to the case when f0 = 0 in the canonical
representation. If

ξ(ϕ) =

∞∑

k=1

1

k!

∫
ϕ̃(x1 + · · · + xk)fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk),

then

ξ(ϕAt ) =
∞∑

k=1

1

k!

tν

A(t)

∫
ϕ̃(t(x1 + · · · + xk))fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk)

with the function ϕAt defined in (1.3). Define the spectral measures Gt by the formula
Gt(A) = G(tA). Then we have by Lemma 4.5

ξ(ϕAt )
∆
=

∞∑

k=1

1

k!

tν

A(t)

∫
ϕ̃(x1 + · · · + xk)fk

(x1

t
, . . . ,

xk
t

)
ZGt( dx1) . . . ZGt( dxk).

If G(tB) = t2κG(B) with some κ > 0 for all t > 0 and B ∈ Bν , fk(λx1, . . . , λxk) =
λν−κk−αfk(x1, . . . , xk), and A(t) is chosen as A(t) = tα, then Theorem 4.4 (with the

choice G′(B) = G(tB) = t2κG(B)) implies that ξ(ϕAt )
∆
= ξ(ϕ). Hence we obtain the

following

Theorem 6.2. Let the generalized random field ξ(ϕ) be given by the formula

ξ(ϕ) =

∞∑

k=1

1

k!

∫
ϕ̃(x1 + · · · + xk)fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk). (6.5)
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If fk(λx1, . . . , λxk) = λν−κk−αfk(x1, . . . , xk) for all k, (x1, . . . , xk) ∈ Rkν and λ > 0,
G(λA) = λ2κG(A) for all λ > 0 and A ∈ Bν , then ξ is a self-similar random field with
parameter α.

The discrete time version of this result can be proved in the same way. It states
the following

Theorem 6.2′. If the discrete random field ξn, n ∈ Zν , has the form

ξn =
∞∑

k=1

1

k!

∫
χ̃n(x1 + · · · + xk)fk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk), n ∈ Zν , (6.5′,)

and fk(λx1, . . . , λxk) = λν−κk−αfk(x1, . . . , xk) for all k, G(λA) = λ2κG(A), then ξn is
a self-similar random field with parameter α.

Theorems 6.2 and 6.2′ enable us to construct self-similar random fields. Neverthe-
less, we have to check whether formulas (6.5) and (6.5′) are meaningful. The hard part
of this problem is to check whether

∑ 1

k!

∫
|χ̃n(x1 + · · · + xk)|2|fk(x1, . . . , xk)|2G( dx1) . . . G( dxk) <∞,

or whether

∑ 1

k!

∫
|ϕ̃(x1 + · · · + xk)|2|fk(x1, . . . , xk)|2G( dx1) . . . G( dxk) <∞ for all ϕ ∈ S.

To investigate when these expressions are finite is a rather hard problem in the general
case. The next result enables us to prove the finiteness of these expressions in some
interesting cases.

Let us define the measure G

G(A) =

∫

A

|x|2κ−νa
(
x

|x|

)
dx, A ∈ Bν , (6.6)

where a(·) is a non-negative, measurable and even function on the ν-dimensional unit
sphere Sν−1, and κ > 0. (The condition κ > 0 is imposed to guarantee the relation
G(A) <∞ for all bounded sets A ∈ Bν .) We prove the following

Proposition 6.3. Let the measure G be the same as in formula (6.6).

a) If the function a(·) is bounded on the unit sphere Sν−1, and ν
k > 2κ > 0, then

D(ϕ) =

∫
|ϕ̃(x1 + · · · + xk)|2G( dx1) . . . G( dxk)

≤ C

∫
(1 + |x1 + · · · + xk)|2)−pG( dx1) . . . G( dxk) <∞
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if ϕ ∈ S for all p > ν
2 with some C = C(ϕ, p) <∞, and

D(n) =

∫
|χ̃n(x1 + · · · + xk)|2G( dx1) . . . G( dxk) <∞ for all n ∈ Zν .

b) If there is a constant C > 0 such that a(x) > D in a neighbourhood of a point
x0 ∈ Sν−1, and either 2κ ≤ 0 of 2κ ≥ ν

k , then the integrals D(n) and some D(ϕ),
ϕ ∈ S, are divergent.

Proof of Proposition 6.3. Proof of Part a)

We may assume that a(x) = 1 for all x ∈ Sν−1. Define

Jκ,k(x) =

∫

x1+···+xk=x

|x1|2κ−ν · · · |xk|2κ−ν dx1 . . . dxk, x ∈ Rν

for k ≥ 2, where dx1 . . . dxk denotes the Lebesgue measure on the hyperplane x1 + · · ·+
xk = x, and let Jκ,1(x) = |x|2κ−ν . We have

Jκ,k(λx) = |λ|k(2κ−ν)+(k−1)νJκ,k(x),= |λ|2kκ−νJκ,k(x), x ∈ Rν λ > 0,

because of the homogeneity of the integral. Beside this

D(n) =

∫

Rν

|χ̃n(x)|2Jκ,k(x) dx,
∫

(1 + |x1 + · · · + xk|2)−pG( dx1) . . . G( dxk) =

∫
(1 + |x|2)−pJκ,k(x) dx.

(6.7)

We prove by induction on k that

Jκ,k(x) ≤ C(κ, k)|x|2κk−ν (6.8)

with an appropriate constant C(κ, k) <∞ if ν
k > 2κ > 0.

We have

Jκ,k(x) =

∫
Jκ,k−1(y)|x− y|2κ−ν dy.

Hence

Jκ,k ≤ C(κ, k − 1)

∫
|y|(2κ(k−1)−ν |x− y|2κ−ν dy

= C(κ, k − 1)|x|2κk−ν
∫

|y|(2κ(k−1)−ν
∣∣∣∣
x

|x| − y

∣∣∣∣
2κ−ν

dy = C(κ, k)|x|2κk−ν ,

since
∫
|y|(2κ(k−1)−ν

∣∣∣ x|x| − y
∣∣∣
2κ−ν

dy <∞.
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The last integral is finite, since its integrand behaves at zero asymptotically as
C|y|2κ(k−1)−ν , at the point e = x

|x| ∈ Sν−1 as C2|y−e|2κ−ν and at infinity as C3|y|2κk−2ν .

Relations (6.7) and (6.8) imply that

D(n) ≤ C ′
∫

|χ̃0(x)|2|x|2κk−ν dx ≤ C ′′
∫

|x|2κk−ν
ν∏

l=1

1

1 + |x(l)|2 dx

≤ C ′′′
∫

|x(1)|= max
1≤l≤ν

|x(l|
|x(1)|2κk−ν

ν∏

l=1

1

1 + |x(l)|2 dx

=

∞∑

p=0

C ′′′
∫

|x(1)|= max
1≤l≤ν

|x(l|, 2p≤|x(1)|<2p+1

+C ′′′
∫

|x(1)|= max
1≤l≤ν

|x(l|,|x(1)|<1

.

The second term in the last sum can be simply bounded by a constant, since B ={
x: |x(1)| = max

1≤l≤ν
|x(l|, |x(1)| < 1

}
⊂ {x: |x| ≤ √

ν}, and |x(1)|2κk−ν
ν∏
l=1

1
1+|x(l)|2 ≤

const. |x|2κk−ν on the set B. Hence

D(n) ≤ C1

∞∑

p=0

2p(2κk−ν)
[∫ ∞

−∞

1

1 + x2
dx

]ν
+ C2 <∞.

We have |ϕ(x)| ≤ C(1 + |x2|)−p with some C > 0 and D > 0 if ϕ ∈ S. The proof of the
estimate D(ϕ) <∞ for ϕ ∈ S is similar but simpler.

Proof of part b). Define, similarly to the function Jκ,k,

Jκ,k,a(x) =

∫

x1+···+xk=x

|x1|2κ−νa
(
x1

|x1|

)
· · · |xk|2κ−νa

(
xk
|xk|

)
dx1 . . . dxk, x ∈ Rν ,

where dx1 . . . dxk denotes the Lebesgue measure on the hyperplane x1 + · · · + xk = x.
Since

Jκ,k,a(x) ≥
∫

y: |y|<( 1
2+α)|x|, |y−x|<( 1

2+α)|x|
Jκ,k−1,a(y)a

(
x− y

|x− y|

)
|x− y|2κ−ν dy

with an arbitrary α > 0 an argument similar to the one in part a) shows that

Jκ,k,a(x)





≥ C̄(κ, k)|x|2κk−ν if
ν

k
> 2κ > 0,

= ∞ if κ ≤ 0 or 2κ ≥ ν

k

if x
|x| is close to such a point x0 ∈ Sν−1 in whose small neighbourhood the function a(·)

is separated from zero. Since |χ̃n(x)|2 > 0 for almost all x ∈ Rν ,

D(n) =

∫
|χ̃n(x)|2Jκ,k,a(x) dx = ∞
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under the conditions of part b). Similarly D(ϕ) = ∞ if |ϕ̃(x)|2 > 0 for almost all
x ∈ Rν . We remark that the conditions in part b) can be weakened. It would have been
enough to assume that a(x) > 0 on a set of positive Lebesgue measure in Sν−1.

Theorem 6.2 and 6.2′ together with Proposition 6.3 have the following

Corollary 6.4. The formulae

ξn =

M∑

k=1

∫
χ̃n(x1 + · · · + xk)

k∏

l=1

(
|xl|−κ+(ν−α)/k · bk

(
xl
|xl|

))
ZG( dx1) . . . ZG( dxk),

n ∈ Zν ,

and

ξ(ϕ) =
M∑

k=1

∫
ϕ̃(x1 + · · · + xk)

k∏

l=1

(
|xl|−κ+(ν−α)/k · bk

(
xl
|xl|

))
ZG( dx1) . . . ZG( dxk),

ϕ ∈ S,

define self-similar random fields with self-similarity parameter α if G is defined by for-
mula (6.6), the parameter α satisfies the inequality ν

2 < α < ν, and the functions a(·) (in
the definition of the measure G(·) in (6.6)), b1(·), . . . bk(·) are bounded even functions
on Sν−1.

The following observation may be useful when we want to prove Corollary 6.4. We
can replace ξn by another random field with the same distribution. Thus we can write,
by exploiting Theorem 4.4,

ξn =

M∑

k=1

χ̃n(x1 + · · · + xk)ZG′( dx1) . . . ZG′( dxk), n ∈ Zν ,

with random spectral measure ZG′ corresponding to the spectral measure G′( dx) =
b( x

|x| )
2|x|−2κ+2(ν−α)/kG( dx) = a( x

|x| )b(
x
|x| )

2|x|−ν+2(ν−α)/k dx. In the case of generalized

random fields a similar argument can be applied.

Remark 6.5. The estimate on Jκ,k and the end of the of part a) in Proposition (6.3)
show that the self-similar random fields

ξ(ϕ) =

M∑

k=1

∫
ϕ̃(x1 + · · · + xk)|x1 + · · · + xk|p u

(
x1 + · · · + xk
|x1 + · · · + xk|

)

k∏

l=1

(
|xl|−κ+(ν−α)/k · bk

(
xl
|xl|

))
ZG( dx1) . . . ZG( dxk), ϕ ∈ S,
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and

ξn =

M∑

k=1

∫
χ̃n(x1 + · · · + xk)|x1 + · · · + xk|p u

(
x1 + · · · + xk
|x1 + · · · + xk|

)

k∏

l=1

(
|xl|−κ+(ν−α)/k · bk

(
xl
|xl|

))
ZG( dx1) . . . ZG( dxk), n ∈ Zν ,

are well defined if G is defined by formula (6.6), a(·), b(·) and u(·) are bounded even
functions on Sν−1,

ν
2 < α < ν, and α − p < ν in the generalized and ν−1

2 < α − p < ν
is the discrete random field case. The self-similarity parameter of these random fields
is α− p. We remark that in the case p > 0 this class of self-similar fields also contains
self-similar fields with self-similarity parameter less than ν

2 .

In proving the statement of Remark 6.5 we have to check the integrability condi-
tions needed for the existence of the Wiener–Itô integrals ξ(ϕ) and ξn. To check them
it is worth remarking that in the proof of part a) of Proposition 6.2 we proved the
estimate Jκ̄,k(x) ≤ C(κ̄, k)|x|2κ̄k−ν . We want to apply this inequality in the present
case with the choice κ̄ = ν−α

k . Then arguing similarly to the proof of part a) of Propo-

sition 6.2 we get to the problem whether the relations
∫
|χ̃n(x)|2|x|2p+2(ν−α)−ν dx <∞

and
∫
|ϕ̃(x)|2|x|2p+2(ν−α)−ν dx < ∞ if ϕ ∈ S hold under the conditions of Remark 6.5.

They can be proved by the argument applied at the end of the proof of part a) of
Proposition 6.2.

The following question arises in a natural way. When do different formulas satisfy-
ing the conditions of Theorem 6.2 or Theorem 6.2′ define self-similar random fields with
different distributions? In particular: Are the self-similar random fields constructed via
multiple Wiener–Itô integrals necessarily non-Gaussian? We cannot give a completely
satisfactory answer for the above question, but our former results yield some useful in-

formation. Let us substitute the spectral measure G by G′ such that G( dx)
G′( dx) = |g2(x)|2,

g(−x) = g(x) and the functions |xl|−κ+(ν−α)/kb( xl

|xl| ) by ( xl

|xl| )g(xl)|xl|
−κ+(ν−α)/k in

Corollary 6.4. By Theorem 4.4 the new field has the same distribution as the original
one. On the other hand, Corollary 5.4 helps us to decide whether two random variables
have different moments, and therefore different distributions. Let us consider e.g. a
moment of odd order of the random variables ξn or ξ(ϕ) defined in Corollary 6.4. It
is clear that all hγ ≥ 0. Moreover, if bk(x) does not vanish for some even number k,
then there exists a hγ > 0 in the sum expressing an odd moment of ξn or ξ(ϕ). Hence
the odd moments of ξn or ξ(ϕ) are positive in this case. This means in particular that
the self-similar random fields defined in Corollary 6.4 are non-Gaussian if bk is non-
vanishing for some even k. The next result shows that the tail behaviour of multiple
Wiener–Itô integrals of different order is different.

