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Summary. We take a class of functions F with polynomial covering numbers on a
measurable space (X,X ) together with a sequence of independent, identically distributed
X-space valued random variables ξ1, . . . , ξn and give a good estimate on the tail distri-

bution of sup
f∈F

n
∑

j=1

f(ξj) if the expected values E|f(ξ1)| are very small for all f ∈ F . In a

subsequent paper [5] we shall give a sharp bound for the supremum of normalized sums
of i.i.d. random variables in a more general case. But the proof of that estimate is based
on the results in this work.

1. Introduction.

This work is part of a more general investigation about the supremum of (normalized)
sums of bounded, independent and identically distributed random variables if the class
of random variables whose sums we investigate have some nice properties. It turned out
that it is useful to investigate first the case when the expectations of the absolute values
of these random variables are very small, and this is the subject of the present paper.
In paper [5] we shall get good estimates in the general case when the expectations of
these absolute values may be relatively large with the help of the main result in this
paper.

First I recall the notion of uniform covering numbers and classes of functions with
polynomial covering numbers, since they play an important role in our investigation.
Then I formulate the main result of this paper, and make some comments that may
help in understanding its content.

Definition of uniform covering numbers with respect to L1-norm. Let a mea-
surable space (X,X ) be given together with a class of measurable, real valued functions
F on this space. The uniform covering number of this class of functions at level ε,
ε > 0, with respect to the L1-norm is sup

ν
N (ε,F , L1(ν)), where the supremum is taken

for all probability measures ν on the space (X,X ), and N (ε,F , L1(ν)) is the small-
est integer m for which there exist some functions fj ∈ F , 1 ≤ j ≤ m, such that
min

1≤j≤m

∫

|f − fj | dν ≤ ε for all f ∈ F .

Definition of a class of functions with polynomially increasing covering num-

bers. We say that a class of functions F has polynomially increasing covering numbers
with parameter D and exponent L if the inequality

sup
ν

N (ε,F , L1(ν)) ≤ Dε−L (1.1)
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holds for all 0 < ε ≤ 1 with the number sup
ν

N (ε,F , L1(ν)) introduced in the previous

definition.

The main result of this work is the following Theorem 1.

Theorem 1. Let F be a finite or countable class of functions on a measurable space
(X,X ) which has polynomially increasing covering numbers with some parameter D ≥ 1
and exponent L ≥ 1, and sup

x∈X
|f(x)| ≤ 1 for all f ∈ F . Let ξ1, . . . , ξn, n ≥ 2, be a

sequence of independent and identically distributed random variables with values in the
space (X,X ) with a distribution µ, and assume that the inequality

∫

|f(x)|µ( dx) ≤ ρ
holds for all f ∈ F with a number 0 < ρ ≤ n−200. Put Sn(f) = Sn(f)(ξ1, . . . , ξn) =
n
∑

j=1

f(ξj) for all f ∈ F . The inequality

P

(

sup
f∈F

|Sn(f)| ≥ u

)

≤ DρCu for all u > 40L (1.2)

holds with some universal constant 1 > C > 0. We can choose e.g. C = 1
50 .

I introduce an example that may help in understanding better the content of The-
orem 1. In particular, it gives some hints why a condition of the type u > C̄L had to
be imposed in formula (1.2). (We imposed this condition with C̄ = 41.)

Let us take a set X = {x1, . . . , xN} with a large number N together with the
uniform distribution µ on it, i.e. let µ(xj) = 1

N for all 1 ≤ j ≤ N , and define the
following class of function F on X. Fix a positive integer L, and let the class of
functions F consist of the indicator functions of all subsets of X containing no more
than L points. Let us fix a number n, and choose for all numbers j = 1, . . . , n a point
of the set X choosing each point with the same probability 1

N independently of each
other. Let ξj denote the element of X we chose at the j-th time. In such a way we
defined a sequence of independent random variables ξ1, . . . , ξn on X with distribution µ,
and a class of functions F consisting of non-negative functions bounded by 1 such that
∫

f(x)µ( dx) ≤ L
N for all f ∈ F . Let us introduce the random sums Sn(f) =

n
∑

j=1

f(ξj)

for all f ∈ F . We shall estimate first the probability Pn = P

(

sup
f∈F

Sn(f) ≥ n

)

and

then the probability Pu,n = P

(

sup
f∈F

Sn(f) ≥ u

)

for u ≤ n.

It is not difficult to see that Pn = 1 if n ≤ L, and Pn ≤
(

N
L

)

( L
N )n ≤ CLρn−L with

ρ = L
N if n > L, where C is a universal constant. The number C can be chosen as a

constant for which the inequality pp ≤ Cpp! holds for all positive integers p. We can
choose for instance C = 4. In the proof of the above estimate we may exploit that X
has

(

N
L

)

subsets containing exactly L points, and the event sup
f∈F

Sn(f) ≥ n may occur
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only if there is a subset of X of cardinality L which contains all points ξj , 1 ≤ j ≤ n.
Also the estimate Pu,n ≤

(

n
u

)

Pu ≤ CLnuρu−L holds, because the event sup
f∈F

Sn(f) ≥ u

can only occur if there are some indices 1 ≤ j1 < j2 < · · · < ju ≤ n such that all points
ξjs , 1 ≤ s ≤ u, are contained in a subset of X of cardinality L. The probability of such
an event is Pu for all sequences 1 ≤ j1 < j2 < · · · < ju ≤ n, and there are

(

n
u

)

such
sequences.

We show that if N ≥ n201 and n ≥ 41L, then the above model satisfies the condi-
tions of Theorem 1, and compare the bound we got for Pu,n in our previous calculation
with the estimate of Theorem 1 in this example. We shall apply Theorem 1 for the
class of functions F consisting of the indicator functions of all subsets containing at
most L points of a set X. To apply Theorem 1 I show that the above defined F is
a class of functions with polynomially increasing covering numbers with exponent L
and an appropriate parameter D. Then we consider the estimate of Theorem 1 for the
probability Pu,n. First we have to check the above stated property of F . For this goal I
recall the definition of Vapnik–Červonenkis classes together with a classical result about
their properties.

Definition of Vapnik–Červonenkis classes. Let a set X be given, and let us select
a class D of subsets of this set X. We call D a Vapnik–Červonenkis class if there
exist two real numbers B and K such that for all positive integers n and subsets S(n) =
{x1, . . . , xn} ⊂ X of cardinality n of the set X the collection of sets of the form S(n)∩D,
D ∈ D, contains no more than BnK subsets of S(n). We call B the parameter and K
the exponent of this Vapnik–Červonenkis class.

It is not difficult to see that the subsets of a set X containing at most L points
constitute a Vapnik–Červonenkis class with exponent K = L and an appropriate pa-
rameter B. (Some calculation shows that we can choose B = 1.5

L! .) I would also recall
a classical result (see e.g. [7] Chapter 2, 25 Approximation Lemma) by which the indi-
cator functions of the sets in a Vapnik–Červonenkis class constitute a class of functions
with polynomially increasing covering numbers. (Actually the work [7] uses a slightly
different terminology, and it presents a more general result.) In the book [7] it is proved
that if the parameter and exponent of a Vapnik–Červonenkis class are B and K, then
the class of functions consisting of its indicator functions has polynomially increasing
covering numbers with parameter D = max(B2, n0) and exponent L = 2K with an ap-
propriate constant n0 = n0(K). Moreover, it is not difficult to see by slightly modifying
the proof that this exponent can be chosen as L = (1+ ε)K and an appropriate param-
eter D = D(K,L, ε) for arbitrary ε > 0. Actually there are some improved versions of
this result that supply slightly better estimates for this parameter and exponent (see
[2] or [8] Theorem 2.6.4), but this improvement does not play an important role in our
considerations.

