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Abstract: Let ξ1, ξ2, . . . be a sequence of i.i.d. random variables,
and consider the elementary symmetric polynomial S(k)(n) of order
k = k(n) of the first n elements ξ1, . . . , ξn of this sequence. We are
interested in the limit behaviour of S(k)(n) with an appropriate trans-

formation if k(n)
n → α, 0 < α < 1. Since k(n) → ∞ as n → ∞, the

classical methods cannot be applied in this case and new kind of re-
sults appear. We solve the problem under some conditions which are
satisfied in the generic case. The proof is based on the saddle point
method and a limit theorem for sums of independent random vectors
which may have some special interest in itself.

1. Introduction

In this paper the following problem is investigated: Let ξ1, . . . , ξn be i.i.d. random
variables with some non-degenerate distribution function F (x), i.e. we assume that the
distribution of the random variables ξj , j = 1, . . . , n is not concentrated in a single
point. Define the elementary symmetric polynomials

S(k)(n) = S(k)(n, ξ1, . . . , ξn) =
∑

1≤i1<i2<···<ik≤n

ξi1 · · · ξik . (1.1)

We are interested in the limit behaviour of the random variables S(k)(n) if n → ∞,

k = k(n), and α(n) → α∗, P (ξ = 0) < α∗ < 1, where α(n) = 1 − k(n)

n
. The expression

defined in (1.1) is a special U -statistic of order k.

The limit behaviour of U -statistics for fixed k is fairly well understood, (see e.g.
[1]). These results imply in particular that if Eξ = 0, then for fixed k the random
variables n−k/2S(k)(n) have a limit distribution which can be expressed by means of a
k-fold multiple Wiener integral. But in our case the number k = k(n) tends to infinity
simultaneously with n. Hence the classical results cannot be applied, and a different
kind of limit theorems appears. The problem we discuss here was investigated in earlier
papers in some special cases (see [2], [3] and [4]). In paper [3] a law of large numbers was
proved if the random variables ξj are non-negative, and in paper [4] the limit behaviour
of S(k)(n) was described in the special case when P (ξj = 1) = P (ξj = −1) = 1/2.
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Paper [2] contains a generalization of paper [4] when the distribution of ξj is concentrated
in three point, 0 and ±1, and P (ξj = 1) = P (ξj = −1) = 1/2P (ξj 6= 0). But the method
of this paper is not strong enough to handle more general distributions.

The proof of the above papers was based on the saddle point method. In this paper
also this method is applied. Several technical difficulties had to be overcome to make
this method work in the general case. It shows a strong similarity with the technique
applied in the theory of large deviations.

We also want to understand whether the limit distribution of the appropriately
transformed statistics S(k)(n) shows some universality, i.e. whether it depends only
on α∗ = lim

n→∞
α(n) or it strongly depends on the sequence k(n) and the distribution

function F (x) of the random variables ξj . We prove that in the generic case, although
the normalization depends on α(n), the limit distribution depends only on α∗.

The investigation is based on the following observation. Define the polynomial

Zn(x) = Zn(x, ξ1, . . . , ξn) =
n
∏

j=1

(x+ ξj).

Then

Zn(x) =

n
∑

k=1

S(k)(n)xn−k,

hence

S(k)(n) =
1

(n− k)!

d(n−k)

dx(n−k)
Zn(x) =

1

2πi

∮

|ζ|=r

Zn(ζ)

ζn−k+1
dζ

=
1

2π

∫ π

−π

n
∏

j=1

|reiϕ + ξj |

rn−k
exp







−i(n− k)ϕ+ i
n
∑

j=1

arg (reiϕ + ξj)







dϕ

(1.2)

for arbitrary r > 0. We investigate the expression S(k)(n) in the form defined in (1.2).
To handle this integral it is natural to choose the constant r, the radius of the circle
where the integration is taken, in the way as the saddle point method suggests. Hence
it is natural to look for a point (r, ϕ̄) = (r(ξ1, . . . , ξn), ϕ̄(ξ1, . . . , ξn)) where the partial
derivatives of the (random) expression

n
∑

j=1

log |reiϕ + ξj | − (n− k) log r

disappear. In papers [2], [3] and [4] such an approach was applied. We shall slightly
modify this method by looking for an approximative solution, for an asymptotic but
non-random approximation of the saddle point. The laws of large numbers suggests
that

n
∑

j=1

log |reiϕ + ξj | ∼ nE log |reiϕ + ξ| = nH(r, ϕ)
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with

H(r, ϕ) = H(z) = E log |reiϕ + ξ| =
1

2
E log

(

r2 + ξ2 + 2rξ cosϕ
)

, (1.3)

where ξ is an F distributed random variable, and z = reiϕ. Because of the parity
properties of the integral at the right-hand side of (1.3) it is enough to look for the
(asymptotic) saddle point for 0 ≤ ϕ ≤ π, i.e. for a solution in the upper half-plane. We
will show that under general conditions there is a point (r, ϕ̄), ϕ̄ = ϕ̄(r), such that the
relations

∂

∂ϕ
[H(r, ϕ̄) − α(n) log r] = 0,

∂

∂r
[H(r, ϕ̄) − α(n) log r] = 0

hold. We rewrite these equations in the equivalent form

∂

∂ϕ
H(r, ϕ) = 0

∣

∣

∣

∣

ϕ=ϕ̄

, r
∂

∂r
H(r, ϕ)

∣

∣

∣

∣

ϕ=ϕ̄

= α(n), (1.4)

and also require that the solution (r, ϕ̄) satisfy the relation

ϕ̄ is the place of maximum of H(r, ϕ) (as a function of ϕ, 0 ≤ ϕ ≤ π.). (1.5)

Let us remark that the solution of the equation (1.4) (together with the property (1.5)
depends on n through the function α(n). Although this dependence on n will turn
out to be weak in the case when lim

n→∞
α(n) = α∗, we need to investigate carefully the

dependence of the solution on n. This problem will appear first of all in Section 4, and
in that Section we shall indicate explicitly the dependence on the parameter n.

We shall prove under general conditions that the equation (1.4) has a unique solu-
tion (r, ϕ̄) 0 ≤ ϕ̄ ≤ π which also satisfies relation (1.5). This result enables us to give a
good asymptotic expression of formula (1.2) and to approximate S(k)(n) by a function
of sum of independent random vectors. In such a way the limit behaviour of S(k)(n)
with an appropriately normalization can be described by means of a limit theorem for
sums of independent random vectors. Since some technical conditions appear in the
formulation of the results about the limit behaviour of S(k)(n) we formulate them only
in Section 2.

The limit theorem for sums of independent random vectors needed in this paper
may be interesting in itself. In this limit theorem such a limit distribution appears whose
coordinates are independent. This independence is not because of some uncorrelatedness
property of the coordinates of the summands. It has a structural reason. It appears,
because the partial sums of such random vectors are considered whose first coordinates
take values in a non-compact and the second coordinates in a compact space. (We
consider such random vectors whose first coordinates, the absolute value of random
complex numbers, take their values in the real line, and the second coordinates, the
angle of these complex numbers, take their values in the unit circle.) Similar results in
more general spaces were proved in [6].

This paper consists of six sections. In Section 2 we explain the method of the
paper, formulate some technical results and the main theorems. In Section 3 we prove
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that under general conditions the asymptotic saddle point equation (1.4) together with
relation (1.5) can be solved. In Section 4 we give a good asymptotic approximation
of S(k)(n) by means of an expansion of the integrand in (1.2) around the solution of
the saddle point equation (1.4). In Section 5 a limit theorem for sums of independent
vectors needed in this paper is proved. Finally in Section 6 the main results of the paper
are proved.

2. The strategy of the proof

Consider the functionH(r, ϕ) = H(z) defined in (1.3). First we want to prove that under
general conditions for the distribution of F (x) of the random variables ξj the equation
(1.4) has a unique solution which also satisfies (1.5). In the proof we investigate the
differentials of the function H(r, ϕ). In these calculations the order of differentiation
and expectation will be changed several times. To legitimate such steps some conditions
will be imposed on the distribution of the distribution function F (x).

It is simple to justify these calculations in the neighbourhood of such points z = reiϕ

for which the number z has a non-zero imaginary part, i.e. for which ϕ 6= 0 and ϕ 6= π.
On the other hand, for ϕ = 0 or ϕ = π such a calculation is allowed only under fairly
restrictive conditions. But we shall differentiate only in the neighbourhood of a point
which can appear as the solution of the equation (1.4) with some α(n), therefore we
have not to impose too restrictive conditions. We shall formulate such a condition on
F (x) which probably can be weakened, but which is satisfied by all “nice” distribution
functions. To formulate this condition let us introduce the functions

K±(r) = E
±ξ

(ξ ± r)2
, r > 0 (2.1)

and sets

A± = {r : r > 0 and K±(r) ≥ 0}, (2.2)

where ξ is an F (x) distributed random variable. Let us remark that the integral (2.1)

is always meaningful, although the relation E
±ξ

(ξ ± r)2
= −∞ is possible, since the

integrands in these expressions have an upper bound depending only on r. As later
calculation will show, it is enough to justify the change of order of expectation and
differentiation only in a small neighbourhood of the real numbers r, r ∈ A+ ∪ A−.

We formulate the following property:

Property A. If r ∈ A+, then there is a number h = h(r) > 0 such that the interval
(−r − h,−r + h) has zero F measure. If r ∈ A−, then there is a number h = h(r) > 0
such that the interval (r − h, r + h) has zero F measure.

This property can be formulated in the following equivalent form. Let Σ denote the
support of the distribution of ξ, i.e. the smallest closed set on the real line R1 such that
P (ξ ∈ Σ) = 1. (Such a set exists. See e.g. [5], Chapter 2, Theorem 2.1.) Then for all
r ∈ A+ d(r,−Σ) > 0 and for all r ∈ A− d(r,Σ) > 0.
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Property A is less restrictive than it may seem in the first moment, because the
sets A± are small. Thus for instance, r /∈ A± if the distribution function F has a
non-zero density function in a neighbourhood of the point ∓r, or more generally if
F (∓r + h) − F (∓r) > Cη2 or F (∓r) − F (∓r − h) > Cη2 with some C > 0, h > 0
and 0 < η < h. Indeed, K±(r) = −∞ in this case. Thus Property A holds if for all x
F (x + h) − F (x − h) ≥ const.h2 or F (x + h) − F (x − h) = 0 if h < h0. Here both h0

and const. may depend on x. Let us also remark that also Property A holds if an F
distributed ξ random variable is symmetrically distributed, since the sets A± are empty
in this case. Indeed, in this case

K±(r) = E
±ξ

(r ± ξ)2
=

1

2
E

( ±ξ
(r ± ξ)2

+
∓ξ

(r ∓ ξ)2

)

= −E 2rξ2

((r2 − ξ2)2
< 0

for all r > 0.

