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RESUME. - Nous etudions la limite thermodynamique du modele
hierarchique de Dyson vectoriel invariant par rotation a basse tempera-
ture. Ce modele depend d’un parametre c qui j oue un role analogue a la
dimension. Le cas ~/2  c  2 a ete etudie dans [5 et nous considerons
ici le cas 1  c  2 qui donne des limites thermodynamiques non gaus-
siennes.
Dans la premiere partie nous etudions 1’action de la renormalisation

sur ce modele, et nous etablissons la convergence pour des normalisations
non triviales. Dans la seconde partie nous etudions la limite thermodyna-
mique de l’état de Gibbs en imposant un petit champ magnetique que
nous faisons tendre vers zero avec le volume.
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1. INTRODUCTION

First we formulate the problem we are investigating. We consider Dyson’s
hierarchical vector valued model which is defined in the following way :
Put Z = {1,2, ... } and define the hierarchical distance d(’,’) on Z by the
formula
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9LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

with there is an integer k such that (~20141)2"~~2"}.
We call a sequence 6 = { 7(f), i E 7~ ~ a configuration, and assume in this
work that r(f) E Rp with some p &#x3E;- 2 for all i E ~. In order to define our
model we introduce the following Hamiltonian function in the space
of configurations

where a, 1  a  2, is a parameter of the model, and denotes scalar

product. (In the sequel we shall use c = 22-a instead of the parameter a.)
We also introduce the function

and a free measure v on Rp defined by the formula

where t &#x3E; 0 is a sufficiently small fixed constant. It is another parameter
of the model. The constant C(t) is chosen in such a way thatp(x) be a density
function.

Dyson has introduced such a model in [72] and [13 ]. It is a simplified
version of one-dimensional Ising type models with long range interaction.
Many physical phenomenas can be studied more simply in this model.
Dyson introduced it to study phase transitions and Thouless effect. Later
it became clear that this model is also very appropriate to study renorma-
lization type problems (see [6 ], [8 ], [9 ]). The aim of the present work is
also to study a renormalization type problem. We want to understand
the consequences of continuous symmetry in renormalization type pro-
blems.
There is a standard way to define equilibrium states at temperature T

for a model with Hamiltonian ~f and free measure v (see e. g. [19 ], [20 ]).
For the sake of completeness we recall it in Appendix D. In Appendix E
we also prove that the measure constructed in Part II is an equilibrium
state. In this work we are mainly interested in the large-scale limit of the
equilibrium state of Dyson’s model. The notion of large-scale limit is
defined in many places, e. g. in [2~] or at the beginning of Part II of this
work. (In Part I this notion does not appear yet.) In Section 7 of [6] it
is pointed out that the large-scale limits in Dyson’s model are essentially
different in the case E R1 and in the vector-valued case E Rp, /?&#x3E;2.

Vol. 49, n° 1-1988.



10 P. M. BLEHER AND P. MAJOR

Moreover, in the vector valued case the situations 1  c  ~/2 and
~/2  c  2 also differ. The large-scale limit in the case ~/2  c  2 is

described in [5 ]. The corresponding result for the case 1  c  ~/2 is
formulated in [6] with a sketch of proof. (The case c = ~/2 deserves special
attention, but we are going to investigate it elsewhere.) The aim of the
present work is to give a rigorous proof of the result about the model with
1  c  ~/2 on the basis of the ideas of [6 ]. During the proof we had to
overcome several technical difficulties which we found interesting in
themselves. The proof can be split up into the solution of two analytical
problems which are fairly independent. In the first part of this work we
study the first of them which deals with the behaviour of Gibbs states
without boundary conditions. (See Appendix D for explanation of this
terminology.) The most essential differences between cases 1  c  ~/2
and ~/2  c  2 appear at this point.
The first problem can be formulated directly, and it has a special interest.

For all n, n = 0, 1, 2, ... and T &#x3E; 0 consider the probability measure
on with the density function

defined by the formula

where U(i,j) is defined by formulas (1.1) and (1.2), () by (1. 3) and
Zn(T, t) is an appropriate norming constant with which ..., x2n) is
a probability density function. Let (6( 1 ), ...,cr(2")) be a distributed
random vector, and let T) = T, t) denote the density function

2"

of the average 1 2n 2n03C3(j). We are interested in the asymptotic behaviour

.7=1

T) as n ~ oo . Let us remark that pn(x, T) depends on x only through
i. e. if we define the function y ~ R1 as pn(y,t)=pn((y,0),t),

0 = (0, ...,0)eR~’~ then Now we formulate Theo-

rem 1, the main result of Part I. Its main content is that for 1  c  ~/2
the density function T) satisfies a limit theorem with an unusual
normalization. The limit distribution is not normal, its density is defined
by an integral equation. Theorem 2 also contains some information about
the smoothness of the functions T) and their decrease at infinity.

THEOREM 1. - For 1  c  ~/2 there exist some To &#x3E; 0 and to &#x3E; 0 such

Annales de l’Institut Henri Poincaré - Physique theorique



11LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

that for all 0  T  To and ~ 0  t  to there are some M = M(c, t, T) &#x3E; 0
and ’ no = T) such that for n &#x3E; no

with a 1 + 1, where B(M, T) &#x3E; 0 is an appropriate

norming constant, function is the solution 0/’ the integral equation

where u E R1, v E Rp-1, v2 denotes scalar product, and the error term rn(x)
satisfies the inequality

with some K(M, T) &#x3E; 0 and 0  q  1, where q depends only on the para-
meter c, 1  c  ~.

The equation (1..6) has a unique solution in the class o,f’ functions

= { g(x), | dx  oo if | t | I  to(g), to(g) &#x3E; 0 beside the trivial
one g(x) = 0, and this function appears in formula (1. 6) . I t also satisfies
the relation g(x) &#x3E; 0 for all x, and exp ( - aox)g(alx)  K(a) exp ( - a ~ 

for all x ~ R1 i f 03B1  6c - 4 .
c(2 - c)

The functions pn(x, T) and rn(x) also satisfy the inequalities

with some K(M, T &#x3E; 0, ,u &#x3E; 0 and 0  q  1, where ,u and q depend only
ori the parameter c.

The number M satisfies the relation

with some ~ R(T, t) ~ ~ const. such that R(T, t) -+ T -+ 0 -+ 0.

Vol. 49, n° 1-1988.



12 P. M. BLEHER AND P. MAJOR

We shall prove (Lemma 12) that the function is the density function
of an appropriately defined quadratic form of independent normal variables.
Theorem 1 means in particular that in the case 1  c  ~/2 if(a(l), ..., r(2"))

is a distributed random vector then the density functions of the random

variables cn 2n |03A32n o-(/) 1- cRM tend to the density function
j= 1

The behaviour of Dyson’s model in the case ~/2  c  2 or with scalar
valued spins is essentially different. In these cases the random vectors

2-n 2|03A32n j=1 7(/) 2014 2n 2Mn tend in distribution to a normal law with zero

expectation, Mn ~ M with some M if Mn = E I (expectation is
taken with respect to the measure (See [5 Appendix, [6] and [9 ].)
This means that in these two cases we have to normalize differently.

In Part II of this work we show that this difference is also inherited in
the behaviour of equilibrium states. Moreover, we describe the large-scale
limit of the equilibrium state, and show that its component in the direction
of the magnetization is a quadratic functional of a Gaussian field.

Let us remark that in our model both the Hamiltonian function 
and the free measure defined in (1.2) and (1.3) remain invariant if
all spins E ~, are rotated in the same way. Such an invariance is
called an O(p) continuous symmetry in the physics literature. Actually
this continuous symmetry is the cause of the results in our model. The
real problem we are going to study is the consequences of continuous

symmetries. We expect that results analogous to those of this paper also
hold for translation invariant models with a continuous symmetry on the
three dimensional lattice. We formulate this conjecture in a more explicit
form in the second part of this work.

In that part we need some more information about the behaviour of
the function T) than that given in Theorem 1. Hence we prove the

following

THEOREM 2. - Under the conditions of T heorem 1 there exist some 
ger no and positive real numbers e, q, B, K, L and ~ depending on the para-
meters c, T in such a way that for n &#x3E; no

Annales de l’Institut Henri Physique theorique



13LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

. with some |rn(x)  Kq", 0  q  1, in the 

where a - log2 logc, and . __ . » + r,

v 

Relation (1.10) can be considered as the multiplicative version of rela-
tion (1.5). In order to deduce it from (1.5) we have to give a good lower
bound on in the interval -  x - M  The

main content of formula (1.11) is that for x » M a much sharper upper
bound can be given than that in (1.7). On the other hand for 0  x  M
the bound in (1.7) cannot be improved considerably, at most a better
constant  can be written in the exponent.

The appearance of the number a - lo log g 2 c has a deeper reason. The
decrease of the limit function g(x) at plus infinity is of order exp ( - const 
The size of the typical region where the good asymptotic formula ( 1.10)
is proved is also connected with the tail behaviour of the limit function.
This typical region is chosen in such a way that the density function T),
after an appropriate scaling, is exponentially small outside of this region.
(Observe the term qn, q  1, in formula (1.11).) The typical region is not
symmetric with respect to the origin, because the decrease of the function

T) is different for positive and negative arguments. For negative x
formula (1. 7) gives a good bound on T) outside of the typical region.

In Theorems 1 and 2 we have assumed that the free measure v is defined

by (1.3). We could have considered a more general class of free measures.
Theorems 1 and 2 can be proved without any essential change if

with some function R such that 2014r  I X 14- j with some C &#x3E; 0,
~-= 0, 1, 2, 3, 4. 

