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RENORMALIZING THE VOTER MODEL.
SPACE AND SPACE-TIME RENORMALIZATION

by
P. MAJOR

Summary

In a recent paper Bramson and Griffeath have determined the large scale limit of the equilibri-
um state of voter models. First we give another proof for this result. We show that in spite of the
strong correlation between distant sites it can be deduced from the central limit theorem for sums
of independent random variables, if a duality equation is combined with an appropriate condition-
ing. Our method works also in the case of space-time renormalization. We get some results closely
related to those of Holley and Stroock.

1. Introduction

In a recent paper [1] BRAMSON and GRIFFEATH have investigated the large scale
limit of the equilibrium state of 3-dimensional voter models. In this paper we give
another proof for this result, and investigate also space-time renormalization. First
we formulate the main result of [1] in detail.

Let Z, denote the integer lattice of the d-dimensional space R;, and let
E={0, 1}%s. By a d-dimensional voter model we mean a E valued Markov process
(&)=(&.(0)), n=0,1,2, ...,i€Z,, £,()=0 or 1, with transition probabilities de-
fined by a distribution p on a finite subset of Z, in the following way:

P(6() = Llesms) = ZPDEualinti),
PGUD = L wos Eaind = 1UEa—s) = [T PEGD = 1120s).

Let us consider the case when the initial distribution of &, is given by the formula
(1.1 PUD =1 .. &(Um=1)=4" 0=4=1
and the distribution p satisfies the following conditions:

(1) the group generated by {7, p({)>0} is d-dimensional. Let Z=(Z,, ..., Z,)
denote a random variable with distribution p. Then

() EZ, =0, k=1,2,..,d
(iii) EZ,Z, =0, EZ =EZ¢=m, 1=k<I=d.

AMS (MOS) subject classifications (1970). Primary 60K35.
Key words and phrases. Renormalization, self-similar field, interacting particle systems, gener-
alized Ornstein-Uhlenbeck process.
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322 P. MAJOR

In paper [5] it is proven that the distributions of the configurations &, tend weakly to
a measure u=pu, as n---o. The measure y is translation invariant, and in case
d=3 it is ergodic. (This was proven for continuous models, but the proof applies
for discrete models as well.)

Let ¢{=(¢(i)), i€Z,, have the distribution u=y,. For all r>0 and Q€&
(& denotes the Schwartz space of rapidly decreasing functions) we define the random
variables

(1.2) Fy(9) = ie%’ O —-EED]e ()

and
Fi..(®) = F(9,),
ad

where ¢, (x)=r 2 ¢ (%), and o>0 will appropriately be chosen. Set g(j)=
=2 p())p(i+j). Let % denote the group generated by the set {j: ¢(j)=>0}, and let

(Y,) be a random walk starting from the origin and having transition probabilities
q(j). Bramson and Griffeath have proved the following

THEOREM 1. Let (&,) be a d-dimensional voter model, d=3, satisfying (i), (ii), (iii)
d+2
2
tend in distribution to a normal random variable with expectation zero and covariance

C,B(p, p) as r—o where

50.9) = [ [LD dxay,

R, R, "yld—z

and (1.1). Then for all p€% the random variables F, ,(¢), with the choice o=

and C,=0 is an appropriate constant. If 49=17, then

¢, =220 opy-anp(g)
with
y=P,50 forall n=1)
and
_ [V2r(1+3-5...(d—3)) ifd is odd
Bl = {2(2-4...(d——4)) if d is even.

(This result was proved in[1] in the case d=3, but the proof works without any dif-
ficulty for d=3.) Using the terminology of [2] this result can be interpreted in the
following way. In formula (1.2) a generalized field was defined. Theorem 1 says that
its large scale limit is a Gaussian self-similar field with covariance function C,B(¢, ¢).
It follows from the general theory that the large-scale limit of a generalized field, if
this limit exists at all, must be self-similar. But it may be also non-Gaussian. Our
original aim was to find an intuitive explanation why the limit is Gaussian in the pre-
sent case. In [1] the convergence to a normal law was proved by the method of semi-
invariants. We will show that combining a duality equation with an appropriate
conditioning this result can be deduced from the central limit theorem for sums of
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RENORMALIZING THE VOTER MODEL 323

independent random variables. Our method works also in the case of space-time re-
normalization.

This paper consists of three sections. In Section 2 a new proof is given for Theo-
rem 1, in Section 3 space-time renormalization is considered.

2. Proof of Theorem 1

We need a duality equation which slightly differs from that of paper [1]. Let a
system of coalescing random walks X(j)=(X,(/)), j¢Z;, n=0, 1,2, ..., be defined
on Z,; in the following way: X,(j)=/, P(X,,H(_/')—X,,(j):i)=p(z'), and let the ran-
dom walks X, (/) evolve independently for different j except for the following collision
rule. Whenever two or more walks attempt to occupy the same site at the same time
they merge into one. Let o(j), j€Z,, be i.i.d. random variables with distribution
P(a(j)=1)=1—P(a(j)=0)=4, and let moreover the « be independent also of the
random walks X(j). Set &,(/)=a(X,(j)). We claim that the following duality
equation holds true:

P(én(]l) = ]7 ke én(.]k) = 1) = P(En(.}l) = 15 wuany En(]k) = 1)

2.1
forall n=0,1,2,..,k=1,2,... and jq, ..., x€Zys;

i.e. the joint distribution of the random variables £,(/) and that of the random vari-
ables &,(;) agree for a fixed n. The following argument shows the validity of (2.1).
A voter model satisfying (1.1) can be interpreted as follows: At time zero a site j has
the opinion 1 with probability 2 and the opinion 0 with probability 1 —A. The opinions
of different sites at time zero areindependent. At time m the site j takes the opinion
of the site j+i at time m—1 with probability p(f). These changes of opinion take
place at different sites independently of each other. Let us reverse the time, i.e. let
us look at the process &,, &,_1, -.., &. By observing where the opinions &,(j) stem
from we can see that there exists a system of coalescing random walks X, (), m=
=1,2, ...,n such that &,(j)=¢&(X,(/)). This relation implies (2.1).

