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in the Bolyai College of the Eötvös Loránd University, Budapest

First talk:

The Poisson summation formula

Let a function k(x) be given, and define the function K(x) =
∞∑

n=−∞
k(x + n). (We

disregard convergence problems in this heuristic discussion.) Clearly, K(x+1) = K(x),

and its Fourier series can be written as K(x) =
∞∑

j=−∞
aje

2πijx with

aj =

∫ 1

0

K(x)e−2πijx dx =

∫ 1

0

∞∑

n=−∞
k(x + n)e−2πijx dx

=
∞∑

n=−∞

∫ 1

0

k(x + n)e−2πijx dx =

∫ ∞

−∞
k(x)e−2πijx dx = κ(2πj),

where, κ(t) =
∫∞
−∞ k(x)e−itx dx is the Fourier transform of the function k(x).

In such a way one gets by expressing K(0) in two different ways the relation

∞∑

n=−∞
k(n) =

∞∑

j=−∞
κ(2πj) .

The main benefit of the last formula: The left-hand side is an approximating sum
of the integral

∫∞
−∞ k(x) dx which equals κ(0). The sum of the terms j 6= 0 expresses

the error of this approximation. (In the two-dimensional version of this formula — in
this case the vectors with integer coordinates replace the role of the integers —, if k(x)
is the indicator function of a large circle, the left-hand side equals the number of lattice
points in the circle, while at the right-hand side the term corresponding to the origin
equals the area of the circle, and this gives a possibility to handle the not completely
solved circle problem about the order of the error term. A version of this problem will
be discussed later.

The same subject in a high-brow style

We shall prove the Poisson summation formula in the following more complicated
form: ∞∑

n=−∞
k(n) = sum of the eigenvalues of an integral operator,

where the integral operator is appropriately defined. The reason for this more compli-
cated approach is that it is simpler to generalize this form of the result to more general
spaces.
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Consider the real line R
1, together with the usual metric |x− y| and the Lebesgue

measure. Let Tu : x → x + u denote the shift with u. These transformations form a
group for which the above introduced metric and measure are invariant. Let us denote
the operator Tuf(x) = f(x + u) acting on the space of functions f(x), −∞ < x < ∞,
by the same letter.

A general operator L will be called invariant, if Lxf(x + u) = Lf(x)|x→x+u, i.e. if
LTu = TuL, (The subscript x in Lx means that the operator L maps the function as
a function of the variable x to a function of the variable x. The remaining variables of
the function where L is acting are fixed parameters.)

We consider the following question: When is the integral operator Lf =
∞∫

−∞
k(x, y)f(y)dy

invariant?

We have LTuf =
∫∞
−∞ k(x, y)f(y + u) du and TuLf =

∫∞
−∞ k(x + y, y)f(y) dy =

∫∞
−∞ k(x + u, y + u)f(y + u) dy, which means that the integral operator with kernel

k(x, y) is invariant if k(x, y) = k(x + u, y + u), i.e. if k(x, y) depends only on x − y;
k(x, y) = k(x − y), Lf =

∫∞
−∞ k(x − y)f(y) dy is a convolution.

When is the differential operator Lf =
m∑

ν=0
aν(x)

dνf

dxν
invariant?

LTuf =
m∑

ν=0
aν(x)fν(x + u), TuLf =

m∑

ν=0
aν(x + u)fν(x + u), i.e. it is invariant

if aν(x) is constant, L =
m∑

ν=0
aνDν , where D =

d

dx
. In such a way we described all

invariant differential operators.

The above defined invariant operators are exchangeable. For instance, if Lf =
∫∞
−∞ k(x− y)f(y) dy, then DLf =

(∫∞
−∞ k(x − y)f(y) dy

)′
= (we do not have to differ-

entiate immediately) =
(∫∞

−∞ k(y)f(x − y) dy
)′

=
∫∞
−∞ k(x − y)f ′(y) dy = LDf .

In the non-trivial step we exploited the fact that L is invariant: If L0f
def
= Lf |x=0,

then because of the invariance Lxf(x) = L0
yTxf(y). (This means in our case that

∫∞
∞ k(x − y)f(y) dy =

∫∞
−∞ k(0 − y)f(y + x) dy.)

Claim. Any two invariant operators L1 and L2 are exchangeable.

Proof: By the previous argument L0 determines an invariant operator L, and since both
L1L2 and L2L1 are invariant, it is enough to show that (L1L2)

0 = (L2L1)
0, i.e. that

L0
1L2 = L0

2L1.

We know that L2f = L0
2yf(y + x), hence L0

1xL0
2yf(y + x) = (We exploit the fact

that L0
1 and L0

2 are acting on different arguments. In this proof we restrict our attention
to differential and integral operators, where the statement of this step can be simply
checked.) = L0

2yL0
1xf(y+x) = (because x+y = y+x, the group of shifts is commutative)

= L0
2yL0

1xf(x + y) = L0
2L1f .

The exchangeability is important, because this means that the spectral decomposi-
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tion of the operators is the same. For instance, if f(x) is an eigenfunction of the operator
D with an (arbitrary complex) eigenvalue λ, f(x) = eλx (all functions Aeλx are such
eigenfunctions), then DLf = LDf = Lλf = λLf , that is Lf is also an eigenfunction
of D with the same eigenvalue. Since these eigenfunctions constitute a one-dimensional
space Lf = Λeλx = Λf(x), where Λ depends only on λ and L.

Let us determine this Λ for the operator Lf =
∫∞
−∞ k(x − y)f(y) dy.

Since f(0) = 1, Λ = L0f =
∫∞
−∞ k(−y)eλy dy =

∫∞
−∞ k(y)e−λy dy.

A typical discrete subgroup of the group of shifts is the group Tn, n = 0,±1,±2, . . . .
If Tnf = f , i.e. f(x + n) = f(x) for all n, then the function f is called “automorph”
(periodic) with respect to the subgroup. If L is invariant, then TnLf = LTnf = Lf ,
i.e. L maps periodic functions into periodic functions. If L is an integral operator, then

Lf =

∫ ∞

−∞
k(x − y)f(y) dy =

∞∑

n=−∞

∫ 1

0

k(x − (y + n))f(y) dy =

∫ 1

0

K(x, y)f(y) dy) ,

where K(x, y) =
∞∑

n=−∞
k(x − (y + n)) is a periodic kernel function in both variables.

