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Summary.  Let a s tat ionary Gaussian sequence X, ,  n = . . . - 1 ,  O, l . . . .  and a 
real function H(x) be given. We define the sequences yN 

] n N - 1  

=AN ~ H(Xj), 11 . . . .  - 1,0, 1 . . . ,  N = I , 2 , . . .  where A N are appropr ia te  
j=  (n-  1)N 

norming  constants. We are interested in the limit behaviour  as N--,oo. The 
case when the correlat ion function r(n)=EXoX, tends slowly to 0 is 
investigated. In this situation the norming  constants A N tend to infinity more  

rapidly than the usual norming  sequence A s =  ~ .  Also the limit may  be a 
non-Gauss ian  process. The results are generalized to the case when the 
parameter-set  is multi-dimensional.  

1. Introduction 

Let a s tat ionary Gaussian sequence X~, n = . . , - 1 ,  0, 1 . . . .  EX~ = O, EX 2 = 1 be 
given. We assume that the correlat ion function r(n)=EXoX ~ satisfies the 
relation 

r(n)=n-~L(n), 0 < ~ < 1 ,  (1.1) 

where L(t), t~(0, oo) is a slowly varying function: i.e. 

L(st) 1 
,lira ~-(s)-= for every re(0, oo), 

and L(t) is integrable on every finite interval. (See e.g. 
consider a real function H(x) such that H(x) does not vanish on a set of  positive 
measure, 

(1.2) 

[5] Appendix  1.) We 

* This paper contains results closely connected to those of the paper by Taqqu, Z. Wahrschein- 
lichkeitstheorie verw. Gebiete 50, 53-83 (1979), The investigations were done independently and 
at about the same time. Different methods were used 
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H(x)exp (-22-) dx=O, (1.3) 
--O<3 

and 

[H(x)]2 exp ( - @ )  d x <  oo. (1.4) 
-oo 

Throughout this paper Hi(x) denotes the j-th Hermite polynomial with highest 
coefficient 1. Because of (1.3) and (1.4) we may expand H(x) as 

H(x) = ~ cj Hi(x ) (1.5) 
j = l  

with 

c~ j! < ~. (1.6) 
j = l  

We consider the sequence H(Xn), n=.. .-1,0,  1,... and take the so-called 
renorm group transformation (see e.g. [1, 27), i.e. we define the sequences 

1 N ~ I  n = . . . -  1,0, 1,... 
N 

L H(X), (1.7) Yn =ANN j=N(n- 1) N =  1,2,... 

where A N is an appropriate positive norming constant. We consider the ease 
N ~  ~ ,  and we are interested in the limit process Y* if it exists. 

in our situation the mixing conditions guaranteeing the central limit theo- 

rem with the usual norming factor ] / N  for sums of weakly dependent random 
variables (see e.g. [5]) do not hold, and actually both the norming factors and 
the limit distribution may differ from the usual ones. (Let us remark that by the 
central limit theorem we mean a slightly stronger statement than it is usually 
done in the literature. We demand that the sequence defined in (1.7) tend to a 
sequence of independent normal random variables.) 

It was Rosenblatt [6] who first observed these new possibilities (see also [5 7 
19.5). He proved that in case of H(x)=x 2-  1 the limit distribution may be non- 
Gaussian. The problem was later investigated by Taqqu [8 7. He proved that the 
case of a general H(x) can be reduced to the case H(x)=H~(x), and gave a 
complete solution for the problem in case j = 1, 2. 

In paper [2] it was proven that any such limit process has to be self-similar. 
1 

In the present paper we show that in the case c 1 = c 2 . . . . .  c k_ 1 = 0, c~ 4: 0, c~ <~  

the limit process exists and belongs to a class of self-similar processes which was 
constructed in [1] by means of multiple Wiener-It6 integrals. (It was called It6 
integral in [1].) Our method based on the properties of the Wiener-It6 integrals 
is different from that of the papers [6] and [8]. 

Now we formulate 
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1 
Theorem 1. Let  (1.1) hold with c~ < ~, where k is the smallest index in the expansion 

(1.5) for which ck + O. Then, if N ~ oo and we choose 

ke  k 
A N = N 1 - T L ( N ) 2 ,  (1.8) 

the f ini te dimensional distributions of  the sequence yU, n . . . .  -- 1, O, 1 . . . .  defined in 
(1.7) tend to that of  the sequence Y* given by the formula 

k el(X1 + . . . + x k ) _  1 ~ -  1 

g'* = D - z c k  ~ ein(xl+'"+xk) i(x1 4;-...-~Xk) [Xll 2 

... Ixkl ~ - d W  (xl ) . . . d W  (xk) (1.9) 

where 

exp(,x,,x   dx--2 , )cos (110, 
- o o  

Formula (1.9) denotes multiple Wiener-It6 integral with respect to the random 
spectral measure W of the white-noise process. 

The notion of the Wiener-It6 integral with respect to the random spectral 
measure of a stationary process (or of a stationary random field) is a slight 
modification of the usual Wiener-It6 (or=Wiener) integral with respect to a 
Gaussian orthogonal measure. This modification is needed because of the 
evenness of the spectral measure. The definition and the basic properties of this 
integral needed in the present paper can be found for example in [1]. 

1 
We make some comments on the condition ~<k" We remark that if ~ and r/ 

are jointly Gaussian random variables E ~ = E t / = 0 ,  E ~ 2 = E t / 2 = I ,  E ~ t l = r  , 
then 

EHk(~ ) H j(~)= 6~,k rk k!. (1.11) 

(see e.g. [7], Theorem 1.3). 
1 

It is easy to see, applying (1.11), that in case c~<~ the variance 

N 

(Here and in the following relation Y,M6n means that c 1 5 ,<7 ,  <c  a, for some 
0<c<c~ . )  
This explains the choice of A N in (1.8). 

1 
On the other hand if c~> , then D H(Xj )  x N .  This indicates that the 

J 
dependence between distant H ( X j ) - s  is sufficiently weak, therefore it is natural 
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to expect that the central limit theorem holds with the usual normalization. We 
shall prove this fact in a subsequent paper. 

1 
The case ~ = ~  deserves special attention. It may happen in this case (e.g. if 

L(n)N 1) that N - a D  H(Xj)  ~ ~ ,  i.e. the behaviour of the variance is not 

1 
similar to the weakly dependent case. On the other hand, if ~ = ~  formula (1.9) is 

meaningless, since 

1 1 

f li(Xa [Xlr~- . . . Ixklr-  d x l . . . d x  k=oQ. (1.13) 

We give a short proof of the last relation. Let us define the sets D, in the k- 
dimensional Euclidian space 

1 n n 
D.= (X1,... Xk) - - n - - ~ < x l < - - n ;  ~ < x j < ~ ,  j = 2  ....  k - l ;  

n - - ( X 2 + . . . + X k _ I ) < X k <  n + ~  - - ( x 2 + . . . + x k _ l )  , n = l , 2 , . . .  

It is easy to see that the sets D, are disjoint for different n, their Lebesgue 
1 

measure 2(D,)> C 1 n ~--2 and the integrand in (1.13) is bigger than C2(nr k on 
the set D, with appropriate positive constants Ca, C 2. 

