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Given the partial sums of i.i.d.r.v.s with a distribution function F(x), ~ x dF(x)=0, 
x 2 dF(x)= 1 we want to approximate these r.v.s with the partial sums of inde- 

pendent standard normal variables. This problem was discussed in papers [1] 
and [2]. The case when the third moment  of the distribution does not exist was 
omitted. The aim of this paper is to fill this gap. 

Introduction 

In papers [1] and [2] a sequence of partial sums of i.i.d.r.v.s was approximated 
with normal summands. The case when the third moment  of the summands does 
not exist was omitted because some statements of the paper were based on the 
Berry-Essen theorem which holds only if the third moment  exists. Here we will 
prove somewhat weaker results in the case when the third moment  does not exist 
and show that these weaker results are sufficient to make an optimal construction 
possible. We could choose the same construction as in [1] and [2] but we choose 
another one which is just as good and simpler. Similar constructions are also 
found in [3, 4] and [5]. 

We prove the following: 

Theorem 1. Let F(x) be a distribution function such that ~ x dF(x)=0, ~ x 2 dF(x)= 1 
and ~ x 2 g([x]) dF(x)< oo where g (x) satisfies the following conditions 

i) g (x)/x is monotonically decreasing, 

ii) g (x )=g(x) /x  ~ is monotonically increasing with an appropriate e >0.  

Then one can construct a sequence of i.i.d.r.v.s X1, X 2 . . . .  with distribution F(x) 
and another sequence Y1, Y2 . . . .  with standard normal distribution in such a way 
that the sequences 

S n = ~ X k ,  T~= ~ Yk (n= 1, 2, ...), 
k = l  k--1  
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satisfy the relation 

P ( l i m s u p  [S"-T"I < L ) = I  (1) 
h(n) = 

with an appropriate constant L. Here h(x) denotes the inverse of the function x 2 g(x). 

Instead of i) we could write 
g(x). 

(i') x~ ~ is monotonically decreasing. (g is sufficiently small.) 

Observe, that if~ x 2 g([x]) dF(x) < ov then there is a function u(x)>0,  u(x) ~ 
suchthat ~ x 2 g(Ix[) u(Ix]) dF(x) < 00. Applying Theorem 1 with g(x) u(x) instead 
of g (x) we obtain the following 

Corollary. Under the conditions of Theorem 1 one can construct the sequences 
X1, X2, ... Y1, u . . . .  in such a way that 

S. -  T~ 
- - - - ~  0, with probability one. 

h(n) 

Specifically choosing g(x)=[xl r 2, 2 < r < 3  we obtain that if 5[x[rdF(x)<oo 
2 < r < 3  then 

S n - T~ 
0. (23 1 

n r 

Using the results of [23 one sees that (2') holds true for every r > 2 .  

Proofs. To prove our Theorem we need the following lemmas. 

Lemma 1. Let X1, X 2, ... be i.i.d.r.v.s, EX21 g(IXa])< ~ where g(x) satisfies (i) and 
(ii). Define 

{X~ if i X ~ l < c ~ n  
X~ = otherwise, 

2, xi-Ex; F(x)=P(2~ <x), 
DX~ ' 

and 

/-~1"+ X2 + "'" + 2n  < x )  . 
F~(x)= P ~ ~ n  

Then we have 

[ (1t] l-~(x)=U-go(x)3 1+o ~ , 

1 

if 0 < x < ~ - -  ~ n. (go(x) is the standard normal distribution.) 
~5C 
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Proof The proof applies the standard large-deviation technique. We prove only 
the first relation, the proof of the second one being the same. Define dV(x)= 
e tx dF(x) 

R ( t ~ '  where R (t) = S e'x dF(x) and let r (t) = log R (t). We have 

1 -F , (x )=  1-F*(")(]/-nx)= ~ e'O(o-t, dV*(,)(y). (2) 
U~x 

Provided t <  6c ]f~ , then some calculations show that IR(t)l, IR'(t)l, IR'(t)l 

are bounded by a constant, and 

IR'"(t)J-_<S IxJ 3 e *x aF(x)<=I Ixl 3 +~ dF(x) 

< (n log n) �89 
g ( ~ )  I x2 g(Ixl) a t ( x ) <  ~ _, . 