In the space of periodic functions the operator iD is self-adjoint, because (Df, g) =
∫ 1

0
f ′(x)ḡ(x) dx = (integrating by parts) = −

∫ 1

0
f(x)ḡ′(x) dx = −(f,Dg), i.e. (iDf, g) =

i(Df, g) = −i(f,Dg) = (f, iDg). Hence in this space the eigenvalues of D are imaginary,
(If Df = λf , then (Df, f) = λ(f, f), (Df, f) = −(f,Df) = −λ̄(f, f) ⇒ λ = −λ̄), and
the eigenfunctions corresponding to different eigenvalues are orthogonal: ((Df, g) =
λ(f, g), (Df, g) = −(f,Dg) = −ν̄(f, g), and if λ 6= ν, then (f, g) = 0.)

We know that the (normalized) eigenfunctions are the functions fj(x) = eλjx =
e2πijx. If we know that they constitute a complete orthonormal system (this follows
from general results) then we can express the function K(x, y) as

K(x, y) =

∞∑

j,l=−∞
cj,lfj(x)f̄l(y) .

If Λj denotes the eigenvalue of the operator Lf =
∫∞
−∞ k(x − y)f(y) dy corresponding

to the eigenvalue λj of D about which we know that

Λj =

∫ ∞

−∞
k(y)e−λjy dy =

∫ ∞

−∞
k(y)e−2πijy dy = κ(2πj) ,

and

Λjfj(x) = Lfj =

∫ 1

0

K(x, y)fj(y) dy =

∫ 1

0

∞∑

i,l=−∞
ci,lfi(x)f̄l(y)fj(y) dy

=

∞∑

i,l=−∞
ci,lfi(x)

∫ 1

0

f̄l(y)fj(y) dy =

∞∑

i=−∞
ci,jfi(x) .
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From here

ci,j =

{
0, if i 6= 0

Λj , if i = j
.

Hence K(x, y) =
∞∑

j=−∞
Λjfj(x)f̄j(y).

Thus,

K(0, 0) =

∞∑

j=−∞
Λj =

∞∑

j=−∞
κ(2πj) .

On the other hand,

K(x, x) =

∞∑

n=−∞
k(x − (x + n)) =

∞∑

n=−∞
k(n) ,

or because the function K(x, x) is constant, the trace of L equals

∫ 1

0

K(x, x) dx = K(0, 0) =

∞∑

j=−∞
Λj =

∞∑

j=−∞
κ(2πj) ,

and
∫ 1

0

K(x, x) dx = K(0, 0) =
∞∑

n=−∞
k(n) .

A comparison of the last two relations yields the Poisson formula.

Our program is the following: We want to find the analog of the above formula
in a general space with a given group of isometries (shifts). We want to determine
the invariant differential and integral operators, to calculate the eigenfunctions of the
integral operators and the eigenvalues corresponding to them. Then we restrict the
operators to the functions automorph with respect to a discrete subgroup of these
isometries. We want to determine the eigenfunctions and corresponding eigenvalues of
the invariant differential operators in this space, to calculate the kernel function of the
integral operator. In such a way we get an analog of the Poisson summation formula.

In a special case we carry out the above program. We shall discuss the hyper-
bolic plane, i.e. the Poincaré representation of the Bolyai–Lobachevski geometry. We
write down the invariant differential and integral operators with respect to the group of
motions in this space and determine, by using an argument suggested by the previous
proof, the analog of the Poisson summation formula in this space. One has to overcome
certain technical difficulties which are related to the fact that the group of motions in
this space is non-commutative.
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Second talk:

Invariant transformations in the hyperbolic plane

We recall the following two classical (equivalent) models of the hyperbolic plane.

The space:

The unit circle of the complex plane
{z : |z| < 1}

The upper half plane of the complex
plane H = {z : Im z > 0}

The metric (length) in the space:

|dz|
1 − |z|2

I(γ) =

∫

γ

|dz|
1 − |z|2

|dz|
y

if z = x + iy.

I(γ) =

∫

γ

|dz|
y

d(z, w) = min
_

z,w

I(
_

z, w)

= log
1 +

∣
∣
∣
z−w
z−w̄

∣
∣
∣

1 −
∣
∣
∣
z−w
z−w̄

∣
∣
∣

This expression is the function of

4

| z−w̄

z−w |2−1
= |z−w|2

yv

if z = x + iy and w = u + iv.

The measure (area) in the space:

dxdy

(1 − |z|2)2 dσ
def
=

dxdy

y2

The length and measure preserving movements of the space:

Tz = ρ
z − ζ

1 − zζ̄
,

|ρ| = 1, |ζ| < 1

Tz =
az + b

cz + d

a, b, c, d are real numbers, ad−bc >
0 (= 1)

(This group of transformations can
be identified with the quotient group
SL2(R)/{±Id}, where SL2(R) de-
notes the group of 2 × 2 matrices
with real coefficients and determi-
nant 1.)
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The group of all isometries: The above transformations together with their compositions
with a reflection through an axis.

The movements written down are the orientation preserving isometries, their com-
position with a reflection are the orientation changing transformations.

Given a function f(z) and a movement T on the hyperbolic plane, define Tf as

Tf(z)
def
= f(Tz).

Definition. An operator L acting on the functions over a hyperbolic space is called
invariant, if TL = LT for all movements T of the space.

Question: Which integral operators Lf =
∫

H
k(z, w)f(w)σ( dw) are invariant?

TLf(z) =

∫

H

k(Tz, w)f(w)σ( dw) =

∫

H

k(Tz,Tw)f(Tw)σ( dw) ,

and

LTf(z) =

∫

H

k(z, w)f(Tw)σ( dw) .

Hence L is invariant if and only if k(z, w) = k(Tz,Tw) for all T. The group of the
movements T is strongly transitive, i.e. for any pairs (z1, w1) and (z2, w2) such that
d(z1, w1) = d(z2, w2) there exists a transformation T such that z2 = Tz1 and w2 = Tw1.
Hence the kernel function of an invariant integral operator depends only on d(z, w). In
the positive half-plane model of the hyperbolic plane, because of the special form of the
distance in this space, the kernel function of an invariant integral operator can be given
in the form

k(z, w) = k

( |z − w|2
yv

)

.

Which differential operators Lf =
∑

ai,j(z)
∂i,j

∂xi∂yj
f(z) are invariant?