Thus the integral in (1.13) can be estimated from below by 

z_, ~ i(xl + . . .  + xk) Xl k "'" dx1... dxk 
n = l  Dn 

}1 
> C  1C 2 - = c ~ .  

n = l  /~ 

1 
We will show in a subsequent paper that in the case ~ = ~  the central limit 

theorem holds again, but the norming factor may be different from the usual A N 

= ] / N .  
We will obtain Theorem 1 as a consequence of a more general theorem, in 

which the parameter  set of the X - s  is multi-dimensional. In order to formulate 
this result, we introduce some definitions and notations. 

R ~ will denote the v-dimensional Euclidian space, B ~ the Borel a-algebra on 
it. (., .) means scalar product, and ]'k absolute value in R ~. Z ~ is the set of points 
in R ' with integer coordinates. Given an x e R  ~ or x e Z  ~ the superscripts 
x (1), . . . ,x  (~) denote its coordinates. If x ~ R  ~, [x] denotes its integer part, i.e. n 
= [xJ~Z  v, and x (j)-  1 <n(J)<=XU), j =  1, 2, ... v. S ~- 1 is the unit sphere in R~; S ~- 1 
={xllxl=l, x~e~). Given a set A ~  1 A ~ denotes its v-th power, i.e. A" 
= { x ] x ~ R  ~, x(J)~A,j = 1 .. . .  v}. Finally, if A ~ ' ,  ~A denotes its boundary. Let/~N, 
N = 1, 2, ... be a sequence of finite measures on N~. We say that the sequence /~N 
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tends weakly to a finite measure #o if ~ f ( x ) # u ( d x ) - - , ~ f ( X ) # o ( d x  ) for every 
bounded continuous function f on R v. Let /~u, N =  1, 2, ... be a sequence of 
locally finite measures (i.e. #N(B)<~ for every bounded B ~ ' ) .  We say that 
they tend to a locally finite measure #o locally weakly, if 

f ( x )  !~ u(dx) ~ j ' f (x )  #o (dx) for every continuous function f with a bounded 
support. A sequence/~N of finite measures tends weakly to a measure/~o (which 
is necessarily also finite), iff the sequence/~N tends locally weakly to #o, and 

lim sup/~N(Ixl >A)=0 .  (1.14) 
A~cc N 

A sequence /~u of bounded (locally bounded) measures tends weakly (locally 
weakly) to a measure /% iff for every (every bounded) set with the property 
/% (0B)= 0 we have lim gN (B)=/%(B). 

A set of random variables X , ,  n c Z  ~ is called a v-dimensional stationary 
Gaussian field, if the random variables X,~, ...X,~ have a joint normal distribu- 
tion for any nl , . . .nkeZ~; E X , = E X i ,  and E X o X j = E X n X n +  J for any j , n ~ Z  ~. 
r(n) = E X  o X n is the correlation function of the field. We assume throughout this 
paper that E X  o --O, E X  2 = 1. 

A stationary Gaussian field always has a unique spectral measure G, 
concentrated on the cube ( - ~ ,  7c] ~, such that 

r (n) = ~ e i (~' ") G (d2). (1.15) 

Obviously we have 

6 ( ( -  ~, ~ ] v ) = E X ~  = 1. 

A stationary Gaussian random field can always be represented in the form 

X ,  = ~ e i~"' ~) Z G (dx), 

where Z~ is the random spectral measure of the field (see e.g. [1]). 
We are given a function H(x) with the properties (1.3) and (1.4). We define 

1 
Y/, = A ~  N Z H(Xj) ,  n~Z  ~', N = 1, 2 . . . .  (1.16) 

jeB~ 

with an appropriate norming factor AN, where 

B N = { j [ j ~ Z  ~, nIZ)N<j(z)<(n{Z)+l)N, l=1  ... .  v} (1.17) 

We denote BU=B~. We need the following 

Proposition 1. Let the stationary Gaussian random field X , ,  n~Z ~ have a cor- 
relation function 

r(n)~,n,-~L(ln[)a (~n[), n ~ o o  (1.18) 

where 0<c~<v, L(t) is a slowly varying function of t~[0, oo) and a(O is a 
continuous function on S ~- 1 



32 R.L. Dobrushin and P. Major 

Let G be the spectral measure of X, ,  and define 

N ~ 
GN(A) =L~ ~ G(N-1A),  A e B  v, N = I ,  2, ... (1.19) 

Then there exists a locally finite measure G o such that 

lim G~v = Go. (1.20) 

in the sense of locally weak convergence. Go can be considered as the spectral 
measure of a generalized stationary random field on RL It has the following self- 
similarity property: 

Go(A)=t-=Go(ta), A e B  ~, t~(O, oo), (1.21) 

and it is determined by the relation 

2~ ~ ei<X) [ l  
1 

R~ J= 1 (xO.)) 2 Co(dx) 
(x+t~ 

a \[x+tI l  
= S (1 - Ix~ (1 - Ix(~)l) dx teR v. (1.22) 

t _ , , , ~  I x + t l  ~ 

This proposition is a variant of well-known Tauberian theorems. As the 
authors could not trace this variant in the literature they give its proof as a by- 
product of other constructions. The main result of the paper is 

Theorem 1". Let the conditions of Proposition 1 be fulfilled, and let k be the 
smallest index in the expansion (1.5) such that c~ 4=0. Assume that 

V 

0 < ~ < ~ .  (1.23) 

With the choice of 

k• k 

A N = N  ~ 2 [L(N)]2 (1.24) 

the finite dimensional distributions of the random fields defined in (1.7) tend to 
those of the random field Y*, n~Z ~, given by the formula 

Y*= ck 5 ei('* + "'" +~) Ko(xl"'" xk) Zao(dx 1).." Zao(dxk)" (1.25) 

The last formula means multiple Wiener-ltd integral with respect to the random 
spectral measure determined by the measure G o ( G O is defined in Proposition 1), 
and 

�9 ( j )  (J) 

KO(Xl, "" ,xk)= v e,% +...+~ ) - 1  (1.26) 
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Remark 1.I. Theorem 1 is a consequence of Theorem 1' and Proposition 1. 
Because of the formula for change of variables in Wiener-It6 integrals (see I l l  
Proposition 4.2) it is sufficient to show that under the conditions of Theorem 1 
the spectral measure G O has the density function D- ~ Ix] ~- 1. If G has a spectral 
density D-11xl ~-1, - : z < x < r c  then r (n)~n  -~ (see [9J w and Go has also a 
spectral density D-~[xl ~-1. Relation (1.22) implies that in the case v = l ,  Go 
depends only on a in (1.1). 

Sections 2 and 3 of this paper contain the proof of Theorem 1'. In Sect. 4 and 
5 relations to some earlier results are discussed. In Sect. 6 we investigate a 
generalization of Theorem 1' to the case when H is a function of several 
variables. 

2. Proof  of  the Main Theorem 

Condition (1.18) implies that the measure G is nonatomic (i.e. there is no point 
with positive G measure). There is a well-known result (see e.g. [91 w which 
implies this fact in the one-dimensional case. Also the multi-dimensional case 
can be proved the same way. Indeed, given a v-dimensional spectral measure G, 
one can consider its one-dimensional projection G(A) = G (A x ( -  ~z, ~]~- 1), 
A ~  1. Its Fourier coefficients satisfy the relation ~(k)=r(k, 0, ...,0). Thus the 
measure G and therefore also the measure G is nonatomic. 