Let us first restrict ourselves to the case @€2, where 9 denotes the class of in-
finite many times differentiable functions on R, with compact support. Put

Q(F) = {Jl]EZd’ J = (jlv "'7jd)> []li =, l = 1’ 23 ’d}

For all @2 there exists an A4=0 such that ¢,(j)=0 for all r=1 and
je€Z,—0Q(Ar). For every positive integer n the coalescing random walks X(j),
J€Q(Ar) induce a random partition B,(n), ..., Byoy(n) of Q(A4r) (the number
k(n) is also random ) defined in the following way: j€Q(Ar) and j'€ Q(Ar) belong to
the same element of the partition if and only if X,(j)=X,(j).

Let 2y denote the distribution of these partitions. Fix a partition B,(n), ...,
By»(n), and observe the following fact: Under the condition that this partition took
place the random variables &,(j) with argument j in the same element of the partition
agree, and with arguments in different elements of the partition are conditionally
independent. Introduce the notation

QD(B’ r) = 2 q)r(])s Bc Zd'
jeB

21* Studia Scientiarum Mathematicarum Hungarica 15 (1980)




324 P. MAJOR
The duality equation (2.1) implies that
. N k()
22) &) —EE(DNe.() & ZIE(G)—EE (Do, (j) £ 2 =29 (B,(n), 7)

where the o are ii.d. random variables, independent also of the partition
B]_ (n), seey Bk(n) (n), P (OC, = 1) = 1 - P (“l =0) = 2,, the parﬁtions Bl (n), ceey Bk(n) (n) are

2, distributed, and £ denotes equality in distribution. The validity of (2.2) can be
seen by observing that the right-hand side and the middle expression in (2.2) have
the same conditional distribution with respect to a partition By(%n), ..., Byy(n).

Let us also consider the (random) partitions By, ...; B, of Q(Ar) defined by the
following rule: j€Q(Ar) and j’€ Q(A4r) belong to the same element of the partition
if and only if X,(j)=X,(j’) for n>n(j,j’). Let Z., denote the distribution of these
partitions. It is not difficult to see that &, tends to £, as n— . Indeed, a simple
monotonicity argument shows that for every partition #={B;, ..., B} of Q(4r)
the 2, probability of the event that some partition rougher than # appears; i.e. the
2, probability of the event that the points of B; belong to the same element of the
partition, and so do the points of By, Bs, ... and By; tends to the 2., probability of
the same event. But this relation is equivalent to £,—~2... Exploiting the relation
2,~P.. we get, letting n tend to infinity in (2.2), that

k
@3) Fin(@) 2 3 =198, ),

where the random variables o, are the same as in (2.2), they are independent of the
partitions, and the partitions By, ..., B, are 2., distributed.

Let us fix a partition of Q(Ar), and consider the conditional distribution of the
right-hand side of (2.3) with respect to the condition that this partition took place.
We are going to show that for typical partitions this conditional distribution is asymp-
totically normal with expectation zero and with a variance which is almost the same
for different partitions.

Let A(j,...,ji) denote the event that the random walks X(j), ..., X(Ji)
coalesce. Let R(jys .- i) =P(A(J1» ..., ji))- (In these definitions j=j, for =l
is allowed.) It is easy to see that

2o (B, 1)? = QZ(Ar) (A1, j2)er () @ (o)
i o(an

where 1(A) denotes the indicator function of the set 4. Hence

249 E[Zo (B, )] = Z R(j1, J2) @, (j1) @r (o)

Jisle

D[Z¢(B,, r)?*] =
2.5)

=2 [P(A (J1,j22N A4 (jg,j4))—R(j1, J2)R(js, j4)] 0, (j) @, (J2) @, (Js) 0. (Jo)-
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RENORMALIZING THE VOTER MODEL 325

Similarly
@.6) E[ZQD(Bla 7')4] = 2R (J1>J2> J35 J0) 0 (G 0, (J2) 0, (ja) @, (jo) =
= Kr—2d+2) ) 2 RliusJasJss Jo)
J;€Q0(4r)
it1,23

Let A(jy, js» j3» ju) denote the event that the random walks X (/1) and X (j,) coalesce,
and so do the random walks X(j;) and X(j,), but the random walks X(j;) and X (jy)
do not meet the random walks X(j;) and X(j,). We claim that

2.7 P(A (i1, )N AUs5jo) = P(A (s jas s j)+ R(i» s da»a)
and
(2.8) P(A(j1, ja» Ja» ja)) = R(j1sj2) R(js» ja)-

Relation (2.7) is trivial, and it is enough to check (2.8) in the case when Ji, ja, js, ja
are different. Let X(,) and X(j,) denote the random walks X(j,) and X(,) which
vanish after hitting X( ;) resp. X(j;). If the random walks X (j;) move independently
also after hitting each other then the right-hand side of (2.8) equals the probability
of the event that X(j;) hits X(j,) and X(Js) hits X(j,). The left-hand side of (2.8)
equals the probability of the event that the same collisions take place, but the ran-
dom walks X () and X(j,) do not meet the random walks X (j,) and X( Ja). These
relations imply (2.8).
Formulae (2.5), (2.7) and (2.8) imply that

(2.9) D(Z¢(B,, 1)?) = Kr-2a+» R(ji»Jar jardo)-

R(J1,j2) equals the probability of the event that a random walk starting from the
origin and having transition probabilities q(i) hits the point j; —j,.