Theorem 6.6. Let G be a spectral measure and ZG a random spectral measure corre-
sponding to G. For all h ∈ Hm

G there exist some constants K1 > K2 > 0 and x0 > 0
depending on the function h such that

e−K1x
2/m ≤ P (|IG(h)| > x) ≤ e−K2x

2/m
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for all x > x0.

Remark. As the proof of Theorem 6.6 shows the constant K2 in the upper bound of
the above estimate can be chosen as Km = Cm(EIG(h)2)−1/m with a constant Cm
depending only on the order m of the Wiener–Itô integral of IG(h). This means that for
a fixed number m the constant K2 in the above estimate can be chosen as a constant
depending only on the variance of the random variable IG(h). On the other hand, no
simple characterization of the constant K1 > 0 appearing in the lower bound of this
estimate is known.

Proof of Theorem 6.6. a) Proof of the upper estimate.

We have
P (|IG(h)| > x) ≤ x2NE(IG(h)|2N ).

By Corollary 5.6

E(IG(h)|2N ) ≤ C̄(m,N)[E(IG(h)2)]N ≤ C̄(m,N)CN1 ,

and by a simple combinatorial argument we obtain that

C̄(m,N) ≤ (2Nm− 1)(2Nm− 3) · · · 1
(m! )N

,

since the numerator on the right-hand side of this inequality equals the number of
complete diagrams |Γ̄(m, . . . ,m︸ ︷︷ ︸

2N times

)| if vertices from the same row can also be connected.

Multiplying the inequalities

(2nM − 2j − 1)(2Nm− 2j − 1 − 2N) · · · (2Nm− 2j − 1 − 2N(m− 1)) ≤ (2N)mm!,

j = 1, . . . , N , we obtain that

C̄(m,N) ≤ (2N)mN .

(This inequality could be sharpened, but it is sufficient for our purpose.) Choose a
sufficiently small number α > 0, and define N = [αx2/m], where [·] denotes integer part.
With this choice we have

P (|IG(h)| > x) ≤ (x−2(2α)mx2)NCN1 = [C1(2α)m]N ≤ e−K2x
2/m

,

if α is chosen in such a way that C1(2α)m ≤ 1
e , K2 = α

2 , and x > x0 with an appropriate
x0 > 0.

b) Proof of the lower estimate.

First we reduce this inequality to the following statement. Let Q(x1, . . . , xk) be a
homogeneous polynomial of order m (the number k is arbitrary), and ξ = (ξ1, . . . , ξk) a
k-dimensional standard normal variable. Then

P (Q(ξ1, . . . , ξk) > x) ≥ e−Kx
2/m

(6.9)
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if x > x0, where the constants K > 0 and x0 > 0 may depend on the polynomial Q.

By the results of Section 4, IG(h) can be written in the form

IG(h) =
∑

j1+···+jl=m
Ck1,...,kl

j1,...,jl
Hj1(ξk1) · · ·Hjk(ξkl

), (6.10)

where ξ1, ξ2, . . . are independent standard normal random variables, Ck1,...,kl

j1,...,jl
are appro-

priate coefficients, and the right-hand side of (6.10) is convergent in L2 sense. Let us fix
a sufficiently large integer k, and let us consider the conditional distribution of the right-
hand side of (6.10) under the condition ξk+1 = xk+1, ξk+2 = xk+2, . . . , where the num-
bers xk+1, xk+2, . . . are arbitrary. This conditional distribution coincides with the distri-
bution of the random variableQ(ξ1, . . . , ξk, xk+1, xk+2, . . . ) with probability 1, where the
polynomial Q is obtained by substituting ξk+1 = xk+1, ξk+2 = xk=2, . . . into the right-
hand side of (6.10). It is clear that all these polynomials Q(ξ1, . . . , ξk, xk+1, xk+2, . . . )
are of order m if k is sufficiently large. It is sufficient to prove that

P (|Q(ξ1, . . . , ξk, xk+1, xk+2, . . . )| > x) ≥ e−Kx
2/m

for x > x0, where the constants K > 0 and x0 > 0 may depend on the polynomial Q.
Write

Q(ξ1, . . . , ξk, xk+1, xk+2, . . . ) = Q1(ξ1, . . . , ξk) +Q2(ξ1, . . . , ξk)

where Q1 is a homogeneous polynomial of order m, and Q2 is a polynomial of order less
than m. The polynomial Q2 can be rewritten as the sum of finitely many Wiener–Itô
integrals with multiplicity less than m. Hence the already proved part of Theorem 6.6
implies that

P (Q2(ξ1, . . . , ξk) > x) ≤ e−q̄Kx
2/(m−1)

.

(We may assume that m ≥ 2). Then an application of relation (6.9) to Q1 implies the
remaining part of Theorem 6.6, thus it suffices to prove (6.9).

If Q(·) is a polynomial of k variables, then there exist some α > 0 and β > 0 such
that

λ

(∣∣∣∣Q
(
x1

|x| , . . . ,
xk
|x|

)∣∣∣∣ > α

)
> β,

where |x|2 =
k∑
j=1

x2
j , and λ denotes the Lebesgue measure on the k-dimensional unit

sphere Sk−1. Exploiting that |ξ| and ξ
|ξ| are independent, ξ

|ξ| is uniformly distributed

on the unit sphere Sk−1, and P (|ξ| > x) ≥ ce−x
2

for a k-dimensional standard normal
random variable, we obtain that

P (|Q(ξ1, . . . , ξk)| > x) ≥ P
(
|ξ|m >

x

α

)
β > e−Kx

2/m

,

if the constants K and x are sufficiently large. Theorem 6.6 is proved.
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Theorem 6.6 implies in particular that Wiener–Itô integrals of different multiplicity
have different distributions. A bounded random variable measurable with respect to the
σ-algebra generated by a stationary Gaussian field can be expressed as a sum of multiple
Wiener–Itô integrals. Another consequence of Theorem 6.6 is the fact that the number
of terms in this sum must be infinite.

In Theorems 6.2 and 6.2′ we have defined a large class of self-similar fields. The
question arises whether this class contains self-similar fields such that the distributions
of their random variables tend to one (or zero) at infinity (at minus infinity) much
faster than the normal distribution functions do. This question has been unsolved by
now. By Theorem 6.6 such fields, if any, must be expressed as a sum of infinitely many
Wiener–Itô integrals. The above question is of much greater importance than it may
seem at first instant. Some considerations suggest that in some important models of
statistical physics self-similar fields with very fast decreasing tail distributions appear
as limit, when the so-called renormalization group transformations are applied for the
probability measure describing the state of the model at critical temperature. (The
renormalization group transformations are the transformations over the distribution of
stationary fields induced by formula (1.1) or (1.3), when AN = Nα, A(t) = tα with
some α.) No rigorous proof about the existence of such self-similar fields is known
yet. Thus the real problem behind the above question is whether the self-similar fields
interesting for statistical physics can be constructed via multiple Wiener–Itô integrals.

7. On the original Wiener–Itô integral.

In this section the definition of the original Wiener–Itô integral introduced by Itô in [18]
is explained. As the arguments are very similar to those of Sections 4 and 5 (only the
notations become simpler) most proofs will be omitted.

Let a measure space (M,M, µ) with a σ-finite measure µ be given. Let µ satisfy
the following continuity property: For all ε > 0 and A ∈ M, µ(A) < ∞, there exist
some disjoint sets Bj ∈ M, j = 1, . . . , N , with some integer N such that µ(Bj) < ε for

all 1 ≤ j ≤ N , and A =
N⋃
j=1

Bj . We introduce the following definition.

Definition of (Gaussian) random orthogonal measures. A system of random
variables Zµ(A), A ∈ M, µ(A) < ∞, is called a Gaussian random orthogonal measure
corresponding to the measure µ if

(i) Zµ(A1), . . . , Zµ(Ak) are independent Gaussian random variables if the sets Aj ∈
M, µ(Aj) <∞, j = 1, . . . , k, are disjoint.

(ii) EZµ(A) = 0, EZµ(A)2 = µ(A).

(iii) Zµ

(
k⋃
j=1

Aj

)
=

k∑
j=1

Zµ(Ak) with probability 1 if A1, . . . , Ak are disjoint sets.

Remark. There is the following equivalent version for the definition of random orthog-
onal measures: The system of random variables system of random variables Zµ(A),
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A ∈ M, µ(A) < ∞, is a Gaussian random orthogonal measure corresponding to the
measure µ if

(i′) Zµ(A1), . . . , Zµ(Ak) are (jointly) Gaussian random variables for all sets Aj ∈ M,
µ(Aj) <∞, j = 1, . . . , k.

(ii′) EZµ(A) = 0, and EZµ(A)Zµ(B) = µ(A ∩B) if A, B ∈ M, µ(A) <∞, µ(B) <∞.

It is not difficult to see that properties (i), (ii) and (iii) imply relations (i′) and (ii′).
On the other hand, it is clear that (i′) and (ii′) imply (i) and (ii). To see that they also
imply relation (iii) observe that under these conditions

E


Zµ




k⋃

j=1

Aj


−

k∑

j=1

Zµ(Ak)




2

= 0

if A1, . . . , Ak are disjoint sets.

The second characterization of random orthogonal measures may help to show
that for any measure space (M,M, µ) with a σ-finite measure µ there exists a Gaus-
sian random orthogonal measure corresponding to the measure µ. The main point in
checking this statement is the proof that for any sets A1, . . . , Ak ∈ M, µ(Aj) < ∞,
1 ≤ j ≤ k, there exists a Gaussian random vector (Zµ(A1), . . . , Zµ(Ak)), EZµ(Aj) = 0,
with correlation EZµ(Ai)Zµ(Aj) = µ(Ai ∩ Aj) for all 1 ≤ i, j ≤ k. To prove this we
have to show that the corresponding covariance matrix is really positive definite, i.e.∑
i,j

cic̄jµ(Ai ∩Aj) ≥ 0 for an arbitrary vector (c1, . . . , ck). But this follows from the ob-

servation
∑
i,j

cic̄jχAi∩Aj (x) =
∑
i,j

cic̄jχAi(x)χAj (x) =

∣∣∣∣
∑
i

ciχAi(x)

∣∣∣∣
2

≥ 0 for all x ∈ M ,

if we integrate this inequality with respect to the measure µ in the space M .

We define the real Hilbert spaces K̄nµ, n = 1, 2, . . . . The space K̄nµ consists of the
real-valued measurable functions over (M × · · · ×M︸ ︷︷ ︸

n times

, M× · · · ×M︸ ︷︷ ︸
n times

) such that

‖f‖2 =

∫
|f(x1, . . . , xn)|2µ( dx1) . . . µ( dxn) <∞,

and the last formula defines the norm in K̄nµ. Let Knµ denote the subspace of K̄nµ con-

sisting of the functions f ∈ K̄nµ such that

f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) for all π ∈ Πn.

Let the spaces K̄0
µ and K0

µ consist of the real constants with the norm ‖c‖ = |c|. Finally
we define the Fock space ExpKµ which consists of the sequences f = (f0, f1, . . . ),
fn ∈ Knµ, n = 0, 1, 2, . . . , such that

‖f‖2 =
∞∑

n=0

1

n!
‖fn‖2 <∞.
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Given a random orthogonal measure Zµ corresponding to µ, let us introduce the
σ-algebra F = σ(Zµ(A): A ∈ M, µ(A) < ∞). Let K denote the real Hilbert space of
square integrable random variables measurable with respect to the σ-algebra F . Let K≤n
denote the subspace that is the closure of the linear space containing the polynomials of
the random variables Zµ(A) of order less than or equal to n. Let Kn be the orthogonal
completion of K≤n−1 to K≤n. (The norm is defined as ‖ξ‖2 = Eξ2 in these Hilbert
spaces.)

The multiple Wiener–Itô integrals with respect to the random orthogonal measure
Zµ, to be defined below, give a unitary transformation from ExpKµ to K. We shall

denote these integrals by
∫ ′

to distinguish them from the Wiener–Itô integrals defined
in Section 4.

First we define the class of elementary functions ˆ̄K
n

µ ⊂ K̄nµ. A function f ∈ K̄nµ is in
ˆ̄K
n

µ if there exists a finite system of disjoint sets ∆1, . . . ,∆N , with ∆j ∈ M, µ(∆j) <∞,
j = 1, . . . , N , such that f(x1, . . . , xn) is constant on the sets ∆j1×· · ·×∆jn if the indices
j1, . . . , jn are disjoint, and f(x1, . . . , xn) equals zero outside these sets. We define

∫ ′
f(x1, . . . , xn)Zµ( dx1) . . . Zµ( dxn) =

∑
f(xj1 , . . . , xjn)Zµ(∆j1) · · ·Zµ(∆jn)

for f ∈ ˆ̄K
n

µ, where xk ∈ ∆k, k = 1, . . . , N .

Let K̂nµ = ˆ̄K
n

µ ∩ Knµ. The random variables

I ′µ(f) =
1

n!

∫ ′
f(x1, . . . , xn)Zµ( dx1) . . . Zµ( dxn), f ∈ ˆ̄K

n

µ,

have zero expectation, integrals of different order are orthogonal,

I ′µ(f) = I ′µ( Sym f), and Sym f ∈ K̂nµ if f ∈ ˆ̄K
n

µ,

EI ′µ(f)2 ≤ 1

n!
‖f‖2 if f ∈ ˆ̄K

n

µ, (7.1)

and (7.1) holds with equality if f ∈ K̂nµ.