Thus the definition of Wiener-It6 integral given in [1] with respect to the 
random spectral measures Zc~ and ZGo is maningful. 

Let us first discuss the case H ( x ) = H k ( x  ). By the formula expressing Wiener- 
It6 integrals in terms of Hermite polynomials we may write 

Hk (Xn) : Hk (S ei(n' x) ZG(dX)) 

= ~ e,(,, +,.. +x~) Za(dx l ) . . .  ZG (dxk). (2.1) 

Now applying the notations of Theorem 1' and the formula for change of 
variables in Wiener-It6 integrals, mentioned before, we can see that the random 
variables (1.16) have the same joint distributions for fixed N as the following 
ones, which we identify with them for the sake of simplicity. 

Y-N-- 1 . i .  
. - ~ 7  j ~ y  ~ e'v~ + '  +X~)Za~(dxl) "." ZG~(dxk) 

(2.2) 
= ~ ei( . . . .  +...+ xk) KN (X 1 . . . .  , Xk) ZGN (dx 1).., ZGN (dXk) 

where ZG~ is the random measure corresponding to GN, and 

~o~ 1 e'~-(J'x~+'"+x~' KN(X 1 . . . .  , Xk) = j  N--7 

(2.3) 
exp x(i(x~ ) + .... + x(~))) _-2 

=fl,=l [exp \ N~, l[i%(x(l)-~-...~-X(kl)))--l]X 
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Let us introduce the following piecewise constant modification of the Fourier 
transform: 

qoN(tl'"', tk)= f ei~-((~'' ~)+"+(J~'~)~ IKN(xa .. . .  ' xk)tz G~(dx,)... GN(dxk) (2.4) 

where jp= [tpN], p = 1, 2, ..., k. Using the middle term in (2.3) and (1.15) we can 
see that 

1 
--U2V-k~L(N)k ~ ~ r ( p - q + J O . ' . r ( p - q + J k )  

psBo qeBo 

l 
-NaV-k~L(N)k ~ (N-lpC~)l).. .(N-lp(~)l)r(p+j~).. .r(p+jk), 

p ~ N  

where 

(2.5) 

BU-= { p I -  N <p~J) <N,  j =  l, 2... v }. 

This formula enables us to investigate the asymptotic behaviour of q0 u. 
In order to prove Theorem 1' we need the following lemmas: 

Lemma 1. lira qOu(tl,...,tk)=g(t a . . . .  ,tk) uniformly in every bounded 
N~oo 

where 

region, 

g(rl, ..., tk) 

=[-1,~1],(l-Ix(1)l)"'(l-[x(v)0 ]xq-tll ~ "" Ixq-tk]" dx 

(2.6) 

is a continuous function. 

Lemma 2. Let #1, ~t2 .. . .  be a sequence of finite measures on R ~ such that FlN(R ~ 
--[--  CNx, CNrcll)=0, with some sequence CN--+ co. Define the function 

i (•  x~ 
~ou(t)= ~ e cN' /pN(dx) ' (2.7) 

R z 

where j c Z  l is j = [ t  Cu]. I f  for every t6R ~ the sequence qoN(t ) tends to a function 
q)(t) continuous in the origin then #N weakly tends to a finite measure #o. (p(t) is 
the Fourier transform of Po. 

Lemma 3. Let G N be a sequence of non-atomic spectral measures on ~ tending 
locally weakly to a non-atomic spectral measure Go, I~N(Xj, ..., Xk) a sequence of 
measurable functions on R kv tending to a continuous function I(o(x 1 . . . . .  xk) 
uniformly in any rectangle [ - A , A ] k L  Moreover, let the functions Ku satisfy 
the relation 

lira ~ j/(u(xl . . . . .  Xk)l z GN(dxO... Gu(dxk)=O (2.8) 
A~oo RkV-[-A,A]kv 
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uniformly for N = O, 1, 2 . . . . .  Then the Wiener-Itd integral 

/ ~ 0  (Xl  . . . .  , xk) ZGo(dx:)...  Z~o(dXk) (2.9) 

exists and the sequence of  Wiener-It6 integrals 

I(N(x: . . . .  , x~) Za,~(dxO,..  Z~z~(dxk) (2.10) 

tends in distribution to the integral (2.9) as N--* oo. 

It is enough to prove that for any integer l, n~, . . . ,  nzEZ" and real numbers 
fl:, .-. ,  fll the distribution of the random variable 

l 

p = l  
I 

= ~ fflpei(np'Xl+'"+Xk) KN(X1 ,  . . . ,Xk)  g G N (dX l ) , . . ZG N (dXk )  
p= 1 

(see (2.2)) tends to that of the random variable 

l 

E  pr.; 
p = l  

l 

= Y~ f Ppe'("~'~'+"+x~>Ko(xl, ' ' ,  x~) Zao(dx,)...Z~o(dX~). 
p= �94  

We shall apply Lemma 3 with the choice 

l 

I~ N (X 1 . . . .  ' Xk) = Z tip ei (nv' x l +... + xk) K~r (x:  . . . .  , Xk) (2.11) 
p = l  

and 
l 

I(o (xl . . . .  , Xk) = ~, tip el (~' ~ +"" + ~) K o (x 1 . . . .  , Xk). (2.12) 
p = l  

We have to check the validity of the conditions of Lemma 3. 
A comparison of formulas (1.26) and (2.3) makes it clear that K N ~ K  o 

uniformly in I - A ,  A] k~. The convergence G N ~ G O is stated in Proposition 1. 
The sequence of the measures #N, 

#N(A)= ~A p~= flpei( . . . .  +...+.~k, 2 

�9 I K N ( X l , . . . ,  Xk)l 2 GN(dXI ) . . .  GN(dxk), 

tends locally weakly to the measure #o, 

#o(A) = ! p ~ l f i p e i (  . . . .  + . . . + x k )  2 

�9 [Ko(Xl, ... , x~)[ 2 Go(dxO.. .  Go(dxk), 

A G~ k~ 

A ~k ~ .  

(2.13) 

(2.14) 
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The measure #N, N =  1,2 .... is finite and is concentrated to the rectangle 
-NTz, N rc]~L The following identity holds: 

tPN(t)= s e@U'x)#N(dx) 
Rkv 

l l 

= E 2 . . . . .  
r = l  s = l  

(2.15) 

where t =(t  I . . . . .  tk) , truER ~, rn = 1, 2 . . . .  , k; j = [ t N] .  
Thus Lemmas 1 and 2 imply that the measure #o is finite, and the sequence 

#N tends weakly to it. Thus the condition (1.14) is fulfilled and this implies (2.8). 
Thus Lemma 3 implies Theorem 1 in the special case H ( x ) = H k ( x  ). 

Let  us now consider the case of  a general H (x). Define 

a n -  ~Br c jHj(Xs) '  
s~Bn j = k + l  

n e Z  ~, N = l , 2 , . . . .  

Relation (1.11) implies that 

j = k + l  s,teBn 

It is easy to check with the help of (1.6) and (1.18) that 

N 2 O(N2~-(k+ E ( Z , )  = ~)~L(N)k+~)+O(N~) as N-+oo. 