Some modification in the proofs in Sections 2,6 and 7 in [7] shows that there
exists a constant C=0 such that

¢ o o
RGu,jo) ~ \Thgai e 2 Mimiel =~ o h=iu€9
1sJ2) ™~
0 if j,—j.€Z,—%

with C=%(2n)“"2B(d) if ¥=Z,. It can be proved with the help of this rela-
tion that
(2:10) A(A=2) 2 R(j1, o). (i) @, (j2) ~ C,B(o, ¢)

8

as r—co. We omit the details of the proof, since it can be found in Proposition 1 of
[1] in the case d=3, and the proof in the case d=>3 can be done in the same way.
We claim that

(211) . ZAr) R(jlaj2’j33j4) = O(VZ(d+2))'
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First we prove Theorem 1 with the help of (2.11). Because of (2.9), (2.11) and Che-
byshev’s inequality
(2.12) 2o (B, 1)*—EZp(B,,1)?*=0 as r— o

where=>denotes convergence in probability.
Relations (2.6) and (2.11) imply that

(2.13) 2B, N*=0 as r - oo,

The conditional distribution of the right-hand side of (2.3) with respect to a par-
tition By, ...; B, has the variance 1(1—1) Z¢ (B, r)?, which tends, because of (2.12),
(2.4) and (2.10) to C,B(¢, @) in probability. This conditional distribution can be
represented as the distribution of the sum of the independent random variables
(0, —A)@(By, ). Hence (2.13) shows that the central limit theorem applies for it.
More precisely, the proof of the central limit theorem for sums of independent ran-
dom variables shows that

E[exp [it 2(,— )@ (B;, 1)]|Bs, ..., B,] = exp [——ﬂ%ﬂ t2)

for all t. Hence Theorem 1 holds for all ¢€92.
The duality equation (2.1) also implies that

Cov(£(ju), £(jo)) = Jim Cov (&,(jx), & (i) = AL =) R(jy, jo).
Hence

(2.14) E[F,.. (@)l = 2 R(j1,J2)0.(J)e.(jo) forall c&.

Jisdy

On the other hand there exists a K=>0 such that
(2.15) R(j1,J2) = K(lji—ja|+1)~%*+2 for all j;, j,€Z,.
Relations (2.14) and (2.15) imply that for all pc&

lim sup E[F;,,(9)*] = limsup > R(j1, jo) o, (jolle (o) =

deply
Bl
o[Flle(

Given a @€% and &>0 there exists a ¢,£9 such that B(lo—¢,|, |p—o¢,)<e.
The last inequality implies that

) P 1 —d+42
= Klimsup > r=* [Mz]_‘_"_] = K’B(lo|, o).

Jisda r

(2.16) limrsup E[F;, . (0—0) 1 =K’e
and
2.17) lim sup {E[F; ,(0)*] —E[Fy,,(9)°]} = K’ +2[K"eB(p, @)~

Relations (2.16) and (2.17) reduce Theorem 1 to the already proved special case
PED.
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Relation (2.11) in the case d=3 has been proved in Proposition 3 of [1]. We
give another proof which we think to be simpler. Let us introduce the notation

S = > RO, jas i)y k=23, ...
J; €9

i=2,3

s Oy aney

ObViOUSlY: R(jla "'5jk):R(Oaj2_j13 sty jk—jl)a henCC

QZ' R(j1s -oos i) = A% S, (24r),
J'g 2( K

and relation (2.11) follows from the following

LEMMA 1. If d=3 then
Sp(r) = A(k)r¥—2

Sfor all r=1;,k=2 with an appropriate A(k).

PrOOF of Lemma 1. Let R(jy, ..., /i) denote the probability of the event that
the random walks X(j), ..., X(ji) coalesce, and none of the random walks
X( /1) -» X(ji) hit each other before X(j;) and X(j,) meet. Fix some points
Jas eens _]kE Z,, and define the random walks

k = (Uk(n)), Uk = (Uk(n)), n = 0, 1, 2, ey
on the lattice Z;;., in the following way:
Uk(n) = (Xn(j2)_Xn(j1)> vy Xn(jk)_Xn(jl))’
U(n) = Ug(n)— U,(0).

Given an x€Z;,_, let 4,(x) denote the event that U,(n)=x for some n, and none
of the random walks X,,(/y), ...; X,,(Jji) meet for m<n. We claim that

@18) Pe(x) = P(4x() = C(R) (Jx|+1)=k+ 442,

Indeed, if the random walks X(j,),i=1, 2, ..., k move independently also after
hitting each other then (X,(j2)—X,(j)—(Ua—/0), ---» X,(ji) =X, (]1) (e—Jp) i
a non-degenerate isotropic random walk starting from the origin in the kd—d d1-
mensional lattice. Hence it hits the point x with a probability less than
C (k) (Jx|+1)~*+4+2 This probability clearly majorizes P(A4,(x)), hence (2.18) holds
true. The quantity R(ji, ..., j;) equals the probability of the following event: There
exist some

X = (jl""j29 U3+j1""j3, sy uk+j1_jk)= uiEZda = 27 3, sees k:

and

such that at first the event A.(x) takes place, and then the random walks
X, (jo) =X, (1) -y Xp(Ji)— X, (/1) coalesce. The Markov property of the random
walk (X (jy), -- X ( ]k)) 1mphes that

(2.19) R(jla s Ji) = 2 Pk((]l —Jos UsFj1—Jzs -oes uk‘l‘jl_jk))R(Oa Ugy ooy Up).

i= 3 k

(The function R on the rlght-hand side has k—1 arguments.)
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Now we want to make a good recursion formula for S(r) with the help of (2.19).
Obviously,

(k“‘2)'R(]1, -'~ajk) = EZI; R(jn(1)9 ~-',j1c(k)) ST
melly,

= 2 R(O, ju(2) —jn(l)’ ""jn(k) _jn(l)),
mell,

where IT;, denotes the set of all permutations of the numbers 1,2, ..., k. Let us sum
up the last inequality for all (0, j, ..., ji), i€Q(F), i=2, 3, ..., k. The left-hand side
equals (k—2)!S,(r) and the right-hand side can be estimated from above by
k! 2(’ , R(0, 3, ..., ji). To see the last relation one has to observe that
J;€0(r

=2, 3, k

=€ Q@) if ji€0(),i=2,3,....k, and for all =€ll, and ji€a®,
i=2,3, ..., k, the equation

©, jas ... i) = (%1, Xn(2) ~ Xn(1)s ++» xn(k)—xn(l))
has only one solution. Thus we obtain that

(2.20) Se(r) = k(k—=1) > R(0,ja, -5 ji)-
.gQ(Zr)

's

[

i 3,...,k

(12

Summing up the identity (2.19) for all (0, jy, ..., ji), i€QQF), i=2,3, ..., k,
and exploiting (2.20) we get that

S =kk—-1) ZZ' RO, ug, ..., u) X
€Zy
k

s %
@.21) Pty
X 2 Pk((""jz, Ug—j3s «ee u:;‘fk))-
15247
Define the sets

D(m)=D(m,r, k) =

= {()C3, ceey xk)EZ(k._g)d, x,EZd, l = 3, ceey k, 20 = gglaé(k lxll - 2m+1r}

for m=1,2,..., and

D©)=D(O, 7, k) = {(x3, ..., x), x,€Zy, 1 =3, ..., k, Jmax | < 2r}.

