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Abstract  

Pearson’s ρ is the most used measure of statistical dependence. It gives a complete characterization of                
dependence in the Gaussian case, and it also works well in some non-Gaussian situations. It is well                 
known, however, that it has a number of shortcomings; in particular for heavy tailed distributions and in                 
nonlinear situations, where it may produce misleading, and even disastrous results. In recent years a               
number of alternatives have been proposed. In this paper, we will survey these developments, especially               
results obtained in the last couple of decades. Among measures discussed are the copula,              
distribution-based measures, the distance covariance, the HSIC measure popular in machine learning,            
and finally the local Gaussian correlation, which is a local version of Pearson’s ρ. Throughout we put the                  
emphasis on conceptual developments and a comparison of these. We point out relevant references to               
technical details as well as comparative empirical and simulated experiments. There is a broad selection               
of references under each topic treated.  
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1 Introduction  
Pearson’s ρ, the product moment correlation, was not invented by Pearson, but rather by Francis Galton.                
Galton, a cousin of Charles Darwin, needed a measure of association in his hereditary studies, Galton                
(1888; 1890). This was formulated in a scatter diagram and regression context, and he chose r (for                 
regression) as the symbol for his measure of association. Pearson (1896) gave a more precise               
mathematical development and used ρ as a symbol for the population value and r for its estimated value.                  
The product moment correlation is now universally referred to as Pearson’s ρ. Galton died in 1911, and                 
Karl Pearson became his biographer, resulting in a massive 4-volume biography, Pearson (1922; 1930).              
All of this and much more is detailed in Stigler (1989) and Stanton (2001). Some other relevant historical                  
references are Fisher (1915; 1921), von Neumann (1941; 1942) and the survey paper by King (1987).  
Write the covariance between two random variables X and Y having finite second moments as Cov(X, Y ) 
= σ(X, Y ) = E(X − E(X))(Y − E(Y )). The Pearson’s ρ, or the product moment correlation, is defined by  

with takes σvalues X = √between σX 2= √E(X − E(X))2 being ρ the = ρ(X, standard Y ) = deviation σ(X, σXσ
Y 

Y 
)  

of X and similarly for σY . The correlation and including −1 and +1. For a given set of pairs of observations 

(X1,Y1),...,(Xn,Yn) of X and Y , an estimate of ρ is given by  

r = ̂ ρ =  

∑n√∑nj=1(Xj=1j (X− X)j − 2X)(Y
√∑nj=1j − (YY j ) − Y )2 

(1) with appropriate X = n−1 law ∑of nj=1 large Xj, 

numbers and similarly and for Y . Consistency and asymptotic normality can be proved using an  
a central limit theorem, respectively.  
The correlation coefficient ρ has been, and probably still is, the most used measure for statistical 
association. There are several reasons for this.  
(i) It is easy to compute (estimate), and it is generally accepted as the measure of dependence, not only in  
statistics, but in most applications of statistics to the natural and social sciences.  
(ii) Linear models are much used, and in a linear regression model of Y on X, say, ρ is proportional to the                      

slope of the regression line. More precisely; if Yi = α + βXi + εi, where {εi} is a sequence of zero-mean iid                       

error terms whose second moment exists, then  

β = ρ(X, Y )σ
σ

X Y. This also means that ρ and its estimate ̂ ρ appears naturally in a linear least squares 

analysis  
(iii) In a bivariate Gaussian density  



f(x, y) = 2π√1 − 1  

ρ2σXσY × exp{− 2(1 − 1  

ρ2)  

((x − σX 2μX)2  

− 2ρ(x − μσX)(y XσY − μY )  

+ (y − σY  

2μY )2  

)},  
the dependence between X and Y is completely characterized by ρ. In particular, two jointly Gaussian                
variables (X, Y ) are independent if and only if they are uncorrelated (See e.g. Billingsley (2008, 384–85)                  
for a formal proof of this statement). For a considerable number of data sets, the Gaussian distribution                 
works at least as a fairly good approximation. Moreover, joint asymptotic normality often appears as a                
consequence of the central limit theorem for many statistics, and the joint asymptotic behavior of such                
statistics are therefore generally well defined by the correlation coefficient.  
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(iv) The product moment correlation is easily generalized to the multivariate case. For p stochastic               

variables X1,...,Xp, their joint dependencies can simply (but not always accurately) be characterized by              

their covariance matrix Σ = {σij}, with σij being the covariance between Xi and Xj. Similarly the correlation                  

matrix is defined by Λ = {ρij}, with ρij being the correlation between Xi and Xj. Again, for a column vector x =                       

(x1,...,xp)T, the joint normality density is defined by  

f(x) = (2π)p/21  

|Σ|1/2 exp{−12(x − μ)TΣ−1(x − μ)}  

where |Σ| is the determinant of the covariance matrix Σ (whose inverse Σ−1 is assumed to exist), and μ =                    
E(X). Then the complete dependence structure of the Gaussian vector is given by the pairwise               

covariances σij, or equivalently the pairwise correlations ρij. This is remarkable: the entire dependence              
structure is determined by pairwise dependencies. We will make good use of this fact later when we get to                   
the local Gaussian dependence measure in Section 6.  

(v) It is easy to extend the correlation concept to time series. For a time series {Xt}, the autocovariance                   
and autocorrelation function, respectively, are defined, assuming stationarity and existence of second            

moments, by c(t) = σ(Xt+s,Xs) and ρ(t) = ρ(Xt+s,Xs) for arbitrary integers s and t. For a Gaussian time                   

series, the dependence structure is completely determined by ρ(t). For linear (say ARMA) type series the                
analysis as a rule is based on the autocovariance function, even though the entire joint probability                
structure cannot be captured by this in the non-Gaussian case. Even for nonlinear time series and                
nonlinear regression models the autocovariance function has often been made to play a major role. In the                 
frequency domain all of the traditional spectral analysis is based again on the autocovariance function.               
Similar considerations have been made in spatial models such as in linear Kriging models, see Stein                



(1999).  
In spite of these assets, there are several serious weaknesses of Pearson’s ρ. These will be briefly                 
reviewed in Section 2. In the remaining sections of this paper a number of alternative dependence                
measures going beyond the Pearson ρ will be described. The emphasis will be on concepts, conceptual                
developments and comparisons of these. We do provide some illustrative plots of key properties, but               
when it comes to technical details, empirical and simulated experiments with numerical comparisons, we              
point out relevant references instead.  

2 Weaknesses of Pearson’s ρ  
We have subsumed, somewhat arbitrarily, the problems of Pearson’s ρ under three issues:  
2.1 The non-Gaussianity issue  
A natural question to ask is whether the close connection between Gaussianity and correlation/covariance              
properties can be extended to larger classes of distributions. The answer to this question is a conditional                 
yes. The multivariate Gaussian distribution is a member of the vastly larger class of elliptical distributions.                
That class of distributions is defined both for discrete and continuous variables, but we limit ourselves to                 
the continuous case. An elliptical distribution can be defined in terms of a parametric representation of the                 
characteristic function or the density function. For our purposes it is simplest to phrase this in terms of a                   
density function.  

Consider a stochastic vector X = (X1,...,Xp) and a non-negative Lebesgue measurable function g on [0,∞) 
such that ∫ ∞0 x  

p2 −1g(x)dx < ∞.  
Further, let μ ∈ Rp and let Σ be a positive definite p × p matrix, then an elliptical density function 
parameterized by g, μ and Σ is given by  
3  

f(x;μ,Σ,g) = cp|Σ|−1/2g ((x − μ)TΣ−1(x − μ)), (2)  

where cp is a normalizing factor given by  

cp = (2π)Γ(p/2) p/2  

(∫ ∞0 x  

p)−1 2 −1gp(x)dx.  

The parameters μ and Σ can be interpreted as location and scale parameters, respectively, but they                
cannot in general be identified with the mean E(X) and covariance matrix Cov(X). In fact the parameters μ                  
and Σ in equation (2) may remain meaningful even if the mean and the covariance matrix do not exist. If                    
they do exist, μ can be identified with the mean, and Σ is proportional to the covariance matrix, the                   

proportionality factor in general depending on p. A redefinition of cp may then make this proportionality                

factor equal to 1, cf. Gómez, Gómez-Villegas, and Mari’in (2003) and Landsman and Valdez (2003).  

A number of additional properties of elliptical distributions, among other things pertaining to linear transfor-               
mations, marginal distributions and conditional distributions are surveyed in Gómez, Gómez-Villegas, and            
Mari’in (2003) and Landsman and Valdez (2003). Many of these properties are analogous to those of the                 
multivariate normal distribution, which is an elliptical distribution defined by g(x) = exp{−x/2}.  
Unfortunately, the equivalence between uncorrelatedness and independence is generally not true for 
elliptical distributions. Consider for instance the multivariate t-distribution with ν degrees of freedom  



f(x) = (πν)p/2Γ( Γ(ν/2)|Σ|p+ν2 
)  

1/2  

(1 + (x − μ)TΣν  
−1(x − μ)  
)− p+ν  

2 . (3)  
Unlike the multinormal distribution where the exponential form of the distribution forces the distribution to               
factor if Σ is a diagonal matrix (uncorrelatedness), this is not true for the t distribution defined in equation                   
(3) if Σ is diagonal. In other words, if two components of a bivariate t distribution are uncorrelated, they are                    
not necessarily independent. This pinpoints a serious deficiency of the Pearson’s ρ in measuring              
dependence in t distributions, and indeed in general elliptical (and of course non-elliptical) distributions.  
2.2 The robustness issue  
As is the case for regression, it is well known that the product moment estimator is sensitive to outliers.                   
Even just one single outlier may be very damaging. There are therefore several robustified versions of ρ,                 
primarily based on ranks. The idea of rank correlation goes back at least to Spearman (1904), and it is                   

most easily explained Xi among through X1,...,Xits n. sample (There version. are various Given rules scalar                

for observations treating ties). {XThe 1,...,Xestimated n}, we Spearman denote by Rrank (n)  

i,X 
the rank of 

correlation function given n pairwise observations of two random variables X and Y is given 

by  

̂ ρS = n
−1 ∑

ni=1 R(n(n)  

i,X2 − R
i,Y (n)  

1)/12 − (n + 1)2/4  

.  

If X and Y have continuous cumulative distribution functions FX and FY , and joint distribution function FX,Y , 

then the population value of the Spearman’s ρS is given by  

ρS = 12∫  

FX(x)FY (y) dFX,Y (x, y) − 3, (4)  

and hence it is a linear transformation of the correlation between the two uniform variables FX(X) and FY                  

(Y ). The rank correlation is thought to be especially effective in picking up linear trends in the data, but it                     

suffers in a very similar way as the Pearson’s ρ to certain nonlinearities of the data which are treated in                    
the next subsection. Spearman’s ρ may be modified to a rank autocorrelation measure for time series in                 
the  
4  
(a) Gaussian (b) Gaussian with outliers (c) Non-linear (d) Garch  
Figure 1: Illustration of some problems related to the Pearson correlation coefficient  



obvious way, see Knoke (1977), Bartels (1982), Hallin and Mélard (1988), and Ferguson, Genest, and 
Hallin (2000).  
Another way of using the ranks is the Kendall’s τ rank correlation coefficient given by Kendall (1938).                 

Again, consider the situation of n pairs (Xi,Yi) of the random variables X and Y . Two pairs of observations                    

(Xi,Yi) and (Xj,Yj), i = j are said to be concordant if the ranks for both elements agree; that is, if both Xi > Xj                         

and Yi > Yj or if both Xi < Xj and Yi < Yj. Similarly, they are said to be discordant if Xi > Xj and Yi < Yj or if Xi <                                 

Xj and Yi > Yj. If one has equality, they are neither concordant nor discordant, even though there are                   

various rules for treating ties in this case as well. The estimated Kendall τ is then given by  

̂ τ = (number of concordant pairs) − (number of discordant pairs)  

n(n − 1)/2 .  

The population value can be shown to be  

τ = 4∫  

FX,Y (x, y)dFX,Y (x, y) − 1. (5)  

Both ρs and τ are expressible in terms of the copula (see Section 3) associated with FX,Y . It is then 

perhaps not surprising that both ρs and τ are bivariate measures of monotone dependence. This means 

that (i) they are invariant with respect to strictly increasing (decreasing) transformations of both variables, 

and (ii) they are equal to 1 (or −1) if one of the variables is an increasing (or decreasing) transformation of 
the other one. Property (i) does not hold for Pearson’s ρ, and ρ is not directly expressible in terms of the 
copula of FX,Y either. The invariance property (i) is also shared by the van der Waerden (1952) correlation 
based on normal scores. Some will argue that this invariance property make them more desirable as 
dependence measures in case X and Y are non-Gaussian.  

The asymptotic normality of the Spearman’s ρS and Kendall’s τ was established early. Some of the theory                 

is reviewed in Kendall (1970). It can be viewed as special cases of much more general results obtained by                   

Hallin, Ingenbleek, and Puri (1985) and Ferguson, Genest, and Hallin (2000). For some details in the time                 
series case we refer to Tjøstheim (1996). A more recent account from the copula point of view is given by                    
Genest and Rémillard (2004). They show in Section 3 of their paper that serialized and non-serialized                
versions of Spearman’s ρ and other linear rank statistics share the same limiting distribution.  
We will illustrate the robustness issue using a simple example. In Figure 1a we see 500 observations that                  
have been simulated from the bivariate Gaussian distribution having correlation ρ = −0.5. The sample               
value for Pearson’s ρ is ̂ ρ = −0.53. If we add just three outliers to the data, however, as shown in Figure                      
1b, the sample correlation changes to ̂ ρ = −0.36. The sample versions of Spearman’s ρ for the simulated                  

data in Figures 1a and 1b are on the other hand very similar: ̂ ρS = −0.52 and ̂ ρS = −0.49, and the                      

corresponding values for the estimated Kendall’s τ are ̂ τ = −0.37 and ̂ τ = −0.35.  

5  
2.3 The nonlinearity issue  
This is probably the most serious issue with Pearson’s ρ, and it is an issue also for the rank based                    



correlations of Spearman and Kendall. All of these (and similar measures), are designed to detect rather                
specific types of statistical dependencies, namely those for which large values of X tend to be associated                 
with large values of Y , and small values of X with small values of Y (positive dependence), or the opposite                     
case of negative dependence in which large values of one variable tend to be associated with small                 
values of the other variable. It is easy to find examples where this is not the case, but where nevertheless                    
there is strong dependence. A standard introductory text book example is the case where  
Y = X2. (6)  
Here, Y is uniquely determined once X is given; i.e., basically the strongest form of dependence one can                  

have. If E(X) = E(X3)=0, however, it is trivial to show that ρ(X, Y )=0, and moreover that ρs and τ will also                       

fail spectacularly. A version of this situation is illustrated in Figure 1c, where we have generated 500                 
observations of the standard normally distributed independent variables X and ε, and calculated Y as Y =                 

X2 + ε. Still, ρ(X, Y )=0. The sample values for Pearson’s ρ, Spearman’s ρS and Kendall’s τ are ̂ ρ =                     

−0.001, ̂ ρS = −0.03 and ̂ τ = −0.02 respectively, and none of them are significantly different from zero.                  
Essentially the same problem will occur if X = UW and Y = V W, where U and V are independent of each                       
other and independent of W. It is trivial to show that ρ(X, Y )=0 if E(U) = E(V )=0, whereas X and Y are                        
clearly dependent. This example typifies the kind of dependence one has in ARCH/GARCH time series               

models: If {εt} is a time series of zero-mean iid variables and if the time series {ht} is independent of {εt},                     

and {Xt} and {ht} are given by the recursive relationship  

Xt = εth1/2  

t 
, h

t = α + βht−1 + γX2t−1, (7)  

where the stochastic process {ht} is the so-called volatility process, then the resulting model is a                

GARCH(1,1) model. Further, α > 0, and β and γ are non-negative constants satisfying β + γ < 1. This                    

model can be extended in many ways and the ARCH/GARCH models are extremely important in finance.                
A recent book is Francq and Zakoian (2011). The work on these kind of models was initiated by Engle                   
(1982), and he was awarded the Nobel prize for his work. The point as far as Pearson’s ρ is concerned, is                     

that Xt and Xs are uncorrelated for t = s, but they are in fact strongly dependent through the volatility                    

process {ht}, which can be taken to measure financial risk. This is probably the best known and most                  

important model class where the dependence structure of the process is not at all revealed by the                 
autocorreletion function. The variables are uncorrelated, but contain a dependence structure that is very              
important from an economic point of view.  

In Figure 1d we see some simulated data from a GARCH(1,1)-model with εt ∼ iid N(0,1), α = 0.1, β = 0.7 

and γ = 0.2, with Xt on the horizontal axis, and Xt−1 on the vertical axis. In this particular case, 

̂ ρ(Xt,Xt−1)=0.018, despite the strong serial dependence that is seen to exist directly from equation (7). The 

nonlinearity issue will be analysed very extensively and quite systematically in the following sections, but 
there have also been various more ad hoc solutions to this problem. We will just mention briefly two of 
them here. Slightly more details are given in the survey paper Tjøstheim (1996), and much more details in 
the literature cited there.  