Thus A~ 1Z~--+ 0 in probability as N-+ oo for every n, and this implies that H(x)  
can be replaced with c k Hk(x ) in Theorem 1. 

3. Proof of the Lemmas and of the Proposition 

Proof  of  Lemma 1. Let us define the function 

fN(q  . . . .  , tk, x) 

- ( 1  [X(NN] ) (1 [X(NN-l) r ( [ x N ] + J l )  
" '  N -  ~ L(N)  

r ( [ x N J + j k )  

... N - ~  L(N)  , 

where again jp = [ tpN],  p = 1, 2, ..., k, x e [ -  1, lJL 
Because of (2.5) we have 

~oN(tl,...,tO= s fN(t,,t2, t~,x) dx. 
[ -  1,1] v 

Define the set 

A~(t> . . . , t k ) = { X l X e [ - - 1  , 1] ;, [x+t z l<e  for some l, /=1 .. . .  ,k}. 

(3.1) 

(3.2) 



N o n - C e n t r a l  L i m i t  T h e o r e m s  for  N o n - L i n e a r  F u n c t i o n a l s  37 

The well-known Karamata theorem (see e.g. [5] Appendix 1) implies that for 
any C > e > 0  

lim sup L ( m ) _  1 
~, . . . .  N . . . .  CN L ( N )  =0. (3.3) 

Because of (1.18) and (3.3) we have for any K > 0 ,  e>0  

lim sup ] fN(tl . . . .  , tk, x ) - f ( t t , . . . ,  t k, x)] =0 (3.4) 
N~oo )zI<K ..... [ tkl<K 

x ~ [ -  1, 1 l ~ -  A~*(t 1 . . . . .  tk) 

where 

f ( t l ,  t2, . . .  , tk, X) 
(X -~ t l  ] (Y-}-tk ] 

a \~l a \ l x + t x l ]  
= (1 -Ix(1}l) . . .  (1 -lx(~)/)  . . .  

Ix + t fl' Ix + tk] ~ 

In order to complete the proof of Lemma 1 it is sufficient to show that 

l fN( t l ,  t2, ... , t k, t k, X)l d x  < C(8) 
{Ix+tzl<e}c~[ 1,11 ~ 

and 

(3.5) 

(3.6) 

I f  (t~, t2, . . . ,  tk, x)J d x  < C(e) 
{Ix+td < ~}c~[- l ,  l y  

(3.7) 

for every I = l , 2 , . . . , k  if I t l l < K , . . . , ) k p < K ,  where C(e)~0 as e- ,0.  Relation 
(3.7) also implies the existence and the continuity of g(tl, ..., tk). 

By HSlder's inequality 

] f ( t j ,  t 2 . . . .  , tk, x)l d x  
{ix +tzl < ~}~[ -  1, i F  

a ( X + t s ~  k 
k 

, -  {x+t~l<~}~[- 1,1y , x+t~ ,  k~ 

1 

d x ] V < K 1  ~. k~. 

(3.8) 

Here and in what follows K1,K2, ... denote some appropriate constants de- 
pending only k and the correlation function r(-). 

Let us now turn to the proof of (3.6). Let 7>0 be so small that v - k ( ~  
+ 7)>0. It is easy to deduce from the Karamata theorem that a slowly varying 
function L(t)  satisfies 

( N f L  O_<t L ( t ) < K  2 (N), <_NK3,  N = I , . . . .  (3.9) 

Thus formula (1.18) implies that 

F/ :z-- 7 

(3.1o) 
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Thus for large enough N 

j ]f~(tl, ... , tk, x)l dx 
{Ix + tz/< e} 

1 
< 
= N2,~- kc~ L ( N ) k  ( N - Ip( I ~I) . . . ( N - I p(~I) Ir(p + j1)  ...  r(p + jk)F 

peB N 

Iv+Jzl < 2~N (3.11) 

< K6 
- -N 2v 2 

p~B N 

IP+JlI< 2~N 

=< j f ( t l ,  t2, . . . ,  tk, x) dx. 
[ 1, 1]vc~{lx+tz] <e} 

where 

1 1 
f ( t l , . . . ,  tk, X) =(1 --IX(I~I)... (1 --I x<~)l) 

ix +tll~+, "" i x + t k l ~ + ,  �9 

Now an estimation similar to (3.8) shows that the right-hand side of (3.11) is 
smaller than K 7 e v-k(~+v~. Thus (3.6) also holds. 

P r o o f  o f  L e m m a  2. Lemma 2 is an analogue of the well-known theorem about 
the equivalence of the weak convergence o f  measures and the convergence of 
their Fourier transforms. Their proofs are also very similar. 

First we show that for any e > 0 there exists a K > 0 such that 

# w ( x i x ~ R  l, Ix(1)l>K)<~ for every N > I .  (3.12) 

As ~0(t) is continuous in the origin, we can find a fi > 0 such that 

0 ) -qo( t ,0 , . . . , 0 ) l<  2 ifltl<cS, I~o(o 

We have 

(3.13) 

0 < Re [~oN(0, ..., 0 ) -  ~Ou(t,. . .  , 0)3 < 2 ~0N(0, ..., 0). (3.14) 

The sequence in the middle of (3.14) tends to Re[cp(0 . . . .  ,0)-~0(t, ...,0)3. 
The right-hand side of (3.14) is bounded since it is convergent. Thus, because of 
the Lebesgue theorem and (3.13) we may write 

lim ~ Re [q~(0, ..., 0 ) -  q~N(t . . . . .  0)] dt  
N~oo 0 

- i  1 0 e - o ~ R e  [ (p(  , . . . ,  0 ) -  q)(t . . . . .  0 ) ]  dt  < ~ .  

Applying this relation together with the inequality 

[ 1 - e i r I > C [ y l ,  - n < _ y < = n  with some C > 0  
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we obtain the following inequality for arbitrary K > 0 :  

#N(dx) 
N-oo E-c,,~,c,,~]; g) CN j=o J 

>l im sup Re _ ~ [1 1 [a~'] e ~ q  | 
N~oo K<lx(Z~f<CN~ (~CN j=O J #N(dX) 

�9 j x O )  

[1 1 1 - d  ~tac~> l~ c~ ] 
~ l i ra  s u p  Re 5 

N~oo K<IX(1)I<CNrC L ~ CN 1 - e  czv 

>l imsup  * [1-6C~2~2~]#N(dX ). 
N~oo 0x~l>K ) 

, x(1) Choosing K = 4/c~ C we obtain that lim sup #N( I> K ) <  e which implies (3.12). 
N ~ o  

Applying the same argument to the other coordinates we find that for any 
e>0,  some K = K ( e )  and all N 

#N(R' -- [ -- K,  K]') < e. (3.15) 

Define 

(ON(t)= ; e i(t'x) #N(dX), t~R  t. (3.16) 
R z 

A comparison of (2.7) and (3.16) shows that (3.15) implies the relation (ON(t) 
--q)u(t)~0 as N ~ o o .  Thus (ON(t)~qo(t), and Lemma2 follows from standard 
theorems on Fourier transforms. 