We also assume that

E|ξ| <∞, and E
1

|ξ|I(ξ 6= 0) <∞ (2.3)

We shall assume in the sequel that the distribution function F satisfies Property A and
formula (2.3). The following three lemmas which will be proved in Section 3 imply that
if P (ξ = 0) < α(n) < 1, then the equation (1.4) has a unique solution which satisfies
(1.5).

Lemma 1. Fix some r > 0 and consider the function H(r, ϕ), defined in formula (1.3)
as a function of ϕ, 0 ≤ ϕ ≤ π. (The function H(r, ϕ) can also take the value −∞ in
the end points 0 and π.) The function H has a unique maximum at a value ϕ̄ = ϕ̄(r)
defined by the formula

ϕ̄(r) =























































0 if E
ξ

(r + ξ)2
≥ 0

π if E
ξ

(r − ξ)2
≤ 0

the unique solution of the equation

E
ξ

r2 + ξ2 + 2rξ cosϕ
= 0

(in the variable ϕ, 0 ≤ ϕ ≤ π)

if E
ξ

(r + ξ)2
< 0 < E

ξ

(r − ξ)2
.

(2.4)

The relation
∂H(r, ϕ)

∂ϕ

∣

∣

∣

∣

ϕ=ϕ̄

= 0 (2.5)

holds.

Define the function E(r, ϕ) = r
∂

∂r
H(r, ϕ) and G(r) = E(r, ϕ̄(r)).
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Lemma 2. G(r) is a continuous and strictly monotone increasing function.

Before the proof of Lemma 2 we prove the following technical Lemma A.

Lemma A. The function H(z) defined in formula (1.3) is analytic in the set C \ (−Σ)
and the functions K±(z), the analytical continuation of the functions defined in formula
(2.1), are analytic in the set C \ (∓Σ), where C is the space of complex numbers, and
Σ is the support of the distribution of the random variable ξ. In particular, K±(r) is

continuous in the points r ∈ A±. The numbers r satisfying the equation E
ξ

(ξ ± r)2
= 0

have no strictly positive condensation points.

Lemma 3.

lim
r→∞

G(r) = 1

lim
r→0

G(r) = P (ξ = 0) (= 0 if the distribution of ξ has no atom in 0.)
(2.6)

The second derivative of H(r, ϕ) with respect to the variable ϕ is non-positive in the

point ϕ̄(r), and it can be zero only if either E
ξ

(r + ξ)2
= 0 (in which case ϕ̄(r) = 0) or

if E
ξ

(r − ξ)2
= 0 (in which case ϕ̄(r) = π). More explicitly,

∂2

∂ϕ2
H(r, ϕ)

∣

∣

∣

∣

ϕ=ϕ̄(r)

= −2E
r2ξ2 sin2 ϕ

(r2 + ξ2 + 2rξ cosϕ)2
if 0 < ϕ̄(r) < π

∂2

∂ϕ2
H(r, ϕ)

∣

∣

∣

∣

ϕ=ϕ̄(r)

= −E rξ

(r + ξ)2
(= −K+(r)) if ϕ̄(r) = 0

∂2

∂ϕ2
H(r, ϕ)

∣

∣

∣

∣

ϕ=ϕ̄(r)

= E
rξ

(r − ξ)2
(= −K−(r)) if ϕ̄(r) = π.

(2.7)

The above relations imply that the saddle point equation (1.4) (together with prop-
erty (1.5)) has a unique solution for P (ξ = 0) < α(n) < 1, since a pair (r, ϕ) is a solution
if and only if ϕ = ϕ̄(r), where ϕ̄(r) is defined in Lemma 1, and G(r) = α(n).

Let us rewrite formula (1.2) in the form

S(k)(n) = <
(

1

π

∫ π

0

exp {Zn(r, ϕ)} dϕ
)

(2.8)

with

Zn(r, ϕ) =
n
∑

j=1

βj(r, ϕ) (2.9)
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and

βj(r, ϕ) =
1

2
log
(

r2 + ξ2j + 2rξj cosϕ
)

+ i arccos
r cosϕ+ ξj

(r2 + ξ2j + 2rξj cosϕ)1/2
− α(n)(log r + iϕ),

(2.10)

where r is the first coordinate of the solution (r, ϕ̄) of the fixed point equation (1.4) and
(1.5). We shall give a good approximation of S(k)(n) in Section 4. To get it we impose
the following

Property B. Let (r, ϕ̄) = (r(α∗), ϕ̄(r(α∗)) be the solution of the fixed point equation
(1.4) (together with relation (1.5)), if α(n) is replaced by α∗ = lim

n→∞
α(n). Then

E
ξ

(r ± ξ)2
6= 0 for r = r(α∗).

The integral in formula (2.8) can be well estimated. To do this we apply a Taylor
expansion for βj(r, ϕ) in the variable ϕ around the saddle point ϕ̄ and then sum it
up to get a good estimate for Zn(r, ϕ) defined in (2.9). The coefficients of this Taylor
expansion are random. But since the random functions βj(r, ϕ̄) are independent, their
sum can be well approximated, because of the laws of large numbers, by their expected
values multiplied with n. The expected value of the first Taylor coefficient is zero

because of (1.4). Indeed, the real part equals
∂H(r, ϕ)

∂ϕ
= 0, and the imaginary part

equals

∂

∂ϕ
E arccos

r cosϕ+ ξ

(r2 + ξ2 + 2rξ cosϕ)1/2
− α(n) = r

∂H(r, ϕ)

∂r
− α(n) = 0 (2.11)

in the point of solution (r, ϕ̄) of (1.4). The identity (2.11) can be obtained by standard
calculation. But it is worth mentioning that this identity has a deeper reason. There are
identities between the partial derivatives of the real part and analytic part of a complex
analytic function, and the identity (2.11) expresses such properties formulated in polar
coordinate system.

By Lemma 3 the expected value of the second partial derivative of the real part of
βj(r, ϕ) with respect to the variable ϕ is non-positive in the asymptotic saddle point
(r, ϕ̄(r)), and it is strictly negative if Property B holds. In this case the integral (2.8) is
essentially concentrated in a small neighbourhood of the point ϕ̄(r)) with probability al-
most one (depending on n). In this small neighbourhood of the point ϕ(r) a small error
is committed if all terms βj(r, ϕ) in (2.8) are replaced by their Taylor expansion around
the point ϕ̄ up to the second term. In such a way the integral in (2.8) can be approxi-
mated by a Gaussian integral which can be explicitly calculated. The above indicated
calculation will be worked out in Section 4. Some additional technical difficulties arise
if we want to show that the error term obtained in this calculation is negligible also if
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the real part of the integral in formula (2.8) is considered. To prove this fact we have to
know that the integral in (2.8) with probability almost one is such a complex number
whose angle with the imaginary axis is not too small. We can prove this only under
some additional restriction formulated a bit later. We introduce a condition which we
shall call the stability of the level α∗ = lim

n→∞
α(n). In Proposition B of Section 5 we

prove a limit theorem which helps us to overcome the above difficulties if the above
mentioned stability condition holds. The proofs in Section 5 are independent of the rest
of the paper. The arguments formulated above lead to a result formulated in Lemma 4.

Before its formulation let us remark that by the last statement of Lemma A Prop-
erty B is not a strong restriction. The exceptional set of the numbers α∗ where it does
not hold has no condensation points in the open interval (P (ξ = 0), 1). Moreover, in
certain cases we know that this set is empty. This is the case for instance if ξ has a sym-
metric distribution, since under this condition ϕ̄(r) = π/2 for all r > 0. If Property B
does not hold, then a more complicated picture arises. In this case not only the first
but also the second derivative of the function H(r, ϕ)−α log r disappears in the saddle
point. Hence a more sophisticated method has to be applied and only weaker results
can be obtained in this case. We shall not discuss this question in the present paper.

Lemma 4. Let the distribution of ξ satisfy Property A and (2.3). Beside this, let
property B be satisfied with r∗ = lim

n→∞
rn, where rn is the solution of the asymptotic

saddle point equation (1.4) (together with (1.5)) with the parameter α(n). Let us also
assume that the level α∗ = lim

n→∞
α(n) is stable. (This notion will be introduced a bit

later.) Put

S̄(k)(n) =















































√
2√

Knπ
exp

{

nA0 +
√
nS0 − U1

}

cos
(

nB0 + T0 − U2 −
ω

2

)

if 0 < ϕ̄(r∗) < π

=
1

√

2|A2|πn
exp

{

T 2
1

2A2
+ nA0 +

√
nS0

}

if ϕ̄(r∗) = 0

= (−1)k(n) 1
√

2|A2|πn
exp

{

T 2
1

2A2
+ nA0 +

√
nS0

}

if ϕ̄(r∗) = π.

(2.12)

where the random variables S0 = S0(n), T0 = T0(n), S1 = S1(n), T1 = T1(n) which are
sums of independent random variables are defined in (4.8), (4.9) and (4.1), (4.2), the
random variables U1 = U1(n), U2 = U2(n) which are their transforms in (4.14). The
constants A0 = A0(n), B0 = B0(n), A2 = A2(n), K and ω = ω(n) are defined in (4.3),
(4.4) and (4.14′). Then

S(k)(n)

S̄(k)(n)
⇒ 1

where ⇒ denotes convergence in probability.

Lemma 4 plays a crucial role in our investigation, because it enables us to replace
the expression S(k)(n) introduced in (1.1) by S̄(k)(n) defined in (2.12) when we are
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interested in its limit behaviour. The expression S̄(k)(n) is a functional of the random
variables S0(n), S1(n), T0(n) and T1(n) which are normalized sums of independent ran-
dom variables. The asymptotic behaviour of S0(n), S1(n) and T1(n) is described by
the central limit theorem while that of T0(n) by limit theorems for sums of independent
random variables on the compact group [0, 1] mod 1, where the group action is summa-
tion modulo 1. But these classical results are not sufficient for our purposes, we also
want to control the limit of the joint distribution of the above random variables. Hence
we formulate the following Proposition A whose proof will be given in Section 5. It im-
plies that T0(n) is asymptotically independent from the other partial sums, because it
takes values on a compact group, while the other partial sums on a non-compact group.
Before formulating this result we introduce some notations and make some remarks.

