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Abstract. Let µ̄n(.) denote the empirical measure of a sample of i.i.d. random
variables with values on a separable metric space (X,X ) with distribution µ.
Define µn(·) =

√
n (µ̄n(·) − µ(·)) and consider the integrals

I(t) =

∫

Xt

∫

X

· · ·
∫

X

f(u1, . . . , us)µn( du1) . . . µn( dus),

where Xs ⊆ Xt for all s ≤ t, X0 = ∅, X1 = X, µ(Xt) = t and f is a bounded
measurable function which disappears on the diagonal set of the product space

Xs. We give a sharp upper bound on the probability P

(

sup
0≤t≤1

|I(t)| ≥ x

)

.

This is a generalization of the result in paper [mp] where this estimate was
proved in the special case when the space X is the interval [0, 1], and the
empirical distribution of a sequence of independent and on [0, 1] uniformly
distributed random variables is considered.

Key words and phrases. Stochastic integrals, empirical measure, separable
metric space.

1. Introduction

In this note we consider the empirical distribution of a sequence of independent random
variables on a separable metric space (X,A), take its natural standardization and bound
the tail distribution of the (random) integral of a bounded function which maps the s-
fold product X × · · · × X

︸ ︷︷ ︸

s times

of the space X to the real line with respect to the s-fold

product of the standardized empirical distribution. We give a sharp bound, only the
universal constants appearing in this estimate will not be given. In paper [mp] such an
estimate was proved in the special case when the space X is the interval, [0, 1], and the
empirical distribution of a sequence of independent and on [0, 1] uniformly distributed
random variables is considered. We shall recall this result in Theorem A. Actually we
shall show that the case of random variables on a general metric space can be deduced
from this special case by means of an isomorphism.

Our motivation for proving such a result comes from the estimation of a distri-
bution function with the help of certain information. The result which we formulate
in Theorem A turned out to be useful in the study of the so-called product limit es-
timation (see[mp]) when a complicated error term, which is a non-linear functional of
the standardized empirical process, had to be bounded. In other problems, (see [mrt]),

1



a multiple (random) integral of a function with respect to a standardized empirical
measure on a higher dimensional Euclidean space has to be estimated. Since the proof
of the result needed in this case is not harder for a general separable metric space, we
shall work on a metric space. The above mentioned motivation can also explain why the
estimates formulated below contain a supremum in the first coordinate, a generalization
which may seem artificial at first sight. We want to bound the supremum of the dif-
ference between the estimate and the estimated function F (t) for all t. The supremum
appearing in our result will enable us to give a good bound on the error of the estimate
not only for a fixed t, but for all t simultaneously. First we formulate Theorem A which
will be the basis of our investigation.

Theorem A. Let ξ1(ω), . . . , ξn(ω) be independent uniformly distributed random vari-

ables on [0, 1], Fn(u) = Fn(u, ω) =
1

n
#{k : 1 ≤ k ≤ n, ξk ≤ u}, 0 ≤ u ≤ 1, their

empirical distribution function and µn(u) =
√

n(Fn(u) − u) the standardization of this
empirical distribution function. Let f(u1, . . . , us) be a function on [0, 1]s such that

sup
u1,...,us

|f(u1, . . . , us)| ≤ 1, and f(u1, . . . , us) = 0 if uj = uk with some 1 ≤ j < k ≤ s.

There exist some universal constants Cs and αs depending only on the dimension s in
such a way that

P

(

sup
0≤t≤1

∣
∣
∣
∣

∫ t

0

∫ 1

0

· · ·
∫ 1

0

f(u1, . . . , us)µn( du1) . . . µn( dus)

∣
∣
∣
∣
≥ x

)

≤ Cs exp
{

−αsx
2/s
}

(1.1)
for all x > 0, and function f with the above properties.

As it is remarked in paper [mp] this result is sharp. To formulate its generalization
proved in this paper some notations have to be introduced.