~

2. ON THE CONTENT OF THEOREM 1.

CONVERGENCE TO THE SOLUTION
OF THE FIXED POINT EQUATION

It is proved e. g. in Section 4 of [6] that the function defined

in Section 1 satisfies the recursive relations

Vol. 49, n° 1-1988.



14 P. M. BLEHER AND P. MAJOR

where C(t) and Cn(T) are appropriate norming constants which turn pn
into a density function. (These are formulas (4 . 2) and (4.2)’ in [2 ]. For
the sake of completeness we also present their proof in Appendix A.)
Thus Theorem 1 actually formulates the properties of the function defined
by relations (2.1) and (2.1)’, and we have to study these formulas. We
can simplify them a little by introducing the functions

with some constant Bn to be defined later.
A straightforward calculation shows that (2 .1 ) and (2 .1 )’ imply that

with some Cn(T) &#x3E; 0. Observe that T) is also rotation invariant, i. e.

T) = x I, T) for the function qn(z, T) = qn((z, 0), T), ze R 1,
0 = (0, ..., 0) E Also the relation qn(x, T) = q"(- x, T) holds. Choose
the constant Bn in (2.2) in such a way that

Clearly

and (2.3) implies that

Given the function T) we define " a number Mn and 0 a function
x =. T) by the formulas

Annales de l’Institut Henri Physique theorique



15LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

ducing the function fn and number Mn is that we expect that this is the right
rescaling of the function qn for which Mn - M and fn(x) ~ gM(x) with
some appropriate M &#x3E; 0 and gM as n ~ 00. (See Section 7 of [6] for a
heuristic argument.) We shall prove the following

THEOREM 1’. Under the conditions of Theorem 1 the limit lim Mn = Mn-+ ao

exists and

with some T)  const. and , T) ~ 0 as T -~ 0 and t ~ 0. More-

over, there is some , no = no( c, t, T) such that &#x3E; no

with some ’ K = K(c). For n &#x3E; no there is some ’ 0  q  1 and K &#x3E; 0 depend-
ing on the parameter c such that

where g(x) is the same function as in Theorem 1. We also have

&#x3E; no, with &#x3E; 0 and K &#x3E; 0 depending only on c.

We shall deduce Theorem 1 from Theorem_1’. In order to study fn
and Mn we introduce the integral operators Qn,M, n = 1, 2, ... , M &#x3E; 0

defined for functions f E 

= { f ~ R 1 ~ R 1, f(x) is continuous, 0 ~ /M ~ K for all x E R 1,
f(x)  K exp ( - with some K = K(f) &#x3E; 0 and a = x(/) &#x3E; 0

for x &#x3E; 0, there is some x &#x3E; - c"M where f(x) &#x3E; 0 },

by the formula

Vol.49,11" 1-1988.



16 P. M. BLEHER AND P. MAJOR

For the sake of simpler notations we shall restrict ourselves from now
on to two-dimensional models, i. e. Rp = R2. In this case u E R 1 and v E R 1
in (2.10). Observe that depends on the values of f(x) only for
x &#x3E; - c"M, and = Qn,Mf( - x - 2c" + 1 M) what can be seen
by applying the substitution (u, v) -+ ( - u, - v) in the integral defining
Qn,MJ . Moreover, for since Qn,Mf(cx) &#x3E; 0 if

f(x) &#x3E; 0, 0  c"~ sup f (x) ~2, and we get, by splitting up the

domain of integration in (2.10) to (M,~),~  x and (M,~), u ~ I &#x3E; ~ },
that for x &#x3E; 0 L 2 (. 2

Put

and define the normalization of the operator Q",M

for (The above formulas are meaningful since 
Let us define

for f E M &#x3E; 0. We claim that the relation

holds for the functions fn and numbers Mn defined in (2.7) and (2.7)’,
and f" E This can be seen by observing that by (2 . 6) and the definition
of fn

Annales de l’Institut Henn Poincare - Physique " theorique "



17LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

hence

and

(The constants K, C, Kn, C", etc. will denote appropriate multiplying
factors in the sequel. The same letter may denote different numbers in
different formulas.)

x M v2
If 

cn+1,  cn 
and 

cn 
are much smaller than M then a simple Taylor expan-

sion yields that

This relation suggests to approximate the operators Qn,M and by TM
and TM defined by the formulas

and

As we shall see later, TM maps a density function with zero expectation
to such a function again, hence TM is the natural approximation of the
operator By relation (2.14) we can write

with = TMnfn(x), and because of (2.15) we expect that
is a small error term. We also expect that the limit M = lim Mn &#x3E; 0

exists. 
n--+ ao

Given a number M &#x3E; 0 we look for the solution of the fixed point equa-
tion f = TMf and investigate the speed of convergence of the sequence
TMf, n = 1, 2, ... to this fixed point for a general function f ’ as n -+ oo .

If this convergence turns out to be sufficiently fast then it is natural to

expect that our sequence fn tends to the fixed point as n -+ oo . 
_

For our purposes it will be sufficient to investigate the operators TM
and TM in the spaces j~ and j~o 

Vol. 49, n° 1-1988.



18 P. M. BLEHER AND P. MAJOR

and

We can work better with the Fourier transforms M and (We define
the operator TM and TM by the identities M = (TM/)" and M = (TM/)".)

x t~~
We get, by applying the change of variables z = - + u + - and

x v2 c 2M

y = - - u + 20142014 
instead of x and u, that

c 2M

and

Since 1 = and  f ’(0) = i relation (2.20)’ implies that

and

As a consequence, TMf(x)dx = 1 and xTMf(x)dx = 0 if f E A0,

and this relations explain our scaling in the definition of the operator TM.

Annales de l’Institut Henri Poincare - Physique theorique



19LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

By (2.20)’ the fixed point equation f = T Mf can be rewritten in the
space of Fourier transforms as

or, by taking logarithm,

We are looking for the solution of the equation (2 . 22) in the space f E j~o
00

in the form log ](ç) = (Observe that for f E do
k=2

therefore oco = (Xl = 0 in the above expansion.) Then by (2 . 22)

and

In such a way we have defined log /((~) in a small neighbourhood of zero,
and it is analytic there. Then by (2.22) it can be continued analytically
to the whole real line, and this analytic continuation gives the solution of
the fixed point equation.

If log ~(~ ~ e is analytic in a small neighbourhood of zero then

it can be written in the form log (03BE) = with some coefficients dk,

and the same calculation as before supplies that 
with 

Since 2(c 2)k  1 for k ~ 2 if 1  c  2 the coefficients of the Taylor

Vol. 49, n° 1-1988.



20 P. M. BLEHER AND P. MAJOR

series of the function = 2, 3, ..., tend to ak expo-
nentially fast as n  oo . This means that the convergence to the solution
of the fixed point equation is sufficiently fast.
One has to overcome several technical difficulties when trying to turn

the above heuristic argument into a rigorous proof. In the next section
we explain which are the main difficulties during the proof of Theorem 1’
and how we want to overcome them.

3. ON THE STRATEGY OF THE PROOF:
THE INDUCTIVE PROCEDURE

The main difficulty in the proof of Theorem 1’ consists in the justification
of formula (2.18) together with a good bound on in it. Let us remark
that such a relation can be expected only for large n. Indeed, when the

operator Q is approximated by TM then the kernel -~ 2014 ~ j in
the integral defining is changed to exp ( - v2), and this change causes
a negligible error only if n is large. For small n we need a different method
to control the behaviour of the function 

Let us first consider the starting function qo(x, T) defined in (2 . 3)’.
Simple calculation shows that if T  ao then the function T) has
two maxima (in the variable x) in the points ± Mo

and

We shall show that if Mo is sufficiently large then

if x &#x3E; - M o, M o = M o + R 1 with some negligible error terms R 1 and Ri,
where 7) denotes the normal density function 2014=2014 exp - 2014~ )

203C003C3 B 26
with expectation zero and variance 62. Moreover, we shall see that for
small n (depending on Mo) Mn  Mo, and the operator Qn,Mfn can be
well approximated by

Annales de Henri Poincaré - Physique " theorique "



21LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

i. e. a small error is committed even if the argument of f" in the integral
2

is approximated not by (2.15), but the term 2M2 
is dropped in

its right-hand side. (But this is not true for large n.) Observe that turns

an almost Gaussian density function with variance 62 to an almost Gaus-

sian density function with variance 2 6 . By refining the above argument
we shall be able to prove the following

PROPOSITION 1. - For all integers N &#x3E;_ 1 there is some K = K(N) &#x3E; 0

such that if M20 = &#x3E; K, 0  T 10 then for n ~ N

and

where 60 = 
al 

, and B(n) is some appropriate multiplying factor
2(ao - T)

depending on n but not on Mo and c.

Let us now turn to the investigation of Qn,Mfn in the case of large n. A
calculation of the error in the approximation (2.15) suggests that

with some 0  q  1. It is relatively simple to demonstrate formula (3 . 5),
but it is useful only if we have an additional estimate on sup which
shows that the dominating term on the right hand side of.(3. 5) is qn and
not sup I2. To prove this additional estimate we have to carry out
a much more refined analysis where the function fn is bounded simulta-
neously with its Fourier transform.
More precisely, since fn(x - c"MJ = + cnMn), the function fn has

a peak not only at zero but also at - 2cnMn. As a consequence, the Fourier
transform of fn does not behave nicely, and it is useful to make a regula-
rization of fn(x) and to work with its Fourier transform.

Vol. 49, n° 1-1988.



22 P. M. BLEHER AND P. MAJOR

DEFINITION. - Let us choose some fixed function ~ E Co (R) such that
1 ~ 03C6(x) ~ 0 for all x E Rl, = 1 for | x | I:::; 1 and = 0 for |x| ~ 2.