We shall identify the group G = [0, 1) with summation modulo 1 with the unit
circle. Let us remark that the closed subgroups G0 of G are the group G itself and the

discrete groups of the form G0 =

{

j

p
; j = 0, . . . , p− 1

}

with some positive integer p.

A coset of a finite subgroup G0 is of the form G0 + α with some 0 ≤ α < 1. For all
probability measures µ on (0, 1] there is a smallest closed set, called the support of the
measure, whose µ measure is one. For all probability measures µ there is a minimal
coset G0 + α which contains the support of µ. This means that the µ measure of this
coset is 1, and all cosets with this property contain this coset. If no coset of a finite
subgroup of G has this property, then we call the whole group G the minimal coset
which contains the support of the measure µ. Now we formulate the following

Proposition A. Let (Xn, Yn), n = 1, 2, . . . , be a sequence of i.i.d. random vectors such
that Xn is a random vector in Rk with expectation zero and covariance matrix Σ, Yn is
a random variable on the unit circle G = [0, 1). Let G0 + α be the minimal coset which

contains the support of the distribution of Yn. Put Un =
1√
n

n
∑

s=1
Xs, Vn =

n
∑

s=1
Ys − nα.

Then the joint distribution of (Un, Vn) tends to the distribution of a random vector
(U, V ), where U has normal distribution with expectation zero and covariance Σ, V is
uniformly distributed on the subgroup G0 of G, and the random variables U and V are
independent. In the case G0 = G, α can be chosen in an arbitrary way, e.g. α = 0.

The result of Proposition A is not sufficient in itself for our purposes. The reason
for this is that the distributions of the random variables we are investigating depend on
a parameter α(n). This parameter satisfies the relation α(n) → α∗, but it may depend
on n. Hence we need such a version of Proposition A where the distribution of the
random variables Xj = Xj(n) and Yj = Yj(n), j = 1, . . . , n, may weakly depend on n.
Let us remark that in the limit theorems for sums of independent random variables on
a compact group G no normalization is taken, hence even a small perturbation of the
summands may radically change the limit distribution of their sums. Nevertheless, we
show that in the case when the distribution of Yn is close to a measure which is not
concentrated in a coset of a closed finite subgroup a version of Proposition A can be
proved where the distribution of the summands may depend on n. To formulate this
result first we introduce the following definition.

9



Definition. We call a probability measure µ on the group G = [0, 1), mod 1 stable

if for all finite cosets K =

{

j

p
+ c, j = 0, . . . , p− 1

}

, with a positive integer p and

0 ≤ c < 1 µ(K) < 1, or in other words, the minimal coset which contains the support
of the measure µ is the whole group G.

This terminology for stable distribution differs from the traditional one, but since
we apply it on a different space, hopefully it causes no confusion. Now we formulate
the following result.

Proposition B. For all n let (Xj(n), Yj(n)), j = 1, 2, . . . , n, be a sequence of i.i.d.
random vectors with the following properties: Xj(n) are i.i.d. random vectors in Rk,
EXj(n) = 0, the relation E‖X1(n) − X‖2 → 0 holds with a random variable X in
Rk, EX = 0, which has a covariance matrix Σ, Yj(n) is a random variable on the
unit circle [0, 1) with a distribution µn on [0, 1) such that µn ⇒ µ, and µ is a stable
probability measure on [0, 1), where ⇒ denotes weak convergence of measures. Define

the random variables Un =
1√
n

n
∑

s=1
Xs(n) and Vn =

n
∑

s=1
Ys(n) mod 1. Then the joint

distribution of (Un, Vn) tends to the distribution of a random vector (U, V ), where U has
normal distribution with expectation zero and covariance Σ, V is uniformly distributed
on G = [0, 1), and the random variables U and V are independent.

Propositions A and B hold because one of the coordinates of the random vectors we
are summing up take value in a compact while the other component in a non-compact
group. Results similar to Proposition A can be found in [6] in a more general setting,
but to find the right generalization of Proposition B seems to be an interesting open
question.

The above results enable us to investigate the limit behaviour of the random variable
S(k)(n) defined in (1.1). But because of the conditions we had to impose in the limit
theorem formulated in Proposition B we can prove these results only under certain
restrictions. Let us introduce the following terminology:

Definition. We call the level α∗ stable if one of the following conditions are satisfied.

1.) Either E
±ξ

(r ± ξ)2
> 0 for r = r(α∗), i.e. either ϕ̄(α) = 0 or ϕ̄(α) = π if α is in a

small neighbourhood of α∗.

2.) or 0 < ϕ̄(α∗) < π, and the distribution of the random variable

Y =
1

2π
arccos

r cos ϕ̄+ ξ

(r2 + ξ2 + 2rξ cos ϕ̄)1/2
,

where r = r(α∗) and ϕ̄ = ϕ̄(α∗) is a stable distribution on the unit circle [0, 1).

We can give a good asymptotic of the symmetric statistics S(k)(n) if
n− k

n
=

α(n) → α∗ with a stable level α∗.

10



If 0 < ϕ̄(α∗) < π, then the second condition of the stability of α∗ holds in the generic
case, but the description of the exceptional numbers α∗ and distributions F seems to
be a hard number theoretic problem. Now we formulate the following Theorem.

Theorem 1. Let Property A and relation (2.3) hold, and let α∗ be a stable level. If

α(n) =
n− k

n
→ α∗ as n→ ∞, then the random variables

log |S(k)(n)| − nA0(n)√
n

(2.13)

(with S(k)(n) defined in (1.1)) converge in distribution to the normal law with expecta-

tion zero and variance Var η, where η = η(ϕ̄) =
1

2
log
(

r(α∗)2 + ξ2 + 2r(α∗)ξ cos ϕ̄(α∗)
)

,

(r(α∗), ϕ(α∗)) is the solution of the saddle-point equation (1.4) if the number α(n) is
replaced by α∗ = lim

n→∞
α(n), and A0 = A0(n) is defined in (4.3). |S(k)(n)| can be re-

placed by S(k)(n) in the case ϕ̄(α∗) = 0, by (−1)kS(k)(n) in the case ϕ̄(α∗) = π in
(2.13), while in the case 0 < ϕ̄(α∗) < π P ( signS(k)(n) → 1) = 1/2 and log |S(k)(n)|
and signS(k)(n) are asymptotically independent.

Theorem 1 does not contain the result of [4], where limit theorem is given for a normal-
ized version of S(k)(n) (without logarithm) if the random variables ξj have the distri-
bution P (ξj = 1) = P (ξj = −1) = 1/2. In this case the random variable η is constant,
Var η = 0, and the limit (2.13) is degenerate. In the following Lemma 5 we describe
those distributions F and levels α∗ for which the limit distribution in Theorem 1 is
degenerate. Then we shall describe the limit behaviour of S

(k)
n in such cases.

Lemma 5. The random variable η = η(α∗) = 1
2 log

(

r(α∗)2 + ξ2 + 2rξ cos ϕ̄(α∗)
)

ap-
pearing in Theorem 1 is constant, if an F distributed random variable ξ is concen-
trated in two points, i.e. there are two numbers x1, x2 such that P (ξ = x1) = p,
P (ξ = x2) = q = 1 − p, and one of the following conditions is satisfied.

a.) 0 < ϕ̄(α∗) < π, in which case Eξ = px1 + qx2 = 0, α∗ > 1 − 4pq.

b.) ϕ̄(α∗) = 0, in which case α∗ = − (p− q)(x1 + x2)

x1 − x2
, Eξ = px1 + qx2 ≥ 0 and

x1 + x2 < 0.

c.) ϕ̄(α∗) = π, in which case α∗ = − (p− q)(x1 + x2)

x1 − x2
, Eξ = px1 + qx2 ≤ 0, and

x1 + x2 > 0.

In Theorem 2 we describe the limit behaviour of S(k)(n) in case a.) of Lemma 5.
It contains the result of [4].

Theorem 2. Let the distribution of the random variable ξ have the form P (ξ = x1) = p,
P (ξ = x2) = q = 1 − p, px1 + qx2 = 0, i.e. Eξ = 0. Let n−k

n = α(n) → α∗ with some
stable level α∗ such that 1 > α∗ > 1 − 4pq. Then the random variables

√
Kπn√

2
e−A0(n)S(k)(n)

11



converge in distribution to the random variable exp

{

A2(S
2 − T 2) + 2B2ST

2(A2
2 +B2

2)

}

cosZ as

n → ∞, where the constants A0, A2, B2 and K are defined in formulas (4.3), (4.4),
(4.14′), more precisely they are the limits of these quantities depending on n as n→ ∞,
(S, T ) is a Gaussian random vector with expectation zero, Z is a random variable,
uniformly distributed in [0, 2π) and independent of the vector (S, T ), and

ES2 = Var
−rξ sin ϕ̄

r2 + ξ2 + 2rξ cos ϕ̄
ET 2 = Var

rξ cos ϕ̄+ r2

r2 + ξ2 + 2rξ cos ϕ̄
,

Cov (S, T ) = Cov

( −rξ sin ϕ̄

r2 + ξ2 + 2rξ cos ϕ̄
,

rξ cos ϕ̄+ r2

r2 + ξ2 + 2rξ cos ϕ̄

)

,

(2.14)

where r = r(α∗), ϕ̄ = ϕ̄(α∗).

Finally, in Theorem 2′ we describe the limit behaviour of S(k)(n) in the case when
the conditions of Part b.) of Lemma 5 hold. The case when the conditions of Part c.)
hold can be obtained by applying this result for the random variables −ξj which satisfy
Part b.).

Theorem 2′. Let the distribution of ξ satisfy the following conditions: P (ξ = x1) = p,
P (ξ = x2) = q = 1−p with some x1, x2 and p such that px1 + qx2 > 0 and x1 +x2 < 0,

x1 > x2. Put α∗ =
(p− q)(−x1 − x2)

x1 − x2
. If

n− k

n
= α(n) → α∗, then the symmetric

polynomial S(k)(n) satisfies the following limit theorem:

√

2|A2|πne−nA0(n)S(k)(n) ⇒ exp

{

T 2

A2

}

if
√
n(α(n) − α∗) → 0

√

2|A2|πne−nA0(n)S(k)(n) ⇒ exp

{

T 2

A2
+ cLV

}

if
√
n(α(n) − α∗) → c, 0 < |c| <∞,

where L =

√
pq(x1 − x2)

px1 + qx2
, T = −x1 + x2

x1 − x2
V , and V is a standard normal random vari-

able.

If |√n(α(n) − α∗)| → ∞, there is not such a natural scaling of S(k)(n) as in the
previous cases.
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3. The solution of the fixed point equation.