(a) Higher moments: An «obvious» ad hoc solution in the nonlinear GARCH case is to compute the                 

product moment correlation on squares {X2t 
} instead of {X

t} themselves. It is easily seen that the squares      
            

are autocorrelated. This is the idea behind the McLeod and Li (1983) test. It requires the existence of 4th                   
moments, though, which will not always be fulfilled for models of financial time series that typically have                 
heavy tails, see e.g. Teräsvirta et al. (2010, Ch. 8).  
(b) Frequency based tests: These are also based on higher product moments, but in this instance one                 
takes the Fourier transform of these to obtain the so-called bi-spectrum and tri-spectrum, on which in turn                 
independence tests can be based (Subba Rao and Gabr 1980; Hinich 1982).  
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In the following sections we will look at ways of detecting nonlinear and non-Gaussian structures by going 
beyond Pearson’s ρ.  

3 Beyond Pearson’s ρ: The copula  

For two variables one may ask, why not just take the joint density function f(x, y) or the cumulative                   
distribution function F(x, y) as a descriptor of the joint dependence? The answer is quite obvious. If a                  
parametric density model is considered, it is usually quite difficult to give an interpretation of the                
parameters in terms of the strength of the dependence. An exception is the multivariate normal distribution                
of course, but even for elliptical distributions the «correlation» parameter ρ is not, as we have seen,                 
necessarily a good measure of dependence. If one looks at nonparametric estimates for multivariate              
density functions, to a certain degree one may get an informal indication of strength of dependence in                 
certain regions from a display of the density, but the problems increase quickly with dimension due both to                  
difficulties of producing a graphical display and to the lack of precision of the estimates due to the curse of                    
dimensionality.  

Another problem in analyzing a joint density function is that it may be difficult to disentangle effects due to                   
the shape of marginal distributions and effects due to dependence among the variables involved. This last                
problem is resolved by the copula construction. Sklar’s (1959) theorem states that a multivariate              

cumulative distribution function F(x) = F(x1,...,xp) with marginals Fi(xi), i = 1,...,p can be decomposed as  

F(x1,...,xp) = C(F1(x1),...,Fp(xp)) (8)  

where C(u1,...up) is a distribution function over the unit cube [0,1]p. Klaassen and Wellner (1997) point out                 
that Hoeffding (1940) had the basic idea of summarizing the dependence properties of a multivariate               
distribution by its associated copula, but he chose to define the corresponding function on the interval                
[−1/2,1/2] instead of on the interval [0,1]. In the continuous case, C is a function of uniform variables                  

U1,...,Up, using the well-known fact that for a continuous random variable Xi, Fi(Xi) is uniform on [0,1].                 
Further, in the continuous case C is uniquely determined by Sklar’s (1959) theorem.  

The theorem continues to hold for discrete variables under certain weak regularity conditions securing              
uniqueness. We refer to Nelsen (1999) and Joe (2014) for extensive treatments of the copula. Joe (2014),                 
in particular, contains a large section on copulas in the discrete case. See also Genest and Nešlehová                 
(2007). For simplicity and in keeping with the assumptions in the rest of this paper we will mostly limit                   



ourselves to the continuous case.  

The decomposition (8) very effectively disentangle the distributional properties of a multivariate distribution             
into a dependence part measured by the copula C and a marginal part described by the univariate                 

marginals. Note that C is invariant with respect to one-to-one transformations of the marginal variables Xi.                

In this respect it is analogous to the invariance of the Kendall and Spearman rank based correlation                 

coefficients.  

A representation in terms of uniform variables can be said to be in accord with a statistical principle that                   
complicated models should preferably be represented in terms of the most simple variables possible, in               
this case uniform random variables. A possible disadvantage of the multivariate uniform distribution is that               
tail behavior of distributions may be difficult to discern on the uniform scale, as it may result in singular type                    
behavior in the corners of the uniform distribution with accumulations of points there in a scatter diagram                 
on [0,1]2 or [0,1]p. It is therefore sometimes an advantage to change the scale to a standard normal scale,                   

where the uniform scores Ui are replaced by standard normal scores Φ−1(Ui) with Φ being the cumulative                 
distribution of the standard normal distribution. This leads to a more clear representation of tail properties.                
This scale is sometimes used in copula theory (see e.g. Joe (2014)), and we have used it systematically in                   
our work on local Gaussian approximation described in Section 6.  

The decomposition in (8) is very useful in that it leads to large classes of models that can be specified by                     
defining the marginals and the copula function separately. It has great flexibility in that very different                
models can be chosen for the marginal distribution, and there is a large catalog of possible parametric                 
models  

7  
available for the copula function C; it can also be estimated nonparametrically. The simplest one is the 

Gaussian copula. It is constructed from a multivariate Gaussian distribution ΦΣ with correlation matrix Σ. It 

is defined by  

CΣ(u)=ΦΣ (Φ−1(u1),...,Φ−1(up)) (9)  

such that Zi = Φ−1(Ui) are standard normal variables for i = 1,...,p. It should be carefully noted that if one                     
uses (9) in model building, one is still allowed to put in a marginal cumulative distribution functions of one’s                   
own choice, resulting in a joint distribution that is not Gaussian. A multivariate Gaussian distribution with                
correlation matrix Σ is obtained if the marginals are univariate Gaussians. If the marginals are not                
Gaussians the correlation matrix in the distribution obtained by (8) will not in general be Σ. Klaassen and                  
Wellner (1997) present an interesting optimality property of the normal scores rank correlation coefficient,              
the van der Waerden correlation, as an estimate of Σ.  

A similar construction taking as its departure the multivariate t-distribution can be used to obtain a t-copula.  

A general family of copulas is the family of Archimedean copulas. It is useful because it can be defined in                    
an arbitrary dimension p with only one parameter θ belonging to some parameter space Θ. A copula C is                   



called Archimedean if it has the representation  

C(u, θ) = ψ[−1](ψ(u1,θ) + ··· + ψ(up,θ);θ) (10)  

where ψ : [0,1] × Θ → [0,∞) is a continuous, strictly decreasing and convex function such that ψ(1,θ)=0.                   
Moreover, θ is a parameter within some parameter space Θ. The function ψ is called the generator                 
function and ψ[−1] is the pseudo inverse of ψ. We refer to Joe (2014) and Nelsen (1999) for more details                    
and added regularity conditions. In practice, copulas have been mostly used in the bivariate situation, in                
which case there are many special cases of the Archimedian copula (10), such as the Clayton, Gumbel                 
and Frank copulas. In particular the Clayton copula has been important in economics and finance. It is                 
defined by  

CC(u1,u2) = max{u−θ 1 + u−θ 2 
− 1; 0]−1/θ, with θ ∈ [−1,∞)/0. (11)  

We will throughout this paper illustrate several points using a bivariate data set on some financial returns.                 
We use daily international equity price index data for the United States (i.e. the S&P 500) and the United                   
Kingdom (i.e. the FTSE 100). The data are obtained from Datastream (2018), and the returns are defined                 
as  

rt = 100 × (log(pt) − log(pt−1)),  

where pt is the price index at time t. The observation span covers the period from January 1st 2007 

through December 31st 2009, in total 784 observations. In Figure 2, four scatterplots are presented.  

Figure 2a displays a scatterplot of the observed log-returns, with S&P 500 on the horizontal axis, and the                  
FTSE 100 on the vertical axis. Figure 2b displays the uniform scores of the same data, and we see                   
indications of a singular behavior of the copula density in the lower left and upper right corners of the unit                    
square. In Figure 2c the observations have been transformed to normal scores, which more clearly reveals                
the tail properties of the underlying distribution. Finally, Figure 2d shows the scatter plot of 784 simulated                 
pairs of variables, on uniform scale, from a Clayton copula fitted to the return data. This plot partially                  
resembles Figure 2b, in particular in the lower left corner. However, there are some differences in the                 
upper right corner. We will look into this discrepancy in Section 6.  

In Figure 2a, and perhaps more clearly in Figure 2c, we see that there seems to be stronger dependence                   
between the variables when the market is going either up or down, which is very sensible from an                  
economic point of view, but it is not easy to give an interpretation of the parameter θ of the Clayton copula                     

in terms of such type of dependence. In fact, in this particular case, ̂ θ = 0.96. The difficulty of giving a                     

clear and concrete interpretation of copula parameters in terms of measuring strength of dependence can               
be stated as a  
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Figure 2: Illustrations using the financial returns data set  
potential issue of the copula representation. In this respect it is very different from the Pearson’s ρ. We will 
return to this point in much detail in Section 6, where we define a local correlation.  
Another issue of the original copula approach has been the lack of good practical models as the                 
dimension increases, as it would for example in a portfolio problem in finance. This has recently been                 

sought solved by the so-called pair copula construction. To simplify, in a trivariate density f(x1,x2,x3), by                

conditioning this can be written f(x1,x2,x3) = f1(x1)f23|1(x2,x3|x1), and a bivariate copula construction, e.g. a               

Clayton copula, can be applied to the conditional density f23|1(x2,x3|x1) with x1 fixed. This conditioning can                

be extended to higher dimensions under a few simplifying assumptions, resulting in a so-called vine               

copula, of which there are several types. The procedure is well described by Aas et al. (2009), and has                   
found a number of applications. The Clayton canonical vine copula, for instance, allows for the occurrence                
of very strongly correlated downside events and has been successfully applied in portfolio choice and risk                
management operations. The model is able to reduce the effects of extreme downside correlations and               
produces improved statistical and economical performance compared to elliptical type copulas such as the              
Gaussian copula (9) and the t-copula, see Low et al. (2013).  
Other models developed for risk management applications are so-called panic copulas to analyze the              
effect of panic regimes in the portfolio profit and loss distribution, see e.g Meucci (2011). A panic reaction                  
is taken to mean that a number of investors react in the same way, such that the statistical dependence                   
becomes very strong between financial returns from various financial objects, in this way rendering the               
risk spreading of the  
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portfolio illusory. We will return to this situation in Section 6 where among other things we can show that in                    
a panic situation the local correlation increases and approaches one as a function of a copula parameter.                 
The copula has also been used directly for independence testing; see e.g. Genest and Rémillard (2004)                
and Mangold (2017).  

Most of the copula theory and also most of the applications are to variables that are assumed to be iid, but                     
there is also a growing literature on stochastic processes such as Markov chains. The existence of both                 
auto dependence and cross dependence in a multivariate stochastic process is quite challenging. Some of               
the mathematical difficulties in the Markov chain case is clearly displayed in the paper Darsow, Nguyen,                
and Olsen (1992). They used the ordinary copula, but it is not obvious how the theory of Markov                  
processes can be helped by the concept of a copula. That work was limited to first order Markov chain.                   
The pair copula has also been introduced in a Markov theory framework, and then in higher-order Markov                 
processes, by Ibragimov (2009). Again, so far, the impact on Markov theory has not been overwhelming.                



This may partly be due to complicated technical conditions.  

Two other papers using copulas (and pair copulas) in serial dependence are Beare (2010) and Smith et al.                  
(2010). When it comes to parametric time series analysis, especially for multivariate time series, it has                
been easier to implement the copula concept as developed for iid variables. This is well documented in the                  
survey paper by Patton (2012). The reason is that the auto dependence can first be filtered out by a                   
marginal fit to each component series, and the copula could then be applied to the residuals which may be                   
assumed to be iid or at least can be replaced by an iid vector process asymptotically. More precisely in the                    
framework of Patton and others,  

Xit = μi(Zt−1;φ) + σi(Zt−1;φ)εit, i = 1,2, (12)  

where in the bivariate case primarily considered by Patton,  

Zt−1 ∈ Ft−1, εit ∼ Fit, εt|Ft−1 ∼ Fεt = Ct(F1t,F2t).  

Here Ft−1 can be taken as the σ-algebra generated by Xs for s ≤ t. and Zt−1 is a stochastic vector variable, 

e.g. higher lags of Xt measurable with respect to Ft−1. The estimation can be done in two steps, cf. also 

Chen and Fan (2006). First the parameters φi of the marginal processes are estimated. Then a copula 

modeling stage is applied to the estimated residualŝ εit = Xit − μi(Zt−1; ̂ φi) σi(Zt−1; ̂ φi) .  

In this context both parametric and nonparametric (resulting in a semiparametric model) models have              

been considered for the residual distribution Fit. In the parametric case, time dependence can be allowed                

for Fit, whereas in the nonparametric case there is no dependence of t permitted in Fit. Much more details                   

and references are provided in Patton (2012). The modeling in (12) is restricted to the bivariate case.                 

Modeling of both cross and auto dependence, including use of vine copulas, in a multivariate time series                 
or Markov process is given in Smith (2015). Time dependent risk is treated using a dynamic copula model                  
by Oh and Patton (2018).  

4 Beyond Pearson’s ρ: Global dependence functionals and tests  
of independence  

Studies of statistical dependence may be said to center mainly around two problems: (i) definition and                
estimation of measures of dependence and (ii) tests of independence. Of course these two themes are                
closely related. Measures of association such as the Pearson’s ρ can also be used in tests of                 
independence, or more precisely: tests of uncorrelatedness. On the other hand, test functionals for tests of                
independence can also in many, but not all, cases be used as a measures of dependence. A                 
disadvantage with measures derived  



1
0  

from tests is that they are virtually always based on a distance function and therefore non-negative. This                 
means that they cannot distinguish between negative and positive dependence, whatever this may mean              
in the general nonlinear case. We will return to this later in the paper.  
Most of the test functionals are based on the definition of independence in terms of cumulative distribution                 

functions or in terms of density functions. Consider p stochastic variables X1,...,Xp. These variables are               

independent if and only if their joint cumulative distribution function is the product of the marginal                

distribution functions: FX1,...,Xp(x1,...,xp) = F1(x1) ···Fp(xp), and the same is true for all subsets of variables of                 

(X1,...,Xp). If the variables are continuous, this identity can be phrased in terms of the corresponding                

density functions instead. A typical test functional is then designed to measure the distance between the                
estimated joint distributions/densities and the product of the estimated marginals. This is not so easily               
done for parametric densities, since the dependence on parameters in the test functional may be very                
complex, and tests of independence may be more sensibly stated in terms of the parameters themselves,                
as is certainly the case for the Gaussian distribution. Therefore one would usually estimate the involved                
distributions nonparametrically, which, for joint distributions, may be problematic for moderate and large             
p’s due to the curse of dimensionality. We will treat these problems in some detail in Sections 4.2-4.5.  
Before starting on the description of the various dependence measures, let us remark that Rényi (1959)                
proposed that a measure of dependence between two stochastic variables X and Y , δ(X, Y ), should                  
ideally have the following 7 properties:  
(i) δ(X, Y ) is defined for any X, Y neither of which is constant with probability 1. (ii) δ(X, Y ) = δ(Y,X). (iii) 0 
≤ δ(X, Y ) ≤ 1. (iv) δ(X, Y )=0 if and only if X and Y are independent.  
(v) δ(X, Y )=1 if either X = g(Y ) or Y = f(X), where f and g are measurable functions. (vi) If the 
Borel-measurable functions f and g map the real axis in a one-to-one way to itself, then  
δ(f(X),g(Y )) = δ(X, Y ). (vii) If the joint distribution of X and Y is normal, then δ(X, Y ) = |ρ(X, Y )|, where 
ρ(X, Y ) is Pearson’s ρ.  
The product moment correlation ρ satisfies only (i), (ii) and (vii).  
One can argue that the rules i) - vii) do not take into account the difference between positive and negative                    
dependence; it only looks at the strength of the measured dependence. If this wider point of view were to                   
be taken into account, (iii) could be changed into (iii’) : −1 ≤ δ(X, Y ) ≤ 1, (v) into (v’): δ(X, Y )=1 or δ(X, Y )                            
= −1 if there is a deterministic relationship between X and Y . Finally, (vii) should be changed into (vii’)                    
requiring δ(X, Y ) = ρ(X, Y ). Moreover, some will argue that property (vi) may be too strong to require. It                      
means that the strength of dependence is essentially independent of the marginals as for the copula case.  
We will discuss these properties as we proceed in the paper. Before we begin surveying the test                 
functionals as announced above, we start with the maximal correlation which, it will be seen, is intertwined                 
with at least one of the test functionals to be presented in the sequel.  
4.1 Maximal correlation  
The maximal correlation is based on the Pearson ρ. It is constructed to avoid the problem demonstrated in 
Section 2.3 that Pearson’s ρ can easily be zero even if there is strong dependence.  
It seems that the maximal correlation was first introduced by Gebelein (1941). He introduced it as  
S(X, Y ) = sup  

f,g 
ρ(f(X),g(Y )),  

where ρ is the Pearson’s ρ. Here the supremum is taken over all Borel-measurable functions f,g with finite                  



and positive variance for f(X) and g(Y ). The measure S gets rid of the nonlinearity issue of ρ. It is not                      
difficult to check that S = 0 if and only if X and Y are independent. On the other hand S cannot distinguish                       
between negative and positive dependence, and it is in general difficult to compute.  
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The maximal correlation S(X, Y ) cannot be evaluated explicitly except in special cases, not the least                 

because there does not always exist functions f0 and g0 such that S(X, Y ) = ρ(f0(X),g0(Y )). If this equality                     

holds for some f0 and g0, it is said that the maximal correlation between X and Y is attained. Rényi (1959)                     

gave a characterization of attainability.  