Let a probability space (Ω,A, P ) and a separable metric space (X,X ) be given. Let
ξ: Ω → X be an X valued random variable on (Ω,A, P ). Let µ denote the distribution
of the random variable ξ, i.e. let

µ(B) = P (ξ ∈ B) = P (ξ−1(B)) ∀ B ∈ X .

Suppose that ξ1, ξ2, . . . , ξn are independent, identically distributed random variables on
(Ω,A, P ) with values on the space (X,X ) and distribution µ. Let us introduce the
empirical measure

µ̄n(B) =
1

n

n∑

i=1

I(ξi ∈ B) ∀ B ∈ X ,

and its standardization

µn(B) =
√

n (µ̄n(B) − µ(B)) ∀ B ∈ X .

Let Xt, 0 ≤ t ≤ 1 be a system of sets in X with the following property:

Property (i) Xs ⊆ Xt for all s ≤ t, X0 = ∅, X1 = X, µ(Xt) = t.
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Let us consider the product space X × · · · × X
︸ ︷︷ ︸

s times

= Xs with product measure µ(s)(·)

and the diagonal set A ∈ Xs is defined as

A = {(x1, . . . xs) : xi = xj for some i 6= j}

Since (X,X ) is a separable metric space, A is a measurable set in the product space,
and if µ has no atoms then µ(s)(A) = 0.

Let F denote the set of the real valued measurable functions f(u1, . . . , us) defined
on the space Xs whose absolute value is less than 1, and which disappear on the diagonal
set A, i.e. let

F = {f(u1, . . . , us) : |f | ≤ 1, f(u1, . . . , us) = 0 ∀ (u1, . . . , us) ∈ A} . (1.2)

We shall prove the following result:

Theorem 1. There exist some universal constants Cs and αs depending only on the
dimension s in such a way that

P

(

sup
0≤t≤1

∣
∣
∣
∣

∫

Xt

∫

X

· · ·
∫

X

f(u1, . . . , us)µn( du1) . . . µn( dus)

∣
∣
∣
∣
≥ x

)

≤ Cs exp
{

−αsx
2/s
}

(1.3)
for all f ∈ F and x > 0, where the sets Xt, 0 ≤ t ≤ 1 satisfy Property (i).

Remark: The condition that the function f in Theorem 1 disappears on the diagonal
does not mean an important restriction in the applications we have in mind. On the
other hand one can get rid of this condition by means of a more careful analysis if the
contribution of the integral on the diagonal is separately estimated.

A special case of the theorem, when s = 1. In this case the result of Theorem 1 is
the classical result of paper [dkw] or in multidimensional Euclidean space of paper [(kif].
However we have not determined the constant terms, whose calculation may demand
more careful analysis.

The paper consists of three sections. In Section 2 we prove two lemmas, stating
the theorem for finite system of sets. In Lemma 1 a weakened version of Theorem 1
is proved by means of Theorem A and in the case of simple step functions, a notion
which will be introduced later. In Lemma 2 Theorem 1 is proved for general measurable
functions under the restriction that the supremum is taken only on a finite set instead
of all 0 ≤ t ≤ 1. This is proved by means of an appropriate approximation of general
measurable functions by simply step functions. Finally, Section 3 contains the proof of
Theorem 1 in its original form.
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2. Proof of some useful Lemmas

First we show that we may assume without violating the generality that the measure µ
has no atoms. Indeed, by taking direct product with the space ([0, 1],B1, λ), where B1

is the Borel σ-algebra on [0, 1], and λ is the Lebesgue measure we can reformulate the
result of Theorem 1 in a space where the measure µ has no atoms. More explicitly, put

(Ω̃, Ã, P̃ ) = (Ω × [0, 1]n, A× Bn
1 P × λn),

(X̃, X̃ ) = (X × [0, 1], X × B1),

X̃t = Xt × [0, 1] .

ξ̃k(ω̃) = (ξk(ω), xk) if ω̃ = (ω, x1, . . . , xn), xi ∈ [0, 1],

Given a function f ∈ F , put

f̃(ũ1, . . . , ũs) = f(u1, . . . , us) if ũj = (uj , xj), xj ∈ [0, 1], j = 1, . . . , n.

