In several papers a result called Segal's lemma appears. This result is Lemma 1.4 in I. E. Segal's paper Construction of nonlinear local quantum processes I. in Annals of Math. 92 (1970) 462–481. Here I describe a slightly modified and more detailed formulation and proof of this result. I present a slighly different version of Segal's proof. I finish this note with the original formulation and proof of Segal's result.

Segal's lemma. Let (M_i, μ_i) $(i = 1, \ldots, n)$ be separable measure spaces, and let \mathbf{T}_i be an integral operator on $L_p(M_i, \mu_i)$ with positive kernel K_i , i.e. let

$$
(\mathbf{T}_i f)(x_i) = \int_{M_i} K_i(x_i, y_i) f(y_i) \mu_i(dy_i), \qquad x_i \in M_i, \ y_i \in M_i, \quad i = 1, \dots, n,
$$

where $f(\cdot)$ is a function in $L_p(M_i, \mu_i)$. Let \mathbf{T}_i be a contraction from $L_p(M_i, \mu_i)$ to $L_q(M_i, \mu_i)$, for certain given $1 \leq p < \infty$ and $1 \leq q < \infty$ for each i. Then the algebraic tensor product $\mathbf{T}_1 \times \cdots \times \mathbf{T}_n$ is a contraction from $L_p(M_1 \times \cdots \times M_n, \mu_1 \times \cdots \times \mu_n)$ to $L_q(M_1 \times \cdots \times M_n, \mu_1 \times \cdots \times \mu_n)$ i.e.

$$
\left(\int_{M_1 \times \cdots \times M_n} |(\mathbf{T}_1 \times \cdots \times \mathbf{T}_n f)(x_1, \ldots, x_n)|^q \mu_1(dx_1) \ldots \mu_n(dx_n)\right)^{1/q}
$$

$$
\leq \left(\int_{M_1 \times \cdots \times M_n} |f(y_1, \ldots, y_n)|^p \mu_1(dy_1) \ldots \mu_n(dy_n)\right)^{1/p}
$$

for all $f(y_1, \ldots, y_n) \in L_p(M_1 \times \cdots \times M_n, \mu_1 \times \cdots \times \mu_n)$, where

$$
(\mathbf{T}_1 \times \cdots \times \mathbf{T}_n f)(x_1, \ldots, x_n)
$$

=
$$
\int_{M_1 \times \cdots \times M_n} K_1(x_1, y_1) \cdots K_n(x_n, y_n) f(y_1, \ldots, y_n) \mu_1(dy_1) \ldots \mu_n(dy_n).
$$

Proof. It is enough to prove the estimate of the Lemma for $n = 2$, because then the lemma follows for general n by simple induction. It suffices to prove this inequality only for functions f with the additional property $f(y_1, y_2) > 0$ for all $(y_1, y_2) \in M_1 \times M_2$. Because of this additional condition we can omit the absolute value in the subsequent calculations, since we are working with non-negative functions.

Let us fix a function $f(y_1, y_2) \in L_p(M_1 \times M_2, \mu_1 \times \mu_2)$ with $y_1 \in M_1$ and $y_2 \in M_2$ such that $f(y_1, y_2) \geq 0$ for all $(y_1, y_2) \in M_1 \times M_2$. Then the function $f(y_1, y_2)$ with a fixed point $y_1 \in M_1$ is a function in $L_p(M_2, \mu_2)$ for almost all $y_1 \in M_1$. Hence we can define for all $y_1 \in M_1$ the $L_p(M_2, \mu_2)$ valued measurable function $F(y_1)$ on M_1 by the formula $(F(y_1))(y_2) = f(y_1, y_2)$ for all $y_1 \in M_1$ and $y_2 \in M_2$, and $F(y_1)$ has the norm $||F(y_1)||_p = \left(\int_{M_2} f(y_1, y_2)^p \mu_2(dy_2)\right)^{1/p}$. The function $||F(y_1)||_p$, $y_1 \in M_1$, is in the Banach space $L_p(M_1, \mu_1)$, since $\int ||F(y_1)||_p^p \mu_1(dy_1) = \int_{M_1 \times M_2} f(y_1, y_2)^p \mu_1(dy_1) \mu_2(dy_2)$ ∞ . We also define the $L_q(M_2, \mu_2)$ valued function $G(x_1)$ for all $x_1 \in M_1$ by the formula $(G(x_1))(y_2) = \int_{M_1} K_1(x_1, y_1) f(y_1, y_2) \mu_1(dy_1)$. Then

