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In this paper we discuss Dyson’s vector-valued model and explain how its so-called
large-scale limit can be calculated. Formally, this is a limit theorem for the distribution
of sums of random variables. Hence one would expect that the classical methods of
probability theory, worked out for the investigation of such problems, can be applied
in this case too. However, this model has a much more complex behaviour than the
analogous models in classical probability, and the usual methods of probability theory
are not appropriate for its investigation. The aim of the present paper is to explain the
main motivations (statistical physical and probabilistic) for studying Dyson’s model and
the method of of investigation. Here we restrict ourselves to vector-valued models. A
detailed discussion of scalar-valued models is given in [2]. On the other hand, vector-
valued models have a peculiar behaviour which cannot be guessed from the behaviour of
scalar models. The behaviour of these models strongly depend on a physical parameter,
on the temperature T . In scalar-valued case there is a special, so-called critical value of
the parameter, where the large-scale limit exists with a different scaling. This means a
non-classical limit theorem with an unusual normalization.

In vector-valued case a similar phenomenon appears not only at the critical, but at
all low temperatures. On low temperatures there is a phase transition, hence first we
have to construct the random field, called pure state in the literature, which we want to
renormalize. This field has a spontaneous magnetization, and a different normalization
is needed in the direction of the spontaneous magnetization and in the direction or-
thogonal to it. In the direction orthogonal to the spontanous magnetization one has to
normalize similarly to the normalization at the critical temperature. In the direction of
the magnetization the situation is even more complex. Here the right normalization and
the large-scale limit depends on another parameter of the model which measures the
strength of the interaction. Let us emphasize again that the above statements hold not
only for a singular critical value of the parameter T , but for all sufficiently low temper-
atures T . A detailed description of Dyson’s vector-valued hierarchical model together
with a complete proof is contained in the works [1], [4] and [5]. Since these papers are
burdened with many technical details we have found it useful to discuss separately the
most important analytical problems one has to study during these investigations.
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The peculiar behaviour of vector-valued models is related to their invariance with
respect to rotations. This is a symmetry with respect to a continuous group. Actually,
our main motivation for studying this problem is to understand the role of continuous
symmetries.

The most important part of the problem we are dealing with can be translated to
purely analytical questions. One has to investigate the action of large powers of a
certain integral operator to a starting function. This operator is very similar to the
convolution operator (i.e. to the convolution of a function with itself), which is a well-
known object in classical probability. There is however one essential difference between
these operators. The operator appearing in our problem has, unlike the convolution
operator, the following instability property: When a large power of this operator is
applied to a starting function then the result strongly depends on the starting function.
This instability property is the main reason for the peculiar behaviour of models in
statistical physics. ( See paper [3] for a heuristic explanation of this question.) Actually
this instability is behind the different behaviour of scalar and vector-valued models too.

Let us discuss our problem in some more detail. We are interested in the behaviour
of equilibrium states. Equilibrium states are appropriately defined probability measures
on the space of all configurations σ = {σ(j), j ∈ Z}. The set Z is chosen generally in
translation invariant models as the integer lattice of the d-dimensional Euclidean space
Rd with some d ≥ 1. In Dyson’s model we choose Z = {1, 2, . . . }. The variables σ(j),
j ∈ Z, which are called in the literature spin variables, take values in the Euclidean
space Rp with some p ≥ 1. We speak of scalar-valued models if p = 1 and vector-
valued models if p ≥ 2. The probability measure that we call equilibrium space is a
Gibbs measure which is a well-known object in statistical physics. It depends on the
following three quantities: A Hamiltonian function H(σ) defined on the configurations
σ, a probability measure ν, called the free measure, on Rp, a physical parameter T ,
called the temperature. Formally it is defined as the probability measure µ given by
the formula

µ(dσ) = const. exp

{

− 1

T
H(σ)

}

∏

j∈Z

ν(dσ(j)) . (1)

Formula (1) would require a more detailed explanation. We omit it in this discussion,
because it is needed only to translate the problems we are interested in into analytical
questions. A precise definition of equilibrium states can be found also in Appendix D
of [4].

