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Abstract. We prove limit theorems for weighted U -statistics and express the limit

by means of multiple stochastic integrals. This is a generalization of the paper of
K. A. O’Neil and R. A. Redner [9]. In that paper the method of moments was ap-
plied which does not work in the general case. Hence we had to work out a diffferent

method. In particular, in Theorem 4 we describe the limit of a model proposed by
O’Neil and Redner. In this model the weight functions cause an intricate cancel-
letion, and the limit can be presented as a sum of multiple stochastic integrals with

different multiplicities.

1. Introduction. In this paper we investigate the limit behavior of weighted
U -statistics which means statistics of the following form:

Un =
∑

1≤j1<j2···<jk≤n

a(j1, . . . , jk)f(Xj1 , . . . , Xjk) . (1.1)

Here X1, . . . , Xn are iid. random variables with uniform distribution in the in-
terval [0, 1], the functions a(x1, . . . , xk) and f(x1, . . . , xk) are symmetric, i.e. they
are invariant under all permutations of their arguments, and the function f also
satisfies the condition

∫

[0,1]k
f2(x1, . . . , xk) dx1 . . . dxk <∞ . (1.2)

The expression (1.1) is a generalization of the usual (unweighted) U -statistics, in-
vestigated e.g. in [1], because of the appeareance of a weight function a(x1, . . . , xk)
in it. The assumption that the sequence of iid. random variables X1, . . . , Xn is uni-
formly distributed is not a real restriction. If its distribution function is F (x), then
the sequence F (X1), . . . , F (Xn) is uniformly distributed, and the statistics Un do
not change if the function f(x1, . . . , xk) is replaced by f(F−1(x1), . . . , F

−1(xk))
and the random variables Xj , by F (Xj), j = 1, . . . , n. In most results of this paper
we restrict our attention to the so-called degenerate U -statistics, i.e. we assume
that

∫

f(y, x2, . . . , xk) dy = 0 for all x2, . . . , xk . (1.3)

The investigation of U -statistics with general kernel functions f can be reduced
to this special case by means of the Hoeffding decomposition. (See e.g. Appen-
dix A in [1].) This gives the following representation of a symmetric function
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f(x1, . . . , xk) with k arguments: There exists a (unique) sequence of symmetric
functions fs = fs(x1, . . . , xs), s = 1, . . . , k, and a constant f0 such that

f(x1, . . . , xk) = f0 +

k
∑

s=1

∑

{i1,...,is}⊂{1,...,k}

fs(xi1 , . . . , xis) , (1.4)

and the functions fs are degenerate, i.e.
∫

fs(y, x2, . . . , xs) dy = 0 for all x2, . . . , xs, 2 ≤ s ≤ k . (1.4′)

Because of this decomposition the investigation of the limit behavior of the sta-
tistics Un for n → ∞, defined in (1.1), with a general kernel functions f can
be reduced to that with degenerate kernel functions. In the case of unweighted
U -statistics when a(x1, . . . , xk) ≡ 1 the first non-vanishing term in (1.4), i.e. the
function fs with the smallest index s in the Hoeffding representation such that fs
is not identically zero, gives the dominating contribution to the U -statistics. For
typical weighted U -statistics the case is similar, but the general situation is more
complex. In this respect we refer to the second Section of [9] and return to this
question in Section 2.

Our investigation was motivated by a recent paper of Kevin A. O’Neil and
Richard A. Redner [9] where asymptotic distribution of weighted U -statistics of
degree two was investigated. This means the investigation of statistics defined by
formula (1.1) in the special case k = 2. The authors of this paper proved the
existence of a limit distribution with an appropriate normalization by showing the
convergence of the moments. This method works only if the limit distribution is
determined by its moments. This property holds for U -statistics of degree one or
two. But if k ≥ 3, then for U -statistics defined by formula (1.1) (with a degenerate
kernel f satisfying relation (1.3)) such a limit distribution appears which is not
determined by its moments. Hence in this case a different method has to be
applied. The aim of the present paper is to find such a method and to give an
explicit expression for the appearing limit. Let us first explain why the limit
distribution of U -statistics is not determined by its moments for k ≥ 3.

The limit of unweighted (degenerate) U -statistics, with normalization n−k/2,
can be expressed by means of k-fold Wiener–Itô integrals with respect to a Wiener
process. On the other hand, the following result is known about the the tail
behavior of multiple stochastic integrals. (See e.g. [8] or Section 6 in [7].) If
Ik =

∫

f(x1, . . . , xk)B( dx1) . . . B( dxk) is a k-fold Wiener-Itô integral with respect
to a Gaussian random measure, then

C1 exp
{

−L1x
2/k
}

< P (|Ik| > x) < C2 exp
{

−L2x
2/k
}

for all x > 1

with some appropriate constants C1 > 0, C2 > 0 and L1 > L2 > 0. For us the
left-hand side of the last inequality is interesting. If a distribution function F (x)
decreases at plus and minus infinity exponentially fast, then its moments determine
its distribution. On the other hand, if F (−x) + 1 − F (x) > C exp{−Lxα} with
some 0 ≤ α < 1 and C > 0, L > 0 then we cannot say that F is determined by
its moments. (See e.g [2] for an example.) This second case appears in the case of
k-fold stochastic integrals with k ≥ 3.
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The case of weighted U -statistics is similar. The only difference is that for
typical weight functions a(j1, . . . , jk) the limit of the statistics can be expressed
by a k-fold stochastic integral with respect to a Wiener sheet instead of a Wiener
process. The Wiener sheet is the natural two-dimensional analogue of a Wiener
process. It is a two-dimensional Gaussian process B(x, y), 0 ≤ x, y ≤ 1, with
expectation zero whose increments B(x2, y2)+B(x1, y1)−B(x1, y2)−B(x2, y1) on
disjoint rectangles [x1, x2]×[y1, y2] are independent with variance (x2−x1)(y2−y1).

Let us briefly explain our approach. First we give a short explanation about
how to handle unweighted U -statistics and try to adapt it to the case of weighted
U -statistics. Let Fn(x) denote the empirical distribution function determined by
the sample X1, . . . ,Xn. In the case of unweighted U -statistics when the weight-
function a(·) is identically one formula (1.1) can be rewritten as

Un =
nk

k!

∫ ′

f(x1, . . . , xk)Fn( dx1) . . . Fn( dxk) , (1.5)

where
∫ ′

denotes that the hyperplanes xi = xj for i 6= j are cut out from the
domain of integration. Since we consider the degenerate case when relation (1.3)
holds, the expression (1.5) does not change if Fn(x) is replaced by Fn(x)− x. We
recall that

√
n (Fn(x)− x) ⇒ B0(x), where B0(x) is a Brownian bridge. Hence,

it is natural to expect that we commit a small error by replacing
√
n (Fn(x)− x)

by B0(x) or, by exploiting formula (1.3) again, by a Wiener process B0(x) + xξ,
where ξ is a standard normal random variable independent of the Brownian bridge
B0(x). The last step is useful, because the theory of multiple stochastic integral
is applicable with respect to Gaussian processes with independent increments like
the Wiener process, but not with respect to a Brownian bridge. The above ar-
gument supplies an informal proof of the limit theorem for the distribution of
unweighted U -statistics, and a rigorous proof can be obtained by justifying the
above manipulations.

