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A Limit Theorem 
for the Robbins-Monro Approximation 

P. Major and P. R6v6sz 

I. Introduction 

Let M(x) ( - o o  < x <  + oo) be an unknown monotonically increasing func- 
tion with 

M(0)=0 and M(x)+-O if x+O. 

Suppose that we can measure the value of M(x) only with some random error 
Y~, i.e. the value M(x)+ Yx for any x can be obtained by an experiment. Our aim 
is to find the root 0. 

Robbins and Monro ([1]) constructed the following sequence: let X~ be an 
arbitrary real number and define the sequence {X,} by the recursion 

X,+ l = x  _ 1  Z, (n= l, 2, ...) (1) 
n /1 

where Z , = M ( X , ) +  Yx.. 
Blum ([2]) under some simple conditions proved that P(X,  ~ O) = 1. 
Chung ([3]) investigated the behaviour of the sequence {(X, - 0)}. Under some 

further conditions he proved that if 

m'(0)=cq=c~>�89 and D2(yx)=ffZ(x)--*ff 2 
(x ~ 0) then 

t U 2 

1 e- .du=X(0,s ) 

where s2= a2/(2a - 1). Some further results in this direction are given in [4, 5, 6] 
(among others). 

In this paper we intend to investigate the sequence {(X,-O)} in the case 
0<M'(0)___�89 

2. Results 

From now on the following conditions of Blum ([2]) will be assumed: 

Condition 1. 

P(Yx. < tl Yx~, Yx~, "", Yx._~)= P(Yx.< tlX1, Yx~ . . . . .  Yx._,, X.) 

= P(Yx. < t lX.)=H(t]X.) .  

Condition 2. 
g(Yx. IX.)= ~ t dH(t lX. )=0.  



80 P. Major and P. R6v6sz 

Condition 3. There exist positive constants c and d such that IM(x)h < c + d lx[. 

Condition 4. 
E(Yx2 IX.)=~ t 2 dH (t[X.)<=K z < + oo. 

Condition 5. M(x)<0  if x < 0  and M ( x ) > 0  if x > 0  (i.e. we assume: O=0). 

Condition 6. inf [M(x)l>0 for every pair of positive numbers 61, 62. 
~x_-< Ixl-<_~2 

Conditions 5 and 6 are able to replace the condition of monotonicity, so the 
condition of monotonicity will not be assumed. Further we assume: 

Condition 7. M(x) is twice differentiable at 0. 

Our first theorem corresponds to the case c~ = �89 

Theorem 1. Suppose that M'(O)= ~ =�89 

D2(Y~)=a2(x)~(7 2 (x-*O) 
and 

lim lim sup ~ YzdP=O. 
A ~  ~'~0 Ixl-<e ffxl>=A 

Then 

(2) 

(3) 

Now we turn to the case 0 < M ' ( 0 ) = e < � 8 9  Our second theorem is a strong 
law for this case. 

Theorem2. Suppose that 0 < M ' ( 0 ) = c ~ = a l <  �89 and M ' ( 0 ) = 0 t  2. Then there 
exists a random variable Z = Z a such that 

P (n" X.  -* Z)= 1. 

It is natural to ask: how can we characterize the behaviour of the sequence 
n~X . -  Z? An answer to this question is given in 

Theorem 3. Suppose that �88 < M'(O)= ~ < �89 and (2) and (3) hold. Then 

(7 2 

where Z was defined in Theorem 2. 

Let us mention that the statement that the limit distribution of 1/~ X , -  n +- ~Z 
is normal is clearly correct in the case e>�89 

Now we turn to the investigation of n ~ X , - Z  in the case c~=�88 One can prove 

Theorem 4. Suppose that M'(0)= Ctl= ~ =�88 M"(0)= ~2 and (2) and (3) hold. Then 

P (n~(n~ X,-Z)-2-2~o Z2 <t) -*./V'(0,2(72). 

The case ~ < �88 is characterized in 

Theorem 5. Suppose that 0 < M'(0) = e < �88 and M"(O) = ez. Then 

n ~ ( n ~ X _ Z ) ~  ~2 Z2=Z2 
2~ 

with probability 1. 
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The sequence n ~ ( n ' X , - Z ) - Z  2 can be characterized by 

Theorem 6. Suppose that ~ < m ' (o )  = ~ < �88 fur ther  (2) and (3) hold. Then 

G 2 

In fact jn Theorem 6 the condition~ 1<  ~ < 1 can be replaced by the condition 
-~< c~< �88 and in this form Theorem 4 becomes a special case of Theorem 6.Theorem 4 
has been formulated because its proof is slightly different. 