Here we follow an argument similar to that given in the Euclidean space. We fix a
point z0, define the functional L0, L0f = Lf(z0) and want to reconstruct the invariant
operator L by means of L0.

Remark: The functional L0 cannot be arbitrary. Indeed, if the transformation T is
such that Tz0 = z0, then L0Tf = LTf(z0) = TLf(z0) = Lf(Tz0) = Lf(z0) = L0f
for this T, i.e. the functional L0 is rotation invariant. On the other hand, if L0 is such
a functional, then it defines an invariant operator L in a unique way by the formula
Lf(z) = L0Tzf = L0

wf(Tzw). We formulate this statement in the following lemma.

Lemma. Let us fix some number z0 in the hyperbolic plane. We call a functional L0

on the space of functions in the hyperbolic plane rotation invariant if L0f = L0Tf for
all such movements T of the hyperbolic plane for which Tz0 = z0. If L0 is a rotation
invariant functional, then we define the operator L by the formula Lf(z) = L0Tzf =
L0

wf(Tzw), where Tz is a movement such that Tzz0 = z. This definition is meaningful,
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i.e. the value of Lf(z) does not depend on the special choice of Tz. This operator L
is invariant, and all invariant operators L can be obtained in such a way through the
choice of L0f = Lf(z0).

Proof: The definition of Lf is meaningful. Indeed, let Tz and T̄z be two movements
such that Tzz0 = z and T̄zz0 = z. We have to show that L0T̄zf = L0Tzf , or with the
notation Tzf = g, L0g = L0T̄zT

−1
z g or L0g(w) = L0

wg(T−1
z T̄zw). This formula follows

from the rotational invariance of L0 and the relation T−1
z T̄zz0 = z0.

Let us consider an arbitrary motion T. Then

TLf(z) = h(Tz) = L0g

with h(u) = Lf(u) = L0Tuf (h(Tz) = L0TTzf) and g(u) = TTzf(u) = f(TTzu),
where TTz is a motion of the hyperbolic plane such that TTzz0 = Tz.

LTf(z) = L0TzTf = L0p = L0T
′g = L0g

with p(u) = TzTf(u) = f(TTzu) and T′ = T−1
TzTTz. The last but one identity holds

in this relation because p(u) = f(TTzT
−1
TzTTzu) = g(T′u), i.e. p = T′g. Finally, the

last identity holds in this relation, because of the rotational invariance of L0 and the
equality T′z0 = T−1

TzTTzz0 = T−1
TzTz = z0. A comparison of the expressions obtained

for TLf and LTf shows that the operator L defined in the lemma is invariant.

Finally, let L be an invariant operator, and define L0f = Lf(z0). Then L0 is a
rotation invariant functional, and it determines the original operator L, since L0Tzf =
LTzf(z0) = TzLf(z0) = Lf(Tzz0) = Lf(z).

Thus the invariant differential operators can be found by first describing the rota-
tion invariant differential functionals

L0f =
∑

ai,j
∂i+j

∂xi∂yj
f(z)

∣
∣
∣
∣
z=z0

with coefficients ai,j = ai,j(z0).

The problem can be slightly simplified by working in the unit circle model {z : |z| <
1} of the hyperbolic space with z0 = 0 and by rewriting the differential operator with

the replacement
∂

∂z
=

1

2

∂

∂x
− i

1

2

∂

∂y
and

∂

∂z̄
=

1

2

∂

∂x
+ i

1

2

∂

∂y
. In this (equivalent)

reformulation our problem is to find the rotational invariant differential functionals

L0f =
∑

bi,j
∂i+j

∂zi∂z̄j
f(z)

∣
∣
∣
∣
z=0

with some new coefficients bi,j . The rotational invariance means in this case that the
expression

L0f =
∑

bi,jρ
iρ̄j ∂i+j

∂zi∂z̄j
f(z)

∣
∣
∣
∣
z=0
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has the same value for all ρ if |ρ| = 1. This relation holds if

∑

i−j=h

bi,jρ
iρ̄j ∂i+j

∂zi∂z̄j
f(z)

∣
∣
∣
∣
z=0

= 0

for all functions f and h 6= 0. This statement holds if bi,j = 0 for i 6= j. So

L0f =

m∑

i=0

bi,i

(

ρiρ̄i ∂2

∂z∂z̄

)i

f(z)

∣
∣
∣
∣
∣
z=0

=

m∑

i=0

ci ∆if(z)
∣
∣
z=0

, (∗)

because

4
∂2

∂z∂z̄
=

∂2

∂x2
+

∂2

∂y2
= ∆ .

Thus for instance, if L0f = ∆f |z=0, then the invariant operator L corresponding to
it equals Lf(z) = L0

wf(Tzw) = ∆f(Tzw)|w=0. The operator Tz can be chosen as

Tzw =
w + z

1 + wz̄
, for which

∂Tzw

∂w

∣
∣
∣
∣
w=0

= 1 − |z|2. This gives that

∆f(Tzw) = 4
∂2f(Tzw)

∂w∂w̄
= 4

∂

∂w̄

∂f

∂w

∣
∣
∣
∣
Tzw

∂Tzw

∂w

=
∂2

∂w̄∂w
f

∣
∣
∣
∣
Tzw

∣
∣
∣
∣

∂Tzw

∂w

∣
∣
∣
∣

2

+ 4
∂f

∂w

∣
∣
∣
∣
Tzw

∂

∂w̄

∂Tzw

∂w
= ∆f |Tzw

∣
∣
∣
∣

∂Tzw

∂w

∣
∣
∣
∣

2

.

The above calculation yields with w = 0 that the invariant differential operator

corresponding to L0f =
∂2

∂z∂z̄
f is ∆f(Tzw)|w=0 =

(
1 − |z|2

)2
∆f(z)

def
= D∗f(z), which

is the hyperbolic Laplace operator. Also the polynomials

Lf =
m∑

l=0

clD
∗lf (∗∗)

are invariant differential operators. We claim that all invariant differential operators are
given by this formula. Indeed, if L0 is a rotational invariant functional of the form (∗),
then the invariant differential operator Lf is a polynomial of the derivatives of f . The

coefficient of the leading term ∂2m

∂zm∂z̄m is a non-vanishing function. (It is cm(1−|z|2)2m.)
Hence the class of invariant differential operators of order m with 0 ≤ m ≤ 2N constitute
an N + 1-dimensional linear subspace of the differential operators of order less than or
equal to 2N . Since the operators of the form (∗∗) with 0 ≤ m ≤ N give an N + 1-
dimensional subspace of it, all invariant differential operators can be given in the form
(∗∗). This means that in the hyperbolic plane the ring of invariant differential operators
is generated by the single element D∗. This result can be rewritten to the half-plane
model of the hyperbolic plane. In this case the invariant differential operators are of the
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form Lf =
m∑

l=0

clD
mf , with Df(z) = y2∆f(z), where z = x + iy and ∆ is the Laplace

operator.

