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Given a sequence of partial sums $1, $2, ... of i.i.d.r.v.s; we approximate them by 
the partial sums of independent normal  variables. We show that our construction 
is optimal if nothing more than the existence of the first two moments  of the sum- 
mands is assumed. We generalize the construction to the case when the time param- 
eter set is multi-dimensional. 

1. Introduction 

An essential part  in the proof  of Strassen's law of iterated logarithm is the following 

Theorem 1. Given a d. f  f(x),  S xdF(x)=O, S x2dF(x)=l  one can construct two 
infinite sequences of i.i.d.r.v.s 521, X 2 .... and II1, Y2,... with distribution F(x) resp. 

n 

4~(x) in such a way that the partial sums Sn = ~ Xi, Tn = Yi, n = 1, 2. . .  satisfy 
i = 1  

IS~-T , l=o( l /n log logn)  with pr. 1. 

(~0(x) denotes the standard normal distribution function). 
Strassen [5] proved this result by applying the so-called Skorohod embedding. 

In the present paper  we give a direct proof  to Theorem 1, Then we show that this 
result cannot be improved. More precisely the following statement holds. 

Theorem 2. Let f(n) be any positive function tending to infinity. Then there exists 
a distribution function F(x), ~ x dF(x)= O, ~ x z dF(x)= 1 with the following property: 
for any pair of sequences of i.i.d.r.v.s X1, X 2 .... and Ya, I12 .... with d f  F(x) resp. 
�9 (x) one has 

P lim sup f(n) 1/n log log n - oo = 1 

where S ,= ~ Xi, T,= ~ Yi. 
i = 1  i = 1  
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Theo rem 1 can be slightly generalized. Let  the t ime-paramete r  set T d consist 
of all the lattice points  with positive coordinates  in the d-dimensional  Euclidian 
space R d. We say that  m < n, m = (ms, ... me), n = (nt, ... ne) if m~ =< n~ for i = 1 . . . .  d. 

d 

We define Inl = I-I ni- 
i = l  

We state the following 

Theorem 1'. Given a distribution function f(x) ,  ~ xdF(x)=O, ~ x2 dF(x)= l and a 
monotone sequence n~ < n 2 <.. . ,  n ~  r d. One can then construct two sets of  i.i.d.r.v.s 
X, ,  I1,, n e T  d with distribution F(x) and ~b(x) in such a way that the variables S ,= 
~. Xi, T, = ~ Yi satisfy 

i<n i<n 

sup IS~- T/] = o (]/]nkl log log Ink[) with pr. 1. 
i<nk 

Theo rem 1' implies that  the set of variables S,,  ne  T d satisfies similar laws of 
i terated logar i thm as the Wiener  process with d-dimensional  pa rame te r  set. 
Thus using T h e o r e m  1' we can reduce some proofs  of Wichura  [7] to the investiga- 
t ion of the Wiener  process with d-dimensional  pa rame te r  set. 

Finally we make  some remarks  abou t  the approx ima t ion  of sums of i.i.d.r.v.s, 
compar ing  the cases when the s u m m a n d s  have only two moments ,  and when they 
have more.  

Denote  the set of distr ibutions F(x):  ~xdF(x)=O, ~xZdF(x )= l  and 

[. Ix l 'd f (x)< c~ by Kr, r>2. 

If F(x)eK2,  then two sequences X 1, X2, ... X ,  and Y1, I12, ..-, Y, of i.i.d.r.v.s can 
be constructed so that  

P suplSk--TkL>e 4 0  as n ~ o o  f o r e v e r y  ~ > 0 .  
p<=n 

(This s ta tement  is equivalent  to the functional central  limit theorem for sums of 
i.i.d.r.v.s.) 

This means  that  by approx imat ing  the part ial  sums in K z a better  rate can be 
achieved if we only want  stochastic convergence instead of convergence with 
probabi l i ty  1. 

In Kr, r >  2 the si tuation is somewhat  different. Here  an approx ima t ion  with 
the p roper ty  

1 

lira n ' (S, - T,) = 0 with pr. 1 

can be reached, see I-2] and [3]. On the other  hand for any f(n) ---, oo a distr ibution 
F(x)eKr and a sequence n k, k =  1, 2, ... n k ~ oo can be found so that  

1 

P(f(nk)n k ' s u p  IS j -  TjJ > 1 ) ~  1. 
j<=nk 

In fact, choosing a distr ibution F(x )eK,  and a sequence n k in such a way that  

1 

1 - F(3 n~/f (nk)) > f (nk)/n k 
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the relat ion 

1 1 

P(sup f (nk )  n k " [ S j -  Tj[ > 1)=< P(sup  I X j -  Yjl > n~/2 f (nk) )~  1 
j<=nk j<n 

holds. 