Then the distribution µ̃ of ξ̃k, k = 1, . . . , n has no atoms, and
∫

X̃t

∫

X̃

. . .

∫

X̃

f̃(ũ1 . . . , ũs)µ̃n(dũ1)µ̃n(dũ2) . . . µ̃n(dũs)

=

∫

Xt

∫

X

. . .

∫

X

f(u1, . . . , us)µn(du1) . . . µn(dus).

Hence it is enough to prove Theorem 1 to the ˜ system whose measure µ̃ has no atoms,
since it also implies inequality (1.3) for the original system.

The strategy of our proof is the following. First we prove the estimate of Theo-
rem 1 (when the supremum with respect of the first coordinate is dropped) by means of
Theorem A for some special step functions which are constant on some special rectan-
gles. The class of these step functions is sufficiently rich, so we can prove the estimate
of Theorem 1 by taking their closure in an appropriate way. To prove the result with
the supremum we shall consider such partitions of the space X which are adapted to
the class of functions Xt appearing in Property (i.). Hence we introduce the following
definitions.

Definition of simple step functions. A function f(u1, . . . , us) ∈ F is a simple
step function if a partition B1, B2, . . . , B` of the space X and a set of numbers cj1,...,js

indexed by the s-tuples (j1, . . . , js), 1 ≤ jr ≤ `, jr 6= jp if r 6= p, can be given in such a
way that

f(u1, . . . , us) =







cj1,...,js if u1 ∈ Bj1 , . . . , us ∈ Bjs Bjp ∩ Bjr = ∅
if p 6= r, 1 ≤ p, r ≤ s

0 otherwise.

Definition of adapted partitions. A finite partition B1, B2, . . . , B` of X is called
adapted to a system of sets Xt, 0 ≤ t ≤ 1, with Property (i) and fixed numbers 0 = t0 <
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t1 < · · · < tk = 1 if for all Bi, 1 ≤ i ≤ `, there is some index j(i) in such a way that
Bi ∈ Xtj(i)

\ Xtj(i)−1
.

Remark. Let us consider a system of sets Xt with Property (i), a finite set of numbers
0 = t0 < t1 < · · · < tk = 1 and a finite partition B of X. Then it is always possible
to define a finer partition B′ which is adapted to Xt and 0 = t0 < t1 < · · · < tk = 1.
Indeed, the system of sets Bi∩(Xtj \Xtj−1) for all i and j is a refinement of the partition
B which is adapted to the system Xt and the numbers 0 = t0 < t1 < · · · < tk = 1.

In the sequel we use the letters cs, αs, etc. for some appropriate constants. The
same letter may denote different constant in different formulas.

Lemma 1. Let f(u1, . . . , us) ∈ F be a simple step function, where the class of functions
F was defined in (1.2). Then

(i)

P

(∣
∣
∣
∣

∫

X

· · ·
∫

X

f(u1, . . . , us)µn( du1) . . . µn( dus)

∣
∣
∣
∣
≥ x

)

≤ Cs exp
{

−αsx
2/s
}

(2.1)

(ii) Let Xtj , j = 0, . . . , k be finitely many elements of a system of sets with Property (i).
Then

P

(

sup
tj : j=1,... ,k

∣
∣
∣
∣
∣

∫

Xtj

∫

X

· · ·
∫

X

f(u1, . . . , us)µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

)

≤ Cs exp
{

−αsx
2/s
}

(2.2)

Proof. (i) Let us consider ([0, 1],B1, λ) where B1 is the Borel σ-algebra on [0, 1], λ
is the Lebesgue measure and η1, . . . , ηn are independent uniformly distributed random
variables on [0, 1] with empirical measure

λ̄n(D) =
1

n

n∑

i=1

I(ηi ∈ D) ∀ D ∈ B1 ,

and λn(D) =
√

n(λ̄n(D)− λ(D)) denotes its standardization. It is enough to construct
a function f̃ : [0, 1]s → [−1, 1] in a such a way that

∫

X

· · ·
∫

X

f(u1, . . . , us)µn( du1) . . . µn( dus)