Let σ = {σ(j), j ∈ Z} be a µ distributed random field. We are interested in its large-
scale limit. Let us explain the meaning of this problem. Since we restrict ourselves to
Dyson’s model we shall assume that Z = {1, 2, . . . }. For all n = 1, 2, . . . define the
fields

Yn(j) =
1

An

j2n

∑

k=(j−1)2n+1

σ(k) − Eσ(k) , j ∈ Z . (2)

Let us choose the norming constant An in formula (2) in such a way that the finite
dimensional distributions of the fields Yn(j) have a nontrivial limit as n → ∞. We are
interested in the right choice of the norming factor An and the distribution of the limit
field which is called the large-scale limit of the original field σ(j) in the literature. In
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case of vector-valued models, i.e. when σ(j) = (σ(1)(j), . . . , σ(p)(j)) with some p ≥ 2 we
normalize in each coordinate independently. This means that we define

Y (l)
n (j) =

1

A
(l)
n

j2n

∑

k=(j−1)2n+1

σ(l)(k) − Eσ(l)(k) , j ∈ Z, l = 1, . . . , p . (2′)

In formulas (2) and (2′) we have formulated a problem about the limit distribution
of partial sums of random variables, and this is a very natural problem of classical
probability theory. If the variables σ(j) are independent or very weakly dependent then
An = 2n/2 is the right choice, and the large-scale limit consists of independent Gaussian
random variables. But for certain choice of the Hamiltonian function H(σ) and the
temperature T we have to apply a different normalization, and also the large-scale limit
has a different structure. Our main goal is to obtain a possibly complete picture of
different possibilities.

It is quite natural that the large-scale limit strongly depends on the Hamiltonian
function of the equilibrium state. The surprising fact, which requires an explanation, is
the dependence of the large-scale limit and of the norming constant on the temperature
T . In interesting models the following picture holds true: There is a so-called critical
temperature Tcr, where the model has a peculiar behaviour. For all T 6= Tcr the large-
scale limit is a field of independent Gaussian variables, and the norming constant is
the classical one, i.e. one has to divide by the square-root of the number of summands
in a bloc. The only exceptional case is when T = Tcr. In this case one has to divide
by a different power, and the large-scale limit may be non-Gaussian. Moreover, the
behaviour of translation invariant models at the critical temperature strongly depends
on the dimension of the lattice where they are defined.

It is an outstanding problem of the statistical physics to find a satisfactory expla-
nation for the above mentioned phenomena. Our paper [2] was devoted mainly to this
problem. We have also understood that in vector-valued models some even more com-
plex phenomena appear. Such models can show some phenomena similar to the critical
behaviour for all low temperatures. The discussion of this question is the main topic of
the present paper. Let us remark that since here a model living on the integer lattice is
investigated, i.e. a model whose dimension is always one, it is not possible to investigate
the dependence of the behaviour of different models on their dimension directly with
the help of this model. Nevertheless, this model can give some useful information also
about this problem.

Our model has the Hamiltonian function

H(σ) = −
∑

i∈Z

∑

j∈Z

j>i

d(i, j)−aσ(i)σ(j) , (3)

where 1 < a < 2, d(i, j) = 2n(i,j)−1, and

n(i, j) = min n, ∃ some k such that (k − 1)2n < i, j ≤ k2n .

(In vector-valued models σ(i)σ(j) denotes scalar product in formula (3).) For the sake
of convenience we work with the number c = 22−a instead of the parameter a. Here
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the function d(i, j), called hierarchical distance, is a modification of the usual distance
|i − j|. It behaves very similarly, and we have introduced it, because models defined
with the help of such a distance are simpler to handle because of their symmetry. Let
us observe that in formula (3) there is an interaction d−a(i, j) between all pairs (i, j).
This interaction is power-like decreasing with respect to the hierarchical distance, and
the exponent a of this power is a most important parameter of the model. It plays a
role similar to the dimension in translation invariant models.