Continuing this process one can get our 

Theorem 3 k + 1. Suppose that 

1 
M'(0)= ~= el - 2(k+ 1)' M " ( 0 ) =  ~2 . . . .  ' M ( k + l ) ( o ) = ~ k + l  

and (2) and (3) hold. Then 

p (n(k + 1)~ X ,  -- n k~ Z - n (k- 1) ~ (X2 . . . .  2~ z Z - n ( k - 2 ) ~ c 3 Z 3  - - C k + l Z k + l < t )  

J f f  (0, a2 

where c 3 , c 4, . . . ,  c k + 1 are constants depending on cq , a 2 , . . . ,  ak + 1" 

Theorem 3 k + 2. Suppose that 

1 
0 < m ' ( 0 ) = ~ <  2(k+1~-~ and m " ( 0 ) = ~  2 . . . .  , M ( k + l ) ( o ) = C t k + l  . 

Then 

n(k+l)~X, nk~Z n(k-1)~ 0~2 Z 2 . . . . .  C k Z  C k + l Z k + l  
2c~ 

with probability 1 where c3, c4, . . . ,  Ck + 1 are constants depending on ~1, ~2 . . . . .  C~k+a' 

Theorem 3 k + 3. Suppose that 

1 1 
2(k+2) < M ' ( 0 ) = ~ = c q <  2 (k+ l )  and M"(0)=~2,. . . ,M(k+i)(0)=~k+ 1 

and (2) and (3) hold. Then 

e ( n ~ - ~  + ' ~  (n ~ + ~ x .  - n ~ Z . . . . .  c~ +~ Z ~ + 1) < t) --, ~ (0, s2),  

O-2 
S 2 - -  

1 --2c~ 

where % ,  c4, . . . ,  ck+ 1 are constants depending on ~1, (z2, " ' ' ,  ~ k + l '  

The authors are indebted to Prof. L. Schmetterer for his valuable remarks, 
especially the present forms of the proofs of Lemmas 3 and 4 are due to him. 
6 Z.Wahrscheinlichkeitstheorieverw. Geb.,Bd. 27 
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3. Lemmas 

Our first two lemmas are known: 

Lemma 1 ([-8]). Let {b 2} be a sequence of real numbers for which 

b2+1< (1-nP---)b2 + n- ~ ( n : l , 2 )  . . . .  

where 0 < p < 1 and A > O. Then 
B 

b 2 <__ n o 

where B is constant depending on A, p and b 1. 

Lemlna 2 ([4] p. 377). Let U,k (k, n = 1, 2,. . .)  be a double array such that 

E(U.kl V.1, V.2 . . . . .  v.,k_O=o 

lim ~ E IE(UZkl U,I, U,2, ..., U.,k_I)-E(Ufk)I =0 
n ~  k = l  

lira ~ E(U, ik)--- s 2 
n-,o~ k = l  

lim ~ U 2 E( .k" Z{Iv.kL>,}) =0  
n ~ m  k = l  

where )~a is the indicator function of A. Then S, = ~ U,k is asymptotically normal 
with mean 0 and variance s 2. k= 1 

Lemma3.  Let X,=X,(o))  (co~(~) be the Robbins-Monro process (obeying 
Conditions 1-6). Then for any ~ > 0, 6 > 0 there exists a measurable set F c f2 such 
that 

P(F)> 1 - 
and 

1 
x~. dP < n: <~- ~) 

F 

if n is big enough, where M'(0)=o~__<�89 

Proof By Blum's theorem ([2]) our conditions imply that X,--+ 0 with prob- 
ability 1. Choose an e '>0  and an ~/>0 such that M ( x ) = ~ x + e ( x ) x  where 
[~(x)l<e' whenever ]x]<~/. Define F =  (~ {co: LX,(co)]<~/}. If n o is large enough 
then P (F) >_- 1 - 3. "->-"~ 

Let ,o + k 
F,o={~o: [X, ol<,} and F,o+k = N {~o: IX, I<~/}. 

n~ no 

It follows that 
K 2 

x;+, ~ x.2 2- ( : -+)  I x~. + ~  ~ x~. + n ~ 
Fn F. n Fn Fn 
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for n > n o. Taking into account that ~ 2 2 Xs ~ Xs we get 
Fn + i Fn 

( 2 ) 
b,+a <=b n 1 -  (o:-e) 4 n2 

where 

F. 

Since e '+  2/n2<= e if n is large enough, it follows that b, = 0 ~ (if n is large 

enough) and therefore ~X2,=O ( ~ ) .  
F 

Lemma 4. Let th , tlz, ... be a sequence of random variables for which 

E(~,+l l~ , ,  ... ,//1) = 0  (n= 1, 2, ...), 

2 E(~,+II~,, ..., rh )~K 2 ( n =  1, 2 , . . . ) .  

Then 

converges to 0 with probability 1 (n -~ oo). 

