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INTRODUCTION

Let X,, X;,... be a sequence of iidrv.s with df. P(X; < x) = F(x) (i =
=1,2,...; —00 < Xx < +00) where F(x) is continuous; further let F,(x) be the
empirical d.f. based on the sample X, X,,...,X, and finally let a,(x) =
= J(n) (Fy(x) — F(x)).

Several authors have proved that the process cx,,(x) is near to a Gaussian Process

(G.P.) (in some sense). The two most natural G.P.’s from this point of view are the
following:

(i) Brownian Bridge (B.B.) B(x) (0 < x < 1) with covariance function E B(x,).
- B(x;) = min (x, x;) — x, . x,

(i) Kiefer Process (K.P.) K(x,y)(0£x<1; 0<y < ) with covariance

function E K(xy, y,) K(x,, y,) = min (yy, y,) [min (x, x;) - %y % ):

The two strongest results stating that cx,,(x) can be approximated by a B.B. resp.
by a K.P. are the following:

THEOREM A [1]. If the underlying probability space is rich enough then one can
define a sequence {B,(x)} of B.B’s such that:

aN(x) - B,,(F(x)) = En(x)

where {¢,(x)} is a sequence of stochastic processes for which

with probability 1.
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THEOREM B [1]. If the underlying probability space is rich enough then one can
define a K.P. K(x, y) such that:

) as) = K(E(R), n) = 6(3)
where {8,(x)} is a sequence of stochastic processes for which
sup 8,(x) = O(log® n)

with probability 1 and* .
E(sup |6,(x)])*> = O(log* n).
X

These results are extremely useful for goodness of fit statistical test, when F(.)
is supposed to be completely specified. In most cases, however, only the form of F(.)
is assumed, as the so-called null hypothesis H, while the possible parameters of F(.)
are not specified by it;i.e. we usually have a composite goodness of fit problem. This
case was also investigated in many different papers. See for example [2] and [3]
of Durbin, where a detailed reference list can also be found. In this paper we follow
Durbin in many sense. However, we modify the process investigated by him by
a scale transformation and in this way we get strong convergence instead of his
weak convergence in a direct way.

First, we assume that F(x; 9) is a one-parameter family, 6 belonging to an open
interval .# (possibly infinite) of the real line R' and we consider the maximum likeli-
hood estimator (m.l.e.) 8, of 8, the true value of §. Our main result states that the
process

Bulx) = n(Fu(x) — F(x;9,))

can be approximated by the following G.P.

G(x, n; 0o) = G(x, n) = K(F(x; ), n) — hoeido) (.8 log f(x; 0,) d.K(F(x; 6,), n)
1(65) ) o0
(provided that F(x; 0) satisfies some natural conditions) where K(., .) is a K.P.,

h(x; 9) = —«—-«—-———aF(;B; 9) x f(x; 9) = p__....__....ng; 0) " ,
X

1(0) = J<g%@)2 dx

* This second result is not formulated explicitly in [{] but it follows easily from Theorem 4
of [1].
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the Fisher information number. It is easy to check that G(x, n) is a G.P. and its
covariance function is

EG(xq, ny) G(x3, ny) =

= min (ny, n,) [min (F(x,; 60) F(x,; 0,)) — F(xy; 00) F(x2, 00) — h(xy; 0) h(x2; 6] -
So, in general the distribution of G and also that of 1/,/(n) sup G(x; n), depends
on F and 0.

This means that the above result cannot be applied to test the composite hypothesis
Hyo:F =F(x;0)0e 7.

To avoid this problem, Durbin proposed that instead of 8, one should use 0,
to estimate 0,, where 0, is the m.Le. of 0, based only on any randomly picked half

of the sample X,, X5, ..., X,. He remarked, [3], that the process /(n) (F.(x) —
— F(x; 0,)) converges weakly to the usual B.B. with a completely specified F.

This result will be also reproduced via our strong convergence method.