Czáki and Fischer (1963) studied mathematical properties of the maximal correlation and computed it for a                
number of examples. Abrahams and Thomas (1980) considered maximal correlation in the context of              
stochastic processes. A multivariate version of maximal correlation was proposed in Koyak (1987). In a               
rather influential paper, at least at the time, Breiman and Friedman (1985) presented the ACE (alternating                
conditional expectation) algorithm for estimating the optimal functions f and g in the definition of the                
maximal correlation. They applied it both to correlation and regression. Some curious aspects of the ACE                
algorithm is highlighted in Hastie and Tibshirani (1990, 84–86).  
Two more recent publications are Huang (2010), where the maximal correlation is used to test for                
conditional independence, and Yenigün, Székely, and Rizzo (2011), where it is used to test for               
independence in contingency tables. The latter paper introduces a new example where S(X, Y ) can be                 
explicitly computed. See also Yenigün and Rizzo (2014).  
4.2 Measures and tests based on the distribution function  
We start with, and in fact put the main emphasis on, the bivariate case. Let X and Y be stochastic                    

variables with cumulative distribution functions FX and FY . The problem of measuring the dependence               

between X and Y can then be formulated as a problem of measuring the distance between the joint                  

cumulative distribution function FX,Y of (X, Y ) and the distribution function FXFY formed by taking the                 

product of the marginals. Let ∆(·,·) be a candidate for such a distance functional. It will be assumed that ∆                    

is a metric, and it is natural to require, Skaug and Tjøstheim (1996), that  

∆(FX,Y ,FXFY ) ≥ 0 and ∆(FX,Y ,FXFY )=0 if and only if FX,Y = FXFY . (13)  
Clearly, such a measure is capable only of measuring the strength of dependence, not its direction. Cor-                 
responding to requirement (vi) in Rényi’s scheme listed in the beginning of this section, one may want to                  
require invariance under transformations, or more precisely  

∆(F X,Y ∗
,F 

X∗
F 

Y ∗
) = ∆(F

X,Y ,FXFY ) (14)  

where functions, g−1(X),hF X∗
(x) −1and (Y = F ) FXand ∗X(g(x)), ,F 

Y ∗{g,F −1X,Y ∗(X),hF Y ∗
(y) are −1= the (Y FY 

marginals )}, (h(y)) respectively.  

and and F X,Y ∗
bivariate (x, y) = distribution F

X,Y {g(x),h(y)}. functions Here of g the and random h are 

increasing variables  

For distance functionals not satisfying equation (14), one can at least obtain scale and location invariance                
by standardizing such that E(X) = E(Y )=0 and Var(X) = Var(Y )=1, assuming that the second moment                  
exists. In practice, empirical averages and variances must be employed, but asymptotically the difference              



between using empirical and theoretical quantities is a second order effect. In Skaug and Tjøstheim               
(1996) and Tjøstheim (1996) such a standardization has been employed for all functionals.  

Pearson’s ρ can be expressed as a functional on FX, FY and FX,Y although not generally as a distance                   

functional depending on FX,Y and FXFY . For instance, with X and Y standardized, the Pearson correlation                 
squared can be expressed,  
ρ2 =  
{∫  

xy dFX,Y (x, y) −  
∫  

xdFX(x)∫  

}2 y dFY (y).  
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Clearly ρ2 does not satisfy either of the conditions (13) or (14). Similarly, the square of the population 
values of the Spearman rank correlation and Kendall’s τ are obtained by squaring in the formulas (4) and 
(5). For these measures the requirement (13) is not fulfilled, whereas the invariance property does hold. A 

natural estimate ∆ ̂ of a distance functional ∆ is obtained by setting  

∆(F̂  X,Y ,FXFY ) = ∆( F̂ X,Y , F̂ X F̂ Y ),  

where F ̂ may be taken to be the empirical distribution functions given by  

F̂  X(x) = n  

1∑nj=1  

1(Xj ≤ x) F̂  Y (y) = n  

1∑j=1  

n1(Yj ≤ y)  
and  

FX,Y (x, y) = n  

1∑j=1  

n1(Xj ≤ x)1(Yj ≤ y),  

or a normalized version with n−1 replaced by (n + 1)−1 for given observations {(X1,Y1,...,(Xn,Yn)}. Similarly, 

for a stationary time series {Xt} at lag k,  

F̂  k(x1,x2) = .F̂  Xt,Xt−k(x1,x2) = 1  

n − k  

∑ nt=k+1
1(X

t ≤ x1)1(Xt−k ≤ x2).  
Conventional distance measures between two distribution functions F and G are the Kolmogorov-Smirnov 



distance  

∆1(F, G) = sup  

(x,y)
|F(x, y) − G(x, y)|  

and the Cramér-von Mises type distance of a distribution G from a distribution F  

∆2(F, G) =  
∫  
{F(x, y) − G(x, y)}2 dF(x, y)  

Here ∆1 satisfies (13) and (14), whereas ∆2 satisfies (13) but not (14). Most of the work pertaining to 

measuring dependence and testing of independence has been done in terms of the Cramér-von Mises 

distance. This work started already by Hoeffding (1948) who looked at iid pairs (Xi,Yi), and studied finite 

sample distributions in some special cases. With considerable justification it has been named the 

Hoeffding-functional by some. This work was continued by Blum, Kiefer, and Rosenblatt (1961) who 
provided an asymptotic theory, still for the iid case. It was extended to the time series case with a resulting 
test of serial independence in Skaug and Tjøstheim (1993a). A recent paper using a copula framework is 
Kojadinovic and Holmes (2009). We will briefly review the time series case because it illustrates some of 
the problems, and because some of the same essential ideas as for the Hoeffding-functional have been 
used in more recent work on the distance covariance, which we treat in Section 4.3. depend on t for a 
stationary time series, we simply write F(x) in the following.  
Since FXt(x) does not  
In the time series case the Cramér-von Mises distance at lag k is given by  

Dk =  

∫ (Fk(x1,x2) − F(x1)F(x2))2 dFk(x1,x2),  

where Fk and F are the joint and marginal distributions of (Xt,Xt−k) and Xt, respectively. Replacing 
theoretical distributions by empirical ones leads to the estimate  

D̂  k = n − 1  

k  

∑ nt=k+1
( 

F(X̂ t,Xt−k) − F(X̂  t) F(X̂  t−k))2. (15)  
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Assuming {Xt} to be ergodic, we have that D̂  k → Dk almost surely as n → ∞.  

To construct a test of serial independence hypothesis of {Xt} being iid. Let Zt = (Zt (1)  

we ,Zneed t (2)  

) = the .(Xdistribution t,Xt−k). Then of D̂ it k is under possible the assumption to represent of D̂ the k as  

null  

D̂  k = n12  



∑ns,t=1h(Zs,Zt) + Op(n−3/2), where Vn = .with a degenerate n−2 
∑symmetric ns,t=1 h(Zs,Zkernel t) is a function. 

von Mises Using U-statistic asymptotic in the theory, technical Carlstein sense of (1988), Denker Denker 

and Keller and (1983) Keller (1983) and Skaug (1993), of this statistic or the related U-statistic one has 

(Skaug and Tjøstheim 1993a, Theorem 2) the convergence in distribution  

n D̂ k →  

L∑∞i,j=1ηiηjW ij 2as n → ∞ (16)  

where {Wij} is an independent identically distributed sequence of N(0,1) variables, and where the {ηm} are 

the eigenvalues of the eigenvalue problem∫  
g(x, y)h(y)dF(y) = ηh(x)  
with  
g(x, y) =  
∫  
{1(x ≤ w) − F(w)}{1(y ≤ w) − F(w)}dF(w).  

If the distribution of each Xt is continuous, then D̂  k is distribution free, i.e., its distribution does not depend                   
on F. Then all calculations can be carried out with F being the uniform [0,1] distribution, in which case g(x,                    

y) = − max(x, y)+(x2 + y2)/2+1/3 and ηm = (mπ)−2, and the distribution of the right hand side of (16) can be                       

tabulated by truncating it for a large value of the summation index. Similar distribution results will be seen                  
to hold for test functionals in Sections 4.3 and 4.4.  

A It test is then of the reasonable null hypothesis to reject of independence, H0 if large values or rather of 

D̂  k pairwise is observed. independence Thus a test at lag of k, can now level ε is:  
be constructed.  

reject H0 if n D̂ k > un,ε, where un,ε is the upper ε-point in the null distribution of n D̂  k. Since the exact 

distribution of D̂  k is unknown, we can use the asymptotic approximation furnished by retaining a finite 

number of terms in (16). For n = 50,100 and k small this works well. However, as k increases, in general 
(Skaug and Tjøstheim 1993a) the level is severely overestimated. The results of Skaug and Tjøstheim 
(1993a) have since been very considerably extended and improved by Hong (1998).  

Under the hypothesis of {Xt} being iid the bootstrap is a natural tool to use for constructing the null 
distribution and critical values. For moderate and large k’s the bootstrapping yields a substantially better 

approximation to the level. Under the alternative hypothesis that Xt and Xt−k are dependent, the test 

statistic D̂  k will in general be asymptotically normal with a different rate from that of (16), but the power 

function will be complicated; see e.g. Hong (2000).  

To extend the scope to testing of serial dependence among (Xt,...,Xt−k), or alternatively between a set of 
several random variables for which there are iid observations of the set, one might use a functional  

D̂  1,...,k  

= n  



1
t=k+1∑  

n
{F̂ 1,...,k(Xt,Xt−1,...,Xt−k) − F(X̂ t) F(X̂  t−1)··· F(X̂  t−k)}2. (17)  
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The asymptotic theory under the null hypothesis of independence for such a test has been examined by                 
Delgado (1996) using empirical process theory, but due to the curse of dimensionality, problems in practice                
might be expected for moderately large k’s. As an alternative Skaug and Tjøstheim (1993a) used a                
“Box-Pierce-Ljung” analogy, testing for pairwise independence in all of the pairs           

(Xt,Xt−1),(Xt,Xt−2),...,(Xt,Xt−k) using the statistic  

D̂  (k) =  

∑ki

=1  

D̂  i. (18)  

D̂  i. (18)  

The asymptotic theory of such a test is given in Skaug (1993). Hong (1998) noted that  

D̂  (k)∗ =  

∑ki=1(n − i) D̂ i (19)  

has better size properties for large 
k.  

There have been several contributions to the limit theory of statistics such as (15) and (17) using empirical                  
process theory. Delgado did that based on developments in Blum, Kiefer, and Rosenblatt (1961), but the                
limiting Gaussian process is complicated with a complex covariance matrix which makes it difficult to               
tabulate critical values. Ghoudi, Kulperger, and Rémillard (2001) based their work on the so-called Möbius               
transformation promoted by Deheuvels (1981a; 1981b) in his papers on independence testing. This             

transformation takes explicitly into account the joint distribution function of all subsets of (X1,...,Xp)              

mentioned in the second paragraph of Section 3. To explain the Möbius transformation, let X1,...,Xk, k ≥ 2                  

be random variables. For 1 ≤ j ≤ k let Fj denote the marginal cumulative distribution function of Xj and let                     

F1,...,k be the corresponding joint cumulative distribution function. Consider a subset A ⊂ Ik = {1,...,k}, and                 

for any x ∈ Rk, define  

μA(x) = ∑(−1)|A−B|F1,...,k(xB) ∏  

B⊂Aj∈A−B  

Fj(xj),  

where xB |C| is the number of elements in a set C, A − B = is the vector whose ith component is defined by 

xi A ∩ Bc, where by if i ∈ B, and xi = convention ∞ otherwise. 
∏

∅ 
= 

Then 
1, and 

one 
where 

can state the 

following criterion of independence: X1,...,Xk are independent if and only if μA = 0 for any A ⊂ Ik. This is 

shown in e.g. Ghoudi, Kulperger, and Rémillard (2001). In that paper it is also shown how this 



transformation leads to a Gaussian empirical process limit with a relatively simple covariance function, 
making it easier to tabulate critical values. The authors manage to do this both for the Cramér-von Mises 

statistic and the Kolmogorov-Smirnov statistic, and they consider three cases: iid vector samples, time 
series samples and residuals in time series models. See also Beran, Bilodeau, and Lafaye de Micheaux 

(2007).  

Genest and Rémillard (2004) use the Möbius transformation in testing of independence in a copula 
framework, and Ghoudi and Rémillard (2018) use it to obtain tests for independence of residuals in a 
parametric model  

Xi = μi(θ) + σi(θ)εi.  

where the iid innovations {εi} have mean 0 and variance 1. As an alternative to testing uncorrelatedness in 

time series using the Pearson ρ at accumulated lags as in the Box-Ljung-Pierce statistic, one could test for 
a constant spectral density. Quite general specification tests in terms of the spectral density f(ω) has been 

considered by Anderson (1993), who looked at tests of H0 : f(ω) = constant by using both the Cramér-von 

Mises and the Kolmogorov-Smirnov criteria. Hong (2000) introduced a spectral counterpart for the 

independence tests based on the marginal distribution function F for a time series and the lag k distribution 

function Fk introduced earlier in this section. This was achieved by replacing the ordinary autocorrelation 

function ρk by the dependence measure  

ρ∗k(u, v) = .Fk(u, v) − F(u)F(v) = Cov{1(Xt ≤ u),1(Xt−k ≤ v)}  

1
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and then taking Fourier transforms, which leads to  
h(ω,u,v) = (2π)−1  

∑∞k=−∞ρk(u, v)e−ikω (20)  

where that has ρk(u, power v) = in ρ∗|k|cases (u, v). where It is the shown tests in based Hong on (2000) 

the ordinary how this can spectrum be used has to not. construct However, a test as of explained 
independence in a note in that paper, weak power can be expected for this test against ARCH/GARCH 

type dependence.  
Instead of stating independence in terms of cumulative distribution functions this can alternatively be              
expressed in terms of the characteristic function. Székely, Rizzo, and Bakirov (2007) and Székely and               
Rizzo (2009), as will be seen in Section 4.3, make systematic use of this in their introduction of the                   
distance covariance test. Two random variables X and Y are independent if and only if the characteristic                 
functions satisfy  

φX,Y (u, v) = φX(u)φY (v), ∀(u, v) where  

φX,Y (u, v) = E (eiuX+ivY 
), φX(u) = E(eiuX

), φY (v) = E(eivY 
). This was exploited by Csörgö (1985) and Pinkse 

(1998) to construct tests for independence based on the characteristic function in the iid and time series 



case, respectively. Further work on testing of conditional independence was done by Su and White 
(2007). See also Fan et al. (2017). Hong (1999) put this into a much more general context by replacing 

ρk(u, v) in (20) by  

σk(u, v) = φXt,Xt−|k|(u, v) − φXt(u)φXt−|k|(v).  

By taking Fourier transform of this quantity one obtains  
f(ω,u,v) = 2π  
1
∑∞k=−∞σk(u, v)e−ikω. (21)  

Hong (1999) called (21) the generalized spectral density function. Here f(ω,u,v) can be estimated by  

f̂ n(ω,u,v) = 2π  

1n−1∑  

k=−n+1
(1 − |k|/n)1/2w(k/b)̂ σk(u, v)e−ikω,  

where w is a kernel weight function, b is a bandwidth or lag order, and  

̂ σk(u, v) = φ̂ k(u, v) − φ̂ k(u,0)φ̂  k(0,v)  
with  

φ̂  k(u, v)=(n − |k|)−1  

∑ nt=|k|+1
ei(uX

t
+vX

t−|k|
).  

Under the null hypothesis of serial independence f(ω,u,v) becomes a constant function of frequency ω:  

f0(ω,u,v) = 2π1σ0(u, v)  

with f̂  n(ω,u,v) σ0(u, v) and = fφ(u ̂  0(ω,u,v) + v) − using φ(u)φ(v), e.g. where φ(·) = φXt(·). In order to test 

for independence one can compare an L2-functional. More work related to this has been done by Hong 

and Lee (2003) and Escanciano and Velasco (2006).  
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4.3 Distance covariance  

We have seen that there are at least two ways of constructing functionals that are consistent against all                  
forms of dependence, namely those based on the empirical distribution function initiated by Hoeffding              
(1948) and briefly reviewed above, and those based on the characteristic function represented by Csörgö               
(1985) in the iid case and Pinkse (1998) in the serial dependence case, and continued in Hong (1999;                  
2000) in a time series spectrum approach. Se also Fan et al. (2017). Both Pinkse and Hong use a kernel                    
type weight function in their functionals. Thus, Pinkse uses a weight function g in the functional  

∫  

g(u)g(v)|φ(u, v)|2 dudv  

where for a pair of two random variables (X, Y )  

φ(u, v) = E(ei(uX+vY ))  

− E(eiuX)E (eivY ).  