If we want to adapt the above argument to weighted U -statistics we meet some
problems at the start. Formula (1.5) does not hold any longer, moreover Un

cannot be expressed as a functional of Fn(x), since it is not a function of the
ordered sample. But the above argument can be saved in the special case when
the cube {1, . . . , n}k can be split into finitely many rectangles where the function
a(j1, . . . , jk) is equal to a constant. Then limit theorems for weighted U -statistics
can be proved in cases when the function a(j1, . . . , jk) can be well approximated by
such simple functions. We shall apply this approach, and throughout the proof we
heavily exploit the L2 isomorphism property of stochastic integrals. We also use
Poissonian approximation, a method which helped to overcome certain technical
difficulties. The idea that Poissonian approximation is useful for the investigation
of U -statistics appeared in the paper of Dynkin and Mandelbaum [1], and we
borrowed it from there.

2. Formulation of the main results. In this Section we formulate the main
results of this paper. We introduce the following notation: Given a real number
x, let [x] denote its integer part. Our first result is the following

Theorem 1. Let Un be defined by formula (1.1) with a function satisfying (1.2)
and (1.3). If there is a continuous function A(y1, . . . , yk) on [0, 1]k such that for
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An(y1, . . . , yk) = a([ny1], . . . , [nyk]) the relation

lim
n→∞

∫

[0,1]k
|A(y1, . . . , yk)−An(y1, . . . , yk)|2 dy1 . . . dyk = 0

holds, then the sequence n−k/2Un tends in distribution to the stochastic integral

V =
1

k!

∫

f(x1, . . . , xk)A(y1, . . . , yk)B( dx1, dy1) . . . B( dxk, dyk) ,

where B(·, ·) is a Wiener sheet.

Let us remark that Theorem 1 is not an empty statement. Its condition can
be satisfied for instance if the function a(j1, . . . , jk) is chosen in such a way that
its value depends only on the direction of the vector (j1, . . . , jk) in R

k, and it
depends on this direction continuously. The subsequent Theorems 2 and 3 are
natural generalizations of the results in Section 4 of [9].

Theorem 2. Let Un be defined by formula (1.1) with a function satisfying (1.2)
and (1.3). Assume that a(j1, . . . , jk) in formula (1.1) can be written in the form

a(j1, . . . , jk) = u(h(j1), . . . , h(jk)) ,

where h:Z1 → {1, . . . , r} with some integer r is such that the limit

lim
n→∞

1

n
#{j, j ≤ n, h(j) = s} = H(s)

exists for all s = 1, . . . , r, and u is an arbitrary function on {1, . . . , r}k. Then the
sequence n−k/2Un converges in distribution to the stochastic integral

V =
1

k!

∫

f(x1, . . . , xk)A(y1, . . . , yk)B( dx1, dy1) . . . B( dxk, dyk) ,

where B(·, ·) is a Wiener sheet, and

A(y1, . . . , yk) = u(j1, . . . , jk)

if H(1) + · · ·+H(js − 1) < ys ≤ H(j1) + · · ·+H(js), 1 ≤ s ≤ k .

Theorem 3. Let us consider a sequence of random variables Un defined by for-
mula (1.1) with a function f satisfying (1.2) and (1.3) and a weight function of
the form

a(j1, . . . , jk) = e(j1) · · · e(jk)

with a sequence e(j), j = 1, 2, . . . , such that the sequence e(j) is bounded, and
the limit

lim
n→∞

1

n

n
∑

j=1

e(j)2 = E > 0 (2.1)
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exists. Then the random variables n−k/2Un converge in distribution to

V =
1

k!
Ek/2

∫

f(x1, . . . , xk)W ( dx1) . . .W ( dxk) ,

where W (·) is a Wiener process on [0, 1].

Let us remark that, up to a scaling factor, the limit in Theorem 3 is insensitive
to the choice of the sequence e(j).

Let us discuss the distribution of the U -statistics (1.1) if relation (1.3) may not
hold. We get, by expressing the terms f(Xj1 , . . . , Xjk) by means of the Hoeffding
decomposition (1.4), that

Un =
1

k!

k
∑

s=0

∑

1≤jp≤n, 1≤p≤s

and jp 6=jp′ if p 6=p′

Bn(j1, . . . , js)fs(Xj1 , . . . , Xjs) (2.2)

with
Bn(j1, . . . , js) =

∑

1≤lp≤n, 1≤p≤k

lp 6=lp′ if p 6=p′

jp=lrp for some rp p=1,...,s

such that 1≤r1<···<rs≤k

a(l1, . . . , lk) , (2.3)

or by exploiting the symmetry of the function a(l1, . . . , lk)

Bn(j1, . . . , js) =

(

k

s

)

∑

1≤lp≤n, 1≤p≤k

lp 6=lp′ if p 6=p′

jp=lp for p=1,...,s

a(l1, . . . , lk) . (2.3′)

For unweighted U -statistics Bn(j1, . . . , js) =

(

k

s

)

(n−s−1) · · · (n−k) ≍
(

k

s

)

nk−s.

The orthogonality of the random variables fs(Xj1 , . . . , Xjs) together with this re-
lation imply that the the inner sum with the smallest index s for which fs does not
vanish identically gives the dominating contribution to the external sum in (2.2),
and it has order nk−s/2. For typical weighted U -statistics a similar picture arises.
But since the coefficients a(j1, . . . , jk) may cause some additional cancellation, the
situation is more complex. We show this in an example which may be of special
interest. We consider the model in Theorem 3, but do not assume that the kernel
function f defines degenerate statistics. We consider statistics of the form

Un =
∑

1≤j1<j2···<jk≤n

e(j1) · · · e(jk)f(Xj1 , . . . , Xjk) . (2.4)

Put

Fn = n−1/2
n
∑

j=1

e(j) . (2.5)

The limit behavior of Un is different in the cases when Fn has a finite limit and
when it tends to zero or to infinity. We describe the case when Fn has a finite



6 PÉTER MAJOR

limit. This seems to be the most interesting case, when the contributions of
different terms in the Hoeffding representation have the same order and the limit
can be represented as a sum of stochastic integrals of different multiplicity. This
question was considered in a special case in papers [4] and [9], and it also shows
some analogy with the surface charge in [6]. The remaining cases will be only
briefly discussed.

Theorem 4. Let us consider the weighted U -statistics defined in (2.4) with a
bounded sequence e(j), j = 1, 2, . . . , satisfying (2.1) and a square integrable kernel
function f . Assume that the sequence Fn defined in (2.5) has a limit lim

n→∞
Fn = F .