Let j,€Q(2r),1=2,3, ...k, u,€Z,;, p=3,....,k, and (u3, ..., u )eED(m) for some
m=0. If m=2 then

Pk((‘—j% u3—j39 sininty uk_jk)) = C(k)(zm-—lr)—dk+d+2
because of (2.18) and the relation |u;—j,|=2"-Y% for some 3=/=k. Hence

(2.22) . E%(lz Pk((“‘jza Ug—jgs «ons Uy _jk)) = C(k)2=ta+d+ymys
1=‘2,3,..:k
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if (ug, ..., u)€D(m) with m=2. On the other hand if (us, ..., u)ED(m) with
m=0 or m=1 then

(223) > P(—jas ts—Js e =) = 2 (L+[u) "M+ = (k)2
i) (32('2.,.-),‘ 1§|Zskgk—rd

Splitting up the outer sum in (2.21) in the form

= 2
m=0 (i

ueZ
ity %k

Ug, ..., W)€ D(m)
and exploiting (2.22) and (2.23) we obtain that

(2.24) S.(r)= C(k) > -Mrd+Bmye > R((O0, us, ..., u)),
m=0 (ua,__,,uk)eD(m)
or

Si(r) = Ck)rr J A-Hrdcting, (Gw+iy),
m=0
So(r)=A(2)r? because of (2.15). Substituting this inequality into (2.24) with k=3
we obtain that S;(r)=A3)r*. A simple induction by k in (2.24) shows that
Sy ()=A(k)r*-2 Lemma 1 is proven.
At a first sight Proposition 3 of [1] seems to be slightly more general than Lemma
1 of this paper. Nevertheless it easily follows from the present Lemma because of the
fast decrease of the functions @€& at infinity. Relation (2.19) makes possible also to
estimate the individual terms R in S, (r), but a direct estimation of Sy (r) turned out
to be simpler.
In paper [2] DoBrUsHIN described the covariance function of a Gaussian self-
similar field in a different form, he gave a so-called spectral representation. We finish
Section 2 by rewriting B(¢, ) in this form. More generally, we prove the identity

(2.25) [ [o@uG) x—yl-*dxdy = C@e,d) [@@O)FQ@)|t*~dt

R,

for all d-dimensional ¢, y€% and x>0, where (

d~x)
d—x_dJ2
24-*7 F[_Z

C(x,d) =

and ~ denotes Fourier transform. In our case x¥=d—2, and the expressions in for-
mula (2.25) are the covariance function of the so-called d-dimensional 0-mass free
field.

To prove (2.25) we remark that the Fourier transform of |x]|~*, considering it as
a generalized function equals C(x, d)|t|*~ (see e.g. [4]). Let * denote convolution,
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and let Y_(x)=y(—x). Then
[ oV )Ix—yl~*dxdy = [ 11~ [ o) (x—1) dx dt =
= [l oxy_(dt = C(x, d) [ [t~ %y _() dt =
= C(, d) [ |1=43 )P0 dt

as we claimed.

3. On space-time renormalization
Given a positive integer N, a number >0 and a function @¢% we define the

random variables
Fn(p) = ieZZ En(D—EShD]e ()

and
Fl,N,r(q)) =F, 5 (on,)

where @y ,(X)=h(N,r)¢ (f), and the norming factor A(N,r) is appropriately

chosen. We are interested in the limiting behaviour of F, y .(¢) when both N and r
tend to infinity. The most interesting case is when N~or? with some «=0. We
investigate this case, then we briefly describe the situation when either Nr—2--0
or Nr~2—o without working out the details. We also determine the limit distri-
bution of the random vector F, , n1. (™), ...; F, LN, L(@®), when O<t<...<ft,,
oW, ..., oW are arbitrary, N=r2 | ] denotes integer part, and N-—c. We
determme this limiting distribution also in the case when &, has an equilibrium
distribution ;.

Finally we show that the limit distributions we have obtained in the multi-di-
mensional case determine, after an appropriate rescaling, a so-called generalized
Ornstein-Uhlenbeck process. Our first result is the following

_ds

THEOREM 2. Let N~ ar?, a>0,r—c, and h(N,r)=r 2 . Then F, y .(¢) tends
in distribution to a normal random wrlable with expectatzon zero and covariance
C,B.(¢, ¢), with some C,=0, where

B, = [ [0V (G (x—y)dxdy

R, R
with
2ma 12
— LI —d/2
Ga(t)——d/‘ exp[ 2u)u du.
If 9=17, then
¢, = 2022 @y

Let Ay(Ji, -..5jx) denote the event that the random walks X(j,), ..., X(j,) meet
up to time N. Let Ry(ji, ....ji)=P(Ay(j1, ....Ji)). Obviously,

(ERY) Ry(js -5 ) = R(1s o5 Ji)-
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The proof of Theorem 2 goes essentially on the same line as that of Theorem 1.
The main difference is that now we have to estimate Ry(J;,/,) instead of R( i, j»).
Obviously,

Ry(j1,J2) = P(Y, = j1—Jj, for some 0 =n = N).

We need the following
LEMMA 2. For all ¢=0,x€Z,, |x|>¢ VN

y(x) =P, =x forsome 0 =n=N) =

2Nm

l 1 —d/ d—2/2 .
Cf exp( 0 u % du+o(N- Y if x€9
0 iff x¢9,
=TA=n (IC i )’ where C, is the same constant as in Theorem 2, and o(-+) is uniform in
x and N.

The proof is a natural modification of that of P1 in Chapter 26 of [7].