D
=

∫ 1

0

· · ·
∫ 1

0

f̃(x1, . . . , xs)λn( dx1) . . . λn( dxs)

(2.3)

where
D
= denotes equality in distribution, since the desired estimate follows from Theo-

rem A. Let us define a partition D1, . . . , D`, of the interval [0, 1] in such a way that

λ(Di) = µ(Bi) = P (ξ ∈ Bi), i = 1, . . . , `,
⋃̀

i=1

Di = [0, 1] (2.4)
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and put

f̃(x1, . . . , xs) =







cj1,...,js if x1 ∈ Dj1 , . . . , xs ∈ Djs . 1 ≤ jr ≤ `

r = 1, . . . ` jr 6= jp if p 6= r

0 otherwise.

(2.5)

Then f̃ is a step function on [0, 1]s, and relation (2.3) holds.

(ii) Using the previous Remark we can suppose that the simple step function is defined
on a finite partition B which is adapted to the system Xt and the number 0 ≤ t1 <
· · · < tk. Let us observe that the adapted partition, {Bi}`

i=1 is finer than the partition
{Xtj\Xtj−1}k

j=1. This means that either Bi∩Xtj = Bi or Bi∩Xtj = ∅ for all i = 1, . . . , `,
j = 1, . . . , k. Because µ(Xt) = t, for all 0 ≤ t ≤ 1 it follows that µ(Bi) ≤ tj(i) − tj(i)−1.
It is possible to construct a partition D1, . . . , D` of the interval [0, 1] with property (2.4)
in such a way that it is finer than the partition [0, t1], (t1, t2], . . . , (tk−1, 1]. Let us define
a step function f̃ on [0, 1]s with relation (2.5). Then

∫ tj

0

. . .

∫ 1

0

f̃(x1, . . . , xs)λn(dx1) . . . λn(dxs)

D
=

∫

Xtj

. . .

∫

X

f(u1, . . . , us)µn( du1) . . . µn( dus), ∀ j = 1, . . . , k,

where
D
= means that the joint distribution of the vectors j = 1, . . . , k on the left and

right side agree. Then statement (ii) of the lemma follows from Theorem A.

Lemma 2. Statement (ii) of Lemma 1 holds for all measurable f(u1, . . . , us) ∈ F
functions, where the class of functions F was defined in (1.2).

Proof. We prove this lemma in two steps. First we show that it is enough to prove the
statement for a general step function, then we approximate a general step function by
simple step functions for which the statement holds by Lemma 1.

For all bounded and measurable function f it is possible to construct a measurable
step function f ′ which is close to f in the supremum norm. It can be supposed that the
step function f ′ ∈ F , i.e. it is equal to zero on the diagonal set A since f ∈ F . More
precisely for any x > 0 and fixed dimension s and number of sample points n there exist
a step function f ′ ∈ F on the product space (Xs,X s) such that

sup
(u1,... ,us)∈Xs

|f ′(u1, . . . , us) − f(u1, . . . , us)| ≤
x

2(2
√

n)s
. (2.6)

Then

P

(

sup
tj : j=1,...,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

f(u1, . . . , us)µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

)

≤ P

(

sup
tj : j=1,... ,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

(f − f ′)µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

)

+ P

(

sup
tj : j=1,...,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

f ′µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

)

.

(2.7)
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Since the total variation of µn is bounded by 2
√

n formula (2.6) implies that

sup
tj : j=1,...,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

(f − f ′)µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣

≤ sup
tj : j=1,...,k

∫

Xtj

· · ·
∫

X

|f − f ′| |µn|( du1) . . . |µn|( dus) ≤
x

2
.

Thus the first term on the right-hand side of inequality (2.7) equals zero, and it is
enough to prove Lemma 2 for step functions.

Let us consider a step function f ∈ F

f(u1, . . . , us) =







cj if (u1, . . . , us) ∈ Yj , Yj ∩ A = ∅, j = 1, . . . , k

Yj ∩ Yi = ∅ if j 6= i, 1 ≤ i, j ≤ k

0 otherwise.

