A Limit Theorem for the Robbins-Monro Approximation

P. Major and P. Révész

1. Introduction

Let M(x) $(-\infty < x < +\infty)$ be an unknown monotonically increasing function with

 $M(\theta) = 0$ and $M(x) \neq 0$ if $x \neq \theta$.

Suppose that we can measure the value of M(x) only with some random error Y_x , i.e. the value $M(x) + Y_x$ for any x can be obtained by an experiment. Our aim is to find the root θ .

Robbins and Monro ([1]) constructed the following sequence: let X_1 be an arbitrary real number and define the sequence $\{X_n\}$ by the recursion

$$X_{n+1} = X_n - \frac{1}{n} Z_n \qquad (n = 1, 2, ...)$$
(1)

where $Z_n = M(X_n) + Y_{X_n}$.

Blum ([2]) under some simple conditions proved that $P(X_n \rightarrow \theta) = 1$.

Chung ([3]) investigated the behaviour of the sequence $\{(X_n - \theta)\}$. Under some further conditions he proved that if

$$M'(\theta) = \alpha_1 = \alpha > \frac{1}{2}$$
 and $D^2(Y_x) = \sigma^2(x) \to \sigma^2$

 $(x \rightarrow \theta)$ then

$$P\left\{\sqrt{n}(X_n-\theta) < t\right\} \to \frac{1}{\sqrt{2\pi}s} \int_{-\infty}^{t} e^{-\frac{u^2}{2s^2}} du = \mathcal{N}(0,s)$$

where $s^2 = \sigma^2/(2\alpha - 1)$. Some further results in this direction are given in [4, 5, 6] (among others).

In this paper we intend to investigate the sequence $\{(X_n - \theta)\}$ in the case $0 < M'(\theta) \le \frac{1}{2}$.

2. Results

From now on the following conditions of Blum ([2]) will be assumed:

Condition 1.

$$P(Y_{X_n} < t | Y_{X_1}, Y_{X_2}, \dots, Y_{X_{n-1}}) = P(Y_{X_n} < t | X_1, Y_{X_1}, \dots, Y_{X_{n-1}}, X_n)$$
$$= P(Y_{X_n} < t | X_n) = H(t | X_n).$$

Condition 2.

$$E(Y_{X_n}|X_n) = \int t \, dH(t|X_n) = 0$$

Condition 3. There exist positive constants c and d such that $|M(x)| \le c + d|x|$. Condition 4.

$$E(Y_{X_n}^2|X_n) = \int t^2 dH (t|X_n) \leq K^2 < +\infty.$$

Condition 5. M(x) < 0 if x < 0 and M(x) > 0 if x > 0 (i.e. we assume: $\theta = 0$).

Condition 6. $\inf_{\delta_1 \le |x| \le \delta_2} |M(x)| > 0$ for every pair of positive numbers δ_1, δ_2 .

Conditions 5 and 6 are able to replace the condition of monotonicity, so the condition of monotonicity will not be assumed. Further we assume:

Condition 7. M(x) is twice differentiable at 0.

Our first theorem corresponds to the case $\alpha = \frac{1}{2}$.

Theorem 1. Suppose that $M'(0) = \alpha = \frac{1}{2}$,

$$D^{2}(Y_{x}) = \sigma^{2}(x) \to \sigma^{2} \qquad (x \to 0)$$
⁽²⁾

and

$$\lim_{A\to\infty} \lim_{\varepsilon \searrow 0} \sup_{|x| \leq \varepsilon} \int_{|Y_x| \geq A} Y_x^2 dP = 0.$$
(3)

Then

$$P\left\{ \left| \sqrt{\frac{n}{\log n}} X_n < t \right\} \to \mathcal{N}(0, \sigma^2). \right.$$

Now we turn to the case $0 < M'(0) = \alpha < \frac{1}{2}$. Our second theorem is a strong law for this case.