2. P r o o f s  

Our  proofs are based on the following theorem of Heyde  (see [1]). 

Theorem A (Heyde). Consider a sequence X1,  X2 ,  ... o f  i.i.d.r.v.s and its partial sums 

S,-= ~ X  i. Le t  E X a = 0  , E X ~ = I ,  F ( x ) = P ( X I < X  ) and F n ( x ) = P ( S n < x a , ] / n  ) 
i=1 

where 

0 . 2 =  ~ x 2 d F ( x ) - - [  ~ x d V ( x ) ]  2, 
Ixl< v~ Jxl< v~ 

T h e n / f K  > 0, C >  1 and nk, K >  1 is a sequence of  integers with nk ~ K C 2k as k ~ o% 
we have 

sup IF.k(x ) - ~(x)l < oo. 
x 

Proof  of  Theorem 1. Let us first r emark  that  it is enough to prove  the following 
somewhat  weaker  s ta tement :  

For  any e > 0 there is a construct ion satisfying the relat ion: 

( 'Sn-Tn'  =<e) = 1 .  (2.1) 
P lira sup ] /n  log log n 

To  prove  this r emark  we make  the following construct ion.  Let  the sequences 

S(k) T(k) 1 , , n = 1 ,  2 ,  ... satisfy (2.1) with e = ~ .  We m a y  assume that  the pairs ~ T(k~ 

for different k-s are independent .  Let us now consider a sequence of integers 
n 1 < n  2 < . - .  with the following propert ies" 

n k ~ 2  2k, n k is of the form 2 mk where m k is a positive integer and 

/ IS(~ k) - T~k) I 2\ 1 
P a 

Let the sequence S. and T. be such that  S. - S.~ = X (k) - c(k) T. - T~ = T~ (k) - T {k) - --n On k ~ = nk 
if nk<n<nk+ ~. These relat ions define the S.'s and T.'s and we claim that  these 
S.'s and T.'s satisfy Theo rem 1. 

First  we state that  

IS,~ - T,~I = O(]/nk log log nk). 

Since the sequence n k is very rare, we even have 

S,~ = O(l/}~ k log log nk) and T,~ = o(]/n k log log n~). (2.2) 
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In fact, applying Theorem A, we have for any e > 0 

P([S,~] > el/nk log log nk) 

-----< t sup [F,k(X ) -  ~b(x)l + 2 ~ (1 - ~(el / log log nk) < oO 
k = l  x k = l  

and the Borel-Cantelli lemma proves (2.2) for the sequence S,~. The proof for T,~ 
is similar. 

The Borel-Cantelli lemma also implies that 

lim sup [ (S , -S ,~ , ) - (T , -  T,k)[ = 0  with pr. 1. 
k ,~=<,=<.~+1 ]/n log log n 

This formula together with (2.2) proves our remark. 
Let us now turn to the proof of (2.1). 

k 

Set C = 1 +g ,  n k = [C k] and rk= ~ n;. Let ~1, e2 ....  be i.i.d.r.v.s uniformly 
j = l  

distributed in I-0, 1]. 
Define 

S,~ - Sr~_, = F.21 (~k) 

and 

~ k -  T~ . . . .  #-i(~k). 

(Here F -I  (t) is defined as F -I (t) = sup (x: F(x) A t), F,~(x) and G.~ as in Theorem A.) 
The sequences Srk, T~, k =  1, 2 ... have the required distribution. We can 

complete them into sequences S 1, $2, ... ; T~, T2, ... so that $1, $2, ... be i.i.d.r.v.s 
with distribution F(x), T 1, T 2 .... i.i.d.r.v.s with distribution ~(x). We claim that 
these sequences satisfy (2.1). 

First we show that 

sr~- ~ = o(/rk log log rJ. (2.3) 

According to the Borel-Cantelli lemma it is enough to prove that 

P(l(Srk- S . . . .  ) - ( T ~ -  T,~_,)] > 6]/nk log log nk)< oo 

for any 6 > 0, since then 

k 

S,~-  T~ < K(co) + ~ 61/n; log log nj 
j = l  

<K(co)-~ 2 6  l/rkloglogrk with pr. 1. 
1/~-1 
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But the convergence of the above sum is a direct consequence of the following 
estimation 

P(l(Sr~ - S~_~)- (T~ - T~_ ~)l > 6link log log nk) 
1 

< + 8 sup IF.~(x)- ~(x)]. (2.4) = log 2 n k x 

Now we need to prove only (2.4). 