Theorem. Let L1 and L2 be two invariant differential or integral operators on the
hyperbolic plane. Then they are exchangeable, i.e. L1L2 = L2L1.

Proof: We work in the positive half-plane model of the hyperbolic plane. Since
all invariant differential operators are the polynomials of the operator D, they are
exchangeable. So we may assume that one of the operators, say L2 is an integral
operator with a kernel function k2(z, w), and L1 is either the operator D or an integral
operator with a kernel function k1(z, w).

In the proof we try to adapt the proof of the Claim in the first talk. Since L1L2 and
L2L1 are also invariant operators, by the lemma it is enough to show that (L1L2)

0f =
(L2L1)

0f . We can write (L1L2)
0f = L1g(z0) with

g(z) = L2f(z) = TzL2f(z0) = L2Tzf(z0) =

∫

k2(z0, w)f(Tzw)σ( dw)

and (L2L1)
0f = L2h(z0) with h(z) = L1f(z). Here

h(z) = TzL1f(z0) = L1Tzf(z0) =

∫

k1(z0, w)f(Tzw)σ( dw)

if L1 is an integral operator, and

h(z) = TzL1f(z0) = L1Tzf(z0) = Dwf(Tzw)|w=z0

if L1 = D. If both L1 and L2 are integral operators, then

(L1L2)
0f = L1g(z0) =

∫∫

k1(z0, z)k2(z0, w)f(Tzw)σ( dz)σ( dw)

and

(L2L1)
0f =

∫∫

k2(z0, z)k1(z0, w)f(Tzw)σ( dz)σ( dw)

=

∫∫

k1(z0, z)k2(z0, w)f(Twz)σ( dz)σ( dw) .

If L1 = D, then

(L1L2)
0f = L1g(z0) = Dz g(z)|z=z0

= D

∫

k2(z0, w)f(Tzw)σ( dw)

∣
∣
∣
∣
z=z0

=

∫

k2(z0, w) Dzf(Tzw)|z=z0
σ( dw)
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and

(L2L1)
0f = L2h(z0) =

∫

k2(z0, z)h(z)σ( dz) =

∫

k2(z0, z) Dwf(Tzw)|w=z0
σ( dz)

=

∫

k2(z0, w) Dzf(Twz)|z=z0
σ( dw) .

We have certain freedom in the choice of the operators Tz. If we could define
these operators in such a way that Tzw = TzTwz0 and Twz = TwTzz0 agreed, then a
comparison of the expressions (L1L2)

0) and (L1L2)
0) would imply the Theorem just as it

was done in the proof of the Claim in the first talk. But we cannot define these operators
in such a way because of the lack of commutativity in the group of motions in this space.
Hence some new ideas are needed, and Selberg found such ideas. He introduced a weak
commutativity property defined below which is satisfied by the hyperbolic plane, and
worked out a more refined argument which proves the result under this weaker property.

With an appropriate choice of the transformations Tz the following weak commu-
tativity property holds:

d(z0,Tzw) = d(z0,Twz) for all w and z.

Indeed, by choosing the motions Tz in such a way that Tzz0 = z and Tzz = z0 we
get that

d(z0,Twz) = d(Tww,Twz) = d(w, z) = d(Tzw,Tzz) = d(Tzw, z0) .

Let us first consider rotation invariant functions f , i.e. such functions for which f(z) =
f(Tz) for any motion T with the property Tz0 = z0. Then the value of f(z) depends
only on d(z0, z). The previous calculations yield that (L1L2)

0f = (L2L1)
0f for rotation

invariant functions. To consider a general function f let us introduce the following
“averaging” operator

f0(z) = Mf(z) =
1

2π

∫ 2π

0

Tϑf(z) dϑ , (+)

where Tϑ, 0 ≤ ϑ < 2π, “the rotation with angle ϑ”, is defined in the following way: Let
us consider an analytic automorphism U of the unit circle to the positive half-plane such
that U maps the origin to z0. If Sϑz = eiϑz denotes the rotation with angle ϑ in the unit
circle, then Tϑ is the transformation corresponding to it through this automorphism,
i.e. Tϑz = USϑU

−1z. The function f0 = Mf is rotation invariant, since for all ϑ′

f0(Tϑ′z) =
1

2π

∫ 2π

0

f(TϑTϑ′z) dϑ =

∫ 2π

0

f(Tϑ+ϑ′z) dϑ =

∫ 2π

0

f(Tϑz) dϑ = f0(z0) ,

and all movements of the hyperbolic plane with the fixed point z0 equals some Tϑ.
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If L is an invariant operator, then LM = ML, since L is exchangeable with all Tϑ.
Hence

(L1L2)
0f = L1L2f(z0) = ML1L2f(z0) = L1L2Mf(z0) = L1L2f0(z0)

and
(L2L1)

0f = L2L1f(z0) = ML2L1f(z0) = L2L1Mf(z0) = L2L1f0(z0) .

Since L1L2f0 = L2L1f0 the above relations imply that (L1L2)
0f = (L2L1)

0f , and
L1L2 = L2L1 by the lemma. The theorem is proved.
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Third talk:

The eigenvalues of invariant integral operators

We can find many eigenfunctions of the operator D = y2∆ in the upper half-plane
model of the hyperbolic space. Thus for instance ys, z = x + iy, is an eigenfunction
with the eigenvalue λ = s(s − 1), since Dys = y2∆ys = y2s(s − 1)ys−2 = s(s − 1)ys.
If L is an arbitrary invariant differential or integral operator, then by the previous
statement DLys = LDys = λLys, i.e. Lys is an eigenfunction of D with the same
eigenvalue. Following the argument of the first talk we would like to deduce from this
statement that Lys = Λys with some Λ. However, the argument of the first talk does
not work in the present case. In the real line case, considered in the first talk, it was
exploited that the eigenspace of the differential operator corresponding to an eigenvalue
λ is one-dimensional. In the hyperbolic space H the analogous statement does not hold.
The eigenspace of the operator D corresponding to an eigenvalue λ is very large. For
instance, the functions Tys = (ImTz)s are eigenfunctions with eigenvalue λ for all
motions T.