The above argument shows that the class of functions F considered in the above
example has polynomially increasing covering numbers with exponent 2L and an appro-
priate parameter D. Its exponent can be chosen even as (1 + ε)L with an appropriate
parameter D(ε) for all ε > 0. This means in particular that Theorem 1 can be applied
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to estimate the probability Pu,n if the numbers L, N and n are appropriately chosen.
It can be proved that both Theorem 1 and our previous argument provide an estimate
of the form Pu,n ≤ ραu with a universal constant 0 < α < 1, only the parameter α is
different in these two estimates. (Observe that ρ = L

N ≥
∫

f(x)µ( dx) for all f ∈ F
in this example.). To see that we proved such an estimate for Pu,n which implies the
inequality Pu,n ≤ ραu under the conditions of Theorem 1 observe that ρu−L ≤ ρ40u/41,
and nu ≤ ρ−u/200. Moreover, it can be seen that if we are not interested in the value of
the universal parameter α, then this estimate is sharp. I also remark that we can give a
useful estimate for Pu,n in this example (and not only the trivial bound Pu,n ≤ 1) only
if u > L.

The main content of Theorem 1 is that a similar picture arises if the supremum
of the sums we consider is defined with the help of an arbitrary class of functions with
polynomially increasing covering numbers. Namely, Theorem 1 states that if F is a class
of functions with polynomially increasing covering numbers with some exponent L and
parameter D that satisfies some natural conditions, then there are universal constants

0 < α < 1, C1 > 1 and C2 > 0 such that P

(

sup
f∈F

Sn(f) > u

)

≤ Dρ−αu if n ≥ C1L and

ρ ≤ n−C2 . Here we applied the notations of Theorem 1. We also gave an explicit value
for these universal parameters in Theorem 1, but we did not try to find a really good
choice. It might be interesting to show on the basis of the calculation of the present
paper that we can choose C1 = 1 + ε or α = 1 − ε with arbitrary small ε > 0 if the
remaining universal constants are appropriately chosen.

As the above considered example shows the estimate of Theorem 1 holds only if
u ≥ CL with a number C ≥ 1. The other condition of Theorem 1 by which ρ ≤ n−C2

with a sufficiently large number C2 > 0 can be weakened. Actually this is the topic
of paper [5] which is a continuation of the present work. In paper [5] I shall consider
such classes of functions F with polynomially increasing covering numbers for which the
parameter ρ considered in Theorem 1 can be relatively large. On the other hand, in [5]
we shall consider only such classes of functions F whose elements have the ‘normalizing
property’

∫

f(x)µ( dx) = 0 for all f ∈ F . In the present work we did not impose such
a normalization condition, because in the case ρ ≤ n−α with some α > 1 the lack of
normalization has a negligible effect.

Theorem 1 will be proved with the help of Theorem 1A formulated below. After
its formulation I shall explain that Theorem 1A can be considered as a special case of
Theorem 1.

Theorem 1A. Let X = {x1, . . . , xN} be a finite set of N elements, and let X be
the σ-algebra consisting of all subsets of X. Let µ denote the uniform distribution on

X, i.e. let µ(A) = |A|
N for all sets A ⊂ X, where |A| denotes the cardinality of the

set A. Let F be a class of functions with polynomially increasing covering numbers with
some parameter D ≥ 1 and exponent L ≥ 1 on the measurable space (X,X ) such that
0 ≤ f(x) ≤ 1 for all x ∈ X and f ∈ F , and

∫

f(x)µ( dx) ≤ ρ
2 for all f ∈ F with some

ρ > 0 which satisfies the inequality ρ ≤ min( 1
1000 , L

−20).
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For the sake of a simpler argument we shall assume that the number N has the
special form N = 2kN0 with some integer k ≥ 0 and a number N0 that satisfies the
inequality 1

16ρ
−3/2 < N0 ≤ 1

8ρ
−3/2. (Actually we could choose an arbitrary number

N ≥ 1
16ρ

−3/2 in Theorem 1A, but this special choice of N makes our argument simpler.)

Introduce for all numbers p = 1, 2, . . . the p-fold direct product Xp of the space X
together with the p-fold product measure µp of the uniform distribution µ on X, i.e. let
each sequence x(p) = (xs1 , . . . , xsp), xsj ∈ X, 1 ≤ j ≤ p, have the weight µp(x

(p)) = 1
Np

with respect to the measure µp.

Given a function f ∈ F and a positive integer p let us define the set Bp(f) ⊂ Xp

for all p ≥ 2 by the formula

Bp(f) = {x(p) = (xs1 , . . . , xsp): x
(p) ∈ Xp, f(xsj ) = 1 for all 1 ≤ j ≤ p}, (1.3)

and put

Bp = Bp(F) =
⋃

f∈F
Bp(f). (1.4)

If p ≥ 2L and p ≤ ρ−1/100, then there exist some universal constants C1 > 0 and
1 > C2 > 0 such that

µp(Bp) = µp(Bp(F)) ≤ C1DρC2p. (1.5)

We can choose for instance C1 = 2 and C2 = 1
4 .

In Theorem 1A we considered a special case of the problem discussed in Theorem 1.
We took a space of the form X = {x1, . . . , xN} with the uniform distribution µ on
it, and considered a class of functions with polynomially increasing covering numbers
and some additional special properties. If we apply Theorem 1 with the choice p =
n, then the event Bp(F) defined in (1.4) agrees with the event sup

f∈F
Sn(f) ≥ n, and

formula (1.5) implies the estimate (1.2) with the special choice u = n for the system X,
F , µ considered in Theorem 1A.

It may be worth mentioning that in Theorem 1A we considered a class of functions
F which contains functions f with the property 0 ≤ f ≤ 1, while the event Bp(F) whose
probability we have estimated depended only on the sets where these functions f take
value 1. Hence the event Bp(F) would not change if we replaced all functions f ∈ F by
the smaller functions f · I{f=1}, where I{f=1} denotes the indicator function of the set
{x: f(x) = 1}. Nevertheless, it was useful to formulate the result in the form as we did,
because by replacing the functions f by f · I{f=1} we may get such a class of functions
which has no polynomially increasing covering numbers. We shall prove Theorem 1 as
the consequence of Theorem 1A formulated in the present form.

In Section 2 I make some remarks and discuss some examples which may explain
the motivation behind the investigation of this paper. Theorem 1A will be proved by
means an appropriate induction procedure in Section 3. Theorem 1 will be proved in
Section 4 with the help of Theorem 1A and a good approximation.
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2. A discussion of the results in this paper.