Thus calculating the derivatives of r we obtain that I~(t)l, Ir JO"(t)[ are 
bounded by a constant and 

r  

8 Choose t as the solution of the equation x = l f n  r Then x < ~ c  lo ] / ]~  implies 

that t_< . . . .  . Expressing t as a function of x, the Taylor-series of t(x) gives 
that - 6 c 1/~ 

X -  X 2 

\~(V~> ~ ~/ 

We want to approximate V* (~ (x) by a normal distribution with expectation n ~'(t) 
and variance n r Now V*(~l(x) may not have a bounded third moment, but 

X 2 +~ t x -  X2+~.~(txj) MV(x)=~X 2" e g(Ix) dF(x) < j X2g(X ) dV(x)<K. 
R(t) - -  = 

Therefore, we can state (see e.g. [6] p. 141) that 

sup V* (,/(x) - g' - -  < 

with an appropriate constant A. 
Let us approximate (2) by 

ao 

.,=] vv  C6 

Substituting z = y - n r (t) + t n r (t) one gets 
1/~ r 
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where 

t a 

and 

1 - ~b ( x )  0 . 

Therefore, 
1 

0 +o 
Integration by parts shows that 1-b~,(x)-Ut is less than 

2A 
exp In (O (t) - t 0' (t))] 

u, =otl-+ xl) 
~(1/~)n  ~ exp - -  nt2 " ( t ) ( 1 - ~ ( t l / n ~ , " ( t ) )  

These estimations prove Lemma 1. 
Now define the inverse of a distribution function F(x) as 

F -1 (t) = sup (y; F(y) <= t). 
Then given a uniformly distributed r.v. ~ on [0, 1], the r.v. F-1 (4) has distribution 
F(x). 

We need the following corollary of Lemma 1. 

ro _F_1 Corollary. Let =~-J(~),  l/~ (4) where ~ is a uniformly distributed 

random variable on [0, 1]. The estimation 

D2(S"- T")=O t ~(V~) 

~3 
holds if we take c 2 >~ in Lemma 1. 

- 128(2 +~) 

Proof of the Corollary. I f 0 < S , < c '  ]/n log n, c =~-c '  then 

1 - ~  (S~nn ~ n )  (S~n) g ) > I - F ,  

with an appropriate K > 0; thus IS , -  T~[ < K1/~ = ~ ( r  

(1/~/n ~ 

2A 
< 
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By H61der's inequality, 

c '2 e ! 

_ < - n  ~ 2 ~ < _ _  . 
n 

The tail of T, can be similarly estimated. Similar estimations are valid if S, < 0, 
and these estimations imply the Corollary. 

We need the next lemma in order to work with truncated random variables 
instead of the original ones. 

Lemma 2. Let X~, X 2 .. . .  be i.i.d.r.v.s with d.f F(x), EXI=O, EX(  =1, EX(  g(IX1J) 

[ g_~ / n \]2 

<oo where g(x) is as in Theorem l. Define ~ . -  where g-i(x) is 
log n 

the inverse of g(x). Let v., n = 1, 2 . . . .  be a monotone increasing sequence of positive 
integers such that v. <B ~. with appropriate B>0.  

Define 

r IX l<g ; y vj 
j= l  j= l  

0 otherwise 
and 

DXk 

Then the sequences S.= ~, Xi, S.= ~ Z and S.= ~, J', n---1,2 .... satisfy the 
relations j -  1 j = 1 j = 1 

a) I S . -  g.t<K(co) with probability one, 

b) h ( n ~  ~0 with probability one 

(h(x) is again as in Theorem 1, that is the inverse of x 2 g(x)), 

Let us remark that h(n~.)=g-~ (l~--gn)since n % = [ g - 1  (l@gn)] 2 n 
' log  n" 

Proof of Lemma 2. Denote g - l  (l@gn) by u.. 

a) We have 

eix ,x )= v.e(ix, l>=u.) 
k = l  n 1 

<=B ~ nc~.P(u. <[X~I <u.+t) 
?t 

Un+ 1 

= B ~ y u 2 g(u.) dF(x) < B I x2 g(lx]) dF(x) < ~o. 
Un 
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Therefore Xk(O))+Jr only finitely many times. 
b) It is enough to prove the estimations 

b 1) Y' E()(k--Xk) h(k) <oe and b2) ~ DE(2k--J(k) 
h2(k) 

E(2k --2k) 
b I) E 

T h(k) 
an 

<c Z h(nc~.) I~t!,. [xl dF(x) 

<-_Z cn~" ~ Ixldf(x)<c' ~x2g(lxDdF(x)<ov. 
un  u . + ~ > l x l > u ~  - o o  

D 2 (Ps Ps = (1 -DX~)  2 ~ 1 -D  2 X,~ = 1 - EJ~2 + (EP~m) 2. b2) 
Furthermore 

(~x~)~ < c  "~ E~Ck 
E h 2 ( k ) =  2 _ , h ~ < ~ 1 7 6  

and 

hZ(k) ~L ,  hZ(ncr S Ixl2df(x) 
un<lxl<u~+l 

_--< C' S x2 g (I X l) dF(x) < cO, 

Proof of Theorem I. Define S,, S, and J~, as in Lemma 2. (We define v, later.) 
Because of Lemma 2 it is enough to prove formula (1) writing S, instead orS, .  