Let us take the Hoeffding decomposition of the function f given in formulas (1.4)
and (1.4′). Then the sequence n−k/2Un converges in distribution to the sum of
stochastic integrals

Dkf0

k!
+

k
∑

s=1

Dk−s

s!(k − s)!
Es/2

∫

fs(x1, . . . , xs)W ( dx1) . . . W ( dxs)

as n→ ∞, where W (x) is a Wiener process in the interval [0, 1], and the sequence
Ds is defined by the following recursive formula: D0 = 1, D1 = F , and

Ds = F s −
[ s2 ]
∑

p=1

s!

2pp!(s− 2p)!
EpDs−2p .

3. Approximation of U-statistics. In this section we approximate weighted U -
statistics with polynomials of independent centered Poissonian random variables
(by a centered Poissonian random variable we mean a Poissonian random variable
minus its expectation) and show that a small error is committed if these cen-
tered Poissonian random variables are replaced by independent Gaussian random
variables. To formulate these results we introduce some definitions and remarks.

Remark 1. For a function f satisfying (1.1) and any ε > 0 an approximating
step-function g(x1, . . . , xk) = gε(x1, . . . , xk) can be given such that

∫

[0,1]k
|f(x1, . . . , xk)− g(x1, . . . , xk)|2 dx1 . . . dxk < ε , (3.1)

and there is some integer L = L(ε) such that the function g(x1, . . . , xk) is constant

on all cubes

(

j1 − 1

L
,
j1

L

]

× · · · ×
(

jk − 1

L
,
jk

L

]

, 1 ≤ js ≤ L for s = 1, . . . , k, and it

is zero on those cubes for which js = js′ with some s 6= s′.

We introduce the notion of ε-approximability of a weight function a(j1, . . . , jk).

Definition of ε-approximation of weight functions. A sequence a(j1, . . . , jk)
is ε-approximable by a set of elementary functions bεn(j1, . . . , jk), 1 ≤ js ≤ n,
1 ≤ s ≤ k if

n−k
∑

|a(j1, . . . , jk)− bεn(j1, . . . , jk)|2 < const. ε
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with some constant independent of n and ε, and the function bεn(j1, . . . , jk) has the
following property:

There exists a partition Λ1 = Λ1(n, ε), . . . ,Λp = Λp(n, ε) of the set {1, . . . , n}
with cardinality |Λ1| = N1 = N1(n, ε), . . . , |Λp| = Np = Np(n, ε) with some
number p = p(ε) which may depend on ε but not on n and numbers Bε

n(m1, . . . ,mk)
whose absolute values are bounded by some number B(ε) which does not depend
on n, 1 ≤ ms ≤ p, s = 1, . . . , k, such that

bεn(j1, . . . , jk) = Bε
n(m1, . . . ,mk) if js ∈ Λms

for all 1 ≤ s ≤ k . (3.2)

We shall say that the above ε-approximation is determined at level n by the parti-
tion Λ1, . . . ,Λp of the set {1, . . . , n} and the function Bε

n(m1, . . . ,mk).

Now we formulate the results of this Section.

Lemma 1. Let Un be a weighted U -statistic as defined in (1.1) with a kernel
function f satisfying (1.2) and (1.3) and a weight function a(j1, . . . , jk) which
is ε-approximable. Let this ε-approximation be determined at level n by a par-
tition Λ1, . . . ,Λp of the set {1, . . . , n} and a function Bε

n(m1 . . . ,mk). Take an
ε-approximating step function g(x1, . . . , xk) = gε(x1, . . . , xk) of the function f

which satisfies the properties formulated in Remark 1 and put

g∗(l1, . . . , lk) = g

(

l1

L
, . . . ,

lk

L

)

, (3.3)

where L is the same as in Remark 1. A set of independent centered Poissonian
random variables ηm,l, 1 ≤ m ≤ p and 1 ≤ l ≤ L, can be constructed with

parameter
Nm

L
(Nm is the cardinality of the set Λm) such that

E

∣

∣

∣

∣

n−k/2

(

Un − 1

k!

∑

ms=1,...,p
ls=1,...,L

for s=1,...,k

Bε
n(m1, . . . ,mk)g

∗(l1, . . . , lk)ηm1,l1 . . . ηmk,lk

)∣

∣

∣

∣

2

< const.

(

ε+
C(ε, k)√

n

)

with some constant C(ε, k) depending only on ε and k.

Lemma 2. Let us fix some positive integers p and k. Let us have for all pos-
itive integers n a sequence of independent centered Poissonian random variables
ηs = ηs(n), with parameter Ns and a sequence of independent Gaussian random
variables ξs = ξs(n) with expectation zero and variance Ns, 1 ≤ s ≤ p, such that
Ns ≤ n, 1 ≤ s ≤ p. Consider the polynomials

Sn = n−k/2
∑

js=1,...,p
js 6=js′ if s6=s′

bn(j1, . . . , jk) ηj1 · · · ηjk

and

Tn = n−k/2
∑

js=1,...,p
js 6=js′ if s6=s′

bn(j1, . . . , jk) ξj1 · · · ξjk
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with coefficients satisfying the relation

|bn(j1, . . . , jk)| < K for all 1 ≤ js ≤ p, 1 ≤ s ≤ k

with some positive constant K. Then for all t ∈ R
1

lim
n→∞

(

EeitSn − EeitTn
)

= 0 .

Proof of Lemma 1. Introduce the expression

U (1)
n =

∑

1≤j1<j2···<jk≤n

bεn(j1, . . . , jk)f(Xj1 , . . . , Xjk) ,

where bεn is the ε-approximating sequence of an. Since

Ef(Xj1 , . . . , Xjk)f(Xj′
1
, . . . , Xj′

k
) = 0 if (j1, . . . , jk) 6= (j′1, . . . , j

′
k)

by (1.3), hence

En−k(Un − U (1)
n )2 = n−k

∑

|a(j1, . . . , jk)− bεn(j1, . . . , jk)|2Ef2(Xj1 , . . . , Xjk)

< const. ε. (3.4)

Let ν1, . . . , νp be independent Poisson distributed random variables with param-
eter Ns, 1 ≤ s ≤ p, independent of the random variables Xj , j = 1, . . . , n,
too. Let the sets Λm appearing in the definition of ε-approximability be Λm =
{s1(m), . . . , sNm

(m)}, s1(m) < · · · < sNm
(m), m = 1, . . . , p. We define sets

Λ′
m, with (random) size νm, 1 ≤ m ≤ p, which are close to the sets Λm. Put

Λ′
m = {s̄1(m), . . . , s̄νm

(m)}, s̄1(m) < · · · < s̄νm
(m) such that s̄l(m) = sl(m)

for l ≤ min(Nm, νm) and s̄l(m) = J(m) + l −Nm with J(m) =
m−1
∑

p=1
(νp −Np)+ if

Nm < l ≤ νm. We consider a set of independent random variables Ym,l, 1 ≤ m ≤ p

and 1 ≤ l ≤ νm, with uniform distribution in the interval [0, 1] which are indepen-
dent of the random variables νm, n = 1, . . . , p, and also have the property:

Ym,l = Xsl(m) if l ≤ min(νm, Nm), m = 1, . . . , p .