Since (X,X ) is a separable metric space any measurable set in the product space can
be approximated with finite union of rectangular type sets. More explicitly, for each Yj

and for any given δ > 0 there exists finite union of disjoint rectangles R′
j such that

µ(s)(Yj4R
′

j) ≤
δ

2
,

where 4 denotes symmetric difference and δ > 0 is a sufficiently small number which
will be chosen later.

If Yj ∩A = ∅, j = 1, . . . , k, where A denotes the diagonal on Xs, then there exists a
good approximating set Rj of Yj consisting of finitely many disjoint rectangles such that
also the relation Rj ∩ A = ∅ holds. Indeed, since (X,X ) is separable metric space and
µ(s)(A) = 0, the diagonal set A can be covered by the union of finitely many rectangles
R′′ such that µ(s)(R′′) ≤ δ

2 . Then the sets Rj = R′
j \ R′′ also can be represented as

the union of finitely many disjoint rectangles, they are disjoint from A and close to the
original Yj , i.e.

µ(s)(Yj4Rj) ≤ δ, j = 1, . . . , k .

It is possible to define a simple step function f̃ with the help of the approximating
set of rectangles for which the set where f̃ 6= f is small.

To do this first we replace the sets Rj which approximate well the level sets Yj

and disjoint of the diagonal A by such sets R̄j which also have this property and beside

this, they are disjoint. We define R̄j = Rj \
j−1⋂

`=1

R`. These sets also can be represented

as the union of disjoint rectangles, they are disjoint. Since the sets Yj are disjoint,
µ(Yj4Rj) ≤ δ for all 1 ≤ j ≤ k, µ(Rj ∩ R`) ≤ 2δ if j 6= `, and

µ(s)(R̄j4Yj) ≤ 2jδ for all 1 ≤ j ≤ k (2.8)
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The simple step function f̃ will be defined as

f̃(u1, . . . , us) =

{
cj if (u1, . . . , us) ∈ R̄j , j = 1, . . . , k

0 otherwise.

Put C = {(u1, . . . , us) : f 6= f̃}. Then because of relation (2.8)

µ(s)(C) ≤ 2(δ + 2δ + · · · + kδ) = k(k + 1)δ . (2.9)

Obviously

P

(

sup
tj : j=1,...,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

f(u1, . . . , us)µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

)

≤ P

(

sup
tj : j=1,...,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

f̃µn( du1) . . . µn(dus)

∣
∣
∣
∣
∣
≥ x

2

)

+ P

(

sup
tj : j=1,...,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

(

f − f̃
)

µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

)

.

(2.10)

The first term at the right hand-side of (2.10) is already estimated in Lemma 1, and we
will show that the second term is also small. Since |µn| = |√n(µ̄n − µ)| ≤ √

n(µ̄n + µ)
we get that

P

(

sup
tj : j=1,... ,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

(

f − f̃
)

µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

)

≤ P
(

(2
√

n)s(µ̄n + µ) × · · · × (µ̄n + µ)(C) ≥ x

2

)

= P




(2

√
n)s

s∑

`=0

(
s

`

)

µ̄n × · · · × µ̄n
︸ ︷︷ ︸

` times

×µ × · · · × µ
︸ ︷︷ ︸

s−` times

(C) ≥ x

2






≤
s∑

`=0

P




µ̄n × · · · × µ̄n
︸ ︷︷ ︸

` times

×µ × · · · × µ
︸ ︷︷ ︸

s−`times

(C) ≥ x

2(2
√

n)s(s + 1)
(
s
`

)




 .

(2.11)

Applying the Markov inequality to the last term of (2.11) results the following inequality

P

(

sup
tj : j=1,...,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

(

f − f̃
)

µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

)

≤
s∑

`=0

E(µ̄n × · · · × µ̄n
︸ ︷︷ ︸

` times

×µ × · · · × µ
︸ ︷︷ ︸

s−` times

(C))
2(2

√
n)s(s + 1)

(
s
`

)

x
.