Put C-n/2x). Given some function f, f(x) ’?:.O, I x f (x)dx  oo,

we define its n-th regularization as 

An 
+ Bn)f(x + Bn)

with An = , and Bn = A 1 n x 4’n( x )J ( ) x dx provided that the
above formula is meaningful, i. e. An &#x3E; 0.

(Let us remark that although the Fourier transforms n(03BE) and n(fn)(03BE)
are not similar, nevertheless the functions Qn,Mfn(x) and are

for typical x (x not very far from the origin) close to each other since the
main contribution to the integrals defining them are in a small neighbour-
hood of zero, where fn and are close to each other. This is the reason

why we can use our information about ~n( fn)(~) in the investigation of
fn(x).) First we shall prove the following

COROLLARY OF PROPOSITION 1. Under the conditions of Proposition 1
we have for n :::; N

and

with 03B1n=1 200(c2 2)n and 03B2n=(c2 2)n.
We shall formulate an inductive assumption about the functions fn(x)

and n(fn(t + for all n. But first we have to understand their behaviour
better. Formula (3.2) shows that sup fo(x)  C with some bound C inde-

pendent of M o, and for small n sup fn+ fn + 1 (0) ~ sup fn(x). On
x c x

the other hand it is natural to expect that for large n, where

gM is the solution of the fixed point equation gM = TMgM. Since

= Mg1 2014 , hence sup const. M. The above considerations

suggest the following picture : for small n the value of sup is growing

exponentially fast, first at rate then slower and slower, and finally
for large n it gets stabilized at const. Mo. If sup = Kn then fn(x) is

x

Annales de l’Institut Henri Poincaré - Physique theorique



23LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

negligible small outside a region of size K ~ 1 i. e. as the function fn(x) i
n

growing it gets more localized. This behaviour of the function fn is reflected
in a slightly hidden way in the properties I(n) and J(n) defined below.

Let us fix some positive integer N, and introduce the sequences an and ~3n
(with starting index N) as

and

where Mn is defined in formula (2.7).
Now we define

Property I(n)
Let n &#x3E;_ N. The function f" satisfies Property I(n) (with starting index N

and multiplying factor C) if

with the above defined /3", and the number Mn defined in (2.7).
and

Property J(n)
Let n &#x3E;_ N. The function fn(x) satisfies Property J(n) (with starting

index N) if

The content of Properties I(n) and is very similar. As we shall see

later C1  2014  C 2 with some appropriate C1 &#x3E; 0 and C2 &#x3E; 0 for all n.
an

It is natural that the bound on the right-hand of (3 .11) depends on s2 and t2,
since in the Taylor expansion of the first term disappears because

Vol. 49, n" 1-1988.



24 P. M. BLEHER AND P. MAJOR

of the relation Cf,,( 0152 - o = = 0. Formula (3 .11) in

a small neighbourhood of zero tells us that the variance of a random variable
with density function is between 203B1n and hence is

essentially concentrated in a domain of size const. 
20142014. 

The bound on

+ is) in the complex domain tells, roughly speaking, that 

tends to zero with the rate exp 2014 21XI) as x ~ oo .

Finally we remark that the smoothness of the function is connected
with the decrease of its Fourier transform at infinity. Property J(n) states
a decrease of order O(t - 2). This is a weaker property than the second order .

differentiability of the function fn imposed in Property I(n), but it is enough
for our purposes.

In the exponent at the right-hand side of (3.10) the term 2x is essential,
2

and the term could be omitted. In that case the proof could be carried

out w’th some small changes, only it would become considerably longer.
The same remark applies for the formulas in Propositions 2 and 3.
The main step of the proof of Theorem 1’ is the following

PROPOSITION 3. - The multiplying factor C in Property I(n) can be chosen
in such a way (e. g. any 000 is an appropriate choice) that if N &#x3E; No(c, C)
with some appropriate threshold No depending only on c and C, n &#x3E;- N,
I  1, Mn &#x3E; K(c) with some K(c) &#x3E; 0 independent of n,

satisfies Properties I(n) and J(n) (with the above defined multiplying

actor C and startin g index N 100 &#x3E; 03B2n &#x3E; max(9 M2n, 4-n), &#x3E; then fn+1(x)

satisfies Properties I(n + 1) and J(n + 1) (with the same parameters C
and N), and

with some ’ absolute ’ constant C1. Moreover,
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,

with some absolute constant C1.

As a consequence, i M2 o - T 2 u T) is sufficiently large and 0  T  10
then Properties I(n) and J(n) hold for all f"(x), n &#x3E;_ N, if the parameters C
and N are appropriately chosen, and in this case relations (3.12~, (3 .13)
and (3.14) also hold.
We shall prove Proposition 3 with the help of the following Propo-

sition 2 which can be considered as a more refined and elaborated version
of formula (3 . 5). We recall that the operators Qn,M and Qn,M were defined
in Section 2 for f E 

PROPOSITION 2. Given some positive integer n and real numbers M &#x3E; 100,

E &#x3E; 0 let us consider some f ’ E SuCh that fO , f ’(x)dx = 1,

foo xf (x)dx = 0, and 
-cnM

- CnM

with some f3 and C such that 100 &#x3E; &#x3E; max ( 
4 

4-" , and let
(1 - E)M

n &#x3E; no(c, C), where the threshold no(c, C) depends only on c and C. Let
1 "
- &#x3E; e &#x3E; lOc 4. Then there exists some C(E) &#x3E; 0 depending only on E such2
that

, 1

.f’orj=0,1,2,3,4,xERl,and
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26 P. M. BLEHER AND P. MAJOR

for x &#x3E; - cn + 1 M, j - 0, 1, 2, where

and mn is defined by formula , (2. Il ). We also , have ,

with some absolute constant C1 &#x3E; 0.

In formulas (2.10)-(2.13) we have defined 
and in Proposition 2 we have estimated Qn(f(x), M) with the help of f(x)
and M. We would try to deduce Proposition 3 from Proposition 2 with
the choice f /3 = /3n and M = Mn. (The number e &#x3E; 0 appears in

Proposition 2 for some technical reasons. At a later step of the proof we
need an almost optimal multiplying factor inside the exponent of formulas
(3.16)-(3.18).) The main difficulty which does not allow to deduce Propo-
sition 3 directly from Proposition 2 is that the multiplying factor in (3 .16)
is which is too large to deduce Property I(n + 1) with the same
multiplying factor C which appears in Property I(n). We can overcome
this difficulty by investigating the functions f simultaneously with their
Fourier transform. This is the reason why we have formulated both Pro-
perties I(n) and J(n). Our induction procedure works only for large n,
hence we have proved the Corollary of Proposition 1 which allows us to
start the induction from a large starting index. Then the following obser-
vations help us to carry out our induction procedure.
We have a better multiplying constant in the exponent of formula (3.16)

than we need in Property I(n + 1 ). Hence we can prove the inequality
appearing in Property I(n + 1) for large x by slightly decreasing the multi-
plying factor in the exponent of (3.16). On the other hand formula (3.18)
(observe that there is a factor c-n on the right hand side) guarantees that
a negligible error arises if fn+ 1 = Qn,Mnfn is changed to Then,
since the operator TM can be naturally investigated in the space of the
Fourier transforms, we can complete the proof of Property I(n + 1) under
the conditions of Proposition 3 with the help of Property J(n). The impor-
tant point is that the bound we can give on with the help of Pro-
perty J(n) does not depend on the constant C appearing in Property I(n).
The proof of Property J(n + 1) is similar. With the help of Proposition 2

the problem can be reduced to the bounding of + is) which can
be done with the help of Property J(n). The remaining statements of Pro-
position 3 can be deduced from Proposition 2 with some work.

Let us remark that we have bounded together with its first two
derivatives although only the bound given for is interesting for us.
But, since a Taylor expansion is applied in the inductive proof we need
some information about ~(~-) in order to bound On the other
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hand, the operators Qn and T, similarly to the convolution operator, have
some smoothing properties, and it helps us to carry out the inductive
procedure without weakening the smoothness conditions during the

subsequent steps of induction. In particular, let us remark that in formulas
(3.14) and (3.17) four derivatives could be bounded with the

help of only two derivatives of the function f
Formula (3.13) in Proposition 3 can be considered as a more exact

version of formula (2.18). It enables us to carry out the heuristic argument
at the end of Section 2 in a precise form. In such a way we can prove that

tends to gM(t) exponentially fast if tED, where D is a small but
fixed neighbourhood of zero, and gM is the solution of the fixed point equa-
tion gM = However, this knowledge is not sufficient to prove Theo-
rem r. But by exploiting that can be well approximated by

and that formula (2 . 20) gives us the estimate

we can give a good bound on sup |03C6n(fn)(t) - M(t)| in an exponentially

increasing domain Dn. Then by bounding and for large ~
and applying inverse Fourier transformation we are able to prove Theo-
rem 1’.

Theorem 1 can be deduced from Theorem l’ by expressing 
with the help of ~,(~) and Mn. The main difficulty of this deduction is

connected with the following problem: it follows from Theorem l’ that

for large ~, ~ is essentially concentrated in the domain

II x I - /2014 MI  const. and we want to prove the same for T)

which can be expressed by T) with the help of relation (2.5). To show

this property we have to prove that for I x I  /2014M the decrease of
qn(a1 Tx, T)/qn(M,T) (in the variable x) is faster than the increase of
exp - - + - en - M2 . We can prove this statement by deter-

B 2T 2T ~i /
mining which number /1, /1 &#x3E; 0 can be written in formula (2.9)’, i. e. we
need a better understanding about the decrease of the function ~, outside
the typical region. The essential technical difficulty after this step is to

give a good asymptotic value for the norming constant Bn in formula (2.5).
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The proof of Theorem 2 requires an even better understanding of the
behaviour of the functions T) and the function defined by for-
mula ( 1. 6) for x ~ I --+ oo . We shall discuss the content of Theorem 2 and
the difficulties arising during its proof in Section 9.