To understand the results of this work it may be useful to consider the following problem.
Let us have a finite set X = {x1, . . . , xN} whose cardinality N is a large number and
a class F of subsets of X which is a Vapnik–Ĉervonenkis class with some parameter
B ≥ 1 and exponent K ≥ 1, and such that all sets A ∈ F contain no more than ρN
points, where ρ is a relatively small number, say ρ ≤ min( 1

2000 , (2K)−30). Let us choose
n points from the set X randomly and independently from each other so that at each
step we choose every point of X with the same probability 1

N . Let n ≥ αK with an
appropriately chosen sufficiently large universal constant α. Give a good estimate on
the probability that one of the sets A ∈ F contains each one of the n selected points.

This probability is very small, and it can be well bounded by means of Theorem 1A.
Indeed, if we define the class of functions F̃ which contains the indicator functions of
the sets in F , then F̃ is a class of functions with polynomially increasing covering
numbers which satisfies the conditions of Theorem 1A, and the probability we want to
estimate equals the probability of the event Bp(F̃) defined in (1.4) with p = n. Hence
Theorem 1A gives the estimate C1BρC2n with some universal constants C1 > 0 and
C2 > 0 for the probability we want to estimate.

Theorem 1 can be useful in the solution of the following generalized version of
the previous problem. Let us consider the same class of functions F as before, and
choose randomly n points from the set X independently of each other by the uniform
distribution, and let us assume this time that ρ ≤ n−1/200. Let us bound the probability
of the event that one of the sets A ∈ F contains at least αK elements from the randomly
chosen n points, where α is a sufficiently large fixed number, and K is the exponent
of the Vapnik–Červonenkis class F . This probability can be estimated similarly to the
previous case, only we have to apply Theorem 1 instead of Theorem 1A. We get the
estimate BραCK with a universal constant C.

Similar problems can be solved with the help of results which give a good bound
on the probability at the left-hand side of formula (1.2) if F is a class of functions with
polynomially increasing kernel functions, and the inequality

∫

f(x)µ( dx) ≤ ρ holds for
all functions f ∈ F with a small number ρ. (The measure µ in this formula is the
distribution of the random variables which take part in the definition of the quantity
Sn(f) appearing in Theorem 1.) I know some results in the literature in this direction,
but they do not provide a good estimate in the previous problems. In particular, they
do not show that the above considered probabilities are very small even in such cases
when we consider relatively short sequences of selected points in the first problem or we
are looking for such a set A ∈ F in the second problem which contains only relatively
few elements form the random sequence we have selected. (We may get good estimates
if the sequence we consider has a length n ≥ αK or we are looking for a set A ∈ F
containing at least αK points of our sequence. Here α > 0 is a universal constant, and
K is the exponent of the Vapnik–Červonenkis class.) The earlier results I know about
do not give a good estimate in these problems, because they provide a sharp estimate
in formula (1.2) of Theorem 1 only if the parameter ρ in it is relatively large.

In this paper I gave a good estimate in Theorem 1 if the parameter ρ in it is very
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small, namely the inequality ρ ≤ n−200 holds. I am also interested in the question what
can be told if this condition is dropped. This is the subject of my paper [5]. I also
discuss some examples in that paper which show that its estimates are sharp, and I
compare them with the results of some earlier works. The proofs in [5] are based on
Theorem 1 of this work. But since the arguments of the two papers are essentially
different I decided to handle them separately.

I wrote that the parameter ρ in Theorem 1 must be small. But actually the con-
dition ρ ≤ n−200 imposed on it provides a relatively large bound. In the proof of the
generalized version of Theorem 1 in paper [5] I shall adapt one of the main ideas in
the Vapnik–Červonenkis theory. I try to reduce the estimation of the probability we
are interested in to the estimation of the probability of relatively few events that can
be simply bounded. Relatively few events means in this context that their number is
only a polynomially, and not e.g. an exponentially increasing function of the sample
size n. I shall be able to carry out such a program, since the parameter ρ in Theorem 1
is bounded by a (negative) power of the sample size n. This is the reason why it is
important that we can apply Theorem 1 with relatively large parameters ρ.

I finish this section by some comments on the terminology of this paper. I intro-
duced the notion of classes of functions with polynomially increasing covering numbers.
I introduced the same notion in my work [4] under the name ‘L1-dense classes of func-
tions’. I changed this name to make reference to the closely related to notion of uniform
covering numbers which was introduced in the literature at several places, see e.g. [1],
[6] or [8]. I used the terminology Vapnik–Červonenkis classes in a non-standard way.
Usually one calls a class C of subsets of a set X a Vapnik–Červonenkis class of dimen-
sion d if d is the largest integer such that for all subsets D of X containing d elements
its intersections with the sets of C contain all subsets of D. (See e.g. [1].) An impor-
tant combinatorial result called the Sauer lemma implies that a Vapnik–Červonenkis
class of dimension d is a Vapnik–Červonenkis class with exponent K = d and pa-
rameter B = ( ed )

d by our terminology. (On the other hand, if a class of sets is a

Vapnik–Červonenkis class with exponent K and parameter B by our terminology, then
it is a Vapnik–Červonenkis class of dimension d < d̄, if d̄ is such a number for which
Bd̄K < 2d̄.) Hence we may also speak of Vapnik–Červonenkis classes with given expo-
nent and parameter. I prefer this terminology, because it expresses the most important
property of Vapnik–Červonenkis classes, and it indicates the similarity of this notion
with the notion of classes of functions with polynomially increasing covering numbers.
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3. The proof of Theorem 1A.

Theorem 1A will be proved by means of induction with respect to the parameter k
(appearing in the definition of the size N of the set X). The first result of this section,
Lemma 3.1, formulates a result similar to Theorem 1A in the special case when the set
X, where the functions f are defined contains relatively few points. We need it to start
our induction procedure.

Lemma 3.1. Let us fix a number ρ, 0 < ρ < 1, and a set X = {x1, . . . , xN0},
with N0 ≤ 1

8ρ
−3/2 points together with a class of functions F defined on X which

satisfies the following weakened version of the property having polynomially increasing
covering numbers with some parameter D ≥ 1 and exponent L ≥ 1. N (ε,F , L1(µ)) ≤
Dε−L for all 0 < ε ≤ 1, where µ is the uniform distribution on X, and N (ε,F , L1(µ))
was introduced in the definition of uniform covering numbers. Let us also assume that
∫

f(x) dµ(x) ≤ ρ and f(x) ≥ 0 for all f ∈ F and x ∈ X. Let us consider an integer
p ≥ 2L, and the set Bp = Bp(F) ⊂ Xp introduced in formula (1.4) together with the
uniform measure µp on the p-fold product Xp of the space X. The inequality

µp(Bp) ≤ Dρp/4 (3.1)

holds.

Proof of Lemma 3.1. Let us choose a set of functions f1, . . . , fs, fj ∈ F for all 1 ≤
j ≤ s, with cardinality s ≤ D(2N0)

L, with the property that for all f ∈ F there is a
function fj , 1 ≤ j ≤ s, for which the inequality

∫

|f(x) − fj(x)|µ( dx) ≤ 1
2N0

holds. If
∫

|f(x) − fj(x)|µ( dx) ≤ 1
2N0

, then |f(x) − fj(x)| ≤ 1
2 for all x ∈ X. This follows from

the inequality 1
N0

|f(x) − fj(x)| ≤
∫

|f(x) − fj(x)|µ( dx) ≤ 1
2N0

for all x ∈ X. As a

consequence, {x: f(x) = 1} ⊂ {x: fj(x) ≥ 1
2} for such a pair of functions f and fj , and

Bp = Bp(F) =
⋃

f∈F
Bp(f) ⊂

s
⋃

j=1

{

(xt1 , . . . , xtp): fj(xtk) ≥
1

2
for all 1 ≤ k ≤ p

}

.