$$
(G(x_1))(y_2) = \int_{M_1} K(x_1, y_1)(F(y_1))(y_2)\mu_1(dy_1) = \left(\int_{M_1} K_1(x_1, y_1)F(y_1)\mu_1(dy_1)\right)(y_2),
$$

i.e. $G(x_1) = \int_{M_1} K_1(x_1, y_1) F(y_1) \mu_1(dy_1)$ for all $x_1 \in M_1$.

An upper bound will be given on $||G(x_1)||_p = \left(\int_{M_2} [(G(x_1))(y_2)]^p \mu_2(dy_2)\right)^{1/p}$ for a fixed point $x_1 \in M_1$. In this estimate the following result will be applied. If (M, μ) is a separable measure space, **X** is a Banach space, $H(y_1)$, $y_1 \in M$, is a measurable non-negative function on M, $U(y_1), y_1 \in M$, is an **X** valued measurable function on M, then $\left\| \int_M H(y_1)U(y_1)\mu(dy_1) \right\| \leq \int_M H(y_1) \|\left(U(y_1)\right)\| \mu(dy_1).$

With the choice $(M, \mu) = (\tilde{M}_1, \mu_1), \tilde{X} = L_p(M_2, \mu_2), H(y_1) = K_1(x_1, y_1), U(y_1) =$ $F(y_1)$ for all $y_1 \in M_1$ this result yields that

$$
||G(x_1)||_p = \left\| \int_{M_1} K_1(x_1, y_1) F(y_1) \mu_1(dy_1) \right\|_p
$$

$$
\leq \int_{M_1} K_1(x_1, y_1) ||F(y_1)||_p \mu_1(dy_1) = (\mathbf{T}_1(||F||_p)))(x_1).
$$

This inequality together with the contraction property of T_1 yields the following estimate on the $L_q(M_1, \mu_1)$ -norm of the function $||G(x_1)||_p$ with arguments $x_1 \in M_1$ by the $L_p(M_1, \mu_1)$ -norm of the function $||F(y_1)||_p$ with arguments $y_1 \in M_1$.

$$
\| \|G(\cdot)\|_p \|_q \le \| {\bf T}_1 (\|F(\cdot)\|_p) \|_q \le \| \|F(\cdot)\|_p \|_p
$$

.

Let us also observe that since $||F(y_1)||_p = \left(\int_{M_2} |f(y_1, y_2)|^p \mu_2(dy_2)\right)^{1/p}$ for almost all $y_1 \in M_1$

$$
\|\|F(\cdot)\|_p\|_p = \left(\int_{M_1} \left(\int_{M_2} |f(y_1, y_2)|^p \mu_2(dy_2)\right) \mu_1(dy_1)\right)^{1/p}
$$

=
$$
\left(\int_{M_1 \times M_2} |f(y_1, y_2)|^p \mu_1(dy_1) \mu_2(dy_2)\right)^{1/p} = \|f(y_1, y_2)\|_p.
$$

Define the function $u(x_1, y_2) = \int_{M_1} K_1(x_1, y_1) f(y_1, y_2) \mu_1(dy_1)$ which equals $(G(x_1))(y_2)$ for all $x_1 \in M_1$ and $y_2 \in M_2$, and let us estimate the number

$$
S(u(\cdot)) = \left(\int_{M_1 \times M_2} \left| \left(\int_{M_2} K_2(x_2, y_2) u(x_1, y_2) \mu_2(dy_2)\right) \right|^q \mu_1(dx_1) \mu_2(dx_2)\right)^{1/q}.
$$

The application of the contraction property of T_2 for $f(x_2) = u(x_1, x_2)$ with a fixed $x_1 \in M_1$ yields the estimate

$$
\int_{M_2} \left| \left(\int_{M_2} K_2(x_2, y_2) u(x_1, y_2) \mu_2(dy_2) \right) \right|^q \mu_2(dx_2) \leq \left(\int_{M_2} |u(x_1, x_2)|^p \mu_2(dx_2) \right)^{q/p}
$$