Proor of Lemma 2. Let P(n, x)=P(Y,=x), Gy (x)= 2’ P(n, x), G(0)=G.(0)=
= 2 P(n,0). Givena 6=>0 a k=k(d) can be chosen 1n such a way that G (0)>
>G(O) —0. First we show that

Gy (x) Gy k(%)

(3-2) GO) — (%) = == GO =5

Let p;(x)=P(Y;=x, Y,#x for I<j). Then

P = 3 py(0)P(1=1,0),

and
Ntk n Ntk—j

Gunn® = 3 Zpi0Pt—10= 3 50 3 P10 =

N k
= 29,00 2 P1,0) = iy (GO0,

what is the right-hand side of (3.2).

On the other hand Gy(x) is the expected value of the number n, n=N such
that Y,=x. Because of the Markov property the conditional expectation of this
number under the condition that the first hitting of the point x took place at time /
is less than or equal to G(0), the expected number of returns to x. Hence

Gy(x) = 1;:) P (x) G (0).
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It remains to prove that

2Nm

2
(B3) Gy = f exp(—%] u= du+o(N-U-212) if xe9, |x| = ¢ VN.
0

If Y, is a strongly aperiodic random walk over G (cf. [7] D1 on p. 42 for the defini-
tion of strongly aperiodic random walk) then the local central limit theorem holds
for P(Y,=x); n=N, |x|>eN'2; with an error term o(N~%?). Hence

Gy(x) ~ 2mCy~1 2]\]'(2mn)““/2 ex [- " ) =
N 4 n=1 P 4mn)

N 1 ]
=T —d+2 . 42 4 .
Cy n;; x| exp[ YT (4n)=924

2Nm|x|~2 2Nm

P
~ Cy~1|x|-4+2 f exp [__zLu] u=2dy = Cy—! f exp [*%_] u=42 du,

0 0

where A4=2m|x| 2.

If Y, is not strongly aperiodic then the local central limit theorem may not
hold true. But a modification of the argument in [7] can reduce the general case to
the strongly aperiodic one. We introduce the strongly aperiodic random walks
Y*=(}), 0<a<1, defined by the formulae

Yi=0, Ph.=yYi=x) =aq(y—x)+1—-0)d(x, ).
Let G%(x)= > P(¥*=x). We claim that
n=0

(34 1GY () = Gy () = e Gan(),

with &= (1+(1—o)"/2)/a. Letting o go to 1 in (3.4) we get that (3.3) holds in the gen-

eral case. To prove (3.4) let us consider a sequence #;="1n(), §a=15(), ... of i.i.d.

random variables with distribution P(p,=k)=o(l—a)*"1, k=1,2, ..., which are

independent also of the random walk Y,. Set S(n)= 2"' n;,n=1,2,... §0)=0
i=1

and Yi=y; if S(j—1)=n<S(j). Then the random walk Y has the prescribed
distribution, hence

N N
Gy(x) = n;(’) E(6(x, 1)), G%(x) = n;’) E(5(x, YY)
As S(N)=N,
S(N) N
Gh(0) =E > E(d(x, ¥}) = En ZE(O(x, Y,) = a7 Gy (),
what is the left-hand side of (3.4).
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Define the set A= {n,+... +ny<Na}. As Ey,=a~, Dy, = 1_2

, Chebyshev’s
inequality yields that

__an\1/2
(3.5) 1—P(4) = P( Enj N—(l—ai)—] =N-L
Since the event A is independent of the random walk Y,
(3.6) / Zé(x Y,) dP = P(4)Gy(x).
A =0

On the other hand

/

N N
206 Y,)dP = [ 3 no(x, Y,)dP =
n=0

n=0

(3.7)
= f Za(x, Y2 dP = GZy(x).

Relations (3.5), (3.6) and (3.7) imply the right-hand side of (3.4). Lemma 2 is proven.
Now some slight change in the proof of Theorem 1 yields the proof of Theorem
2. First we show that

(3.8) lim E[F, v, (0)] = B,(¢, 9). ES.
We can write, similarly to (2.14),

E[F; N, ()] = A(1—1) Z Ry(j1, j) O+ () O, (J2) =
(3.9) P
=A1-N[ + 2
|11"12|<” [y —Js|=er
The first sum on the right-hand side of (3.9) is O(e?) for r>r(e) because of (3.1)
and (2.15), and the second sum is B,(¢, )+ O(¢?) because of Lemma 2. Letting
€ go to zero in (3.9) we obtain (3.8).

In the proof of Theorem 2 we apply formula (2.2). Observe that because of rela-
tion (3.1) Lemma 1 remains valid if we substitute R (0, s, ..., ji) With Ry (0, ja, ..., ji)
in the definition of S,(r). We get the proof of Theorem 2 simply by writing Ry
instead of R, 4y instead of 4 everywhere in the proof of Theorem 1.

If Nr~2—>co, and r—oothen F, y . tends, with the choice of h(N, r)=r-@+3/2
to a normal random variable with expectation zero and variance C,B(¢, ¢). This can
be seen by exploiting the relation Ry (f;, ja) ~ R(Jisjo) if |j1—Jo| =0(NY?). If Nr2—0,
N then F, y .(p) tends, with the choice of h(N, r)=N~12r=%2 to a Gaussian
random variable with expectation zero and variance C} f @%(x)dx with an appropriate

C,=0, ie. the generalized fields F; y , tend to the white noise field as r—co. The
reason for this result is that for |j;— ]2|>>N 12 the function Ry(ji,/p) is very small;
hence the interaction between such pairs (ji,j,) is negligible. More explicitely the
following inequality holds true:

o L —Jal?
(3.10) Ry(j1,J2) = Crexp "Cz—N“
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with some appropriate C;>0 and C,>0, hence

ELF,n,r (@)% = 2(1=2) ZRy (1, jo) 0w, () 0,» () ~ Cf [ 9*(x) dx.

Our conditioning argument shows that the limit is normal if

ZQ' Ry(j1s J2s J3»Ja) = o (N 2r?).
l=11€2(:;,)4

Pt}

This inequality can be deduced from Lemma 1, formula (3.1) and the inequélity

, L. C . e
(3.107) RN(Jl,Jz,Js,méCleXp[——z max lle—JzzP]-

N 1,1,=1,2,34

Inequalities (3.10) and (3.10") follow from standard large deviation results.
If Nis fixed, and r—~c then a similar argument shows that F, y ,(¢) tends,
with the choice h(N,r)=r"'2, to a normal random variable with variance
A(1=)C(N) f @*(x)dx and expectation zero, where C(N) is appropriately chosen,
Now we turn to the investigation of the limit distribution of the vector valued ran-
dom variables (F, w, (0©), ...; F) n, . (¢®)), where ¢®, ..., o®c, and
0<N;<...<N,. We need a multi-dimensional version of the identities (2.1) and (2.2).