Another, perhaps even more useful idea to avoid the problem of § still appearing
in the limiting process is the following: we estimate the process G(x, n) by

h(x; 6,,) 0,

G(x, n) = K(F(x;0,), n) — 0)

namely it can be seen that

j - log f(x; 0,) d.K(F(x; 8,), n)

sup |G(x, n) — G(x, n)| = O(n’)
with probability 1, for some 0 < & < 4. This means that G(x, n) is just as good an

approximation of §,(x) as G(x, n) was.
Now let M(6, @) (0 < o < 1; 6 € #) be the number for which

P {\—/1; sup [G(x, 15 0] > MO, oc)} e

It is easy to check that M(6, o) is uniquely determined in this way and it is con-
tinuous in 6 and «, this implies:

= lim P {—\7- sup |G(x, n; 8,)] > M(@,, a)}

= lim P{,/(n) sup |Fu(x) — @)}

n=—r oo

Then one can propose the following test of level a: reject the composite hypothesis
Hy:F = F(x;0), 6e# if 8, =0, and 1/\/(n) sup |F,(x) — F(x; 8,)| > M(6;, ®).
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1. APPROXIMATION OF B,(x) BY G(x, n)

From now on the following conditions will be assumed:

C.1. F(x; 6) is absolutely continuous for all § € .# and the density function f (x; 8) =
= 0/0x F(x; 0) is continuous on R! x %,

C.2.
J.|f(x; 0,) — f(x;0,)]dx > 0 if 6, + 0,00, €4, 0,€.9),

C.3
0 < I(6) < o,
and I(6) is continuous on £,
C.4. there exists a p = 0 such that sup (1 +|o)71(6) < oo,
e

O+e Vil 2
el 0))
lim J J _(_"’im dx do
=0 & W g~V A f(X: 0)

9[={x: >b}9

C.6. there exists a 6 > 0 such that
s |0 — 90]6J\/[f(x; ) f(x; o)) dx < oo,

C.5. forall 6 > 0 and 0 € # we have

where
f(x; 0 + ¢

log f(x; 9)

Gl

E.Jf(x-())dx ___J"_C"_f(x.g)dx = ﬁiff(xgﬂ)dx = fﬁf(x; f)dx =0,
a0 ’ 00" " 00? 002"

£ fx; 0)dx = i f(x; 0) dx
0)_ 09" T

haie ]
(the existence of the mentioned derivatives is assumed),

C.8. there exists a 6 > 0 and a K > 0 such that

1

o2 s )
P log f(x;05)|  f(x;00)dx < K,

Ji

] |2+6
Jl;‘g log f(x; 90); f(x:0,)dx < K,
0
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C.9. there exists a function k(x) and a y > 0 such that

| 02

g (108 02) = log (i 0,) < k(x) |62 = 0.

and
j.k(x)f(x; o) dx < w0,

C.10. the derivatives

52

h{x; 8) = 0% F(x;0) and ;;%5 F(x; 0)

exist and are bounded on R! x %,
C.11.

for some K > 0,
C.12. ¢/e6 log f(x; 0) is bounded on R' x # and absolutely continuous in x and

exists and bounded on R' x .

In fact conditions C.1—C.9 are the ones* which were used by Ibragimov and
Hasminskii to prove

Treorem C [4], [5]. Suppose that C.1—=C.9 hold and let

A 1 1 & @
/(n) (0, — 0o) — — —— > —logf(X;; 6) = 2,
V() ( o) Jn I(8o) =2 a0 (X3 00)
then
0, = O(n™)
with probability 1 and Egs = O(n~%%) for a suitable & > 0 and

EJn(B, — 6 < 4, (k=1,2,..)

for a suitable A, > 0if n is great enough.**
Now we can formulate our

* The second equation of C.7 was not used by them.
** In fact the relation EQ,% == O(n~ %% is not stated explicitly in [$] but the proof there implies
it easily.
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THEOREM 1. Suppose that conditions C.1—C.12 are fulfilled. Then, if the under-
lying probability space is rich enough, one can construct a K.P. K(x, y) such that

sup |G(x, n) — B,(x)| = O(n)
with probability 1, for some 0 < ¢ < 4, where

G(x, n) = G(x, n; 0,) =

= K(F(x; 0,), n) — /4%(2)9) ;3% log f(x; 65) d K(F(x; 0,), n)

is a G.P. with the covariance function

EG(x,, ny) G(x,, n,) = min (ny, ny) [min (F(x,; 8) F(x,; 6,)) —
"‘P‘(xi; 00) F(XZ; 00} =l h(x;; 00) h(x;_; 00)] .