It can be seen that ˆ̄K
n

µ is dense in K̄nµ, hence relation (7.1) enables us to extend

the definition of the n-fold Wiener–Itô integrals over K̄nµ. All the above mentioned

relations remain valid if f ∈ ˆ̄K
n

µ is substituted by f ∈ K̄nµ, and f ∈ K̂nµ is substituted
by f ∈ Knµ. We formulate Itô’s formula for these integrals. It can be proved similarly
to Theorem 4.2.

Theorem 7.1. (Itô’s formula) Let ϕ1, . . . , ϕm, ϕj ∈ K1
µ for all 1 ≤ j ≤ m, be an

orthonormal system in L2
µ. Let some positive integers j1, . . . , jm be given, put j1 + · · ·+

jm = N , and define for all i = 1, . . . , N

gi = ϕ1 for 1 ≤ i ≤ j1, and gi = ϕs for j1 + · · · + js−1 < i ≤ j1 + · · · + js.
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Then

Hj1

(∫ ′
ϕ1(x)Zµ( dx)

)
· · ·Hjm

(∫ ′
ϕm(x)Zµ( dx)

)

=

∫ ′
g1(x1) · · · gN (xN )Zµ( dx1) . . . Zµ( dxN )

=

∫ ′
Sym [g1(x1) · · · gN (xN )]Zµ( dx1) . . . Zµ( dxN ).

(Let me remark that the diagram formula (Theorem 5.3) also remains valid for this
integral if we replace −xj is by xj and G( dxj) by µ( dxj), N − 2|γ| + 1 ≤ j ≤ N − |γ|,
in the definition of hγ in formula (5.1).)

It can be seen with the help of Theorem 7.1 that the transformation I ′µ: ExpKµ →
K, where I ′µ(f) =

∞∑
n=0

I ′µ(fn), f = (f0, f1, . . . ) ∈ ExpKµ is a unitary transformation,

and so are the transformations (n!)1/2I ′µ from Knµ to Kn.

Let us consider the special case (M,M, µ) = (Rν ,Bν , λ), where λ denotes the
Lebesgue measure in Rν . A random orthogonal measure corresponding to λ is called
the white noise. A random spectral measure corresponding to λ, when the Lebesgue
measure is considered as the spectral measure of a generalized field, is also called a
white noise. The next result, that can be considered as a random Plancherel formula,
establishes a connection between the two types of Wiener–Itô integrals with respect to
white noise.

Proposition 7.2. Let f = (f0, f1, . . . , ) ∈ ExpKλ be an element of the Fock space
corresponding to the Lebesgue measure in the Euclidean space (Rν ,Bν). Then f ′ =
(f ′0, f

′
1, . . . , ) ∈ ExpHλ with the functions f ′0 = f0 and f ′n = (2π)−nν/2f̃n, n = 1, 2, . . . ,

(where f̃n(u1, . . . , un) =
∫
Rnν e

i(x,u)fn(x1, . . . , xn) dx1 . . . dxn with x = (x1, . . . , xn) and
u = (u1, . . . , un)), and

∞∑

n=0

1

n!

∫ ′
fn(x1, . . . , xn)Zλ( dx1) . . . Zλ( dxn)

∆
=

∞∑

n=0

1

n!

∫
f ′n(u1, . . . , un)Zλ( du1) . . . Zλ( dun),

where Zλ( dx) is a white noise as a random orthogonal measure and Zλ( du) is a white
noise as a random spectral measure.

Proof of Proposition 7.2. We have

(2π)−nν/2‖f̃n‖L2
λ

= ‖fn‖L2
λ
,
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hence f ′ ∈ ExpHλ.

Let ϕ1, ϕ2, . . . be a complete orthonormal system in L2
λ. Then ϕ′

1, ϕ
′
2, . . . is also a

complete orthonormal system in L2
λ, and if

fn(x1, . . . , xn) =
∑

cj1,...,jnϕj1(x1) · · ·ϕjn(xn),

then
f ′n(u1, . . . , un) =

∑
cj1,...,jnϕ

′
j1(u1) · · ·ϕ′

jn(un).

Hence an application of Itô’s formula for both types of integrals, (i.e. Theorems 4.2
and 7.1) imply Proposition 7.2.

Finally we restrict ourselves to the case ν = 1. We formulate a result which reflects a
connection between multiple Wiener–Itô integrals and classical Itô integrals. Let W (t),
a ≤ t ≤ b, be a Wiener process, and let us define the random orthogonal measure Z( dx)
as

Z(A) =

∫
χA(x)W ( dx), A ⊂ [a, b), A ∈ B1.

Then we have the following

Proposition 7.3. Let f ∈ Knλ[a,b), where λ[a, b) denotes the Lebesgue measure on the

interval [a, b). Then

∫ ′
f(x1, . . . , xn)Z( dx1) . . . Z( dxn) (7.2)

= n!

∫ b

a

(∫ tn

a

(
· · ·
(∫ t3

a

(∫ t2

a

f(t1, . . . , tn)W ( dt1)

)
W ( dt2)

)
. . .

)
W ( dtn)

)
.

Proof of Proposition 7.3. Given a function f ∈ K̂nλ[a,b), let the function f̂ be defined as

f̂(x1, . . . , xn) =

{
f(x1, . . . , xn) if x1 < x2 < · · · < xn

0 otherwise.

It is not difficult to check Proposition 7.3 for such special functions f ∈ K̂nλ[a,b) for

which the function f̂ is the indicator function of a rectangle of the form
n∏
j=1

[aj , bj) with

constants a ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ b. Here we exploit the relation
I ′(f) = n!I ′(f̂). Beside this, we have to calculate the value of the right-hand side of
formula (7.2) for such elementary functions f ∈ K̂nλ[a,b). A simple inductive argument

shows that it equals
n∏
j=1

[W (bj) −W (aj)] if a ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ b,

and it equals zero otherwise. Then a simple limiting procedure with the help of the
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approximation of general functions in Knλ[a,b) by the linear combinations of such functions
proves Proposition 7.3 in the general case.

As a consequence of Proposition 7.3 in the case ν = 1 multiple Wiener–Itô integrals
can be substituted by Itô integrals in the investigation of most problems. In the case
ν = 2 there is no simple definition of Itô integrals. On the other hand, no problem
arises in generalizing the definition of multiple Wiener–Itô integrals to the case ν ≥ 2.

8. Non-central limit theorems.

In this section we investigate the problem formulated in Section 1, and we show how the
technique of Wiener–Itô integrals can be applied for the investigation of such a problem.
We restrict ourselves to the case of discrete fields, although the case of generalized fields
can be discussed in almost the same way. The proof of some details will be omitted.
They can be found in [9]. First we recall the following

Definition 8A. (Definition of slowly varying functions.) A function L(t), t ∈
[t0,∞), t0 > 0, is said to be a slowly varying function (at infinity) if

lim
t→∞

L(st)

L(t)
= 1 for all s > 0.

We shall apply the following description of slowly varying functions.

Theorem 8A. (Karamata’s theorem.) If a slowly varying function L(t) is bounded
on every finite interval, then it can be represented in the form

L(t) = a(t) exp

{∫ t

t0

ε(s)

s
ds

}
,

where a(t) → a0 6= 0, and ε(t) → 0 as t → ∞, and the functions a(·) and ε(·) are
bounded in every finite interval.

Let Xn, n ∈ Zν , be a stationary Gaussian field with expectation zero and a corre-
lation function

r(n) = EX0Xn = |n|−αa
(
n

|n|

)
L(|n|), n ∈ Zν , (8.1)

where 0 < α < ν, L(t) is a slowly varying function, bounded in all finite intervals, and
a(t) is a continuous function on the unit sphere Sν−1, satisfying the symmetry property
a(x) = a(−x) for all x ∈ Sν−1. Let G denote the spectral measure of the field Xn, and
let us define the measures GN , N = 1, 2, . . . , by the formula

GN (A) =
Nα

L(N)
G

(
A

N

)
, A ∈ Bν , N = 1, 2, . . . . (8.2)
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Now we recall the definition of vague convergence of not necessarily finite measures
on a Euclidean space.

Definition of vague convergence of measures. Let Gn, n = 1, 2, . . . , be a sequence
of locally finite measures over Rν , i.e. let Gn(A) < ∞ for all measurable bounded
sets A. We say that the sequence Gn vaguely converges to a locally finite measure G0

(in notation Gn
v→ G0) if

lim
n→∞

∫
f(x)Gn( dx) =

∫
f(x)G0( dx)

for all continuous functions f with a bounded support.

We formulate the following

Lemma 8.1. Let G be the spectral measure of a stationary field with a correlation
function r(n) of the form (8.1). Then the sequence of measures GN defined in (8.2)
tends vaguely to a locally finite measure G0. The measure G0 has the homogeneity
property

G0(A) = t−αG0(tA) for all A ∈ Bν and t > 0, (8.3)

and it satisfies the identity

2ν
∫
ei(t,x)

ν∏

j=1

1 − cosx(j)

(x(j))2
G0( dx)

=

∫

[−1,1]ν
(1 − |x(1)|) · · · (1 − |x(ν)|)

a
(
x+t
|x+t|

)

|x+ t|α dx, for all t ∈ Rν .

(8.4)

We postpone the proof of Lemma 8.1 for a while.

Formulae (8.3) and (8.4) imply that the function a(t) and the number α in the
definition (8.1) of a correlation function r(n) uniquely determine the measure G0. In-

deed, by formula (8.4) they determine the (finite) measure
ν∏
j=1

1−cos x(j)

(x(j))2
G0( dx), since

they determine its Fourier transform. Hence they also determine the measure G0. (For-
mula (8.3) shows that this is a locally finite measure). Let us also remark that since
GN (A) = GN (−A) for all N = 1, 2, . . . and A ∈ Bν , the relation G0(A) = G0(−A),
A ∈ Bν also holds. These properties of the measure G0 imply that it can be considered
as the spectral measure of a generalized random field. Now we formulate

Theorem 8.2. Let Xn, n ∈ Zν , be a stationary Gaussian field with a correlation
function r(n) satisfying relation (8.1). Let us define the stationary random field ξj =
Hk(Xj), j ∈ Zν , with some positive integer k, where Hk(x) denotes the k-th Hermite
polynomial with leading coefficient 1, and assume that the parameter α appearing in (8.1)
satisfies the relation 0 < α < ν

k . If the random fields ZNn , N = 1, 2, . . . , n ∈ Zν ,
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are defined by formula (1.1) with AN = Nν−kα/2L(N)k/2 and the above defined ξj =
Hk(Xj), then their multi-dimensional distributions tend to those of the random field Z∗

n,

Z∗
n =

∫
χ̃n(x1 + · · · + xk)ZG0( dx1) . . . ZG0( dxk), n ∈ Zν .

Here ZG0 is a random spectral measure corresponding to the spectral measure G0 which
appeared in Lemma 8.1. The function χ̃n(·), n = (n(1), . . . , n(ν)), is (similarly to Sec-
tion 6) the Fourier transform of the uniform distribution on the ν-dimensional unit cube
ν∏
p=1

[n(p), n(p) + 1].

Remark. The condition that the correlation function r(n) of the random field Xn,
n ∈ Zν , satisfies formula (8.1) can be weakened. Theorem 8.2 and Lemma 8.1 remain
valid if (8.1) is replaced by the slightly weaker condition

lim
T→∞

sup
n: n∈Zν , |n|≥T

r(n)

|n|−αa
(
n
|n|

)
L(|n|)

= 1,

where 0 < α < ν, L(t) is a slowly varying function, bounded in all finite intervals, and
a(t) is a continuous function on the unit sphere Sν−1, satisfying the symmetry property
a(x) = a(−x) for all x ∈ Sν−1.

First we explain why the choice of the normalizing constant AN in Theorem 8.2
was natural, then we explain the ideas of the proof, finally we work out the details.

Corollary 5.5 implies in particular that EHk(ξ)Hk(η) = k!(Eξη)k for a Gaussian
random vector (ξ, η) with Eξ = Eη = 0 and Eξ2 = Eη2 = 1. Hence

E(ZNn )2 =
k!

A2
N

∑

j∈BN
0 , l∈BN

0

r(j − l)k ∼ k!

A2
N

∑

j, l∈BN
0

|j − l|−kαak
(
j − l

|j − l|

)
L(|j − l|)k,

with the set BN0 introduced after formula (1.1). Some calculation with the help of the
above formula shows that with our choice of AN the expectation E(ZNn )2 is separated
both from zero and infinity, therefore this is the natural norming factor. In this calcula-
tion we have to exploit the condition kα < ν, which implies that in the sum expressing
E(ZNn )2 those terms are dominant for which j − l is relatively large, more explicitly it
is of order N . There are const.N2ν such terms.

The field ξn is subordinated to the Gaussian field Xn. It is natural to rewrite it
in canonical form, and to express ZNn via multiple Wiener–Itô integrals. Itô’s formula
yields the relation

ξn = Hk

(∫
ei(n,x)ZG( dx)

)
=

∫
ei(n,x1+···+xk)ZG( dx1) . . . ZG( dxk),
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where ZG is the random spectral measure adapted to the random field Xn. Then

ZNn =
1

AN

∑

j∈BN
n

∫
ei(j,x1+···+xk)ZG( dx1) . . . ZG( dxk)

=
1

AN

∫
ei(Nn,x1+···+xk)

ν∏

j=1

eiN(x
(j)
1 +···+x(j)

k
) − 1

ei(x
(j)
1 +···+x(j)

k
) − 1

ZG( dx1) . . . ZG(dxk).

