In several papers a result called Segal's lemma appears. This result is Lemma 1.4 in I. E. Segal's paper Construction of nonlinear local quantum processes I. in Annals of Math. 92 (1970) 462–481. Here I describe a slightly modified and more detailed formulation and proof of this result. I present a slightly different version of Segal's proof. I finish this note with the original formulation and proof of Segal's result.

Segal's lemma. Let (M_i, μ_i) (i = 1, ..., n) be separable measure spaces, and let \mathbf{T}_i be an integral operator on $L_p(M_i, \mu_i)$ with positive kernel K_i , i.e. let

$$(\mathbf{T}_{i}f)(x_{i}) = \int_{M_{i}} K_{i}(x_{i}, y_{i})f(y_{i})\mu_{i}(dy_{i}), \qquad x_{i} \in M_{i}, \ y_{i} \in M_{i}, \ i = 1, \dots, n,$$

where $f(\cdot)$ is a function in $L_p(M_i, \mu_i)$. Let \mathbf{T}_i be a contraction from $L_p(M_i, \mu_i)$ to $L_q(M_i, \mu_i)$, for certain given $1 \leq p < \infty$ and $1 \leq q < \infty$ for each *i*. Then the algebraic tensor product $\mathbf{T}_1 \times \cdots \times \mathbf{T}_n$ is a contraction from $L_p(M_1 \times \cdots \times M_n, \mu_1 \times \cdots \times \mu_n)$ to $L_q(M_1 \times \cdots \times M_n, \mu_1 \times \cdots \times \mu_n)$ i.e.

$$\left(\int_{M_1 \times \dots \times M_n} \left| (\mathbf{T}_1 \times \dots \times \mathbf{T}_n f)(x_1, \dots, x_n) \right|^q \mu_1(dx_1) \dots \mu_n(dx_n) \right)^{1/q}$$
$$\leq \left(\int_{M_1 \times \dots \times M_n} \left| f(y_1, \dots, y_n) \right|^p \mu_1(dy_1) \dots \mu_n(dy_n) \right)^{1/p}$$

for all $f(y_1, \ldots, y_n) \in L_p(M_1 \times \cdots \times M_n, \mu_1 \times \cdots \times \mu_n)$, where

$$(\mathbf{T}_1 \times \cdots \times \mathbf{T}_n f)(x_1, \dots, x_n) = \int_{M_1 \times \cdots \times M_n} K_1(x_1, y_1) \cdots K_n(x_n, y_n) f(y_1, \dots, y_n) \mu_1(dy_1) \dots \mu_n(dy_n).$$

Proof. It is enough to prove the estimate of the Lemma for n = 2, because then the lemma follows for general n by simple induction. It suffices to prove this inequality only for functions f with the additional property $f(y_1, y_2) \ge 0$ for all $(y_1, y_2) \in M_1 \times M_2$. Because of this additional condition we can omit the absolute value in the subsequent calculations, since we are working with non-negative functions.

Let us fix a function $f(y_1, y_2) \in L_p(M_1 \times M_2, \mu_1 \times \mu_2)$ with $y_1 \in M_1$ and $y_2 \in M_2$ such that $f(y_1, y_2) \ge 0$ for all $(y_1, y_2) \in M_1 \times M_2$. Then the function $f(y_1, y_2)$ with a fixed point $y_1 \in M_1$ is a function in $L_p(M_2, \mu_2)$ for almost all $y_1 \in M_1$. Hence we can define for all $y_1 \in M_1$ the $L_p(M_2, \mu_2)$ valued measurable function $F(y_1)$ on M_1 by the formula $(F(y_1))(y_2) = f(y_1, y_2)$ for all $y_1 \in M_1$ and $y_2 \in M_2$, and $F(y_1)$ has the norm $\|F(y_1)\|_p = \left(\int_{M_2} f(y_1, y_2)^p \mu_2(dy_2)\right)^{1/p}$. The function $\|F(y_1)\|_p, y_1 \in M_1$, is in the Banach space $L_p(M_1, \mu_1)$, since $\int \|F(y_1)\|_p^p \mu_1(dy_1) = \int_{M_1 \times M_2} f(y_1, y_2)^p \mu_1(dy_1) \mu_2(dy_2) < \infty$. We also define the $L_q(M_2, \mu_2)$ valued function $G(x_1)$ for all $x_1 \in M_1$ by the formula $(G(x_1))(y_2) = \int_{M_1} K_1(x_1, y_1)f(y_1, y_2)\mu_1(dy_1)$. Then