Theorem 2. Suppose that $0 < M'(0) = \alpha = \alpha_1 < \frac{1}{2}$ and $M''(0) = \alpha_2$. Then there exists a random variable $Z = Z_1$ such that

$$P(n^{\alpha}X_n \to Z) = 1.$$

It is natural to ask: how can we characterize the behaviour of the sequence $n^{\alpha} X_n - Z$? An answer to this question is given in

Theorem 3. Suppose that $\frac{1}{4} < M'(0) = \alpha < \frac{1}{2}$ and (2) and (3) hold. Then

$$P(n^{\frac{1}{2}-\alpha}(n^{\alpha}X_{n}-Z) < t) = P(\sqrt{n}X_{n}-n^{\frac{1}{2}-\alpha}Z < t) \rightarrow \mathcal{N}\left(0,\frac{\sigma^{2}}{1-2\alpha}\right)$$

where Z was defined in Theorem 2.

Let us mention that the statement that the limit distribution of $\sqrt{n} X_n - n^{\frac{1}{2}-\alpha} Z$ is normal is clearly correct in the case $\alpha > \frac{1}{2}$.

Now we turn to the investigation of $n^{\alpha}X_n - Z$ in the case $\alpha = \frac{1}{4}$. One can prove **Theorem 4.** Suppose that $M'(0) = \alpha_1 = \alpha = \frac{1}{4}$, $M''(0) = \alpha_2$ and (2) and (3) hold. Then

$$P\left(n^{\alpha}(n^{\alpha}X_{n}-Z)-\frac{\alpha_{2}}{2\alpha}Z^{2}< t\right) \rightarrow \mathcal{N}(0, 2\sigma^{2}).$$

The case $\alpha < \frac{1}{4}$ is characterized in

Theorem 5. Suppose that $0 < M'(0) = \alpha < \frac{1}{4}$ and $M''(0) = \alpha_2$. Then

$$n^{\alpha}(n^{\alpha}X_n-Z) \rightarrow \frac{\alpha_2}{2\alpha}Z^2 = Z_2$$

with probability 1.

The sequence $n^{\alpha}(n^{\alpha}X_n - Z) - Z_2$ can be characterized by

Theorem 6. Suppose that $\frac{1}{6} < M'(0) = \alpha < \frac{1}{4}$ further (2) and (3) hold. Then

$$P(n^{\frac{1}{2}-2\alpha}[n^{\alpha}(n^{\alpha}X_{n}-Z)-Z_{2}] < t) = P(\sqrt{n}X_{n}-n^{\frac{1}{2}-\alpha}Z-n^{\frac{1}{2}-2\alpha}Z_{2} < t) \to \mathcal{N}\left(0,\frac{\sigma^{2}}{1-2\alpha}\right)$$

In fact, in Theorem 6 the condition $\frac{1}{6} < \alpha < \frac{1}{4}$ can be replaced by the condition $\frac{1}{6} < \alpha \leq \frac{1}{4}$ and in this form Theorem 4 becomes a special case of Theorem 6. Theorem 4 has been formulated because its proof is slightly different.

Continuing this process one can get our

Theorem 3k + 1**.** Suppose that

$$M'(0) = \alpha = \alpha_1 = \frac{1}{2(k+1)}, \quad M''(0) = \alpha_2, \dots, M^{(k+1)}(0) = \alpha_{k+1}$$

١

and (2) and (3) hold. Then

$$P\left(n^{(k+1)\alpha}X_n - n^{k\alpha}Z - n^{(k-1)\alpha}\frac{\alpha_2}{2\alpha}Z^2 - n^{(k-2)\alpha}c_3Z^3 - \dots - c_{k+1}Z^{k+1} < t\right)$$
$$\rightarrow \mathcal{N}\left(0, \frac{\sigma^2}{1-2\alpha}\right) = \mathcal{N}\left(0, \frac{k+1}{k}\sigma^2\right)$$

where $c_3, c_4, \ldots, c_{k+1}$ are constants depending on $\alpha_1, \alpha_2, \ldots, \alpha_{k+1}$.