(2.12)
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Consider for fixed ` the expected value of the random variable

µ̄n × · · · × µ̄n
︸ ︷︷ ︸

` times

×µ × · · · × µ
︸ ︷︷ ︸

s−` times

(·)

on a rectangle B = B1 × · · · ×Bs for which B ∩A = ∅, i.e. none of the ξi-s is contained
in more than one Bj . Notice that

µ̄n × · · · × µ̄n(B1 × · · · × B`) =
1

n`

∑

(j1,...,j`) : 1≤ji≤n

I(ξj1 ∈ B1, . . . , ξj`
∈ B`) .

The above sum contains exactly n(n − 1) · · · (n − ` + 1) different terms and

E




µ̄n × · · · × µ̄n
︸ ︷︷ ︸

` times

×µ × · · · × µ
︸ ︷︷ ︸

s−` times

(B1 × · · · × Bs)






=
n(n − 1) · · · (n − ` + 1)

n`
µ(B1) · · ·µ(Bs)

=
n(n − 1) · · · (n − ` + 1)

n`
µ(s)(B) .

(2.13)

Thus the above expected value is equal to a measure on the set of rectangles disjoint
from A. This measure can be extended for all measurable set of the product space
disjoint from A. Therefore relation (2.13) holds for any measurable set disjoint from A.
From relations (2.9) and (2.11)–(2.13) it follows that

P

(

sup
tj : j=1,...,k

∣
∣
∣
∣
∣

∫

Xtj

· · ·
∫

X

(

f − f̃
)

µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

)

≤ 22sns/2(s + 1)k(k + 1)δ

x
.

(2.14)

With the choice of a

δ ≤ xCs exp{−αsx
2/s}

k(k + 1)(s + 1)22sns/2
(2.15)

the statement of the lemma follows from relations (2.10), (2.14) and (2.15).
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3. Proof of Theorem 1.

To prove Theorem 1 consider a system of sets Xt with Property (i). Let N = N(n, x, s)
be an integer, and consider the sets Xj/N , j = 0, 1, . . . , N . Then for any t : j

N ≤ t < j+1
N

sup
0≤t≤1

∣
∣
∣
∣

∫

Xt

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣

≤ sup
0≤j≤N

∣
∣
∣
∣
∣

∫

Xj/N

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣

+ sup
0≤j<N

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣

(3.1)

Hence

P

(

sup
0≤t≤1

∣
∣
∣
∣

∫

Xt

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣
≥ x

)

≤ P

(

max
0≤j≤N

∣
∣
∣
∣
∣

∫

Xj/N

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

)

+ P

(

max
0≤j<N

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

)

.

(3.2)

It is enough to prove the theorem for the second term of the right-hand side of (3.2),
since the desired estimation is proved for the first term in Lemma 2.

Let B denote the event that the set Xj/N \ X(j−1)/N does not contain more than
one ξk for all 1 ≤ j ≤ N . Then

Bc = {∃ k, `, j : ξk, ξ` ∈ (Xj/N \ X(j−1)/N ), k 6= `, 1 ≤ k, ` ≤ n, 1 ≤ j ≤ N} . (3.3)

For a fixed j, (1 ≤ j ≤ N), it is obvious that P (ξk ∈ (Xj/N \ X(j−1)/N )) = 1
N for any

1 ≤ k ≤ n. Therefore for any fixed j, 1 ≤ j ≤ N

P (∃ k, ` : ξk, ξ` ∈ (Xj/N \ X(j−1)/N ), k 6= `, 1 ≤ k, ` ≤ n) ≤
( n

N

)2

,

and

P (Bc) ≤ N
( n

N

)2

=
n2

N
. (3.4)

Choosing

N ≥ n2 exp
{

x2/s
}

, (3.5)

it follows that
P (Bc) ≤ exp

{

−x2/s
}

. (3.6)
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Thus we need to prove, that

I = P

({

max
0≤j<N

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

}

∩ B

)

≤ c1 exp
{

−c2x
2/s
}

.

