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LIMIT THEOREMS IN STATISTICAL PHYSICS;
ON DYSON’S HIERARCHICAL MODEL

Bleher P.M. and Major P.

Keldysh Institute for Applied Mathematics Moscow
Mathematical Institute of the Hungarian Academy of
Sciences Budapest

Problems about the limit distribution of appropriately
normalized partial sums of strongly dependent random
variables'appea; in statistical physics in a natural way.
Formally the problem is very similér to that appearing
in classical probability theory, but there are very
essential differences. In classical probability theorv
one generally knows the asymptotic behaviour of the cor-
relation function at the beginning. In statistical phys-
ics we are looking for the limit distribution of partial
sums of Gibbs distributed random variables. This Gibbs
distribution depends on a physical parameter, the tem-
perature T. This dependence is very intricate, and our
main goal is to understand how the behaviour of the
partial sums depends on the paramter. In interesting
cases there is a special value of the parameter, the
so—called critical parameter Tcr’ where the partial sums
satisfy a limit theorem with a different norming than at
any other parameter. This particular role of the crit-
ical parameter is also reflected in the behaviour of the
correlation function by its slow decrease in infinity.
But we cannot describe the behaviour of the correlation
function at the beginning. What we are able to do is
first to solve the limit problem and then to describe the
asymptotic behaviour of the correlation function with

its Help. The study of these questions is not carried
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out completely in the case of general models because of
some very deep mathematical difficulties. Hence in this
report we restrict ourselves to a special case, the so-
called Dyson’s hierarchical model, where we can give a
fairly complete picture about the behaviour of the model
at the critical parameter. This also helps us to under-
stand what is happening in the general situation.

In order to define Dyson’s hierarchical model first we
have to introduce its Hamiltonian function H and a free
measure . Let o(j), jeé N, N={1,2,...} o(j)€R be an
arbitrary sequence. For a fixed number n we define the
Hamiltonian function of the subsequence
o(n)={o(1),...,0(2")} in the following way:

n

_ 2
H(o(n))= - §
i=1

on
I ati, i) e(i)a(d),
j=1
where a, 1<a<2, is an important parameter of the model,
d(i,j), the so-called hierarchical distance, is a modi-
fied version of the usual distance d(i,j)=|i-j| , and it
is defined by the formulas d(i,q)=2P(1/3),

n(i,j)={min k, g2 such that 22Xsi,j (2+1)2%}.

We also define the so-called free measure v on the real

line given by the formula

2
d—(\%ﬂ = p(x)=p(x,u)= exp(-gz{- = % x4),

where u>0 is sufficiently small. What is important for
us in this definition is that p(x) is close to a
Gaussian density, and it tends to zero at infinity
faster than any Gaussian density. With the help of the
function H the measure v and a parameter T, T>0, we
introduce the following probability measures

w_(T),n=0,1,2,... on R2%:
n 1

2, (T)

21'1
bp g (45 (n)) = {exp - p HEm LT, w(do(d)),
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where Zn(T) is an appropriate norming constant. The meas-
ure My, is called the Gibbs distribution with Hamiltmian
H at temperature T in the volume £1,2, 00592  Fu

Let o(1),...,c(2n) be a n,T distributed random vector,
and let pn(x,T) denote the density function of the
average 1. 23 o(i). One of the main problem

2" i=1

in the study of Dyson’s hierarchical model is the
description of the asymptotic behaviour of pn(x,T) for
large n. In particular, with what kind of rescaling (in
the variable x) has it a limit as n-+«? How does the
answer depend on the parameter T? In the present report
we restrict ourselves to this problem.

It is relatively simple to show that the relation

on 2n+1
H((o(n+1)) =H(g(m))+u(a(m))-2" ™12 T o5y §  o(3)

i=1 3=2"+1
holds with o(n)={c(2™+1),...,0(2™ ")}, and it implies

the formula
n

pn+1(x,T)=cn(T)Iexp(% (x2—v2))pn(x—v,T)pn(x+v,T)dv (1f

with c=22"a and an appropriate ﬁorming constant Cn(T).
On the other hand '
2
- Xx_u 4
po(x,T)—C(u)exp( 5 7 X ). _ (2)

Thus the problem we are interested in is equivalent to
the description of the asymptotic behaviour of the
sequence p (x,T) defined by the recursive formulas (1)
and (2). In order to simplify the latter problem we

introduce the functions
A B “2/T 2
qn(X)=qn(x,T)=BneXp(§;T x“)p, (c ’f51 x,T), ajss== ,

a1=a°+1.
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with some appropriately chosen constant Bn‘ A simple
calculation, based on formulas (1) and (2) shows that

dp4q (X)) =8q, (x) (3)
with
Sq(x)=\’=3;— fe_vzqg—% +V)q(\}—[f%— v)dv A (37)
qo(x)=qo(x,T)=C(u)exp(2§:T x2- 7 fjx4) (4)
and 1 '
p, (x,T)=C exp (- ;% cnx2)qn(cn/2hfézf;,_ (5)