Proof  of  Proposition i Put 

Is ) = I KN(X)I 2 = ff-[ 
1 COS x(J) 

I~o(X)=lKo(x)J 2= 2~ f i  1 - c ~ 1 7 6  
j= l  (x% 2 

where K~, and K o are the functions introduced in (2.3) and (1.26) for k = 1. It is 
clear that RN(x)+Ro(X ) uniformly in every bounded region as N ~  oe. Apply- 
ing Lemmas 1 and 2 to the case k = l  we obtain that the sequence of the 
measures 

#u(B) = S Is Gu(dx), B~N~ (3.18) 
B 

tends weakly to the finite measure #o determined by its Fourier transform g(t), 
given by formula (2.6) in case k = 1. As /s is continuous and does not vanish 
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I - -  - in [ - ~ , ~ ]  we have for every B ~ ;  B c  L 2 ' 2 J  and #o(SB)=0 

lim GN(B)= ~ [/(o(X)] -1 #o(dx)= Go(B) (3.19) 
N~oo B 

where Go(" ) is a measure on the measurable subsets of - 7 '  

We show that for any t > 0  and B c ~  ~, B c  - 2 '  , Go(~?B)=0 the relation 

lim Gs(tB ) = t ~ Go(B ) (3.20) 
N~oo 

h~ Let us ch~176 M =  [Nt-] Then Gx(tB)= (N~]~ \M! L(N) G~ ( M ~ B . 

(Nt  L(u) It is clear that \M] L(N) ~t~' and thus because of the condition Go(~B)=O 

G M ( t M B ) ~ G o ( B )  as N ~ o o .  

Thus (3.20) is proved. 

Relation (3.20) implies that for every B~, Bze~ ~ B1,B 2 c - 2 '  2 ' B1 =tBz 

with some t > 0 the identity 

Go (B 1) = t~ Go (B2) (3.21) 

holds. Indeed, by (3.20) this identity holds if Go(c~B;)=O, ( j=  1, 2), but then it 
must hold also without this restriction. Now we can define Go(B) for every 

F re ~'I ~ 
bounded set B ~  ~ in the following way: If BEN ~, B ~  [ - K  ~ , K  ~]  then Go(B) 

= K  ~ G o B This definition does not depend on K, and if B ~  - 2 '  it 

agrees with the definition given before. Extending this set function G o to B ~ we 
obtain a locally finite measure G o. The relation (3.20) holds also without the 

condition B c  - 2 ' 7  ' and this implies that G N tends locally weakly to G o if 

N--, oo. It is evident that (1.21) holds. 
The relation (3.18) and the fact that /(N ~ / ( o  uniformly in every bounded set 

imply the equation 

go(B) = j I(o(X) Go (dx) (3.22) 
B 

for every bounded (and thus also for every unbounded) set B e ~ ' .  As the Fourier 
transform of #o is g, relations (3.22) and (2.6) imply (1.22). 
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Proof of  Lemma 3. In this proof we shall use the notations of w in I11. L e t / ~ o  
be the subspace of the space/t~0, introduced in [11, consisting of those functions 
h~/4~o for which every level set, {h=c} for some c, satisfies the relation Go(c? {h 
=c})=0.  If h~/]~o the identity 

lim ~ h(x 1 . . . . .  xk) ZGN (dxl) ... ZG,,(dxk) 
N~c~ 

= ~ h(x 1 . . . . .  xk) Zao (dXl)... ZGo(dXk) (3.23) 

holds, where lira means convergence in distribution. Indeed, the integrals in 
(3.23) are the polynomials of the random variables ZG,~(B ) (the B - s  are the level 
sets of the function h) with coefficients independent of N. Now, as the joint 
distributions of the variables Z ~ ( B )  tend to the joint distributions of the 
variables ZGo(B ) -  s, (3.23) holds true. 

We claim that for any e>0, there exists an h~/4~o such that 

j" I / ~ ( x ,  .. . ,x~)-h(x~ ..... x~)f ~ C~(dx~)... C~(dx~)<~ (3.24) 
Rkv 

if N = O  or N>N(e).  
Indeed, because of (2.8) the /s can be approximated by functions with 

compact support. Thus the continuity of/s and the uniform convergence of the 
KN--s  to K o on bounded regions imply (3.24). (3.24) is equivalent to the 
statement 

E l ~ rI~N (x i . . . . .  xk) - h (x I . . . .  , Xk) ] ZGN (dx 1)"" ZGN (dxk) J 2 • '~ (3.25) 

if N = 0  or N>N(e).  
The condition (2.8) implies that 

lIs ...,Xk)l a Go(dx~)... Go(dxk)< oo. 

so the Wiener-It6 integral (2.9) exists and the formulas (3.23), (3.25) imply 
Lemma 3. 

4. Discussion on the Conditions of Theorem 1' 

The most important condition of Theorem 1' is formula (1.18) which describes 
the asymptotic behaviour of the correlation function. Now we discuss possibi- 
lities of weakening it. 

Remark4.1. In a paper of Dobrushin and Takahashi [41, devoted to the 
description of the Gaussian self-similar fields with discrete parameters, the 
following result is proved. 

Let Go be a spectral measure satisfying the self-similarity property (1.21) with 
some ~, 0 < c~< v, and let H(x)= x. The finite dimensional distributions of the 
field defined in (l.16) with an appropriate sequence An, tend to the finite 
dimensional distributions of the Gaussian self-similar field given in (1.25) with k 

c~ 

= 1, iff A N = N ~ - ~ L ( N )  with a slowly varying function L(.) and the relation 
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(1.20) holds. Thus in case of k = 1 the main condition (1.18) can be replaced by 
the weaker condition (1.20) concerning the behaviour of the spectral measure. 

Remark 4.2. One may ask whether condition (1.18) can be substituted with (1.20) 
also in the case H(x)=Hk(x), k>2. 

The answer is in the negative. First we give a heuristic explanation of the 
difference between the cases k = 1 and k > 2. Then we briefly discuss an example 
where the behaviour of the fields defined in (1.16) is completely different in cases 
H(x) =x and H(x)=H2(x ) = x  2 - -  1. 

For the sake of simplicity we consider only the distribution of the random 
variable u N. Yo N is expressed in formula (2.2) as the integral of the function 
KN(x~, ...,xk) with respect to the random orthogonal measure Z a. In case of k 
=1, Kjv(x ) is bounded outside of a neighbourhood of 0 over the rectangle 
( - N ~ ,  N=]  ~, i.e. over the support of GN. This fact may explain why a condition 
like (1.20) about the local behaviour of the spectral measure in the neigh- 
bourhoods of the origin is a sufficient condition of Theorem 1' in case k = 1. 

On the other hand if k>2,  KN(Xl,...,Xk) is unbounded in every neigh- 
bourhood of a point (x, . . . .  ,xk)ER k" satisfying the relation x l + . . . + x k = 0 .  
Therefore it is natural to expect that in this case a big singularity of the spectral 
measure G outside of the origin may have an influence on the limit behaviour of 
YoN. The following example shows that this is really the case. 