(3.7)

Define the events

Bi,j = {ξi ∈ X(j+1)/N \ Xj/N , ξ` /∈ X(j+1)/N \ Xj/N , ` 6= i, 1 ≤ ` ≤ n} ,

B0,j = {ξi /∈ X(j+1)/N \ Xj/N , 1 ≤ i ≤ n}

for i = 1, . . . , n, j = 0, . . . , N − 1. The event B is the union of the above disjoint events

B =
N−1⋃

j=0

n⋃

i=1

Bi,j .

Thus

I ≤
N−1∑

j=0

P

({

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

}

∩ B

)

N−1∑

j=0

n∑

i=0

P

({

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

fµn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

}

∩ Bi,j

)

.

(3.8)
To prove Theorem 1 it is enough to show that all terms of (3.8) can be bounded as

P

({

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f µn( du1) · · ·µn( dus)

∣
∣
∣
∣
∣
≥ x

2

}

∩ Bi,j

)

≤ c1

nN
e−c2x2/s

.

(3.9)

Since µn(du1) =
√

n(µ̄n(du1) − µ(du1)) the integral (3.9) can be estimated in the fol-
lowing way:

P

({

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f µn( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2

}

∩ Bi,j

)

≤ II + III

= P

(

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f
√

nµ( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

4

)

+ P

(

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f
√

nµ̄n( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

4

∣
∣
∣
∣
∣
Bi,j

)

P (Bi,j).

(3.10)
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Because the integral in II can be bounded as

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

· · ·
∫

X

f
√

nµ( du1) . . . µn( dus)

∣
∣
∣
∣
∣
≤

√
n

N
(2
√

n)s−1 , (3.11)

and II = 0 if N is chosen in such a way that

N ≥ 2s+1 (
√

n)s

x
.

In the estimation of III we may assume that i > 0 because III = 0 if there is no ξ in
the set X(j+1)/N \Xj/N . Introduce the notation Yj = X(j+1)/N \Xj/N , and Y c

j = X \Yj .

Split the domain of integration (Xt \ Xj/N ) × Xs−1 in the way

(Xt \ Xj/N ) × Xs−1 =
⋃

j(`)=±1, `=2,...,s

(Xt \ Xj/N ) × Z(j(2)) × · · · × Z(j(s)) ,

where Z(1) = Yj , Z(−1) = Y c
j . In this way we get a sum of 2s−1 stochastic integrals.

Consider a term containing at least one coordinate Yj . For the sake of simplicity consider
such a term where the second coordinate is Yj . In this case we get by splitting the
measure µn(du2) =

√
n(µ̄n(du2) − µ(du2)) into two parts that

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

∫

Yj

· · ·
∫

Y c
j

f
√

nµ̄n( du1)µn( du2) . . . µn( dus)

∣
∣
∣
∣
∣

≤ sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

∫

Yj

· · ·
∫

Y c
j

f
√

nµ̄n( du1)
√

nµ̄n( du2) . . . µn( dus)

∣
∣
∣
∣
∣

+ sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

∫

Yj

· · ·
∫

Y c
j

f
√

nµ̄n( du1)
√

nµ( du2) . . . µn( dus)

∣
∣
∣
∣
∣

.

(3.12)
Notice that in the first term on the right-hand side of (3.12) the first two coordinates
of the domain of integration are contained in the set Yj , and in these coordinates
integration is taken with respect to the empirical measure µ̄n. Because there is only
one sample element ξi in Yj , and f = 0 on the diagonal set, this implies that the first
term at the right-hand side of (3.12) equals zero. The probability associated with the
second term of the right-hand side of (3.12) can be bounded by using similar argument
as in the estimation of the term II in formula (3.10). This time we have

P

(

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

∫

Yj

· · ·
∫

Y c
j

f
√

nµ̄n( du1)
√

nµ( du2) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2s+1

)

,

(3.13)
and choosing

N > 2s+1 (
√

n)s

x
(3.14)
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the probability in (3.13) is equal to 0. To complete the proof of Theorem 1 we have to
give a good estimate of the following probability:

P

(

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

∫

Y c
j

· · ·
∫

Y c
j

f
√

nµ̄n( du1)µn( du2) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2s+1

∣
∣
∣
∣
∣
Bi,j

)

.