What can be saved from the uniqueness of eigenfunctions?

If M is the “averaging operator” with some center z0 defined in formula (+) in the
second talk, and Df = λf , then for f0 = Mf

Df0 = DMf = MDf = λMf = λf0 ,

and f0 is rotation invariant around the center z0.

Proposition. Let g(z) = g(z, z0) satisfy the following properties: Dg = λg, g(z)
depends only on the value of the distance d(z, z0), (with fixed z0 and λ), and g(z0) = 1.
Then the function g(z) is defined uniquely by these properties.

Proof: Here again it is simpler to work in the unit square model {|z| < 1} with z0 = 0.
If z = reiϑ, then the function g can be written in the form g(z) = g(r) with r = |z|. The

Laplace operator ∆ can be written in polar coordinate system as ∆ =
∂2

∂r2
+

1

r2

∂2

∂ϑ2
.

Hence we can write because of the rotation invariance of g

D∗g = (1 − r2)2g′′(r) = λg(r)

with the boundary conditions g(0) = 1 and g′(0) = 0. (The last relation holds, be-
cause g(r) = g(−r).) Since the coefficient (1 − r2)2 in this differential equation is
non-vanishing, it can be solved uniquely.

How does the function g(z, z0), the unique rotation invariant eigenfunction of D with
center z0, with eigenvalue λ and normalization g(z0, z0) = 1, depend on z0?

If Tz0 = z′0, then g(Tz, z′0) depends only on d(Tz, z′0) = d(z,T−1z′0) = d(z, z0),
g(Tz0, z

′
0) = g(z′0, z

′
0) = 1, and with the notation h(u) = g(Tu, z′

0), p(u) = g(u, z′0)

Dh(z) = DTp(z) = TDp(z) = λTp(z) = λg(Tz, z′
0) = λh(z) .
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This means that h(z) = g(Tz, z′0) is an eigenfunction of D with the eigenvalue λ, it
depends only on d(z, z0), i.e. h(z) = h(z′) if d(z, z0) = d(z′, z0), which means that it is
rotation invariant with center z0, and h(z0) = 1. Hence the Proposition implies that
h(z) = g(Tz, z′0) = g(z, z0), or in other words g(Tz,Tz0) = g(z, z0) for all motions T

of the hyperbolic plane. This means that g(z, z0) depends only on d(z, z0), i.e. it has
the same properties as the kernel function of an invariant integral operator.

If L is an arbitrary invariant differential or integral operator, then

DzLzg(z, z0) = LzDzg(z, z0) = λLzg(z, z0) .

But Lzg(z, z0), as a function of z and z0, depends only on d(z, z0), since

Lzg(Tz,Tz0) = Lp(Tz) = TLp(z) = LTp(z) = Lq(z) = Lzg(z, z0)

for all movements T with p(u) = g(u,Tz0) and q(u) = g(Tu,Tz0) = g(u, z0). In
particular, because of the rotational symmetry Lzg(z, z0) = Λg(z,z0) with some Λ =
Λ(z0). Moreover, Λ(z0) does not depend on z0, since Λ(z0) = L0g(z0, z0), and this
function has the same value for all z.

If f is an arbitrary function such that Df = λf , and we fix some number z0 as the
center of the averaging operator M , then Df0 = λf0 with f0 = Mf , and f0 is rotation
invariant around the point z0. Because of the uniqueness of rotational invariant eigen-
functions f0(z) = f0(z0)g(z, z0), and this implies for all invariant integral or differential
operators L that

Lf0(z) = f0(z0)Lzg(z, z0) = f0(z0)Λg(z, z0) = Λf0(z)

with a Λ independent of the function f and z0. From here

Lf(z0) = MLf(z0) = LMf(z0) = Lf0(z0) = Λf0(z0) = Λf(z0) .

Since z0 can be chosen in an arbitrary way, and Λ is independent of z0, Lf = Λf . This
is a very important observation which we formulate in the following Theorem.

Theorem. If f is an eigenfunction of the operator D with eigenvalue λ, i.e. Df = λf ,
and L in an invariant differential or integral operator, then Lf = Λf with a Λ which
depends only on the operator L and the eigenvalue λ, but not on the eigenfunction f .

If f is an eigenfunction of D, then we can calculate the eigenvalue of Lf by this
theorem without the knowledge of f , if we know an arbitrary eigenfunction of D with
the same eigenvalue λ. We know such an eigenfunction, namely the function ys with the

eigenvalue λ. This eigenvalue λ can be arbitrary with the choice of s =
1

2
±
√

1

4
+ λ.

Let us calculate for instance the eigenvalue Λ of the integral operator Lf =
∫

H
k(z, w)f(w)w( dσ) if k(z, w) = k

( |z − w|2
yv

)

.

13



We know that ∫

H

k(z, w)vsσ( dv) = Λys

with w = u + iv. Taking the point z = i (y = 1), we get

Λ =

∫

H

k(i, w)vsσ( dv) =

∫ ∞

0

∫ ∞

−∞
k

( |i − w|2
v

)

vs du dv

v2

=

∫ ∞

0

∫ ∞

−∞
k

(
u2 + (v − 1)2

v

)

vs−2 du dv .

Put t
def
=

(v − 1)2

v
= v +

1

v
− 2. Then

∫ ∞

−∞
k

(
u2 + (v − 1)2

v

)

du =

∫ ∞

−∞
k

(
u2

v
+ t

)

du = 2

∫ ∞

0

k(τ + t)

√
v

2
√

τ
dτ

=
√

v

∫ ∞

0

k(τ + t)√
τ

dτ
def
= vg(log v) ,

Λ =

∫ ∞

0

vg(log v)vs−2 dv =

∫ ∞

−∞
g(y)esy dy

def
= G(s) ,

where λ = s(s − 1), s =
1

2
±
√

1

4
+ λ.
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Fourth talk:

Discrete subgroups of the group of motions in the hyperbolic plane

Definition. The group Γ ⊂ group of motions in H is called discrete if the set {γz : γ ∈
Γ} has no point of density for a fixed z ∈ H.