$$(G(x_1))(y_2) = \int_{M_1} K(x_1, y_1)(F(y_1))(y_2)\mu_1(dy_1) = \left(\int_{M_1} K_1(x_1, y_1)F(y_1)\mu_1(dy_1)\right)(y_2),$$

i.e. $G(x_1) = \int_{M_1} K_1(x_1, y_1) F(y_1) \mu_1(dy_1)$ for all $x_1 \in M_1$.

An upper bound will be given on $||G(x_1)||_p = \left(\int_{M_2} [(G(x_1))(y_2)]^p \mu_2(dy_2)\right)^{1/p}$ for a fixed point $x_1 \in M_1$. In this estimate the following result will be applied. If (M, μ) is a separable measure space, **X** is a Banach space, $H(y_1), y_1 \in M$, is a measurable non-negative function on $M, U(y_1), y_1 \in M$, is an **X** valued measurable function on M, then $\left\|\int_M H(y_1)U(y_1)\mu(dy_1)\right\| \leq \int_M H(y_1)\|(U(y_1))\|\mu(dy_1)$.

With the choice $(M, \mu) = (M_1, \mu_1)$, $\mathbf{X} = L_p(M_2, \mu_2)$, $H(y_1) = K_1(x_1, y_1)$, $U(y_1) = F(y_1)$ for all $y_1 \in M_1$ this result yields that

$$\begin{aligned} \|G(x_1)\|_p &= \left\| \int_{M_1} K_1(x_1, y_1) F(y_1) \,\mu_1(dy_1) \right\|_p \\ &\leq \int_{M_1} K_1(x_1, y_1) \|F(y_1)\|_p \mu_1(dy_1) = (\mathbf{T}_1(\|F\|_p))(x_1). \end{aligned}$$

This inequality together with the contraction property of \mathbf{T}_1 yields the following estimate on the $L_q(M_1, \mu_1)$ -norm of the function $||G(x_1)||_p$ with arguments $x_1 \in M_1$ by the $L_p(M_1, \mu_1)$ -norm of the function $||F(y_1)||_p$ with arguments $y_1 \in M_1$.

$$\|\|G(\cdot)\|_p\|_q \le \|\mathbf{T}_1(\|F(\cdot)\|_p)\|_q \le \|\|F(\cdot)\|_p\|_p$$

Let us also observe that since $||F(y_1)||_p = \left(\int_{M_2} |f(y_1, y_2)|^p \mu_2(dy_2)\right)^{1/p}$ for almost all $y_1 \in M_1$

$$\begin{split} \|\|F(\cdot)\|_{p}\|_{p} &= \left(\int_{M_{1}} \left(\int_{M_{2}} |f(y_{1}, y_{2})|^{p} \mu_{2}(dy_{2})\right) \mu_{1}(dy_{1})\right)^{1/p} \\ &= \left(\int_{M_{1} \times M_{2}} |f(y_{1}, y_{2})|^{p} \mu_{1}(dy_{1}) \mu_{2}(dy_{2})\right)^{1/p} = \|f(y_{1}, y_{2})\|_{p}. \end{split}$$

Define the function $u(x_1, y_2) = \int_{M_1} K_1(x_1, y_1) f(y_1, y_2) \mu_1(dy_1)$ which equals $(G(x_1))(y_2)$ for all $x_1 \in M_1$ and $y_2 \in M_2$, and let us estimate the number

$$S(u(\cdot)) = \left(\int_{M_1 \times M_2} \left| \left(\int_{M_2} K_2(x_2, y_2) u(x_1, y_2) \mu_2(dy_2)\right) \right|^q \mu_1(dx_1) \mu_2(dx_2) \right)^{1/q}$$