P([(S~-S . . . .  ) -  (T~ - T~_~)I >(~]/n k log log n~) 

5 1 

6 1 ] ~ l o g n k ]  " 

1 
The second term is obviously less than ~ if k is sufficiently large. Now we 

estimate the first term. Denoting ~-1(Cr by y, a simple calculation shows that 

5 P (ank [Fn21(O:k)--q~-1(%)l>~ ]/log log nk) 

<= P([Fn~l(q~(y))-- y[ > 1) 

< P (1 ~(y + 1) - ~(y)[ < sup [F,~(x) - (b(x)[) 
x 

+ P([ (b(y)- (b(y - 1)[ < sup [F,~(x)- e(x) [). 
x 

Now 1 - ( b ( y ) > 2 ( 1 - ~ ( y +  1)) i fy  is large enough, so we have 

P (~r,k lF,;l(~k)--~--l(~Zk)l>~ ]/log log nk) 

< 4P(&(y) =< sup I V, k(X)-- ~(X)1) 
x 

+ 4P(1 - ~(y)< sup IF,~(x)- q~(x)[) 
x 

< 8 sup IF,~(x)- ~(x)[. 
x 

Thus (2.4) holds true. 
Finally we show that 

sup ]S,-S~I ) 
P lim sup ~_-<r-<r~+l e = 1 (2.5) 

l / rk loglog r k <2 

and a similar estimation holds for the T's. These relations together with (2.3) 
imply (2.1). Applying a well-known estimation about the partial sums of inde- 
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pendent summends see e.g. [4] p. 248. We get 

P ( sup IS . -  Sr~l> 3 ]~n k log log nk) 
r k ~ n < r k + i  

< 2 Z P ( I S  . . . .  - s ~ l  > 2]/nk log log n~) 

< 2~(1 -- ~(21/log log nk) ) + 2 2 sup IF,~(x) -- ~b(x)] < oo 
x 

which implies (2.5). 
To prove Theorem 1' we need a Theorem which states that the variable 

max Sk is not essentially larger than S,. 
k < n  

Theorem B (Wichura [6]). Let n e T  a and let (Xm) m < n  be a d-dimensional array 
of independent random variables with 0 mean and finite variances. Put S m = ~ X k 
and set M , = m a x  [Sm[. Then k<=m 

m <=n 

[ - ~  
P ( V . > 2 q a ) <  1 - ( ~ ]  2] P(IS.I>a) 

\ a l  J 

i f  a 2 >= ~2 = ES2 

Proof of Theorem 1'. As in the proof of Theorem 1, the proof can be reduced to the 
construction of two sets of random variables S., T., n6 T d satisfying the relation 

( suplSi-T~[ ) 
P limsup r --< "~ >e  =0. 

l/Inkl log log Lnkl 

Fix a number C > 1, and consider the set H of points of the form 

([C~q, I c m z l ,  . . .  tC~q) 

where the numbers m i range over all positive integers. For any n k consider its 
smallest upper bound in H. We get a new monotone sequence. Let us consider 
every point of the sequence with multiplicity 1. Let us embed this sequence 
into a new sequence r k k=  1, 2, ... in such a way that the subsequent members 
of the new sequence differ only in one coordinate, and the exponent of C in this 
coordinate grows with one. It is sufficient to make such a construction that 

( i___r~ sup,S~-T~, ) 

P limsup ] / rk l~176  r k > C(0 =0  (2.6) 

where C(e) --, 0 as C ~ 1. 
We may assume that every coordinate of r k tends to infinity. Otherwise the 

dimension of T e in Theorem 1' can be decreased. 
The idea of the construction is the following. We want to divide T d into a 

sequence K 1, K 2 ,  . . .  of d-dimensional disjoint rectangles having some nice pro- 
perties. By the increment of S, and T, on a set A, A ~ T d we mean the r.v. ~ X~ 

IEA 

and ~ Y~. First we define the variables Uz and Vii the increment of S and T on 
i~A 
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the rectangles K~ in the same way as in the p roo f  of Theo rem 1 : 

where m, is the vo lume of K~ and 41, ~z . . . .  are i.i.d.r.v.s uniformly distr ibuted in 
[0, i ] .  

Then we construct  the r.v.s X i ,  Y~, l e T  d in such a way that  the increment  of  
S~ and T~ on K~ be identical with the previously defined U~ and V~. 

We want  the Ki's to have the following proper t ies :  
(i) if x is a vertex of K~, then the rec tangular  A = (y: y < x) is the union of some 

Kfs ,  r, is the vertex of some K, if n > n o . 

(ii) U / -  V i = o (1/m~ log log mi) and moreove r  S x - T x = o (1/1~ log log Ix] if x is a 
vertex of some K[s .  

(iii) The  vertices of the K~'s are dense enough in T d, so that  Theo rem B implies 
(2.6). 