4. THE PROOF OF PROPOSITION 1 AND ITS COROLLARY.
THE FIRST STEP OF THE INDUCTIVE PROCEDURE

First we prove formulas (3.2), (3.3) and (3.4) for n = 0. The function
T) can be written in the_form given by formulas (3.1) and (3.1)’,

where the norming constant Co(T) is given by (2.4). We have

and

Hence

Similarly,
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hence

and similarly

We claim that

Indeed, I Mo is sufficiently large Mo &#x3E; 8003C32 3 is e. g. enough then for
x &#x3E; Mo 

3

Similarly

The above relations imply formulas (3.2)-(3.4) for n = 0. For 0  n  N
we prove them by induction with the help of the following two lemmas.

LEMMA 1. 2014 Given some 0 _ n  N, and M &#x3E; 0 such that
/2B"

M &#x3E; 4’ - ) let Ms consider some , / e satisfies the inequality
c
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with some B(n) &#x3E; 0. T hen

with some appropriate B(n + 1) which depends only and B(n).

LEMMA 2. n, M /(x) satisfy the conditions of Lemma 7. More-
/*oo _

over, let f (x) be such that = 1, = 0 and

for j = 0, 1, 2 and | x | I  log M, and let M &#x3E; K(N) with some sufficiently
large K(N) &#x3E; 0. Then

= 0,1,2 and |x| I  t 1 + c-1 4 log M, where

and ’ B(n + 1) depends only on B(n) and ’ n.

Proof of Lemma ’ 1. 2014 Let us introduce " the notation

A simple calculation shows that

We claim that

Indeed, we get from (4 . 8) with the help o of the inequalities I A I 2 A + B
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and I A I + I B I 2 - A - B that the left-hand side of (4 . 8)’ can be estimated
from below both by _

These estimates imply (4.8)’. 

(2)N /2B"Relations (4.8)’, (4.3) and the inequality M &#x3E; 4. - &#x3E; 4. - imply
that C C

We get formula (4.4) for j = 0 by integrating inequality (4.9) with respect
to the variables M and r. The case 7=1,2 can be investigated similarly.

d - d2
The quantities 2014 

and 
2014y 

can be expressed as

and

Relations (4 .10) and (4 .10)’ can be obtained by differentiating formula (2 .10)
after the change of variable u’ - M + ~+ 1 - ~ and then (when calculatingCn + 1 Cn

the second derivative) u" - M + Observe that the second
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derivative of Qn,Mf is expressed in (4 .10)’ with the help of the first deri-
vative of f This means in particular that for the existence of the, second
derivative of Qn,Mf it is enough that f is once differentiable. Since

relations (4.10) and (4.10)’ imply that

and

Formula (4.4) for j = 1, 2 follows from (4. 3), (4. 8), (4.11) and (4.11)’
in the same way as it was proved for j = 0.

Proof of Lemma 2. 2014 First we consider the case j = 0. We show that

if |x|  1 4cn+1M, | M !  - &#x3E; v2  c"M. Indeed &#x3E;
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Define the set A = A M - (M, r)J M !  201420142014 log I  M1/4 . First
we prove that 

) 
*L 2c J

For this aim we show that for r±n(x, M, u)= M, u))- n(x c :t M, (c 2)n03C30)

Indeed, it follows from (4.12) that for I x I  1 + log M, (M, v) E A,

|l±n,M(x, u,v) - ø ::!: M ) I s 1 M. Hence

and by (4. 5)

Because of the inequality - 1 4 C2 aõ x c ± u + 2(2 c) ::!: u - 4. 2naõ::;; 0

and the above relations imply (4.14).
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We have for |x| 1 1 + c-1 4 log M

with

Here we applied that for large M and e= s log2 M &#x3E; - I

and exp ( - ~(log2 M)  20142014=).) Hence to prove (4.13) it is enough to

have a good bound on

and

We get from (4.14), integrating first by the variable v that

Because of the evenness of the left hand side (4.13) in the variable x we
may assume that x &#x3E; 0. We set that
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(The last integral can be bounded by constant times the value of the inte-
grand in 2x/c.)

On the other hand by (4.14)

hence

Relations (4.15), (4.15)’, (4.16) and (4.17) imply (4.13). On the other
hand we get by integrating (4.9) that

for |x| I  1 + c-1 4 log M . (Observe that in this case we make a negli-

gible error by omitting the term x2 cn+1M from the exponent.) This relation
together with (4.13) imply Lemma 2 in the case 7=0.
To investigate the cases 7 = 1,2 we need the following identities
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where n’(x, o-) denotes the first derivative of the normal density (7).
They can be obtained by differentiating the identity

Lemma 2 in the case j = 1, 2 can be obtained similarly to the case j = 0,
only in this case formulas (4.18) and (4.18)’ have to be compared with
formulas (4.10) and (4 .10)’ in the domain In this comparison
the inequality

can be applied.

Proof of Proposition 1. 2014 Let us assume that Proposition 1 holds for n,
n  N. We shall prove it for n + 1. We have

with An= foo and mn = 1 An foo fri(x)dx. We apply
1Mn 1 Mn

Lemmas 1 and 2 with the choice f = fri and M = Mn. Then we get
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where 03BBn is defined in Lemma 2, and similarly

Then, since M~+i=M~+~c ~~ Lemmas 1 and 2 clearly imply
Proposition 1 for 03BD + 1.

Proof of the Corollary.
~) Proof of formula (3.6). 

/ /~B~ / /~B~ -..

Let us first consider the case I s I  2 |t| I  10 2 c). If Mo 1S
sufficiently large then so are N. In this case relations (3.2) and
(3.3) imply that the functions and close to each other,
and the relations

for x E R 1, j = 0, 1, 2, n  N hold true. Since

hence
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Since

we get from (4.19) and (4.20) (assuming that Mn is sufficiently large) that

Thus we get that

I 0  T  - then -  03C320  -, and ’ we can write

if I s I  2(2 c)n, |t| I  
In the case I s I  2(2/c)n, | t | I &#x3E; we get, integrating by parts

twice that C

and by formula (4.20)

Hence

/ n / /~B"
also in the case | s|  2 , | t| &#x3E; 10) 1/ ‘ .

B c / B c /
~) Proof of formula (3.7).
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By formula (3 . 2) we have for x ~  log Mn

On the other hand

and

for j = 0, 1, 2. we get from (3 . 3) that

5. THE PROOF OF PROPOSITION 2

We prove Proposition 2 with the help of a series of Lemmas. Lemmas 3,
4, 5 and 6 enable us to estimate the functions Qn,Mf(x), together
with their difference. We can consider their normalization Qn,Mf(x) and

with the help of Lemma 7.
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LEMMA 3. - Given some positive integer n and real numbers ~3 &#x3E; 0,
M &#x3E; 106 let f E be such that

T here , exists some , threshold no( c, C) such &#x3E; no( c, C), and ’

then

for x &#x3E; - cn+1M with some ’ C1(e) &#x3E; 0 depending £ only on E.

Proof of Lemma , 3. 2014 Let us first consider the case~=0. It follows from

(4.8)’ and  (5.1) that

Since 1 - 201420142014 
&#x3E; 1 - ./l-s&#x3E;0 by (5.2) we get by integrating (5.3)

that 03B2M

For { jc ~ &#x3E; - jc! I &#x3E; relation (5.4) implies Lemma 3.

since in this case exp ( - -Jp 2x + In order to

prove Lemma 3 for small |x| we need a different bound on We

claim that for ~ I : 

Annales de Henri Poincaré - Physique ’ theorique ’



41LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

Indeed, by relation (4.8)

for x ~  and in this case this relation, (4. 8)’ and the inequality

imply (5.3)’. For | x| 1 we get Lemma 3 with j = 0 by integrating
relation (5.3)’. (In this case the multiplying factor before the exponent
will be appropriate for our purposes because of the term exp ( - 
The cases j = 1,2 are similar, only in these cases formulas (4.11) and

(4.11)’ have to be applied.

LEMMA 4. - satisfy the conditions of Lemma 3, and

where the regularization is defined in the Definition given in Section 3.
Proof of Lemma 4. - We have
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if n &#x3E; no( c, C) is sufficiently large. Similarly,

It follows from the above estimates and relation (5 .1 ) that

and

The proof of Lemma 3 with some slight changes yields that relations (5. 5)
and (5.6) imply the inequalities

for j = 0, 1, 2, i = 1, 2 with fl (x) = /(~ f2(x) _ Because ’ of the

special quadratic form of the operator these " estimates imply Lemma  4.

LEMMA 5. - Under the 

for x &#x3E; - cn+1M, j = 0,1, 2 .

Proof of Lemma 5. Let us first consider the case j = ’0. The main
step of the proof is to check (5.7) for small x. The main contribution to
the integrals and is given by small u and v, and
for such values we need a good asymptotics of the integrands. Let us consi-
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der the case define the set D(~)= 
-  and give a good bound on

We claim that

if! x ~  and  (u, v) E D(n).