The description of the large-scale limit of an equilibrium state is a very natural prob-
abilistic problem, but it needs some justification from the point of view of statistical
physics. It seems very unlikely that some physical effect can be thought out which
depends on what kind of limit distribution appears in the large-scale limit of an equilib-
rium state. In statistical physics one would be satisfied with the answer to such at the
first sight much simpler questions like the order of decrease of the correlation function
Eσ(i)σ(j)−Eσ(i)Eσ(j) as |i−j| → ∞. But, disregarding some special solvable models,
there seems to be no way to determine the decrease of the covariance function without
solving the more complex problem about the large-scale limit. This is a very important
peculiarity of the problem we are dealing with, and it also indicates the special character
of the probabilistic problem one has to solve when investigating the large-scale limit of
an equilibrium state. In formula (2) the norming constant An has to be chosen in such
a way that the variance of Yn(j) be separated both from zero and infinity. If one knows
the right choice of An one can also determine the decrease of the correlation function.
But we do not know the behaviour of the correlation function at the start. Moreover,
the correlation function behaves essentially differently for T = Tcr and T 6= Tcr, and no
method is known to give an analytic formula for the critical temperature. Probably, it
is principally impossible to give such an explicit formula. What we are able to do is to
carry out a procedure which enables us to approximate the critical temperature at each
step better and better. We can get the information we are interested in with the help
of such a procedure. This fact also indicates an essential difference between the deter-
mination of the large-scale limit of equilibrium states and the usual limit theorems in
classical probability. In problems of probability theory one generally knows at the start
whether one has to deal with strongly or weakly dependent random variables. Here we
learn it only after solving the limit problem.

To give a more detailed discussion we have to translate our problem to purely ana-
lytical questions. To do it first we have to define our model completely. We consider a
model with the Hamiltonian function H(σ) defined in (3) and the free measure ν defined
by the formula

p0(x) =
dν

dx
(x) = C(t) exp

{

−x2

2
− t

4
|x|4

}

, (5)

where t > 0 is another parameter of the model, and C(t) is an appropriate norming
constant. We shall assume that t > 0 is sufficiently small. What is important for us is
that p0(x) is a small perturbation of the normal density function, and it tends to zero
very fast.

Our first problem is to construct an equilibrium state with the above defined Hamil-
tonian function and free measure at some temperature T and then to describe its large-
scale limit. Both problems can be solved with the help of some limiting procedure if
one solves first the following two problems:
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Problem 1. Put Vn = {1, 2, . . . , 2n}, and

HVn
(x1, . . . , x2n) = −

∑

i∈Vn

∑

j∈Vn

j>i

d(i, j)−axixj .

Define the probability measure µn = µn,T on RVn (on (Rp)Vn if we have a model with
p-dimensional spins) with the density function pn(x1, . . . , x2n) by the following formula:

pn(x1, . . . , x2n) =
dµn(x1, . . . , x2n)

dx1 . . . dx2n

= Cn exp

{

− 1

T
HVn

(x1, . . . , x2n)

}

.

Let (σ(1), σ(2), . . . , σ(2n)) be a µ distributed random vector, and let pn(x) denote the

density function of the average 2−n
∑2n

i=1 σ(i). Give a good asymptotic formula for
pn(x).

Problem 2. Let N ≥ n, and h > 0. Define the probability measure µh
N on RVN (on

(Rp)
VN in p-dimensional models) with density function ph

N (x1, . . . , x2N ) by the formula

ph
N (x1, . . . , x2N ) = Ch

N exp

{

− 1

T
Hh

VN
(x1, . . . , x2N )

}

,

where

Hh
VN

(x1, . . . , x2N ) = HVN
(x1, . . . , x2N ) − h

2N

∑

i=1

xi ,

and Ch
N is an appropriate norming constant. (In the vector-valued case we consider h

as the vector (h, 0, . . . , 0) with some h > 0, and product means scalar product in the
last formula.) Let µh

n,N denote the restriction of the above defined measure µh
N to the

volume Vn, and let us consider the Radon–Nikodym derivative

fh
n,N (x1, . . . , x2n) =

dµh
n,N

dµn
(x1, . . . , x2n) .