In this Section we prove Lemmas 1, 2 and 3 which imply that there is a unique solution
of equation (1.4), 0 ≤ ϕ ≤ π, which also satisfies relation (1.5).

Proof of Lemma 1. Let us define the function L(r, ψ) =
1

2
E log(r2 + ξ2 + 2rξψ), −1 ≤

ψ ≤ 1. This function is obtained if ψ is written instead of cosϕ in the function H(r, ϕ).
It is a concave function of the variable ψ in the open interval −1 < ψ < 1 for all r > 0,
since its second derivative is negative. The behaviour of the function L(r, ψ) in the
end point ψ = 1 can be investigated by means of the following observation. There is a
sufficiently small ε > 0 such that in the interval 1−ε < ψ < 1 either L(r, ψ) is monotone

decreasing and the derivative
∂L(r, ψ)

∂ψ
is negative or L(r, ψ) is monotone increasing and

the derivative
∂L(r, ψ)

∂ψ
is positive. In the first case

L(r, 1)−L(r, ψ) =
1

2
E log

(

1 +
2(1 − ψ)rξ

r2 + ξ2 + 2rξψ

)

≤ E
(1 − ψ)rξ

r2 + ξ2 + 2rξψ
= (1−ψ)

∂L

∂ψ
< 0,

and L(r, 1) < supL(r, ψ).

In the second case it follows from formula (2.3) and Fatou’s lemma that

0 ≤ lim sup
ψ→1

∂L

∂ψ
= lim sup

ψ→1
E

rξ

r2 + ξ2 + 2rξψ
≤ E

rξ

(r + ξ)2
= rK+(r),

where the function K+(r) is defined in (2.1). Hence r ∈ A+, and Property A can
be applied. This implies in particular that L(r, 1) = lim

ψ→1
L(r, ψ) = sup

0≤ψ≤1
L(r, ψ).

Similarly, ψ = −1 is the maximum of L(r, ψ) if and only if the function L(r, ψ) is
monotone decreasing in the interval (−1,−1 + ε) with a sufficiently small ε > 0, and
r ∈ A−, i.e. K−(r) ≥ 0. In particular, the function L(r, ψ) is continuous in the point
ψ = −1 in this case.

The above results imply that the function H(r, ϕ) has a unique maximum in the
interval 0 ≤ ϕ ≤ π. The maximum is in the point ϕ = 0 if the function L(r, ψ) has its
maximum at ψ = 1 which holds if K+(r) ≥ 0. It has its maximum at ϕ = π if L(r, ψ)
has its maximum at ψ = −1 and K−(r) ≥ 0. These statements are equivalent to the
first two lines of formula (2.4). The maximum is in the open interval 0 < ϕ < π if

−K−(r) < 0 < K+(r). In this case
∂H(r, ϕ)

∂ϕ
= 0 in the place of maximum, and since

the order of differentiation and expectation can be changed, this fact implies the third
line of formula (2.4). Finally, relation (2.5) also holds for ϕ̄ = 0 and ϕ̄ = π. To see

this, observe that since r ∈ A− if ϕ̄ = 0, r ∈ A+ if ϕ̄ = π,
∂H(r, ϕ)

∂ϕ
= 0 in the place

of maximum ϕ̄, and the order of differentiation and expectation can be changed in this
case too.
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Let us introduce the notation U = U(r, ξ, ϕ) = r2 + ξ2 + 2rξ cosϕ. Now we turn
to the

Proof of Lemma A. If z0 = r0e
iϕ0 /∈ −Σ, and ξ ∈ Σ then for all z = reiϕ in a suffi-

ciently small neighbourhood of z0 the number |z + ξ|2 = U(r, ξ, ϕ) ≥ C > 0 with an
appropriate number C = C(z0). Hence the function logU(r, ξ, ϕ) is analytic in such
a small neighbourhood of z0, and it is separated from −∞ (independently of ξ ∈ Σ).
Then, since logU(r, ξ, ϕ) ≤ const. (|ξ| + r), and relation (2.3) holds, we get by taking
expectation that H(z) = 1

2E logU(r, ξ, ϕ) is analytic in a small neighbourhood of z0.

Similarly, if z0 /∈ ∓Σ, ξ ∈ Σ and z is in a small neigbourhood of z0, then
∣

∣

∣

∣

ξ

(ξ ± z)2

∣

∣

∣

∣

≤ C < ∞, and taking expectation we get that the functions K±(z) are

analytic in the domain C \ (∓Σ). In particular, Property A implies that the function
K±(r) is continuous in the points r ∈ A±.

Moreover, the function K±(r) defined for all r > 0 is upper semicontinuous, hence
the sets A± defined in (2.2) are closed subsets of the positive numbers. We show that
there is no sequence rn, n = 1, 2, . . . , with a limit 0 < r = lim

n→∞
rn < ∞ such that

K±(rn) = 0 for all n. Indeed, the limit r would be also in the set A±, and because of
Property A the relation d(r,∓Σ) > 0 would hold. This would imply that K±(z) ≡ 0
in the domain of analiticity of the function K±(z). This relation also would imply that

E
ξ

ξ ± z
= 0 on the set =z > 0, since the derivative of this function is K±(z) ≡ 0, and

as a consequence it is a constant function. Then choosing z = iu, u → ∞ we get that
this constant is zero. On the other hand, we get with the choice z = iu, u→ 0 that this
constant is P (ξ 6= 0) 6= 0, and this is a contradiction.

Now we turn to the

Proof of Lemma 2. We shall prove that

dG(r)

dr
> 0 if E

ξ

(r + ξ)2
< 0 < E

ξ

(r − ξ)2
(or equivalently, if 0 < ϕ̄(r) < π), (3.1)

and also
dG(r)

dr
> 0 if E

ξ

(r + ξ)2
> 0 or E

ξ

(r − ξ)2
< 0. (3.2)

Finally we show that the function G(r) is continuous for all r > 0. This continuity,
the last statement of Lemma A, together with formulas (3.1) and (3.2) imply that in

an interval [a, b], 0 < a < b < ∞,
G(r)

dr
> 0 with the possible exception only of finitely

many points. Lemma 2 follows from this fact.

To prove relation (3.1) observe that in this case E
ξ

r2 + ξ2 + 2rξ cos ϕ̄(r)
= 0. This

identity determines the function ϕ̄(r) in the small neighbourhood of a point (r, ϕ̄(r)).
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The implicit function theorem enables us to calculate the function ϕ̄′(r). We get that

ϕ̄′(r) =
E

2ξ(r + ξ cos ϕ̄)

U2

E
2ξ2r sin ϕ̄

U2

=
cos ϕ̄

r sin ϕ̄
+

E
ξ

U2

sin ϕ̄E
ξ2

U2

. (3.3)

Exploiting again that the third line of formula (2.4) holds in this case, we get that

G(r) = E(r, ϕ̄(r)) = E
r2 + rξ cos ϕ̄(r)

U(r, ξ, ϕ̄(r))
= E

r2

U(r, ξ, ϕ̄(r))
= 1 − E

ξ2

U(r, ξ, ϕ̄(r))
(3.4)

and
dG(r)

dr
= E

2ξ2(r + ξ cos ϕ̄(r))

U2(r, ξ, ϕ̄(r))
− ϕ̄′(r)E

2rξ3 sin ϕ̄(r)

U2(r, ξ, ϕ̄(r))

= E
2rξ2

U2(r, ξ, ϕ̄(r))
−
E ξ
U2(r,ξ,ϕ̄(r))E

2rξ3

U2(r,ξ,ϕ̄(r))

E ξ2

U2(r,ξ,ϕ̄(r))

,

if 0 < ϕ̄(r) < π. Hence relation (3.1) is equivalent to the inequality

E
r2ξ

U2
E
ξ3

U2
<

(

E
rξ2

U2

)2

,

or since the third line in formula (2.4) implies that

E
rξ2

U2
=

1

2 cos ϕ̄
E

2rξ2 cos ϕ̄− ξU

U2
= − 1

2 cos ϕ̄

(

E
ξ3

U2
+ E

r2ξ

U2

)

it is also equivalent to the inequality

(4 cos2 ϕ̄− 2)E
ξ3

U2
E
r2ξ

U2
<

(

E
ξ3

U2

)2

+

(

E
r2ξ

U2

)2

.

The Cauchy–Schwarz inequality implies that the last inequality and hence relation
(3.1) holds. To see that this formula holds with a strict inequality it is enough to observe

that |4 cos2 ϕ̄−2| < 2 for 0 < ϕ̄ < π, and the equations E
ξ3

U2
= 0 and E

r2ξ

U2
= 0 cannot

hold simultaneously. Indeed, they would imply together with the third line of formula

(1.4) for r > 0 and 0 < ϕ̄ < π that E
ξ2

U2
= 0, and this is impossible.

To prove relation (3.2) let us observe that if E
ξ

(r + ξ)2
> 0, then ϕ̄(r) = 0, and

because of Property A the order of differentiation with respect to the variable r and

expectation can be changed when G(r) and
dG(r)

dr
are calculated. Simple calculation
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shows that G(r) = E(r, ϕ̄(r)) = E
r

ξ + r
,
dG(r)

dr
= E

ξ

(r + ξ)2
> 0, and if E

ξ

(r − ξ)2
< 0,

then ϕ̄(r) = π, and
dG(r)

dr
= −E ξ

(r − ξ)2
> 0. These formulas imply (3.2).

The above arguments also show the continuity of the function G(r) except the

points r such that E
ξ

(ξ ± r)2
= 0. To prove the continuity in these points it is enough

to show that the function ϕ̄(r) defined in Lemma 1 is continuous in these points. To
prove this observe that in these points either ϕ̄(r) = 0 or ϕ̄(r) = π. If ϕ̄(r) = 0, then,
as we showed in the proof of Lemma 1, the expression in the third line of formula (2.4)
is strictly negative for this r and 0 < ϕ ≤ π. This function is uniformly continuous
(analytic) and separated from zero in a small neighbourhood of the set {z : z = reiϕ},
with this r and ε ≤ ϕ ≤ π for arbitrary ε > 0. This implies that ϕ̄(r) is continuous in
this exceptional set if ϕ̄ = 0. The case ϕ̄ = π can be handled similarly. Lemma 2 is
proved.