Let v=  1, and let the stationary Gaussian sequence X~, n . . . .  - 1 , 0 ,  1 . . . .  
have spectral measure with the spectral density 

g(x)  = C 1 Ixl  --e -~ C2([x  - a l  -a + Ix + al-a), 

where 0 < ~ < f i < l ,  fi>�89 0<~<7c, C~, C2>0. Let us consider the sequence of 
random variables Yo N defined in (1.7) in cases H(x)=x and H(x)=H2(x ) = x  2 -  1. 
We claim that this sequence converges in distribution in both cases, but in the 

l +a  
first case the good norming factor is AN=N-T-, and in the second one AN=N p. 
This means that in the first case the norming factor depends only on c~ and in 
the second only on ft. Moreover, the limit distribution is the normal distribution 
if H(x) = x, and another one if H(x) = x 2 - 1. 

We briefly sketch the proof. It is not difficult to compute that 

EXkXk+, = i einx g ( x )  dx 

for some positive K~, K 2. 
The following relation can be proved by means of (4.1): 

E (Xlk~  Xk)=~- f '+O(1) ,  (4.2) 

i.e. the second term on the right-hand side of (4.1) has a small effect in the 
expression (4.2) because of the factor cos ha. It is not difficult to see that (4.2) 
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1 + ~  

implies that in case of H(x)= x the distribution of Yo u with norming Ax = N 2 
tends to a normal one. The case of H(x )=Hz(x )  is different. 

We may compute EH2(Xk)H2(Xn+k) by means of (4.1) and (1.11), and we 
obtain that 

EH 2 (Xk) H 2 (X n+k)  = K~ n 2 ~-  1)(1 + cos 2 n a + o(1)). 

It is not difficult to see by the help of this relation that the second moments  of 
the random variables in the sequence 

N - 1  

N -~ ~ H2(Xk), N = 1 , 2 , . . .  (4.3) 
k=0 

have a limit as N ~ oo. 
Applying the diagram formula (see e.g. [-1] formula (4.23)) it can be shown 

that every moment  of the expressions in (4.3) converges as N ~ o o ,  and these 
limits are the moments  of a uniquely determined distribution. This fact proves 
that YoU has a limit distribution with the given norming factor .A N also in the 
case H(x)=H2(x  ). The calculation shows that the third moment  of the limit 
distribution is positive, and therefore the limit distribution cannot be normal. It 
would be also interesting to discuss more general situations than the case 
discussed before. 

Remark4.3. The condition about the continuity of the function a(t) in 
Theorem 1' can be weakened. Carrying out the estimations in Lemma 1 more 
carefully one can see that it is sufficient to assume that a(0 is a Riemann 
integrable function. 

Remark 4.4. In the proof  of Theorem 1' we used only condition (1.20) and the 
fact that ~0~ tends to g. Because of formula (2.5) the last condition can be 
interpreted as a condition on the asymptotical behaviour on the correlation 
function which is weaker than (1.18). 

5. Comparison with Previous Results 

Rosenblatt  [6] and Taqqu [8] formulated the problem in a different way. Now 
we reformulate our results in order to show their equivalence to those of 
Rosenblatt  and Taqqu in the cases investigated by them. 

First we give an "integral version" of Theorem 1'. We preserve the notations 
ofw 1. 

Define 

1 
ZU(n) = k~, k ~ H(X~); N = 1, 2 . . . . .  n~Z v, 

N ~- T L(N)Y ~D, 

n(S)<N, s = 1 , 2  . . . .  v, (5.1) 



44 R.L. Dobrushin and P. Major 

where 

D ~ = { j l j ~ Z  ~, 0 < f f ) < n  (~), s = l , 2  . . . .  v}. 

Consider the random fields 

Z~=ZN([ tN]) ,  N = l , 2 , . . '  tel0, 13" (5.2) 

and 

zo  ckS 
coit(J) (X(lJ) + . . .  + x(kJ)) _ _  1 

j=l i(x~ )§  +x~ j)) Z~176176176 (5.3) 

The following result is a simple consequence of Theorem 1'. (Actually they are 
equivalent.) 

Theorem 2. Under the conditions of Theorem i' the joint distribution of Z ;~ Z N 
weakly tends to that of Z~ ..., Z~ as N ~ o v  for every 1 and t 1 .... , tie[0, 1] V. 

Proof. It is easy to check, using the properties of the Wiener-It6 integrals, that 
E(Z~176  2 is a continuous function of the variables t and s. Applying the main 
condition (1.18) on the correlation function one can see that E(Z N ZN~ 2 N 
= 1, 2, ... is a sequence of uniformly continuous functions of the variables t and 
S. 

Therefore it is sufficient to show that given any integer M > 0, the statement 

, t - J ~  where j~eZ ~, and its coordinates are of Theorem 2 holds for t~=~- , . . .  ~ - M  

between 0 and M. But this fact is a straight consequence of Theorem 1', applying 
it to the subsequence y uM, n e Z  ~, N =  1 .... 

One of Taqqu's main results concerns Theorem 2 when v = l , k = 2 .  He 

described the limit distribution as that of the random variable 2k(~ k2_ 1) 
k = l  

where ~ ~2 . . . .  are independent standard normal zero-one random variables, 
and 2k>=0, k = l , 2 , . . ,  is an appropriate sequence of positive numbers with 

)~ < m. (He calls it the Rosenblatt distribution, because it first appeared in a 
paper of Rosenblatt [6].) In order to show that Taqqu's representation is 
equivalent to ours we express the double Wiener-It6 integral 

H(x, y) ZG(dx) ZG(dy) (5.4) 

in another form. 
Here G is the spectral measure of a generalized field. Therefore 

G ( A ) ~ G ( - A ) ,  A 6 N  ~. (5.5) 

The function H(-, .) is a complex-valued measurable function with the proper- 
ties 

H(x, y)=H(y,  x ) = H ( - y ,  - x ) ,  x, yER ~ 

IH(x,y)] 2 G(dx) ( d y ) < ~ .  (5.6) 
R2V 
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We shall consider the real Hilbert space L 2, consisting of the complex valued 
functions f (x), x e R  ~' such that 

f ( x ) = f ( - x ) ,  x e R  v 

If(x)l 2 G(dx) < oe. 
R ~ 

The scalar product of f ( x )  and g(x) is defined as 

(5.7) 

(L g)=If(x)g(x) a(dx) 

We define the integral operator 

A f(x): S H(x,-y)f(y) G(dy). (5.8) 
R v 

which, because of (5.5) and (5.6), maps L~ into L~. It is easy to see that A is a 
self-adjoint Hilbert-Schmidt operator, therefore it has a system of real eigen- 
values 21, 22,... in such a way that 

2 2 k < oo. (5.9) 

Proposition 2. The distribution of the stochastic integral (5.4) agrees with that of 
the series 

E h(r 1) (5.10) 

where ~1, ~2,-.. are independent standard normal random variables. The series 
(5.10) converges both in the mean square sense and with probability I because of 
(5.9). 