Besides, we have for each j, 1 ≤ j ≤ s,

µp

{

(xt1 , . . . , xtp): fj(xtk) ≥
1

2
for all 1 ≤ k ≤ p

}

=

(

µ

{

xt: fj(xt) ≥
1

2

})p

≤ (2ρ)p.

Hence the relations p ≥ 2L and N0 ≤ 1
8ρ

−3/2 imply that

µp(Bp) ≤ s(2ρ)p ≤ D(2N0)
p/2(2ρ)p ≤ Dρp/4.

Lemma 3.1 is proved.

In our inductive proof we also need a result presented in Lemma 3.2. It is a version
of the following heuristic statement.
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Let us consider a class of functions F on a finite set X with polynomially increasing
covering numbers which consists of non-negative functions bounded by 1, and take the
supremum of the integrals

∫

f(x)µ( dx) for all functions f ∈ F with respect to the
uniform distribution µ on X. Let the cardinality of the set X be 2N , where the number
N is of the form N = A2k with some positive integers A and k, and let the above
supremum of integrals be bounded by a number ρk+1. Then there is a number ρk
slightly larger than ρk+1 with the following property. For most subsets Y ⊂ X with
cardinality N the supremum of the integrals of the restrictions of the functions f ∈ F
to the set Y with respect to the uniform distribution on Y can be bounded by ρk.

Lemma 3.2. Let us define two sequences of numbers

Nk = 2kN0, and ρk = ρ
k−1
∏

j=0

(

1 +
3

N
1/8
j

)−1

, k = 1, 2, . . . , ρ0 = ρ, (3.2)

with the help of some starting numbers N0 and ρ which satisfy the relations ρ ≤
min( 1

1000 , L
−20) and 1

16ρ
−3/2 < N0 ≤ 1

8ρ
−3/2. Let us fix an integer k ≥ 0, and a

set X = {x1, . . . , x2Nk
} with Nk+1 = 2Nk = N02

k+1 elements, and consider a class of
functions F defined on the set X which has polynomially increasing covering numbers
with parameter D ≥ 1 and exponent L ≥ 1 and has the property that 0 ≤ f(x) ≤ 1 for

all points x ∈ X and functions f ∈ F . Put Rk+1(f) =
Nk+1
∑

j=1

f(xj), and assume that

the class of functions F also satisfies the condition Rk+1(f) ≤ Nk+1ρk+1 for all f ∈ F .
Let us define the quantity RY (f) =

∑

xj∈Y

f(xj) for all functions f ∈ F and sets Y ⊂ X.

The following Statement (a) holds.

(a) The number of sets Y ⊂ X such that |Y | = Nk, and sup
f∈F

RY (f) ≥ Nkρk is less

than
(

2Nk

Nk

)

D exp
{

− 1
1002

k/20ρ−1/20
}

.

Proof of lemma 3.2. Let us fix a partition of X = {x1, . . . , x2Nk
} to two point sub-

sets {xj1 , xj2}, . . . , {xj2Nk−1
, xj2Nk

} together with a sequence of iid. random variables

ε1, . . . , εNk
with distribution P (εl = 1) = P (εl = −1) = 1

2 for all 1 ≤ l ≤ Nk. Let us
define with their help the ‘randomized sum’

Uk(f) =

Nk
∑

l=1

εl
(

f(xj2l−1
)− f(xj2l)

)

(3.3)

for all f ∈ F .

Let us observe that for all f ∈ F the inequality

P (Uk(f) > 2z) ≤ exp



















− 2z2

Nk
∑

l=1

(f(xj2l−1
)− f(xj2l)

2



















≤ e−z2/2Nkρk+1 for all z > 0

(3.4)
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holds by the Hoeffding inequality (see e.g. [7] Appendix B) and the inequality

Nk
∑

l=1

(f(xj2l−1
)− f(xj2l))

2 ≤ 2

2Nk
∑

j=1

f(xj)
2 ≤ 2Rk+1(f) ≤ 4Nkρk+1. (3.5)

(In formula (3.5) we exploit the condition 0 ≤ f(x) ≤ 1 which implies that f(xj)
2 ≤

f(xj).)

Define the (random) set

Vk = Vk(ε1, . . . , εNk
) =

⋃

l: εl=1

{j2l−1} ∪
⋃

l: εl=−1

{j2l}.

With such a notation we can write







ω:
∑

s∈Vk(ε1(ω),...,εNk
(ω))

f(xs) > Nkρk+1 + z







⊂







ω:
∑

s∈Vk(ε1(ω),...,εNk
(ω))

f(xs) >
Rk+1(f)

2
+ z







= {ω: Uk(f)(ω) > 2z}.

Hence

P











ω:
∑

s∈Vk(ε1(ω),...,εNk
(ω))

f(xs) > Nkρk+1 + z









 ≤ e−z2/2Nkρk+1 for all z > 0

(3.6)
by relation (3.4).

I claim that relation (3.6) implies the following Statement (b).

(b) For all f ∈ F and z > 0 the number of sets V ⊂ X such that |V | = Nk, and
∑

x∈V

f(x) ≥ Nkρk+1 + z is less than or equal to
(

2Nk

Nk

)

e−z2/2Nkρk+1 .

Indeed, it follows from relation (3.6) that for a fixed partition of the set X to two
point subsets the number of those subsets V ⊂ X which contain exactly one point from
each element of this partition, (and as a consequence contain exactly Nk points), and
∑

s∈V

f(xs) > Nkρk+1 + z is less than or equal to 2Nke−z2/2Nkρk+1 . We get an upper

bound for the quantity considered in statement (b) by summing up the number of sets
V with these properties for all partitions of X to two point subsets, and taking into
account how many times we counted each set V in this procedure. The number of the

partitions of X to two point subsets equals (2Nk − 1)(2Nk − 3) · · · 3 · 1 = (2Nk)!

2NkNk!
, and

each partition provides at most 2Nke−z2/2Nρk+1 sets V with the desired properties. All
sets V were counted Nk!-times in this calculation. (A set V , |V | = Nk, was counted
in the above calculation as many times as the number of those partitions of X to two
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point subsets which have the property that all of their elements contain a fixed element
of V .) These considerations imply Statement (b).

