
In several papers a result called Segal’s lemma appears. This result is Lemma 1.4
in I. E. Segal’s paper Construction of nonlinear local quantum processes I. in Annals
of Math. 92 (1970) 462–481. Here I describe a slightly modified and more detailed
formulation and proof of this result. I present a slighly different version of Segal’s
proof. I finish this note with the original formulation and proof of Segal’s result.

Segal’s lemma. Let (Mi, µi) (i = 1, . . . , n) be separable measure spaces, and let Ti

be an integral operator on Lp(Mi, µi) with positive kernel Ki, i.e. let

(Tif)(xi) =

∫

Mi

Ki(xi, yi)f(yi)µi( dyi), xi ∈ Mi, yi ∈ Mi, i = 1, . . . , n,

where f(·) is a function in Lp(Mi, µi). Let Ti be a contraction from Lp(Mi, µi) to
Lq(Mi, µi), for certain given 1 ≤ p < ∞ and 1 ≤ q < ∞ for each i. Then the algebraic
tensor product T1 × · · · ×Tn is a contraction from Lp(M1 × · · · ×Mn, µ1 × · · · ×µn) to
Lq(M1 × · · · ×Mn, µ1 × · · · × µn) i.e.

(
∫

M1×···×Mn

|(T1 × · · · ×Tnf)(x1, . . . , xn))|
q
µ1( dx1) . . . µn( dxn)

)1/q

≤

(
∫

M1×···×Mn

|f(y1, . . . , yn)|
p
µ1( dy1) . . . µn( dyn)

)1/p

for all f(y1, . . . , yn) ∈ Lp(M1 × · · · ×Mn, µ1 × · · · × µn), where

(T1 × · · · ×Tnf)(x1, . . . , xn)

=

∫

M1×···×Mn

K1(x1, y1) · · ·Kn(xn, yn) f(y1, . . . , yn)µ1( dy1) . . . µn( dyn).

Proof. It is enough to prove the estimate of the Lemma for n = 2, because then the
lemma follows for general n by simple induction. It suffices to prove this inequality only
for functions f with the additional property f(y1, y2) ≥ 0 for all (y1, y2) ∈ M1 × M2.
Because of this additional condition we can omit the absolute value in the subsequent
calculations, since we are working with non-negative functions.

Let us fix a function f(y1, y2) ∈ Lp(M1 ×M2, µ1 × µ2) with y1 ∈ M1 and y2 ∈ M2

such that f(y1, y2) ≥ 0 for all (y1, y2) ∈ M1 ×M2. Then the function f(y1, y2) with a
fixed point y1 ∈ M1 is a function in Lp(M2, µ2) for almost all y1 ∈ M1. Hence we can
define for all y1 ∈ M1 the Lp(M2, µ2) valued measurable function F (y1) on M1 by the
formula (F (y1))(y2) = f(y1, y2) for all y1 ∈ M1 and y2 ∈ M2, and F (y1) has the norm

‖F (y1)‖p =
(

∫

M2

f(y1, y2)
pµ2( dy2)

)1/p

. The function ‖F (y1)‖p, y1 ∈ M1, is in the Ba-

nach space Lp(M1, µ1), since
∫

‖F (y1)‖
p
pµ1( dy1) =

∫

M1×M2

f(y1, y2)
pµ1( dy1)µ2( dy2) <

∞. We also define the Lq(M2, µ2) valued function G(x1) for all x1 ∈ M1 by the formula
(G(x1))(y2) =

∫

M1

K1(x1, y1)f(y1, y2)µ1( dy1). Then

(G(x1))(y2) =

∫

M1

K(x1, y1)(F (y1))(y2)µ1( dy1) =

(
∫

M1

K1(x1, y1)F (y1)µ1( dy1)

)

(y2),
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i.e. G(x1) =
∫

M1

K1(x1, y1)F (y1)µ1( dy1) for all x1 ∈ M1.

An upper bound will be given on ‖G(x1)‖p =
(

∫

M2

[(G(x1))(y2)]
pµ2( dy2)

)1/p

for

a fixed point x1 ∈ M1. In this estimate the following result will be applied. If (M,µ)
is a separable measure space, X is a Banach space, H(y1), y1 ∈ M , is a measurable
non-negative function on M , U(y1), y1 ∈ M , is an X valued measurable function on M ,
then

∥

∥

∫

M
H(y1)U(y1)µ( dy1)

∥

∥ ≤
∫

M
H(y1)‖(U(y1))‖µ( dy1).

With the choice (M,µ) = (M1, µ1), X = Lp(M2, µ2), H(y1) = K1(x1, y1), U(y1) =
F (y1) for all y1 ∈ M1 this result yields that

‖G(x1)‖p =

∥

∥

∥

∥

∫

M1

K1(x1, y1)F (y1)µ1(dy1)

∥

∥

∥

∥

p

≤

∫

M1

K1(x1, y1)‖F (y1)‖pµ1( dy1) = (T1(‖F‖p)))(x1).