(The choice of the random variables Ym,l with such properties is possible. They
must be chosen conditionally independent and uniformly distributed on [0, 1] under
the condition that the values of the random variables νm are prescribed.) Define
the numbers l(j) and m(j) as the indices such that j ∈ Λ′

m(j) and j = s̄l(j)(m(j))

if j is an element of some Λ′
m, 1 ≤ m ≤ p. Otherwise let l(j) and m(j) be

meaningless. For 1 ≤ mi ≤ p and li = 1, 2, . . . , i = 1, . . . , k put

b̄εn ((m1, l1), . . . , (mk, lk)) =

{

Bε
n(m1, . . . ,mk) if li ≤ νmi

, i = 1, . . . , k

0 otherwise

and

U (2)
n =

∑

1≤j1<j2···<jk<∞

b̄(ε)n ((m(j1), l(j1)), . . . , ((m(jk), l(jk)))

× f
(

Ym(j1),l(j1), . . . , Ym(jk),l(jk)

)

.
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We define b̄
(ε)
n ((m(j1), l(j1)) . . . , ((m(jk), l(jk))) = 0 in the last expression if m(js)

and l(js) are not defined for some s. We claim that

E
(

n−k/2(U (1)
n − U (2)

n )
)2

< C(ε, k)n−1/2 . (3.5)

To prove relation (3.5) observe that the number of terms which appear in the

sum U
(1)
n but not in U

(2)
n (two terms in these sums agree if the function f is a

function of the same random variables in them, and it has the same coefficient)

and the number of terms which appear in U
(2)
n , but not in U

(1)
n is less than

kmax
s≤p

|νs −Ns|
(

max
s≤p

Nk−1
s +max

s≤p
νk−1
s

)

.

This relation together with the orthogonality relations imply that

E
(

n−k/2(U (1)
n − U (2)

n )
)2

<
C(ε, k)

nk
E

(

max
s≤p

|νs −Ns| (max
s≤p

Nk−1
s +max

s≤p
νk−1
s )

)

.

(3.6)
Since

EνLs ≤ C(L)NL
s ≤ C(L)nL

and
E|νs −Ns|2 ≤ n

with some C(L) > 0 for any s ≤ p and L ≥ 1, hence by the Schwartz inequality

[

E

(

max
s≤p

|νs −Ns| (max
s≤p

Nk−1
s +max

s≤p
νk−1
s

)]2

≤ Emax |νs −Ns|2 · E
[

maxNk−1
s +max νk−1

s

]2 ≤ const.n2k−1.

The last inequality together with (3.6) imply (3.5).

Put Σ = Σ(ε) = [0, 1] × {1, . . . , p}, and define the random field consisting of
the points Z(m, l) = (Ym,l,m), 1 ≤ m ≤ p and 1 ≤ l ≤ νm on it. (Σ depends on
ε through p = p(ε).) Then Z(m, l) is a Poisson process such that the expected

value of the points Z(·, ·) in a set
p
⋃

m=1
(Am,m) ⊂ Σ equals

p
∑

m=1
Nmλ(Am), where

λ(·) denotes the Lebesgue measure. Introduce the counting measure µn = µε
n on

Σ such that µn(B) is the number of points Z(·, ·) in the set B for B ⊂ Σ. Let Pn

be its centering, i.e. Pn(B) = µn(B)−Eµn(B). Given a function f(x1, . . . , xk) on
[0, 1]k define the function fε

b̄
((x1,m1), . . . , (xk,mk)) on Σk as

fεb̄ ((x1,m1), . . . , (xk,mk)) = Bε
n(m1, . . . ,mk)f(x1, . . . , xk) ,

where the function Bε
n is the same as that which appears in the definition of

ε-approximability of a weight function. Then U
(2)
n can be rewritten as

U (2)
n =

1

k!

∫ ′

Σk

fεb̄ (z1, . . . , zk)µn(dz1) . . . µn(dzk)
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with zs = (xs,ms), xs ∈ [0, 1] and ms ∈ {1, . . . , p} for s = 1, . . . , k, where
∫ ′

means that the hyperplanes zj = zj′ for j 6= j′ are cut out from the domain of
integration. Condition (1.3) also implies that

∫

Σ

fεb̄ (z, z2, . . . , zk) λ̄(dz) = 0 for all z2, . . . , zk

with λ̄(A) = Eµn(A) for A ⊂ Σ. Hence

U (2)
n =

1

k!

∫ ′

Σk

fεb̄ (z1, . . . , zk)Pn(dz1) . . . Pn(dzk) . (3.7)

Define the mapping I from the set of function fε
b̄
to the space of random vari-

ables on (Ω,A, P ), where (Ω,A, P ) is the probability space where the Poisson
process is defined, as

I(fεb̄ ) =
1√
k!

∫ ′

Σk

fεb̄ (z1, . . . , zk)Pn(dz1) . . . Pn(dzk) .

It is known in the theory of Poissonian integrals, and actually it is not difficult to
prove that

∫

fεb̄ (z1, . . . , zk)
2 λ̄(dz1) . . . λ̄(dzk) = EI(fεb̄ )

2 .

Let g(x1, . . . , xk) = gε(x1, . . . , xk) be an approximating function of f having the
properties mentioned in Remark 1. Since Ns ≤ n for all 1 ≤ s ≤ p, λ̄(A) ≤ nλ(A)
for A ⊂ Σ, where λ(·) denotes the Lebesgue measure on Σ. This fact together
with (3.1) and the definition of gε

b̄
imply that

∫

∣

∣fεb̄ (z1, . . . , zk)− gεb̄(z1, . . . , zk)
∣

∣

2
λ̄( dz1) . . . λ̄( dzk) < const. εnk .

The last relation together with (3.7) and the L2 isomorpism of the mapping I

(applying it for f − g) imply that

n−kE

[

U (2)
n − 1

k!

∫ ′

Σk

gεb̄(z1, . . . , zk)Pn(dz1) . . . Pn(dzk)

]2

≤ const. ε .

This relation together with (3.4) and (3.5) give that

n−kE

[

Un − 1

k!

∫ ′

Σk

gεb̄(z1, . . . , zk)Pn(dz1) . . . Pn(dzk)

]2

≤
(

const. ε+
C(ε, k)√

n

)

.

(3.8)

The random measure Pn

((

l − 1

L
,
l

L

]

,m

)

is a centered Poissonian random

variable with parameter
Nm

L
, and the measures of the sets

((

l − 1

L
,
l

L

]

,m

)

are

independent for different pairs (l,m). Hence
∫ ′

Σk

gεb̄(z1, . . . , zk)Pn(dz1) . . . Pn(dzk)

=
∑

ms=1,...,p
ls=1,...,L

for s=1,...,k

Bε
n(m1, . . . ,mk)g

∗(l1, . . . , lk)ηm1,l1 · · · ηmk,lk ,
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and relation (3.8) implies Lemma 1. �

Proof of Lemma 2. Since
∣

∣

∣
exp

(

i
∑

aj

)

− exp
(

i
∑

bj

)∣

∣

∣
≤
∑

| exp(iaj)− exp(ibj)| ,
hence

|E exp{itSn} − E exp{itTn}|

≤ const. sup
|s|≤K|t|
j1...,jk

∣

∣

∣

∣

E exp

{

is
ηj1√
n
· · · ηjk√

n

}

− E exp

{

is
ξj1√
n
· · · ξjk√

n

}∣

∣

∣

∣

(3.9)

with some K > 0. We may assume that

sup
j≤p

E
∣

∣

∣
n−1/2(ηj(n)− ξj(n))

∣

∣

∣

2

→ 0 as n→ ∞ . (3.10)

Indeed, if
ηj
√

Nj

is the quantile transform of
ξj
√

Nj

, i.e.