Given a number 0 ≤ u < 1 there exist s ≤ Du−L functions f1, . . . , fs in F such that
for all f ∈ F and sets Y ⊂ X one of the functions fj , 1 ≤ j ≤ s, satisfies the inequality
∑

x∈Y

|fj(x) − f(x)| ≤ ∑

x∈X

|fj(x) − f(x)| ≤ uNk+1. We get this relation by exploiting

that F is a class of functions which has polynomially increasing covering numbers with
parameter D and exponent L and applying inequality (1.1) for N (ε,F , L1(µ)) with the
uniform distribution µ on X instead of sup

ν
N (ε,F , L1(ν)). This has the consequence

that if
∑

x∈Y

f(x) ≥ Nkρk+1+z+2uNk for some Y ⊂ X and f ∈ F , then there exists some

index 1 ≤ j ≤ s such that
∑

x∈Y

fj(x) ≥ Nkρk+1 + z with the same set Y ⊂ X. Hence

Statement (b) implies that the number of sets Y such that |Y | = Nk and
∑

x∈Y

f(x) ≥

Nkρk+1 + z + 2uNk with some f ∈ F is less than or equal to s · e−z2/2Nkρk+1
(

2Nk

Nk

)

=

Du−Le−z2/2Nkρk+1
(

2Nk

Nk

)

.

Put z = Nkρk+1 ·N−1/8
k and u = z

Nk
. With such a choice we get that the number

of sets Y ⊂ X such that |Y | = Nk and sup
f∈F

RY (f) ≥ Nkρk+1(1 + 3N
−1/8
k ) = Nkρk is

less than

D

(

N
1/8
k

ρk+1

)L

e−N
3/4

k
ρk+1/2

(

2Nk

Nk

)

=

(

2Nk

Nk

)

D

(

2k/8N
1/8
0

ρk+1

)L

e−23k/4N
3/4
0 ρk+1/2. (3.7)

It follows from the definition of ρk that 1
2ρ ≤ ρk+1 ≤ ρ, and we also have L ≤ ρ−1/20

because of the condition imposed on the number ρ. These relations together with the
condition 1

16ρ
−3/2 < N0 ≤ 1

8ρ
−3/2 of Lemma 3.2 enable us to bound the expression

in (3.7) from above by

(

2Nk

Nk

)

D
(

C12
k/8ρ−19/16

)ρ−1/20

e−C22
3k/4ρ−1/8 ≤

(

2Nk

Nk

)

D exp
{

−C32
k/20ρ−1/20

}

with appropriate constants C1, C2 and C3. One can choose e.g. C3 = 1
100 , and this

implies Statement (a). (In the last step of this estimation we have exploited that for a

small number ρ > 0 and all positive integers k the term e−C22
3k/4ρ−1/8

is much smaller

than the reciprocal of
(

C12
k/8ρ−19/16

)ρ−1/20

which is of order

exp
{

−const. ρ−1/20(log k + log 1
ρ )
}

.) Lemma 3.2 is proved.

Remark. It may be worth remarking that the most important part of Lemma 3.2, rela-
tion (3.4) or its consequence (3.6) can be considered as a weakened version of Lemma 3
in [3], and even its proof is based on the ideas worked out there. In formula (3.4) a
random sum denoted by Uk(f) was estimated by means of the Hoeffding inequality. To
get this estimate we had to bound the variance of the random variable Uk(f), and this
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was done in formula (3.5). In Lemma 3 of [3] a similar random sum was investigated,
but in that case a good asymptotic formula and not only an upper bound was proved
for the tail distribution of the random sum. In the proof of that result a sharp version
of the central limit theorem was applied instead of the Hoeffding inequality, and we
needed a good asymptotic formula and not only a good upper bound for the variance
of the random sum we investigated. The proof of the good asymptotic formula for this
variance was the hardest part in the proof of Lemma 3 in [3].

Proof of Theorem 1A. Let us fix some numbers N0, ρ and L which satisfy the conditions
of Lemma 3.2. Take an integer k ≥ 0, define the numbers Nk and ρk by formula (3.2),
consider a space X = {x1, . . . , xNk

} with Nk elements and a class of functions F on
it which has polynomially increasing covering numbers with parameter D ≥ 1 and
exponent L ≥ 1, and it has the properties that if f ∈ F , then 0 ≤ f(x) ≤ 1 for all
x ∈ X, and

∫

f(x)µ( dx) ≤ ρk with the uniform distribution µ on X. Fix an integer p
such that p ≥ 2L, p ≤ ρ−1/100, and let us also consider the sets Bp(f), f ∈ F , and
Bp = Bp(F) introduced in formulas (1.3) and (1.4). They consist of sequences x(p) =
(xs1 , . . . , xsp) ∈ Xp with some nice properties. Let V (p, ρ,N0, k) = VD,L(p, ρ,N0, k)
denote the supremum of the cardinality of the sets Bp(F) if the supremum is taken for
all possible sets X and class of functions F with the above properties (with parameters
Nk and ρk).

I claim that

V (p, ρ,N0, k) ≤ CkDNp
kρ

p/4 for all k = 0, 1, 2, . . . (3.8)

with

Ck =
k
∏

j=0

(1 + 2−jρ). (3.9)

Relation (3.8) will be proved by means of induction with respect to k. Its validity
for k = 0 follows from Lemma 3.1. Let us assume that it holds for some k, take a set
X with cardinality Nk+1 = 2Nk together with a class of functions F which satisfies the
above conditions with the parameters D, L, p, ρk+1 and Nk+1, and let us give a good
bound on the cardinality of the set Bp(F) defined in (1.3) and (1.4) in this case. To
calculate the number of sequences x(p) = (xs1 , . . . , xsp) ∈ Xp which belong to the set
Bp(F) let us take all sets Y ⊂ X with cardinality |Y | = Nk, let us bound the number
of those sequences x(p) ∈ Bp(F) for which also the property x(p) ∈ Y p holds, and let us
sum up these numbers for all sets Y ⊂ X such that |Y | = Nk. Then take into account
how many times we counted a sequence x(p) in this summation. I claim that we get the
following estimate in such a way:

|Bp(F)| ≤ DNp
k

(

2Nk

Nk

)

(

2Nk−p
Nk−p

)

(

Ckρ
p/4 + exp

{

− 1

100
2k/20ρ−1/20

})

(3.10)

with the coefficient Ck defined in (3.9).
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To prove relation (3.10) let us first observe that if F is a class of functions on
the set X which has polynomially increasing covering numbers with parameter D and
exponent L, and we restrict the domain where the functions of F are defined to a
smaller set Y ⊂ X then the class of functions we obtain in such a way remains a
class of functions which has polynomially increasing covering numbers with the same
parameter D and exponent L. Hence if we fix a set Y with cardinality |Y | = Nk for
which the property sup

f∈F
RY (f) ≤ Nkρk holds (with the quantity RY (f) introduced in

the formulation of Lemma 3.2), then the number of those sequences x(p) for which
x(p) ∈ Bp(F) ∩ Y p can be bounded by our induction hypothesis by CkN

p
kDρp/4. We

shall bound the number of the sequences x(p) ∈ Bp(F) ∩ Y p for the remaining sets Y
with cardinality |Y | = Nk by the trivial upper bound Np

k , but the number of such sets Y

is less than
(

2Nk

Nk

)

D exp
{

− 1
1002

k/20ρ−1/20
}

by Lemma 3.2. This yields the upper bound

CkN
p
kDρp/4

(

2Nk

Nk

)

+Np
k

(

2Nk

Nk

)

D exp
{

− 1
1002

k/20ρ−1/20
}

for the sum we get by summing

up the number of sequences x(p) ∈ Y p ∩Bp(F) for all subsets with |Y | = Nk elements.
To prove (3.10) we still have to take into account how many times we counted the
sequences x(p) ∈ Bp(F) in this summation. If all coordinates of a sequence x(p) ∈ Bp(F)

are different, then we counted it
(

2Nk−p
Nk−p

)

-times, because to find a set Y , |Y | = Nk,

containing the elements of this sequence x(p) we have to extend these points with Nk−p
new points from the remaining 2Nk − p points of X. If some coordinates of a sequence
x(p) may agree, then we might have counted this sequence with greater multiplicity.
The above considerations imply (3.10).