This inequality together with the contraction property of T1 yields the following
estimate on the Lq(M1, µ1)-norm of the function ‖G(x1)‖p with arguments x1 ∈ M1 by
the Lp(M1, µ1)-norm of the function ‖F (y1)‖p with arguments y1 ∈ M1.

‖‖G(·)‖p‖q ≤ ‖T1(‖F (·)‖p)‖q ≤ ‖‖F (·)‖p‖p .

Let us also observe that since ‖F (y1)‖p =
(

∫

M2

|f(y1, y2)|
pµ2( dy2)

)1/p

for almost

all y1 ∈ M1

‖‖F (·)‖p‖p =

(
∫

M1

(
∫

M2

|f(y1, y2)|
pµ2( dy2)

)

µ1( dy1)

)1/p

=

(
∫

M1×M2

|f(y1, y2)|
pµ1( dy1)µ2( dy2)

)1/p

= ‖f(y1, y2)‖p.

Define the function u(x1, y2) =
∫

M1

K1(x1, y1)f(y1, y2)µ1( dy1) which equals

(G(x1))(y2) for all x1 ∈ M1 and y2 ∈ M2, and let us estimate the number

S(u(·)) =

(
∫

M1×M2

∣

∣

∣

∣

(
∫

M2

K2(x2, y2)u(x1, y2)µ2( dy2)

)∣

∣

∣

∣

q

µ1( dx1)µ2( dx2)

)1/q

.

The application of the contraction property of T2 for f(x2) = u(x1, x2) with a fixed
x1 ∈ M1 yields the estimate

∫

M2

∣

∣

∣

∣

(
∫

M2

K2(x2, y2)u(x1, y2)µ2( dy2)

)
∣

∣

∣

∣

q

µ2( dx2) ≤

(
∫

M2

|u(x1, x2)|
pµ2( dx2)

)q/p

=

(
∫

M2

|(G(x1))(x2)|
pµ2( dx2)

)q/p

= ‖G(x1)‖
q
p.
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Hence

S(u(·)) ≤

(
∫

M1

‖G(x1)‖
q
pµ1( dx1)

)1/q

= ‖ ‖G(·)‖p‖q ≤ ‖‖F (·)‖p‖p = ‖f(y1, y2‖p.

On the other hand,

S(u(·)) =

(
∫

M1×M2

∣

∣

∣

∣

(
∫

M1×M2

K2(x2, y2)K1(x1, y1)f(y1, y2)µ1( dy1)µ2( dy2)

)∣

∣

∣

∣

q

µ1( dx1)µ2( dx2)

)1/q

= ‖(T1 ×T2)f(y1, y2)‖q,

and the statement of the lemma holds.

Here I write down Segal’s result in its original form. I present both its formulation and
its proof.

LEMMA 1.4. Let Mi (i = 1, . . . , n) be separable measure spaces, and let Ti be
an integral operator on Lp(Mi)) with positive kernel Ki, which is a contraction from
Lp(Mi) to Lq(Mi), for certain given p and q for each i. Then the algebraic tensor
product T1 × · · · ×Tn is a contraction from Lp(M1 × · · · ×Mn) to Lq(M1 × . . .Mn).

PROOF. It suffices by associativity to treat the case n = 2. Now ifB is any separable Ba-
nach space, and if Lp(M1,B) denotes the space of all strongly measurableB-valued func-

tions F onM1 which are p-th power integrable, with the norm ‖F‖ =
(∫

‖F (x)‖p dx
)1/p

,
then the operator T′

1
:F → G, where G(x) =

∫

K1(x, y)F (y) dy, exists and is a contrac-
tion from Lp(M1,B) to Lq(M1,B). For the mapping y → K1(x, y)F (y) is easily seen
to be strongly measurable from M1 to B, for each x; and

‖G(x)‖ ≤

∫

K1(x, y)‖F (y)‖ dy,

i.e., ‖G(·)‖ ≤ T1(‖F (·)‖), so that ‖‖G(·)‖B‖q ≤ ‖T1(‖F (·)‖)B‖q ≤ ‖‖F (·)‖B‖p. This
shows the absolute integrability of the integral defining G(x) almost everywhere, and
gives the estimate ‖T′

1
‖ ≤ 1.

In addition, the operation T′′

2
from Lq(M1,B) to Lq(M2,B

′), where B′ is another
separable Banach space and T2 is a contraction from B to B′, defined by the equation
(T′′

2
F )(x) = T2F (x), F ∈ Lq(M1,B), is easily seen to be a contraction. Now taking B

as Lp(M2) and B′ as Lq(M2), and making the natural identifications of Lp(M1,B) with
Lp(M1 ×M2) and of Lq(M1,B

′) with Lq(M1 ×M2) which are justified by the Fubini
theorem, it follows that the contraction T′′

2
T′

1
extends the algebraic tensor product

T1 ×T2; the latter is therefore a contraction, as stated.
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