Definition.The function f(z), z ∈ H, is automorph with respect to the group Γ, if
f(γz) = f(z) for all γ ∈ Γ.

From now on f(z) will always denote an automorph function. We also introduce
the notation z1 ∼ z2 (modΓ) if there exists a motion γ ∈ Γ, such that γz1 = z2.

Put S def
= equivalence classes of z ∈ H with respect to ∼. A set D ⊂ H is called

a fundamental domain if it contains exactly one point from all equivalence classes. In
other words, the sets {γD}, (γ ∈ Γ) produce a disjoint cover of the space H. (In
the Euclidean plane the discrete subgroups of the group of motions have the form
Γ = Γw1,w2

= {γm,n : z → z + nw1 + mw2}, with some non-colinear vectors w1 and
w2. The automorph functions are the doubly periodic functions, D can be chosen as a
lattice parallelogram, S is topologically a torus. In the one-dimensional case D = [0, 1),
S is a circle.)

Let us also assume that Γ is free of fixed points. This means that if γ ∈ Γ has a
fixed point, (γz0 = z0), then γ is the identity. We also assume that Γ has a “compact”
fundamental domain D whose closure D̄ (in the compactified complex sphere) is a subset
of H.

It is far from trivial that there are such subgroups Γ of the motions of H which
satisfy all above conditions. It follows from the theory of Riemann surfaces that this is
possible. The fundamental domains corresponding to the group Γ show some similarities
with the torus appearing as a fundamental domain in the Euclidean case. If it has genus
k, k > 1, which heuristically means that the domain D is topologically a “sphere with
k ears”, then there exists a discrete subgroup Γ with a fundamental domain D which is
a regular polygon with 4k edges and angles π/2. The area of this fundamental domain
is determined by its genus k. There are such pairs of edges of the boundary which can
be stuck together in opposite direction, and the points stuck together are equivalent
with respect to Γ. The explanation of these results is not the subject of the present
lecture.

Under these conditions S is a compact (closed) Riemann surface, topologically it
is a sphere G with “ears”, its genus g > 1. There exists a universal cover H → S. This
universal cover together with the metric and measure on H induce a finite metric and
measure on S, invariant with respect to Γ.
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The hyperbolic Laplace operator in a fundamental domain

If L is an invariant operator, f(z) is an automorph function, then Lf is again an
automorph function, since Lf(γz) = TγLf(z) = LTγf(z) = Lf(z) for all z ∈ H and
γ ∈ Γ, where the operator Tγ is defined by the relation Tγf(z) = f(γz). Hence the
operator L can be considered as an operator acting in the space of automorph functions.
In particular, this restriction can be done for the operator D = y2∆. The operator D
is a self-adjoint negative operator in the space L2(S, dσ). Indeed, the Green formula in
the domain D gives that the operator D is negative, i.e.

(Df, f) =

∫

D
Df(z)f(z)σ( dz) =

∫∫

D
y2∆f(z)f(z)

dx dy

y2

=

∫

∂D

∂f

∂n
f̄ ds

︸ ︷︷ ︸

=0

−
∫∫

D
(fxf̄x + fy f̄y) dx dy

︸ ︷︷ ︸

≥0

≤ 0 ,

since, as it is proved in the theory of the Riemann surfaces, the boundary ∂D consists
of finitely many pairs of curves (`, `′) such that an appropriate γ ∈ Γ maps ` to `′ = γ`,
and

∂f

∂n

∣
∣
∣
∣
z

= −∂f

∂n

∣
∣
∣
∣
γz

|γ′(z)| .

This relation implies that

∫

`

∂f

∂n
f̄ ds = −

∫

`

∂f

∂n

∣
∣
∣
∣
γz

|γ′(z)|f̄ ds = −
∫

γ`

∂f

∂n
f̄ ds ,

and the first integral at the right-hand side of the expression for (Df, f) equals zero. It
can be proved similarly that (Df, g) = (f,Dg), i.e. D is a self-adjoint operator.

If Df ≡ 0, then f is a harmonic function, and f ≡ const. by the maximum principle.
It can be proved that the set of functions Df is everywhere dense in the space L2

0(D, σ),
consisting of the functions f ,

∫

D f2(z)σ( dz) < ∞ and
∫

D f(z)σ( dz) = 0. It is proved in
the functional analysis that because of these properties the operator D can be inverted,
and the inverse of D is an integral operator of the form

D−1f(z) =

∫

D
G(z, w)f(w)σ( dw)

with a kernel function G(z, w), G(z, w) = G(w, z), and G(z, w) is a automorph function
in both variables. This statement is equivalent to the classical result in the analysis by
which the Laplace operator on the domain D (with periodic boundary conditions) in
the space L2

0(D,Lebesgue measure) is invertible, and the inverse is an integral operator
with a kernel function G(z, w). The kernel function G(z, w) is the same in these two
problems. Its symmetry properties follow from the properties of the operator D (or ∆).

We only give a very sketchy explanation why the inverse operator D−1 can be
expressed in such a way. If G(z, w) is an automorph function in the variable w which
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is of the form − log |z − w| + log |z0 − w| + analytic function in the variable w, (z0 is a
fixed point in H) then it is relatively simple to show by means of the Green formula
that it can be taken as the kernel function of the integral operator which is the inverse
of D. It follows from the general theory that such a function G exits.

The integral operator is again a negative operator, and since the kernel function
G(z, w) in it is a nice function, (it has only logarithmical singularities) the inverse of
the operator D is a Hilbert–Schmidt operator. It follows from the general theory of
such operators that there exists a system of complete orthonormal system {fi(z)}∞i=1 of
eigenfunctions of the operator D−1 with eigenvalue λi in the space L2

0(D, σ). Moreover,
λi → 0, if i → ∞, and only the eigenvalue zero can have infinite multiplicity. But in
our case the zero eigenvalue does not appear, since F ≡ 0 ⇒ ∆F ≡ 0. In such a way we
get a complete orthonormal system of eigenfunctions fi(z) of D in the space L2

0(D, σ),
Dfi = λifi with λi < 0, and λi → −∞ as i → ∞. Let us adjust the number λ0 = 0

and f0(z) =
1

√

σ(D)
to this system. Then {fi}∞i=0 is a complete orthonormal system

consisting of eigenfunctions of D in the L2(D, dσ) space.