Before proving this theorem we give a

LemMA. Under the conditions of our Theorem 1 we have

L= [ £ 1081(c300) 40n(F(9) — Flx: 05) ~ K(F(x 8, m] = O)

with probability 1 for some 0 < e < } where K(.,.) is the K.P. defined in

Theorem B.
-4 m +4yn ©
L:J +j +f .
- —4n +4yn

These integrals can be estimated as follows:

J Wt f T () ale) = K 00, )

—~4n N 0x

Proof. Clearly we have

o2
log f(x; 8,) dx +
a0 f( o)

+ [J(1) a(x) = K(F(x; o), n)]2i¥n = O(log? n) 3/n + O(n*)

for any ¢ > 0,
+4/n
[ = ot u&/m = K(E(/ ;00 m) = 0t
-
for some 4 > & > 0, and the same is true for the integral [&,; this proves our Lemma.
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Proof of Theorem 1. Using the K.P. of Theorem B we clearly have
n(F(x) — F(x; 0,)) = n(F,(x) — F(x; 0)) + n(F(x; o) — F(x;0,)) =
— 02 A2
= K(F(x: 00), 1) + 8(x) — (0, = 60 hx, 8) — n Co= 00" PF(x: 6)

2 06*
where min (6, 0,) £ 6’ < max (65, 0,).
Since by Theorem C n(B, — 6,)* = O(n?) for any y > 0 with probability 1, we
have
n(F,(x) — F(x;0,)) = K(F(x; 0,), n) ~ n(0, — 8,) h(x, 85) + O,(n°) =

= K(F(x§ 00): ) h([)(cef)()) ]Zl 769 gf(Xj; ‘90) - \/(n) (P Ox(ns) =i

— K(F(x; 00), ) — %559) f é% tog £(x; 85) dy /(1) () + O(n?) =
h(x; 0

= K(F(x; 0,), n) — 1,

0).{89 log /(x; 05) d.K(F(x; 0o), n) + Ox(n®) =

= G(x, n) + O,(n°)

where O,(n®) is a stochastic process for which

H"}—s'JpO(rz)<oo

n—o B x
with probability 1.
To evaluate the covariance function of G(x, n) is quite an elementary matter.

REMARK. Put

1
W(n) = '795 f—— log f(x; 0,) 4. K(F(x; 6,), n) .

It is worth while to mention that W(n) is a G.P. with covariance
E W(n,) W(n,) = min (n,, n,)

i.e. W(n)is a Wiener Process.

2. ON THE EMPIRICAL PROCESS WHEN THE PARAMETER
IS ESTIMATED FROM A HALF-SAMPLE

Let 8, be the m.le. of 8, based on a randomly choosen half of the sample
X, X, .., X,. Without loss of generality we can assume that it is the first half:
X Xo oo X2y
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THEOREM 2. Suppose that conditions C.1—C.12 are fulfilled. Then, if the under-
Iying probability space is rich enough, one can construct a K.P. R(x, y) such that

sup |n(F,(x) — F(x; 8,)) = K(F(x; 0,), n)| = O(n")

with probability 1, for some 0 < ¢ < 4.
REMARK. Since

P{sup —1/— K(F(x; 0,), n) < y} =1-e? if y>0

x |Jn
and
P{sgp:‘—}r—l ’K(F(x; 8o)s n)\ < y} =k:}§ﬂ(— e D if y >0
we have
lim P{sup \/(n) (F(x) — F(x;8,)) <y} =1 —¢™»" if y>0
and J
lim P{sup /(n) |F.(x) — F(x; 8,)| < y} = Li (=1fe ™ if y>0.