Theorem 3k + 2**.** Suppose that

$$0 < M'(0) = \alpha < \frac{1}{2(k+1)}$$
 and $M''(0) = \alpha_2, \dots, M^{(k+1)}(0) = \alpha_{k+1}$

Then

$$n^{(k+1)\alpha}X_n - n^{k\alpha}Z - n^{(k-1)\alpha}\frac{\alpha_2}{2\alpha}Z^2 - \dots - c_kZ^k \to c_{k+1}Z_{k+1}$$

with probability 1 where $c_3, c_4, \ldots, c_{k+1}$ are constants depending on $\alpha_1, \alpha_2, \ldots, \alpha_{k+1}$.

Theorem 3k + 3**.** Suppose that

$$\frac{1}{2(k+2)} < M'(0) = \alpha = \alpha_1 < \frac{1}{2(k+1)} \quad and \quad M''(0) = \alpha_2, \dots, M^{(k+1)}(0) = \alpha_{k+1}$$

and (2) and (3) hold. Then

$$P(n^{\frac{1}{2}-(k+1)\alpha}(n^{(k+1)\alpha}X_n - n^{k\alpha}Z - \dots - c_{k+1}Z^{k+1}) < t) \to \mathcal{N}(0, s^2),$$
$$s^2 = \frac{\sigma^2}{1 - 2\alpha}$$

where $c_3, c_4, \ldots, c_{k+1}$ are constants depending on $\alpha_1, \alpha_2, \ldots, \alpha_{k+1}$.

The authors are indebted to Prof. L. Schmetterer for his valuable remarks, especially the present forms of the proofs of Lemmas 3 and 4 are due to him.

6 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 27

3. Lemmas

Our first two lemmas are known:

Lemma 1 ([8]). Let $\{b_n^2\}$ be a sequence of real numbers for which

$$b_{n+1}^2 \leq \left(1 - \frac{\rho}{n}\right) b_n^2 + \frac{A}{n^2} \quad (n = 1, 2, ...)$$

where $0 < \rho < 1$ and A > 0. Then

$$b_n^2 \leq \frac{B}{n^{\rho}}$$

where B is constant depending on A, ρ and b_1 .

Lemma 2 ([4] p. 377). Let U_{nk} (k, n = 1, 2, ...) be a double array such that

$$E(U_{nk}|U_{n1}, U_{n2}, \dots, U_{n,k-1}) = 0$$

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} E|E(U_{nk}^{2}|U_{n1}, U_{n2}, \dots, U_{n,k-1}) - E(U_{nk}^{2})| = 0$$

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} E(U_{nk}^{2}) = s^{2}$$

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} E(U_{nk}^{2} \cdot \chi_{\{|U_{nk}| > e\}}) = 0$$

where χ_A is the indicator function of A. Then $S_n = \sum_{k=1}^{\infty} U_{nk}$ is asymptotically normal with mean 0 and variance s^2 .

Lemma 3. Let $X_n = X_n(\omega)$ ($\omega \in \Omega$) be the Robbins-Monro process (obeying Conditions 1-6). Then for any $\varepsilon > 0$, $\delta > 0$ there exists a measurable set $F \subset \Omega$ such that $P(F) > 1 - \delta$

and

$$\int_{F} X_n^2 \, dP \leq \frac{1}{n^{2(\alpha-\varepsilon)}}$$

if n is big enough, where $M'(0) = \alpha \leq \frac{1}{2}$.

Proof. By Blum's theorem ([2]) our conditions imply that $X_n \to 0$ with probability 1. Choose an $\varepsilon' > 0$ and an $\eta > 0$ such that $M(x) = \alpha x + \varepsilon(x) x$ where $|\varepsilon(x)| < \varepsilon'$ whenever $|x| < \eta$. Define $F = \bigcap_{n \ge n_0} \{\omega : |X_n(\omega)| < \eta\}$. If n_0 is large enough then $P(F) \ge 1 - \delta$.