Proof. Let ~01, q)2 . . . .  be a complete or thonormal  system of eigenvectors of the 
operator  A. 1 
One can write 

H(x, - y ) =  Z s Ok(x) CPk(Y), (5.11) 
k = l  

where the convergence is meant in the L2~| G sense. The properties of the 
Wiener-It6 integral imply that 

j" H(x, y) ZG(dx ) Z~(dy) 
R 2 v  

k 

=F~ ;~ H2 if. ~o~(x) ZG(dx)), (5.12) 
k 

In most textbooks on functional analysis the existence of a complete orthonormal system of 
eigenvectors is proved only in complex Hilbert spaces. Nevertheless the changes needed for the proof 
in a real Hilbert space are trivial 
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where H2(x )=x  2 -  1 is the second Hermite polynomial. The random variables 
Ok(X) ZG(dx), k = 1, 2,... are jointly Gaussian and independent because of the 

orthogonality of the q)k--S. Thus (5.12) implies the proposition. It is easy to 
check that the operator A corresponding to the integral in formula (5.3) (in case 
k = 2) is a positive operator. 

Indeed, in this case the kernel of the operator A is H ( x - y )  with 

eit(J)x(j) __ [ 

H(x) = ix(3 ) j = l  

Since H(x) is the Fourier transform of the uniform distribution on the cube 

) ( [ 0 ,  t~), hence it is a positive definite function. 
j = l  

Therefore we have for any f e L  2 

(A f ,  f )  = ~ H(x - y) f ( x )  f (y)  G(dx) G(dy) >= 0 

as we claimed. 

Thus in this case every eigenvalue Zk is non-negative. 

6. On More General Functions 

We shall discuss here the generalization of the original problem to the case 
when H is an arbitrary square integrable functional of the Gaussian field. 

Let X,  nEZ ~ be the random field considered in Theorem 1', and let ~ 2  
denote the real Hilbert space of all square integrable functionals of the field Xn, 
n~Z" i.e. the space of all random variables with finite second moment, which are 
measurable with respect to the a-algebra generated by the random field X,,  
n~Z ~. It is known, see e.g. [1], that any ~ S q  2, E ~ = 0  can be represented in the 
form 

1 
= ~t'= ~ S ej (x l, "", x j) Zo (d x~)... Z~ (dxj) (6.1) 

where the c~j-s are complex valued functions in the space L~| |  with the 
properties 

r ~ . . . .  , x )  = o ~ j ( -  x , ,  . . . ,  - x ) ,  x ~ . . . . .  x a e R  ~ (6.2) 

and 

1 
-ft. ~ ]O~j(Xl, ...,Xj)I 2 G(dXl) . . .  G(dx j )< c~o. (6.3) 

j= 1 RJv 

On the random field X n ,neZ  ~ there exists a unique group of isometrical 
transformations Tn: ~ 2  ~.~02, neZ ~ in such a way that 

T,(Xi) ~ =(Xi+,) ~, i, n~Z v, s = 0, 1, 2 .... (6.4) 
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This group is called the shift group. We shall say that the random field 

u .=  T. ~, n~Z ~, (6.5) 

where ~e~2 ,  E ( = 0  is arbitrary, is a stationary field subordinated to the field 
Xn, n~Z ~. 

It is easy to see that U, can be given in the form 

U,-k=~ k~- ~ exp [i(n, x 1 +.. .  +Xk) ] ~k(Xl,... Xk) 

�9 ZG(dxl). . .  ZG(dXk), n~Z ~. (6.6) 

(A similar result for generalized fields was proven in [lJ.) An important example 
of subordinate fields is the following one: 

=H(Xm, . . . ,  Xp~) 

U, =H(Xp~ + . . . . . .  Xp~+,) (6.7) 

where p D . . . , p ~ Z  ~, s = l ,  2 , . . . ,H=H(xz , . . . , x~ )  is such a function that ~ E ~  2 
and E ~ = 0. Let 

yf f=_l  Z U~ (6.8) 
~u  j e B n  N 

where B~ is the same as in Theorem 1', and Au is an appropriate norming factor. 
We have the following 

Theorem 3. Given a subordinated field U, in the form (6.6), let k be the largest 
integer such that ~j--0 in (L~) j for every j<k .  Let ~k(Xl,...,Xk) be a bounded 
function, continuous in the origin and such that 

~k (0 .... , O) ~ O. (6.9) 

Let us assume that (1.18) holds with 0 < ~ <  k. Moreover let the relation 

j! L(NI  j = k + l  N - '  ' ' ' ~  

�9 JKN(xl .... ,xj)l 2 GN(dxO ... GN(dxj)--*O (6.10) 

v- -  kct k 

be satisfied. Then, with the choice A N - = N - T - L ( N ) T  the finite dimensional 
1 

distributions of the field Yff tend to those of the field ~! C~k(O , 0 .... , O) Yn*, n~Z~, 

where Y~* is defined in (1.25), 

Proof. The proof is very similar to that of Theorem 1'. We can write Yff in the 
form 
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1 _(j k)~ k - j  
r [ =  L - L(N)TS "  j = k j [ N  2 

1 S exp Ei(n, + - . .  
j=k L(N) 

. . . .  . . . .  

(More precisely, the field defined in (6.11) has the same distribution as y N.) 
1 

The term, corresponding to j =  k in the sum (6.11) tends to ~-. ~k (0 .. . .  ,0) Y*. 

This can be proved just the same way as Theorem 1'. The only difference is 
that we have to replace the function/(N(xl , . . . ,  xk) defined in (2.11) by 

1 ( xl xk) 
~. ~k ~ , ' " , ~  KN(Xl , ' " ,Xk)  in the proof. 

The sum of the other terms tends to 0 in the mean square sense because of 
condition (6.10). 

As to the main problems in connection with Theorem 3, we have to write the 
subordinated field U, in the form (6.6) and check the conditions (6.9) and (6.10). 
We make some remarks regarding them. 

Remark 6.1. If ~ is of the form ~ = (X, ,)  j' ... (X,s)Js then ~ can be written as 

= (5 ei ("~' ~) Z~(dx))J*... (5 ei( . . . .  ) Z G(dx)) j*. (6.12) 

Applying the diagram formula for product of Wiener-It6 integrals (see e.g. [1] 
Proposition 4.1) this product can be written as the sum of multiple Wiener-It6 
integrals. This transformation enables us to write the field U, in the desired form 
(6.6). If { is the sum of some terms given in the form (6.11), then the above 
mentioned method can be applied for each term. 

If ~ is given in the form 

4= ~ c]::::::{:Hj~(Yh)...Hj~(Y~), (6.13) 
i l  . . . . .  i s  
j l  . . . . .  J s  

s =  1 ,  2 ,  . . .  

where Yj=~ hj (x )Za(dx  ) and hi, h 2 . . . .  eL 2 are orthonormal elements in I 2 ,  a 
well-known formula (see e.g. formulas 4.14 and 4.15 in [1]) can be applied. This 
result yields that 

H j, (Y~) ... H ~(Y~) 

1. ((i~ ..... i.)~. ---~ ~ Z g,~(x0 ..-g,.(x,))ZG(dx 0 ... ZG(dx,) 

where gi=h~ for Jl + ... +J~- 1 <i<=Jl + ... + J ,  n = j l  + ... +J-  and x. denotes the 
set of all permutations of the numbers 1, 2, ..., n. 
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Generally it is not easy to write ~ in the form (6.13). If ~ is given in the form 
(6.7) the following algorithm makes it possible to arrive at it. By orthogonali- 
zation we can find some linear combinations 

Yj= ~ cj, kXp,~, j = l ,  2 . . . .  ,s', 
k = l  

with s<s', of the vectors X m . . . . .  Xp~ and a function/t(u~ .. . .  ,u~.) in such a way 
that the Y~-s are orthogonal, E!/}2 = 1 and 

t~(X~, . . . ,  X ~ , ) = / t ( ~  . . . . .  ~,). 