Therefore it is enough to sfudy the asymptotic behaviour
of ano(x) as n»« , Let us observe that the operator S

is very similar to the convolution operator T,

Tq(x) =/q (& +v)q(‘T—— - v)dv,

which plays a very important role in classical probabili
ty theory. (We have applied the same scaling in the
operators T and S.) Moreover both S and T transform a
Gaussian density function into a Gaussian density func-
tion again. To understand the behaviour of the operator
S it is worth while to compare the action of its powers
for a starting function qo(x) with that of the powers

of T. We shall consider the following two special cases:

Case a) qo(x)= const~exp(—Ax2).
Case b) qo(x)=%(6(x—M)+6(x+M)), where 6(x)20,/6(x)dx=1,

§(x) has a compact support, and M is sufficiently large.
In case a)an (x) and T%o(x) behave alike. Both are

Gaussian densities with variance —(2) . (We are not
interested in the multiplying factor before the exponent,
because at the end we normalize in such a way that we
get a density function.) Moreover if g (x) is close to a
Gaussian density then both
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n/2 n/2
x) tend to a Gaussian

n c
Sq, ((3)
density function as n-e
n n

5 and T q, are

In case b) the behaviour of S'q
(See figure 1.)

n C
X) and T qo((f)
essentially different.

Tl )= Iq(%f\')rq(%—v)dv Salx) = o
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The function Tq (x) has three’large peaks in /€ M and
zZero. Sqo(x) hag two large peaks in the points *¥M and
a small one in zero. The last peak is very small because
of the effect of the multiplying term exp(—vz) in the
operator S. In the functions ano(x) new high peaks
appear after each step, for large n they merge together,
and by the central limit theorem they draw out a Gaussian
density. The function h q, (x) has two high peaks in

2 n/2M’ and there are many small peaks in between, which
are all negligible because of the effect of the multi-

plying term exp(—vz) in S. The peaks in cn/2M and —cn/zM

evolve independently, and for large n an((%)n/zxfcn/zM)
is asymptotically normal.

The above examples show the essential difference
between the probabilistic problems appearing in statis-
tical physics and classical probability theory. In sta-
tistical physics we have to deal with operators which
are very sensitive for the starting functions.

In our problem the starting function 95 is defined in
formula (4). It is of the form exp (A(T)x +B(T)x ) , where
B(T)<0 for all T, A(T)<«0 for large T, and A(T)>0 for
small T. Hence qo(x) behaves similarly to the exampe in case
a) for large T and to the example in case b) for small T.
These examples also suggest the limit behaviour of qn(XL
A detailed analysis of an and formula (5) yield that
Theorem 1

For large T here is some A(T)>0 such that

. .2
pn(2 2x,T)->-——-——1-—-—-—-—— exp (- —EK%TT— )
V27 A(T)
Theorem 2
For small T there is some sequence Mn(T)+M(T)>0

and A(T)>0 such that




-2 1 i n/2 2
2V27A(T) 2A(T)
n/2 5
(x+2 M_(T))
exp (- 2A(T) i1,

For Tmao,qo(x)m1. In order to describe the limit
behaviour of pn(x,T) at the critical parameter Tcr and
in its small neighbourhood one has to study an(x) with
a starting function close to 1. Observe that the func-
tion g(x)= 1 is a fixed point of the operator S. We are
interested in the stability of this fixed point with
respect to S. Hence we take a small perturbation of the

fixed point 1+eg(x), and consider

S(14eg(x)) =1+¢ %?fe‘vzg(éaf v) dv+
82 —v2~ X X 2
+ we Je g(z? +v)g$5.-v)dv=1+s D1Sg+o(e )
with

_ 2 .=V
D1Sg (x)= V-:ﬁfe

X
9(7?+v)dv.

The operator D1S is well-known in classical analysis.
Its eigen-functions are the Hermite polynomials with
weight function exp(—gé-l x2), and the corresponding
eigenvalues are %, éZ yee+ « (In our investigation of
ano(x) we can restrict ourselves to the space of even
functions, hence the Hermite polynomials of odd order
are not interesting for us.) For c>v2 the operator,D1S
has exactly one unstable eigen function h2 with the
eigenyalue % >1, and the subspace orthogonal to h2 is a
D1S invariant subspace, where D1S is a contraction.
Since S(g(x)+g(x))-Sq(x) is very close to D1Sg(x) for
small functions g(x), (qg(x)=1), this suggests the follow-

ing picture: (See figure 2)
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1
T

figure 2

In a small neighbourhood of g(x) there is an € invariant
mainfold M of codimension 1, where S is a contraction.
For g€EM an(x)*q(x) exponentially fast, and for g€EM the
scalar product (an—q,hz) tends exponentially fast
either to plus or to minus infinity. The one-dimensional
curve qo(x,T) intersects the manifold M in a point Tcr'
and for this value gufano(x’Tcr)+q(x)‘ We are looking

for this value Tcr' We can exploit that for T>TCr

(ano(X,T)-—q(x),hz)-»w » and for T<T, (S"q (x,T)-q(x),h}e.
These relations enable us to find a sequence of intervals
[T1(n),T2(n)]with exponentially fast decreasing length
such that they are embedded in each other, i.e.
T1(1)<T1(2)<T1(3)... and T1(2)>T2(2)>T2(3)..., and they
all contain the point Tcrwe are looking for. The criti-
cal parameter can be found as the intersection of these
intervals.