Let us make the substitution yj = Nxj , j = 1, . . . , k, in the last formula, and let
us rewrite it in a form resembling formula (6.5′). To this end, let us introduce the
measures GN defined in (8.2). By Lemma 4.5 we can write

ZNn
∆
=

∫
fN (y1, . . . , yk)χ̃n(y1 + · · · + yk)ZGN

( dy1) . . . ZGN
(dyk)

with

fN (y1, . . . , yk) =

ν∏

j=1

i(y
(j)
1 + · · · + y

(j)
k )(

exp
{
i 1
N (y

(j)
1 + · · · + y

(j)
k )
}
− 1
)
N
. (8.5)

(It follows from Lemma 8B formulated below and the Fubini theorem that the set, where

the denominator of the function fN disappears, i.e. the set where y
(j)
1 +· · ·+y(j)

k = 2lNπ
with some integer l 6= 0 and 1 ≤ j ≤ ν has 0 GN × · · · ×GN measure. This means that
the functions fN are well defined.) The functions fN tend to 1 uniformly in all bounded
regions, and the measures GN tend vaguely to G0 as N → ∞ by Lemma 8.1. These
relations suggest the following limiting procedure. The limit of ZNn can be obtained
by substituting fN with 1 and GN with G0 in the Wiener–Itô integral expressing ZNn .
We want to justify this formal limiting procedure. For this we have to show that
the Wiener–Itô integral expressing ZNn is essentially concentrated in a large bounded
region independent of N . The L2 isomorphism of Wiener–Itô integrals can help us in
showing that. The next lemma is a useful tool for the justification of the above limiting
procedure.

Before formulating this lemma we make a small digression. It was explained that
Wiener–Itô integrals can be defined also with respect to random stationary fields ZG
adapted to a stationary Gaussian random field whose spectral measure G may have
atoms, and we can work with them similarly as in the case of non-atomic spectral
measures. Here a lemma will be proved which shows that in the proof of Theorem 8.2
we do not need this observation, because if the correlation function of the random field
satisfies (8.1), then its spectral measure is non-atomic.

Lemma 8B. Let the correlation function of a stationary field Xn, n ∈ Zν , satisfy the
relation r(n) ≤ A|n|−α with some A > 0 and α > 0 for all n ∈ Zν , n 6= 0. Then its

spectral measure G is non-atomic. Moreover, all hyperplanes
ν∑
j=1

cjx
(j) = d defined with

some constants cj and d have zero G measure.
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Proof of Lemma 8B. Lemma 8B clearly holds if α > ν, because in this case the spectral
measure G has even a density function g(x) =

∑
n∈Zν

e−i(n,x)r(n). On the other hand,

the p-fold convolution of the spectral measure G with itself (on the torus Rν/2πZν) has
Fourier transform, r(n)p, hence in the case p > ν

α it is non-atomic. Hence it is enough
to show that if the convolution G∗G is a non-atomic measure, then so is the measure G.
But this is obvious, because if there were a point x ∈ Rν/2πZν such that G({x}) > 0,
then G∗G({x+x}) > 0 would hold, and this is a contradiction. (Here addition is taken
on the torus.) The proof of the zero G measure of all hyperplanes is similar.

Now we formulate the following result.

Lemma 8.3. Let GN , N = 1, 2, . . . , be a sequence of spectral measures on Rν tend-
ing vaguely to a spectral measure G0. Let a sequence of measurable functions KN =
KN (x1, . . . , xk), N = 0, 1, 2, . . . , be given such that KN ∈ H̄k

GN
for N = 1, 2, . . . . As-

sume further that the following properties hold: For all ε > 0 there exist some constants
A = A(ε) > 0 and N0 = N0(ε) > 0 and finitely many rectangles P1, . . . , PM with some
cardinality M = M(ε) on Rkν which satisfy the following conditions a) and b). (We
call a set P ∈ Bkν a rectangle if it can be written in the form P = L1 × · · · × Lk with
some bounded open sets Ls ∈ Bν , 1 ≤ s ≤ k, with boundaries ∂Ls of zero G0 measure,
i.e. G0(∂Ls) = 0 for all 1 ≤ s ≤ k.)

a) The function K0 is continuous on the set B = [−A,A]kν \
M⋃
j=1

Pj, and KN → K0

uniformly on the set B as N → ∞. Beside this the hyperplanes xp = ±A have zero
G0 measure for all 1 ≤ p ≤ ν.

b)
∫
Rkν\B |KN (x1, . . . , xk)|2GN ( dx1) . . . GN (dxk) <

ε3

k! if N = 0 or N ≥ N0, and

K0(−x1, . . . ,−xk) = K0(x1, . . . , xk) for all (x1, . . . , xk) ∈ Rkν .

Then K0 ∈ H̄k
G0

, and

∫
KN (x1, . . . , xk)ZGN

( dx1) . . . ZGN
( dxk)

D→
∫
K0(x1, . . . , xk)ZG0( dx1) . . . ZG0( dxk)

as N → ∞, where
D→ denotes convergence in distribution.

Remark. In the proof of Theorem 8.2 or of its generalization Theorem 8.2′ formulated
later a simpler version of Lemma 8.3 with a simpler proof would suffice. We could
work with such a version where the rectangles Pj do not appear. We formulated this
somewhat more complicated result, because it can be applied in the proof of more
general theorems, where the limit is given by such a Wiener–Itô integral whose kernel
function may have discontinuities.

Proof of Lemma 8.3. Conditions a) and b) obviously imply that

∫
|K0(x1, . . . , xk)|2G0( dx1) . . . G0( dxk) <∞,
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hence K0 ∈ H̄k
G0

. By using the same argument as in the definition of Wiener–Itô
integrals with atomic spectral measure we can reduce the lemma to the case when the
spectral measures GN , N = 0, 1, 2, . . . , are non-atomic.

Let us fix an ε > 0, and let A > 0, N0 > 0 and the rectangles P1, . . . , PM satisfy
conditions a) and b) with this ε. Then

E

[∫
[1 − χB(x1, . . . , xk)]KN (x1, . . . , xk)ZGN

( dx1) . . . ZGN
( dxk)

]2

≤ k!

∫

Rkν\B
|KN (x1, . . . , xk)|2GN ( dx1) . . . GN ( dxk) < ε3

(8.6)

for N = 0 or N > N0, where χB denotes the indicator function of the set B introduced
in the formulation of condition a).

Since B ⊂ [−A,A]kν , and GN
v→ G0, hence GN × · · · × GN (B) < C(A) with an

appropriate constant C(A) < ∞ for all N = 0, 1, . . . . Because of this estimate and the
uniform convergence KN → K0 on the set B we have

E

[∫
(KN (x1, . . . , xk) −K0(x1, . . . , xk))χB(x1, . . . , xk)ZGN

( dx1) . . . ZGN
( dxk)

]2

≤ k!

∫

B

|KN (x1, . . . , xk) −K0(x1, . . . , xk)|2GN ( dx1) . . . GN ( dxk) < ε3

(8.7)
for N > N1 with some N1 = N1(A, ε).

With the help of formulas (8.6) and (8.7) we reduce the proof of Lemma 8.3 to that
of the relation

∫
K0(x1, . . . , xk)χB(x1, . . . , xk)ZGN

( dx1) . . . ZGN
( dxk)

D→
∫
K0(x1, . . . , xk)χB(x1, . . . , xk)ZG0( dx1) . . . ZG0( dxk).

(8.8)

We do this with the help of a classical result of probability theory about the basic
properties of the so-called Prokhorov metric defined in the following way. Given a
complete separable metric space (X,A) with some metric ρ let S denote the space of
probability measures on it. The Prokhorov metric ρP is the metric in the space S
defined by the formula ρP (µ, ν) = inf{ε: µ(A) ≤ ν(Aε) + ε for all A ∈ A} for two
probability measures µ, ν ∈ S, where Aε = {x: ρ(x,A) < ε}. It is known that ρP is a
metric on S (in particular ρP (µ, ν) = ρP (ν, µ)) which metricizes the weak convergence
of probability measures in the metric space (X,A). (see R.M. Dudley Distances of
probability measures and random variables. Ann. Math. Statist. 39, 1563–1572 (1968)).

I formulated the above result for probability measures in a general metric space,
but I shall work on the real line. Given a random variable ξ let µ(ξ) denote its distri-
bution.Put ξN = k!IGN

(KN (x1, . . . , xk)), N = 0, 1, 2, . . . . With such a notation we can
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formulate the statement of Lemma 8.3 in the following way. For all ε > 0 there exists
some index N ′

0 = N ′
0(ε) such that ρP (µ(ξN ), µ(ξ0)) ≤ 4ε for all N ≥ N ′

0.

To prove this statement let us first show that for three random variables ξ, ξ̄ and η
such that P (|η| ≥ ε) ≤ ε the inequality ρP (µ(ξ + η), µ(ξ̄)) ≤ ρP (µ(ξ), µ(ξ̄)) + ε holds.
Indeed, since {ω: ξ(ω) + η(ω) ∈ A} ⊂ {ω: ξ(ω) ∈ Aε} ∪ {ω: |η(ω)| ≥ ε}, we have
P (ξ + η ∈ A) ≤ P (ξ ∈ Aε) + ε for any set A ∈ B1 if P (|η| ≥ ε) ≤ ε. Beside this,
P (ξ ∈ Aε) ≤ P (ξ̄ ∈ Aε+δ) + δ for all δ > ρP (µ(ξ), µ(ξ̄)). Hence P (ξ + η ∈ A) ≤ P (ξ̄ ∈
Aε+δ) + ε+ δ for all A ∈ B1 and δ > ρP (µ(ξ), µ(ξ̄)), i.e. ρP (µ(ξ+ η), µ(ξ̄)) ≤ ε+ δ, and
this implies the inequality ρP (µ(ξ + η), µ(ξ̄)) ≤ ρP (µ(ξ), µ(ξ̄)) + ε.

Put

ξ
(1)
N = k!IGN

(K0(x1, . . . , xk)χB(x1, . . . , xk)),

ξ
(2)
N = k!IGN

(KN (x1, . . . , xk) −K0(x1, . . . , xk))χB(x1, . . . , xk)),

ξ
(3)
N = k!IGN

(1 − χB(x1, . . . , xk))KN (x1, . . . , xk))

for all N = 0, 1, 2, . . . . With this notation it follows from relation (8.8) and the fact that

the Prokhorov metric metricizes the weak convergence that ρP (µ(ξ
(1)
N ), µ(ξ

(1)
0 )) ≤ ε if

N ≥ N ′
1(ε) with some threshold index N ′

1(ε). Formulas (8.6) and (8.7) together with the

Chebishev inequality imply that P (|ξ(2)N | ≥ ε) ≤ ε and P (|ξ(3)N | ≥ ε) ≤ ε if N ≥ N ′
2(ε)

or N = 0 with some threshold index N ′
2(ε). Beside this, we have ξ0 = ξ

(1)
0 + ξ

(3)
0 and

ξN = ξ
(1)
N + ξ

(2)
N + ξ

(3)
N for N = 1, 2, . . . . The above mentioned properties of the random

variables we considered together with the result of the previous paragraph imply that

ρP (µ(ξN ), µ(ξ0)) = ρP (µ(ξ
(1)
N + ξ

(2)
N + ξ

(3)
N ), µ(ξ

(1)
0 + ξ

(3)
0 ))

≤ ρP (µ(ξ
(1)
N + ξ

(2)
N + ξ

(3)
N ), µ(ξ

(3)
0 )) + ε

≤ ρP (µ(ξ
(2)
N + ξ

(3)
N ), µ(ξ

(3)
0 )) + 2ε

≤ ρP (µ(ξ
(3)
N ), µ(ξ

(3)
0 )) + 3ε ≤ 4ε

if N ≥ N ′
0(ε) = max(N ′

1(ε), N
′
2(ε)), and this is what we wanted to prove.

To prove (8.8) we will show that K0(x1, . . . , xk)χB(x1, . . . , xk) can be well ap-

proximated by functions from ˆ̄H
k

G0
in the following sense. For all ε > 0 there exists

such an (elementary) function fε ∈ ˆ̄H
k

G0
for which the L2

Gk
0

norm of the difference

fε(x1, . . . , xk)−K0(x1, . . . , xk)χB(x1, . . . , xk) is less than ε3

k! , and also the L2
Gk

N

norm of

this difference is smaller than ε3

k! if N ≥ N2 with some threshold N2 = N2(ε). Moreover,

the function fε has the following additional property. The function fε ∈ ˆ̄H
k

G0
is adapted

to such a regular system D = {∆j , j = ±1, . . . ,±M} for which the boundaries of the
sets ∆j satisfy the relation G0(∂∆j) = 0 for all j = ±1, . . . ,±M .

First I claim that such a function fε ∈ ˆ̄H
k

G0
satisfies the relation

∫
fε(x1, . . . , xk)ZGN

( dx1) . . . ZGN
( dxk)

D→
∫
fε(x1, . . . , xk)ZG0( dx1) . . . ZG0( dxk)

(8.9)
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as N → ∞. To prove (8.9) observe that for the regular system D = {∆j , j =

±1, . . . ,±M} to which the function fε ∈ ˆ̄H
k

G0
is adapted has the following property: The

(Gaussian) random vectors (ZGN
(∆j), j = ±1, . . . ,±M) converge in distribution to the

(Gaussian) random vector (ZG0(∆j), j = ±1, . . . ,±M) as N → ∞. (We needed at this

point the property G0(∂∆j) = 0. It follows from the vague convergence GN
v→ G0, (sim-

ilarly to the case of weak convergence) that lim
N→∞

GN (∆j) = G0(∆j) if G0(∂∆j) = 0,

which also implies the weak convergence of the above mentioned random vectors, but
the condition G0(∂∆j) = 0 cannot be dropped here.) Beside this, the Wiener–Itô in-
tegrals in formula (8.9) are polynomials (not depending on the parameter N) of these
random vectors. Hence relation (8.9) holds.