Indeed, by (5 . 6) (the term can be dropped from the exponent in (5.6))
and (4.12) ~ c M 

. 

and

First we show that
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Indeed write "

in the definition of r), and carry out all multiplication both in the
expression and the right hand side of (5.11). Then the rela-

tions 1 M03B2  1 03B2, 
(5.9) and (5.10) imply that each term in the expression

M, 1;) is majorized by the corresponding term at the right hand side
of(5.11). Similar argument shows that the right hand side of(5.11) increases
if ~(/)(- ~ ~ + ~f) ~ replaced by its upper bound

(This upper bound follows from (5.6).) Hence we get that

and 0 this estimate " implies (5. 8).
Since 2 v2 - v 12  - (1 - 1 - E)v2 by (5 . 2) relation (5 . 8) yields that

if I x  and (u, v) E D(n). 
uIntegrating this inequality and using the change of variables u = we

get that . ~g
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Observe that if x ~  and (u, u) ~ D(n) then either

therefore

v2
Indeed, if &#x3E; 10cn/2 M thenM

and if ! M ! &#x3E; 

On the other hand relation (5.3)’, for the function ~n( f ), yields that

Relations (5.12), (5.13) and (5.13)’ imply Lemma 5 for x ~  

j=o.
If x &#x3E; then relation (5 . 4) for the function gives that

for x ~ &#x3E; &#x3E; - 
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x ~ v2
If x &#x3E; Cn/2 M then - + u sign u + &#x3E; 200cn/2 (M &#x3E; 106), hence

f ) - c + u sign u + 2M - 0, and

If x  2014 Cn/2M then relation (5.6) dropping the term 20142014 from the
B cM

exponent, what can be done, since ~~(/)(~) = 0 for x ~ &#x3E; 200c"~ ) and (5 . 2)
imply that 

Hence

if -C"+1Mx -C"~2M.
- For &#x3E; &#x3E; - cn+1M,j = 0 Lemma 5 follows from (5.14),
(5.15), (5.15)’. -

In the case j = 1, 2 we compare formulas (4.10) and (4.10)’ with the
identities
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and apply the inequalities

Forj = 1 almost the same proof works as forj = 0 with some slight modi-

fications. An additional multi p 1 Y in g term 1 a pp ears in the estimates when

we have to bound f ’ instead of f. In the case j = 2 we estimate similarly,
but we have to show that the second term in (4.10)’ is negligible small, it

can be bounded by C(~)C2 03B23/2 
c exp - 

2(1-~) 03B2c c 
2x + 

This follows from the estimate

which can be proved similarly to Lemma 3, by observing that the integrand
on the left hand side of (5.16) can be bounded similarly to (5 . 3) and (5.3)’,

only must be replaced b y 1 and I 
by 1 ~ exp t - I )only Ii must be replaced by [j1i2 and exp - 3~|u| 03B2) / by -;; exp - 2~|u| 03B2 /

in (5.3)’ and the right hand side of (5 . 3) must be multiplied by 03B2-1|u|.
(This multiplying term in (5.3) causes no problem, because we need (5. 3)
only to deduce (5.4) for |x| &#x3E; and in this case the pre-exponen-
tial term in (5.4) need not be bounded sharply).

LEMMA 6. - If the functions fl(x) and f2(x) satis_ f y the inequalities
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or all x E R 1 with some C &#x3E; 0 ~ ’ &#x3E; 0 ’ ~ &#x3E; 2 4 with some e &#x3E; 0 then
M (1 - e)

for all x E R1 and j = 0, l, 2, 3, 4. In particular, by choosing .f’2(x) = 0 we
get that

(Observe that we get a bound on the first four derivatives of TMfl(x)
and TMf2(x) with the help of the first two derivatives of fl(x) and f ’2(x).)

Proo, f ’ of Lemma 6.
We have

with l = C2~, where [ ] denotes integer part.

Hence
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Proof of Proposition 2. 2014 The relation

holds with

( observe that 1  M ), and this implies ( 3.19 ) and (3.19)’. Relation (3.16) )
follows from (5.20), (5.20)’ and Lemma 3, relation (3.17) from Lemma 6
and (2.17).
We claim that

for j = 0, 1, 2. Indeed,

and by Lemma 6 and (5.20)’

Similarly

and 0 these ’ relations imply (5.21). Relation (3.18) follows from Lemmas 4, 5
and  relations (5.20), (5.21).
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6. THE PROOF OF PROPOSITION 3
AND SOME OF ITS CONSEQUENCES.

THE SECOND STEP OF THE INDUCTIVE PROCEDURE

We prove Proposition 3 with the help of the following two lemmas.

LEMMA 8. - Under the conditions of Proposition 2 for | Is I  62 2 _

LEMMA 9. - If the Fourier transform f of the function f(x) satisfies
the inequality _" _

and /3 &#x3E; 
M2 , 

a &#x3E; 
M 2 

with some M &#x3E; 1, 03B2 &#x3E; a then

a) ao+ C1 1 »2 exp - |x| c03B2) , j = 0, 1, 2 with some absolute
constant C 1 &#x3E; O. ’ 

c03B2

Proof of Lemma 8. First we show that it follows from Proposition 2 that

If we replace 03C6n+1(Qn,Mf)(x) by 03C6n+1(x)Qn,Mf(x) in (6 . 3) then this modified
version of relation (6.3) holds. Indeed, this follows from (3.18) for

 100c"~2( ~"+ 1(x) = 1 for x ~  and from the bounds given
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on Qn,M(f)(x) and in (3.16) and (3.17) for x ~ &#x3E; 

(Observe that the support of is in the set x ~  200c"~.)
Since

and

simple calculation shows that (6.3) also holds in his original form. Since

we have ’ for s c 2 2 6 2- 

c 

Relation (6.1) follows from (6.3) (with j = 0) and  (6.4). To prove " (6.2)
we integrate " by parts the Fourier transform formula  twice. We get that

1(Qn,MJ )(t + lS) - + LS) _

Hence relation (6.3) (with j = 2) yields that
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Similarly, integration by parts four times and relation (3.17) yield that

Lemma 8 is proved. 
- - 1

Proof of Lemma 9. - First we estimate TMf. For I s I  2014.= 
we have

by (2.20)’ ~

4 9 c 5
Since for I s I  ---= and 03B2 &#x3E; 1 - - s  - and

c M 2M 3

we get from (6.5) that under the conditions of Lemma 9

d’
We estimate 

~ TMf(x) by applying 
inverse Fourier transformation and

dx
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integrating £ on the i+t. We get from (6. 6) 1, 2 that

and

since x/j8 ~ 1. Part a) is proved.
We claim that

Relations (6 . 6) and (6. 7) imply part b) of Lemma 9.
Relation (6.7) is equivalent to

Since ~+ 1 - 1 ~ x (1 + x)- 3~4 for x &#x3E; 0 the left hand side of (6 . 7)’

can be estimated as

Observe that (1 + x)3~4 
’ 

 1 + x3~4 
’ 

since for f (x) _ (1 + ~ - ~~ -1
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/(0)=0, and f ’(x)  0 for ~-&#x3E;0. This estimate together with (6 . 8) imply
that the left hand side of (6.7)’ can be estimated as

and since a &#x3E; 10 -12 2014- relation (6.7)’ follows from the inequalityM" q Y

or equivalently

The last relation follows from the inequality~ + ~ 4.3’~~b~ with
. 

81 ~2 81 
.

the choice ~ = 20142014 2014~ and b = 20142014 lO~c~ 2014 1. Lemma 9 IS proved.
8000 M 4000

Proof of Proposition 3. - First we show some properties of the num-
bers 03B1n, 03B2n defined in (3.8), (3.8)’, (3.9), (3. 9)’. We claim that

if the starting index N in the definition ofx and /3n is larger than some No(c).
+ cjl2

Indeed, let N be so large that 1 - c j/2 
 2.

j=N

Since min (/3 n 1 ~ /3 n + 1 max 1 + c n/2 . ~n 1013 3 simple induction
/ 1 1 - c an / 

p

n- 1

yields that 03B2n&#x3E;03B1n &#x3E; n 1 + c j/2 10-1303B2n 
for N. This implies

(6 . 9). Under the conditions of Proposition 3

The last relation follows from the . following estimates: /3n &#x3E; 10 M2 &#x3E; M2 5
10 n

and /3n + 1 _ ~n + 
M n 2 , 

hence 1  3~. Similarly

Vol. 49, n° 1-1988.



56 P. M. BLEHER AND P. MAJOR

Now we prove that Properties I(n), J(n) and the additional conditions
on and n in Proposition 3 imply Properties I(n + 1) and J(n + 1).
In the proof we shall apply Proposition 2 and Lemma 8 with f(x) = 
M = Mn, ~3 = /3n and e = 1 - 2 - 1/4 and Lemma 9 with /(x) = 
~8 = /3n, a = an and. M = Mn. Observe that M = in Proposition 2
with this choice. First we prove I(n + 1).
If |x| &#x3E; C203B2nlog C, x &#x3E; - cn+ 1Mn+ 1, where C2 &#x3E; 0 will be appro-

priately chosen then by (3 .16)

if x &#x3E; - 1 M n + 1 and &#x3E; log C with a sufficiently large abso-
lute constant C2.
If  C2 ~3" log C and n &#x3E; n(C, c) part a) of Lemma 9 and (3.18)

imply that

If n is so large that  - and for
8
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this allows to replace - 4|x| c03B2n and - 2.23/4 I x | by
C ~n

at the right hand 0 side of (6.11)) then (6.11) implies that

C 2 03B2nlog C . IfC is so large that 3C 1 rx-(j+l)/2 n  ,

1, 2, then relation (6.12) implies 1(n+1) for |x| 1 C203B2nlog C. Such
a choice of C is possible since C1 is an absolute constant, and relation (6.9)
holds. 