The application of the contraction property of \mathbf{T}_2 for $f(x_2) = u(x_1, x_2)$ with a fixed $x_1 \in M_1$ yields the estimate

$$\int_{M_2} \left| \left(\int_{M_2} K_2(x_2, y_2) u(x_1, y_2) \mu_2(dy_2) \right) \right|^q \mu_2(dx_2) \le \left(\int_{M_2} |u(x_1, x_2)|^p \mu_2(dx_2) \right)^{q/p} \\ = \left(\int_{M_2} |(G(x_1))(x_2)|^p \mu_2(dx_2) \right)^{q/p} = \|G(x_1)\|_p^q.$$

Hence

$$S(u(\cdot)) \le \left(\int_{M_1} \|G(x_1)\|_p^q \mu_1(dx_1)\right)^{1/q} = \|\|G(\cdot)\|_p\|_q \le \|\|F(\cdot)\|_p\|_p = \|f(y_1, y_2\|_p)^{1/q}$$

On the other hand,

$$S(u(\cdot)) = \left(\int_{M_1 \times M_2} \left| \left(\int_{M_1 \times M_2} K_2(x_2, y_2) K_1(x_1, y_1) f(y_1, y_2) \mu_1(dy_1) \mu_2(dy_2) \right) \right|^q \\ \mu_1(dx_1) \mu_2(dx_2) \right)^{1/q} = \| (\mathbf{T}_1 \times \mathbf{T}_2) f(y_1, y_2) \|_q,$$

and the statement of the lemma holds.

Here I write down Segal's result in its original form. I present both its formulation and its proof.

LEMMA 1.4. Let M_i (i = 1, ..., n) be separable measure spaces, and let \mathbf{T}_i be an integral operator on $L_p(M_i)$) with positive kernel K_i , which is a contraction from $L_p(M_i)$ to $L_q(M_i)$, for certain given p and q for each i. Then the algebraic tensor product $\mathbf{T}_1 \times \cdots \times \mathbf{T}_n$ is a contraction from $L_p(M_1 \times \cdots \times M_n)$ to $L_q(M_1 \times \ldots M_n)$.

PROOF. It suffices by associativity to treat the case n = 2. Now if **B** is any separable Banach space, and if $L_p(M_1, \mathbf{B})$ denotes the space of all strongly measurable **B**-valued functions F on M_1 which are p-th power integrable, with the norm $||F|| = (\int ||F(x)||^p dx)^{1/p}$, then the operator $\mathbf{T}'_1: F \to G$, where $G(x) = \int K_1(x, y)F(y) dy$, exists and is a contraction from $L_p(M_1, \mathbf{B})$ to $L_q(M_1, \mathbf{B})$. For the mapping $y \to K_1(x, y)F(y)$ is easily seen to be strongly measurable from M_1 to **B**, for each x; and

$$||G(x)|| \le \int K_1(x,y) ||F(y)|| \, dy,$$

i.e., $||G(\cdot)|| \leq \mathbf{T}_1(||F(\cdot)||)$, so that $||||G(\cdot)||_{\mathbf{B}}||_q \leq ||\mathbf{T}_1(||F(\cdot)||)_{\mathbf{B}}||_q \leq |||F(\cdot)||_{\mathbf{B}}||_p$. This shows the absolute integrability of the integral defining G(x) almost everywhere, and gives the estimate $||\mathbf{T}'_1|| \leq 1$.

In addition, the operation \mathbf{T}_2'' from $L_q(M_1, \mathbf{B})$ to $L_q(M_2, \mathbf{B}')$, where \mathbf{B}' is another separable Banach space and \mathbf{T}_2 is a contraction from \mathbf{B} to \mathbf{B}' , defined by the equation $(\mathbf{T}_2''F)(x) = \mathbf{T}_2F(x), F \in L_q(M_1, \mathbf{B})$, is easily seen to be a contraction. Now taking \mathbf{B} as $L_p(M_2)$ and \mathbf{B}' as $L_q(M_2)$, and making the natural identifications of $L_p(M_1, \mathbf{B})$ with $L_p(M_1 \times M_2)$ and of $L_q(M_1, \mathbf{B}')$ with $L_q(M_1 \times M_2)$ which are justified by the Fubini theorem, it follows that the contraction $\mathbf{T}_2''\mathbf{T}_1'$ extends the algebraic tensor product $\mathbf{T}_1 \times \mathbf{T}_2$; the latter is therefore a contraction, as stated.