Proof of Theorem 2. Let Ff,”(x) resp. F(® x) be the empirical d.f.’s based on
the sample X1, X, ..., Xpu2 165D Xpuy21e 15 -+ X, further let Ky(x, v) resp. Ky(x, y)
be K.P.’s for which

| |
supig (FO(x) = F(x; 60)) — Ky(F(x; ), n/2)% = O(log’ n)
* |

resp.

SL{pg (FP(x) — F(x; 60)) — Ko(F(x; 0); n/2)l = O(log® n)

X 1]
i

with probability 1. Without the loss of generality we can assume that Ky(s o) is
independent from K (-, +) and also from the sample X, X5, ..., X2 (cf. Theorem 4
of [1]). Then we have

ERD(x) = F(x; 0,)

n(F,,(x) - F(x; 0,,)) =7 5

+ n(F(x; 0p) — F(x; 8,)) +

b B0 = FOS00 _ (a0, )+ n(P(x 00) ~ s 8) +

+ Ky(F(x: 0,), n[2) + O(log® n) .
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Using the idea of the proof of Theorem 1 we get

n(F(x; 0o) ~ F(x; 8,)) =

P YUCAD) Ji log £ (x; 80) d. K (F(x; 8o), n[2) + Oy(n%),

-~

a0

hence

n(F,(x) = F(x; 8,)) = K{(F(x; 05), n/2) + K(F(x; 65), nf2) —

-2 B 0) [ 8 log f(x; 00) d K (F(x; 05), nf2) + Oy(n’).
1(6,) J 06
Clearly the process
R(F(x; 05), n) = K,(F(x; o), nf2) + K, (F(x; 8,), nf2) —

2 1 6o) j 2 1og 1(x: 00) AK.(F(s: 00, n]2)

is a G.P. and by a simple calculation one gets
E R(F(xy; 0o), ny) R(F(xz; 85), na) =
= min (ny, ny) [min (F(x,; 0o), F(x5: 60)) — F(x13 8o) F(x23 8o)]
which proves that K is a K.P.
REMARK. Let G(x, 6) be the inverse of F(x;0) ie. F(G(x,0),0) = x. Several
times the sample Y, = ¥ = F(X,;8,) (k=1,2,...,n) is investigated instead

of {X;}r=1. Let F,(x) be the empirical d.f. based on the sample ¥}, ¥, ..., ¥, Clearly
F(G(x, 8,)) = F,(x), hence, by Theorem 2, we have

sup In(F,(x) = x) = K(F(G(x, 8,); o), n)| = O(n")
and clearly
sup [K(F(G(x, 0,); 8o), n) — K(x, n)] = O(n°)
sup |n(F(x) — x) = K(x, n)| = O(n°)

with probability 1.
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3. AN ESTIMATION OF /)’,,(x) INDEPENDENT FROM 0,
In this paragraph it will be also assumed that d(0)/d0, 6 e # is bounded.
The following lemma can be immediately obtained from the definition of G(x, n, 6)

LEMMA. We have
sup |G(x, n; 8,) — G(x, n; 6,)| = O(n?)

with probability 1 for some 0 < ¢ < 4.
This lemma and Theorem 1 imply

THEOREM 3. We have

sup V(1) (Fu(x) = F(x; 0,)) = G(x, n; 0,)] = O(n°)

with probability 1 for some 0 < ¢ < 4.

4. THE MULTIVARIATE CASE

It is an important task to generalize these results to the case when x and 8 are
varying in a more dimensional Euclidean space, say x e R¥, § ¢ R™

It can be seen that the most important tools of the proofs are Theorems B and C.
Hence, if we have multivariate generalizations of these theorems then one can prove
multivariate generalizations of our Theorems 1, 2, 3.

A multivariate generalization of Theorem B is known (see [6]). Theorem C is
originally formulated for the case when x € R, 0 € R'. It means that Theorems 1, 2, 3
can be generalized for the case x ¢ R, 0 e R without any difficulty and they could
be generalized for the case x € R, § € R™ if we could generalize Theorem C for this
case.

The weak version of Theorem C is well-known (see e.g. [7], p. 500) what shows
that weak versions of our Theorems can be proved in the general case too.
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