Give a good asymptotic formula on the function fh
n,N (x1, . . . , x2n).

Both problems can be translated to purely analytical questions. It can be seen e.g.
with the help of Appendix A of [4] that Problem 1 is equivalent to the following

Problem 1′. Define the sequence of density functions pn(x) = pn(x, T ) by the recursive
formula

pn+1(x) = Cn(T )

∫

exp

{

cn

T
(x2 − u2)

}

pn(x − u)pn(x + u) du ,

and let p0(x) be defined by formula (5). Give a good asymptotic formula on pn(x).

Problem 2 can be translated with the help of the result in Appendix C of [4] to the
following
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Problem 2′. Define the functions fh
n,N (x), N ≥ n, by the relations

fh
N,N (x) = K(N,h) exp

(

2Nhx(1)

T

)

(6)

fh
n,N (x) = K(n,N, h)Snfh

n+1,N (x) (6′)

with

Snf(x) =

∫

exp

(

cn

T
xy

)

f

(

x + y

2

)

pn(y) dy , (6′′)

where pn(x) is the same as in Problems 1 and 1′, and K(n,N, h) is an appropriate normig
constant. Find a good asymptotic formula for the above defined functions f h

n,N (x).

It is proved in Appendix C of [4] that

dµh
n,N

dµn
(x1, . . . , x2n) = fh

n,N

(

2−n
2n

∑

j=1

xj

)

, n ≤ N ,

hence Problems 2 and 2′ are equivalent. The main part of our investigation consists
of solving Problems 1′ and 2′. In this paper the vector-valued case (i.e. the case when
p ≥ 2) is considered.

Formally the problems change very little when scalar-valued models are replaced
with vector-valued ones. Thus in Problem 1′ the only change is that |x| means the
absolute value of a vector, and xy denotes scalar product. Nevertheless, and this is the
most striking feature of the problem we are investigating, these seemingly unessential
modifications radically change the behaviour of the model. Thus the functions pn(x)
defined in Problem 1′ have the following behaviour for small T in the scalar-valued
case: Since pn(x) = pn(−x), it is enough to consider pn(x) for x ≥ 0. There is some
sequence Mn = Mn(T ), Mn > 0, Mn → M with some M = M(T ) > 0 such that
2−n/2p(2−n/2x + Mn) tends to a normal density function with expectation zero and
some positive variance. (The number Mn is called the spontaneous magnetization in
the literature.) This means a central limit theorem with the usual normalization.

The behaviour of the model in the vector-valued case is more complex. It is not
difficult to see that pn(x) depends on x only through its absolute value |x|, i.e. there
is a function Pn(z) = Pn(z, T ), z ∈ R1 and z ≥ 0 such that pn(x) = Pn(|x|) for all
x ∈ Rp. Hence, it is natural to investigate the function Pn(z) instead of pn(x). For

small T the behaviour of the function Pn(z, T ) is essentially different for 1 < c <
√

2 and√
2 < c < 2. For

√
2 < c < 2 there is a sequence Mn such that 2−n/2Pn(2−n/2z + Mn)

tends to a Gaussian density function with expectation zero and positive variance, i.e.
the situation is similar to the scalar-valued case. On the other hand, for 1 < c <