Let h(x) = ∫ eiuxg(u)du. 

and h(x)=1/(1 + x2).  



mulation experiments chose the weight functions h(x) = exp(− 

The authors of two remarkable papers, Székely, Rizzo, and Bakirov (2007) and Székely and Rizzo (2009),                
take up the characteristic function test statistic again in the non-time series case. But what distinguishes                
these from earlier papers is an especially judicious choice of weight function reducing the empirical               
characteristic function functional to empirical moments of differences between the variables, or distances in              
the vector case, this leading to covariance of distances. Some of these ideas go back to what the authors                   
term an “energy statistic”; see Székely (2002), Székely and Rizzo (2013) and also Székely and Rizzo                
(2012). It has been extended to time series and multiple dependencies by Davis et al. (2018), Fokianos                 
and Pitsillou (2017), Zhou (2012), and Dueck et al. (2014), Dueck, Edelman, and Richards (2015) and Yao,                 
Zhang, and Shao (2018). In the locally stationary time series case there is even a theory, see Jentsch et al.                    
(2018). The distance covariance, dcov, seems to work well in a number of situations, and it has been used                   
as a yardstick by several authors writing on dependence and tests of independence. In particular it has                 
been used as a measure of comparison in the work on local Gaussian correlation to be detailed in Section                   
6. There are also points of contacts, as will be seen in Section 4.4, with the HSIC measure of dependence                    
popular in the machine learning community.  

The central ideas and derivations are more or less all present in Székely, Rizzo, and Bakirov (2007). The 

framework is that of pairs a and test φY functional (v) = E(for ei〈Y,v〉independence ) of iid vector variables 

between X (X, Y ) in Rp and Y . Let φX,Y and Rq, (u, v) = respectively, E(ei(〈X,u〉+〈Y,v〉)and the ), φtask X(u) 

is = to Econstruct (ei〈X,u〉be the characteristic functions involved, where 〈·,·〉 is the inner product in Rp ) 

and Rq, respectively. The starting point is again the weighted characteristic functional  

V2(X, Y ;w) =  
 φX(u)φY (v)|2w(u, v)dudv, (22)  

where w is a weight function to be chosen, Note that it is easy to choose w so that V2(X, Y )=0 if and only if 
X and Y are independent. Similarly, one defines  

V2(X;w) =  
φX(u)φX(v)|2w(u, v) dudv (23)  

and V2(Y ;w). The distance correlation, dcor, is next defined by, assuming V2(X)V2(Y ) > 0,  

R2(X, Y ) = √V
V

22(X)V(X, Y 

2) (Y ).  

These quantities can be estimated by the empirical counterparts given n observations of the vector pair 
(X, Y ) with  

1
7  



∫Vn2(X, Y ;w) =  

Rp+q 
|φnX,Y 

(u, v) − φnX
(u)φnY 

(v)|2w(u, v)dudv, (24)  

where, for a set of observations {(X1,Y1),...,(Xn,Yn)} the empirical characteristic functions are given by  

φnX,Y 
(u, v) = n  

1
∑k=1nexp{i(〈Xk,u〉 + 〈Yk,v〉)}  

and  

φnX
(u) = n  

1
∑k=1nexp{i〈Xk,u〉}, φnY (v) = n  

1
k=1∑nexp{i〈Yk,v〉}. It turns out that it is easier to handle the weight function in the framework of the 

empirical characteristic functions. It will be seen below that  

w(u, v)=(cpcq|u|1+p p |v|
1+q q 

)−1 (25)  

is a good choice. Here constants are given by |·|cj p = is πthe (1+j)/2Euclidean /Γ((1 + norm in j)/2), j Rp and = 

p, q. similarly for |·|q. Moreover, the normalizing For it to make sense to introduce the weight function on 

the empirical characteristic function one must show that the empirical functionals Vn converges to the 

theoretical functionals V for this weight function. This is not trivial because of the singularity at 0 for w 
given by (25). A detailed argument is given in the proof of Theorem 2 in Székely, Rizzo, and Bakirov 

(2007).  
The advantage of introducing the weight function for the empirical characteristic functions is that one can                
compute the squares in (24) and then interchange summation and integration. The resulting integrals can               
be computed using trigonometric identities, in particular the odd symmetry of products of cosines and               
sines which makes corresponding integrals disappear. The details are given in the proof of Theorem 1 in                 
Székely, Rizzo, and Bakirov (2007) and in Lemma 1 of the Appendix of Szekely and Rizzo (2005) who in                   
turn refer to Prudnikov, Brychkov, and Marichev (1986) for the fundamental lemma  
∫
Rd  

1 − cos〈x, u〉  

|u|u+α d 
du = C(d, α)|x|αd  

for 0 <α< 2 with  

C(d, α) = α22παd/2Γ((d Γ(1 + − α)/2)α/2)  

, (26)  

and where the weight function considered above corresponds to α = 1 and d = p or d = q in (25). The 
general α-case corresponds to a weight function  

w(u, v;α)=(C(p, α)C(q,α)|u|p+α p 
|v|q+α q 

)−1.  

With the simplification α = 1 all of this implies that Vn 2
as defined in (24), can be computed as  

Vn2(u, v) = S
1 + S2 − 2S3  



where  

S1 = n12  

∑nk,l=1|Xk − Xl|p|Yk − Yl|q,  

S2 = n12  

∑nk,l=1|Xk − Xl|p 1n2  

∑nk,l=1|Yk − Yl|q,  
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nS3 = n13 ∑k=1  

∑ n
|X

k − Xl|p|Yk − Ym|q l,m=1(27)  
which explains the appellation distance covariance. In fact, it is possible to further simplify this by 
introducing  

akl = |Xk − Xl|p, ak. = n  

1∑l=1  

n∑nk=1akl,  

a.. = n12  

akl, a.l = n 1∑nk,l=1akl, Akl = al − ak. − a.l + a..,  

for k, l = 1,...,n. Similarly, one can define bkl = |Yk − Yl|q and Bkl = bkl − bk. − b.l + b.. and  

Vn2(X, Y ) = 1n2  

∑nk,l=1AklBkl  

and  

Vn2(X) = V
n2

(X, X) = n12  

∑nk,l=1A2kl  

and R-package: similarly Rizzo for Vand n2(Y ). Szekely From (2018).  

this one can easily compute R2n(X, Y ). The computations are available in an  

As is the case of the empirical joint distribution functional it can be expected that the curse of                  
dimensionality will influence the result for large and moderate values of p and q. Obviously, in the time                  
series case, it is possible to base oneself on pairwise distances as in (18) or (19), which has been done in                     
Yao, Zhang, and Shao (2018).  
Letting n → ∞, it is not difficult to prove that an alternative expression for V(X,Y) is given by (assuming 

E|X|p < ∞ and E|Y |q < ∞)  

V2(X, Y ) = EX,X ,Y,Y {|X − X |p|Y − Y |q}  

+ EX,X {|X − X |p}EY,Y {|Y − Y |q} − 2EX,Y {EX |X − X |pEY |Y − Y |q} (28)  



where (X, Y ), (X ,Y ) are iid. This expression will be useful later in Section 4.4 in a comparison with the 
HSIC statistic. Properly scaled of (16) in Section 4.2. Namely, distribution to a quadratic form  

Vunder n 2
has a the limiting condition Q →  

Lbehavior 
∑∞

under independence somewhat similar to that of existence of first moment, nVn2/S
2, 

converges in  

j=1λjZj 2where {Zj} are independent standard normal variables, {λj} are non-negative constants that depend 

on the distribution of (X, Y ). One can also obtain an empirical process limit theorem, Theorem 5 of 

Székely, Rizzo, and Bakirov (2007). In the R-package, as for the case of the empirical distribution 
function, it has been found advantageous to rely on re-sampling via permutations. This is quite fast since 
the algebraic formulas (27) are especially amenable to permutations. Both Székely, Rizzo, and Bakirov 
(2007) and Székely and Rizzo (2009) in their experiments only treat the case of α = 1 in (26).  
Turning to the properties (i) - (vii) of Rényi (1959) listed in the beginning of this section, it is clear that (i) -                       

(iv) are satisfied by R. Moreover, according to Székely, Rizzo, and Bakirov (2007), if Rn(x;y)=1, then there                 

exists a vector α, a non-zero real number β and an orthogonal matrix C such that Y = α + βXC,  
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which is not quite the same as Rényi’s requirement (v). Also, the general invariance in his property (vi)                  
does not seem to hold. The final criterion (vii) of Rényi is that the dependent measure should reduce to the                    
absolute value of Pearson’s ρ in the bivariate normal case. This is not quite the case for the dcov, but it                     
comes close, as is seen from Theorem 6 of Székely and Rizzo (2009). In fact, if (X, Y ) is bivariate normal                      
with E(X) = E(Y )=0 and Var(X) = Var(Y )=1 and with correlation ρ, then R(X, Y ) ≤ |ρ| and  

ρ inf =0  
R(X, Y )  

|ρ| = 
ρ→0  

lim R(X, Y )  

|ρ| = 2(1 + π/3 1  

− √3)1/2 ≈ 0.891.  

4.4 The HSIC measure of dependence  
Recall the definition and formula for the maximal correlation. This, as stated in Section 4.1 gives rise to a                   
statistic S(X, Y ), where S(X, Y )=0 if and only if X and Y are independent. But it is difficult to compute                       
since it requires the supremum of the correlation ρ(f(X),g(Y )) taken over Borel-measurable f and g. In the                  
framework of reproducing kernel Hilbert spaces (RKHS) it is possible to pose this problem, or an                
analogous one, much more generally, and one can compute an analogue of S quite easily. This is the                  
so-called HSIC (Hilbert-Schmidt Independence Criterion).  
Reproducing kernel Hilbert spaces are very important tools in mathematics as well as in statistics. A                
general reference to applications in statistics is Berlinet and Thomas-Agnan (2004). In the last decade or                
so there has also been a number of uses of RKHS in dependence modeling. These have often been                  
published in the machine learning literature. See e.g Gretton, Herbrich, et al. (2005), Gretton and Györfi                
(2010), Gretton and Györfi (2012) and Sejdinovic et al. (2013).  
We have found the quite early paper by Gretton, Bousquet, et al. (2005) useful both for a glimpse of the 
general theory and for the HSIC criterion in particular.  
A reproducing kernel Hilbert space is a separable Hilbert space F of functions f on a set X, such that the                     



evaluation functional f → f(x) is a continuous linear functional on F for every x ∈ X. Then, from the Riesz                     

representation theorem, Muscat (2014), chapter 10, there exists an element kx ∈ F such that 〈f,kx〉 =                 

f(x), where 〈·,·〉 is the inner product in F. Applying this to f = kx and another point y ∈ X we have 〈kx,ky                       

〉 = kx(y). The function (x, y) → kx(y) from X ×X to R is the kernel of the RKHS F. It is symmetric and                         

positive definite because of the symmetry and positive definiteness of the inner product in F. We use the                  
notation k(x, y) for the kernel.  
The next step is to introduce another set Y with a corresponding RKHS G and to introduce a probability                   

structure and probability measures pX, pY and pX,Y on X, Y and X ×Y, respectively. With these probability                  
measures and function spaces F and G one can introduce correlation of functions of stochastic variables                
on X, Y and X ×Y. This is an analogy of the functions used in the definition of the maximal correlation. In                      
RKHS setting the covariance (or cross covariance) is an operator on the function space F. Note also that                  
this has a clear analogy in functional statistics, see e.g. Ferraty and Vieu (2006).  
It is time to introduce the Hilbert-Schmidt operator: A linear operator C : G→F is called a Hilbert-Schmidt 
operator if its Hilbert-Schmidt (HS) norm ||C||HS  

||C||2HS = .∑
i,j  

〈Cvj,ui〉F < ∞  

where norm context: ||A||ui If and F f = ∈ v(j F ∑are and i ∑orthonormal j g a2ij∈ bases of F and G, 

respectively. The HS-norm generalizes the Froebenius  
)1/2 for a matrix A = (aij). Finally, we need to define G, then the tensor product operator f ⊗ g : G→F is the 

tensor defined by  

product in this  

(f ⊗ g)h = .f〈g,h〉G, h ∈ G.  
Moreover, by using the definition of the HS norm it is not difficult to show that  

||f ⊗ g||2HS 
= ||f||2F||g||2G

.  
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We can now introduce an expectation and a covariance on these function spaces. Again, the analogy with                 
corresponding quantities in functional statistics will be clear. We assume that (X,Γ) and (Y,Λ) are furnished                

with probability measures pX,pY , and with Γ and Λ being σ-algebras of sets on X and Y. The expectations                    

μX ∈ F and μY ∈ G are defined by, X and Y are stochastic variables in (X,Γ) and (Y,Λ), respectively,  

〈μX,f〉F = EX[f(X)]  

an
d  

〈μY ,g〉G = EY [g(Y 



)]  

where μX and μY are well-defined as elements in F and G because of the Riesz representation theorem. 

The norm is obtained by  

||μX||2F = EX,X [k(X, X )], where as before X and X are independent 

but have the same distribution pX, and where ||μY || is defined in the same way. With given φ ∈ F, ψ ∈ G 

we can now define the cross covariance operator as  

CX,Y .= EX,Y [(φ(X) − μX) ⊗ (ψ(Y ) − μY )] = EX,Y [φ(X) ⊗ φ(Y )] − μX ⊗ μY .  

Now, take φ(X) to be identified with kX ∈ F defined above as a result of the Riesz representation theorem,                    
and ψ(Y ) ∈ G defined in exactly the same way. The Hilbert-Schmidt Information Criterion (HSIC) is then                  
defined as the squared HS norm of the associated cross-covariance operator  

HSIC(pXY ,F,G) .= ||CXY ||2HS.  

Let k(x, x ) and l(y,y ) be kernel functions on F and G. Then (Gretton, Bousquet, et al. 2005, Lemma 1), the 
HSIC criterion can be written in terms of these kernels as  

HSIC(pXY ,F,G)  

= EX,X ,Y,Y [k(X, X )l(Y,Y )] + EX,X [k(X, X )]EY,Y [l(Y,Y )]  

− 2EX,Y {EX [k(X, X )]EY [l(Y,Y )]} (29)  

Existence is guaranteed if the kernels are bounded. The similarity in structure to (28) for the distance                 
covariance should be noted (partly due to the identity (a − b)2 = a2 + b2 − 2ab but going deeper as will be                        
seen below when HSIC is compared to dcov). Note that the kernel functions depend on the way the                  
spaces F and G and their inner products are defined. In fact it follows from a famous result by                   
Moore-Aronszajn, see Aronszajn (1950), that if k is a symmetric, positive definite kernel on a set X, then                  
there is a unique Hilbert space of functions on X for which k is a reproducing kernel. Hence as will be seen                      
next, in practice when applying the HSIC criterion, the user has to choose a kernel.  

With some restrictions the HSIC measure is a proper measure of dependence in the sense of the Rényi                  
(1959) criterion (iv): From Theorem 4 of Gretton, Bousquet, et al. (2005) one has that if the kernels k and l                     
are universal (universal kernel is a mild continuity requirement on the kernel) on compact domains X and                 

Y, then ||CXY ||HS = 0 if and only if X and Y are independent. The compactness assumption results from the                     
application of an equality for bounded random variables taken from Hoeffding (1963), that is being used                
actively in the proof.  

A big asset of the HSIC measure it that its empirical version is easily computable. In fact if we have 



independent observations X1,...,Xn and independent observations Y1,...,Yn, then  

HSICn(X,Y,F,G)=(n − 1)−2tr{KHLH} (30)  

where tr is the trace operator and the n × n matrices H, K, L are defined by  

K = {Kij} = {k(Xi,Xj)}, L = {Lij} = {l(Yi,Yj)}, H = {Hij} = {δij − n−1},  

2
1  

where δij is converges towards distribution, to the random λi and ηj are the Kronecker delta. It is shown in 

Gretton, Bousquet, et al. (2005) that this estimator which eigenvalues variable ||Cunder XY Q ||2HSof = the 

integral . 
∑The null ∞i,j=1 convergence hypothesis λoperators iηjN ij2, rate is n−1/2. There is also a limit 

theorem for the asymptotic of independence and scaled with n converges in distribution where the Nij are 

independent standard normal variables, associated with centralized kernels derived from k and l and and 

integrating using the probability measures pX and pY , respectively. Again, this should be compared to the 
limiting variable for the statistic in the Cramér- von Mises functional (16). Critical values can be obtained 

for Q, but as a rule one seems to rely more on resampling as is the case for most independence test 
functionals.  