ηj
√

Nj

= F−1
j

(

Φ

(

ξj
√

Nj

))

,

where Φ is the standard normal distribution function, Fj is the distribution func-

tion of
ηj
√

Nj

and Nj is the variance of ξj and ηj , then it is not difficult to see with

the help of the central limit theorem that (3.10) holds for this ξj and ηj . (Actually
the following stonger estimate holds. See formula (2.6) in Lemma 1 of [5].)

E
∣

∣

∣
n−1/2(η − ξ)

∣

∣

∣

2

≤ const.
1

n
.

On the other hand, the random variable Sn defined with these random variables
ηj has the right distribution. Then we have

∣

∣

∣

∣

E exp

{

is
ηj1√
n
· · · ηjk√

n

}

− E exp

{

is
ξj1√
n
· · · ξjk√

n

}∣

∣

∣

∣

≤ n−k/2|s|E |ηj1 · · · ηjk − ξj1 · · · ξjk |

≤ n−k/2|s|
k−1
∑

p=0

E
∣

∣ηj1 · · · ηjp
∣

∣

∣

∣ηjp+1
− ξjp+1

∣

∣

∣

∣ξjp+2
· · · ξjk

∣

∣

= n−k/2|s|
k−1
∑

p=0

E |ηj1 | · · ·E
∣

∣ηjp
∣

∣ E
∣

∣ηjp+1
− ξjp+1

∣

∣ E
∣

∣ξjp+2

∣

∣ · · ·E |ξjk |

≤ n−1/2|s| const.
k−1
∑

p=0

E
∣

∣ηjp+1
− ξjp+1

∣

∣

≤ const. supE
∣

∣

∣
n−1/2(ηj(n)− ξj(n))

∣

∣

∣

2

because of the independence of the pairs (ηj(n), ξj(n)) and the condition Nj ≤ n.
The last relation together with (3.10) imply that the right-hand side of (3.9) tends
to zero, hence Lemma 2 holds. �
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4. Proof of the Theorems.

Proof of Theorem 1. There is a step function Aε(y1, . . . , yk) such that
∫

[0,1]k
|An(y1, . . . , yk)−Aε(y1, . . . , yk)|2 dy1 . . . , dyk < ε

for n > n(ε), and it has the following structure: There is some T > 0 such that

A(y1, . . . , yk) = Aε
(m1

T
, . . . ,

mk

T

)

if
ms − 1

T
< ys ≤

ms

T
and all numbers m1, . . . , mk are different

= 0 if there is some 1 ≤ s < s′ ≤ k and 0 < m ≤ T

such that
m− 1

T
< ys, y

′
s ≤

m

T
.

There is an ε-approximation of the function a(m1, . . . ,mk) which is determined at

level n > n(ε) by the partition Λm =

([

m− 1

T
n

]

,
[m

T
n
]

]

, 1 ≤ m ≤ T , and the

functions
Bε

n(m1, . . . ,mk) = Aε
(m1

T
, . . . ,

mk

T

)

.

Let g(x1, . . . , xk) = gε(x1, . . . , xk) be an ε-approximating step function of f which
satisfies Remark 1. Let the function g∗(l1, . . . , lk) be defined by (3.3) and the
above function g. We get by Lemma 1 that for

Sn =
1

k!
n−k/2

∑

ms=1,...,T
ls=1,...,L

for s=1,...,k

Bε
n(m1, . . . ,mk)g

∗(l1, . . . , lk)ηm1,l1 . . . ηmk,lk

E(n−k/2Un − Sn)
2 ≤ const.

(

ε+
C(ε, k)√

n

)

, (4.1)

where ηm,l, 1 ≤ m ≤ T and 1 ≤ l ≤ L, are appropriate independent centered

Poissonian random variables with parameter
n

T
.

On the other hand,
∫

[0,1]2k
|f(x1, . . . , xk)A(y1, . . . , yk)− gε(x1, . . . , xk)A

ε(y1, . . . , yk)|2

dx1 dy1 . . . dxk dyk ≤ const. ε ,

and because of the L2 isomorphism of Wiener-Itô integrals

E (V − Tn)
2 ≤ const. ε , (4.2)

where V is the stochastic integral with the limit distribution defined in the formu-
lation of Theorem 1, and

Tn =
1

k!
n−k/2

∑

ms=1,...,T
ls=1,...,L

for s=1,...,k

Bε
n(m1, . . . ,mk)g

∗(l1, . . . , lk)ξm1,l1 . . . ξmk,lk
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with independent Gaussian random variable ξm,l, 1 ≤ m ≤ T and 1 ≤ l ≤ L, with

expectation zero and variance
n

T
.

It follows from (4.1) that
∣

∣

∣
E exp{itn−k/2Un} − E exp{itSn}

∣

∣

∣
≤ |t|E|n−k/2Un − Sn|

≤ |t|
(

E(n−k/2Un − Sn)
2
)1/2

≤ const.
(

ε1/2 + C(ε, k)n−1/4
)

for any t ∈ R
1. Similarly, it follows from (4.2) that

∣

∣EeitV − EeitTn
∣

∣ ≤ const. ε1/2 .

Since EeitSn − EeitTn → 0 by Lemma 2 the last two relations imply that

lim sup
n→∞

∣

∣

∣
E exp{itn−k/2Un} − E exp{itV }

∣

∣

∣
≤ const. ε1/2

Since the last relation holds for any ε > 0 we get that the characteristic function
of Un satisfies the relation

E exp{itn−k/2Un} → E exp{itV } for all t ∈ R
1 .