To prove relation (3.8) with the help of (3.10) let us observe that under the con-
ditions of Theorem 1A (in particular, we have 1

N0
≤ 16ρ3/2, p2 ≤ ρ−1/50 ≤ 1

16ρ
−1/6,

2Nk − p ≥ Nk = 2kN0 for all k = 0, 1, 2, . . . with a sufficiently small ρ > 0)

Np
k

(

2Nk

Nk

)

(

2Nk−p
Nk−p

) = Np
k

(

2Nk

Nk

)

(

2Nk−p
Nk

) = Np
k

2Nk(2Nk − 1) · · · (2Nk − p+ 1)

Nk(Nk − 1) · · · (Nk − p+ 1)

= Np
k+1

(

1 +
1

2(Nk − 1)

)(

1 +
2

2(Nk − 2)

)

· · ·
(

1 +
p− 1

2(Nk − p+ 1)

)

≤ Np
k+1 exp

{

p2

2k+1N0

}

≤ Np
k+1e

2−(k+1)ρ4/3 ≤ Np
k+1

(

1 +
1

3
2−(k+1)ρ

)

,

and

exp

{

− 1

100
2k/20ρ−1/20

}

= ρp/4 exp

{

− 1

100
2k/20ρ−1/20 +

p

4
log

1

ρ

}

≤ Ckρ
p/4 · 1

3
2−(k+1)ρ

with the coefficient Ck defined in (3.9). These estimates together with (3.10) imply
(3.8) for parameter k + 1.

It is not difficult to prove Theorem 1A with the help of relation (3.8). To do this
let us observe that ρk ≥ ρ

2 and Ck ≤ 2 for all k = 0, 1, 2, . . . . Hence taking a class
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of functions F on a set X with cardinality Nk with some k ≥ 0 which satisfies the
conditions of Theorem 1A we can write (by exploiting that

∫

f(x)µ( dx) ≤ ρ
2 ≤ ρk) the

estimate
µp(Bp(F)) = N−p

k |Bp(F)| ≤ N−p
k V (ρ, p,N0, k) ≤ 2Dρ−p/4

by relation (3.8). Theorem 1A is proved.

4. The proof of Theorem 1.

First we prove the following Lemma 4.1 which is a special case of Theorem 1.

Lemma 4.1. Let us consider a finite set X = {x1, . . . , x2k} with N = 2k elements
together with a class of functions F on X which has monotone increasing covering
numbers with parameter D ≥ 1 and exponent L ≥ 1 and which contains functions
f ∈ F with the properties 0 ≤ f(x) ≤ 1 for all x ∈ X and

∫

f(x)µ( dx) ≤ ρ with some
0 < ρ < 1. Here µ denotes the uniform distribution on X. Let us take the n-fold direct
product Xn of X with some number n ≥ 2, and define the function Sn(f)(xs1 , . . . , xsn) =
n
∑

j=1

f(xsj ) for all (xs1 , . . . , xsn) ∈ Xn and f ∈ F . Let us assume that ρ ≤ n−200, and

N = 2k ≥ ρ−3/2. Then the set Bn(u) ⊂ Xn defined as

Bn(u) =

{

(xs1 , . . . , xsn): sup
f∈F

Sn(f)(xs1 , . . . , xsn) > u

}

(4.1)

satisfies the inequality

µn(Bn(u)) ≤ 2Dρu/25 for all u ≥ 40L, (4.2)

where µn denotes the uniform distribution on Xn.

Proof of Lemma 4.1. Let us define for all functions f ∈ F and integers j, 1 ≤ j ≤ R,
where R is defined by the relation n < 2R ≤ 2n, the functions fj(x) = min(2−j , f(x))
and f̄j(x) = 2jfj(x), x ∈ X. Put Fj = {fj : f ∈ F} and F̄j = {f̄j : f ∈ F}. One
can simply check that if F is a class of functions which has polynomially increasing
covering numbers with parameter D and exponent L, then Fj is a class of functions
which has polynomially increasing covering numbers with parameter D and exponent L,
while F̄j is a class of functions which has polynomially increasing covering numbers
with parameter D2jL and exponent L. We can also state that

∫

fj(x)µ( dx) ≤ ρ, and
∫

f̄j(x)µ( dx) ≤ 2jρ for all f ∈ F .

Let us define for all f ∈ F and 1 ≤ j ≤ R the following function Hj(f) on Xn:

Hj(f)(xs1 , . . . , xsn) = the number of such indices l for which f̄j(xsl) = 1.

We can write

Sn(f)(xs1 , . . . , xsn) ≤
R
∑

j=1

21−jHj(f)(xs1 , . . . , xsn) + 1

14



for all f ∈ F . This formula implies the inequality

sup
f∈F

Sn(f)(xs1 , . . . , xsn) ≤
R
∑

j=1

21−j sup
f∈F

Hj(f)(xs1 , . . . , xsn) + 1,

and the relation
{

(xs1 , . . . , xsn): sup
f∈F

Sn(f)(xs1 , . . . , xsn) > u

}

⊂
R
⋃

j=1

{

(xs1 , . . . , xsn): 2
1−j sup

f∈F
Hj(f)(xs1 , . . . , xsn) > (

√
2− 1)(u− 1)2−j/2

}

.

Hence

µn(Bn(u)) ≤
R
∑

j=1

µn(Dn(u, j)) (4.3)

for the set Bn(u) defined in (4.1) by

Dn(u, j) =

{

(xs1 , . . . , xsn): sup
f∈F

Hj(f)(xs1 , . . . , xsn) >

√
2− 1

2
(u− 1)2j/2

}

,

, 1 ≤ j ≤ R.

We can prove Lemma 4.1 with the help of relation (4.3) if we give a good estimate on
the measures µn(Dn(u)). This can be done with the help of Theorem 1A.

Indeed, the set Dn(u, j) consists of such sequences (xs1 , . . . , xsn) ∈ Xn which have

a sub-sequence (xsp1
, . . . , xspt

) with t = t(j) = [
√
2−1
2 (u − 1)2j/2] + 1 elements, where

[·] denotes integer part, with the property that there is a function f ∈ F such that
the function f̄j(·) defined with its help equals 1 in all coordinates of this sub-sequence.
More explicitly,

Dn(u, j) =
⋃

({l1,...,lt}⊂{1,...,n}





⋃

f∈F
{(xs1 , . . . , xsn): f̄j(xsl1

) = 1, . . . , f̄j(xslt
) = 1}





(4.4)

with t = t(j) = [
√
2−1
2 (u− 1)2j/2] + 1.