Given some integers 0=N;<N,<...<N, we define a system of coalescing
random walks X(j,)=(X,(j, 1)), j€Z;, 1=1,2,...,k in the following way:
Xy~ D=j, and X,(j,!) is not defined for n<N,—N,; i.e. the random walk
X(j, 1) starts at time N,—N, from point j; P(X,..(j,])—X,(j,1)=i)=p(i), and
let the random walks X(j, /) evolve independently for different (j, /) except for the
following collision rule. Whenever two or more walks attempt to occupy the same
site at the same time they merge into one. Let «(j), j¢Z,, be i.i.d. random variables
with distribution P(x(j)=1)=1—P(«(j)=0)=41, which are independent also
of the random walks X(/, /). Put Cy (j)=a(Xy,(j,!)). The same argument which
proved (2.1) shows that for any integer p and pairs (1, /1), ..., (np,7,), where j€Z,
and #, is one of the numbers Ny, ..., N, I=1,2, ..., p,

G1y  PE,GD=1 .., 8,0) =1) =P, () =1, ..., & () = 1).

Let us first restrict ourselves to the case when @M€, ..., 9®cP. Then there
exists an A>0 such that all of the functions @® (%), ey @ (%) are zero for
J€Z;—Q(Ar). Let Qy(Ar), ..., Ox(Ar) be k replicas of the set Q(Ar), and put
Q:lL_le Qi(Ar). We define the following random partition of Q:j€Q,(4r) and

J'€Qp (Ar) belong to the same element of the partition if and only if X, ~(h D=
=Xn" 1), 1,7 €04r); LI'=1,2, ..., k. Let #(Ny, ..., N,) denote the distribu-
tion of these partition of 0. Let us fix some ¢®€9, ..., 9®€ P, some real numbers
dy, ..., d; and a partition of Q. If B is an element of this partition then we define

B,=BNQ,(4r), 1=1,2,...,k
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and

k .
&(B) = D (W, ..., oW, dy, .., dp, 1, BY= Jdy 5 @ (L]
=1 jEBQ) r
Let oy, &, ... beiid. random variables, P(a¢;=1)=1—P(¢;=0)=1. With the help
of (3.11) it can be proved, similarly to (2.2), that

61 34 3 o0 (L)ini)-En( 2 S 0@@-2

I=1 jezd i

if the partitions {B;} of Q are #(N,, ..., N;) distributed, and they are independent
of the sequence oy, s, ....
Let us choose some O0<t;<...<ft,, and define N,=[tN], [=1,2,....,k. Put

RN,I,I(j19j2) = P(XNk(jb D= XNk(jZa Z)), j1af2€Zd I, = 1,2, oo ks
We are going to show that for all &¢=0.

RN,l,l(jl,jz) =
(Np+Npm

-
613 e [ ew(- I s ov-e-my for ji—jiew

- (NI—NI)’”

0 for j,—j.,4%

if 1=1, |j,—j.|>eN'2, where o(+) is uniform in |j; —j,| and C is the same constant
as in Lemma 2. We shall also see that

(3.14) Ry,1,1(j1,J2) = C,N-W@=-22 f [ 5] for all J1sJo€Zy,

where the constant C; depends only on ¢, ,, ..., #,. First we prove with the help of
(3.13) and (3.14) the following

TueoreM 3. Let 12~ N, N,=[t)N], V€%, 1=1,2, ..., k,0<t,<...<t,. Then
the joint distribution of F, y, .(0"), 1=1,2, ..., k, tends, with the choice h(N, )=
=r~UrD2 a5 N—~oo to the distribution of a vector valued normal random variable
with expectation zero and covariance EY,Y;=C lB,I,,Z((p('), oWy 1L1=1,2,.. .k,
where
(3.15) Boo, W) = [ [o(W()G(t—s, t+s, |[x—yl)dxdy

R, R
if 0=s=t, with o

mit

. 2
G(s, t,2) = f exp (——2%] u=2du.

ms

Proor of Theorem 3. It is enough to show that
k ) g &
121 alF/l,Nt.r((pU)) e 121 ZzlYl
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for arbitrary coefficients d, ..., d;, where Z, denote convergence in distribution.
First we restrict ourselves to the case @M@, I=1,2, ..., k. Observe that

Cov (le(h), fN;(jz)) = A(I"A)RN,l,l(jlst)
because of (3.11). Hence

k 2
E [lgl Zzz F).,Nl,r(q)(l))] =
- J J
=MD S AL 3 Ryl ide® () e0(2).
5,1=1 Jpia€Zy r r
On the other hand

2 A= r=@+D Ry 1, ) o® [%] o® (ir%) =

Jysdy

= 2 + 2 ~ Btl,tl ((P(l)’ (0(1))-

lJy—Jgl=eN2 [j —j,[SeNV/2
Indeed, the first sum in the middle term is asymptotically Btl,,l(go(’), D) if ¢ is

sufficiently small because of (3.13), (the effect of the error term o(N —4-22) is neg-
ligible since o™, W€ P) and the second sum is negligible, as it can be seen from
(3.13) if /3] and from (2.15) and (3.1) if /=I. These relations imply that

k 2 k
Al,im E (Z dFy 5 ,r(ﬁl’(”)] = 2 alal’Btl,tl((p(l)9 ®) = E(Zszl)z'
wes {1 ! 1,1=1
Formula (3.12) enables us to prove that the limit distribution is normal. We apply

the same conditioning argument as it was done in Theorems 1 and 2. Introduce the
notation d,=d,(r)=d;r~@*+?2 [=1,2, ..., k, and

&,(B)=d, 3 o [L) BcO.
JjeB(@) r

Then
(3.16) ®(B) = l;; ®,(B).