C C
Now we prove J(~ + 1). First we consider the case ~ ! &#x3E; -~2014 with aV~

sufficiently large absolute constant C3.Since 2014201420142014  
we can apply Lemmas 8 and 9 for I s I  

.. 
Part M and formula (6.2)

from Part a) of Lemma 8 imply that 

if n is so large that  - 10-14, and ’ ~3 is so large that

Let C3 be so large that also the relation 03B1nt2 &#x3E; 1 C23C2 &#x3E; 1 C23 &#x3E; 1

holds for | t | I &#x3E; C3C03B2-n 1/2. (We may assume that C &#x3E; 1.) Then
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For I t I  J s I  2 03B2n+1, n &#x3E; n(c C) Part b) o f L emma . 9 and (6 .1 )
imply that 2 03B2n+ 1 

, art b) of Lemma 9 and (6. 1)

hence

and

Relations (6.13) and (6.13)’ imply that

Relations (6.12)’ and (6.14) imply J(n + 1) if n &#x3E; n(c, C). Relations (3.12),
(3.13) and (3.14) are straightforward consequences of Proposition 2.
Let us choose some C &#x3E; 0 and No = No(c, C) in such a way that for n &#x3E; No
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and this C all conditions imposed on them during the proof of Properties
I(n+1) and J(n+1) be satisfied. Let us choose some N ~ No and K(N) in

such a way that Proposition 1 holds for ifM20 &#x3E; K(N) and 0  T  .
. 

- 

00

Moreover, let M0 be so large that | MN - MN-1|1, MN &#x3E; K(c) + ¿ c-j,
j=N

where K(c) is the same number which appears in the formulation of Pro-

position 3, and N = 2 &#x3E; (9 M2N4 - . Such a choice 0 Mo IS
possible because of relation (3.4). Properties I(N) and J(N) (with the above
constants C and N) hold if we choose Mo in the above way, and in this

case MN &#x3E; K(c), |MN - MN-l I  1, 100 &#x3E; 03B2N &#x3E; max (9 M2n, 4 -N). Then,
because of the above proof of I(n + 1) and J(n + 1) from and and

relation (3.12), a simple induction yields that Properties and (with
the parameters C and N) hold for all n ~ N, and also the relations

&#x3E; max(--i--,4-n+1J) are valid. Proposition 3 is proved./

The following two lemmas are consequences of Proposition 3.

LEMMA 10. - 7/- Mo = a1(a0 - T) Tu2 &#x3E; K, 0  T  2014, with some K then

the limit lim Mn = M exists and Mo - M I  1. Fcr all B &#x3E; 0 

some K(B) &#x3E; 0 such that if Mo &#x3E; K(B) I M - 0 I  B. Also the relations

and

hold with some appropriate K(c) and no(Mo, c).

(Here in the definition of 03B2n we fix some starting index N for which

03B2N = (c2 2)N.)
Vol. 49, n° 1-1988.
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LEMMA 11. - Under the conditions of Theorem 1 there is some

no = no(Mo, c) such that for n &#x3E; no

where C is some absolute constant, and  is the same as in Lemma 10.

Proof of Lemma 10. It follows from (3 .12) that lim Mn = M exists, and if
we choose properly the starting index N in Proposition 3 and also Mo is suffi-

ciently large then I M - N 0| E 2 and I M - N M I  E . 2 Since M &#x3E; K for
all n |Mn-M| ~ ( |Mn - Mn-1|  Kc ". Substituting this relation

j=n
into (3.12) we get that

Summing up this relation for all j &#x3E; n we get (6.15). To prove (6.16) let

us introduce the auxiliary sequence 03B2N =100, 1= - - + 1)03B2+
_ _ 

2 2 M
Then 03B2n &#x3E; /3" for all n &#x3E;_ N. On the other hand if /3 is the solution of the

fixed point equation /3 = - + 1 03B2 + 2 then 03B2n --+ 03B2 = 2 1- - .

Hence for n &#x3E; c ) Nn  Nn  6 5 03B2, i. e. relation ( 6 .16 ) holds.

Proof of Lemma 11. Relation (6.17) immediately follows from (3 . .10),

(6.15) and the inequality &#x3E; 10 &#x3E; 9( ) q Y 03B2n &#x3E; 
M2n &#x3E; M

We claim that

and

for all x. o
Relation (6.18) follows from (6.19), (6.20), (6.16), the inequality ~ &#x3E; 2014.M

and relation (3.18) for |x|  100cn/2 and relations (3.16), (3.17) for

!~! I &#x3E; 
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For ~ I &#x3E; 50c"~ relations (6.19) and (6.20) follow from the bounds
given on the terms i)(x) and ~ i(x) 
in Proposition 3, Lemmas 6 and 10.

To prove (6.19) for |x|50cn/2 observe that 

and

Mn

relation (6.19) can be proved with the help of Lemma 6.
To prove (6.20) observe that

and

Then we get relation (6.20) by estimating the expressions

with the help of Proposition 3 and Lemma 10.
Let us finally remark that in the same way as we deduced relation (6.17)

we get that

7 . ON THE FIXED POINT EQUATION TMg = g

By formulas (2.16) and (2.17) the operator TMg can be written in the form

where the class of functions j~ is defined in (2 .19). We prove the following.
Vol. 49, n° 1-1988.
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LEMMA 12. - The fixed point equation TMg = g has a unique solution
in the class ~ beside the trivial one g(x) --_ 0. 1 t can be written in the form
gM(x) = Mg1(Mx), where g 1 (x) is the solution of the equation T1g1 - g 1.
The function gl(x) is the density function of the random variable

where = 0, 1, 2, ...~ = 1, 2, ... , 2k are independent standard normal

random variables. The solution of the equation (1.6) is 
gl x - 4(c-l)/ .

Remark. 2014 In the case of p dimensional models, p ~ 2, g 1 (x) is the den-
sity function of the random variable

where r~~,k,~ are independent standard normal variables.

Proof of Lemma 12. Relation (2.20)’ tells us that

and this relation also holds if 03BE = t + is, I s I  s(/). If TMgM = gM then
relation (7.3) with 03BE = 0 implies that = M(0)2, hence either 1
or = o. If = 0 then successive differentiation of the equation

yields that I =0 for all ~=0~...,
~ ~=o

therefore gM(~) == 0, i. e. in this case we get the trivial solution == O.

Iterating the equation (7.3) we get that

If gM = gM E ~/, and = 1 then we get differentiating (7 . 3) that
= hence = 0. On the other hand
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with some appropriate A &#x3E; 0 (which may depend on gM) if

Hence 1

for arbitrary ç. Observe that 2014  1.) Since B 2 / 
the above relation together with (7.4) imply that ~ must be of the form

Since the characteristic function of the random

variable ~_ ~ j (1 2014 ~~), where 11 is a standard normal random variable,
hence the function gM is the characteristic function of the random varia-

ble 1 M 03B6, where ( is defined in (7.2). If gM(x) denotes the density function
of the random variable 1 M03B6 then gM and its Fourier transform is

given in (7.5). Since this function gM satisfies the relation gM = T M gM, as
a simple calculation shows with the help of (7.3), the function gM is the
solution of the fixed point equation g = T Mg. The rest of Lemma 12 follows
from simple calculation.

In the next lemma we prove the properties of the function gM important
for us

LEMMA 13. - For any 1 &#x3E; G &#x3E; 0 the function defzned in Lemma 12
satisfies the relations

Vol. 49, n° 1-1988.



64 P. M. BLEHER AND P. MAJOR

with some ’ appropriate positive ’ constants Cj and ’ A which may depend
on the parameter c.

Proof of Lemma ’ 13. Proof of Part a). Relation (7.5) with M = 1
implies that

2 c k
For | s!  (1 2014 e) - - 

s  1 2014 c for all k =1, 2, ... , hence the rela-

tion t ~ 2014 log ( 1 2014 x)! ~  1 implies that
1 2014 ~ j

On the other hand, since each term in the sum in the expression 12(s, ~)
is non-negative

and for any k = 1, 2, ...
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2
Since  Aj~ with some A~ for I s I  - (1 - B) relations (7.6), (7.7),

(7.8) and (7.8)’ imply Part a). C

Since

Part a) gives with the choice s = - 1 - E ) 2 c sig n x that

To prove b 2) first we give a better estimate on I 1 (s) for s  0. Take

some integer L &#x3E; 0 to be defined later. Since x - log (1 + x) and
x - log (1 + x)  x we can write for s  0 2

Choose L in such a way that 2" Isl ~ 1 and (c 2) Isl  1. (Let L= 1

I  1. j Then relation (7.9) with this L implies that I1(s) exp 
for s  0 with some A &#x3E; 0 and 03B1 = log 2.

log 2 - !og c
Relations (7.8), (7.8)’ and the inequality  Ak hold for all s  0,

hence ~) ~ .201420142014.. The estimates given for 11 and 12 together with
. exD ..(7.6) yield that|(t + C(j) 

1 + ’ t ’ for s  0 and arbitrary j ~ O.
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Hence, by applying the inverse Fourier transformation, we get that for
arbitrary 5  0

Given some x &#x3E; 0 choose s = - aA Then

and C(/ + 2) C()(1 + Is 11) . ~ C~ ~) exp {~ ~} for

arbitrary B &#x3E; 0. Since 1 - = 1 &#x3E; 0 the above relations together with (7.10)
imply that 

~

Lemma 13 is proved.

8. THE PROOF OF THEOREMS 1 AND 1’

The following lemma can be considered as a rigorous version of the
heuristic argument at the end of Section 2.