The last relation implies Theorem 1. �

Proof of Theorem 2. The proof is similar to that of Theorem 1. Now we can choose
the function a(j1, . . . , jk) itself as its approximation by elementary function. Then
this approximation is determined at level n by the sets

Λm = {j; 1 ≤ j ≤ n, h(j) = m} m = 1, . . . , r ,

and the function Bε
n(m1, . . . ,mk) = u(m1, . . . ,mk). Then Nm = Nm(n), the

cardinality of the set Λm, satisfies the relation

lim
n→∞

Nm(n)

n
= H(m) for m = 1, . . . , r . (4.3)

Let g = gε be an approximating step function of f satisfying Remark 1, and let
the function g∗ be defined by (3.3). Then

Sn =
1

k!
n−k/2

∑

ms=1,...,r
ls=1,...,L

for s=1,...,k

Bε
n(m1, . . . ,mk)g

∗(l1, · · · , lk)ηm1,l1 . . . ηmk,lk

well approximates n−k/2Un in L2 norm, where ηm,l are independent centered Pois-

sonian random variables with parameter
Nm

L
. Because of the definition of the

function A(y1, . . . , yk) and (4.3) the stochastic integral V appearing in Lemma 2
can be well approximated in L2 norm by

Tn =
1

k!
n−k/2

∑

ms=1,...,r
ls=1,...,L

for s=1,...,k

Bε
n(m1, . . . ,mk)g

∗(l1, . . . , lk)ξm1,l1 · · · ξmk,lk ,
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where ξm,l are independent Gaussian random variables with expectation zero and

variance
Nm

L
. Then Lemma 2 implies that the characteristic functions of Sn and

Tn are close to each other. Then a natural adaptation of the argument in the proof
of Theorem 1 implies that the characteristic function of n−k/2Un tends to that of
V , and this implies Theorem 2. �

In the proof of Theorem 3 we need a lemma which shows why the sequence e(j)
influences only the norming constant of the limit distribution of Un in Theorem 3.

Lemma 3. Let f(x1, . . . , xk) be a square integrable function on [0, 1]k, h(y) a

function on [0, 1] such that
∫ 1

0
h2(y) dy = 1, W (x) a Wiener process on [0, 1] and

B(x, y) a Wiener sheet on [0, 1]2. Then the stochastic integrals

I1 =

∫

f(x1, . . . , xk)W ( dx1) . . . W ( dxk)

and

I2 =

∫

f(x1, . . . , xk)h(y1) · · ·h(yk)B( dx1, dy1) . . . B( dxk, dyk)

have the same distribution.

Proof of Lemma 3. This lemma could have been proved by considering first ele-
mentary functions and then approximating general functions by them. We choose
a different way. We express both I1 and I2 by means of Itô’s formula as a series
of independent Gaussian random variables and observe that these two expressions
have the same distribution.

Let ψ1, ψ2, . . . be a complete orthonormal system in [0, 1], and take the expan-
sion

f(x1, . . . , xk) =
∑

c(j1, . . . , jk)ψj1(x1) · · ·ψjk(xk) .

The functions ϕj(x, y) = ψj(x)h(y), j = 1, 2, . . . , are orthonormal in [0, 1]2, and

f(x1, . . . , xk)h(y1) · · ·h(yk) =
∑

c(j1, . . . , jk)ϕj1(x1, y1) · · ·ϕjk(xk,, yk) .

By Itô’s formula (see [3], or [7], Section 7) these relations imply that

I1 =
∑

c(j1, . . . , jk) :ηj1 · · · ηjk : (4.4)

and

I2 =
∑

c(j1, . . . , jk) :ζj1 · · · ζjk : (4.4′)

with ηj =
∫

ψ(x)W ( dx) and ζj =
∫

ϕ(x, y)B (dx, dy). Here :ηj1 · · · ηjk:, the Wick
polynomial of the corresponding product, equals

∏

Hlm(ηm), where lm denotes the
multiplicity of the index m in the set {j1, . . . , jk} and Hm(x) is the m-th Hermite
polynomial. The definition of :ζj1 · · · ζjk: is similar. Since both sequences ηj and ζj ,
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j = 1, 2, . . . , are sequences of independent standard normal random variables, the
expressions in (4.4) and (4.4′) have the same distributions. Lemma 3 is proved. �

Proof of Theorem 3. The proof is similar to that of Theorems 1 and 2. Let us
fix some small ε > 0, and define the sequence ē(j) = ēε(j), j = 1, 2, . . . , by the
formula

ē(j) = Kε, if Kε ≤ e(j) < (K + 1)ε with some integer K .

Then
∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

ē2(j)− 1

n

n
∑

j=1

e2(j)

∣

∣

∣

∣

∣

∣

≤ const. ε , (4.5)

and the sequence ē(j), j = 1, 2, . . . takes finitely many values K1ε < K2ε < · · · <
Kpε with some p = p(ε) because of the boundedness of the sequence e(j). Let
the sequence ē(j), j = 1, . . . , n, take the value Klε Nl = Nl(n) times, 1 ≤ l ≤ p.
Introduce the function hn(y) = hεn(y) on [0, 1] as

hn(y) = Kpε on the interval
1

n

p−1
∑

l=1

Nl < y ≤ 1

n

p
∑

l=1

Nl

and the number E(n) = Eε(n) =
∫ 1

0
h2n(y) dy. By Lemma 3 the stochastic integral

Vn =
1

k!

(

E

E(n)

)k/2∫

f(x1, . . . , xk)hn(y1) · · ·hn(yk)B( dx1, dy1) . . . B( dxk, dyk)

(4.6)
has the same distribution as the stochastic integral V defined in the formulation
of Theorem 3.

The sequence a(j1, . . . , jk) = e(j1) · · · e(jk) can be ε-approximated by elemen-
tary functions such that this approximation is determined at level n by the parti-
tion

Λm = {j; 1 ≤ j ≤ n, ē(j) = Kmε} for 1 ≤ m ≤ p

and the function Bε
n(m1, . . . ,mk) = Km1

ε · · ·Kmk
ε.

Let gε(x1, . . . , xk) = g(x1, . . . , xk) be an approximating step function of f sat-
isfying Remark 1. Then the random variables n−k/2Un can be well approximated
in L2 norm by

Sn =
1

k!
n−k/2

∑

ms=1,...,p
ls=1,...,L

for s=1,...,k

Bε
n(m1, . . . ,mk)g

∗(l1, . . . , lk)ηm1,l1 . . . ηmk,lk

by Lemma 1, where ηm,l are independent centered Poissonian random variables

with parameter
Nm

L
. Because of the L2 isomorphism property of Wiener-Itô in-

tegrals the random variable Vn defined in (4.6) is well approximated in L2 norm
by

Tn =
1

k!

(

E

E(n)

)k/2

n−k/2
∑

ms=1,...,p
ls=1,...,L

for s=1,...,k

Bε
n(m1, . . . ,mk)g

∗(l1, . . . , lk)ξm1,l1 . . . ξmk,lk ,
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where ξm,l are independent Gaussian random variables with expectation zero and

variance
Nm

L
. Since

lim
ε→0

sup
n

|Eε(n)− E| = 0

by (4.5), Lemma 2 implies that the characteristic functions of Sn and Tn are close
to each other. These relations together with the observation that Vn and V have
the same distribution, and this implies the proof of Theorem 3 similarly to the
proof of Theorem 1. �

The proof of Theorem 4 is based on the following multidimensional version
of Theorem 3 and a lemma about the asymptotic behavior of the expression
Bn(j1, . . . , jk) defined in (2.3).

Theorem 3′. Consider the random variables

U (s)
n =

1

k!