On the basis of the above argument the following
Theorem 3 can be proved:
Theorem 3

For c>Y2 there is some Tcr=ao+0(u) such that

ano(x,Tcr)+1. Hence formula (5) implies that

~n/2 [ 9 =<y 2. q
pn(c X Tcr)JV 2”Tcr &@(2 Tc x“). The function

22
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pn(x,T) satisfies Theorem 1 for T>Tcr and Theorem 2 for

T<Tcr' n/22n
Theorem 3 implies that EH 2 o(j) is asymptotically
27 j=0
n 2"
normal with a finite variance for T=Tcr,2 2 z o(j) is
J=1

asymptotically normal with finite variance for T>Tcr,
and its density is asymptotically the mixture of two
Gaussian density functions with finite variance and
expectations 1/5ﬁ M(T) for T<Tcr.

For c<vV2 the operator D1S has two unstable eigen-

function h,(x) and h, (x) with eigenvalues 2 and &
2 4 C 02

respectively. Hence the fixed point of S q(x)=1 is not
stable enough, and Theorem 3 does not hold in this case.
For c=vV2-¢, €50 is small, one can find with the help
of bifurcation theory another fixed point
qx(x)=1+c€(1-x2)+0(52) of S8 such that the linearization
of the operator S in the point qx(x) has only cne
unstable eigenfunction. In this case the following
Theorem 4 holds:

Theorem 4

There is some e_>0 such that for c=/2-¢, O<g<e_ the

fixed point equation Sg=g has a solution of the form
9?(x)=1+Ce(1-x2)+0(52), C>0, such that the linearization

of the operator § in the point qx

2
D x g(x)=fe ' g X

X
q l/_é+v)g(‘/.c. v)dv

has exactly one eigenvalue larger than 1. There is a

s n ®
critical parameter T such that S qo(x,Tcr)+q (x)
a -
. -1y o 2, #4711
and hence pn(c zx'Tcr)') const.exp ( ZTcr x7)q q/Tcr x) .

With some extrawork it can be proved that for
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n
22h 2 ) ; :
T=T = E(_E 0(j)” ~ const. and Eo(i)o(j)n

c_, 371
~const d(i,3)

with a=logzc, for T>Tcr. Eo(i)o(j) ~ const <:'l(:L,j)"a

and for T>T__, Eo (i) (3) =M ~const d(i,3) 2, where M_is

defined in Theorem 2.

Generally one is interested in translation invariant
models. In this case only partial results are available.
They are the natural analogues of the results proved for
Dyson’s model, and the method of investication is also
strongly motivated by this model.

In this report we only could give a short introduction
to this subject. A more detailed discussion together with
a list of literature will appeaf in our paper [1].
Reference .

[1] Bleher P.M., Major P. (1987) Critical phenomena and
universal exponents in statisﬁical physics. On
Dyson’s hierarchical model, Annals of Probability 2.
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STATISTICAL ASPECTS OF SELF~SIMILAR PROCESSES

Hans Kiinsch
Seminar fiir Statistik
ETH-Zentrum, CH-8092 Ziirich

Statisticians have met phenomena of long-range dependence for a long
time. In certain areas of application like hydrology, geophysics or
agriculture the existence of dependence was to be expected a priori,
but the long range of the dependence which caused limit behaviours en-
tirely different from the case of independence came as a surprise.
Moreover, phenomena of long-range dependence turned also up in assum-
ingly independent high precision measurement in astronomy, physics and
chemistry. Since long-range dependence has drastic consequences for
confidence intervals and related quantities, it should be taken into
account. The increments of Gaussian self-similar processes can be re-
garded as the basic models with long-range dependence. Their descrip-
tion is simple because only 3 parameters are needed. We discuss here
estimation and inference for these parameters. Deviations from the mo-
del will be handled eithe: by larger model classes or robust procedu-
res. The methods are nowadays sufficiently well understood so that they
can be used by many people either as an alternative to standard time

series methods or as a precaution against violation of the assumption

of independence.

1. Models
As our basic model we take discrete fractional Gaussian noise, i.e.

(Xj)jegz is stationary and Gaussian with

ECX;] = v (L.a)
_ - 2 ZH_ 2H 2H
R(k) = COV(Xi'X:H-k) = 0" /2(|k+1] 21k | T4 x-11°T (1.b)
For this process, the distribution of Yr.; = Y; lxj+ ., 1eZ s up to
= ni
scale and location the same for all n (se1f~simi1arity) . In particu-
lar
n _ . 2H 2 ’
var( I, ;%) =n"0¢" (new) . (2)

The spectral density f of (xi) is
£(0) = oZsin(nH) /nT (28+1) (1-cosA) [ |A-2nj| 2H-1 -
H-2
Asymptotically R(k)WZH(ZH-IHkIZ (k+®) ang
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