Denote 7, = ~ ~j. Using the notation of our previous lemmas, our construction 
i=1 

will be the following. 
Let ~1, ~2 . . . .  be i.i.d.r.v.s and let ~a he uniformly distributed on [0, 1]. Let t > 0 

be a sufficiently small fixed number, denote It ( 7 , - 7 , - 0 ]  by v, and put w ,=  

~vk .  We construct the random variables 
k-1 

Swo+ 1 - L~o _ _ ~ 1  (G) 

n = 1 , 2 , . . . .  
Two,+ 1 - -  T~, =O_1(~,)" 

VE 
(F~(l/nx) is the distribution of S,.) 
Complete the sequences Sw.,Tw, into two sequences ;~,, T~ so that the joint 
distribution of the sequences S, and T~ n = 1, 2,. . .  be the prescribed one, while 
S~,., T~, should agree with the previously constructed S,~. and T,~,. We prove that 
these S, and T, satisfy (1). 

First we state that 

Sw.-  T~o _,0" 
h (n c~,) 
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Since E ( S ~ - T w , ) = 0  this relation follows from the estimation 

~'n h 2 (n ~,) 
Da ((Sw. - Sw._ ~) -(T~n - T~.,_ 1) ) 

a n < K. E h 2 (n ~,) ~ (1/~) 2 

= K E  (]~n)2g_l ( n )2 = E  ~(]//~n)21og n 

-< K Y' c~2~ (log n) 2 
_ n 2  < 0 ( 3  

if e is chosen sufficiently small. 
Here we used the estimation 

which is true by (i), and thus 

(~./77)>_g(~g~n log n) _ n g 
-- l l ~  n ( log n) ~" 

It remains to prove that 

lim sup sup ~ , )  <L ,  (3) 
n w n < k < w n 4  l 

and the same relation holds writing T instead of S. 
Using Lemma 1 with an approximately chosen L 

P ( sup Sk-S~n Sw~+~-Sw~ >~_ 
\~,,<k< ... . .  h(n ~,) >L <2P h(n ~,) 

/Sw +,-Sw L h(n%)] 
= 2 P  ~ ~ "  ~> 

_<:P c 

Thus the Borel-Cantelli lemma implies (3). This relation can be similarly proved 
with T~-s instead of S,-s. 

Finally we state the following 

Theorem 2. Let F(x) and h(x) be as in Theorem 1. Then for any x, x 2 g(x)>n, 
x < l ~ l o g n  there exists two finite sequences X1 ,X  2 .... X,  resp. Y1, Y2 ... .  Y, 

k k 

of i.i.d.r.v.s with d.f. F(x) resp. cb(x) such that the sequences Sk= ~ Xi, Tk= ~ Yi 
i=1 i=1 
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k < 1 .... n satisfy the relation 

o(n) 
P (sup I S k k  __<, -- Td > x) = x2 g (x)' (4) 

The proof is similar to that of Theorem 1, so we give only a rough sketch of it. 
It is enough to prove this formula with 0 ( �9 ) instead of o( �9 ) and then the same 
remark can be applied as after Theorem 1. 

x 
Let us truncate the r.v.-s Xi at ~ ,  and denote the partial sums made from the 

standardized form of these truncated variables by Sk, k = 1, 2 . . . .  n. Approximate 
X 2 n 

the variables ;~j,~-S(j-1)m by T~,,-T(j_I) m where m = t  1-ogx, j - l ,  2, ...--m and 

t > 0 is an appropriate fixed constant, in the same way as it was done in the corollary 
of Lemma 1, and complete the sequences S and T as in the construction of Theorem 
1. Then similar arguments like in the proof of Theorem 1 show that (4) holds with 

x 
Sk instead of S k and ~-  instead of x. 

On the other hand 

- x O ( n )  
P (supI Sk-- Sk[ > ~ ) = ~ ~X)'  

and these estimations prove Theorem 2. 
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