√
2

we have to normalize otherwise. In this case c−nP (c−nz + M) has a non-trivial limit
with some M > 0 which can be described as the solution of an integral equation. This
means a non-central limit theorem with an unusual normalization. (In scalar-valued

cases there is only at T = Tcr such a big difference between the cases 1 < c <
√

2 and√
2 < c < 2.)
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The main goal of our investigations is to give an explanation for the above discussed
phenomena and some related questions. For this aim let us rewrite Problem 1′ in a form
more appropriate for us. Let us introduce the functions

q̄n(x) = q̄n(x, T ) = Bn exp

{

a0

2a1
cnx2

}

pn

(

√

T

a1
x

)

and

qn(x) = c−n/2q̄n

(

c−n/2x
)

with a0 = 2
2−c and a1 = a0 + 1, where the function pn(x) is the same as in Problems 1

and 1′. Simple calculation shows that

q̄n+1(x) =

∫

exp{−cnu2}q̄n(x − u)q̄n(x + u) du (7)

and
qn+1(x) = Rqn(x)

with

Rq(x) =

∫

exp{−u2}q
(

x√
c
− u

)

q

(

x√
c

+ u

)

du (7′)

with some Bn. (We are not really interested in the value of Bn, because it influences
only the norming factor when pn(x) is expressed through qn(x). On the other hand, the
norming constant in pn(x) is determined by the fact that pn(x) is a density function.)
We also have

q̄0(x) = q0(x) = B0 exp

{

a0 − T

2a1
x2 − tT 2

4a2
1

|x|4
}

.

Since the function pn(x) can be simply expressed by qn(x) or q̄n(x), their investigations
are equivalent problems. It is more convenient to work with the function qn(x) or q̄n(x)
than directly with pn(x). Let us emphasize that the formulas expressing qn+1(x) and
q̄n+1(x) through qn(x) and q̄n(x) do not depend on the parameter T . Moreover, in
the case of the function qn(x) it depends neither on n. (This was our main reason
for introducing the function qn(x).) All dependence on T is contained in the starting
function q0(x). But this dependence is very essential, because the operator R, unlike its
classical probability counterpart the convolution operator, “remembers” of the starting
function. The limit of R

nq0(x), as n → ∞, is a small perturbation of the starting
function. In our paper [3] we discussed this property and pointed out that this is the
final cause of phase transitions and critical phenomena in statistical physics. Here we
show that it has other far-reaching consequences. It also implies that vector-valued
models with continuous symmetries have some properties which have no scalar-valued
counterpart. Let us explain this in more detail.

The function q̄n(x) depends on x only through its absolute value |x|, i.e. it remains
invariant if we rotate x. This property, called O(p) symmetry in the literature, is a
continuous symmetry, and it has far-reaching consequences. For the sake of simpler
notations let us assume that p = 2. Because of this property it is natural to introduce
the function Qn(x) defined by the relation Qn(x) = q̄n((x, 0)) and to work with this
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function instead of the original function q̄n(x). Let us rewrite formula (7) for the
functions Qn(x). We get that

Qn+1(x) = Cn

∫

e−cn(u2+v2)Qn

(

√

(x + u)2 + v2
)

Qn

(

√

(x − u)2 + v2
)

du dv (8)

The argument of the function Qn in formula (8) is rather complicated. Hence it is
natural to substitute it by a simpler expression and to control the error caused by this
substitution. This can be done in both cases 1 < c <

√
2 and

√
2 < c < 2, but the

right substitutions are different in the two cases. This is the reason of their different
behaviour. We give a short informal explanation for this.

In formula (8) we have to integrate in the whole space R2, but because of the kernel
exp{−cn(u2 + v2)} in the integral an essential contribution for the integral is supplied
only if u and v are small. (Actually this is the cause why the operator R “remembers”
to the starting function.) The function Qn(x) has a maximum M = Mn which depends
very weakly on n, hence at this heuristical level we can simply disregard this dependence.
Actually it is enough to give a good asymptotic formula for Qn(x) only in a small
neighbourhood of M . When x ∼ M and u and v are small it is natural to try to make
one of the following approximations in the argument of Qn in formula (8):

√

(x ± u)2 + v2 ∼ x ± u +
v2

2(x ± u)
∼ x ± u +

v2

2M
,

or

√

(x ± u)2 + v2 ∼ x ± u .