The trace of an invariant integral operator

For an invariant integral operator L with kernel function k(z, w)

Lf(z) =

∫

H

k(z, w)f(w)σ( dw) =
∑

γ∈Γ

∫

γD
k(z, w)f(w)σ( dw)

=
∑

γ∈Γ

∫

D
k(z, γw) f(w)σ( dw) =

∫

D
K(z, w)f(w)σ( dw) ,

where
K(z, w) =

∑

γ∈Γ

k(z, γw) .

The function K(z, w) is automorph in both variables, hence it can be expanded by the
complete orthonormal system {fi(z)fj(w)} in D × D, just as in the real line model
considered in the first talk. This expansion has the form

K(z, w) =
∞∑

i=1

Λifi(z)fi(w) ,

where Lfi = Λifi.

The number Λi can be calculated, as a function of λi, without the knowledge of
fi, and this was already done in the third talk. If we take z = w, and integrate on
the diagonal, i.e. we calculate the trace of the operator L on D, then the functions fi

disappear from the formulas, and we get

∫

D
K(z, z)σ( dz) =

∞∑

i=0

Λi

∫

D
|fi(z)|2σ( dz) =

∞∑

i=0

Λi ,

17



that is,
∑

γ∈Γ

∫

D
k(z, γz)σ( dz) =

∫

D

∑

γ∈Γ

k(z, γz)σ( dz) =
∞∑

i=0

Λi . (++)

We want to rewrite the left-hand side of (++) in a more appropriate form. In the real
line case the kernel function k(z, γz) (= k(x − (x + n))) of the corresponding integral
operator was in the variable z (x) constant. Let us look the corresponding question in
the present case. When does the equation k(w, γ0w) = k(z, γz) hold?

If w = Tz, then

k(w, γ0w) = k(Tz, γ0Tz) = k(z,T−1γ0Tz)

hence k(w, γ0w) = k(z, γz) if γ = T−1γ0T. If γ = γ0, then this condition means that γ0

and T are exchangeable. (In the real line case they are always exchangeable, but in the
present case this property may be violated). In the general case this equality holds if γ
and γ0 are conjugate. Therefore, let us sum for different conjugate classes separately.
Let us denote the conjugate classes in the form {γ0}.

Let us conjugate by an element be g : γ = g−1γ0g. (This conjugation would be
meaningful also for g /∈ Γ, but we shall consider only conjugations with elements from
Γ.) Two such conjugates agree, i.e. g−1

1 γ0g1 = g−1γ0g, if and only if g1g
−1γ0 = γ0g1g

−1,
which means that g1g

−1 ∈ [γ0], or g1 ∈ [γ0]g, where [γ0] denotes the group of element
in Γ exchangeable with γ0. This group [γ0] is called in algebra the centralizator group
of γ0. Thus the sum

∑

γ∈{γ0}
can also be written in the form

∑

g
g∈Γ/[γ0]

, where g are fixed

representation elements from the right cosets of the subgroup [γ0].

If γ ∈ {γ0}, then γ = g−1γ0g with some g, and

∫

D
k(z, γz)σ( dz) =

∫

D
k(z, g−1γ0gz)σ( dz) =

∫

D
k(gz, γ0gz)σ( dz)

=

∫

gD
k(z, γ0z)σ( dz) .

∑

γ∈{γ0}

∫

D
k(z, γz)σ( dz) =

∑

g
g∈Γ/[γ0]

∫

gD
k(z, γ0z)σ( dz) =

∫

∪gD
g∈Γ/[γ0]

k(z, γ0z)σ( dz) .

If the representation elements g ∈ Γ/[γ0] are multiplied from the left with the elements

of [γ0], then we get the elements of Γ, and all elements exactly once. Thus D(γ0)
def
=

⋃

g∈Γ/[γ0]

gD is such a set that the sets γD(γ0), γ ∈ [γ0], produce a disjoint cover of H. In

other words, D(γ0) is a fundamental domain of the discrete subgroup [γ0]. We know that
k(z, γ0z) is automorph with respect to [γ0], (k(gz, γ0gz) = k(z, g−1γ0gz) = k(z, γ0z) for

18



g ∈ [γ0]), hence it has no importance how to choose the fundamental domain where we
integrate. We formulate the result we obtained in the following lemma.

Lemma. For all γ0 ∈ Γ the relation

∑

γ∈{γ0}

∫

D
k(z, γz)σ( dz) =

∫

D(γ0)

k(z, γ0z)σ( dz)

holds, where {γ0} = {g−1γ0g; g ∈ Γ} denotes the class of elements in Γ which are
conjugated to γ0, and D(γ0) is a fundamental domain of the centralizator group [γ0] ⊂ Γ
of γ0. The function k(z, γ0z) at the right-hand side of this formula is [γ0] automorph.

Remark: It is possible that {γ0} = {γ1} with some γ0 6= γ1 and even [γ0] 6= [γ1]. But
the right-hand side of the integral in the lemma agrees for such γ0 and γ1. Indeed, if
γ1 = g−1γ0g, then

∫

D(γ1)

k(z, γ1z)σ( dz) =

∫

gD(γ1)

k(z, γ0z)σ( dz) ,

and gD(γ1) is a fundamental domain of [γ0]. (If hjD(γ1), j = 1, . . . , is a disjoint cover
of H, and the transformations hj are the elements of [γ1], then the sets ghjg

−1(gD(γ1)),
j = 1, . . . , also give a disjoint cover of H, and ghjg

−1 are the elements of [γ0].)

We shall write the expression in (++) in a simpler form by means of the Lemma
and a further investigation which will show that in the group Γ the centralizators [γ0]
have a very special form.
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Fifth talk:

The proof of Selberg’s trace formula in the hyperbolic plane

Let T be a motion of H. Its analytic extension to the complex sphere, which is a linear
rational function, has exactly two fixed points (with multiplicity). If it is a double fixed
point, which must be because of the relation Tz̄ = Tz either a real number or infinity,
then the transformation T is called parabolic. If T has a fixed point in H (its conjugate,
which is not in H, is also a fixed point), then it is called an elliptic transformation. In the
remaining case, the transformation T is called hyperbolic. Hyperbolic transformations
have two different real or (∞) fixed points.