The approximation result formulated after formula (8.8) implies the existence of
such a function Vε ∈ H̄k

G for all ε > 0 for which

k!IG(K0(x1, . . . , xk)χB(x1, . . . , xk)) = k!IG(fε(x1, . . . , xk)) + k!IG(Vε(x1, . . . , xk))

with the above considered function fε, and

E

(∫
Vε(x1, . . . , xk)ZGN

( dx1) . . . ZGN
( dxk)

)2

≤ k!

∫
(K0(x1, . . . , xk)χB(x1, . . . , xk) − fε(x1, . . . , xk))

2GN ( dx1) . . . GN ( dxk) ≤ ε3

if N ≥ N2 with some N2 = N2(ε) or N = 0. The last inequality together with
formula (8.9) imply (8.8) in the same way as inequalities (8.6), (8.7) and (8.8) imply
Lemma 8.3.

We still have to prove that K0(x1, . . . , xk)χB(x1, . . . , xk) can be well approxi-
mated by an appropriate elementary function fε. This can be reduced with help
of the relation GN

v→ G0 to the following simpler statement where only the limit

measure G0 is considered. For all ε > 0 there is a function fε ∈ ˆ̄H
k

G0
for which∫

|K0(x1, . . . , xk)χB(x1, . . . , xk) − fε(x1, . . . , xk)|2G0( dx1) . . . G0( dxk) <
ε3

k! , and it is
adapted to such a regular system D = {∆j , j = ±1, . . . ,±N̄} whose elements ∆j have
boundaries of zero G0 measure.

Indeed, as |K0(x1, . . . , xk)χB(x1, . . . , xk) − fε(x1, . . . , xk)|2 is a bounded function
with a compact support which is continuous in almost all points with respect to the mea-
sure G0 × · · · ×G0︸ ︷︷ ︸

k

the relation GN
v→ G0 together with the above statement about G0

also implies the inequality

∫
|K0(x1, . . . , xk)χB(x1, . . . , xk) − fε(x1, . . . , xk)|2GN ( dx1) . . . GN ( dxk) <

ε3

k!

if N ≥ N2(ε).
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The existence of the approximating function fε ∈ ˆ̄H
k

G0
with the desired properties

can be shown similarly to proof of the result that ˆ̄H
n

G is a dense subset of H̄n
G. We can

reduce the statement we want to verify first to a slightly modified version of Statement A
and then to a slightly modified version of Statement B in the proof of the result about

the good approximability of a function in H̄n
G by a function in ˆ̄H

n

G. In the modified
version of Statement A we are dealing with such sets A and A1 whose boundaries have
zero Gk0 measures, and we demand the same property about the set B ∈ Bkν appearing
in their approximation. Similarly, in the modified version of Statement B we are dealing
with such sets Dj whose boundaries have zero G0 measure, and we demand that the set
F ∈ Bkν providing a good approximation also must have boundaries of zero Gk0 measure.
This can be proved similarly to the original statements. We leave to the reader to work
out the details.

Remark. We have formulated this statement in the case when GN is a spectral measure
on Rν . But it remains valid if GN is a spectral measure on the torus of size 2CNπ with
CN → ∞ if N → ∞ if we identify this torus with the set [−CNπ,CNπ)ν ⊂ Rν in a
natural way.

Now we turn to the proof of Theorem 8.2.

The proof of Theorem 8.2. We want to prove that for all positive integers p, real numbers
c1, . . . , cp and nl ∈ Zν , l = 1, . . . , p,

p∑

l=1

clZ
N
nl

D→
p∑

l=1

clZ
∗
nl
,

since this relation also implies the convergence of the multi-dimensional distributions.
Applying the same calculation as before we get with the help of Lemma 4.5 that

p∑

l=1

clZ
N
nl

=
1

AN

p∑

l=1

cl

∫ ∑

j∈BN
nl

ei(j,x1+···+xk) ZG( dx1) . . . ZG( dxk),

and
p∑

l=1

clZ
N
nl

∆
=

∫
KN (x1, . . . , xk)ZGN

( dx1) . . . ZGN
( dxk)

with

KN (x1, . . . , xk) =
1

Nν

p∑

l=1

cl
∑

j∈BN
nl

exp

{
i

(
j

N
, x1 + · · · + xk

)}

= fN (x1, . . . , xk)

p∑

l=1

clχ̃nl
(x1 + · · · + xk).

(8.10)

with the function fN defined in (8.5) and the measure GN defined in (8.2).
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Let us define the function

K0(x1, . . . , xk) =

p∑

l=1

clχ̃nl
(x1 + · · · + xk)

and the measures µN on Rkν by the formula

µN (A) =

∫

A

|KN (x1, . . . , xk)|2GN ( dx1) . . . GN ( dxk), A ∈ Bkν and N = 0, 1, . . . ,

(8.11)
where G0 is the vague limit of the measures GN .

To prove Theorem 8.2 it is enough to show that Lemma 8.3 can be applied with
these spectral measures GN and functions KN . (We choose no exceptional rectangles Pj
in this application of Lemma 8.3.) Since GN

v→ G0, and KN → K0 uniformly in all
bounded regions in Rkν , it is enough to show, beside the proof of Lemma 8.1, that
the measures µN , N = 1, 2, . . . , tend weakly to the (necessary finite) measure µ0,

(in notation µN
w→ µ0), i.e.

∫
f(x)µN ( dx) →

∫
f(x)µ0( dx) for all continuous and

bounded functions f on Rkν . Then this convergence implies condition b) in Lemma 8.3.
Moreover, it is enough to show the slightly weaker statement by which there exists some
finite measure µ̄0 such that µN

w→ µ̄0, since then µ̄0 must coincide with µ0 because of
the relations GN

v→ G0 and KN → K0 uniformly in all bounded regions of Rkν , and
K0 is a continuous function.

There is a well-known theorem in probability theory about the equivalence between
weak convergence of finite measures and the convergence of their Fourier transforms. It
would be natural to apply this theorem for proving µN

w→ µ̄0. On the other hand, we
have the additional information that the measures µN , N = 1, 2, . . . , are concentrated
in the cubes [−Nπ,Nπ)kν , since the spectral measure G is concentrated in [−π, π)ν .
It is more fruitful to apply a version of the above mentioned theorem, where we can
exploit our additional information. We formulate the following

Lemma 8.4. Let µ1, µ2, . . . be a sequence of finite measures on Rl such that µN (Rl \
[−CNπ,CNπ)l) = 0 for all N = 1, 2, . . . , with some sequence CN → ∞ as N → ∞.
Define the modified Fourier transform

ϕN (t) =

∫

Rl

exp

{
i

(
[tCN ]

CN
, x

)}
µN ( dx), t ∈ Rl,

where [tCN ] is the integer part of the vector tCN ∈ Rl. (For an x ∈ Rl its integer part
[x] is the vector n ∈ Zl for which x(p) − 1 < n(p) ≤ x(p) if x(p) ≥ 0, and x(p) − 1 ≤
n(p) < x(p) + 1 if x(p) < 0 for all p = 1, 2, . . . , l.) If for all t ∈ Rl the sequence ϕN (t)
tends to a function ϕ(t) continuous at the origin, then the measures µN weakly tend to
a finite measure µ0, and ϕ(t) is the Fourier transform of µ0.

I make some comments on the conditions of Lemma 8.4. Let us observe that if the
measures µN or a part of them are shifted with a vector 2πCNu with some u ∈ Zl, then
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their modified Fourier transforms ϕN (t) do not change because of the periodicity of the
trigonometrical functions ei(j/CN ,x), j ∈ Zl. On the other hand, these new measures
which are not concentrated in [−CNπ,CNπ)l, have no limit. Lemma 8.4 states that if
the measures µN are concentrated in the cubes [−CNπ,CNπ)l, then the convergence of
their modified Fourier transforms defined in Lemma 8.4, which is a weaker condition,
than the convergence of their Fourier transforms, also implies their convergence to a
limit measure.

Proof of Lemma 8.4. The proof is a natural modification of the proof about the equiva-
lence of weak convergence of measures and the convergence of their Fourier transforms.
First we show that for all ε > 0 there exits some K = K(ε) such that

µN (x: x ∈ Rl, |x(1)| > K) < ε for all N ≥ 1. (8.12)

As ϕ(t) is continuous at the origin there is some δ > 0 such that

|ϕ(0, . . . , 0) − ϕ(t, 0, . . . , 0)| < ε

2
if |t| < δ. (8.13)

We have
0 ≤ Re [ϕN (0, . . . , 0) − ϕN (t, 0, . . . , 0)] ≤ 2ϕN (0, . . . , 0) (8.14)

for all N = 1, 2, . . . . The sequence in the middle term of (8.14) tends to Re [ϕ(0, . . . , 0)−
ϕ(t, 0, . . . , 0)] as N → ∞. The right-hand side of (8.14) is a bounded function in the
variable N , since it is convergent. Hence the dominated convergence theorem can be
applied. We get because of the condition CN → ∞ and relation (8.13) that

lim
N→∞

∫ [δCN ]/CN

0

1

δ
Re [ϕN (0, . . . , 0) − ϕN (t, 0, . . . , 0)] dt

=

∫ δ

0

1

δ
Re [ϕ(0, . . . , 0) − ϕ(t, 0, . . . , 0)] dt <

ε

2
.

Hence

ε

2
> lim
N→∞

∫ [δCN ]/CN

0

1

δ
Re [ϕN (0, . . . , 0) − ϕN (t, 0, . . . , 0)] dt

= lim
N→∞

∫ (
1

δ

∫ [δCN ]/CN

0

Re [1 − ei[tCN ]x(1)/CN ] dt

)
µN ( dx)

= lim
N→∞

∫
1

δCN

[δCN ]−1∑

j=0

Re
[
1 − eijx

(1)/CN

]
µN ( dx)

≥ lim sup
N→∞

∫

{|x(1)|>K}

1

δCN

[δCN ]−1∑

j=0

Re
[
1 − eijx

(1)/CN

]
µN ( dx)

= lim sup
N→∞

∫

{|x(1)|>K}

(
1 − 1

δCN
Re

1 − ei[δCN ]x(1)/CN

1 − eix(1)/CN

)
µN ( dx)
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with arbitrary K > 0. (In the last but one step of this calculation we have exploited

that 1
δCN

[δCN ]−1∑
j=0

Re [1 − eijx
(1)/CN ] ≥ 0 for all x(1) ∈ R1.)

Since the measure µN is concentrated in {x: x ∈ Rl, |x(1)| ≤ CNπ}, and

Re
1 − ei[δCN ]x(1)/CN

1 − eix(1)/CN
=

Re
(
ie−ix

(1)/2CN

(
1 − ei[δCN ]x(1)/CN

))

i(e−ix(1)/2CN − eix(1)/2CN )

≤ 1∣∣∣∣sin
(
x(1)

2CN

)∣∣∣∣
≤ CNπ

|x(1)|

if |x(1)| ≤ CNπ, (here we exploit that | sinu| ≥ 2
π |u| if |u| ≤ π

2 ), hence we have with the
choice K = 2π

δ

ε

2
> lim sup

N→∞

∫

{|x(1)|>K}

(
1 −

∣∣∣ π

δx(1)

∣∣∣
)
µN ( dx) ≥ lim sup

N→∞

1

2
µN (|x(1)| > K).

As the measures µN are finite the inequality µN (|x(1)| > K) < ε holds for each index N
with a constant K = K(N) that may depend on N . Hence the above inequality implies
that formula (8.12) holds for all N ≥ 1 with a possibly larger index K that does not
depend on N .

Applying the same argument to the other coordinates we find that for all ε > 0
there exists some C(ε) <∞ such that

µN
(
Rl \ [−C(ε), C(ε)]l

)
< ε for all N = 1, 2, . . . .

Consider the usual Fourier transforms

ϕ̃N (t) =

∫

Rl

ei(t,x)µN ( dx), t ∈ Rl.

Then

|ϕN (t)− ϕ̃N (t)| ≤ 2ε+

∫

[−C(ε),C(ε)]

∣∣∣ei(t,x) − ei([tCN ]/CN ,x)
∣∣∣µN ( dx) ≤ 2ε+

lC(ε)

CN
µN (Rl)

for all ε > 0. Hence ϕ̃N (t) − ϕN (t) → 0 as N → ∞, and ϕ̃N (t) → ϕ(t). (Observe that
µN (Rl) = ϕN (0) → ϕ(0) < ∞ as N → ∞, hence the measures µN (Rl) are uniformly
bounded, and CN → ∞ by the conditions of Lemma 8.4.) Then Lemma 8.4 follows
from standard theorems on Fourier transforms.

We return to the proof of Theorem 8.2. We apply Lemma 8.4 with CN = N and
l = kν for the measures µN defined in (8.11). Because of the middle term in (8.10) we
can write

ϕN (t1, . . . , tk) =

p∑

r=1

p∑

s=1

crcsψN (t1 + nr − ns, . . . , tk + nr − ns)
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with

ψN (t1, . . . , tr) =
1

N2ν

∫
exp

{
i

1

N
((j1, x1) + · · · + (jk, xk))

}

∑

p∈BN
0

∑

q∈BN
0

exp

{
i

(
p− q

N
, x1 + · · · + xk

)}
GN ( dx1) . . . GN ( dxk)

=
1

N2ν−kαL(N)k

∑

p∈BN
0

∑

q∈BN
0

r(p− q + j1) · · · r(p− q + jk), (8.15)

where jp = [tpN ], tp ∈ Rν , p = 1, . . . , k.

The asymptotical behaviour of ψN (t1, . . . , tk) for N → ∞ can be investigated by
the help of the last relation and formula (8.1). Rewriting the last double sum in the
form of a single sum by fixing first the variable l = p − q ∈ [−N,N ]ν ∩ Zν , and then
summing up for l one gets

ψN (t1, . . . , tk) =

∫

[−1,1]ν
fN (t1, . . . , tk, x) dx

with

fN (t1, . . . , tk, x) =

(
1 − [|x(1)N |]

N

)
· · ·
(

1 − [|x(ν)N |]
N

)
r([xN ] + j1)

N−αL(N)
· · · r([xN ] + jk)

N−αL(N)
.