∑

1≤jp≤n, 1≤p≤s

and jp 6=jp′ if p 6=p′

e(j1) · · · e(js)fs(Xj1 , . . . , Xjs), 1 ≤ s ≤ k ,

with a sequence e(j) satisfying (2.1), degenerate functions fs(x1, . . . , xs), s =
1, . . . , k, and iid. random variables X1, X2, . . . with uniform distribution in [0, 1].

The joint distribution of the random variables n−s/2U
(s)
n , 1 ≤ s ≤ k, tends to that

of the random vector

V (s) =
1

k!
Es/2

∫

fs(x1, . . . , xs)W ( dx1) . . . W ( dxs) , 1 ≤ s ≤ k ,

as n→ ∞, where W (x) is a Wiener process on [0, 1].

Proof of Theorem 3‘. The proof goes on the same line as that of Theorem 3, only
we need a multidimensional version of Lemmas 1, 2 and 3. We only explain the
modified Lemmas we need during the proof. The proof of Lemma 3 also yields that
if the functions fs(x1, . . . , xs), 1 ≤ s ≤ k are square integrable and

∫

h2(y) dy = 1,
then the joint distribution of the vectors

I
(s)
1 =

∫

fs(x1, . . . , xs)W ( dx1) . . . W ( dxs) , 1 ≤ s ≤ k ,

and

I
(s)
2 =

∫

fs(x1, . . . , xs)h(y1) · · ·h(ys)B( dx1, dy1) . . . B( dxs, dys) , 1 ≤ s ≤ k ,

agree.

We need a multidimensional version of Lemma 1, where we have to approximate
the sums

U (s)
n =

∑

1≤<j1<j2···<js≤n

as(j1, . . . , js)fs(Xj1 , . . . , Xjs) 1 ≤ s ≤ k ,
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simultaneously if the functions fs satisfy (1.4′), and the sequences as(j1, . . . , js)
are all ε-approximable by a set of elementary functions. We want to get the same

approximation of the random variables U
(s)
n as in Lemma 1 for all 1 ≤ s ≤ k

(by replacing k by s everywhere) with the following additional restriction: The
approximating sums must be the polynomials of the same independent centered
Poissonian random variables ηj,l for all 1 ≤ s ≤ k. This is possible if the following
conditions are satisfied. The ε-approximation of the function as is determined at
level n by a partition Λ1, . . . ,Λp of {1, . . . , n} independent of s together with some
function Bε

n,s(m1, . . . ,mp), and the functions fs are ε-approximated by such step
functions gεs(x1, . . . , xk) which satisfy Remark 1 with the same constant L in it
for all 1 ≤ s ≤ k. These conditions can be satisfied. If the ε-approximation of the
function as is determined at level n by a partition Ls = {Λ1(s), . . . ,Λp(s)(s)} of
{1, . . . , n} which depends on s and some function Bε

n,s, 1 ≤ s ≤ k, then it is also
determined by a partition which is a refinement of all partitions Ls, 1 ≤ s ≤ k,
and a function Bε

n,s such that relation (3.2) remains valid on the new partition
with the same function bεn(j1, . . . , js) = bεn,s(j1, . . . , js). To see that the conditions
of Remark 1 can be satisfied simultaneously for all fs, 1 ≤ s ≤ k, observe first that
the functions fs can be well approximated in L2 norm by continuous functions.
This implies that Remark 1 can be satisfied for all sufficiently large L. Then the
proof of Lemma 1 can be carried out to supply the strengthened form of Lemma 1
needed for us.

Finally we need the following modified version of Lemma 2. In Lemma 2 we
took a polynomial of order k of independent Gaussian and centered Poissonian
random variables, and showed that their characteristic functions are close to each
other under certain conditions. Take the polynomials of order s for all 1 ≤ s ≤ k

of the same random variables, and assume that these polynomials satisfy the con-
ditions of Lemma 2. Consider the random vectors which we get when the centered
Poissonian and when the Gaussian random variables are chosen as the arguments
of these polymomials. Then the characteristic functions of these random vec-
tors are close to each other. This statement can be proved in the same way as
Lemma 2, and Theorem 3′ can be proved by means of these generalized lemmas
just as Theorem 3. �

Lemma 4. Let the function Bn(j1, . . . , js), 1 ≤ s ≤ k, be defined by (2.3) or
(2.3′) with a function of the form a(j1, . . . , jk) = e(j1) · · · e(jk). Assume that e(j),
j = 1, 2, . . . , is a bounded sequence satisfying (2.1) and such that lim

n→∞
Fn = F

for the sequence Fn defined in (2.5). Then

n−(k−s)/2Bn(j1, . . . , js) =

(

k

s

)

Dk−se(j1) · · · e(js) + ε(s)n (j1, . . . , js) (4.7)

such that
lim

n→∞
sup

1≤s≤k
sup

1≤j1,...,js≤n
ε(s)n (j1, . . . , js) = 0 , (4.7′)

and the sequence Ds is defined by the recursive formula D0 = 1, D1 = F , and

Ds = F s −
[ s2 ]
∑

p=1

s!

2pp!(s− 2p)!
EpDs−2p . (4.8)
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Proof of Lemma 4. By formula (2.3′)

Bn(j1, . . . , js) =

(

k

s

)

Gn(j1, . . . , js)e(j1) · · · e(js) (4.9)

with

Gn(j1, . . . , js) =
∑

lp∈{1,...,n}\{j1,...,js}, 1≤p≤k−s

lp 6=lp′ if p 6=p′

e(l1) · · · e(lk−s) . (4.9′)

We need a good asymptotics for the term Gn defined in (4.9′). For this aim we
introduce some notations. Given a finite set A let |A| denote its cardinality. For
a set U ⊂ {1, . . . , k} let UU denote the set of all partitions of the set U , and for a
set J ⊂ {1, . . . , n} and a partition (V1, . . . , Vp) of U ⊂ {1, . . . , k} put

H
(n)
U,J (V1, . . . , Vp) =

∑

js∈{1,...,n}\J, s∈U
js=js′ if js∈Vr, js′∈Vr for the same 1≤r≤p

js 6=js′ if js∈Vr, js′∈Vr′ for r 6=r′

∏

s∈U

e(js) .

Let us observe thatHn
U,J (V1, . . . , Vp) depends only on the cardinalities |V1|, . . . , |Vp|

but not on the exact form of the sets V1, . . . , Vp. We claim that if |J | ≤ K with
some fixed K > 0, then

|H(n)
U,J (V1, . . . , Vp)| < const.n|U |/2 (4.10)

and

|H(n)
U,J (V1, . . . , Vp)| < const.n(|U |−1)/2 if |Vr| ≥ 3 for some 1 ≤ r ≤ p . (4.11)

We prove (4.10) by induction for the number of elements of the partitions. It holds
if the partition consists only of one elements, since

∣

∣

∣

∣

∣

∣

∑

j∈{1,...,n}\J

e(j)|U |

∣

∣

∣

∣

∣

∣

<

{

const.
√
n if |U | = 1

const.n if |U | ≥ 2
(4.12)

Then relation (4.10) follows from the inductive hypothesis and the identity

H
(n)
U,J(V1, . . . , Vp) =H

(n)
U\V1,J

(V2, . . . , Vp)
∑

js∈{1,...,n}\J for s∈V1

e(js)
|V1|

−
p
∑

i=2

H
(n)
U,J(V2, . . . , V1 ∪ Vi, . . . , Vp) .