=
$$
\left(\int_{M_2} |(G(x_1))(x_2)|^p \mu_2(dx_2) \right)^{q/p} = ||G(x_1)||_p^q.
$$

Hence

$$
S(u(\cdot)) \leq \left(\int_{M_1} \|G(x_1)\|_p^q \mu_1(dx_1)\right)^{1/q} = \|\|G(\cdot)\|_p\|_q \leq \|\|F(\cdot)\|_p\|_p = \|f(y_1, y_2\|_p).
$$

On the other hand,

$$
S(u(\cdot)) = \left(\int_{M_1 \times M_2} \left| \left(\int_{M_1 \times M_2} K_2(x_2, y_2) K_1(x_1, y_1) f(y_1, y_2) \mu_1(dy_1) \mu_2(dy_2) \right) \right|^q
$$

$$
\mu_1(dx_1) \mu_2(dx_2)\right)^{1/q} = \| (\mathbf{T}_1 \times \mathbf{T}_2) f(y_1, y_2) \|_q,
$$

and the statement of the lemma holds.

Here I write down Segal's result in its original form. I present both its formulation and its proof.

LEMMA 1.4. Let M_i $(i = 1, ..., n)$ be separable measure spaces, and let T_i be an integral operator on $L_p(M_i)$ with positive kernel K_i , which is a contraction from $L_p(M_i)$ to $L_q(M_i)$, for certain given p and q for each i. Then the algebraic tensor product $\mathbf{T}_1 \times \cdots \times \mathbf{T}_n$ is a contraction from $L_p(M_1 \times \cdots \times M_n)$ to $L_q(M_1 \times \cdots M_n)$.

PROOF. It suffices by associativity to treat the case $n = 2$. Now if **B** is any separable Banach space, and if $L_p(M_1, \mathbf{B})$ denotes the space of all strongly measurable **B**-valued func-

tions F on M_1 which are p-th power integrable, with the norm $||F|| = \left(\int ||F(x)||^p dx\right)^{1/p}$, then the operator $\mathbf{T}'_1: F \to G$, where $G(x) = \int K_1(x, y)F(y) dy$, exists and is a contraction from $L_p(M_1, \mathbf{B})$ to $L_q(M_1, \mathbf{B})$. For the mapping $y \to K_1(x, y)F(y)$ is easily seen to be strongly measurable from M_1 to **B**, for each x; and

$$
||G(x)|| \le \int K_1(x, y) ||F(y)|| dy,
$$

i.e., $||G(\cdot)|| \leq \mathbf{T}_1(||F(\cdot)||)$, so that $||||G(\cdot)||_{\mathbf{B}}||_q \leq ||\mathbf{T}_1(||F(\cdot)||)_{\mathbf{B}}||_q \leq ||||F(\cdot)||_{\mathbf{B}}||_p$. This shows the absolute integrability of the integral defining $G(x)$ almost everywhere, and gives the estimate $\|\mathbf{T}'_1\| \leq 1$.

In addition, the operation \mathbf{T}_2'' from $L_q(M_1, \mathbf{B})$ to $L_q(M_2, \mathbf{B}')$, where \mathbf{B}' is another separable Banach space and T_2 is a contraction from **B** to **B'**, defined by the equation $(\mathbf{T}_{2}^{\prime\prime}F)(x)=\mathbf{T}_{2}F(x), F\in L_{q}(M_{1}, \mathbf{B}),$ is easily seen to be a contraction. Now taking **B** as $L_p(M_2)$ and \mathbf{B}' as $L_q(M_2)$, and making the natural identifications of $L_p(M_1, \mathbf{B})$ with $L_p(M_1 \times M_2)$ and of $L_q(M_1, \mathbf{B}')$ with $L_q(M_1 \times M_2)$ which are justified by the Fubini theorem, it follows that the contraction $T''_2T'_1$ extends the algebraic tensor product $T_1 \times T_2$; the latter is therefore a contraction, as stated.