The first approximation would suggest the formula

Qn+1(x)

= Cn

∫

exp
{

−cn(u2 + v2)
}

Qn

(

x + u +
v2

2M

)

Qn

(

x − u +
v2

2M

)

du dv + ε1
n(x)

=

∫

exp
{

−cnu2
}

Qn

(

x + u +
v2

2M

)

Qn

(

x − u +
v2

2M

)

du dv + εn(x) , (9)

and the second one

Qn+1(x) = Cn

∫

exp
{

−cn(u2 + v2)
}

Qn(x + u)Qn(x − u) du dv + ε̄1
n(x)

=

∫

Qn(x + u)Qn(x − u) du + ε̄n(x) . (9′)

(If the approximation in the first row is allowed in the latter formulas then the approx-
imation in the second row is also permitted.) Whether the first approximation (9) has
to be applied or the second rougher approximation (9′) is also permitted that depends
on whether the error terms εn(x) and ε̄n(x) are negligible or not. A detailed analysis
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shows that in the case 1 < c <
√

2 the first approximation (9) is the right choice and in

the case
√

2 < c < 2 the second one (9′).

For 1 < c <
√

2 let us introduce the function Q̄n(x) = c−3/2nQn(c−nx + M). For-
mula (9) can be rewritten as

Q̄n+1(x) = TQ̄n(x) + ε̄n(x) (10)

with

Tf(x) = Tcf(x) =

∫

exp(−v2)f

(

x

c
− u +

v2

2M

)

f

(

x

c
+ u +

v2

2M

)

du dv .

In this case Q̄n(x) tends to the unique solution of the fixed point equation Q = TQ,
and this fact supplies the answer to Problem 1′. To prove it we have to show that the
solution Q(x) of the fixed point equation is sufficiently stable for our purposes, i.e. the
relation limn→∞ T

n
(

Q(x) + ε(x)
)

= Q(x) holds for a small perturbation of the fixed
point Q(x), and this convergence is sufficiently fast. This stability property holds only

in the case 1 < c <
√

2, and this is the reason why the solution of Problem 1′ is different
in the cases 1 < c <

√
2 and

√
2 < c < 2. To give a complete proof of the convergence

Q̄n(x) → Q(x) we have to overcome several technical difficulties. The most important
one among them is to show that the error term ε̄n(x) is really negligibly small. This
question is discussed in the Preface and in the first three Sections of Part I of paper [4]
in more detail.

In the case
√

2 < c < 2 it is more natural to work with the function Q̃n(x) =
2−n/2Qn(2−n/2x + M). Relation (9′) implies that

Q̃n+1(x) = UQ̃n(x) + ε̄′n(x) (10′)

with

Uf(x) =

∫

f

(

x√
2
− u

)

f

(

x√
2

+ u

)

du .

The fixed point of the operator U, i.e. of the convolution operator, are normal density
functions with expectation zero. In the case

√
2 < c < 2 the error term ε̄n(x) is

negligibly small for
√

2 < c < 2. This implies that in this case
√

2 < c < 2 Q̃n(x) tends
to a normal density function, and this yields the solution of Problem 1′ in this case too.

We discuss the investigation of Problem 2 more briefly. We have introduced the
dependence of the measure µh

N on h in order to investigate the influence of an external
magnetic field to the model. We need such an approach in the investigation of the
model at low temperatures. At low temperatures there is a phase transition, i.e. several
different equilibrium states exist with the same Hamiltonian function, free measure and
temperature. Hence first we must clarify which equilibrium state we are working with.
We select out a pure state, i.e. an equilibrium state which cannot be written as the
mixture of different equilibrium states. A natural way to construct pure states, and
we choose this approach, is to introduce an external field hN in the volume VN and
take the limit of the measures µhN

N in VN as N → ∞ and hN → 0. To carry out
this program we have to solve Problem 2. The pure state we construct in this way
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has a spontaneous magnetization in the direction e(1) = (1, 0), i.e. Eσ(1)(j) = M > 0
and Eσ(2)(j) = 0 for a random field σ = {σ(j), j ∈ Z} with the distribution of the
pure state we have constructed. In the large-scale limit defined by formula (2′) we
have to normalize differently in the direction of the magnetization and in the direction
orthogonal to it. Our main interest in this work is the description of the large-scale
limit in both directions.