(4.13)

It is enough to prove (4.11) in the case when |V1| ≥ 3. We can prove it similarly
to the relation (4.10) by induction for the number of elements of the partition. If
the partition consists of one element, then (4.11) holds because of (4.12), and if
it contains more than one element, then it follows from the inductive hypothesis,
(4.13), (4.12) and (4.10).
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To investigate those partitions of a set U which consist of sets with cardinality
one or two we introduce the quantities:

H
(n)
J (r, s) = H

(n)
U,J({1, 2}, . . . , {2r − 1, 2r}, {2r + 1}, . . . , {2r + s})

with U = {1, . . . , 2r + s} .

For J = ∅ put

H(n)(r, s) = H
(n)
∅ (r, s) .

We claim that

∣

∣

∣
H

(n)
J (r, s)− nrEr

nH
(n)(0, s)

∣

∣

∣
< const.n(2r+s−1)/2 (4.14)

if |J | ≤ K with some K > 0, where En =
1

n

n
∑

j=1

e(j)2. Relation (4.14) also holds

with s = 0 (and r ≥ 1) if we define H
(0)
n (0, 0) = 1.

To prove (4.14) observe that

nrEr
nH

(n)(0, s) =
∑

ju∈{1,...,n} for 1≤u≤2r+s
j2u−1=j2u for 1≤u≤r

ju 6=ju′ if 2r<u, u′≤2r+s and u 6=u′

e(j1) · · · e(j2r+s) . (4.15)

Hence
∣

∣

∣
H

(n)
J (r, s)− nrEs

nH
(n)(0, s)

∣

∣

∣
≤ Σ1 +Σ2

with

Σ1 =

[

sup
1≤j≤n

|e(j)|2r+s + 1

]

((2r + s)|J |)2r+s
∑

|U |≤2r+s−1
(V1,...,Vp)∈UU

|H(n)
U,J(V1, . . . , Vp)|

and

Σ2 =
∑

(V1,...,Vp)∈V

|H(n)
V,J (V1, . . . , Vp)| ,

where V = {1, . . . , 2r + s}, and V denotes the set of those partitions of V whose
elements are unions of the sets {1, 2}, . . . , {2r−1, 2r}, {2r+1}, . . . , {2r+s} and
it contains at least one set such that it has a proper subset of the form {2j−1, 2j},
1 ≤ j ≤ r. Here Σ1 bounds the contribution of those products e(j1) · · · e(j2r+s) in
(4.15) which contain a term e(jl) with jl ∈ J , and Σ2 bounds the contribution of
those products for which e(jl) ∈ {1, . . . , n} \ J for all 1 ≤ l ≤ 2r + s, but do not

appear in the expression defining H
(n)
V,J (r, s). The relations Σ1 ≤ const.n(2r+s−1)/2

and Σ2 ≤ const.n(2r+s−1)/2 hold because of formulas (4.10) and (4.11) respectively.

We shall prove by induction for s that

lim
n→∞

n−s/2H(n)(0, s) = Ds (4.16)
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with the sequence Ds defined in (4.8). Indeed, (4.16) holds for s = 0 and s = 1,
and for s ≥ 2 we can write

H(n)(0, s) = ns/2F s
n −

∑

(V1,...,Vp)∈Us\({1},...,{s})

H
(n)
U,∅(V1, . . . , Vp)

where Us denotes the set of partitions of U = {1, . . . , s}. We get relation (4.16) by
dividing in the last relation by n−s/2 and taking limit n → ∞ if we use relations
(4.11), (4.14), the induction hypothesis, the relation lim

n→∞
En = E, lim

n→∞
Fn = F

and the fact that the set {1, . . . , s} contains
s!

2pp!(s− 2p)!
partitions consisting of

p sets with cardinality 2 and s− 2p sets with cardinality 1, 1 < 2p ≤ s.

Clearly, for the expression Gn defined in (4.9′) Gn(j1, . . . , js) = HJ(0, k − s)
with J = {j1, . . . , js}. Hence relations (4.16) and (4.14) imply that

lim
n→∞

n−(k−s)/2Gn(j1, . . . , js) = Dk−s

and the convergence is uniform in (j1, . . . , js). The last relation together with
formula (4.9) imply Lemma 4. �

Proof of Theorem 4. We get by rewriting the expression (2.4) by means of the
Hoeffding decomposition, and applying Lemma 4 that

n−k/2Un = Vn + ηn

with

Vn =
k
∑

s=1

n−s/2

(

k

s

)

1

k!
Dk−s

∑

1≤jp≤n, for 1≤p≤s

jp 6=jp′ if p 6=p′

e(j1) · · · e(js)fs(Xj1 , . . . , Xjs)

and

ηn =

k
∑

s=1

n−s/2 1

k!

∑

1≤jp≤n, for 1≤p≤s

jp 6=jp′ if p 6=p′

ε(s)n (j1, . . . , js)fs(Xj1 , . . . , Xjs) .

The random variables f(Xj1 , . . . , Xjs) and f(Xj′
1
, . . . , Xj′s

) are uncorrelated if the

sets {j1, . . . , js} and {j′1, . . . , j′s} are different, since the functions fs satisfy relation
(1.4′). Hence formula (4.7′) implies that Eη2n → 0 as n→ ∞, and n−1/2Un and Vn
have the same limit distribution as n→ ∞. By Theorem 3′ the random variables
Vn have the limit distribution given in Theorem 4. �

Remark 2. If lim
n→∞

Fn = ∞, and the remaining conditions of Theorem 4 hold and s

is the smallest index such that the function fs in (1.4) does not vanish identically,
then the sequence n−k/2F s−k

n Un converges in distribution to the stochastic integral

Es/2

s!(k − s)!

∫

fs(x1, . . . , xs)W ( dx1) . . . W ( dxs)
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as n→ ∞. This can be proved similarly to Theorem 4, the only difference is that
now the behavior of the coefficint Bn defined in (2.3) is different. In this case

Bn(j1, . . . , js) ≈ n(k−s)/2F k−s
n e(j1) · · · e(js) .

The situation is more complex in the case lim
n→∞

Fn = 0. In this case some coef-

ficients Dj may equal zero in the limit distribution appearing in Theorem 4. In
particular, Dj = 0 if the index j is an odd number. Hence it may happen that
the limit appearing in Theorem 4 equals zero, and we have to apply a different
normalization to get a useful limit theorem. Here again a good asymptotics is
needed for the function Bn in (2.3). In this case those great indices s count for
which the function fs does not vanish in the Hoeffding decomposition (1.4). But
the situation is more complicated in this case. The asymptotic behavior of the

sums
n
∑

j=1

e(j)r can play role not only for r = 1 or 2. We omit a closer investigation

of this problem.
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