Proof of Lemma 3. Since G(r) is a monotone increasing function it is enough to prove
the formulas in relation (2.6) for a special sequence rn → ∞ and rn → 0. To prove the
first relation let us first consider the case when there is a sequence of numbers rn → ∞
such that 0 < ϕ̄(rn) < π. By relation (3.4), Fatou’s lemma and the observation

r2n
U

→ 1,

ξ2

U
→ 0,

ξ2

U
≥ 0,

r2

U
≥ 0 imply that

lim inf
r→∞

G(r) = lim inf
r→∞

E
r2

U
≥ 1,

lim sup
r→∞

G(r) = 1 − lim inf
r→∞

E
ξ2

U
≤ 1,

hence the first line of relation of (2.6) holds in this case. Similarly if rn → 0, 0 <

ϕ̄(rn) < π, then
r2

U
→ I(ξ = 0) and

ξ2

U
→ 1 − I(ξ = 0). Then a similar argument

proves the second line of (2.6) in this case.

In the remaining cases, we have because of the continuity of the function ϕ̄(r) either

ϕ̄(r) = 0 and E
ξ

(ξ + r)2
≥ 0 or ϕ̄(r) = π and E

−ξ
(ξ − r)2

≥ 0 for all r ≥ r0 with some

r0 > 1 if the case r → ∞ is considered. We claim that −Σ ∩ {r : r > r0} is empty for
r > r0 in the first case, and Σ ∩ {r : r > r0} is empty for r > r0 is empty in the second
case, where Σ denotes the support of the distribution of the ξ. Indeed, if this relation
did not hold, then in the first case one could find by a halving procedure a sequence of
intervals [an, bn] such that bn > an > r0, bn−an = 2−n, F (−bn)−F (−an) ≥ K2−n with
some appropriate K > 0 for all n = 1, 2, . . . , where F is the distribution function of the
random variable ξ. Let R be the intersection of the intervals [an, bn], n = 1, 2, . . . . Then

R > r0, and we claim that E
ξ

(ξ +R)2
= −∞ which is a contradiction. This equation
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holds, because for all n > 0

E
ξ

(ξ +R)2
≤
∫ −an

−bn

x

(R+ x)2
F ( dx) + EξI(ξ ≥ 0) ≤ −const. 2n + const. , (3.5)

and we get the above relation as n → ∞. The proof in the case ϕ̄ = π for r ≥ r0 is
similar.

It follows from the above proved statement, the relation lim
r→∞

r

r ± ξ
= 1 with prob-

ability one and Lebesgue convergence theorem that lim
r→∞

G(r) = lim
r→∞

E
r

r ± ξ
= 1 in

this case too.

The limit behaviour in the case r → 0 can be handled similarly. If there is no
sequence rn → 0 such that 0 < ϕ̄(rn) < π, then there is a number 1 > r0 > 0 such that
either ϕ̄(r) = 0 or ϕ̄(r) = π for all 0 < r < r0. In the first case −Σ∩{r : 0 < r < r0} = ∅,
and in the second case Σ ∩ {r : 0 < r < r0} = ∅. This can be proved similarly to the
case r → ∞ with an estimate similar to (3.5) with the difference that in this case the

relation E
ξ

(R+ ξ)2
I(ξ > 0) ≤ E

ξ

ξ2
I(ξ > 0) ≤ E

I(ξ 6= 0)

|ξ| <∞ holds.

Finally, as lim
r→0

r

r ± ξ
= I(ξ = 0), the Lebesgue dominated convergence theorem

implies that lim
r→0

G(r) = lim
r→0

E
r

r ± ξ
= EI(ξ = 0). Relation (2.6) is proved.

We have proved that the saddle point equation (1.4) and (1.5) has a unique solution
if P (ξ = 0) < α(n) < 1. Let us calculate the second partial derivative of F (r, ϕ̄) with
respect of the variable ϕ in the saddle point. We get that

∂2

∂ϕ2
H(r, ϕ) = −E rξ cosϕ

U
− 2E

r2ξ2 sin2 ϕ

U2
,

in a general point (r, ϕ). Then a simple substitution implies formula (2.7). Lemma 3 is
proved.

4. Asymptotic approximation for the symmetric polynomial S(k)(n).

Let us consider the solution (rn, ϕ̄n) of the asymptotic saddle point equation (1.4)
which also satisfies relation (1.5). Let us remark that these numbers depend on n
because of the function α(n) at the right-hand side of formula (1.4). On the other
hand, if (r(α∗), ϕ̄(α∗)) denotes the solution of the equation (1.4) with the modification
that the number α(n) is replaced by α∗ = lim

n→∞
α(n) in it, then lim

n→∞
rn = r(α∗), and

lim
n→∞

ϕ̄n = ϕ̄(α∗). Indeed, it follows from Lemma 2 that lim
n→∞

rn = r(α∗), since the

function G(r) which was so defined that the number rn is the solution of the equation
G(r) = α(n) is a continuous and strictly monotone function. Then it follows from
Lemma 1 that the relation lim

n→∞
ϕ̄n = ϕ̄(α∗) also holds.

17



We want to make a Taylor expansion of the function βj(rn, ϕ) defined in formula
(2.10) in the variable ϕ around the point (rn, ϕ̄n). For this end we introduce some
notations. Put

η
(0)
j = η

(0)
j (n) = < (βj(rn, ϕ̄n) − Eβj(rn, ϕ̄n)) =

1

2
log
(

r2n + ξ2j + 2rnξj cos ϕ̄n
)

− 1

2
E log

(

r2n + ξ2 + 2rnξ cos ϕ̄n
)

,

ζ
(0)
j = ζ

(0)
j (n) = = (βj(rn, ϕ̄n) − Eβj(rn, ϕ̄n)) = arccos

rn cos ϕ̄n + ξj
(r2n + ξ2j + 2rnξj cos ϕ̄n)1/2

− E arccos
rn cos ϕ̄n + ξ

(r2n + ξ2 + 2rnξ cos ϕ̄n)1/2
,

(4.1)

η
(1)
j = η

(1)
j (n) =

∂

∂ϕ
< (βj(rn, ϕ) − Eβj(rn, ϕ))

∣

∣

∣

∣

ϕ=ϕ̄n

=
∂

∂ϕ
<βj(rn, ϕ)

∣

∣

∣

∣

ϕ=ϕ̄n

= − rnξj sin ϕ̄n
r2n + ξ2j + 2rnξ cos ϕ̄n

, (4.2)

ζ
(1)
j = ζ

(1)
j (n) =

∂

∂ϕ
= (βj(rn, ϕ̄n) − Eβj(rn, ϕ̄n)) =

∂

∂ϕ
=βj(rn, ϕ)

∣

∣

∣

∣

ϕ=ϕ̄n

=
rnξj cos ϕ̄n + r2n

r2n + ξ2j + 2rnξj cos ϕ̄n
− α(n),

(in the last identity we applied the same calculation as in formula (2.11))

A0 = A0(n) = E<βj(rn, ϕ̄n) =
1

2
E log

(

r2n + ξ2 + 2rnξ cos ϕ̄n
)

− α(n) log rn,

B0 = B0(n) − E=βj(rn, ϕ̄n) = E arccos
rn cos ϕ̄n + ξ

(r2n + ξ2 + 2rnξ cos ϕ̄n)1/2
− α(n)ϕ̄n,

(4.3)

the numbers A2 = A2(n) and B2 = B2(n) which are the second derivatives of the
functions E<βj(rn, ϕ) and E=βj(rn, ϕ) in the point ϕ = ϕ̄n, i.e.

A2 = A2(n) = −E rnξ cos ϕ̄n
U(rn, ξ, ϕ̄n)

− 2E
r2nξ

2 sin2 ϕ̄n
U(rn, ξ, ϕ̄n)2

,

B2 = B2(n) = −E rnξ sin ϕ̄n
U(rn, ξ, ϕ̄n)

+ 2E
rnξ sin ϕ̄n(rnξ cos ϕ̄n + r2)

U(rn, ξ, ϕ̄n)2
,

(4.4)

η
(2)
j = η

(2)
j (n) = < ∂2

∂ϕ2
(βj(rn, ϕ) − Eβj(rn, ϕ))

∣

∣

∣

∣

ϕ=ϕ̄n

= − rnξj cos ϕ̄n
U(rn, ξj , ϕ̄n)

− 2
r2nξ

2
j sin2 ϕ̄n

U(rn, ξj , ϕ̄n)2
−A2,

ζ
(2)
j = ζ

(2)
j (n) = = ∂2

∂ϕ2
(βj(rn, ϕ) − Eβj(rn, ϕ))

∣

∣

∣

∣

ϕ=ϕ̄n

=
−rnξj sin ϕ̄n
U(rn, ξj , ϕ̄n)

+ 2
rnξj sin ϕ̄n(rnξj cos ϕ̄n + r2n)

U(rn, ξj , ϕ̄n)2
−B2.

(4.5)
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We can write

<βj(rn, ϕ) = A0 + η
(0)
j (rn, ϕ̄n) + η

(1)
j (rn, ϕ̄n)(ϕ− ϕ̄n)

+
1

2

(

A2 + η
(2)
j

)

(ϕ− ϕ̄n)
2 +

1

6
ϑj,1(ϕ− ϕ̄n)

3,

=βj(rn, ϕ) = B0 + ζ
(0)
j (rn, ϕ̄n) + ζ

(1)
j (rn, ϕ̄n)(ϕ− ϕ̄n)

+
1

2

(

B2 + ζ
(2)
j

)

(ϕ− ϕ̄n)
2 +

1

6
ϑj,2(ϕ− ϕ̄n)

3,

where

ϑj,1 = ϑj,1(rn, ϕ) =
∂3

∂ϕ3
<βj(rn, ϕ)

∣

∣

∣

∣

ϕ=ϕ̃

,

ϑj,2 = ϑj,2(rn, ϕ) =
∂3

∂ϕ3
=βj(r, ϕ)

∣

∣

∣

∣

ϕ=˜̃ϕ

(4.6)

with some numbers ϕ̃ and ˜̃ϕ in the interval [ϕ, ϕ̄n]. Summing up the last relations for
j = 1, . . . , n, we get the following relation for the function Zn(rn, ϕ) defined in formula
(2.9):

Zn(r, ϕ) = n (A0 + iB0) +
√
nS0(n) + iT0(n) +

√
n(S1(n) + iT1(n))(ϕ− ϕ̄n)

+
n

2
(A2 + iB2)(ϕ− ϕ̄n)

2 +

√
n

2
(ε1(n) + iε2(n))(ϕ− ϕ̄n)

2

+
n

6
(δ1(n) + iδ2(n))(ϕ− ϕ̄n)

3,

(4.7)

where

S0 = S0(n) =
1√
n

n
∑

j=1

η
(0)
j (rn, ϕ̄n) and T0 = T0(n) =

n
∑

j=1

ζ
(0)
j (rn, ϕ̄n) mod 2π,

(4.8)

S1 = S1(n) =
1√
n

n
∑

j=1

η
(1)
j (rn, ϕ̄n), T1 = T1(n) =

1√
n

n
∑

j=1

ζ
(1)
j (rn, ϕ̄n), (4.9)

and

ε1(n) =
1√
n

n
∑

j=1

η
(2)
j (rn, ϕ̄n), ε2(n) =

1√
n

n
∑

j=1

ζ
(2)
j (rn, ϕ̄n)

δk(n) =
1

n

n
∑

j=1

ϑj,k(rn, ϕ), k = 1, 2.