LEMMA 14. If Mo .. is sufficven tl y lar g , e 0  T  
1 

, then there exist

some threshold no = no(Mo) and constant L = L(Mo, c) such that

and

where ’ C, C &#x3E; 0 is an absolute ’ constant, and ’ ,u, M and ’ the threshold no are the

same ’ as in Lemmas 10 and 11

Proof of Lemma # 14. First we show that no
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and

By relation (6 . 21 )

’ -

and o since - ii I = I ii 1 = 1,

and

Hence log ~(~(~) exists for ~ I  Ao, and since

the estimates (8.3)-(8.3)" imply (8.1).
Similarly, we get with the help of (6.18) and the relations

that

By expressing d2 dt2 log Mn(fn)(t) similarly to (8 . 4) and applying (8 . 3)-

(8 . 3)" (for the function n+1(fn+1)(t)) and (8 . 5)-(8 . 5)" we get (8 . 2).
We claim that
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Indeed, by (7. 5)

and

as we claimed. Since TM gM = gM relation (7 . 3) yields that

Put 03B4n = sup 2log gM(t) . By relations (8 .1) and (8. 6)
dt dt

and by (8.2) and (8.7)

The quantity 03B4n can be estimated with the help of (8. 8) and the recursive
estimate (8.8)’, and we get

with some L = L(c). (The multiplying factor n appears only in the case

- - - . Since - log = log 03C6M(0) = log = 0
2 c dt dt
this inequality implies that

for t  Ao. As 1 and I  1 for all t and

for all A, B ~ C the last relation implies Lemma . 14.

Annales de l’Institut Henri Physique -theorique



69LARGE-SCALE LIMIT OF DYSON’S HIERARCHICAL VECTOR-VALUED MODEL. - PART I

In the next lemma we enlarge the domain where we can give the same
estimate as in Lemma 14.

LEMMA 15. - l.f Mo is sufficiently large, 0  T  1 , then there exist
10

some no = no(Mo, c), ~ = I1(Mo, c) L = L(Mo, c) constants such that
for all n &#x3E; no

Proof of Lemma 15. 2014 It follows from (6.18) that

for n &#x3E; no and all t. On the other hand by (7 . 3) and the relation gM

j 2 k-l /2V tDefine the sets I,=~f-) ~=1,2,... and

Io = { ~ ! ~! I  Ao }, where Ao is the same as in Lemma 14, and put

Then

by Lemma 14, and relations (8.10) and (8.11) imply that
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Define B . = 2014 2 for all 0 ~ j _ k. Since there is
~ 11 2l /2V

~=. /1+A, -
B c

r /2Yn"’~ i
some lo such that 2 1 + A 1 - _ - if  &#x3E;_ the inequality

L c 2

Bj,k ~ K.2-(k-j) holds for any j, /( &#x3E;_ 0 with some appropriate K = K(c).
Hence relation (8.12) implies that

The last inequality together with (8.11) imply that

Observe that the right hand side in the last relation depends on n and k

only through n + k. It implies Lemma 15 with 11 = Ao, where Ao
is the same as in Lemma 14. 2

The proof of Theorem 1’. 2014 It follows from Lemma 15 and (7 . 3) that
for n &#x3E; no

On the other hand we get by applying (3.17) in Proposition 2 with
4

f = fn, g = 20142014 (this 
can be done, see (6.17)) the inequality

Hence integration by parts yields that

By part ~) of Lemma 13 and the relation = ~i(.,) also
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Relations (8.13)-(8.13)" imply that we have with arbitrary ~ -) &#x3E; B &#x3E; 0

Put q ’ = and choose ° B = Then (8.14) with this B
implies that v C v 2

We get, similarly to the proof of (6.19), the strengthened form

Since = Mg( + c 4(c - 1)) by Lemma 12, where g is the solu-
B B 4(c-l)//

tion of the equation ( 1. 6), relations (8 .15), (8.15/ and (3 .13) imply for-
mula (2.9) in Theorem 1’. The remaining statements of Theorem 1’ are
contained in Lemmas 10 and 11.

In the proof of Theorem 1 we need the following

LEMMA 16. 2014 &#x3E; C), 8 &#x3E; 0 then there exists some C(8)=C(~ C)
such that

7=0,1,2.

Proof of Lemma 16. 2014 By Property I(n) and the behaviour of the sequence
/3" there is some /1 &#x3E; 0 0 such that

We can improve the constant ,u in (8.16) by successive application of

Proposition 2. Choose ~ = 5 and the integer k in such a way that
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lu2 - 2 -2 2 k - 
1 1 - E’ 2

Define ~u, 3 ~ ,u  ,u so that ,u ~ (1- r~) - 

------ , 
Put m = n - k -1.

Since fn(x) = Qn-l,Mn-l 1 ~ .. Qm,M,n fm(x) we get Lemma 16 by applying
formula (3 .16) successively for Qm+ - j s k - 1, with 8 = 11

1 

( 
c ’ 

~ 

4
and /3 = , and finally for fn-1 with /3 = 2

and 8 = 11. This is possible since for all 0  j s k - 1

(Since the number of iterations k does not depend on n neither the constant
C(B) does.)
The proof of T heorem 1. Simple calculation yields that

where the norming constant Bn is determined by the equation

By relations (2. 9) and (2. 8)’

with M = /2014M and errors terms r(1)n(x), r(2)n(x) satisfying the inequality
~i

d~
r~) ~ with some K &#x3E; 0, 0  ~  1~’=0,1,2J = 1,2.

We claim that
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if b &#x3E; 0 is sufficientlv small. Indeed, in this case

because of (8.18) and the inequality 2014: exp [ a0 2Tcn(x2-M2)]|~ Kq-n/2cnj
_ _ 

~ L 2T -
if I  ~c’", and ~=~(M, c) &#x3E; 0 is sufficiently small. On the other
hand

since

Relation (8.19) follows from (8.20) and (8.20)’.
We also claim that

for j = 0, 1, 2 with some appropriate K = K(M, c) &#x3E; 0 and = (c) &#x3E; 0.

For x &#x3E; / 2014 M relation ( 8 . 21 ) immediately follows from the inequalities
a
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rr
For 0  x  /2014 M~ we need the sharper bound given in Lemma 16 for

V al

the function ~,. In this case the estimates

imply (8.21), since  = 1 c - E al - T (1 &#x3E; 0.

It is not difficult to see with the help of Part b 1) of Lemma 13

with some a &#x3E; 0. We show with the help of (8.19), (8. 21 ) and (8. 22) that

with

and some appropriate 0  q  1. Because of (8.17) and (8.17)’ relation
(8.23) implies that the constant Bn defined in (8.17) satisfies the relation

To prove 
" (8 . 23) let us first observe " that we make " an error of order
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0(qn/2c-nn)exp(-a0 2TcnM2) by replacing the integrand on the left-hand

side of (8 .23) by

Indeed, by (8.19) the difference of the two integrals can be bounded by
this error term if we integrate only in the domain D~, = { x == x2),
II ~ x ~ - M ~  ~c’"}, and by (8 . 21 ) and (8 . 22) both integrals are bounded
by this error term if we integrate outside the domain Dn. On the other

hand, we get with the change of variables r = c"( xi + x2 - M) that

(In the last step we have applied again Part b 1) of Lemma 13.) These esti-
mations imply (8.23).

Relation ( 1. 7) follows from (8.17), (8.23)’ and ~8.21), relation ( 1. 5)
with the bound ( 1. 8) on the error (and B(M, T) = follows from

, (8.17), (8.23)’ and (8.19) for x - M ~  and (8.21), (8.22) instead
of (8.19) for x - M) &#x3E; The remaining statements of Theorem 1
are easy consequences of Lemmas 10, 12, 13 and the definition of M. Theo-
rem 1 is proved.

9. THE PROOF OF THEOREM 2.
THE BEHAVIOUR OF THE DENSITY
OF THE AVERAGE SPIN AT INFINITY

In this section we prove Theorem 2 with the help of two lemmas whose
proofs are postponed to the next section. First we want to determine the
typical region where the function T) is essentially concentrated. More
precisely, we want to define an interval Dn in such a way that

JC

with some and [0, 00] - Dn has exponentially small
probability with respect to the probability measure with density func-
tion T). (Here K" is that norming constant with which T)
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is a probability density function on [0, oo ].) To solve this problem we need
the following

LEMMA 17. - Consider the function defzned in Lemma 12. There
exist some A = A(c) &#x3E; 0 and B = B(c) &#x3E; 0 such that

Part b 2) of Lemma 13 and Part a) of Lemma 17 imply together that

Bl exp ( -   B2 exp ( - for x &#x3E; 0 (9.1)
with some B1 &#x3E; 0, B2 &#x3E; 0 and 0  A2  AI, and Part b 1) of Lemma 13
together with Part b) of Lemma 17 yield that

with arbitrary B &#x3E; 0 and appropriate Bi(e) &#x3E; 0, 82(8) &#x3E; 0.