It is seen from (30) that computation of the empirical HSIC criterion requires the evaluation of k(Xi,Xj) and                  

l(Yi,Yj). Then appropriate kernels have to be chosen. Two commonly used kernels are the Gaussian               
kernel given by  
k(x, y) = e  
|x−y|2σ2 2  

, σ > 0  
and the Laplace kernel  
k(x, y) = e  
|x−y|  

σ , σ > 0.  
Pfister and Peters (2017) describe a recent R-package involving HSIC. Gretton, Bousquet, et al. (2005)               
use these kernels in comparing the HSIC test with several other tests, including the dcov test in, among                  
other cases, an independent component setting. Both of these tests do well, and one of these tests does                  
not decisively out-compete the other one. This is perhaps not so unexpected because there is a strong                 
relationship between these two tests. This is demonstrated by Sejdinovic et al. (2013). They look at both                 
the dcov test and the HSIC test in a generalized setting of semimetric spaces, i.e with kernels and                  
distances defined on such spaces X and Y. For a given distance function they introduce a                
distance-induced kernel, and under certain regularity conditions they establish a relationship between            
these two quantities. There is a related paper by Lyons (2013) which obtains similar results but not in an                   
explicit RKHS context, in fact in a general dcov context.  



Let ρX and ρY be distance measures on the semi-metric spaces X and Y, respectively. Then a generalized 
dcov distance functional can be defined as, compare again to (28),  
Vρ2X ,ρY(X,Y) =  

EXY EX Y ρX(X, X )ρY(Y,Y ) + EXEX ρX(X, X )EY EY ρY(Y,Y )  

− 2EXY {EX ρX(X, X )EY ρY(Y,Y )}.  
This distance if X and Y covariance in metric spaces characterizes are independent, and if the metrics ρX 

independence, and ρY satisfy an that additional is, VρX ,ρproperty, Y(X, Y )=0 termed if and strong only  

negative type. See Sejdinovic et al. (2013) for more details. An asset of the RKHS formulation is that it is 
very general. As was seen from the introduction of HSIC above, the sets X and Y can have a metric space 

structure, and probability measures pX, pY and pX,Y can still be introduced, and the definition of HSIC given 
in the beginning of this section and the accompanying decomposition (29) still make sense in this 

generalized framework. It can then be shown that, Theorem 24 in Sejdinovic et al. (2013), one has the 

following equivalence: Let kX and k((x, y),(x ,y )) = kX(x, required for this result is kY be any two kernels x 

)kY(y,y ), then the assumption of on V“negative ρ2X ,ρY X and Y that generate = 4HSIC2(pXY ,F,G). ρX and ρY, 

respectively, and let Among the regularity conditions type”, which is satisfied in standard Euclidean 

spaces.  
However, it is not possible to find a direct RKHS representation of the characteristic function 
representation (23) of V2.  
Lately there have been other extensions of both the dcov and HSIC to conditional dependence, partial                
distance and to time series. A few references are Szekely and Rizzo (2014), Chwialkowski and Gretton                
(2014), Zhang et al. (2012) and Pfister et al. (2018). A recent tutorial on RKHS is Gretton (2017).  
22  
4.5 Density based tests of independence  
Intuitively, one might think that knowing that the density exists should lead to increased power of the                 
independence tests due to more information. This is true, at least for some examples (see e.g. Teräsvirta,                 
Tjøstheim, and Granger (2010), Chapter 7.7). As in the preceding sections one can construct distance               
functionals between the joint density under dependence and the product density under independence. A              
number of authors have considered such an approach; both in the iid and time series case, see e.g.                  
Rosenblatt (1975), Robinson (1991), Skaug and Tjøstheim (1993b; 1996), Granger, Maasoumi, and            
Racine (2004), Hong and White (2005), Su and White (2007) and Berrett and Samworth (2017). For two                 

random variables X and Y having joint density fX,Y and marginals fX and fY the degree of dependence can                   

be measured by ∆(fX,Y ,fXfY ), where ∆ is now the distance measure between two bivariate density                 

functions. The variables are normalized with E(X) = E(Y )=0 and Var(X) = Var(Y )=1. It is natural to                   

consider the Rényi (1959) requirements again, in particular the requirements (iv) and (vi).  
All of the distance functionals considered will be of type  
∆ =  
∫  

B{fX,Y (x, y),fX(x),fY (y)}fX,Y (x, y)dxdy (31)  



where B is a real-valued function such that the integral exists. If B is of the form B(z1,z2,z3) = D(z1/z2z3), 
we have  
∆ =  

{ fX,Y (x, y)  

fX(x)fY (y)}fX,Y (x, y)dxdy (32)  
which by the change of variable formula for integrals is seen to have the Rényi property (vi). Moreover, if                   
D(w) ≥ 0 and D(w)=0 if and only if w = 1, then Rényi property (iv) is fulfilled. Several well-known distance                     
measures for density functions are of this type. For instance, letting D(w) = 2(1 − w−1/2) we obtain the                   
Hellinger distance  
H =  
∫  
D  

∫ {√fX,Y (x, y) − √fX(x)fY (y)}2  

dxdy = 2∫ {1 −  

√fX(x)fY (y) fX,Y (x, y)  

}fX,Y (x, y)dxdy  

between fX,Y and fXfY . The Hellinger distance is a metric and hence satisfies the Rényi property (iv). 
Chung et al. (1989) defined the so-called directed divergence of degree γ (0 <γ< 1), which is also related 
to the Rényi divergence, Rényi (1961),  

∆γ(fX,Y ,fXfY ) = 1  

1 − γ  

∫ [1 −  

{fX(x)fY (y)  

fX,Y (x, y)  

}γ]fX,Y (x, y)dxdy. (33)  

It is seen that the Hellinger distance is a special case (γ = 1/2). Clearly, the measure ∆γ satisfies (vi), and 
for 0 <γ< 1, using Hölder’s inequality,  

(γ − 1)∆γ(fX,Y ,fXfY ) =  
∫  

{fX(x)fY (y)}γ{fX,Y (x, y)}1−γ dxdy − 1 ≤ 0  

with equality if and only if fX,Y = fXfY . Hence, ∆γ satisfies (iv) for 0 <γ< 1. The familiar Kullback-Leibler 

information (entropy) distance is obtained as a limiting case as γ → 1,  
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∫  



ln{ fX,Y (x, y) fX(x)fY (y)}I =  

fX,Y (x, y) dxdy. (34)  
Since this distance is of type (32), it satisfies (vi), and it can also be shown to satisfy (iv). Going outside                     
the range 0 <γ< 1, for γ = 2 in (33), the test-of-fit distance in Bickel and Rosenblatt (1973) emerges. See                     
also Granger and Lin (1994). A very recent paper linking I with other recent approaches to independence                 
testing is Berrett and Samworth (2017).  
All of the above measures are trivially extended to two arbitrary multivariate densities. However, 
estimating such densities in high or moderate dimensions may be difficult due to the curse of 
dimensionality. A functional built up from pairwise dependencies can be considered instead such as in 
(18) and (19). For a given functional ∆ = ∆(f,g) depending on two densities f and g, ∆ may be estimated by 

∆ ̂ = ∆(f,̂ g). ̂ There are several ways of estimating the densities, e.g. the kernel density estimator,  

f̂ X(x) = n  

1∑i=1  

nKb(x − Xi)  

for given observations {X1,...,Xn}. Here Kb(x − Xi) = b−pK{b−1(x − Xi)}, where b is the bandwidth (generally 

to be a product a matrix), of one-dimensional K is the kernel function, kernels; i.e., and p K(x) is the = 

dimension ∏Ki(xi), of where Xi. The kernel function is usually taken each Ki generally is non-negative and 

satisfies ∫  

Ki(u)du = 1,  
∫  

u2Ki(u) du < ∞.  

Once estimators for fX,Y , fX and fY in the integral expression (31) for ∆ have been obtained, the integral can                     

be computed by numerical integration or by empirical averages using the ergodic theorem (or law of large                 
numbers in the iid case). Consequently for a given lag k in the time series case,  

∆̂ k = n − 1  

k  

∑ nt=k+1
B{ f̂ k(Xt,Xt−k), f(X̂ t), f(X̂ t−k)}w(Xt,Xt−k).  

Here fk is the joint density of (Xt,Xt−k), and w is a weight function, e.g., w(u, v)=1{|u| ≤ cσX}1{|v| ≤ cσX} for 

some chosen constant c.  
Under regularity conditions (see e.g. Skaug and Tjøstheim (1996)}, consistency and asymptotic normality 

can be obtained for the estimated test functionals. It should be noted that the leading term in an 

asymptotic expansion of the standard deviation of ∆ ̂ for the Hellinger functional Ĥ k,w is of order O(n−1/2). 

estimated Kullback-Leibler functional Î k,w and the estimated This is of course the same as for the 

standard deviation of a parametric estimate in a parametric estimation problem. In that situation the next 

term of the Edgeworth expansion is of order O(n−1), and for moderately large values of n the first order 



term n−1/2 will dominate. However, for the functionals considered above, due to the presence of an 
n-dependent bandwidth, the next terms in the Edgeworth expansion are much closer, being of order 

O(n−1/2b) and O({nb}−1), and since typically b = O(n−1/6) or O(n−1/5), n must be very large indeed to have 
the first term dominate in the asymptotic expansion. As a consequence, first order asymptotics in terms of 
the normal approximation cannot be expected to work well unless n is exceedingly large. Hence, basing a 
test of independence directly on the asymptotic theory may be hazardous as the real test size will typically 

deviate substantially from the nominal size. In this sense the situation is quite different from the empirical 
functionals treated in the previous sections, where there is no bandwidth parameter involved.  

All of this suggests the use of the bootstrap or permutations as an alternative for constructing the null                  
distribution. One may anticipate that it picks up higher-order terms of the Edgeworth expansion (Hall 1992,                
Chapters 3 and 4), although no rigorous analysis to confirm this has been carried out for the functionals                  
discussed here.  
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The fact that the permutation test yields an exact size, and that resampling tests generally perform much                 
better, underscores a major point. In tests involving a bandwidth it is absolutely essential to use                
resampling in practice. The asymptotic theory is far too inaccurate except possibly in cases where the                
sample size is extremely large. In the empirical functional case treated in Sections 4.2 and 4.3, the                 
asymptotic theory is incomparably more accurate, but even in this case the experience so far seems to be                  
that resampling generally does slightly better.  
It is quite difficult to undertake local asymptotic power analyses for the functionals based on estimated                
density functions. For reasons mentioned above, asymptotic studies could be expected to be unreliable              
unless n is very large. It has therefore been found more useful to carry out comparative simulation studies                  
against a wide choice of alternatives using a modest sample size, see e.g. Skaug and Tjøstheim (1993;                 
1996) and Hong and White (2005). These references also contain applications to real data.  
4.6 Test functionals generated by local dependence relationships  
If one has bivariate normal data with standard normal marginals and ρ = 0 one gets observations                 
scattered in a close to circular region around zero, and most test functionals will easily recognize this as a                   
situation of independence. However, as pointed out by Heller, Heller, and Gorfine (2013), if data are                
generated along a circle, e.g. X2 + Y 2 = N for some stochastic noise variable N, then X and Y are                      
dependent, but the dcov, and undoubtedly other test functionals, among which ρ-based tests, fail. They               
give some other examples as well of similar failures for test functionals to detect symmetric geometric                
patterns. Heller, Heller, and Gorfine (2013) point a way out of this difficulty, namely by looking at                 
dependence locally (along the circle) and then aggregate the dependence by integrating or by other               
means over the local regions. There are of course several ways of measuring local dependence and we                 
will approach this problem more fundamentally in Section 5.  
Before coming to the paper by Heller, Heller, and Gorfine (2013) and papers using similar approaches,                
partly for historic reasons, we look briefly at the correlation integral and the so-called BDS test named                 
after its originators Brock, Dechert and Scheinkman. This test has a local flavor at its basis, but the                  
philosophy is a bit different from the other tests presented in the current subsection. The BDS test                 
attracted much attention among econometricians in the 1990s, and it has since been improved.  
The starting point is the correlation integral introduced in Grassberger and Procaccia (1983) as a means                
of measuring fractal dimension of deterministic data. It measures serial dependence patterns in the sense               
that it keeps track of the frequency with which temporal patterns are repeated in a data sequence. Let                  

{x1,...,xn} be a sequence of numbers and letx(k)  

t 
= [x

t,xt−1,...,xt−k+1], k ≤ t ≤ n. Then the correlation integral for embedding dimension k is given by  



Ck,n(ε) = n(n 2  

− 1)  

∑ 1≤s≤t≤n
1(||x(k)  

t 
− x(k) s 

)|| < ε.  

Here, for x = [x1,...,xk], ||x|| = max1≤i≤k |xi|, where 1(·) is the indicator function and ε > 0 is a cut off threshold                        

which could be a multiple of the standard deviation in the case of a stationary process. The parameter ε                   
may also be considered to be a tuning parameter. Let  

Ck(ε) = n→∞lim Ck,n(ε). If {Xt} is an absolutely regular (Bradley, 1986, p.169) stationary process the above 

limit exists and is given by  

Ck(ε) =  
∫  
1(||x(k)  

1 
− x(k)  

2 
|| < ε)dF

k(x(k)  

1 
)dF

k(x(k)  

2 
),  

where Fk is the joint cumulative distribution function of Xt (k)  

. Since  

1(||x(k)  

1 
− x(k)  

2 
|| < ε) =  

∏ki=11(|x1i − x2i| < ε),  
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it is easily seen that if {Xt} consists of iid random variables, then  

Ck(ε) = {C1(ε)}k.  

This theory is the starting point for the BDS test. Under the hypothesis of independence, and excluding the 

case N(0,1) of uniformly of √n[Ck,n(ε) distributed − {C1,n(ε)}random k]/Vvariables, k,n under Broock an 

appropriate et al. (1996) scaling have factor established Vk,n. As asymptotic mentioned, normality the test 
has found considerable use among econometricians, but it suffers from some limitations, the arbitrariness 

of the choice of ε, the probability of rejecting independence does not always approach 1 as n → ∞, and 
finally, and probably most critically, the convergence to the asymptotic normal distribution may be very 



slow, making bootstrapping a possible alternative. These problems were pointed out by Genest, Ghoudi, 
and Rémillard (2007) who proposed a rank based extension, where these difficulties are to a large degree 

eliminated. Because the limiting distribution of the rank-based test statistics is margin-free, their 
finite-sample p-values can be easily calculated by simulations.  

Next, returning to the test of Heller, Heller, and Gorfine (2013), note that if X and Y (in Rp and Rq, say) are                       

continuous and are dependent, then there exists a point (x0,y0) in the sample space of (X, Y ), and radii Rx                     

and Ry around x0 and y0, respectively, such that the joint distribution of (X, Y ) is different from the product                     

of the marginals in the neighborhood defined by Rx and Ry. The next step is the introduction of a distance                    

functions d in the sample spaces of X and Y , and following Heller, Heller, and Gorfine (2013) we do not                     

distinguish between these distance functions in our notation. Consider the indicator functions 1{d(x0,X) ≤              

Rx} and 1{d(y0,Y ) ≤ Ry}. For a sample {(X1,Y1),...,(Xn,Yn)} one gets n pairs of values of zeros and ones                    

from the indicator functions that can be set up in a contingency table structure. Evidence against                
independence may then be quantified by Pearson’s chi-square test statistic or the likelihood ratio test for 2                 
× 2 contingency tables.  

The data is used to guide in the choice of (x0,y0), Rx and Ry. For every sample point (xi,yi), that point is in 

its turn chosen to be (x0,y0) and for every sample point (xj,yj), j = i, it is chosen in turn to define Rx = d(xi,xj) 

and Ry = d(yi,yj) (thus defining the locality of the test). The remaining n − 2 observations are then inserted 

in the indicator functions. For every pair (i, j) based on this one can construct a classic test The statistic 
quantities test, S(i, taking are j) aggregated for local a Pearson properties in a chi-square test into statistic 

account, test T for = ∑works a i,j;j 2 × =i 2 very contingency S(i, well j). Critical for table. the values circle To 

test are example obtained for independence and by several resampling. other these  

examples, both similar to the circle example and not. See also Heller et al. (2016).  

The next paper in this category, Reshef et al. (2011), is published in Science. The idea behind their MIC                   
(Maximal Information Coefficient) statistic consists in computing the mutual information I as defined in (34)               
locally over a grid in the data set and then take as statistic the maximum value of these local information                    
measures as obtained by maximizing over a suitable choice of grid. The authors compare with several                
other classifiers on simulated and real data with apparently good results. Some limitations of the method                
are identified in a later article by Reshef et al. (2013). Another follow-up article is Chen et al. (2016). See                    
also Kinney and Atwal (2014), Reshef et al. (2014) and Murrell, Murrell, and Murrell (2014). There are,                 
however, publications where the results are more mixed. See Simon and Tibshirani (2014) and Gorfine,               
Heller, and Heller (2012). In particular these two papers give several examples where the MIC is clearly                 
inferior to dcov.  