To carry out the conditioning argnments of Theorem 1 and 2 it is enough to show
that

L =E[29(B)] ~0
I = E[[Zp(B)—EZpB)] -0 as r— oo
if the partitions of Q have (N, ..., N,) distribution. Because of (3.16)

(3.17) L=k ;k; E[Z0,(B)Y.

To estimate /, we introduce the following notations: Let Ay(j, ..., Jos b i)
J€Zy, 1€41,2, ...k}, s=1,2,..;p; denote the event that Xy (ji,h)=
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=XNk(j2, 12) = .. :XNk(./‘p’ lp): and let

RN(.jl’ 771;9 lla cees lp) = P(AN(jla ""jp’ ll, ceey Ip))
It can be shown similarly to (2.5) that

k
12: IZ; Z; [P(AN(jlijallslz)ﬂAN(j:iajzh 13’ 14))_

1;6 d
=1,23,4

i .

i1 234

4 .
—Ry(s s s =1,2,3,4)] Hdz,,,(ﬂ(l’")[J_m].
m=1

r
An argument similar to the proof of the formulae (2.7) and (2.8) yields that
P(AN(jla.jZ’ 113 lz)mAN(j:}’jAh l3’ 14))WRN(js’ ls; s = 19 27 35 4) =
= RN(jl’j2’ ll’ 12)RN(j3,.j4= l3’ 14)
Hence

. .
(3.18) I, = SRy(js, I;: s =1,2,3,4) [T |di|| @ [17]‘ = E[Z|®|(B)"] = L
i=1

where |®@|(B) is defined by substituting ¢, by |¢,| and d, by |d|| in the definition of
@(B). The partitions of Q,(A4r) induced by the (N, ..., Ny) distributed partitions
of 0 have 2(N,) distribution. Hence, by expressing EX®,(B;)* by means of
Ry,(J1> Ja» /3, Ja) We get that [; -0, I,~0 because of the relations (3.17), (3.18), (3.1)
and Lemma 1. The reduction of the case ¢V¢% to the case @"€¢Z can be done
similarly to Theorem 1.

Now we turn to the proof of relations (3.13) and (3.14). Consider a random walk
Y, which starts from the origin and which has transition probabilities p(i) for
0=n<N;—N,, and q(i) for n=N,—N,. Clearly

(3.19) Ry.1,1(j15J2) = P(Y, = ji—j, for some N;— N, =n = Ny).

It follows from standard results about concentration functions, cf. [3] Theorem 6.2,
that

(3.20) P(Y, =x) = 0(n=*",
where O(-) is uniform in X. Relations (3.19) and (3.20) imply (3.14).
To prove (3.13) we introduce the quantities

Gy u(x) = %P(Y’ =x) and G(0) = Z()P(Y,+M~YM = 0),

where M=N;—N,. We may assume that #,>1,, since the case 7,=1 was solved
in Lemma 2. It can be seen similarly to the proof of (3.2) that because of (3.19)

GN N](jl—jz) GM N1+k(j1 _jz)
3.21 —_ = i1y o) = —=————
( ) G0) = RN,I,I(]I,]z) = G0)—3 )

k

where k is chosen in such a way that > P(Y,,, — Yy =0)> G(0)—J. Because of
r=9

(3.21) it is enough to give a good asymptotics for Gy y(x) in order to prove (3.13).

22 Studia Scientiarum Mathematicarum Hungarica 15 (1980)



338 P. MAJOR

If the random walks with transition probabilities p and ¢ are strongly aperiodic then
the local central limit theorem holds for Y, — Y, with an error term o(N~%3).
If the local central limit theorem fails to hold for Y, M—YM then we make a reduc-
tion similar to the proof of Lemma 2.

Let us introduce the auxiliary random walks (Y%= (Y % such that Y=Y,
for n=M and Y7 has transition probabilities

) g (x,y) =aqg(y—x)+(1 -2 (x, »)
if n=M. Set

) = 3 P(Y7 = ).
Since (3.4) holds for all x€Z,,

a0 = IPO = )| 3 PO-vi =x—u),

and a similar relation holds also for Y, the relation

(3:22) 5Glt, (%) = G, () = o Gl aratrmany ()

holds true for all p=M and x€Z; with a=(1+(1—«)'?)/a. For all «=>0 and
6=>0 the local central limit theorem holds for P(Y%,,—Y%=x) with an error
term o(N-9?) if n>0N, where o(-) may depend on « and § but not on x. (We
must be a little careful, because we have not a local central limit theorem for
Y3 ., — Y5 with a good error term if 7 is relatively small. Relation (3.20) helps us
to overcome the difficulties arising from this fact.)

Because of (3.20)

(3.23) G, () =Gy, p () = K(p'—p) N-©-D/2
with some K=0 for all p’>p=M and x€Z,;. Because of (3.22)
(3.23%) Gy, p(X) = Gy, ,(x) = 2K(p' —p) N-@-D2

for all p">p=M and x€Z, if o>1/2. Relations (3.22), (3.23) and (3.23’) imply
that given any ¢>0 a 6=0J(¢)=0 and an n=n(J, €)=0 can be chosen in such a
way that

(3.24) G, vy (X) = G oy vy ()| = (N2 4 Glr+1oN1 Ny (x))
if 0<l—oa<#y and
GaM+[r$N],N1 = GM,N1 — Grg, m41581-
The variable Y% has almost the same variance as Y, if 1—« is sufficiently small,
N
Giﬂ[aN],Nz (%)= 2 Pi=x),
n=M{[6N]

and a normal approximation can be made in the last sum. Hence relations (3.24) and
(3.21) imply (3.13).
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Now we turn to the investigation of the limiting behaviour of the vector
Fyn (@), 1=1,2, ..., k, in the case when the initial distribution of &, in the voter
model has the equilibrium state p,. Let us consider a voter model starting with the
initial distribution defined in (1.1). Fix some integers 0=N,;=<...<N,. Observe
that the joint distributions of the fields &y.y,,....¢x4n, tend to that of the fields
Exys oos Ey, @S N—>oo, where (&,) denotes a voter model with initial distribution g,
and with the same transition probabilities as (&,). Given an 4=0 and r=0 we
define the set Q, and the distribution 2 (N, ..., N;) over the partitions of Q as be-
fore. We introduce the notation #N(Ny, ..., N)=Z(N;+N, ..., N+ N). Let us
also define the following random partition of Q:j€Q,(4r) and j’€Q, (Ar) belong
to the same element of the partition if and only if the random walks X(j, /) and
X(j’, I’) hit each other. Let 2=(N;, ..., N;) denote the distribution of these parti-
tions. It is not difficult to see that 2Y¥(N,, ..., N)—>2=(N,, ...,N,) as N-oo.
These relations imply that formula (3.12) remains valid if the partitions {B;} of Q
are #=(Ny, ..., N,) distributed, and &, is u, distributed. Introduce the notation