(3.15)
Since the random variables ξ-s are conditionally independent under the condition Bi,j ,
and only the variable ξi takes its values in Yj , we are able to get rid of the supremum
taking the integral according to u1:

P

(

sup
j
N <t≤ j+1

N

∣
∣
∣
∣
∣

∫

Xt\Xj/N

∫

Y c
j

· · ·
∫

Y c
j

f
√

nµ̄n( du1)µn( du2) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2s+1

∣
∣
∣
∣
∣
Bi,j

)

≤ P

(∣
∣
∣
∣
∣

1√
n

∫

Y c
j

· · ·
∫

Y c
j

f(ξi, u2, . . . , us)µn( du2) . . . µn( dus)

∣
∣
∣
∣
∣
≥ x

2s+1

∣
∣
∣
∣
∣
Bi,j

)

(3.16)
Let us denote by µ′ the restriction of measure µ and by µn1 the standardization of the
empirical measure on Y c

j

µ∗ =
N

N − 1
µ′,

µn1(C) =
√

n − 1




1

n − 1

n∑

k 6=i, k=1

I(ξk ∈ C) − µ∗(C)



 .

(3.17)

for any measurable set C ∈ Y c
j . On the set Y c

j

µn =

√
n − 1√

n
µn1 −

1√
n

N − n

N
µ∗. (3.18)

Using the above decomposition of µn the s−1 integrals in formula (3.16) can be written
as the sum of 2s−1 integrals and the sum

s−1∑

`=0

∑

2≤i1<···<i`≤s

2≤j1<···<js−1−`≤s

P






∣
∣
∣
∣
∣
∣
∣

∫

Y c
j

· · ·
∫

Y c
j

fµ∗(duj1) . . . µ∗(dujs−1−l
)µn1( dui1) . . . µn1( dui`

)

∣
∣
∣
∣
∣
∣
∣

≥ xn(s−`)/2

22s+1

∣
∣
∣
∣
∣
∣
∣

Bi,j






(3.19)
is an upper estimation of (3.17). If ` = 0 only a deterministic integral appears, and the
associated probability is equal to 0 with the choice of a x ≥ c. This condition is not
a restriction. The statement of the theorem is trivial for small x since the right-hand
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side of (1.3) is equal to 1 for x ≤ c. For ` ≥ 1 we shall bound each term of (3.19) by
first integrating with respect to ui1 , . . . , ui`

, and then for ` ≥ 1 estimating the integrals
arising this way with the help of Lemma 2. Introduce the functions

h(ξi, ui1 , . . . , ui`
) =

∫

Y c
j

· · ·
∫

Y c
j

fµ∗( duj1) . . . µ∗( dujs−1−l
) .

Since |h| ≤ 1, and the functions h ∈ F , Lemma 2 is applicable for a general term
of (3.19) with s′ = `. Thus we get the following inequality:

P

(∣
∣
∣
∣
∣

∫

Y c
j

· · ·
∫

Y c
j

fµ∗( duj1) . . . µ∗( dujs−1−`
)µn1( dui1) . . . µn1( dui`

)

∣
∣
∣
∣
∣
≥ x(

√
n)s−`

22s+1
|Bi,j

)

≤ P

(∣
∣
∣
∣
∣

∫

Y c
j

. . .

∫

Y c
j

h µn1(dui1) . . . µn1(dui`
)

∣
∣
∣
∣
∣
≥ x (

√
n)s−`

22s+1
|Bi,j

)

≤ c1 exp
(

−c2x
2/`n(s−`)/`

)

.

(3.20)
Again, if x ≤ c

c1 exp
{

−c2x
2/`n(s−`)/`

}

≤ 1

n
c′1 exp

{

−c′2x
2/s
}

. (3.21)

Since P (Bij) ≤ 1
N , inequality (3.9) follows from (3.10), (3.12), (3.15), (3.16) and (3.19)–

(3.21). Theorem 1 is proved.
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