Defining hj(x)= ~ c j, k exp [i(pk, X)J, j = 1, 2, ..,, S' we get an orthonormal system 
k = l  

hlo.,. ,h; in L~, and Yj---~ h~(x)Z~(dx), j = l ,  2 . . . . .  s', Expanding the function 
I:l(u 1 ... . .  u;) by the product of Hermite polynomials Hj,(ul)...H~,,(us, ) we 
obtain the desired expansion, In this case all functions ~j(xa . . . . .  x j) appearing in 
(6,6) are bounded and continuous. 

Remark 6.2. We show that if ~ is given by formula (6.7) then the relation (6.10) is 
always satisfied. In the proof we apply the second algorithm of Remark (6A) 
preserving the notations. By means of this algorithm we can write 

l = k  

where 

1 
=F. S ~,(x~ . . . .  , x,) ZG(dxl) . . .  Zdd~,) ,  

and the function f i~H~ is of the form 

s '  

f i l(xl, . . . ,xl)= ~ d; ...... j, hjl(xl).., hj~(xz) 
Jl ,  . . . ,d l~  1 

with appropriate constants dj, ..... j .  
It is not difficult to see that 

s '  

E ..... j=ev,2  
J l  . . . . .  J z =  I 

Let us also remark that 

• EV~2 =E~2 < c~ (6.14) 

On the other hand E(T" V~,)(T" Vl~)=0 if l s 4:l 2 and condition (6.10) is equiva- 
lent to the relation 
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EW~ ~0 
1 

/=k+l N 2 v - k ~ L ( N )  k ,1 

if N ~ o% where 

(6.15) 

wN,,= Z T~V,. 
j ~ B ~  

In order to see these relations one has to observe that the variable S (m in (6.11) - j  
agrees with WN, j in the case discussed now. 

We introduce the notations 

T"hj(x)= ~ Q, kexp[i(Pk+n,x)] , n~Z*,j=l ,  2 .... ,s'. 
k=l 

Condition (1.18) implies that 

[~ T p hi, (x) T p+m hj2(x ) G(dx) 

<KL(tml) 
-=E(TP YJ,)(TP+"YJz)= iml~ 

for every j l , j z=  1, 2 .... ,s' and p, mEZ ~, where K is an appropriate constant. 
This formula and the definition of V~ together imply that 

IE(T m' V~) (T m~ V~) I 

K' L(lm,-rn2,)' ( ~" )2 (6.16) 
< Z Idj  .. . . . .  ~,l �9 
-- Iml-m2l  =l j ...... j,=l 

It is not difficult to prove by the help of (6.16) that 

EW2'I +0 (6.17) 
N 2 v -  k~  L(N)k 

for every l>  k, as N ~ o~. 
In order to prove (6.15) we have to make a better estimate on EW~l for large 

l. To this end let us fix a sufficiently large positive integer C, to be chosen later, 
and let us write 

Im,-m21 <c Imp-reel >_-C 

The absolute value of the first sum in the last formula is less than (2 C) v N v EV12. 

For Irn 1 --m21 > C we apply the estimate (6.16) together with the observation that 

s.,~j )2 s' 
Jdj ...... j,I ~(s')' ~ d. 2,~,...,,,.=(s')'E~ 2. 

J l  . . . . .  l = 1 J l  . . . . .  Jl = 1 
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The latter inequality is a consequence of the inequality between the arithmetic 
and the quadratic mean. These estimates give that 

L(m 1 -m21) l 
EWe'z<(2 C)~N~EV'2 +(Ks')'E~= ~ Ira, -m2U 

lmt-m2[~C 
. . . . . .  Bff (6.18) 

N 

j=C 

If C is sufficiently large, independently of I, we can write 

N N ~l 

2 vj ~- 1- ~z LO.),< ~ j ~ - l - ~ .  (6.19) 
j=C j=C 

Let us consider the case 1> L = 4 v/cc Choosing a C > (K s') 4/~ we get that 

~ .v-1 cd c~l ~ .v- l-~l  K1 
j - Y <  C-a- j 2-< (6.20) 

j=c j=c =(Ks ' )  ~ 

where K I does not depend on I. 
Substituting (6.19) and (6.20) in (6.18) we obtain that the inequality 

EW~z <=Kz N~ EVt; 

holds for l > L  with an appropriate K 2. Adding up the last inequality for every 
l > L  we get that 

EW,~,=O(NV). 
l=L 

This relation together with (6.17) implies (6.15). 

Remark 6.3. The value k in Theorem 3 can be found as the largest integer such 
that E(X, ) J~=0  for a l l j < k  and n e Z  ~. (See e.g. [3] Sect. 5). 

Remark 6.4. The condition %(0 . . . .  ,0)=I=0 in Theorem 3 is essential. If ~ is given 
in the form (6.13) (this can always be achieved if ~ is given by formula (6.7)) then 
condition (6.9) is equivalent to the relation 

Z 
jl +... +js=k 

s= 1,2 .... 

(Ji ~) U2 ~)... (L ~) el;: ; / ;  4= 0. 

If %(0 . . . .  , 0 ) = 0  Theorem 3 yields no more than the convergence of Yff to 0. 
Thus one would like to try to get a limit theorem with a different norming 
factor. In this case it turns out that the k-th term is not the only one which has a 
role in the limiting behaviour of Yff. The description of such cases is an 
interesting open problem. 



52 R.L. Dobrushin and P. Major 

References 

1. Dobrushin, R.L.: Gaussian and their subordinated self-similar random fields. Ann. Probability 
7. No. 1, 1-28 (1979) 

2. Dobrushin, R.L.: Automodel generalized random fields and their renorm group. In volume: 
Multi-component stochastic systems (in Russian) p. 179-213. Moscow: Nauka, 1978. English 
edition: New York: Marcel Dekker Ed. [in preparation] 

3. Dobrushin, R.L., Minlos, R.A.: Polynomials of random functions. (in Russian) Achievements, 
Uspeschi, Math. Sci. XXXII. No 2 194, 67-122 (1977) 

4. Dobrushin, R.L., Takahashi, J.: Self-similar Gaussian fields. [To appear] 
5. Ibragimov, I.A., Linnik, J,V.: Independent and stationary sequences of random variables. Gronin- 

gen: Walters-Noordboff 1971 
6. Rosenblatt, M.,: Independence and dependence. Proc. 4th Sympos. Math. Statist. Probability 

pp. 411-443. Univ. California: Berkeley University Press 1961 
7. Simon, B.: The P(qS)2 Euclidean (Quantum) field theory. Princeton: Princeton University Press 

1974 
8. Taqqu, M.S.: Weak convergence to Fractional Brownian Motion and the Rosenblatt Process. Z. 

Wahrscheinlichkeitstheorie verw. Gebiete 31, 287-302 (1975) 
9. Zygmund, A.: Trigonometric series. Cambridge: Cambridge University Press 1959 

Received July 25, 1978 