A discrete subgroup Γ of the motions in H cannot contain an elliptic transformation,
since the non-unity elements of Γ cannot have a fixed point in H. We also excluded
the possibility of γ ∈ Γ for a parabolic transformation γ by the assumption that D̄ is
compact. Indeed, for a parabolic transformation d(z, γz) can be taken arbitrary small
with an appropriate choice of z ∈ H, (by a conjugation which takes the fixed point
to infinity the proof of this statement can be reduced to the case when the double
fixed point of γ is infinity, i.e. γz = z + c with some real number c, and in this case
it is easy to check this property) and we show that because of this property Γ cannot
contain a parabolic transformation. Otherwise, by mapping a sequence of points with
the above properties into the domain D we could choose a sequence zn with zn ∈ D
and γn ∈ Γ in such a way that 0 < d(zn, γnzn) → 0, as n → ∞. Then, because of
the compactness of D̄ we may assume, by considering a subsequence of the sequence
zn, that zn → z0 ∈ H. Since d(γnzn, γnz0) = d(z0, zn) → 0, d(z0, γnz0) ≤ d(z0, zn) +
d(zn, γnzn) + d(γnzn, γnz0) → 0, as n → 0, and γn 6= Id. But this contradicts to the
fact, that since Γ has no fixed point, and it is discreet, min

γ∈Γ
γ 6=Id

d(z0, γz0) > 0. So Γ contains

only hyperbolic transformations.

Let γ be a hyperbolic transformation. If T is such a motion of H (not necessarily
in the group Γ) which maps the two fixed points of γ into 0 and ∞, then the two fixed
points of T−1γT are 0 and ∞, hence T−1γTz = ρz with some ρ > 0, ρ 6= 1. Moreover,

we may assume with a possible conjugation with
1

z
that ρ > 1. This number ρ is

uniquely determined by γ (and even by {γ}). We call it the norm of γ, and introduce
the notation ρ = N(γ) = N({γ}).

Two motions of H are exchangeable if and only if their fixed points agree. For
the motions exchangeable with γ0 the same motion T can be chosen for writing it as
the conjugate of a linear transformations, and we see that this group is isomorphic to
the multiplicative group of the positive numbers ρ > 0. A discrete subgroup of this
group is an infinite cyclic group, and we call a generator γ∗ of it a primitive element.
[γ0] = {γ∗m}∞m=−∞. Put ρ∗ = N(γ∗).

∫

D(γ0)

k(z, γ0z)σ( dz) =

∫

D(γ0)

k(T−1z,T−1γ0z)σ( dz) =

∫

T−1D(γ0)

k(z,T−1γ0Tz)σ( dz)
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=

∫

T−1D(γ0)

k(z, ρ0z)σ( dz) , ρ0 = N(γ0) ,

T−1D(γ0) is a fundamental domain of the group T−1[γ0]T = {ρ∗mz}∞m=−∞, and since
k(z,T−1γ0Tz) is automorph for T−1[γ0]T we can choose an arbitrary fundamental
domain of T−1[γ0]T to calculate the last integral.

It is clear that the half-ring {1 ≤ |z| < ρ∗} ∩ H is such a domain. The function
k(z, ρ0z) is invariant for all transformations Tz = ρz. Hence, it is constant along the
rays, and we have to integrate only with respect to the angle ϑ, where z = reiϑ.

I =

∫

T−1D(γ0)

k(z, ρ0z)σ( dz) =

∫ π

0

∫ ρ∗

1

k(eiϑ, ρ0e
iϑ)

r dr dϑ

r2 sin2 ϑ

=

∫ π

0

k(eiϑ, ρ0e
iϑ)

log ρ∗

sin2 ϑ
dϑ = 2

∫ π/2

0

k

(∣
∣eiϑ − ρ0e

iϑ
∣
∣
2

sinϑρ0 sinϑ

)

log ρ∗

sin2 ϑ
dϑ

= 2 log ρ∗
∫ π/2

0

k

(
(ρ0 − 1)2

ρ0 sin2 ϑ

)
dϑ

sin2 ϑ
.

Put t =
(ρ0 − 1)2

ρ0
= ρ0 +

1

ρ0
− 2 and τ =

t

sin2 ϑ
, that is ϑ = arcsin

√
t

τ
. Then with

this notation

I = 2 log ρ∗
∫ ∞

t

k(θ)
τ

t

1
√

1 − t
τ

√
t

2τ3/2
dτ

=
log ρ∗√

t

∫ ∞

t

k(τ)√
τ − t

dτ =
log ρ∗√

t

∫ ∞

0

k(τ + t)√
τ

dτ

=
log ρ∗√

t

√
ρ0g(log ρ0) =

log ρ∗

ρ0−1√
ρ0

√
ρ0g(log ρ0) =

log ρ∗

1 − 1
ρ0

g(log ρ0)

by the definition of g(·).
Putting these results together

∑

γ∈{γ0}

∫

D
k(z, γz)σ( dz) =

log N(γ∗)

1 − 1
N(γ0)

g(log N(γ0)) .

This relation does not hold for the one element conjugate class containing the origin.
But ∫

D
k(z, z)σ( dz) = k(0)σ(D) =

σ(D)

4π

∫ ∞

−∞
r tanh(πr)G

(
1

2
+ ir

)

dr

with the previous definition of G(·), what can be shown by a long but for us not so
interesting calculation.
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So the starting trace formula

∑

γ∈Γ

∫

D
K(z, γz)σ( dz) =

∞∑

i=0

Λi

has the following form:

σ(D)

4π

∫ ∞

−∞
r tanh(πr)G

(
1

2
+ ir

)

dr +
∑

{γ0}

log N({γ∗})
1 − 1

N({γ0})
g(log N({γ0})) =

∞∑

i=0

G(si) .

Here

G(s) =

∫ ∞

−∞
g(y)esy dy ,

(the functions g(·), G(·) and k(·) can be calculated from each others by means of simple
formulas),

si =
1

2
+

√

1

4
+ λi ,

(one has to consider only one of the square roots), where λ0 = 0, λi < 0, (i = 1, 2, . . . )
are the eigenvalues of D with multiplicity,

σ(D) = the area of a fundamental domain = 4π(g − 1).

(The number g is the genus of S.) In the sum the {γ0} runs through the conjugate classes
not containing the identity, {γ∗} is the class of the corresponding primitive element, i.e.
γ∗ is defined by the relations γ∗ ∈ Γ, and γ∗m = γ0, with the largest possible m, N(·)
denotes the norm of an element γ ∈ Γ introduced in this talk.

This is the famous Selberg formula in the simplest case.
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