Define the function Pn(X) = Ken exp (- T M(x-M) g ----;y-(x-M)

with 1 K = - exp (-a1 T My)g( T y dy. (The last integral is conver-

gent because of Part b 1) of Lemma 13.) Then is a density function
and a comparison of the functions and T) gives with the help
of Theorem 1 and Lemma 13 that

and

with some 0  q  1, where Kn is defined so that T) is a density
function on [0, oo ]. It follows from Part M of Lemma 13 and the identity

g(x) = gl 4(c - 1) that for all E &#x3E; 0

and
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with some C = C(B) &#x3E; 0, and q =  q  1. These estimates together
with (9.2)" imply that

and

On the other hand, by the definition ofPn(x), Lemma 17 and (9.2)’ imply that

for M - ~c-nn  x  M + if B &#x3E; 0 is a sufficiently small but fixed
(depending only on c and M) constant. Relations (9.2)’ and (9.4) imply
(1.10), and (9.3), (9.3)’ explain why it is natural to consider the above
interval.
We prove Part a) of Lemma 17 in the next section. Here we give a heuristic

explanation for formulas (9.1) and (9.1)’ and prove Part b).
It is natural to expect that B exp ( - with some B &#x3E; 0,

A &#x3E; 0 for large x, x &#x3E; 0. If we consider the expression then for

large x the main contribution to the integral is given when 0, 0,

therefore B 2 exp -2A - . Hence the identity 

suggests that 2A x - Ax03B1, i. e. oc log 2 In (9.1) we have formulatedgg 
c 

’ 

log c c 
( )

a slightly weaker statement, since we have given only an upper and lower
bound on the coefficient A inside the exponent. The above argument does

not work for x  0, since in this case the domain u ~ 0, v2 2 ~ - x gives
an essential contribution to the integral This observation in the
basis of the

Proof of Part b) of Lemma 17. For x  0 define the set

Since &#x3E; C &#x3E; 0 with some C for 0  z  3 (this will be proved in the
proof of Part a)), 0 for all z and g 1 (x) = Tl g 1 (x) hence
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78 P. M. BLEHER AND P. MAJOR

It is natural to expect that the decrease of the function T) outside
the typical region is similar to that of For x  M we cannot expect
a considerably better estimate than (1.7), but it is natural to expect that

T) ~ Ccn exp { - !jc - M ( )°‘ ~ for x &#x3E; M and sufficiently large n
with some C &#x3E; 0, A &#x3E; 0 and the same a as in Lemma 17. However, this
cannot hold without any further restriction, since the starting function po
satisfies the inequality t) &#x3E; C exp (- for large x with T).
(This inequality holds for t) if x is sufficiently large depending on n.)
Hence, in the case a &#x3E; 4 the above formulated conjecture does not hold.
In the next section we prove the following weaker result :

LEMMA 18. - Let a  4 and a  X = Under the conditions of
log c 

’f

T heorem l’ there is some no = T, a) such that for n &#x3E; no

with some C &#x3E; 0 and A &#x3E; 0 which depend only on a and c.
It can be seen with the help of (8 .17) and (8 . 23)’ that Lemma 18 implies

the inequality c- pn(x, K exp (- x - M I )(X) for x &#x3E; M what
is a considerable improvement of (1.7). However, since a  c(, even this
estimate is not strong enough to imply (9.3). With the help of a simple
trick we can prove a strengthened version of Lemma 18 (for j = 0) which
is sharp enough to imply (9 . 3).

COROLLAR y Of LEMMA 18. - Let the conditions of Lemma 18 be satisfied,
and let some E &#x3E; 0 be given. Then there exists some q = q(E), 0  q  1

and K &#x3E; 0, L &#x3E; 0 depending on c, T, t and a such that

Since log 2 log c &#x3E; 2 for 1  c  2 this Corollary implies (1.11/, and

thus completes the proof of Theorem 2.

Proof of the Corollary of Lemma 18.
We have

with some appropriate K &#x3E; 0 and A &#x3E; 0. This follows from Lemma 18

relations ( 8 .17 ), (8.23/ the definition M = /2014M and (2.8/. ( Observe
V al
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that 
2014: exp (- TI (x2 - M2)  Kcjn for jc &#x3E; M, Given some x &#x3E; M

define z = n) = - exp M } T), where the
2K 

.

constants K and A are the same as in relation (9.5). Then we have by (9.5)

If x &#x3E; M + then relations (9 . 3) and (9 . 6) imply that

or equivalently

The last inequality implies the corollary with ~ instead of q.

10. THE PROOF OF LEMMAS 17 AND 18

Proof of Lemma 17. 2014 We use the fact that is the density function

of the random variable 03B6 defined in (7 . 2). Introduce ~k=1 2(c 2)k+1 (1-~2j,k),

03B6k = ( - = 0, 1, 2, ... where are the same as iri (7.2).
Let denote the density function of ~k and the distribution func-
tion of ~k.

Since

and since

we have

In order to estimate pk(y) we recall that the local large deviation theorem
for partial sums of independent identically distributed random variables
implies the following estimate : If denotes the density function of
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n

the random variable ¿ (1 - ~2j), where ~j are independent standard nor-
mal random variables then there exist some B&#x3E;0,y&#x3E;0,C&#x3E;0 such that

Let us first consider the case x &#x3E; 4A, x &#x3E; y, and define the integer

k = k x by the relation 1: ck -1 - x  1: ck, where y is the same constant

which appears in (10 . 2). We have pk( y) = 2. - PZk 2. - y

Hence for |y - x|  2A and k = k(x) 
c c

with some C &#x3E; 0. This implies, because of the definition of that

with some C&#x3E;0,B&#x3E;Oifx&#x3E; max (4A, y). Relation (10.3) also holds
for 0  ~  max (4A, y) with ~ = O. Lemma 17 follows from (10.1) and

(10.3).
To prove Lemma 18 first we introduce some notations. Let some x

be given, 2 S oc  

-, , 
and choose some B = s((x, c) &#x3E; 0 such that

2c-0152 &#x3E; (1 + e)/(l - 2  (1 - (Here we write IX. instead of the

number denoted by o( in the previous section.) Define the sequence y~,

with some K &#x3E; 0 to be defined later. Clearly
i

(Here M is the same number as in Theorem 1’.) Let us fix some positive
integer N and real number C so that Proposition 3 hold for large Mo
with these parameters. Define 03B2n by (3.9) and (3.9)’ for n &#x3E;_ N and let

C2 n
g = j 2014 ) for n  N. We shall prove the following
2 -
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LEMMA 18’. - If Mo and also (in dependence on c, a ard B) the number K

defined in (10.4) are sufficiently large, 2 S a  min 4 log 2 log c) then
log c

where C is the same constant as in Proposition 3.
Lemma 18 is an immediate consequence of Lemma 18’ since by ( 10 . 4)’

Yn &#x3E; const M-(X and also ~n &#x3E; const - for sufficiently large n . We shall
prove Lemma 18’ with the help of the following

log 2LEMMA 19. - Let some a, 2  a s , be given, and define the
log c

sequence y" by (10 . 4~. If Mo is sufficiently large, and the function fn satisfies
the inequality ,

with the same , constant C &#x3E; 0 as in Proposition 3 then

where C1 is an absolute constant, (Especially, it does not depend on the
mumber K in the definition of 03B3n.)

Proof of Lemma 18’ with the help of Lemma 19. - Relation (10.5) holds
for n = o. Indeed, we have an explicit expression for with implies
that exp (- ~~) ~ 3 exp (- (~ Y) ~ C exp (- ~) if

K &#x3E; 16, The derivative 2014 can be estimated similarly.- 

~c

therefore it is enough to prove (10.5) for x &#x3E; Bn with the help of (10.7). 
,

We show at the end of the proof that for arbitrary large L &#x3E; 0 there is
some K = a, c) such that
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if Yn is defined with this K. Now we prove Lemma 17 if (10.8) holds with
a sufficiently large L. In that case we have by (3.12)

Hence by ( 10 . 7)

Here we have exploited that Yn+ 1 &#x3E; (1 - &#x3E; 1 3 ~+1. . Since

( 1 - E)22c - °‘ &#x3E; 1 + B the last relation implies that 
3

with

Simple calculation shows that

if L is sufficiently large. Hence it is enough to demonstrate ( 10 . 8) to complete
the proof of Lemma 18’.

some B = B(c) and B = B(c), Since (2014  (1 - ~)2 we have

On the other hand by (10.4/

and these relations imply (10.8) if K &#x3E; BL.
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Proof of Lemma 19. Let us introduce the functions

and

where the functions are defined in (4. 7). Then

and by the Cauchy- Schwartz inequality

On the other hand

since in this case ~(~0~) ~ ~(~0,0) = ~, and

since  20142014 for all z.y~
It follows from (10.10), (10.11) and (10.11)’ that

and

Hence by ( 10 . 9)

To estimate 11 we show that
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Indeed, (10.13) is equivalent to the inequality

and this inequality holds, since h(o) = 0, h’(o) = 0 and

On the other hand

Relations ( 10 .12), ( 10 .14) and ( 10 .15) together imply Lemma 19 
The proof for j = 1 is similar. The difference is that in the estimation of

_ we have to work beside the function Pn(x) also with

It can be estimated in the same way as Pn(x), the only difference is that

now a multiplicative factor 1 appears. Lemma 19 is p roved.
Pn
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APPENDIX A

THE PROOF OF THE BASIC RECURSIVE
RELATIONS (2.1) AND (2.1’) IN PART I

Formula (2.1)’ immediately follows from (1.4) in Part I with n = 0. To prove (2.1) let
us first observe that the recursive relation

holds for n 2 0, where

and is defined by (1.1) and (1.2)’ in Part I. By relation (1.4) in Part I.

where Z"+ 1(T, t) is an appropriate norming constant, and ~(2’~"~~~?~’~ - x) means
that integration in (A2) is taken on the hyperplane 2’~~~S~i’~=~ with respect to
the Lebesgue measure. Let us fix some number u, and calculate the integral on the right-
hand side of (A2) by integrating first on the hyperplane defined by the relations

= x + u and = x - u and then by integrating by u. We get
with the help of relations (AI) and (A2) that

as we have have claimed.

(Manuscrit reçu le 20 mars 1988)
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