Let

$$F_{n_0} = \{ \omega : |X_{n_0}| < \eta \}$$
 and $F_{n_0+k} = \bigcap_{n=n_0}^{n_0+k} \{ \omega : |X_n| < \eta \}$

It follows that

$$\int_{F_n} X_{n+1}^2 \leq \int_{F_n} X_n^2 - \frac{2}{n} \left(\alpha - \varepsilon' \right) \int_{F_n} X_n^2 + \frac{2}{n^2} \int_{F_n} X_n^2 + \frac{K^2}{n^2}$$

for $n \ge n_0$. Taking into account that $\int_{F_{n+1}} X_{n+1}^2 \le \int_{F_n} X_n^2$ we get

$$b_{n+1} \leq b_n \left(1 - \frac{2}{n} \left(\alpha - \varepsilon \right) \right) + \frac{K^2}{n^2}$$

where

$$b_n = \int_{F_n} X_n^2$$

Since $\varepsilon' + 2/n^2 \leq \varepsilon$ if *n* is large enough, it follows that $b_n = O\left(\frac{1}{n^{2(\alpha-\varepsilon)}}\right)$ (if *n* is large enough) and therefore $\int_F X_n^2 = O\left(\frac{1}{n^{2(\alpha-\varepsilon)}}\right)$.

Lemma 4. Let η_1, η_2, \ldots be a sequence of random variables for which

$$E(\eta_{n+1}|\eta_n,\ldots,\eta_1) = 0 \qquad (n=1,2,\ldots), \tag{4}$$

$$E(\eta_{n+1}^2|\eta_n, \dots, \eta_1) \leq K^2 \qquad (n = 1, 2, \dots).$$
(5)

Then

$$T_n = n^{k\alpha} \sum_{j=n}^{\infty} \frac{1}{j^{1-\alpha}} \left(1 + O\left(\frac{1}{j}\right) \right) \eta_j \qquad \left(0 < \alpha < \frac{1}{2(k+1)} \right)$$

converges to 0 with probability 1 $(n \rightarrow \infty)$.

Proof. Let ε be a positive number for which $2(k+1) \alpha < 1 - 2\varepsilon$ and put

$$S_l = \sum_{j=1}^l \frac{\eta_j}{j^{\frac{1}{2}+\varepsilon}}.$$

Then by Kolmogorov's inequality

$$P\{\max_{1 \le l \le n} |S_l| \ge L\} \le \frac{1}{L^2} \sum_{l=1}^n \frac{K^2}{l^{l+2\varepsilon}} \le \frac{1}{L^2} \sum_{l=1}^\infty \frac{K^2}{l^{l+2\varepsilon}}$$

that is

 $P\{\omega: |S_l(\omega)| \text{ is uniformly bounded}\} = P(G) \ge 1 - \delta$

for any $\delta > 0$ if m is large enough. It follows from Abel's theorem that

$$T_n(\omega) = O\left(n^{k\alpha} \frac{1}{n^{\frac{1}{2}-\alpha-\varepsilon}}\right) = o(1)$$

whenever $\omega \in G$.

4. Proofs

The following simple formulas will be frequently used in all proofs. By the iteration of (1) one can obtain

$$X_{n+m+1} = \prod_{k=0}^{m} \left(1 - \frac{\alpha}{n+k}\right) X_n - \sum_{i=0}^{m} \frac{1}{n+i} \prod_{j=i+1}^{m} \left(1 - \frac{\alpha}{n+j}\right) \left(U(X_j) + Y_j\right)$$

6*

and applying the relations

$$1 - \frac{\alpha}{i} = e^{-\frac{n}{i} + O\left(\frac{1}{i^2}\right)}, \qquad \sum_{i=n}^m \frac{1}{i} = \log\frac{m}{n} + O\left(\frac{1}{n}\right)$$
$$\sum_{i=n}^\infty \frac{1}{i^2} = O\left(\frac{1}{n}\right)$$

we get

$$(n+m)^{\alpha} X_{n+m+1} = n^{\alpha} \left(1 + O\left(\frac{1}{n}\right) \right) X_n - \sum_{j=n}^{n+m} \frac{1}{j^{1-\alpha}} \left(1 + O\left(\frac{1}{j}\right) \right) \left(U(X_j) + Y_j \right).$$
(6)