We want to give a good asymptotic formula for the integral (2.8) by means of
formula (4.7) if Property B holds. Define the intervals

Ī(n) =
[

ϕ̄n − n−1/2+1/10, ϕ̄n + n−1/2+1/10
]

and I(n) = Ī(n) ∩ [0, π).
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Observe that for sufficiently large n Ī(n) = I(n) if 0 < ϕ̄(α∗) < π, and Ī(n) = I(n) ∪
(−I(n)) if ϕ̄(α∗) = 0 or ϕ̄(α∗) = π with α∗ = lim

n→∞
α(n). This relation follows from

Lemma 1, the relation lim
n→∞

ϕ̄n = ϕ̄(α∗) which we pointed out at the beginning of this

Section, Property B and the observation that in the case ϕ̄(α∗) = 0 or π K±(r(α∗)) > 0
with a strict inequality. Indeed, the inequality K±(r(α(n))) > 0 also holds in this case.
These facts imply the relation between the intervals I(n) and Ī(n) formulated in this
paragraph.

We claim that there is an appropriate set Ω(n) on the probability space where the
random variables ξ1, ξ2, . . . are defined such that

P (Ω(n)) → 1 as n→ ∞, (4.10)

and

<
(

1

π

∫

I(n)

exp{Zn(rn, ϕ)} dϕ
)

=

{

2Dn if 0 < ϕ̄n < π

Dn if ϕ̄n = 0 or ϕ̄ = π
(4.11)

on the set Ω(n) for the function Zn(r, ϕ) defined in formula (2.9) with a (random)
number Dn which satisfies the relation

Dn = <









√
π exp

{

Zn(rn, ϕ̄n) −
(S1(n) + iT1(n))2

2(A2 + iB2)
+O

(

n−1/10
)

}

√

2n(−A2 − iB2)









, (4.11′)

where S1(n) and T1(n) are defined in (4.9), A0, B0 in (4.3), ϕ̄n = ϕ̄(α(n)) and
√

(−A2 − iB2) is meant as the square-root with positive real part. Let us remark
that A2 < 0 which statement is proved with a slightly different notation in Lemma 3.
Moreover, the numbers A2(n) are strictly separated from zero for all sufficiently large
n since (rn, ϕ̄n) → (r(α∗), ϕ̄(α∗)) as n → ∞, and Property A and Lemma A can be
applied if ϕ̄(α∗) = 0 or ϕ̄(α∗) = π. We also claim that

the angle between the complex numbers

exp

{

Zn(rn, ϕ̄n) −
(S1(n) + iT1(n))2

2(A2 + iB2)

}

√

2n(−A2 − iB2)

and i =
√
−1 is larger than n−1/20, (4.11′′)

and
∣

∣

∣

∣

∣

∫

[0,π]\(I(n))

exp{Zn(rn, ϕ)} dϕ
∣

∣

∣

∣

∣

= O
(

exp
{

<Zn(rn, ϕ̄n) − const.n1/5
})

, (4.12)

and the O(·) is uniform in (4.11) and (4.12) on the sets Ω(n).

Before the proof of relations (4.10), (4.11), (4.11′), (4.11′′) and (4.12) we show that
they imply Lemma 4. First we show by a comparison of the right-hand side of (4.11),
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(4.11′), (4.11′′) and (4.12) that a negligible error is committed on the set Ω(n) if the
integral (2.8) is restricted to the set I(n), i.e. the expression Dn or 2Dn defined in
(4.11′) is a good approximation of S(k)(n).

Formula (4.15) which will appear in the definition of the set Ω(n) implies that

∣

∣

∣

∣

(S1(n) + iT1(n))2

2(A2 + iB2)

∣

∣

∣

∣

< const.n1/10

on the set Ω(n). This relation together with formulas (4.11′), (4.11′′) imply that

|Dn| ≥ const.

∣

∣

∣

∣

∣

∣

∣

∣

<









exp

{

Zn(rn, ϕ̄n) −
(S1(n) + iT1(n))2

2(A2 + iB2)

}

√

2n(−A2 − iB2)









∣

∣

∣

∣

∣

∣

∣

∣

≥ n−1/20const.

∣

∣

∣

∣

∣

∣

∣

∣

exp

{

Zn(rn, ϕ̄n) −
(S1(n) + iT1(n))2

2(A2 + iB2)

}

√

2n(−A2 − iB2)

∣

∣

∣

∣

∣

∣

∣

∣

≥ exp
{

<Zn(rn, ϕ̄n) − const.n1/10
}

.

The above estimate together with (4.11), (4.12) and the definition of S(k)(n) imply
that S(k)(n) = 2Dn(1+ o(1)) if 0 < ϕ̄(α∗) < π and S(k)(n) = Dn(1+ o(1)) if ϕ̄(α∗) = 0
or ϕ̄(α∗) = π. Hence to prove Lemma 4 it is enough to give a good estimate on Dn. We
shall consider the cases 0 < ϕ̄(α∗) < π, ϕ̄(α∗) = 0 and ϕ̄(α∗) = π separately. We get
with the help of relation (4.11′) and the identity Zn(rn, ϕ̄n) = n (A0 + iB0)+

√
nS0(n)+

iT0(n) that on the set Ω(n)

Dn =

√
2√

Knπ
exp

{

nA0 +
√
nS0 − U1

}

cos
(

nB0 + T0 − U2 −
ω

2

)(

1 +O(n−1/10)
)

if 0 < ϕ̄(α∗) < π (4.13)

with

U1 = U1(n) =
A2(S

2
1 − T 2

1 ) + 2B2S1T1

2(A2
2 +B2

2)
, U2 = U2(n) =

−B2(S
2
1 − T 2

1 ) + 2A2S1T1

2(A2
2 +B2

2)
,

(4.14)
and

K = K(n) = (A2
2 +B2

2)1/2, ω = ω(n) = arctan
B2

A2
, (4.14′)

because of the relation
(S1 + iT1)

2

2(A2 + iB2)
= U1 + iU2. (4.14′′)
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In the case ϕ̄(α∗) = 0, B0 = 0, B2 = 0, T0 = 0 and S1 = 0, hence

Dn =
1

√

2π|A2|n
exp

{

T 2
1

2A2
+ nA0 +

√
nS0

}

(

1 +O(n−1/10)
)

if ϕ̄(α∗) = 0, (4.13′)

and in the case ϕ̄(α∗) = π, nB0 = n(−π − α(n)) = k(n)π, T0 = 0 and S1 = 0. Hence

Dn = (−1)k(n) 1
√

2π|A2|n
exp

{

T 2
1

2A2
+ nA0 +

√
nS0

}

(

1 +O(n−1/10)
)

if ϕ̄(α∗) = π.

(4.13′′)
Lemma 4 follows from formulas (4.13), (4.13′), (4.13′′) and the relation between S(k)(n)
and Dn.

We define Ω(n) in the form Ω(n) = Ω1(n)∩Ω2(n). Ω1(n) is the set where the above
relations hold:

|S1(n)| < n1/20,

|T1(n)| < n1/20,

|εk(n)| < n1/10, k = 1, 2,

|δ̄k(n)| < n1/10, k = 1, 2,
∣

∣

∣

∣

n
∑

j=1

ξj cos(ϕ̄n ± n−4/10)

r2n + ξ2j + 2rnξj cos(ϕ̄n ± n−4/10)

− nE
ξ cos(ϕ̄n ± n−4/10)

r2n + ξ2 + 2rnξ cos(ϕ̄n ± n−4/10)

∣

∣

∣

∣

< n11/20,

(4.15)

where

δ̄k(n) =
1

n

n
∑

j=1

ϑ̄j,k, k = 1, 2

with

ϑ̄j,1 = sup
|ϕ−ϕ̄n|<n−1/2+1/10

∣

∣

∣

∣

1

2

∂3

∂ϕ3

(

log
(

r2n + ξ2j + 2rnξj cosϕ
))

∣

∣

∣

∣

ϑ̄j,2 = sup
|ϕ−ϕ̄n|<n−1/2+1/10

∣

∣

∣

∣

∂3

∂ϕ3
arccos

rn cosϕ+ ξ

(r2n + ξ2 + 2rnξ cosϕ)1/2

∣

∣

∣

∣

.

The set Ω2(n) is defined as the set where the above relation holds:

∣

∣

∣

∣

W (n) − 1

2

∣

∣

∣

∣

> n−1/20 with W (n) =
1

π

(

nB0(n) + T0(n) − U2(n) − ω(n)

2

)

mod 1

if 0 < ϕ̄(α∗) < π,
(4.15′)

where B0, T0, U2 and ω are defined in (4.1), (4.2), (4.14) and (4.14′).
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The above defined set Ω(n) satisfies relation (4.10), since both Ω1(n) and Ω2(n)
satisfy it. It holds for Ω1(n) since the random variables

√
nS1(n),

√
nT1(n),

√
nεk(n),

k = 1, 2, and the last expression in (4.15) are sums of n independent random variables
with expectation zero and finite second moment, while nδ̄k(n) is the sum of n inde-
pendent random variables with finite expectation. Hence we can deduce relation (4.15)
from the Chebisheff and Markov inequalities if we know that the appropriate variances
and expected value have a uniform bound for all sufficiently large n. But this holds
because of relation (2.5) and the fact that z(α∗) = r(α∗)eiϕ̄(α∗) and zn = rne

iϕ̄n are
separated from the real line if 0 < ϕ̄(α∗) < π, they are separated from −Σ if ϕ̄(α∗) = 0,
and from Σ if ϕ̄(α∗) = π. The last observation is needed to check that the singularity
of the random functions in the point rn or −rn makes no problem.