(In the above calculation we exploited that in the last sum of formula (8.15) the number
of pairs (p, q) for which p− q = l = (l1, . . . , lν) equals (N − |l1|) · · · (N − |lν |).)

It can be seen with the help of formula (8.1) that

fN (t1, . . . , tk, x) → f0(t1, . . . , tk, x) (8.16)

with

f0(t1, . . . , tk, x) = (1 − |x(1)|) . . . (1 − |x(ν)|)
a
(
x+t1
|x+t1|

)

|x+ t1|α
. . .

a
(
x+tk
|x+tk|

)

|x+ tk|α

uniformly on the set x ∈ [1, 1]ν \
k⋃
p=1

{x: |x+ tp| > ε} for all ε > 0.

We claim that

ψN (t1, . . . , tk) → ψ0(t1, . . . , tk) =

∫

[−1,1]ν
f0(t1, . . . , tk, x) dx,

and ψ0 is a continuous function.

This relation implies that µN
w→ µ0. To prove it, it is enough to show beside

formula (8.16) that
∣∣∣∣∣

∫

|x+tp|<ε
f0(t1, . . . , tk, x) dx

∣∣∣∣∣ < C(ε), p = 1, . . . , k, (8.17)
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and
∫

|x+tp|<ε
|fN (t1, . . . , tk, x)| dx < C(ε), p = 1, . . . , k, and N = 1, 2, . . . (8.17′)

with a constant C(ε) such that C(ε) → 0 as ε→ 0.

By Hölder’s inequality

∣∣∣∣∣

∫

|x+tp|<ε
f0(t1, . . . , tk, x) dx

∣∣∣∣∣ ≤ C
∏

1≤l≤k, l 6=p

[∫

x∈[−1,1]ν
|x+ tl|−kα dx

]1/k

[∫

|x+tp|≤ε
|x+ tp|−kα dx

]1/k

≤ C ′eν/k−α

with some appropriate C > 0 and C ′ > 0, since ν − kα > 0, and a(·) is a bounded
function. Similarly,

∫

|x+tp|<ε
|fN (t1, . . . , tk, x)| dx ≤

∏

1≤l≤k, l 6=p

[∫

x∈[−1,1]ν

|r([xN ] + jl)|k
N−kαL(N)k

dx

]1/k

,

[∫

|x+tp|≤ε

|r([xN ] + jp)|k
N−kαL(N)k

dx

]1/k

It is not difficult to see, by using Karamata’s theorem, that if L(·) is a slowly
varying function which is bounded in all finite intervals, then for all η > 0 there is a
threshold index N0 and a number C = C(N0, η) such that

L(tN) ≤ Ct−ηL(N) for all t < 1 and N ≥ N0.

Hence formula (8.1) implies that

|r([xN ] + jl)| = |r([xN ] + [tlN ]) ≤ CN−αL(N)(1 + |x+ tl|−α−η), (8.18)

and

∫

|x+tp|<ε

|r([xN ] + jp)|k
N−kαL(N)k

dx ≤ B

∫

|x+tp|<ε
(1 + |x+ tp|−k(α+η)) dx ≤ B′εν−k(α+η)

∫

x∈[−1,1]ν

|r([xN ] + jl)|k
N−kαL(N)k

dx ≤ B′′.

for a sufficiently small constant η > 0 with some constants B,B′, B′′ < ∞ depending
on η and tp, 1 ≤ p ≤ k. (Let us remark that (8.18) holds also for |[xN ] + jl| ≤ K1

with some K1 > 0 independent of N , i.e. when the argument of r(·) is relatively small,
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because |r(n)| ≤ 1 for all n ∈ Zν .) Therefore we get, by choosing an η > 0 such that
k(α+ η) < ν, the inequality

∫

|x+tp|<ε
|fN (t1, . . . , tk, x)| dx ≤ Cεν/k−(α+η)

with some C < ∞. The right-hand side of this inequality tends to zero as ε → 0.
Hence we proved beside (8.16) formulae (8.17) and (8.17′), therefore also the relation

µN
w→ µ0. To complete the proof of Theorem 8.2 it remains to prove Lemma 8.1.

Proof of Lemma 8.1. Introduce the notation

KN (x) =
ν∏

j=1

eix
(j) − 1

N(eix(j)/N − 1)
, N = 1, 2, . . . ,

and

K0(x) =

ν∏

j=1

eix
(j) − 1

ix(j)
.

Let us consider the measures µN defined in formula (8.11) in the special case k = 1,
p = 1, c1 = 1. Then

µN (A) =

∫

A

|KN (x)|2GN ( dx).

We have already seen in the proof of Theorem 8.2 that µN
w→ µ0 with some finite

measure µ0, and the Fourier transform of µ0 is

ϕ0(t) =

∫

[−1,1]ν
(1 − |x(1)|) · · · (1 − |x(ν)|)

a
(
x+t
|x+t|

)

|x+ t|α dx.

First we show that for all T ≥ 1 there is a finite measure GT0 concentrated on [−Tπ, Tπ]ν

such that

lim
N→∞

∫
f(x)GN ( dx) =

∫
f(x)GT0 ( dx) (8.19)

for all continuous functions f which vanish outside the cube [−Tπ, Tπ]ν .

Let a continuous function f vanish outside the cube [−Tπ, Tπ]ν with some T ≥ 1.
Let M = [ N2T ]. Then

∫
f(x)GN ( dx) =

Nα

L(N)
· L(M)

Mα

∫
f

(
N

M
x

)
GM ( dx)

=
NαL(M)

MαL(N)

∫
f

(
N

M
x

)
|KM (x)|−2µM ( dx)

→ (2T )α
∫
f(2Tx)|K0(x)|−2µ0( dx)

=

∫
f(x)

(2T )α

|K0(
x
2T )|2µ0

(
dx

2T

)
as N → ∞,
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because f(NM x)|KM (x)|−2 vanishes outside the cube [−π, π]ν , f(NM x)|KM (x)|−2 →
f(2Tx)|K0(x)

−2 uniformly, (the function K0(·)−2 is continuous in the cube [−π, π]ν ,)

and µM
w→ µ0 as N → ∞. Hence relation (8.19) holds. The measures GT0 appearing

in (8.19) are consistent for different parameters T , i.e. GT0 is the restriction of the mea-
sure GT

′

0 to the cube [−Tπ, Tπ]ν if T ′ > T . It can be seen with the help of these facts
that there is a locally finite measure G0 on Rν such that GT0 is its restriction to the

cube [−Tπ, Tπ]ν , and GN
v→ G0.

As GN
v→ G0, and |KN (x)|2 → |K0(x)|2 uniformly in all bounded regions, hence

µN
v→ µ̄0, where µ̄0(A) =

∫
A
|K0(x)|2G0( dx), A ∈ Bν . Since µN

w→ µ0 the measures µ0

and µ̄0 must coincide, i.e.

µ0(A) =

∫

A

|K0(x)|2G0( dx), A ∈ Bν .

Relation (8.4) expresses the fact that ϕ0 is the Fourier transform of µ0.

Let us extend the definition of the measures GN given in (8.2) to all non-negative

real numbers u. It is easy to see that the relation Gu
v→ G0 as u → ∞ remains valid.

Hence we get for all fixed s > 0 and continuous functions f with compact support that

∫
f(x)G0( dx) = lim

u→∞

∫
f(x)Gu( dx) = lim

u→∞

sαL(us )

L(u)

∫
f(sx)Gu

s
( dx)

= sα
∫
f(sx)G0( dx) =

∫
f(x)sαG0

(
dx

s

)
.

This identity implies the homogeneity property (8.3) of G0. Lemma 8.3 is proved.

The next result is a generalization of Theorem 8.2.

Theorem 8.2′. Let Xn, n ∈ Zν , be a stationary Gaussian field with a correlation
function r(n) defined in (8.1). Let H(x) be a real function with the properties EH(Xn) =
0 and EH(Xn)

2 <∞. Let us consider the Fourier expansion

H(x) =
∞∑

j=1

cjHj(x),
∑

c2jj! <∞, (8.20)

of the function H(·) by the Hermite polynomials Hj (with leading coefficients 1). Let k
be the smallest index in this expansion such that ck 6= 0. If 0 < kα < ν in (8.1), and
the field ZNn is defined by the field ξn = H(Xn), n ∈ Zν , and formula (1.1), then the
multi-dimensional distributions of the fields ZNn with AN = Nν−kα/2L(N)k/2 tend to
those of the fields ckZ

∗
n, n ∈ Zν , where the field Z∗

n is the same as in Theorem 8.2.

Proof of Theorem 8.2′. Define H ′(x) =
∞∑

j=k+1

cjHj(x) and Y Nn = 1
AN

∑
l∈BN

n

H ′(Xl).

Because of Theorem 8.2 in order to prove Theorem 8.2′ it is enough to show that

E(Y Nn )2 → 0 as N → ∞.
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It follows from Corollary 5.5 that

E(Y Nn )2 =
1

A2
N

∞∑

j=k+1

j!
∑

s,t∈BN
n

[r(s− t)]j .

Hence a simple calculation with the help of formula (8.1) yields

E(Y Nn )2 =
1

A2
N

[
O(N2ν−(k+1)αL(N)k+1) +O(Nν)

]
→ 0.

Theorem 8.2′ is proved.

Let us consider a slightly more general version of the problem investigated in Theo-
rem 8.2′. Take a stationary Gaussian random fieldXn, EXn = 0, EX2

n = 1, n ∈ Zν with
a correlation function satisfying relation (8.1), and the field ξn = H(Xn), n ∈ Zν , subor-
dinated to it with a general function H(x) such that EH(Xn) = 0 and EH(Xn)

2 <∞.
We are interested in the large-scale limit of such random fields. Take the Hermite expan-
sion (8.20) of the function H(x), and let k be the smallest such index for which ck 6= 0
in the expansion (8.20). In Theorem 8.2′ we solved this problem if 0 < kα < ν. We are
interested in the question what happens in the case when kα > ν. Let me remark that
in the case kα ≥ ν the field Z∗

n, n ∈ Zν , which appeared in the limit in Theorem 8.2′

does not exist. The Wiener-Itô integral defining Z∗
n is meaningless, because the integral

which should be finite to guarantee the existence of the Wiener–Itô integral is divergent
in this case. Next I formulate a general result which contains the answer to the above
question as a special case.

Theorem 8.5. Let us consider a stationary Gaussian random field Xn, EXn = 0,
EX2

n = 1, n ∈ Zn, with correlation function r(n) = EXmXm+n, m,n ∈ Zν . Take
a function H(x) on the real line such that EH(Xn) = 0 and EH(Xn)

2 < ∞. Take
the Hermite expansion (8.20) of the function H(x), and let k be smallest index in this
expansion such that ck 6= 0. If

∑

n∈Zν

|r(n)|k <∞, (8.21)

then the limit

lim
N→∞

EZNn (Hl)
2 = lim

N→∞
N−ν

∑

i∈BN
n

∑

j∈BN
n

rl(i− j) = σ2
l l!

exists for all indices l ≥ k, where ZNn (Hl) is defined in (1.1) with AN = Nν/2, and ξn =
Hl(Xn) with the l-th Hermite polynomial Hl(x) with leading coefficient 1. Moreover,
also the inequality

σ2 =

∞∑

l=k

c2l l!σ
2
l <∞
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holds.

The finite dimensional distributions of the random field ZNn (H) defined in (1.1)
with AN = Nν/2 and ξn = H(Xn) tend to the finite dimensional distributions of a
random field σZ∗

n with the number σ defined in the previous relation, where Z∗
n, n ∈ Zν ,

are independent, standard normal random variables.

Theorem 8.5 can be applied if the conditions of Theorem 8.2′ hold with the only
modification that the condition kα < ν is replaced by the relation kα > ν. In this
case the relation (8.21) holds, and the large-scale limit of the random field ZNn , n ∈ Zν

with normalization AN = Nν/2 is a random field consisting of independent standard
normal random variables multiplied with the number σ. There is a slight generalization
of Theorem 8.5 which also covers the case kα = ν. In this result we assume instead of
the condition (8.21) that

∑
n∈B̄N

r(n)k = L(N) with a slowly varying function L(·), where

B̄N = {(n1, . . . , nν) ∈ Zν : −N ≤ nj ≤ N, 1 ≤ j ≤ ν}, and some additional condition
is imposed which states that an appropriately defined finite number σ2 = lim

N→∞
σ2
N ,

which plays the role of the variance of the random variables in the limiting field, exists.
There is a similar large scale limit in this case as in Theorem 8.5, the only difference
is that the norming constant in this case is AN = Nν/2L(N)1/2. This result has the
consequence that if the conditions of Theorem 8.2′ hold with the only differnce that
kα = ν instead of kα < ν, then the large scale limit exists with norming constants
AN = Nν/2L(N) with an appropriate slowly varying function L(·), and it consists of
independent Gaussian random variables with expectation zero.

The proof of Theorem 8.5 and its generalization that we did not formulate here
explicitly appeared in paper [3]. I omit its proof, I only make some short explanation
about it.