The two final papers in this category are Wang et al. (2015) and Wang et al. (2017). In both papers the                     
authors defines the locality by means of a neighborhood of X and then consider suitable Y -values.                 
Consequently, as remarked by Wang et al. (2015) their test may be best suited to nonlinear regression                 

alternatives of the form Yi = f(Xi) + εi. Wang et al. (2015) denote by (Xi,Yi) i = 1,...,n, n observations of the                       

stochastic variables X and Y in the construction of their CANOVA test statistic. They define the within                 



neighborhood sum of squares statistic as  

(Yi − Yj)2, j < i,: |rank(Xi) − rank(X

where K is an integer constant which is supposed to be chosen by the user. Then |rank(Xi) − rank(Xj)| 
defines the X-neighborhood structure. The assumption of CANOVA is that dependence should imply that  
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“similar/neighbor X-values lead to similar Y -values”. Thus when X and Y are dependent, small values of W                  
are expected. Critical values of W is determined by permutations. The test for 4 values of K (2, 4, 8, 12) is                      
compared to a number of other tests among them Pearson’s ρ, the Kendall and Spearman correlation                
coefficients, dcov, MIC, and the Hoeffding-test based on the empirical distribution function. The CANOVA              
tests does not do particularly well for linear models and it fails for the circle data with weak noise, but its                     
performance on the tested nonlinear examples is very good.  

The paper by Wang et al. (2017) follows much of the same pattern and ideas. The X-values are first used                    
to construct bagging neighborhoods. And then they get an out-of-bag estimator of Y , based on the                 
bagging neighborhood structure. The square error is calculated to measure how well Y is predicted by X.                 
Critical values are again obtained by permutations in the resulting statistic. In a comparison with other                
methods five out of eight examples consist of various sinusoidal function with added noise, where the new                 
test does very well.  

5 Beyond Pearson’s ρ: Local dependence  

The test functionals treated in Section 4 deal with the the second aspect of modelling dependence stated                 
in the beginning of that section, namely that of testing of independence. These functionals all do so by the                   
computation of one non-negative number, which is derived from local properties in Section 4.6. This               
number properly scaled may possibly be said to deal with the the first aspect stated, namely that of                  
measuring the strength of dependence. But, as such, it can be faulted in several ways. Unlike the Pearson                  
ρ, these functionals do not distinguish between positive and negative dependence, and it is not local, thus                 
not allowing for stronger dependence in multivariate tails as is felt intuitively is the case for data in finance                   
for example.  

In Section 6 the main story will be the treatment of local Gaussian correlation which in a sense returns to                    
the Pearson ρ but a local version of ρ which satisfies many of Rényi (1959)’s requirements. But first, in the                    
present section, we go back to some other attempts to define local dependence, starting with a                
remarkable paper by Lehmann (1966), who manages to define positive and negative dependence in a               
quite general nonlinear situation.  

5.1 Quadrant dependence  

Lehmann’s theory is based on the concept of quadrant dependence. Consider two random variables X               

and Y with cumulative distribution FX,Y . Then the pair (X, Y ) or its distribution function FX,Y is said to be                      



positively quadrant dependent if  

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) for all (x, y). (35)  

Similarly, (X, Y ) or FX,Y is said to be negatively quadrant dependent if (35) holds with the central inequality 
sign reversed.  

The connection between quadrant dependence and Pearson’s ρ is secured through a lemma of Hoeffding               
(1940). The lemma is a general result and resembles the result by Székely (2002) in his treatment of the                   

so-called Cramér functional, a forerunner of the Cramér - von Mises functional. If FX,Y denotes the joint and                  

FX and FY the marginals, then assuming that the necessary moments exist,  

E(XY ) − E(X)E(Y ) =  
∫ ∞−∞  

∫ ∞−∞ (FXY (x, y) − FX(x)FY (y)) dxdy.  

(FXY (x, y) − FX(x)FY (y)) dxdy.  

It follows immediately from definitions that if (X, Y ) is positively quadrant dependent (negatively quadrant                

dependent), then for the Pearson’s ρ, ρ ≥ 0 (ρ ≤ 0). Similarly, it is shown by Lehmann that if FX,Y is                      

positively quadrant dependent, then Kendall’s τ, Spearman’s ρS, and the quadrant measure q defined by               
Blomqvist (1950) are all non-negative. The paper by Blomqvist is an even earlier paper where positive and  
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negative dependence were considered in a nonlinear case, and using quadrants centered at the median. 
An analogous result holds in the negatively quadrant dependent case.  
Lehmann (1966) introduces two additional and stronger concepts of dependence. The first is regression 
dependence. Definition (35) can be written  
P(Y ≤ y|X ≤ x) ≥ P(Y ≤ y)  
but following Lehman, it may be felt that the intuitive concept of positive dependence is better represented 
by the stronger condition  
P(Y ≤ y|X ≤ x) ≥ P(Y ≤ y|X ≤ x ) for all x<x and all y. (36)  
Rather than (36), Lehmann considers the stronger condition  
P(Y ≤ y|X = x) is non-increasing in x  
which was discussed earlier by Tukey (1958). The concept of negative regression dependence is defined 
by an obvious analog.  
Finally, Lehmann introduces a stronger type of dependence still, by requiring the conditional density of Y 

given x to have a monotone likelihood ratio. Assuming the existence of a density f = fX,Y , the condition 
may be written formally as  
f(x, y )f(x ,y) ≤ f(x, y)f(x ,y ) for all x<x , y<y .  
If the inequality is reversed (X, Y ) is said to be negatively likelihood ratio dependent. The bivariate normal                   
distribution is positively or negatively likelihood ratio dependent according to ρ ≥ 0 or ρ ≤ 0. We will briefly                    
return to these dependence concepts when we get to the local Gaussian correlation in Section 6.  



5.2 Local measures of dependence  
As mentioned already, econometricians have long looked for a formal statistical way of describing the               
shifting region-like dependence structure of financial markets. It is obvious that when the market is going                
down there is a stronger dependence between financial objects, and very strong in case of a panic.                 
Similar effects, but perhaps not quite so strong, appear when the market is going up. But how should it be                    
quantified and measured? This is important in finance, not the least in portfolio theory, where it is                 
well-known, see e.g. Taleb (2007), that ordinary Gaussian description does not work, and if used, may                
lead to catastrophic results. Mainly two approaches have been used among econometricians. The first is               
non-local and consists simply in using copula theory, but it may not always be so easy to implement in a                    
time series and portfolio context. The other approach is local and is to use “conditional correlation” as in                  
Silvapulle and Granger (2001) and Forbes and Rigobon (2002). One then computes an estimate as in (1)                 
of Pearson’s ρ but in various regions of the sample space, e.g. in the tail of two distributions. Let R be                     

such a region. A conditional correlation estimate is then given by (we let nR be the number of observed                   

pairs (Xi,Yi) ∈ R and (XR = n−1R ∑(Xi,Yi)∈R Xi, and similarly for Y R),  

̂ ρR =  

√∑(Xi,Y∑i)∈R(Xi,Y
(X

i)∈Ri − X(Xr)i 2− XR)(Yi − Y R) 
√∑(Xi,Yi)∈R

(Y
i − Y R)2

. However, this estimate suffers from a 

serious bias, which is obvious by using the ergodic theorem or the law of large numbers, in the sense that 
for a Gaussian distribution it does not converge to ρ. This is unfortunate because if the data happen to be 
Gaussian, one would like estimated correlations to be close or identical to ρ in order to approximate the 
classic Gaussian portfolio theory of Markowitz (1952). This requirement is consistent with Rényi’s property 
(vii).  
The bias is examined in Boyer, Gibson, and Loretan (1999). Consider, as an example, a bivariate 
Gaussian distribution with correlation ρ = 0.5. The conditional correlation when one of the variables is 
large, for  
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example larger than its 75% quantile, X>q75, is reduced to 0.27, and as the quantile increases ρR                 

converges to zero. In the finance literature one has tried to correct for this for instance in contagion                  

studies, Forbes and Rigobon (2002). What is wrong here, one may think, is that one tries to use a product                    
moment estimator, which is a linear concept, on a quantity ρ that in the nonlinear case is better thought of                    
as a distributional parameter. We will return to this in Section 6, where a distributional approach yields an                  
estimate without bias.  
Statisticians have also tried various other ways of describing local dependence. We will report on two such                 
attempts: Bjerve and Doksum (1993) had the idea of trying to extend the relationship between correlation                
and regression coefficients in a linear regression model to a nonlinear situation. Recall that in a linear                 
model Y = α + βX + ε,  

ρ = β σXσY = βσ
X √(βσX)2 + σ2ε where σ2X

, σ2Y 
and σ2ε 

are the variances of X, Y and ε. Based on this 

formula Bjerve and Doksum suggested a local measure of dependence, the correlation curve, based on 

localizing ρ by conditioning on X (note that methods of Section 4.6 for aggregating local dependence also 
conditioned on X). Consider a generalization of the linear model to Y = f(X) + g(X)ε where f and g are 
continuous functions, f is in addition continuously differentiable, and ε has zero mean and is independent 
of X. The correlation curve is defined by  



ρ(x) = ρX,Y (x) = β(x)σX √(β(x)σX)2 + σ2ε(x)  

where  
β(x) = μ (x) with μ(x) = E(Y |X = x),  

and σ2ε(x) = Var(Y |X = x). It is trivial to check that ρ(x) reduces to ρ in the linear case. The quantities β(x)                        

and σ2ε(x) can be estimated by standard nonparametric methods. The correlation curve inherits many of               

the properties of ρ, but it succeeds in several of the cases where ρ fails to detect dependence, such as the                     
parabola (6) in Section 2.3. However, unlike ρ, it is not symmetric in (X, Y ). In fact, it depends only on x,                       

whereas one would want it to depend on (x, y) in such a way that ρX,Y (x, y) = ρY,X(y,x). This is of course                        
due to the conditioning on and regression on X. Conditioning and regression on Y would in general                 
produce a different result. This brings out the difference between regression analysis and multivariate              
analysis, where ρ is a concept of the latter, which accidentally enters into the first. Bjerve and Doksum do                   
propose a solution to this dilemma, but it is an ad hoc one. Moreover, it is not so difficult to find examples                      
where the correlation curve is zero even though there is dependence. Some further references are Wilcox                
(2005; 2007).  
In Section 4.6 we saw that Heller, Heller, and Gorfine (2013) used local contingency type arguments to                 
construct a global test functional. Such reasoning goes further back in time. Holland and Wang (1987)                

consider continuous stochastic variables (X, Y ) defined on R2. Let Rx,y denote the rectangle containing the                 
point (x, y) having sides of length ∆x and ∆y. Then, approximately, as the sides become small,  

Px,y .= P(X, Y ) ∈ Rx,y) ≈ f(x, y)∆x∆y  
where f is the joint density function. We now imagine that the sample space of (X, Y ) are covered by such                      
non-overlapping rectangles (cells). For each cell we pick one point (x, y) contained in that cell. Based on                  

all these pairs (x, y), construct a contingency table with indices (i, j) with the elements Px,y = Pij. Now                    
consider four neighboring cells (i, k), (i, l), (j, k) and (j, l) with i<j and k<l and with a point (x, y) in the cell                          

defined by (i, k) and using the simplified notation ∆i for ∆xi. The cross-product ratio is  

α((i, k),(j, l)) = P
ikPjl Pilpjk ≈ f(i, k)∆i∆k · f(j, l)∆j∆l  

f(i, l)∆i∆l · f(j, k)∆j∆k = f(i, k)f(j, l)  

f(i, l)f(j, k).  
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Let θ((i, k),(j, l)) = ln α((i, k),(j, l)). Letting the sides of all four cells tend to zero and then taking limits, one 
obtains  
γ(x, y) = ∆x→0,∆y→0  
lim θ[(x, y),(x ∆x∆y + ∆x, y + ∆y)]  
= ∂x∂y ∂2  

lnf(x, y),  

which is the local dependence function. Implicitly it is assumed here that both the mixed second order                 
partial derivatives exist and are continuous. For an alternative derivation based on limiting arguments of               
local covariance functions and for properties and extensions we refer to Jones (1996), Jones (1998),               
Jones and Koch (2003), Sankaran and Gupta (2004) and Inci, Li, and McCarthy (2011).  



The local dependence function does not take values between -1 and 1, and it does not reduce to ρ in the 
Gaussian bivariate case. Actually, in that case  

γ(x, y) = 1 − ρ  

ρ2  

1 σXσY .  

Both the correlation curve and the local dependence function works well for the example Y = X2 + ε, where                    
ρ = 0, see (6), producing dependence proportional to x and producing a sign of the dependence in                  
accordance with intuition.  

6 Beyond Pearson’s ρ: Local Gaussian correlation  
The Pearson ρ gives a complete characterization of dependence in a bivariate Gaussian distribution but,               
as has been seen, not for a general density f(x, y) for two random variables X and Y . The idea of the                       
Local Gaussian Correlation (LGC), introduced in Tjøstheim and Hufthammer (2013) is to approximate f              

locally in a neighborhood of a point (x, y) by a bivariate Gaussian distribution ψx,y(u, v), where (u, v) are                    

running variables. In this neighborhood we get close to a complete local characterization of dependence,               

its precision depending on the size of the neighborhood and of course on the properties of the density at                   
the point (x, y). In practice it has to be reasonably smooth. This section of the paper gives a suvey of                     
some of the results obtained so far.  
6.1 Definition and examples  
For notational convenience in this section we write (x1,x2) instead of (x, y), and, by a slight inconsistency                  

of notation, x = (x1,x2). Similarly, (u, v) is replaced by v = (v1,v2). Then, in this notation, letting                   

μ(x)=(μ1(x),μ2(x)) be the mean vector of ψ, σ(x)=(σ1(x),σ2(x)) the vector of standard deviations and ρ(x) the                

correlation of ψ, the approximating density ψ is then given by  

ψ(v,μ1(x),μ2(x),σ12(x),σ2
2(x),ρ(x)) = 2πσ1(x)σ2(x)

1  

√1 − ρ2(x) × exp[  

− 12  

1 1 − ρ2(x)((v1 − σ1
2
μ
(x) 

1(x))2  

− 2ρ(x)(v
1 − μσ1(x))(v1(x)σ+ 2 − μ2(x))  

(v
2(x)  

2 − σ22μ(x)  

2(x))2  

)].  

Moving to another point y = (y1,y2) in general gives another approximating normal distribution ψy               

depending on a new set of parameters{μ1(y),μ2(y),σ1(y),σ2(y),ρ(y)}. An exception is the case where f itself               



is Gaussian with parameters {μ1,μ2,σ1,σ2,ρ}, in which case {μ1(x),μ2(x),σ1(x),σ2(x),ρ(x))}≡{μ1,μ2,σ1,σ2,ρ}.         

This means that the bias of the conditional correlation described in Section 5 is avoided and it means that                   

the property (vii) in Rényi (1959)’s scheme is satisfied.  
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To θ(x) make = .this into a construction that can be used in practice one must define the vector population 

parameter {μ1(x),μ2(x),σ1(x),σ2(x),ρ(x)} and estimate it. Fortunately, this is a problem that has been treated 

in larger generality by Hjort and Jones (1996) and Loader (1996). They looked at the problem of 
approximating f(x) with a general parametric family of densities, the Gaussian being one such family. Here 

x in principle can have a dimension ranging from 1 to p, but with p = 1 mostly covered in those 
publications. They were concerned with estimating f rather than the local parameters, one of which is the 

LGC ρ(x). But their estimation method using local likelihood is applicable also for estimating local 
parameters, and will be followed here.  

But first we need a more precise definition of θ(x). This can be done in two stages using a neighborhood                    

defined by bandwidths b = (b1,b2) in the (x1,x2) direction, and then letting b → 0 component-wise.                 

(Alternatively one could use a set of smoothness conditions requiring not only f and ψ to coincide at x, but                    

also first and second order derivatives as indicated in Berentsen et al. (2017), but the resulting equations                 
are in general difficult to solve).  
A suitable function measyring the difference between f and ψ is defined by  
q =  
∫  

Kb(v − x)[ψ(v,θ(x)) − ln ψ{v,θ(x)}f(v)]dv (37)  

where Jones (1996), Kb(v − the x)=(bexpression 1b2)−1Kin 1(b(37) −1 1 (vcan 1 − be x1))Kinterpreted 2(b−1 2 

(v2 − x2)) is a product kernel. As is seen in Hjort and as a locally weighted Kullback-Leibler distance from f 

to ψ(·,θ(x)). We then obtain that the minimizer θb(x) (also depending on K) should satisfy  
∫  

Kb(v − x) ∂θ∂j [ln{ψ(v,θ(x))}f(v) − ψ(v,θ(x)]dv = 0, j = 1,...,5. (38)  

In the first stage we define the population value θb(x) as the minimizer of (37), assuming that there is a                    

unique solution to (38). The definition of θb(x) and the assumption of uniqueness are essentially identical                

to those used in Hjort and Jones (1996) for more general parametric families of densities. A trivial example                  

where (38) is satisfied with a unique θb(x) is when X ∼ N(μ,Σ) where Σ is the covariance matrix of X.                     
Another is the step function of a Gaussian variable as given in equation (5) of Tjøstheim and Hufthammer                  
(2013).  