Introduce the notations

$$A_{\alpha}(u,v) = \sum_{j=u}^{v} \frac{1}{j^{1-\alpha}} \left(1 + O\left(\frac{1}{j}\right) \right) U(X_j),$$

$$B_{\alpha}(u,v) = \sum_{j=u}^{v} \frac{1}{j^{1-\alpha}} \left(1 + O\left(\frac{1}{j}\right) \right) Y_j.$$

Now we can turn to the

Proof of Theorem 1. Theorem 1 clearly follows from (6) and the following two statements:

(i) for any $\varepsilon > 0$ there exists a measurable set $F \subset \Omega$ such that $P(F) > 1 - \varepsilon$ and $A_{+}(1, n)/\sqrt{\log n} \to 0$ in probability as $n \to \infty$.

(ii) $B_{\frac{1}{2}}(1, n)/\sqrt{\log n}$ tends to $\mathcal{N}(0, \sigma^2)$ in law as $n \to \infty$.

(i) follows from Lemma 3.

(ii) can be obtained as a consequence of Lemma 2, making use of Blum's theorem. The details will not be given because we could repeat the method used in Sacks' paper ([4]).

Proof of Theorem 2. It is clearly enough to prove that for any $\varepsilon > 0$ there exists a measurable set $F \subset \Omega$ such that $P(F) > 1 - \varepsilon$ and the series $A_{\alpha}(1, \infty)$, $B_{\alpha}(1, \infty)$ are convergent on F.

Since

$$E(Y_j|Y_{j-1},...,Y_1) = 0, \quad E(Y_j^2|Y_{j-1},...,Y_1) \le K^2 \quad (j = 1, 2, ...)$$

with probability 1. The almost everywhere convergence of $B_{\alpha}(1, \infty)$ on Ω follows from Kolmogorov's three series theorem (see e.g. [7] 387).

Now choose the set F as it was chosen in Lemma 4. Since

$$|U(X_j)| \leq DX_j^2$$
 and $\sum_{j=1}^{\infty} \frac{1}{j^{1-\alpha}} \left(1 + O\left(\frac{1}{j}\right)\right) X_j^2$

is convergent (on F, by the Beppo-Levi theorem), the series $A_{\alpha}(1, \infty)$ is really convergent.

Proof of Theorem 3. Letting m tend to infinity in (6) we get

$$n^{\alpha} X_n - Z = A_{\alpha}(n, \infty) + B_{\alpha}(n, \infty).$$

In order to prove our Theorem it is enough to show that

$$n^{\frac{1}{2}-\alpha}A_{\alpha}(n,\infty)$$

tends to 0 in probability $(n \rightarrow \infty)$ and

$$n^{\frac{1}{2}-\alpha} B_{\alpha}(n,\infty)$$

tends to $\mathcal{N}(0, \sigma^2/(1-2\alpha))$ in law as $n \to \infty$.

Our first statement follows from Theorem 2 if $\frac{1}{4} < \alpha < \frac{1}{2}$ and the second one from Lemma 3 (making use of Sacks' ideas) if $\alpha < \frac{1}{2}$.

Proof of Theorem 4. As a first step we prove that:

$$n^{\alpha}A_{\alpha}(n,\infty) \rightarrow \frac{\alpha_2}{2\alpha}Z^2 \qquad (n \rightarrow \infty, \alpha \leq \frac{1}{4})$$

with probability 1. To see this, set

$$U(X_{j}) = U_{1}(X_{j}) = \frac{\alpha_{2}}{2} X_{j}^{2} + U_{2}(X_{j})$$

where $U_2(X_j) = o(X_j^2)$.