The probability of the event that relation (4.15′) holds tends to 1, as n→ ∞. This
follows from Proposition B which will be proved in Section 5. Indeed, it follows from
Proposition B that the random variables W (n) converge in distribution to the uniform
distribution if n → ∞, and this implies (4.15′). The above mentioned limit theorem
holds because the vectors (T0(n), S1(n), T1(n)) converge in distribution to a random
vector (T0, S1, S2) such that T0 is uniformly distributed mod 1, and the vector (S1, S2)
is independent of T0. The limit distribution for W (n) follows from this fact and the
definition of W (n).

Formula (4.11′′) follows from (4.14′′) and (4.15′). To prove relation (4.11) and
(4.11′) in the case 0 < ϕ̄(α∗) < π observe that by (4.7) and the definition of the set
Ω(n)

Zn(rn, ϕ) − Zn(rn, ϕ̄n) = n(A2 + iB2)
(ϕ− ϕ̄n)

2

2
+
√
n(S1(n) + iT1(n))(ϕ− ϕ̄n)

+O
(

n−1/10
)

=
n(A2 + iB2)

2

(

ϕ− ϕ̄n +
S1 + iT1√
n(A2 + iB2)

)2

− (S1 + iT1)
2

2(A2 + iB2)

+O
(

n−1/10
)

(4.16)
if ϕ ∈ I(n) and ω ∈ Ω(n), hence

∫

I(n)

exp{Zn(rn, ϕ) − Zn(rn, ϕ̄n)} dϕ

=

∫

I(n)

exp

{

n(A2 + iB2)

2

(

ϕ− ϕ̄n +
S1 + iT1√
n(A2 + iB2)

)2

− (S1 + iT1)
2

2(A2 + iB2)
+O

(

n−1/10
)

}

dϕ

=

∫ ∞

−∞

exp

{

n(A2 + iB2)

2

(

ϕ− ϕ̄n +
S1 + iT1√
n(A2 + iB2)

)2

− (S1 + iT1)
2

2(A2 + iB2)
+O

(

n−1/10
)

}

dϕ+O
(

e−Kn
1/5
)
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=

√
2π exp

{

− (S1 + iT1)
2

2(A2 + iB2)
+O

(

n−1/10
)

}

√

(−A2 − iB2)n
,

since
∫∞

∞
e−A(ϕ−B)2 dϕ =

√

π
A if <A > 0, and the main term in the middle expression

of the last relation is dominating being larger than O
(

e−const.n1/10
)

. In the above

calculation we have exploited that A2 < 0. The expression
√

(−A2 − iB2) is meant as
the square-root with positive real part.

The cases ϕ̄(α∗) = 0 or ϕ̄(α∗) = π are similar, but simpler. The integrals we are
interested in can be calculated similarly, only the approximating integrals

∫∞

−∞
must

be replaced by
∫∞

0
or
∫ 0

−∞
. (We exploit during these calculations that S1 = 0 in the

present case.) The main part of the integral under consideration is real, since S1 = 0,
B2 = 0, T0 = 0 and B0 = 0 mod π in this case.

To prove (4.12) it is enough to show that

<Zn(rn, ϕ) ≤ <Zn(rn, ϕ̄n) − const.n1/5 if ϕ ∈ [0, π] \ I(n) (4.17)

on the set Ω(n), where the function Zn(rn, ϕ) is defined in formulas (2.9) and (2.10).
First we show the following weaker result:

<Zn
(

rn, ϕ̄n ± n−2/5
)

< <Zn (rn, ϕ̄n) − const.n1/5, (4.18)

i.e. relation (4.17) holds if some very special points of the set [0, π]\I(n) are considered.

To prove relation (4.18) let us first observe that for A2 = A2(n) defined in (4.4)
A2 < −K with some negative constant K. Indeed, either 0 < ϕ̄ < π in which case

A2 = −2E
r2nξ

2 sin2 ϕ̄n
U(rn, ξ, ϕ̄n)2

< −K because of Lemma 1 or ϕ̄n = 0 or ϕ̄n = π, and in these

cases A2 = E
∓rnξ

(rn ± ξ)2
< −K because of Property B. We get relation (4.18) by taking

the real part of the first identity in (4.16) with the choice ϕ = ϕ̄n±n−2/5 with the help of

the following observations: nA2
(ϕ− ϕ̄n)

2

2
< −const.n1/5,

√
n|(ϕ − ϕ̄n)S1(n)| < n3/20

on the set Ω(n) because of the relation A2 < −K and formula (4.15).

Relation (4.17) can be rewritten, with the change of variable ψ = cosϕ, in the
equivalent form

Yn(ψ) ≤ Yn(cos ϕ̄n) − const.n1/5 if | arccosψ − ϕ̄n| ≥ n−2/5, (4.19)

on the set Ω(n), with the function Yn(ψ) defined as

Yn(ψ) = <Zn(rn, arccosψ) =
n
∑

j=1

1

2
log
(

r2n + ξ2j + 2rnξjψ
)

− nα(n) log rn.
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Relation (4.18) implies that

Yn

(

cos(ϕ̄n ± n−2/5)
)

≤ Yn(cos ϕ̄n) − const.n1/5. (4.20)

To prove (4.19) it is enough to observe that

d2

dψ2
Yn(ψ) = −

n
∑

j=1

2r2nξ
2
j

(

r2n + ξ2j + 2rnξjψ
)2 ≤ 0, (4.21)

hence the function Yn(·) is concave, and relation (4.20) implies its strengthened form,
relation (4.19).

5. Proof of the limit theorems for sums of independent vectors.

Proof of Proposition A. In the proof we apply a natural adaptation of the characteristic
function technique. We shall investigate the expressions

ϕ(t, l) = E exp{itX1 + 2πil(Y1 − α)}, (5.1)

where t ∈ Rk, l is an arbitrary integer if G0 = G, l is an integer, 0 ≤ l < p if

G0 =

{

j

p
, j = 0, . . . , p− 1

}

, and tXs denotes scalar product. We claim that

ϕ(t, l) = exp

{

−1

2
tΣt∗ + o(t2)

}

if l = 0 and t→ 0

|ϕ(t, l)| < C < 1 if l 6= 0 and |t| < ε,

(5.2)

where the constants C < 1 and ε > 0 may depend on l,

Since EX1 = 0, and the coefficient of Y1 −α in the definition of the function ϕ(t, l)
is zero for l = 0, the first line of relation (5.2) follows from a simple Taylor expansion,
just as it is done in the proof of the classical central limit theorem. First we prove the
second line of (5.2) first in the case if G0 = G, i.e. if the minimal coset containing the
support µ is the whole group G. We show that in this case for all positive integers l
and 0 ≤ α ≤ 1 there is some δ = δ(l) > 0 and η = η(l) > 0 depending only on l such
that the distribution µ of Ys satisfies the inequality

µ





l
⋃

j=1

[

j

l
− η + α,

j

l
+ η + α

]



 < 1 − δ. (5.3)

Let us emphasize that the numbers η > 0 and δ > 0 in formula (5.3) may depend on l
but not on α.

To prove (5.3) first we show that for all sets

A(β) = A(β, l, η) =
l
⋃

j=1

(

j

l
+ β − 2η,

j

l
+ β + 2η

)

,
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µ(A(β)) < 1 − δ if the numbers η = η(β, l) and δ = δ(β, l) are appropriately chosen.

Indeed, the µ measure of the (finite) sets
l
⋃

j=1

{

j

l
+ β

}

is less than one for all 0 ≤
β ≤ 1, since otherwise the support of the measure µ were concentrated on a finite
coset. Since these sets are compact, this relation also holds for their sufficiently small
neighbourhoods.

Since the group G is compact, there is a finite cover of G with some sets of the
form Ā(β), which sets are defined in the same way as A(β), (µ(A(β) < 1 − δ(β)), only
2η is replaced by η in their definition. If we choose η as the minimum of the numbers η
appearing in the definition of the sets Ā(β) appearing in this finite cover, then all sets
which are considered at the left-hand side of (5.3) are contained in one of the sets A(β)
for which Ā(β) takes part in this cover. Hence relation (5.3) holds if η and δ are chosen
as the minimum of those values η(β) > 0 and δ(β) > 0 which appear in the sets A(β)
for which Ā(β) takes part in this finite cover of G.

Relation (5.3) implies that for sufficiently small ε = ε(l) > 0

P
(

|lY1 + tX1 − α| > η

2

)

>
δ

2

for all 0 ≤ α ≤ 1 if t < ε with some η = η(l) and δ = δ(l). Hence

E<ei(lY1+tX1−α) < 1 − ηδ2

8

for all α ∈ [0, 1]. Since this relation holds for all α, this implies the second line of (5.2)
in the case G = G0.

If G0 + α with G0 =

{

j

p
, j = 0, 1, . . . , p− 1

}

, is the minimal coset containing the

support of µ, then the distribution of Y1 − α is concentrated on G0. The distribution

of Y1 −α is concentrated on some points of the form
ku
p

, u = 0, . . . , r with some r such

that the µ measure of all these points
ku
p

is positive. We may assume by replacing α

by α− k0

p
, if this is needed, that k0 = 0. Moreover, because of the minimality property

of G0 the greatest common divisor of k1, . . . , kr and p equals 1. Hence there are some
integers Nu, u = 1, . . . , r and N such that

Np+

r
∑

u=1

Nuku = 1. (5.4)

This fact implies that for any 1 ≤ l < p all vectors exp

{

2πil
ku
p

}

, u = 0, . . . , r cannot

be parallel. Indeed, otherwise the relation lku = lk0 = 0 mod p would hold for all
u = 1, . . . , r, and this contradicts to (5.4). Also the maximum between the angles of
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the vectors exp

{

itX1 + 2π
ilku
p

}

are separated from zero with positive probability, and

this fact implies the second line of (5.2) in this case, too.

Since E exp{itUn + 2πilVn} =

[

ϕ

(

t√
n
X1, l

)]n

, relation (5.2) implies that

E exp{itUn + 2πilVn} =







exp

{

−1

2
tΣt∗

}

(1 + o(1)) if l = 0

o(1) if l 6= 0,

Here t ∈ Rk, l = 0,±1,±2, . . . if G0 = G, and l is an integer, 0 ≤ l < p, if G0 =
{

j

p
, j = 0, . . . , p− 1

}

. This means that lim
n→∞

E exp{itUn + 2πilVn} = E exp{itU +

2πilV } for all such t and l, where (U, V ) is such a random vector whose distribution is
described in Proposition A. This relation implies the Proposition A.