In the next stage we let b → 0 and consider the the limiting value θ(x) = limb→0 θb(x). This is in fact                       
considered indirectly by Hjort and Jones (1996) on pp. 1627-1630 and more directly in Tjøstheim and                
Hufthammer (2013), both using Taylor expansion arguments. In the following we will assume that a               
limiting value θ(x) independent of b and K exists. (It is possible to avoid the problem of a population value                    



altogether if one takes the view of some of the publications cited in Section 4.6 by just estimating a                   
suitable dependence function). Excepting the Gaussian or the Gaussian step model, it seems difficult to               
find an explicit expression for θ(x). We will return, however, to a useful partial result for copulas later in this                    
section.  

In estimating θ(x) and θb(x) a nonparametric density estimation. neighborhood with The estimate θ(x) ̂ a 

finite bandwidth has to be used in analogy with = θ̂ b(x) is obtained from maximizing a local likelihood. 

Given observations X1,...,Xn the local log likelihood is determined by  

L(X1,...,Xn,θ(x)) = n−1 
∑

i  

∫ Kb(Xi − x) lnψ(Xi,θ(x)) −  

Kb(v − x)ψ(v,θ(x))dv.  

The last (and perhaps somewhat unexpected) term is essential, as it implies that ψ(x, θb(x)) is not allowed                  

to stray far away from f(x) as b → 0. It is also discussed at length in Hjort and Jones (1996). (When b →                        

∞, the last term has 1 as its limiting value and the likelihood reduces to the ordinary global likelihood).                   
Using the notation  

uj(·,θ) = .∂∂θj lnψ(·,θ),  
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by the law of large numbers, or by the ergodic theorem in the time series case, assuming E{Kb(Xi − x) ln 

ψ(Xi,θb(x))} < ∞, we have almost surely  

∂L∂θj = n−1 ∑
i  

∫  

Kb(v − x)uj(v,θb(x))ψ(v,θb(x))dv  
→  

Kb(Xi − x)uj(Xi,θb(x)) − ∫  

Kb(v − x)uj(v,θb(x))[f(v) − ψ(v,θb(x))]dv. (39)  
Putting the expression in the first line of (39) equal to zero yields the local maximum likelihood estimate                  

θ̂ b(x) = θ(x) ̂ of the population value θb(x) which satisfies (38). We see the importance of the additional                  

last term in the local likelihood by letting b → 0, Taylor expanding and requiring ∂L/∂θj = 0, which leads to  

uj(x, θb(x))[f(x) − ψ(x, θb(x))] + O(bTb)=0  

where bT is the transposed of b. It is seen that ignoring solutions that yield uj(x, θb(x)) = 0 requires ψ(x, 

θb(x)) to be close to f(x). An asymptotic theory is fixed and for θ(x) ̂ has been developed in Tjøstheim and 

Hufthammer (2013) for θ̂ b(x) for the case that b in the case that b → 0. The first case is much easier to 

treat than the second one. In fact for the first case the theory of Hjort and Jones (1996) can be taken over 



almost directly, although it is extended to the ergodic time series case in Tjøstheim and Hufthammer 

(2013). In the case that b → 0, this leads to a slow convergence rate of (n(b1b2)3)−1/2, which is the same 

convergence rate as for the the estimated dependence function treated in Jones (1996).  

The local correlation is clearly dependent on the marginal distributions of X1 and X2 as is Pearson’s ρ. This                   
marginal dependence can be removed by scaling the observations to a standard normal scale. As               
mentioned in Section 3 about the copula, the dependence structure is disentangled from the marginals by                
Sklar’s theorem. For the purpose of measuring local dependence in terms of the LGC, at least for a                  

number of purposes it is advantageous to replace a scaling with uniform variables Ui = Fi(Xi) by standard                  

normal variables  

Z = (Z1,Z2) = (Φ−1(F1(X1)),Φ−1(F2(X2))), (40)  
where Φ is the cumulative distribution of the standard normal distribution. The local Gaussian correlation 

on the Z-scale will be denoted by ρZ(z). Of course the variable Z cannot be computed via the 

transformation (40) without knowledge function. Extensive regularity conditions, Using the sample of pairs 

use as of has in of the the Gaussian been margins copula made pseudo case, Fof 1 ρand the 

Z(zobservations 1,zFdifference 2, 2), but or these rather between {Φ−1
can ρ( F̂  Z

̂ 
be 1(X(zZ 1,zestimated 

and 1i),Φ2) Z ̂ with −1can ( F̂  Zby ̂ 2(Xbe i the empirical distribution = Φ−1( F̂ i). Under certain ignored in 

limit theorems. 2i)}, i = 1,...,n one can estimate ρZ(z1,z2) by local log likelihood as described above. Under 

regularity conditions the asymptotic theory will be the same as in Tjøstheim and Hufthammer (2013). In 

Otneim and Tjøstheim (2017; 2018) a further simplifies simplification and one is obtains made the by 

familiar taking nonparametric μZi(z)=0 and rate σof ZiO((nb(z)=1, 1b2)in −1/2which ) case the for ̂ ρ̂ Z(z).  

asymptotic theory  
The choice of Gaussian margins in the transformation (40) is not made without a purpose. Since the                 

copula of (X1,X2) is defined as the distribution function of (U1,U2)=(F1(X1),F2(X2)) one could in principle               

consider the local Gaussian correlation ρU(u1,u2) of the variable (U1,U2) (or the corresponding pseudo              
uniforms). However, fitting a family of Gaussian density functions to finite support variables requires              
special considerations of boundary effects which makes this approach unpractical and illogical. The choice              
of Gaussian margins is natural since we are dealing with local Gaussian approximations.  

The LGC can be defined for a time series {Xt} as well simply by taking X1 = Xt and X2 = Xt+s for a lag s. The 

asymptotic theory in Tjøstheim and Hufthammer (2013) is in fact carried through for a stationary ergodic  
32  

process {Xt}, resulting in a local autocorrelation function. Similarly, for a pair of time series {Xt,Yt} one can                  

define the local cross correlation function by taking X1 = Xt and X2 = Yt+s. The asymptotic estimation theory                   

can be found in Lacal and Tjøstheim (2017a). The asymptotic distribution is fairly complicated and cannot                
be expected to work well for a moderate sample size because of the presence of the bandwidth parameter                  



b. Instead we have used the ordinary bootstrap and the block bootstrap to obtain confidence intervals. The                 
validity of the bootstrapping procedures is demonstrated in Lacal and Tjøstheim (2017b; 2017a).  

It should be noted that, in general, the local autocorrelation function defined in this way lacks the important                  
property of being positive definite, since several Gaussians are involved in its definition (In the Gaussian                
case it is positive definite). One has to bear this in mind in applications to independence testing, density                  
estimation and local spectral estimation. See e.g. Otneim and Tjøstheim (2017; 2018) and Jordanger and               
Tjøstheim (2017b; 2017a).  

In practical applications of the LGC an important point consists in choosing the bandwidth parameter b. 
Generally a cross-validation procedure has been used for this; see e.g.Berentsen and Tjøstheim (2014). 

Note that choosing the bandwidth by cross-validation generally results in more stable results for ρZ(z1,z2). 

This is not surprising in view of the standardized region. In a bootstrapping situation the cross-validation 

procedure takes much time, so that for the estimation of ρZ(z1,z2) a plug-in formula b = 1.75n−1/6 has also 

been used, which seems to be working fairly well, and where some empirical reasoning for its justification 

is presented in Otneim (2016), who uses a simplified model for the asymptotics of ̂ ρZ(z1,z2). Figures 3a - 

3h show some examples of estimated LGC maps, using bandwidths determined by the cross- validation 

procedure by Berentsen and Tjøstheim (2014), on both the original scale (̂ ρ(x)) and the Z-scale (̂ ρZ(z)) 

for the following data:  

(i) Simulations from a bivariate standard normal distribution with correlation equal to -0.5. (ii) Simulations 
from a bivariate t-distribution with 4 degrees of freedom and a global correlation of 0. (iii) Simulations 

from the GARCH(1,1) model (7) with parameters α = 0.1,β = 0.7, γ = 0.2 and εt ∼  
iid N(0,1). (iv) The daily log-return data as 

described in Section 2.  

We use the same sample size in the simulations as we have for the log-return data: n = 
784.  

For the first example in Figure 3a and 3b, the original scale and the normal scale are almost identical                   
(subject only to the estimation error in the marginal distribution functions), and we see the estimated LGC                 
is close to the true value across all points (in fact the sample Pearson correlation is ̂ ρ = −0.49 for these                     
data). Radial and odd reflection symmetry of the LGC, to be discussed in the next subsection, emerge                 

clearly from the estimated values in Figures 3c and 3d. Although Xt and Xt−1 are uncorrelated in the                  

GARCH model, Figures 3e and 3f show strong local dependence, with much the same, although a bit                 

stronger, pattern as for the t-distribution, i.e. positive dependence in the first and third quadrant, and                
negative dependence in the second and fourth quadrant, with increasing dependence away from the              
center.  

For the return data in Figures 3g and 3h we see clearly that the bivariate return distribution is not                   
Gaussian, since in particular there are large local correlations for both large negative and large positive                
returns. The pattern remains the same on the normal scale. Confidence intervals in such situations can be                 
found in Lacal and Tjøstheim (2017b; 2017a).  



We will also illustrate the difference between ρ(x) and ρZ(z) by looking at an exchangeable copula C with                  

C(u1,u2) = C(u2,u1). Several of the standard copulas such as the Clayton, Frank and Gumbel copula are                 
exchangeable. It is shown in Berentsen et al. (2014) that it is possible to compute analytically μ(x), Σ(x)                  

and in particular ρ(x) along the curve defined by {x = (x1,x2) : F1(x1) = F2(x2)}. If F1 = F2 = F, then the curve                         

reduces to the diagonal x = (d, d). In such a case it is shown in Berentsen et al. (2014) that  

ρ(d, d) = −C
11(F(d),F(d))φ(Φ−1(F(d)) √{φ(Φ−1(C1(F(d),F(d))))}2 + 

{C11(F(d),F(d))φ(Φ−1(F(d)))}2
, (41)  
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Figure 3: Some examples of local correlation maps, n = 784 in all cases  
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Figure 4: Parametric (Clayton) and nonparametric (LGC) correlation curves along the diagonal (on 

Z-scale) for the log-returns data set where φ is the standard normal density, Note that C1 = C2 and C11 = 

C22 due to 0.00  



where exchangeability. C1(u1,u2) It = is ∂/∂useen 1C(uthat 1,uin 2) addition and C11 to = the ∂2/∂ucopula 

21C(uC, 1,uthe 2).  

resulting local Gaussian correlation ρ(x) = ρ(d, d) in (41) also depends on the marginals F1 = F2 = F. For 

the Z-variable version in (40), the cumulative distribution function FZ given by FZ(z1,z2) = C(Φ(z1),Φ(z2)) is 

invariant to transformations of the marginals as detailed above, and in particular by inserting F1 = F2 = Φ in 

(41), it follows that along the diagonal z1 = z2 = d  

ρZ(d, d) = √{φ(Φ−1(C1(Φ(d),Φ(d)))}−C11(Φ(d),Φ(d))φ(d) 2 + {C11(Φ(d),Φ(d))φ(d)}2
. (42)  

For a parametric copula, the canonical local correlation ρZ(z) will depend only on these parameters. In 
Berentsen et al. (2014) this is used to pinpoint important dependence properties of exchangeable copulas 
such as the Clayton, Gumbel and Frank copula and t copula. Among other things it is shown for the 

Clayton and Frank copulas that ρZ(d, d) tends to 1 as d → −∞. Translated to the language of returns of 

financial variables, this means that if variables are described by the Clayton copula, then for very large 

negative returns all guarding against risk in a portfolio of X1 and X2 will disappear. Note that for the 

Gaussian copula, then ρ(x1,x2) ≡ ρZ(z1,z2) ≡ ρ. In Figure 4 we have plotted the estimated LGC of the 

returns (on Z-scale) on diagonal points, denoted by the label «nonparametric». This curve corresponds to 
the values along the diagonal through the first and third quadrant in the LGC map given in Figure 3h. We 

have also estimated the canonical local correlation ρZ(d, d) in (42), by assuming a Clayton copula, 

estimating the copula parameter. This curve is denoted by the label «parametric» in Figure 4. As we see, 

this curve is reasonably close to the estimated LGC in the  
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left hand side of the plot (i.e. for negative returns), but as seen, the local Clayton-based correlation goes                  
towards zero on the right hand side of the plot (i.e. for positive returns), whereas the LGC is again                   
increasing. Thus the Clayton copula, which indeed is mostly intended to describe a falling market, does                
not pick up the dependence patterns for positive returns. The U-shaped LGC of daily returns often occurs.                 
A possible explanation for this, in addition to increasing dependence in a bull market, is that during time                  
periods with a bear market (falling prices), even though the price trend is falling, for some days we actually                   
will see quite large positive daily returns, for example a bear market rally (also known as “sucker’s rally”).                  
These facts may explain why we observe the high local correlation for positive returns too and not just for                   
negative returns. This effect is not typically seen when looking at returns with longer time horizon, e.g. one                  
month. See Støve and Tjøstheim (2014) for further examples.  

Another example where an explicit formula for ρ(x) can be obtained is in the parabola model X2 = X21 + ε                     

that we have mentioned several times before and where ρ(x1,x21)=2x1/√4x21 + σ2ε/σ2X1, which gives an               

intuitive picture of the local dependence properties of this situation where the ordinary Pearson ρ fails so                 

miserably. It is seen that as σε → 0, ρ(x1,x22) → 1 if x1 > 0 and ρ(x1,x21) → −1 as x1 < 0 and that ρ(0,0) = 0,                             

which all seem reasonable.  



6.2 Some additional properties of the local Gaussian correlation  
Before stating particular properties of the LGC, it should be remarked that the family of Gaussian                
distributions is especially attractive because of its extensive and elegant theory in the multivariate case.               
Most statisticians will agree that the Gaussian distribution is in a class of itself when it comes to                  
transparency and simplicity of multivariate theory, and this is of course the main reason that it has been so                   
much used in applications, not only in finance but in a host of multivariate problems. But sometimes, and                  
this is certainly the case in econometrics and finance, data do not follow a multivariate Gaussian, and                 
applications based on it can give very misleading results, see Taleb (2007). The point of using the local                  
Gaussian approximation is that one can then move away from Gaussian distributions and describe much               
more general situations, also multivariate thick tailed distributions like those met in finance. At the same                
time one can exploit much of the multivariate Gaussian theory locally. We have found this useful in a                  
number of papers extending in various directions: Støve, Tjøstheim, and Hufthammer (2014), Støve and              
Tjøstheim (2014), Berentsen and Tjøstheim (2014), Berentsen, Kleppe, and Tjøstheim (2014), Berentsen            
et al. (2014), Berentsen et al. (2017), Lacal and Tjøstheim (2017b), Lacal and Tjøstheim (2017a), Otneim                
and Tjøstheim (2017), Otneim and Tjøstheim (2018). These results and further extensions will be              
collected in a forthcoming book, Tjøstheim, Otneim, and Støve (2020).  
We will now state some particulars for the local Gaussian correlation as a measure of (local) dependence.                 
We first look at the seven properties (i) - (vii) stated in the beginning of Section 4. These were first stated                     
by Rényi (1959) as desirable properties for a dependence measure to have.  