Then

$$n^{\alpha} A_{\alpha}(n, \infty) = n^{\alpha} \sum_{j=n}^{\infty} \frac{1}{j^{1-\alpha}} \left(1 + O\left(\frac{1}{j}\right) \right) \left(\frac{\alpha_2}{2} X_j^2 + U_2(X_j) \right)$$

= $n^{\alpha} \sum_{j=n}^{\infty} \frac{\alpha_2}{2j^{1-\alpha}} \frac{Z^2}{j^{2\alpha}} + o(1) \to \frac{\alpha_2}{2\alpha_1} Z^2.$ (7)

Theorem 4 follows from this fact and from the fact that

$$\sqrt[4]{n} B_{\frac{1}{4}}(n,\infty)$$

tends to $\mathcal{N}(0, 2\sigma^2)$ in law as $n \to \infty$. This fact was already stated in the Proof of Theorem 3.

Proof of Theorem 5. In the Proof of Theorem 4 we have already seen that

$$n^{\alpha} A_{\alpha}(n,\infty) \rightarrow \frac{\alpha_2}{2\alpha} Z^2.$$

In order to prove Theorem 5 it is enough to show that

$$n^{\alpha} B_{\alpha}(n, \infty) \to 0$$
 (with probability 1; $n \to \infty$).

This statement is a straight consequence of Lemma 4.

Proof of Theorem 6. As a first step we prove that

$$n^{\alpha} A_{\alpha}(n, \infty) = \frac{\alpha_2}{2\alpha_1} Z^2 + \frac{O(1)}{n^{\alpha}}.$$
 (8)

Since by Theorem 5

$$X_{n} = \frac{Z}{n^{\alpha}} + \frac{\alpha_{2}}{2\alpha} \frac{Z^{2}}{n^{2\alpha}} + \frac{O(1)}{n^{2\alpha}}$$
$$X_{n}^{2} = \frac{Z^{2}}{n^{2\alpha}} + \frac{O(1)}{n^{3\alpha}}$$

making use of (7) we get (8).

Now one can get the Theorem as follows:

$$n^{\alpha}(n^{\alpha}X_n-Z) = \frac{\alpha_2}{2\alpha}Z^2 + \frac{O(1)}{n^{\alpha}} + n^{\alpha}B_{\alpha}(n,\infty)$$

and

$$n^{\frac{1}{2}-2\alpha} \left[n^{\alpha} (n^{\alpha} X_n - Z) - \frac{\alpha_2}{2\alpha} Z^2 \right] = \frac{n^{\frac{1}{2}-2\alpha}}{n^{\alpha}} O(1) + n^{\frac{1}{2}-\alpha} B_{\alpha}(n, \infty)$$

where the first member of the right hand side tends to 0 with probability 1 and the second one is asymptotically normal (see the Proof of Theorem 3).

Theorems 3k+1, 3k+2, and 3k+3 can be proved by induction, using the Taylor expansion of U(X) up to (k+1) terms.

References

- 1. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Statist. 22, 400-407 (1951)
- Blum, J. R.: Approximation methods which converge with probability 1. Ann. Math. Statist. 25, 382-386 (1954)
- 3. Chung, K.L.: On a stochastic approximation method. Ann. Math. Statist. 25, 463-483 (1954)
- Sacks, J.: Asymptotic distribution of stochastic approximation procedures. Ann. Math. Statist. 29, 373-405 (1958)
- 5. Fabian, V.: On asymptotic normality in stochastic approximation. Ann. Math. Statist. **39**, 1327–1332 (1968)
- Woodroofe, M.: Normal approximation and large deviations for the Robbins-Monro process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 21, 329-338 (1972)
- 7. Loéve, M.: Probability Theory. Princeton: Van Nostrand 1960
- 8. Venter, J.H.: On Dvoretzky Stochastic approximation theorems. Ann. Math. Statist. 37, 1534–1544 (1966)

P. Major P. Révész Magyar Tudományos Akadémia Matematikai Kutató Intézete Réaltanoda U. 13–15 Budapest V, Hungary

(Received October 27, 1972; in revised form May 10, 1973)

86

and