In the proof we show that all moments of the random variables ZNn converge to
the corresponding moments of the random variables Z∗

n as N → ∞. The moments
of the random variables ZNn can be calculated by means of the diagram formula if
we either rewrite them in the form of a Wiener–Itô integral or apply a version of the
diagram formula which gives the moments of Wick polynomials instead of Wiener–
Itô integrals. In both cases the moments can be expressed explicitly by means of the
correlation function of the underlying Gaussian random field. The most important step
of the proof is to show that we can select a special subclass of (closed) diagrams, called
regular diagrams in [3] which yield the main contribution to the moment E(ZNn )M , and
their contribution can be simply calculated. The contribution of all remaining diagrams
is o(1), hence it is negligible. For the sake of simplicity let us restrict our attention to
the case H(x) = Hk(x) when defining the regular diagrams. If M is an even number,
then take a partion {k1, k2}, {k3, k4}, . . . , {kM−1, kM} of the set {1, . . . ,M} to subsets
consisting of exactly two elements, to define the regular diagrams. They are those
(closed) diagrams which contain only edges connecting vertices from the k2j−1-th and
k2j-th row of the diagram with some 1 ≤ j ≤ M

2 , where {k2j−1, k2j} is an element of
the above partition. If M is an odd number, then there is no regular diagram.

In Theorems 8.2 and 8.2′ we investigated some very special subordinated fields.
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The next result shows that the same limiting field as the one in Theorem 8.2 appears
in a much more general situation.

Let us define the field

ξn =
∞∑

j=k

1

j!

∫
ei(n,x1+···+xj)αj(x1, . . . , xj)ZG( dx1) . . . ZG( dxj), n ∈ Zν , (8.22)

where ZG is the random spectral measure adapted to a Gaussian field Xn, n ∈ Zν , with
correlation function satisfying (8.1) with 0 < α < ν

k .

Theorem 8.6. Let the fields ZNn be defined by formulae (8.22) and (8.1) with AN =
Nν−kα/2. The multi-dimensional distributions of the fields ZNn tend to those of the
field αk(0, . . . , 0)Z∗

n where the field Z∗
n is the same as in Theorem 8.2 if the following

conditions are fulfilled:

(i) αk(x1, . . . , xk) is a bounded function, continuous at the origin, and such that
αk(0, . . . , 0) 6= 0.

(ii)

∞∑

j=k=1

1

j!

N−(j−k)α

L(N)j−k

∫

Rjν

∣∣∣αj
(x1

N
, . . . ,

xj
N

)∣∣∣
2 1

N2ν

∣∣∣∣∣∣

∑

j∈BN
0

ei(l/N,x1+···+xj)

∣∣∣∣∣∣

2

GN ( dx1) . . . GN ( dxj) → 0,

where GN is defined in (8.2).

Proof of Theorem 8.6. The proof is very similar to those of Theorem 8.2 and 8.2′. The
same argument as in the proof of Theorem 8.2′ shows that because of condition (ii) ξn
can be substituted in the present proof by the following expression:

ξ′n =
1

k!

∫
ei(n,x1+···+xk)αk(x1, . . . , xk)ZG( dx1) . . . ZG( dxk), n ∈ Zν .

Then a natural modification in the proof of Theorem 8.2 implies Theorem 8.6. The
main point in this modification is that we have to substitute the measures µN defined
in formula (8.11) by the following measure µ̄N :

µ̄N (A) =

∫

A

|KN (x1, . . . , xk)|2
∣∣∣αk

(x1

N
, . . . ,

xk
N

)∣∣∣
2

GN ( dx1) . . . GN ( dxk), A ∈ Bkν ,

and to observe that because of condition (i) the limit relation µN
w→ µ0 implies that

µ̄N
w→ |αk(0, . . . , 0)|2µ0.

The main problem in applying Theorem 8.6 is to check conditions (i) and (ii). We
remark without proof that any field ξn = H(Xs1+n, . . . , Xsp+n), s1, . . . , sp ∈ Zν and
n ∈ Zν , for which Eξ2n < ∞ satisfies condition (ii). This is proved in Remark 6.2
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of [9]. If the conditions (i) or (ii) are violated, then a limit of different type may appear.
Finally we quote such a result without proof. (See [23] for a proof.) Here we restrict
ourselves to the case ν = 1. The limiting field appearing in this result belongs to the
class of self-similar fields constructed in Remark 6.5.

Let an, n = . . . ,−1, 0, 1, . . . , be a sequence of real numbers such that

an = C(1)n−β−1 + o(n−β−1) if n ≥ 0

an = C(2)|n|−β−1 + o(|n|−β−1) if n < 0
− 1 < β < 1. (8.22)

Let Xn, n = . . . ,−1, 0, 1, . . . , be a stationary Gaussian sequence with correlation func-
tion r(n) = EX0Xn = |n|−αL(|n|), 0 < α < 1, where L(·) is a slowly varying function.
Define the field ξn, n = . . . ,−1, 0, 1, . . . , as

ξn =

∞∑

m=−∞
amHk(Xm+n). (8.22)

Theorem 8.7. Let a sequence ξn, n = . . . ,−1, 0, 1, . . . , be defined by (8.23) and (8.24).
Let 0 < kα < 1, 0 < 1−β− k

2α < 1, and let one of the following conditions be satisfied.

(a) 0 < β < 1, and
∞∑

n=−∞
an = 0.

(b) 0 > β > −1.

(c) β = 0, C(1) = −C(2), and
∞∑
n=0

|an + a−n| <∞.

Let us define the sequences ZNn by formula (1.1) with AN = N1−β−kα/2L(N)k/2 and the
above defined field ξn. The multi-dimensional distributions of the sequences ZNn tend to
those of the sequences D−kZ∗

n(α, β, a, b, c), where

Z∗
n(α, β, k, b, c) =

∫
χ̃n(x1 + · · · + xk)

[
b|x1 + · · · + xk|β + ic|x1 + · · · + xk|βsign (x1 + · · · + xk)

]

|x1|(α−1)/2 · · · |xk|(α−1)/2W ( dx1) . . .W ( dxk),

W (·) denotes the white noise field, i.e. a random spectral measure corresponding to the
Lebesgue measure, and the constants D, b and c are defined as D = 2Γ(α) cos(α2 π), and

b = 2[C(1)+C(2)]Γ(−β) sin(β+1
2 π), c = 2[C(1)−C(2)]Γ(−β) cos(β+1

2 π) in case (a)
and (b), and

b =
∞∑

n=−∞
an, c = C(1) in case (c).
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9. History of the problems. Comments.

Section 1.

In statistical physics the problem formulated in this section appeared at the investi-
gation of some physical models at critical temperature. A discussion of this problem
and further references can be found in the fourth chapter of the forthcoming book
of Ya. G. Sinai [33]. The first example of a limit theorem for partial sums of ran-
dom variables which is considerably different form the independent case was given by
M. Rosenblatt in [28]. Further results in this direction were proved by R. L. Dobrushin,
H. Kesten and F. Spitzer, P. Major, M. Rosenblatt and M. S. Taqqu [7], [8], [9], [23],
[29], [30], [34], [37]. In most of these papers only the one-dimensional case is considered,
and it is formulated in a different but equivalent way. The joint distribution of the

random variables A−1
N

Nt]∑
j=1

ξj , 0 < t <∞, is considered.

Similar problems also appeared in the theory of infinite particle systems. The
large-scale limit of the so-called voter model and of infinite particle branching Brownian
motions were investigated in papers [2], [6], [17], [24]. It was proved that in these models
the limit is, with a non-typical normalization, a Gaussian self-similar field. The inves-
tigation of the large-scale limit would be very natural for many other infinite particle
systems, but in most cases this problem is hopelessly difficult.

The notion of subordinated fields in the present context first appeared at Do-
brushin [7]. It is natural to expect that there exists a large class of self-similar fields
which cannot be obtained as subordinated fields. Nevertheless the present techniques
are not powerful enough for finding them.

The approach to the problem is different in statistical physics. In statistical physics
one looks for self-similar fields which satisfy some conditions formulated in accordance
to physical considerations. One tries to describe these fields with the help of a power se-
ries which is the Radon–Nykodim derivative of the field with respect to a Gaussian field.
The deepest result in this direction is a recent paper of P. M. Bleher and M. D. Mis-
sarov [1] who can define the required formal power series. This result enables one to
calculate several critical indices interesting for physicists, but the task of proving that
this formal expression defines an existing field seems to be very hard. It is also an open
problem whether the class of self-similar fields constructed via multiple Wiener–Itô in-
tegrals contains the non-Gaussian self-similar fields interesting for statistical physics.
Some experts are very skeptical in this respect. The Gaussian self-similar fields are
investigated in [7] and [32]. A more thorough investigation is under preparation in [11].

The notion of generalized fields was introduced by I. M. Gelfand. A detailed dis-
cussion can be found in the book [15], where the properties of Schwartz spaces we need
can also be found.

In the definition of generalized fields the class of test functions S can be substi-
tuted by other linear topological spaces consisting of real valued functions. The most
frequently considered space, beside the space S, is the space D of infinitely many times
differentiable functions with compact support. In paper [7] Dobrushin also considered
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the space Sr ⊂ S, which consists of the functions ϕ ∈ S satisfying the additional relation∫
x(1)j1 · · ·x(ν)jνϕ(x) dx = 0 provided that j1 + · · ·+ jν < r. He considered this class of

test functions because there are much more continuous linear functionals over Sr than
over S, and this property of Sr can be exploited in certain investigations. Generally no
problem arises in the proofs if the space of test functions S is substituted by Sr or D
in the definition of generalized fields.

Two generalized fields X(ϕ) and X̄(ϕ) can be identified if X(ϕ)
∆
= X̄(ϕ) for all

ϕ ∈ S. Let me remark that this relation also implies that the multi-dimensional distri-
butions of the random vectors (X(ϕ1), . . . , X(ϕn)) and (X̄(ϕ1), . . . , X̄(ϕn)) coincide for
all ϕ1, . . . , ϕn ∈ S. As S is a linear space, this relation can be deduced from property a)
of generalized fields by exploiting that two distribution functions on Rn agree if and
only if their characteristic functions agree.

Let S ′ denote the space of continuous linear functionals over S, and let AS′ be the
σ-algebra over S ′ generated by the sets A(ϕ, a) = {F : F ∈ S ′; , F (ϕ) < a}, where
ϕ ∈ S and a ∈ R1 are arbitrary. Given a probability space (S ′,AS′ , P ), a generalized
field X̄ = X̄(ϕ) can be defined on it by the formula X̄(ϕ)(F ) = F (ϕ), ϕ ∈ S, and
F ∈ S ′. The following deep result is due to Minlos (see e.g. [15]).

Theorem. (Minlos) Let (X(ϕ), ϕ ∈ S) be a generalized random field. There exists a
probability measure P on the measurable space (S,AS′) such the generalized field X̄ =
(X̄(ϕ), ϕ ∈ S) defined on the probability space (S̄,AS′ , P ) by the formula X̄(ϕ)(F ) =

F (ϕ), ϕ ∈ S, F ∈ S ′, satisfies the relation X(ϕ)
∆
= X̄(ϕ) for all ϕ ∈ S.

The generalized field X̄ has some nice properties. Namely property a) in the
definition of generalized fields holds for all F ∈ S ′. Moreover X̄ satisfies the following
strengthened version of property b):

b′) lim X̄(ϕn) = X̄(ϕ) in every point F ∈ S ′ if ϕn → ϕ in the topology of S.

Because of this nice behaviour of the field X̄(ϕ) most authors define generalized
fields as the versions X̄ defined in Minlos’ theorem. Since we have never needed the
extra properties of the field X̄ we have deliberately avoided the application of Minlos’
theorem in the definition of generalized random fields. Minlos’ theorem heavily depends
on some topological properties of S, namely that S is a so-called nuclear space. Minlos’
theorem also holds if the space of test functions is substituted by D or Sr in the definition
of generalized fields.

Let us finally remark that Lamperti [21] gave an interesting characterization of
self-similar random fields. Let X(t), t ∈ R1, be a continuous time stationary random

process, and define the random process Y (t) = X(log t)
tα , t > 0, with some α > 0. Then,

as it is not difficult to see, the random processes Y (t), t > 0, and Y (ut)
uα , t > 0, have the

same finite dimensional distributions for all u > 0. This can be interpreted so that Y (t)
is a self-similar process with parameter α > 0 on the half-line t > 0. Contrariwise, if

the finite dimensional distributions of the processes Y (t) and Y (ut)
uα , t > 0, agree for all

u > 0, then the process X(t) = X(et)
eαt , t ∈ R1, is stationary. These relations show some
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connection between stationary and self-similar processes. But they have a rather limited
importance in the investigations of this work, because here we are really interested in
such random fields which are simultaneously stationary and self-similar.

Section 2.

Wick polynomials are widely used in the literature of statistical physics. A detailed
discussion about Wick polynomials can be found in [12]. Theorems 2A and 2B are well-
known, and they can be found in the standard literature. Theorem 2C can be found
e.g. in Dynkin’s book [13] (Lemma 1.5). Theorem 2.1 is due to Segal [31]. It is closely
related to a result of Cameron and Martin [4]. The remarks at the end of the section
about the content of formula 2.1 are related to [25].

Section 3.

Random spectral measures were independently introduced by Cramer and Kolmogorov
[5], [20]. They could have been introduced by means of Stone’s theorem about the spec-
tral representation of one-parameter groups of unitary operators. Bochner’s theorem
can be found in any standard book on functional analysis, the proof of the Bochner–
Schwartz theorem can be found in [15]. Let me remark that the same result holds true
if the space of test functions S is substituted by D.

Section 4.

The stochastic integral defined in this section is a version of that introduced by Itô
in [18]. This modified integral first appeared in Totoki’s lecture note [38] in a special
form. Its definition is a little bit more difficult than the definition of the original
stochastic integral introduced by Itô, but it has the advantage that the effect of the
shift transformation can be better studied with its help. Most results of this section
can be found in Dobrushin’s paper [7]. The definition of Wiener–Itô integrals in the
case when the spectral measure may have atoms is new. In the new version of this
lecture note I worked out many arguments in a more detailed form than in the old text.
In particular, I have given a much more detailed explanation of the statement that
all kernel functions of Wiener–Itô integrals can be well approximated by elementary
functions.

Section 5.