The outside union in (4.4) consists of
(

n
t(j)

)

≤ nt(j) terms, and the cardinality of the

sequences (xs1 , . . . , xsnn) in the inner union can be bounded by means of Theorem 1A
for each term if it is applied with p = t(j), in the space X consisting of N = 2k = N02

k̄

points, for the class of functions F̄j which is a class of functions which has polynomially
increasing covering numbers with parameter D2jL and exponent L. Moreover, the
functions f̄j ∈ F̄j satisfy the inequality

∫

f̄j(x)µ( dx) ≤ 2jρ. This means that under the
conditions of Lemma 4.1 we can apply Theorem 1A for the class of functions F̄j with
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parameter ρ̄ = 2j+1ρ instead of ρ. (We have to check that all conditions of Theorem 1A
hold. In particular, we can state that ρ̄ = 2j+1ρ ≤ L−20, since ρ ≤ n−200, 2j ≤ 2n, and
since we estimate the probability in formula (4.2) only under the condition u ≥ 40L,
and this probability is zero if u > n, hence we may assume that L ≤ n

40 . We chose the
term N0 in the application of Theorem 1A as N0 = 2k0 with k0 defined by the relation
1
16ρ

−3/2 < 2k0 ≤ 1
8ρ

−3/2, and k̄ = k − k0.)

We will prove with the help of the above relations the inequality

µn(Dn(u, j)) =
|Dn(u, j)|

Nn
≤ 2nt(j)D2jL(2j+1ρ)t(j)/4

≤ 2D(8n5ρ)t(j)/4 ≤ 2Dρt(j)/5 ≤ Dρju/25.

(4.5)

To get the first estimate in the second line of formula (4.5) observe that under the

condition of Lemma 4.1
√
2−1
2 (u − 1) ≥ 4L, hence 2jL ≤ 2j2

−j/2t(j)/4 ≤ 2t(j)/4, and by

the definition of the number R we have (2j+1)t(j)/4 ≤ (2R+1)t(j)/4 ≤ (4n)t(j)/4. We
imposed the condition n ≤ ρ−1/200, and this implies the second inequality. Finally
t(j) ≥ ju

5 . (In the last inequality a j = 1 parameter is the worst case.) Relation (4.2)
follows from (4.3) and (4.5). Lemma 4.1 is proved.

Now we turn to the proof of the main result of this paper.

Proof of Theorem 1. We may assume that all functions f ∈ F are non-negative, i.e.
0 ≤ f(x) ≤ 1 for all f ∈ F and x ∈ X, because we can replace the function f by its
absolute value |f |, and apply the result for this new class of functions which also satisfies
the conditions of Theorem 1. Next I show that we also may assume that the class of
functions F contains only finitely many functions, and it satisfies the same conditions
as the original class of function F with the only difference that we assume that F is a
class of functions which has polynomially increasing covering numbers with the same
exponent L but with parameter 2LD instead of D.

Indeed, if a number is an upper bound for the probability of P

(

sup
f∈F ′

Sn(f) > u

)

for all finite subsets F ′ ⊂ F , then it is also an upper bound for P

(

sup
f∈F

Sn(f) > u

)

.

Besides, the conditions of Theorem 1 remain valid if F is replaced by an arbitrary class
of functions F ′ ⊂ F with a small modification. Namely, we can state that F ′ is a class of
functions which has polynomially increasing covering numbers with exponent L but with
a possibly different parameter D̄ = 2LD. (We had to change the parameter D of a class
of functions F ′ ⊂ F with polynomially increasing covering numbers, because although
we can choose a sequence of functions f1, . . . , fm withm ≤ Dε−L elements which is an ε-
dense set in F with respect to the L1(ν) norm with a probability measure ν, and fj ∈ F ,
but these functions may be not contained in F ′. To overcome this difficulty we choose
a sequence f1, . . . , fm with m ≤ 2LDε−L elements such that min

1≤j≤m

∫

|f − fj | dν ≤ ε
2

for all functions f ∈ F ′. We may also assume that for all these functions fj there is a
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function f ∈ F ′ whose distance from fj in the L1(ν) norm is less than or equal to ε
2 ,

since we can drop those functions fj which do not have this property. Then we replace
those functions fj for which fj /∈ F ′ by a function f ∈ F ′ such that

∫

|f − fj | dν ≤ ε
2 .

In such a way we get an ε-dense subclass of F ′ with m ≤ 2LDε−L elements in the L1(ν)
norm.)

In the next step I show that we may restrict our attention to the case when the
functions of the class of functions F (consisting of finitely many functions) take only
finitely many values. For this goal first I split up the interval [0, 1] into n subintervals
of the following form: Bj = ( j−1

n , j
n ], 2 ≤ j ≤ n, and B1 = [0, 1

n ]. (We defined the
function B1 in a slightly different way in order to guarantee that the point zero is also
contained in some set Bj .) Then given a class of function F on a set X that contains
finitely many functions f1, . . . , fR we define the following sets A(s(1), . . . , s(R)) ⊂ X
(depending on F):

A(s(1), . . . , s(R)) = {x: fj(x) ∈ Bs(j), for all 1 ≤ j ≤ R},

where 1 ≤ s(j) ≤ n for all 1 ≤ j ≤ R.

In such a way the sets A(s(1), . . . , s(R)) make up a partition of the set X. Actually,
for the sake of a simpler argument we shall diminish a bit the set X, by defining it as
the union of those sets A(s(1), . . . , s(R)) for which µ(A(s(1), . . . , s(R))) > 0 with the
measure µ appearing in Theorem 1. This restriction will cause no problem in our later
considerations.

We shall define new functions f̃j(x), 1 ≤ j ≤ R, by means of the partition of X to
the sets A(s(1), . . . , s(R)) by the formula

f̃j(x) =

∫

A(s(1),...,s(R))
fj(x)µ( dx)

µ(A(s(1), . . . , s(R)))
, 1 ≤ j ≤ R, if x ∈ A(s(1), . . . , s(R)).

We have |fj(x)− f̃j(x)| ≤ 1
n for all 1 ≤ j ≤ n and x ∈ X. Hence

∣

∣

∣

∣

sup
1≤j≤R

(Sn(fj)− Sn(f̃j))

∣

∣

∣

∣

≤ 1,

for almost all sequences ξ1(ω), . . . , ξn(ω), and as a consequence

P

(

sup
1≤j≤R

Sn(fj) > u+ 1

)

≤ P

(

sup
1≤j≤R

Sn(f̃j) > u

)

(4.6)

Let us also observe that the class of functions F̃ = {f̃j , 1 ≤ j ≤ R} also satisfies the

conditions of Theorem 1, i.e.
∫

f̃j(x)µ( dx) ≤ ρ for all 1 ≤ j ≤ R, and F̃ is a class of
functions which has polynomially increasing covering numbers with parameter D̄ = 2LD
and exponent L. (The conditions on the numbers n and ρ clearly remain valid.)
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The first relation follows from the identity
∫

f̃j(x)µ( dx) =
∫

fj(x)µ( dx) which

holds because of the identities
∫

A(s(1),...,s(R))
f̃j(x)µ( dx) =

∫

A(s(1),...,s(R))
fj(x)µ( dx)

for all sets A(s(1), . . . , s(R)).