Proof Let e be a positive number for which 2(k+ l) e <  1 - 2 ~  and put 

l 

21 S;=j.= j~+~. 

Then by Kolmogorov's inequality 

1 " K 2 l oo K 2 

P { i m < _ a ? n [ S I ] ~ L } ~ - ~ U l ~ = l  ll+2e ~-~-~/_~ 1 11+2e 

that is 

P {co : [S l (co)[ is uniformly bounded} = P (G) > 1 - 

(4) 

(5) 

for any 6 > 0 if m is large enough. It follows from Abel's theorem that 

n,  . . . .  : o ( 1 )  

whenever coc G. 

4. P r o o f s  

The following simple formulas will be frequently used in all proofs. By the 
iteration of (1) one can obtain 
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and applying the relations 

1 m - - - = e  , = log  + 0  
i i = n  

l =  ll 

we get 

. + m  1 / (n+m),X,+,.+l_=n=(l+ 0 ( 1 ) ) X , - j ~ ,  ~ 1 + 0  ( 1 ) ) ( U ( X ) +  Yj). (6) 

Introduce the notations 

kl( 1+O 7- 

Now we can turn to the 

Proof of Theorem 1. Theorem 1 clearly follows from (6) and the following two 
statements: 

(i) for any e > 0 there exists a measurable set F c ~ such that P (F)> 1 - e  and 

A~(1, n)/ll//~--* 0 in probability as n ~ oo. 

(ii) B~(1, n ) / l ~ n  tends to JV(0, 0 -2) in law as n ~  oo. 

(i) follows from Lemma 3. 

(ii) can be obtained as a consequence of Lemma 2, making use of Blum's 
theorem. The details will not be given because we could repeat the method used 
in Sacks' paper ([4]). 

Proof of Theorem 2. It is clearly enough to prove that for any e > 0 there exists 
a measurable set F ~ f 2  such that P(F)> 1 - 5  and the series A~(1, oo), B~(1, oo) 
are convergent on F. 

Since 

E(Y~IY~_I . . . . .  Y1)--0, E(yj2[Yj_I . . . .  ,Y~)__K 2 ( j=  l, 2, ...) 

with probability 1. The almost everywhere convergence of B~ (1, c~) on f2 follows 
from Kolmogorov's three series theorem (see e.g. [7] 387). 

Now choose the set F as it was chosen in Lemma 4. Since 

IU(X)I<DX 2 and ~. ~ 1 + 0  X } 
j=l T 

is convergent (on F, by the Beppo-Levi theorem), the series As(l, oo) is really 
convergent. 

Proof of Theorem 3. Letting m tend to infinity in (6) we get 

n~X-Z=A~(n, ~ )  + B~ (n, ~ ) .  
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In order to prove our Theorem it is enough to show that 

n-~-'A~(n, oo) 

tends to 0 in probability (n ~ oo) and 

n ~-~ B~ (n, oo) 

tends to X ( 0 ,  a2 / (1-2a) )  in law as n ~ oo. 

Our first statement follows from Theorem2 if �88189  and the second one 
from Lemma 3 (making use of Sacks' ideas) if a < �89 

Proof of Theorem 4. As a first step we prove that: 

n~A~(n, oo)--* ~z2 Z 2 (n~o%a<�88 
2c~ 

with probability 1. To see this, set 

(x~) = u~ (x) = - ~  x~ + u~ (x j) U 

where U 2 (Xj) = o (Xf). 

Then 

j = . j - \  
(7) 

(Z 2 Z 2 o~ 2 Z 2 " 
=n~.=,  2j1-= j2~ f-o(1)-~ 

Theorem 4 follows from this fact and from the fact that 

~#n S~(n, o0) 

tends to J f ( 0 , 2 a  2) in law as n o o o .  This fact was already stated in the Proof  
of Theorem 3. 

Proof of Theorem 5. In the Proof  of Theorem 4 we have already seen that 

n~A~(n,~)~ ~2 Z 2. 
2~ 

In order to prove Theorem 5 it is enough to show that 

n~B~(n, ~ ) ~  0 (with probability 1; n ~  ~ ) .  

This statement is a straight consequence of Lemma 4. 

Proof of Theorem 6. As a first step we prove that 

O(1) 
n~A~(n, ~ ) =  Z2-+ n~ (8) 
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Since by Theorem 5 

and 

@ _  ~2 Z2 O(1) 

X , =  -~ 2e n 2~ § n 2~ 

z 2 o ( 1 )  y~  2 _ ~ 
" 'n n2~ n3~ 

making use of (7) we get (8). 

Now one can get the Theorem as follows: 

O ( 1 )  ~ n , n~(n~X,-Z)=~Z~ Z2 + ~ - - + n  ~tn, ~) 

and 

n+_2 ~ [n~(n,X _Z)_  c% Z2 ] _  n ~-2~ 2~ ] n ~ O(1)+n~-~B~(n, oo) 

where the first member of the right hand side tends to 0 with probability 1 and 
the second one is asymptotically normal (see the Proof of Theorem 3). 

Theorems 3 k + 1, 3 k + 2, and 3 k + 3 can be proved by induction, using the 
Taylor expansion of U (X) up to (k + 1) terms. 
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