Proposition 5.1 is proved for the original Wiener–Itô integrals by Itô in [18]. Lemma 5.2
contains a well-known formula about Hermite polynomials. The main result of this
section, Theorem 5.3, appeared in Dobrushin’s work [7]. The proof given there is not
complete. Several non-trivial details are omitted. I felt even necessary to present a
more detailed proof in this note when I wrote down its new version. Theorem 5.3 is
closely related to Feynman’s diagram formula. The result of Corollary 5.5 was already
known at the beginning of this century. It was proved with the help of some formal
manipulations. This formal calculation was justified by Taqqu in [35] with the help of
some deep inequalities. In the new version of this note I formulated a more general
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result than in the older one. Here I gave a formula about the moment of products of
Wick polynomials and not only of Hermite polynomials.

I could not find results similar to Propositions 5.6 and 5.7 in the literature of
probability theory. On the other hand, such results are well-known in statistical physics,
and they play an important role in constructive field theory. A sharpened form of these
results is Nelson’s deep hypercontractive inequality [27], which I formulate below.

Let Xt, t ∈ T , and Yt′ , t
′ ∈ T ′ be two sets of jointly Gaussian random variables on

some probability spaces (Ω,A, P ) and (Ω,A′, P ′). Let H1 and H′
1 be the Hilbert spaces

generated by the finite linear combinations
∑
cjXtj and

∑
cjYt′

j
. Let us define the

σ-algebras B = σ(Xt, t ∈ T ) and B′ = σ(Yt′ , t
′ ∈ T ′) and the Banach spaces Lp(X) =

Lp(Ω,B, P ), Lp(Y ) = Lp(Ω
′,B′, P ′), 1 ≤ p ≤ ∞. Let A be linear transformation from

H1 to H′
1 with norm not exceeding 1. We define an operator Γ(A):Lp(X) → Lp′(Y )

for all 1 ≤ p, p′ ≤ ∞ in the following way. If η is a homogeneous polynomial of the
variables Xt,

η =
∑

Ct1,...,tsj1,...,js
Xj1
t1 · · ·Xjs

ts , t1, . . . , ts ∈ T,

then

Γ(A) : η: =
∑

Ct1,...,tsj1,...,js
: (AXt1)

j1 · · · (AXts)
js: .

It can be proved that this definition is meaningful, i.e. Γ(A) : η: does not depend on the
representation of η, and Γ(A) can be extended to a bounded operator from L1(X) to
L1(Y ) in a unique way. This means in particular that Γ(A)ξ is defined for all ξ ∈ Lp(X),
p ≥ 1. Nelson’s hypercontractive inequality says the following. Let A be a contraction
from H1 to H′

1. Then Γ(A) is a contraction from Lq(X) to Lp(Y ) for 1 ≤ q ≤ p provided
that

‖A‖ ≤
(
q − 1

p− 1

)1/2

. (+)

If (+) does not hold, then Γ(A) is not a bounded operator from Lq(X) to Lp(Y ).

A further generalization of this result can be found in [16].

The following discussion may help to understand the relation between Nelson’s
hypercontractive inequality and Corollary 5.6. Let us apply Nelson’s inequality in the
special case when (Xt, t ∈ T ) = (Yt′ , t

′ ∈ T ′) is a stationary Gaussian field with spectral
measure G, q = 2, p = 2m with some positive integer m, A = c ·Id, where Id denotes the
identity operator, and c = (2m− 1)−1/2. Let Hc and Hc

n be the complexification of the
real Hilbert spaces H and Hn defined in Section 2. Then L2(X) = Hc = Hc

0 +Hc
1 + · · ·

by Theorem 2.1 and formula 2.1. The operator Γ(c · Id ) equals cn · Id on the subspace
H2
n. If hn ∈ Hn

G, then IG(hn) ∈ Hn, hence the application of Nelson’s inequality for the
operator A = c · Id shows that

(
EIG(hn)

2m
)1/2m

= c−n
(
E(Γ(c · Id)IG(hn))

2m
)1/2m ≤ c−n

(
EIG(hn)

2
)1/2

i.e.

EIG(hn)
2m ≤ c−2nm

(
EIG(hn)

2
)m

= (2m− 1)mn
(
EIG(hn)

2
)m

.
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This inequality is very similar to the second inequality in Corollary 5.6, only the mul-
tiplying constants are different. Moreover, for large m these multiplying constants are
near to each other. I remark that the following weakened form of Nelson’s inequality
could be deduced relatively easily from Corollary 5.6. Let A: H1 → H′

1 be a contraction
‖A‖ = c < 1. Then there exists a p̄ = p̄(c) > 2 such that Γ(A) is a bounded operator
from L2(X) to Lp(Y ) for p < p̄. This weakened form of Nelson’s inequality is sufficient
in many applications.

Section 6.

Theorems 6.1, 6.2 and Corollary 6.4 were proved by Dobrushin in [7]. Taqqu proved
similar results in [36], but he gave a different representation. Theorem 6.6 was proved
by H. P. Mc.Kean in [26]. The proof of the lower bound uses some ideas from [14].
Remark 6.5 is from [23]. As Proposition 6.3 also indicates, some non-trivial problems
about the convergence of certain integrals must be solved when constructing self-similar
fields. Such convergence problems are common in statistical physics. To tackle such
problems the so-called power counting method (see e.g. [22]) was worked out. This
method could also be applied in this section. Part b) of Proposition 6.3 implies that the
self-similarity parameter α cannot be chosen in a larger domain in Corollary 6.4. One can
ask about the behaviour of the random variables ξj and ξ(ϕ) defined in Corollary 6.4 if
the self-similarity parameter α tends to the critical value ν

2 . The variance of the random
variables ξj and ξ(ϕ) tends to infinity in this case, and the fields ξj , j ∈ Zν , and ξ(ϕ),
ϕ ∈ S, tend, after an appropriate renormalization, to a field of independent normal
random variables in the discrete, and to a white noise in the continuous case. The proof
of these results with a more detailed discussion will appear in [10].

In a recent paper [19] Kesten and Spitzer have proved a limit theorem, where the
limit field is a self-similar field which seems not to belong to the class of self-similar fields
constructed in Section 6. (We cannot however, exclude the possibility that there exists
some self-similar field in the class defined in Theorem 6.2 with the same distribution
as this field, although it is given by a completely different form.) This self-similar field
constructed by Kesten and Spitzer is the only rigorously constructed self-similar field
known for us that does not belong to the fields constructed in Theorem 6.2. I describe
this field, and then I make some comments.

Let B1(t) and B2(t), −∞ < t < ∞, be two independent Wiener processes. (We
say that B(t) is a Wiener process on the real line if B(t), t ≥ 0, and B(−t), t ≥ 0, are
two independent Wiener processes.) Let K(x, t1, t2), x ∈ R1, t1 < t2, denote the local
time of the process B1 at the point x in the interval [t1, t2]. The one-dimensional field

Zn =

∫
K(x, n, n+ 1)B2( dx), n = . . . ,−1, 0, 1, . . . ,

where the integral in the last formula is an Itô integral, is a stationary self-similar field
with self-similarity parameter 3

4 .

To see the self-similarity property one has to observe that

K(λ1/2x, λt1, λt2)
∆
= λ1/2K(x, t1, t2) for all x ∈ R1, t1 < t2, and λ > 0
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because of the relation B1(λu)
∆
= λ1/2B1(u). Hence

n−1∑

j=0

Zj
∆
= n1/2

∫
K(n−1/2x, 0, 1)B2( dx)

∆
= n3/4

∫
K(x, 0, 1)B2( dx) = n3/4Z0.

The invariance of the multi-dimensional distributions of the field Zn under the trans-
formation (1.1) can be seen similarly.

To see the stationarity of the field Zn we need the following two observations.

a) K(x, s, t)
∆
= K(x + η(s), 0, t − s) with η(s) = −B1(−s). (The form of η is not

important for us. What we need is that the pair (η,K) is independent of B2.)

b) If α(x), −∞ < x <∞, is a process independent of B2, then

∫
α(x+ u)B2( dx)

∆
=

∫
α(x)B2( dx) for all u ∈ R1.

It is enough to show, because of Property a) that

∫
K(x+ η(s), 0, t− s)B2( dx)

∆
=

∫
K(x, 0, t− s)B2( dx).

This relation follows from property b), because the conditional distributions of the left
and right-hand sides agree under the condition η(s) = u, u ∈ R1.

The generalized field version of the above field Zn is the field

Z(ϕ) = −
∫ [

K(x, 0, t)
dϕ

dt
dt

]
B2( dx), ϕ ∈ S.

To explain the analogy between the field Zn and Z(ϕ) we remark that the kernel of the
integral defining Zn can be written, at least formally, as

K(x, n, n+ 1) =

∫
χ[n,n+1)(u)

d

du
K(x, n, u) du,

althoughK is a non-differentiable function. Substituting the function χ[n,n+1) by ϕ ∈ S,

and integrating by parts (or precisely, considering d
duK as the derivative of a distribu-

tion) we get the above definition of Z(ϕ).

Using the same idea as before, a more general class of self-similar fields can be
constructed. The integrand K(x, n, n + 1) can be substituted by the local time of any
self-similar field with stationary increments which is independent of B2. Naturally, it
must be clarified first that this local time really exists. One could enlarge this class also
by integrating with respect to a self-similar field with stationary increments, independent
of B1. The integral with respect to a field independent of the field K(x, s, t) can be
defined without any difficulty.
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There seems to be no natural way to represent the above random fields as random
fields subordinated to a Gaussian random field. On the other hand, the local times
K(x, s, t) are measurable with respect to B1, they have finite second moments, therefore
they can be expressed by means of multiple Wiener–Itô integrals with respect to a white
noise field. Then the process Zn itself can also be represented via multiple Wiener–Itô
integrals. It would be interesting to know whether the above defined self-similar fields,
and probably a larger class of self-similar fields, can be constructed in a simple natural
way via multiple Wiener–Itô integrals with the help of a randomization.

Section 7.

The definition of Wiener–Itô integrals together with the proof of Theorem 7.1 and
Proposition 7.3 are given by Itô in [18]. Theorem 7.2 is proved in Taqqu’s paper [37].
He needed this result to show that the self-similar fields defined in [9] by means of
Wiener–Itô integrals coincide with the self-similar fields defined in [37] by means of
modified Wiener–Itô integrals.

Section 8.

The results of this section, with the exception of Theorem 8.7 are proved in [9]. The-
orem 8.7 is proved in [23]. This paper was strongly motivated by [29]. Lemma 8.3 is
formulated in a slightly more general form than Lemma 3 in [9]. The present formula-
tion is more complicated, but it is more useful in some applications. Let me explain this
in more detail. The difference between the original and the present formulation of this
lemma is that here we allow that the integrand K0 in the limiting stochastic integral
is discontinuous on a small subset of Rkν , and the functions KN may not converge on
this set. This freedom can be exploited in some applications. Indeed, let us consider
e.g. the self-similar fields constructed in Remark 6.5. In case p < 0 the integrand in the
formula expressing these fields is not continuous on the hyperplane x1 + · · · + xn = 0.
Hence, if we want to prove limit theorems where these fields appear as the limit, and
this happens e.g. in Theorem 8.7 then we can apply Lemma 8.3, but not its original
version Lemma 3 in [9].

The example for non-central limit theorems given by Rosenblatt in [28] and its
generalization by Taqqu in [34] are special cases of Theorem 8.2. In these papers only
the special case Hk(x) = x2 − 1 is considered. Later Taqqu [37] proved a result simi-
lar to Theorem 8.2′, but he needed more restrictive conditions. The observation that
Theorem 8.2′ can be deduced from Theorem 8.2 is from Taqqu [34].

The method of [28] and [34] does not apply for the proof of Theorem 8.2 in the case
of Hk(x), k ≥ 3. In these papers it is proved that the moments of the random variables
ZNn converge to the corresponding moments of Z∗

n. (Actually a different but equivalent
statement is established in these papers.) This convergence of the moments implies the

convergence ZNn
D→ Z∗

n if and only if the distribution of Z∗
n is uniquely determined by

its moments.

Theorem 6.6 implies that the n-th moment of a k-fold Wiener–Itô integral equals
to e(kn logn)/2+O(n). Hence some results about the so-called moment problem show that

95



the distribution of a k-fold Wiener–Itô integral is determined by its moments only for
k = 1 and k = 2. Therefore the method of moments does not work in the proof of
Theorem 8.2 for Hk(x), k ≥ 3.

Throughout Section 8 I have assumed that the correlation function of the under-
lying Gaussian field to which our fields are subordinated satisfies formula (8.1). This
assumption seems natural, since it implies that the spectral measure of the Gaussian field
satisfies Lemma 8.1, and such a condition is needed when ZGN

is substituted by ZG0 in
the limit. It can be asked whether in Theorem 8.2 formula 8.1 can be substituted by the
weaker assumption that the spectral measure of the Gaussian field satisfies Lemma 8.1.
This question was investigated in Section 4 of [9]. The investigation of the moments
shows that the answer is negative. The reason for it is that the validity of Lemma 8.1,
unlike that of Theorem 8.2, does not depend on whether the spectral measure G has
large singularities outside the origin or not. The discussion in [9] also shows that the
Gaussian case, that is the case when Hk(x) = H1(x) = x in Theorem 8.2, is considerably
different from the non-Gaussian case. A forthcoming paper of M. Rosenblatt [30] gives
a better insight into the above question.

The limiting fields appearing in Theorem 8.2 and 8.6 belong to a special subclass of
the self-similar fields defined in Theorem 6.2. These results indicate that the self-similar
fields defined in formula (6.5) have a much greater range of attraction if the homogeneous
function fn in (6.5) is the constant function. The reason for the particular behaviour
of these fields is that the constant function is analytic, while a general homogeneous
function typically has a singularity at the origin. A more detailed discussion about this
problem can be found in [23].
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