To prove that F̃ has polynomially increasing covering numbers with parameter 2LD
and exponent L let us introduce for all probability measures ν the probability measure
ν̃ = ν̃(ν) which is defined by the property that for all (measurable) sets A(s(1), . . . , s(R))

and B ⊂ A(s(1), . . . , s(R)) the identity ν̃(B) = µ(B) ν(A(s(1),...,s(R))
µ(A(s(1),...,s(R)) holds. Because of

the special form of the functions f̃j if a set of functions F̃ε,ν̃ ⊂ F̃ is an ε-dense subset

of F̃ in the L1(ν̃) norm, then it is also a ε-dense subset of F̃ in the L1(ν) norm. (In the
proof of this statement we exploit that

ν̃(A(s(1), . . . , s(R))) = ν(A(s(1), . . . , s(R)))

for all sets A(s(1), . . . , s(R)), and it depends only on the value of a measure ν on the
sets A(s(1), . . . , s(R)) whether a set of functions {f1, . . . , fm} ⊂ F̃ is an ε-dense subset
of F̃ in the L1(ν) norm.)

Hence it is enough to prove the existence of an L1-dense set F̃ε,ν′ with cardinality
bounded by D̄ε−L only with respect to such measures ν′ which can be written in the
form ν′ = ν̃(ν) with some probability measure ν. In this case the relation we want
to check follows from the fact that the original class of functions F has polynomially
increasing covering numbers with parameter 2LD and exponent L, and the inequality
∫

|f̃j − f̃j′ |dν̃ ≤
∫

|fj − fj′ |dν̃ holds for all pairs fj , fj′ ∈ Fj and probability measure ν̃.
This inequality holds, since

∫

A(s(1),...,s(R))

|f̃j(x)− f̃j′(x)| dν̃(ν(x) ≤
∫

A(s(1),...,s(R))

|fj(x)− fj′(x)| dν̃(x)

for all sets A(s(1), . . . , s(R)).

Let us observe that for all k ≥ 1 we can define such a ‘discretized’ probability
measure µ̄k on the σ-algebra Xk with atoms A(s(1), . . . , s(R)) in the space X for which

|µ̄k(A(s(1), . . . , s(R))− µ(A(s(1), . . . , s(R))| ≤ 2−k,

and the probability µ̄k has the property

µ̄k(A(s(1), . . . , s(R)) = α(A(s(1), . . . , s(R)))2−k (4.7)

with a non-negative integer α(A(s(1), . . . , s(R))) for all sets A(s(1), . . . , s(R)). (To find
such a probability measure µ̄k let us list the sets A(s(1), . . . , s(R)) as B1, . . . , BQ, and

define the measure µ̄k by the relation
s
∑

l=1

µ̄k(Bl) = βs2
−k if (βs − 1)2k <

s
∑

l=1

µk(Bl) ≤

βs2
−k with a positive integer βs. We assume this relation for all 1 ≤ s ≤ Q.)

Clearly,

P

(

sup
1≤j≤R

Sn(f̃j) > u

)

= lim
k→∞

Pµ̄k

(

sup
1≤j≤R

Sn(f̃j) > u

)

(4.8)
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for all u > 0, where Pµ̄k
means that we consider the probability of the same event as at

the left-hand side of the identity, but this time we take iid. random variables ξ1, . . . , ξn
with distribution µ̄k (on the σ-algebra generated by the atoms A(s(1), . . . , s(R))) in the
definition of the random variables Sn(f̃j).

We shall bound the probabilities at the right-hand side in formula (4.8) for all
large indices k by means of Lemma 4.1. This will be done with the help of the following
construction. Take a space X̂ = X̂k = {x1, x2, . . . , x2k} with 2k elements and with
the uniform distribution µ = µ(k) on its points. Let us fix a partition of X̂ consisting
of some sets Â(s(1), . . . , s(R)) with α(A(s(1), . . . , s(R))) elements, where the number

α(·) was introduced in (4.7). Let us define the functions f̂j(x), 1 ≤ j ≤ R, x ∈ X̂,

by the formula f̂j(x) = s(j)
n , 1 ≤ j ≤ R, if x ∈ Â(s(1), . . . , s(R)). Take the n-fold

direct product X̂n of X̂ together with the uniform distribution µn = µ
(k)
n on it and the

functions Sn(f̂j)(xt1 , . . . , xtn) =
n
∑

l=1

f̂j(xtl), 1 ≤ j ≤ R, if (xt1 , . . . , xtn) ∈ X̂n on the

space X̂n. I claim that

Pµ̄k

(

sup
1≤j≤R

Sn(f̃j) > u

)

(4.9)

= µ(k)
n

({

(xt1 , . . . , xtn): sup
1≤j≤R

Sn(f̂j)(xt1 , . . . , xtn) > u

})

≤ 2D̄ρu/25

if u > 40L.

The identity in formula (4.9) holds, since the joint distribution of the random vec-
tors Sn(fj)(ξ1, . . . , ξn)), 1 ≤ j ≤ R, where ξ1, . . . , ξn are independent random variables

with distribution µ̄k and of the random vectors Sn(f̂j)(xt1 , . . . , xtn), 1 ≤ j ≤ R, where

the distribution of (xt1 , . . . , xtn) ∈ X̂n is µ
(k)
n , agree. To prove the last inequality

of (4.9) it is enough to check that for all sufficiently large numbers k the class of func-

tions F̂ = {f̂1, . . . , f̂R} on the space X̂ = X̂k satisfies the conditions of Lemma 4.1.
Namely, F̂ has polynomially increasing covering numbers with parameter D̄ = 2LD
and exponent L, and

∫

f̂j(x)µ( dx) ≤ ρ with a number ρ ≤ n−200 for all f̂j ∈ F̂ .

We should explain why F̂ is a class of functions on X̂ with polynomially increasing
covering numbers. Let us observe that to prove this it is enough to find good covering
numbers only for such probability measures ν̂ which have a constant density (with
respect to the uniform distribution µ(k)) on all sets Â(s(1), . . . , s(R)). This reduction
of the probability measures can be done similarly as we proved that F̃ has polynomially
increasing covering numbers with the help of the measures ν̃(ν). Given a measure ν̂ on
X̂ with the above property let us correspond to it the measure ν̃ on X defined by the
relation ν̃(A(s(1), . . . , s(R)) = ν̂(Â(s(1), . . . , s(R)) for all sets A(s(1), . . . , s(R)). Then
we get that if a class of functions F̃ε,ν̃ = {f̃l1 , . . . , f̃ls} is an is an ε-dense class of F̃ with

respect to the L1(ν̃) norm, then the class of function F̂ε,ν̂ = {f̂l1 , . . . , f̂ls} is an is an

ε-dense class with respect to the L1(ν̂) norm. This implies that F̂ has such polynomially
covering numbers as we demanded.
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Then we get the inequality part of formula (4.9) from Lemma 4.1. Relation (1.2)
follows from (4.9), (4.8) and (4.6). We still have to understand that in our estimation the
coefficient 2D̄ = 2L+1D in (4.9) can be replaced byD if we estimate the probability (1.2)
only for u ≥ 1

4 (L + 1), and the term ρu/25 in (4.9) is replaced by ρu/50 when turning

from (4.9) to formula (1.2). To see this observe that ρu/25 ≤ ρ
1
4 (L+1)/50 · ρu/50 ≤

n−(L+1)ρu/50 ≤ 1
22

−Lρu/50 if u ≥ 1
4L, ρ ≤ n−200, and n ≥ 2. Theorem 1 is proved.
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