We will construct  a sequence Ki which satisfies (i)-(iii). Set r n = (r~ n) . . . .  r~n)). 
Let the j(n)-th be the coordinate  where r n and rn+ ~ differ. Deno te  by H n the set 

(x :  x = (x,  ... Xe), x~ <-_ r l  n~ i f  i ~=j(n), ,~"(),) < Xj(n)~ I~n(n~1)). 
We fix an integer L >  0 and a n u m b e r  0 < c~ < 1. First  we choose a sufficiently 
large n o and we divide the rectangle Ano = ( x : x < r n o  ) into smaller ones by the 

hyperplanes  x i = L rln) k --- 1, 2 . . . .  , L. These rectangles will be our  first K~'s. Then 

we split the rectangles Hno , H,o+{ . . . .  successively with some hyperplanes  of the 
form Xi=(Zi, k, i = l , 2 . . . d ,  i=#j(n), k = l , 2 . . . f ( i , n ) ,  O~i,f(i,n)=rl n). In order  to 
satisfy (i) a hyperp lane  x~=c~, k is al lowed to be one of the hyperplanes  dividing 
H n only if it contains  a lateral face of some previously defined K. Another  require- 

ment  is that  ~ r (n~ < cq, k--Cq k 1 < 1  rl,)" These requi rements  can be satisfied if 
L i ' -  L 

and L are chosen appropr ia te ly .  Thus (i) is satisfied. 
Theo rem A remains valid if the sequence n k need not satisfy the condi t ion 

n k ~ K C  2k, only the following weaker  condi t ion:  A C k < n k < B C  k with some 
A > B > 0 ,  C >  1. Using the same a rgumen t  as in the p roo f  of Theo rem 1, this 
version of Theo rem A enables us to prove  (ii). 

Let us r emark  that  we m a y  choose L in such a way that  L ~ o o  as C - ~  1. 
N o w  given the rectangle A n = ( x , x < r , ) ,  we may  choose hyperplanes  Xi=fli ,  k 

O: _ R < 1 _  r (n) i = 1 , 2  . . . .  , d  so that  ~ r } " ) < f i ~ , k  m , k _ ~ =  L ~ , fl~,k<r} n) and any point  x =  

(xl ... xe), x l  =f iE  j, . . . .  , Xd=fld, j~ is a vertex of some Ki ,  and therefore ]S~-T~I = 
o(1/]rnl log log Ir, I). Consider  a rectangle B contained in some A n ~  Ui,k where 
Ui, k = ( x = ( x ~  .., xd); fli, k _ ~ < X i < f l i ,  k,). Then applying Theorem B, the above  
ment ioned  version of Theo rem A and the Borel-Cantel l i  lemma,  one obtains an 

A 
increment  of  S and T on B which is less than ~ -  1/]rnl log log Ir,[ if n>n(co) with 

probabi l i ty  1. This es t imat ion implies (2.6) and thus Theo rem 1' is proved.  
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Proof  of  Theorem 2. Let us choose a monotone sequence f (n)  such that f(n)--+ oo 
and f (n ) / f (n )  ~ O. 

There exists a distribution function F(x) such that 

I xdF(x )=O,  ~ x 2 dF(x )= 1, 

/1 2 '~2 
t =_ :§ [log .~og.  +log log .3 

Jr2")!  

where a, is as in Theorem A. We claim that such a distribution satisfies Theorem 2. 
It is enough to prove that 

2 P(S2"+ ' - -S2n>Xn)~  oo, 
n 

Z P ( T2. + , -- T2. > y.) = oO 
n 

where 

xn=J/2"+!l~ n ( 1 f(2~+ 1)) 

and y ,=] /2  "+1 log n. In fact, these inequalities and the Borel-Cantelli lemma 
imply that 

2]/2 "+~ log n 
(T2.+1- Tz. ) - (S2 .+,  - S 2 . ) > y , - x , -  i.o. with pr. 1. 

f(2 "+1) 
Thus, either 

]/2 "+! log n 
T2.-$2.<. 

f(2"+1) 

or T2.+,-$2-+* >]/2 "+! log n/f(2 "+!) which proves Theorem 2. The second sum 

is equiconvergent with 

- ~  ~-~ i 
~ - - e  ---2., _ _ = o o .  

Y, n ]/2 log n 

By Theorem A the first sum is equiconvergent with 

But 

l - q } (  x ~ - ) < ~ 2  ~ l~a2"x, exp ( 

Therefore, the first sum is convergent. 

~__~ C 
2,+1 o-2 ] < 2 "  n(l~ n) ~ 

The author would like to thank Mr. Tusnhdy for many useful discussions. 
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