The operator Sn defined in formula (6′′) depends on the function pn(x) appear-
ing in Problem 1. This implies that the recursive formula expressing f h

n,N (x) through

fh
n+1,N (x) has an essentially different form in the cases 1 < c <

√
2 and

√
2 < c < 2.

Nevertheless, the asymptotic behaviour of the function fh
n,N (x) is the same in the two

cases.

More precisely, we need a good asymptotic formula for the function fh
n,N (x) only

in a typical region, and outside this region it is enough to give some upper bound
on it. Actually we are interested in the product pn(x)fh

n,N (x), and not the function

fh
n,N (x) itself. Hence the typical region, where we need a good approximaton, is a small

neighbourhood of the maximum of the above mentioned product. In this domain the
Radon–Nikodym derivative has the following form:

fh
n,N (x) = Cn exp

{

gnx(1) + Anx(2)2 + εn(x)
}

, (11)

where εn(x) is a small error term, and the constants gn and An are defined by a recursive

formula. This formula holds both for 1 < c <
√

2 and
√

2 < c < 2, and even the recursive
formulas on gn and An have the same structure in the two cases. This means that in
Problem 2′ there is no essential change between models with different parameters c. A
heuristic explanation of this fact is contained in the last two formulas at page 466 of
[2], and they are the basis for our investigations of Problem 2. When giving an upper
bound outside the typical region we have to work differently if the absolute value |x| is
not typical and if it is typical, but the vector x is not in the typical region because of
its direction. This question is discussed in Section 2 of Part II of [4] in more detail.

The solution of Problem 2 in the case
√

2 < c < 2 is given in our paper [1]. Actually
the greatest part of that work deals with this question. The solution of this problem
(which also contains the investigation of the asymptotic behaviour of the sequences gn

and An) is the main ingredient in the description of the large-scale limit of the equilib-

rium state. For
√

2 < c < 2 one has to normalize with A
(2)
n = 2nc−n/2 in the direction

orthogonal to the direction of the spontaneous magnetization, and the limit is a field of
dependent Gaussian random variables whose distribution we can describe explicitly. In

the direction of the magnetization the classical norming A
(1)
n = 2n/2 has to be applied,

and the limit is a field of independent Gaussian random variables. (The bounary case

c =
√

2 is similar to the above case
√

2 < c < 2. (See [5]). The only difference is

that in this case the normalization A
(1)
n = 2n/2

√
n has to be applied in the direction

of the spontaneous magnetization.) This means that in the direction orthogonal to the
spontaneous magnetization a “critical” normalization has to be applied for all low tem-
peratures, i.e. the same normalization as at the critical temperature. This result has no
equivalent in scalar-valued models.

The large-scale limit of Dyson’s model in the case 1 < c <
√

2 is similar to the case√
2 < c < 2 in the direction orthogonal to the spontaneous magnetization, and it is
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different in the direction of the magnetization. The reason for it lies in the fact that
the solution of Problem 2 is similar in the two cases, and the solution of Problem 1
is different. In the direction orthogonal to the spontaneous magnetization one has

to divide again by A
(2)
n = 2nc−n/2, and the limit is a field of dependent Gaussian

random variables. In the direction of the spontaneous magnetization one has to divide

by A
(1)
n = 2nc−n, and the limit field is non-Gaussian. The explicit form of the large-

scale limit is given in Theorem 2 of Part II in paper [4]. The proof of this result consists
of a limit procedure which can be carried out if Problems 1 and 2 are already solved.
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