R;Vo,l,l(jlajz) = P(Xn(j‘l’ l) = Xn(j2» Z) fOI' some n)'

Fix some real numbers 0=t <t,<...<f, and let N,=[t,N], =1,2,...,k. The
following relation, analogue to (3.13), holds true. For all =0, [=/

- "
@ f exp!———hzm u= 12 du+o(N-4-37)

Ry, l(jl ]2) = == !

h if ji—ja€9, ji—j2 > eN?

0 if ji—j:4%

where o( ) is uniform in |j, —/,|. Now a straightforward modification of the proof
of Theorem 3 leads to the following

THEOREM 4. Let (£,) be a voter model with initial distribution u, and with the same
transition probabilities as before. Let 0=t;<...<t,, *~ N, N;=[t;N], "¢,
I=1,2, ...k, and h(N,r)=r=U“+»72 Then the joint distributions of F, v, .(¢"),
I=1,2,...,k, tend to a normal law with expectation zero and covariance

B,I,,l(<p(’), o), 1,1=1,2, ..., k, where

B.(0,¥)=C, [ [0 ()G (t—s, =, |x—y|) dx dy

Rd d
if s=t and ¢,ycs.

REMARK 1. Given a set of random variables X(t, ¢), €%, t€T, T=|[0, =]
or T=(— oo, o), it is called a generalized field valued process if X(, ¢) is a general-
ized field for all fixed . Define the o-algebras #,=Z(X(u, @), u=t, p€&). A gen-
eralized field valued process is called Gaussian if the random vectors
(X(ty, ©1)s --os X(44s 1)) are Gaussian for all p,€%,4,6T,1=1,2, ...k, k=1,2, ....
It is called Markovian if

P(X (1, @) < x|F7) = P(X(2, ) < x|X (s, ¥), Y€ &)
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for all x€R;,s=t, and @€&. It is called stationary if the joint distribution of
X(ty+u, ¢1), ..., X(t+u, ;) agrees with that of X(t1, ¢y), ..., X(t;, @) for all
ueT, teT, €S, 1=1,2, ..., k, k=1,2; .... A stationary Gaussian and Markovian
generalized field valued process is called a generalized Ornstein-Uhlenbeck process.

In Theorem 3 we have got a Gaussian generalized field valued process X (¢, ¢)
with expectation zero and covariance function

EX(s, ) X (1, ¥) = B, (9, ¥)

as the limit. We show that it is Markovian. Because of the Gaussian property it is
sufficient to show that given any ¢€% and real numbers O0=s=t, there exists a
¢s,,€ such that

(3.25) EX(t, @) X (u, ) = EX(s, @, ) X (1, )

for all O=u=s and Y€ Relation (3.25) holds if the function @5, 1s defined as
A — 5 — Q\1—d/2 - IX"Z|2
05409 = Grs() = [ am(e—9) exp (5 7SN 0(2)

d

It is enough to check (3.25) in the special case m=1. Elementary calculation shows

that
e e

R, —u

_ ra —d/2 (p=z|°
= f v exp |~ — dv

t—u

forall 0=u=s<t and y,z€R,. Expressing the right-hand side of (3.25) as a mul-
tiple integral, and changing the order of integration we can get (3.25) with the help
of the last identity.

Let us define the generalized field valued process

- 1
X(t, @) = exp(u-a;—zt]X[;;e?’, go,], —co<t< ¢, @EEZ,

where ¢ (x)=¢(xe™"). Clearly, X(t, ¢) is also a Gaussian and Markovian gener-
alized field valued process. Moreover, some calculation shows that

EX(s, 0)X(1,40) =
1e2(s-0)

= exp (—g—;—z(t—s)) ﬁ[é[q)(xe“s)lﬁ(y)[ f exp [—Il;uﬂ] u=42 du] dxdy

1—e2(s—t)

if s=t, hence X(t, @) is stationary, i.e. X(t, @) is a generalized Ornstein—Uhlenbeck
process.

It can be seen similarly that the limiting distributions appearing in Theorem 4
determine also a generalized Ornstein-Uhlenbeck process. The function {s,, can be
calculated in the same way as in the former case.
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Remark 1 was motivated by some results of HOLLEY and STrRoock [6]. They
considered the continuous time version of the voter model, and proved a result analo-
gous to Theorem 3. They proved directly that the limiting field is a generalized Orn-
stein—Uhlenbeck process. Our method works also in the continuous time case.

REMARK 2. We could have chosen the test functions ¢ also as indicator functions
of unit cubes or as finite linear combination of such functions. Such a choice of the
test functions leads to the discrete renormalization version of our results.

ReMARK 3. The condition that the distribution p is concentrated on a finite set
can be weakened. All the theorems of this paper remain valid if we assume only that
p has a covariance matrix. Theorems 1 and 2 remain valid also if condition (ii) is
violated. On the other hand the random variables F, y ,(¢®) in Theorems 3 and
4 tend in this case to independent normal random variables for different /. If condition
(iii) is violated a non-isotropic limit appears.

REMARK 4. For d=1 or 2 the limit distribution p, is a linear combination of
o and p1y;5 o (£(1)=0)=1, u, (E(})=1)=1 for all i€Z,. Hence in this case there is
no interesting counterpart of Theorem 1. On the other hand it can be asked whether
some non-trivial result can be obtained for space-time renormalization if r=r(T)
is appropriately chosen. The most interesting case is when 72~ oT, o=>0. If we want
to investigate this question with the method of the present paper then the most im-
portant step we have to do is to give an asymptotic for Ry(J;, js)-
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