Proof of Proposition B. The proof is a slight modification of that of Proposition A. It is
enough to prove a modification of (5.2) under the condition of Proposition B where the
characteristic function ϕ(t, l) is replaced by ϕn(t, l) = E exp{itX1(n)+2πil(Y1(n)−α)}.
The constant C < 1 in the second line of this modified relation (5.2) must not depend
on n. The first line of this modified formula (5.2) holds, since it holds if X1(n) is
replaced by X, and

(

EeitX1(n) − EeitX
)

= o(t2) as t→ 0. The second line of (5.2) can
be deduced from a modified version of formula (5.3) where the distribution µ of Y1 is
replaced by the distribution µn of Y1(n), but the numbers η and δ must not depend on
n. This can be deduced, just as it was done in the proof of Proposition A, from the
weaker relation µn(A(β)) < 1 − δ with

A(β) = A(β, l, η) =
l
⋃

j=1

(

j

l
+ β − 2η,

j

l
+ β + 2η

)

,

δ > 0, η > 0, if the numbers η = η(β, l) and δ = δ(β, l) are appropriately chosen. We
have already proved in Proposition A that µ(A(β)) < 1− δ, where µ is the (weak) limit
of the measures µn. Moreover, this statements also holds for the closure Ā(β) of the set
A(β) with a possibly smaller parameter η. Since µn ⇒ µ, lim sup

n→∞
µn(Ā(β)) ≤ µ(Ā(β)).

This implies that also the relation µn(A(β)) < 1− δ holds for large n. Proposition B is
proved.

27



6. The proof of the main results.

Proof of Theorem 1. By Lemma 4 log
∣

∣S(k)(n)
∣

∣ − log
∣

∣S̄(k)(n)
∣

∣ ⇒ 0, where S̄(k)(n) is

defined in (2.12), and ⇒ denotes stochastic convergence. Hence S(k)(n) can be replaced
by S̄(k)(n) in the proof of Theorem 1.

We claim that

U1(n)√
n

⇒ 0,
T 2

1 (n)√
n

⇒ 0 and

1√
n

log

∣

∣

∣

∣

cos

(

nB0(n) + T0(n) − U2(n) − ω(n)

2

)∣

∣

∣

∣

⇒ 0.

(6.1)

The third relation in (6.1) is needed only in the case when 0 < ϕ(α∗) < π. The first two
relations in (6.1) are trivial, since the random variables U1(n) and T 2

1 (n) are stochasti-
cally bounded. They are even stochastically convergent. The third relation holds, since
the random variables T0(n) − U2(n) mod 2π converge in distribution to the uniform
distribution in [0, 2π). Indeed, by Proposition B the random vectors (T0(n), U2(n)) con-
verge in distribution to a random vector (T,U), where T and U are independent and T
is uniformly distributed in [0, 2π). Hence the random variables T0(n) − U2(n) mod 2π
converge in distribution to the uniform distribution of [0, 2π), as we claimed. This rela-

tion implies that the random variables log

∣

∣

∣

∣

cos

(

n(B0(n) − U2(n) − ω(n)

2

)∣

∣

∣

∣

converge in

distribution to a random variable log | cosV |, where V is uniformly distributed in [0, 2π).
This implies that the third relation also holds in (6.1). The random variables S0(n) con-
verge to a normal law with expectation zero and variance Var η, and a slight refinement
of the previous argument also shows that the vectors

(

log cos

(

n(B0(n) − U2(n) − ω(n)

2

)

, S0(n)

)

converge in distribution to a random vector (log cosV,Z), where V and Z are inde-
pendent random variables, V is uniformly distributed in [0, 2π], and Z is normally
distributed with expectation zero and variance Var η. Relation (2.13) follows from the
above observations. Because of Lemma 4, the form of S̄(k)(n) defined in (2.12) and the
limit behaviour of the expression in the second relation of (6.1) the sign of S (k)(n) also
satisfies the relations given in Theorem 1.

Proof of Lemma 5. The random variable η = η(α∗) is constant if and only if

ξ2 + 2r(α∗)ξ cos ϕ̄(α∗) = const. with probability 1.

Since ξ is a non-constant random variable, and its values satisfy an equation of sec-
ond order, its distribution is concentrated in two points x1 and x2 which satisfy the
identity x2

1 + 2r(α∗)x1 cos ϕ̄(α∗) = x2
2 + 2r(α∗)x2 cos ϕ̄(α∗), or equivalently x1 + x2 +

2r(α∗) cos ϕ̄(α∗) = 0. In case a.) when the relation 0 < ϕ̄(α∗) < π holds, by Lemma 1
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the identity E
ξ

r2(α∗) + ξ2 + 2r(α∗)ξ cos ϕ̄(α∗)
= 0 must hold. This is equivalent to

the relation px1 + qx2 = 0 with p = P (ξ = x1), q = P (ξ = x2) = 1 − p, since
r2+x2

1+2rx1 cos ϕ̄ = r2+x2
2+2rx2 cos ϕ̄ in this case. Finally, the second equation of the

fixed point equation (1.4) r
∂H

∂r

∣

∣

∣

∣

r=r(α∗)

= α∗ yields that E
rξ cos ϕ̄+ r2

r2 + ξ2 + 2rξ cos ϕ̄
= α∗.

This is equivalent to
r2

r2 − x1x2
= α∗, since in this case r2+ξ2+2rξ cos ϕ̄ = r2−x1x2, as

the calculation r2+ξ2+2rξ cos ϕ̄ = r2+(px2
1+qx2

2) = r2+(px1+qx2)(x1+x2)−x1x2 =
r2 − x1x2 shows.

We have proved that the distribution of the random variable ξ must be concentrated
in two different points, and the above equations make possible to calculate r(α∗) and
ϕ̄(α∗) from α∗. To decide whether we get a real solution for a pair (F, α∗) we have to
check whether the condition | cos(ϕ(α∗)| < 1 is satisfied. Some calculation shows that

cos ϕ̄(α∗) = −x1 + x2

2r(α∗)
= − (q − p)x1

2qr(α∗)
, r(α∗)2 =

p

q

α∗

1 − α∗
x2

1. The last two identities

yield that cos2 ϕ̄(α∗) =
(p− q)2

4pq

1 − α∗

α∗
. This gives that the condition | cos ϕ̄(α∗)| < 1

is equivalent to α∗ > 1 − 4pq.

In case b.) when the relation ϕ̄(α∗) = 0 holds the random variable ξ is concentrated

in two points x1, x2, x1 + x2 + 2r(α∗) = 0, and E
ξ

(r + ξ)2
≥ 0. The latter relation is

equivalent to Eξ ≥ 0 in the present case. Since 2r(α∗) = −(x1 + x2) the second part

of the fixed point equation (1.4) yields that α∗ = E
r

r + ξ
= − (p− q)(x1 + x2)

x1 − x2
. The

conditions px1 + qx2 ≥ 0, x1 +x2 < 0 are satisfied. The last condition appears, because
it is equivalent to r(α∗) > 0. Some calculation shows that under such conditions the
relation 0 < α∗ < 1 also holds. Case c.) in Lemma 5 when ϕ̄(α∗) = π can be handled
similarly to case b.). Lemma 5 is proved.

Proof of Theorem 2. Because of Lemma 4 the random variable S(k)(n) can be replaced
by S̄(k)(n) defined in the first line of formula (2.12) in the proof of the limit theorem.
Moreover, under the conditions of Theorem 2

√
nS0(n) = 0, i.e. this term is missing

from formula (2.12). Proposition B implies that the random vectors

(

−U1(n), nB0 + T1 − U2 −
ω

2
mod 2π

)

. (6.2)

converge in distribution to a random vector (U,Z), where Z = Z1−U2+const. mod 2π

with U2 =
−B2(S

2 − T 2) + 2A2ST

2(A2 +B2
2)

, U1 = −U = −A2(S
2 − T 2) + 2B2ST

2(A2 +B2
2)

, (S, T ) is a

Gaussian random vector with expectation zero and covariance matrix given in (2.14),
the random variable Z1 is uniformly distributed in [0, 2π), and it is independent of
the vector (S, T ). These relations imply that the random variable Z is also uniformly
distributed in [0, 2π), and it is independent of the vector (S, T ) hence also of the random
variable U , since its conditional distribution under the condition S = x, T = y is the
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uniform distribution on [0, 2π) for all x and y. Lemma 4 together with the convergence
of the random vectors defined in (6.2) in distribution to the random vector (U,Z) imply
Theorem 2.

Proof of Theorem 2′. Here again the investigation of the random variable S(k)(n) can
be replaced by that of S̄(k)(n) defined in the second line of formula (2.12). We are
interested in the asymptotic behaviour of the expression in the exponent of this formula.
We describe the central limit theorem for the random vector (L−1

n S0(n), T1(n)) with the
definition of an appropriate normalization Ln.

We have
√
nS0(n) =

n
∑

j=1

(η
(0)
j − Eη

(0)
j ) with η

(0)
j = log |r(α(n)) + ξj |. Under the

conditions of Theorem 2′ lim
n→∞

Var ηj(n) = 0, but to determine the right norming

Ln we need a sharper estimate on this variance. To get it, observe that r(α(n)) =
r(α∗) + (α(n) − α∗)r′(α∗) + O

(

(α(n) − α∗)2
)

, and since x1 + x2 + 2r(α∗) = 0, ηj ∼
log

∣

∣

∣

∣

ξj −
x1 + x2

2
+ r′(α∗)(α(n) − α∗)

∣

∣

∣

∣

. Hence ηj takes two values y1 and y2 with prob-

abilities p and q, and |y1 − y2| =
4r′(α∗)|α(n) − α∗|

x1 − x2
(1 + o(1)), where x1 > x2. We get

with the help of some calculation from the second relation in (1.4) and the relations

ϕ̄(α) = 0 in a small neighbourhood of α∗ that r′(α∗)E
ξ

(r + ξ)2
= 1. Because of this

identity and the relation x1 + x2 + 2r(α∗) = 0 that r′(α∗) =
(x1 − x2)

2

4(px1 + qx2)
. Hence

VarS0(n) = Var ηj = pq(y1 − y2)
2 ∼ pq(α(n) − α∗)2

(x1 − x2)
2

(px1 + qx2)2
. On the other hand,

some calculation yields that VarT1(n) =
(x1 + x2)

2

(x1 − x2)2
. Since the random variables ξj

take two values, the random variables S0(n) and T1(n) are linear transform of each
other. Because of the above observations and the central limit theorem the random

vectors (L−1
n S0(n), T1(n) converge in distribution to a vector

(

V,
x1 + x2

x1 − x2
V

)

with the

choice Ln =
√
pq|α(n)−α∗| x1 − x2

px1 + qx2
, where V is a standard normal random variable.

This limit theorem together with the form of the second line in formula (2.12) imply
Theorem 2′.
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