(i) ρ(x) is a local measure, but it is defined for any X1 and X2 under the regularity conditions discussed  

when defining the population value. (ii) Because ρ(x) is a local measure we generally have ρ(x1,x2) = 

ρ(x2,x1) but ρX1,X2(x1,x2) =  

ρX2,X1(x2,x1) of course. (iii) From definitions it follows that −1 ≤ ρ(x) ≤ 1 and −1 ≤ ̂ ρ(x) ≤ 1. We believe the 

possibility to measure negative as well as positive dependence to be one of the main assets of the local 

Gaussian correlation. (iv) The condition ρ(x1,x2) ≡ 0 implies independence of X1 and X2, but it is not 

sufficient. Then one must in addition require μi(x1,x2) ≡ μi(xi) and σi(x1,x2) ≡ σi(xi) for i = 1,2, Tjøstheim and 

Hufthammer (2013). In the global Gaussian case this is of course trivially fulfilled since all x-dependence 

disappears. Arguably, ρZ(z) is a better measure for the dependence between X1 and X2. (Note that even if 

Zi ∼ N(0,1) we do not necessarily have μi(z)=0, and σi(z)=1 in a bivariate Gaussian approximation. For 

distributions where this is true, X1 and X2 are independent if and only if ρ(z) ≡ 0). (v) If X1 = f(X2) or X2 = 

g(X1), then, according to Tjøstheim and Hufthammer (2013), the limiting value ρ(x1,x2) as the 

neighborhood shrinks to the point (x1,x2) is equal to 1 or -1, according to f  
36  

or g having a positive or negative slope at x2 or x1. The same is true for a closed curve relationship g(X1)+ 

f(X2) = c for a constant c, then ρ(x) is equal to 1 or -1 along the curve, depending on whether the tangent 

at the point x has positive or negative slope. (vi) Like the Pearson ρ the LGC ρ(x) depends on the 



marginals, but on the Z-scale, ρZ(z) is independent of marginals. Note that in the global case, 

transformations to standard normals of the margins, the Pearson’s ρ reduces to the van der Waerden 
rank correlation, Waerden (1952). (vii) In the Gaussian case we have ρ(x) ≡ ρ by construction. Note that 
this is also true for the Gaussian  

copula (under monotone transformations of the marginals from normal distributions).  

Concerning further properties of the LGC, first note the connection with Lehmann’s quadrant dependence.              

It is easily shown using the results in that paper that if ρ(x) ≥ 0 or ρ(x) ≤ 0 for all x, then (X1,X2) belongs to                          
the class F defined in Lehmann’s paper. Moreover, if second moments exist, then ρ(x) ≥ 0 for all x, implies                    

ρ = Corr(X1,X2) ≥ 0, and ρ(x) ≤ 0 for all x implies ρ ≤ 0.  

One invariance main asset for the of LGC, Pearson’s but ρ with is its the scale proviso invariance, that the 

ραpoint 1+β1X(x1,α1,x2+β2) 2Xis 2 moved = ρX1,Xto 2the . There is a corresponding scale point (α1+β1x1,α2+β2x2). 
More generally, it is shown by Tjøstheim and Hufthammer (2013) that for a vector α and a matrix A and for 

the stochastic variable Y = α + AX, then for the local parameter vector θ(y)=[μ(y),Σ(y)] at the point y = α + 
Ax, we have μ(y) = α + Σ(x)μ(x) and Σ(y) = AΣ(x)AT. It follows that we have scale invariance in the following 

sense ρY1,Y2(y1,y2) = ρα1+β1X1,α2+β2X2(α1 + β1x1,α2 + β2x2) = ρX1,X2(x1,x2). In Tjøstheim and Hufthammer (2013) 

the transformation results for α + AX have been used to prove a number of symmetry properties. In stating 
the results we have assumed μ = E(X)=0, because otherwise we may just center the density at μ, and 

make statements about symmetry about μ. These symmetries are illustrated in Figures 3c-3f.  

(i) Radial symmetry: If f(x) = f(−x), then Σ(−x) = Σ(x), from which ρ(−x) = ρ(x), and μ(−x) = −μ(x). (ii) 

Reflection symmetry: f(−x1,x2) = f(x1,x2) and/or f(x1,−x2) = f(x1,x2) imply ρ(−x1,x2) = −ρ(x1,x2, ρ(x1,−x2) = 

−ρ(x1,x2), μ1(−x1,x2) = −μ1(x1,x2), μ2(−x1,x2) = μ2(x1,x2), μ1(x1,−x2) = μ1(x1,x2), μ2(x1,−x2) = −μ2(x1,x2). (iii) 

Exchange symmetry: If f(x1,x2) = f(x2,x1), then Σ(x1,x2) = Σ(x2,x1) and hence ρ(x1,x2) =  

ρ(x2,x1). (iv) Rotation symmetry: Then f(x) = γ(|x|) for a function γ. If f is a spherical density, then f 

satisfies all the symmetry requirements mentioned above. It can be shown that in such a case ρ2(x) takes 

its maximum along the lines x1 = x2 and x1 = −x2. In Tjøstheim and Hufthammer (2013) simulations are 

shown for distributions satisfying these requirements.  

6.3 Testing for independence  

The LGC can be used for testing independence, and hence as a possible supplement and competitor to                 
the tests in Section 4. A general estimated test functional for testing the independence between two                

random variables X1 and X2 can be written  

Tn,b =  

̂ 
n,b(x)dFn(x) (43)  



where h is a measurable function, in general non-negative, and where Fn is the empirical distribution 

function of (X1,X2). This functional estimates the functionals  

Tb =  

∫S h(θb(x)dF(x)  

an
d  

T =  
x))dF(x).  
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By choosing the set S one can focus the test against special regions, e.g. the tails. One can also pre-test                    
for symmetry properties discussed above and take advantage of those as indicated in Berentsen and               
Tjøstheim (2014). Such a test can be carried trough in increasing generality as demonstrated in Berentsen                
and Tjøstheim (2014), and Lacal and Tjøstheim (2017b; 2017a).  

Berentsen and Tjøstheim (2014) look at the case of iid pairs (X1,X2) and test for independence between X1 

and X2. Lacal and Tjøstheim (2017b; 2017a) consider the time series case where for a time series {Xt} one 

can test for independence between X1 = Xt and X2 = Xt+s. a function of s for a stationary {Xt}, and it defines 

a local autocorrelation The corresponding function. LGC Its ρestimation Xt,Xt+s(x1,xtheory 2) is  
is covered in Lacal and Tjøstheim (2017b). The theory for the test functional is developed in Lacal and                  
Tjøstheim (2017b; 2017a). From the reasoning in Section 4.5, the asymptotic theory cannot be expected               
to be very accurate, and they have, as for many (most) of the tests functionals of this type used                   
bootstrapping in tests for serial independence and the block bootstrap for the tests of independence               
between two time series. In both cases the asymptotic theory for the test functional and the validity of the                   
bootstrap and the block bootstrap have been established. The starting point for the theory is a test                 

functional based on a pairs (Xt,Xt+s) for the single time series case and pairs (Xt,Yt+s) for the two time                   

series case. These have been extended in Lacal and Tjøstheim (2017a) to Box-Ljung type of functionals                

such as  

Tn,b(sum) =  

∑s2

s1  

T 
n,b 
(s)  

T 
n,b 
(s)  

where T 

n,b (s)  

s. Alternatively, they have also used a a test 

Tn,b(max) = s1≤s≤smax 2 |T 

n,b(s)  

|

.  



These test functionals have been compared to several other test functionals including Pearson’s ρ and the                
dcov test. For the simulation experiments tried in Lacal and Tjøstheim (2017b; 2017a) the LGC test                
functional compares favorably with dcov. As is the case for the dcov it beats the Pearson’s ρ very clearly                   
in non-Gaussian situations, and for the sample sizes used it does not lose much compared to ρ in a                   
Gaussian situation, where ρ is optimal.  

Reference
s  

Aas, Kjersti, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken. 2009. “Pair-Copula Constructions of 
Multiple Dependence.” Insurance: Mathematics and Economics 44 (2). Elsevier: 182–98.  

Abrahams, Julia, and John B. Thomas. 1980. “Properties of the Maximal Correlation Function.” Journal of 
the Franklin Institute 310 (6): 317–23.  

Anderson, Theodore W. 1993. “Goodness of Fit Tests for Spectral Distributions.” The Annals of Statistics 
21 (2): 830–47.  

Aronszajn, Nachman. 1950. “Theory of Reproducing Kernels.” Transactions of the American Mathematical 
Society 68 (3): 337–404.  

Bartels, Robert. 1982. “The Rank Version of von Neumann’s Ratio Test for Randomness.” Journal of the 
American Statistical Association 77 (377): 40–46.  

Beare, Brendan K. 2010. “Copulas and Temporal Dependence.” Econometrica 78 (1): 
395–410.  

Beran, Rudolf, Martin Bilodeau, and Pierre Lafaye de Micheaux. 2007. “Nonparametric Tests of 
Independence Between Random Vectors.” Journal of Multivariate Analysis 98 (9): 1805–24.  

Berentsen, Geir Drage, and Dag Tjøstheim. 2014. “Recognizing and Visualizing Departures from 
Independence in Bivariate Data Using Local Gaussian Correlation.” Statistics and Computing 24 (5): 
785–801.  

Berentsen, Geir Drage, Ricardo Cao, Mario Francisco-Fernández, and Dag Tjøstheim. 2017. “Some 
Properties  

3
8  

of Local Gaussian Autocorrelation and Other Nonlinear Dependence Measures.” Journal of Time Series 
Analysis 38 (2): 352–80.  

Berentsen, Geir Drage, Tore Kleppe, and Dag Tjøstheim. 2014. “Introducing localgauss, an R-Package 
for Estimating and Visualizing Local Gaussian Corelation.” Journal of Statistical Software 56 (12): 1–18.  

Berentsen, Geir Drage, Bård Støve, Dag Tjøstheim, and Tommy Nordbø. 2014. “Recognizing and             
Visualizing Copulas: An Approach Using Local Gaussian Approximation.” Insurance: Mathematics and           
Economics 57: 90–103.  



Berlinet, Alain, and Christine Thomas-Agnan. 2004. Reproducing Kernel Hilbert Spaces in Probability and 
Statistics. Springer.  

Berrett, Thomas B, and Richard J Samworth. 2017. “Nonparametric Independence Testing via Mutual 
Information.” arXiv Preprint arXiv:1711.06642.  

Bickel, Peter J., and Murray Rosenblatt. 1973. “On Some Global Measures of the Deviations of Density 
Function Estimators.” The Annals of Statistics 1: 1071–95.  

Billingsley, Patrick. 2008. Probability and Measure. John Wiley & Sons.  

Bjerve, Steinar, and Kjell Doksum. 1993. “Correlation Curves: Measures of Association as Function of 
Covariate Values.” The Annals of Statistics 21 (2): 890–902.  

Blomqvist, Nils. 1950. “On a Measure of Dependence Between Two Random Variables.” The Annals of 
Mathematical Statistics 21 (4): 593–60.  

Blum, Julius R., Jack Kiefer, and Murray Rosenblatt. 1961. “Distribution Free Tests of Independence 
Based on the Sample Distribution Function.” The Annals of Mathematical Statistics 32 (2): 485–98.  

Boyer, Brian H., Michael S. Gibson, and Mico Loretan. 1999. “Pitfalls in Tests for Changes in Correlation.” 
Discussion Paper 597. Federal Reserve Government Papers.  

Bradley, Richard C. 1986. “Basic Properties of Strong Mixing Conditions.” Edited by E. Eberlein and M.S. 
Taqqu. Birkhäuser, Boston, 165–92.  

Breiman, Leo, and Jerome H. Friedman. 1985. “Estimating Optimal Transformations for Multiple 
Regression and Correlation (with Discussion).” Journal of the American Statistical Association 80 (391): 
580–619.  

Broock, William A., José A. Scheinkman, W. Davis Dechert, and Blake LeBaron. 1996. “A Test for 
Independence Based on the Correlation Dimension.” Econometric Reviews 15 (3): 197–236.  

Carlstein, Edward. 1988. “Degenerate U-Statistics Based on Non-Independent Observations.” Calcutta 
Statistical Association Bulletin 37 (1-2): 55–65.  

Chen, Xiaohong, and Yanqin Fan. 2006. “Estimation of Copula Based Semiparametric Time Series 
Models.” Journal of Econometrics 130 (2): 307–35.  

Chen, Yuan, Ying Zeng, Feng Luo, and Yuan Zheming. 2016. “A New Algorithm to Optimize Maximal 
Information Coefficient.” PLoS ONE 11 (6): e0157567.  

Chung, J. K., P. L. Kannapan, C. T. Ng, and P. K. Sahoo. 1989. “Measures of Distance Between 
Probability Distributions.” Journal of Mathematical Analysis and Applications 138 (1): 280–92.  

Chwialkowski, Kacper, and Arthur Gretton. 2014. “A Kernel Independence Test for Random Processes.” 
In Proceedings of the 31st International Conference on Machine Learning, 32:1422–30.  

Csörgö, Sándor. 1985. “Testing for Independence by the Empirical Characteristic Function.” Journal of 
Multivariate Analysis 16: 290–99.  

Czáki, Péter, and János Fischer. 1963. “On the General Notion of Maximal Correlation.” Magyar 
Tudományos Akad. Mat. Kutató Intézetenk Közlemenényei (Publ. Math. Inst. Hungar: Acad. Sci. 8: 27–51.  



Darsow, William F., Bao Nguyen, and Elwood T. Olsen. 1992. “Copulas and Markov Processes.” Illinois  

3
9  

Journal of Mathematics 36 (4): 
600–642.  

Datastream. 2018. Subscription service (Accessed June 
2018).  

Davis, Richard, Muneya Matsui, Thomas Mikosch, and Phyllis Wan. 2018. “Applications of Distance 
Correlation to Time Series.” Bernoulli 24 (4A): 3087–3116.  

Deheuvels, Paul. 1981a. “A Kolmogorov-Smirnov Type Test for Independence and Multivariate Samples.” 
Revue Roumaine de Mathemátiques Pures et Appliquées 26 (2): 213–26.  

———. 1981b. “An Asymptotic Decomposition for Multivariate Distribution-Free Tests of Independence.”  
Journal of Multivariate Analysis 11 (1): 102–13.  

Delgado, Miguel A. 1996. “Testing Serial Independence Using the Sample Distribution Function.” Journal 
of Time Series Analysis 17 (3): 271–86.  

Denker, Manfred, and Gerhard L. Keller. 1983. “On U-Statistics and von Mises’ Statistics for Weakly 
Dependent Processes.” Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete 64 (4): 505–22.  

Dueck, Johannes, Dominic Edelman, and Donald Richards. 2015. “A Generalization of an Integral Arising 
in the Theory of Distance Correlation.” Statistics and Probability Letters 97: 116–19.  

Dueck, Johannes, Dominic Edelman, Tilmann Gneiting, and Donald Richards. 2014. “The Affinely 
Invariant Distance Correlation.” Bernoulli 20 (4): 2305–30.  

Engle, Robert F. 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of Varaiance of U.K. 
Inflation.” Econometrica 50 (4): 987–1008.  

Escanciano, J. Carlos, and Carlos Velasco. 2006. “Generalized Spectral Tests for the Martingale 
Difference Hypothesis.” Journal of Econometrics 134 (1): 151–85.  

Fan, Yanan, Pierre Lafaye de Micheaux, Spiridon Penev, and Donna Sapolek. 2017. “Multivariate 
Nonpara- metric Tests of Independence.” Journal of Multivariate Analysis 153: 189–210.  

Ferguson, Thomas S., Christian Genest, and Marc Hallin. 2000. “Kendall’s Tau for Serial Dependence.” 
Canadian Journal of Statistics 28 (3): 587–604.  

Ferraty, Frédéric, and Philippe Vieu. 2006. Nonparametric Functional Data Analysis: Theory and Practice. 
Springer, New York.  

Fisher, Ronald A. 1915. “Frequency Distribution of the Values of the Correlation Coefficient in Samples of 
an Indefinitely Large Population.” Biometrika 10 (4): 507–21.  

———. 1921. “On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample.” 
Metron  



1: 
3–32.  

Fokianos, Konstantinos, and Maria Pitsillou. 2017. “Consistent Testing for Pairwise Dependence in Time 
Series.” Technometrics 59 (2): 262–70.  

Forbes, Kristin J., and Roberto Rigobon. 2002. “No Contagion, Only Interdependence: Measuring Stock 
Market Comovements.” The Journal of Finance 57 (5): 2223–61.  

Francq, Christian, and Jean-Michel Zakoian. 2011. GARCH Models: Structure, Statistical Inference and 
Financial Applications. John Wiley & Sons.  

Galton, Francis. 1888. “Co-Relations and Their Measurement, Chiefly from Anthropometric Data.” 
Proceed- ings Royal Society, London 45 (273–279): 135–45.  

———. 1890. “Kinship and Correlation.” North American Review 150 (401): 419–31.  

Gebelein, Hans. 1941. “Das Statistische Problem Der Korrelation as Variations - Und Egenwerthproblem 
Und Sein Zusammengeng Mit Der Ausgleichsrechnung.” ZAMM-Journal of Applied Mathematics and  

4
0  

Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik 21 (6): 364–79.  

Genest, Christian, and Johanna Nešlehová. 2007. “A Primer on Copulas for Count Data.” ASTIN Bulletin 
37 (2): 475–515.  

Genest, Christian, and Bruno Rémillard. 2004. “Tests of Independence and Randomness Based on the 
Empirical Copula Process.” TEST 13 (2): 335–69.  

Genest, Christian, Kilani Ghoudi, and Bruno Rémillard. 2007. “Rank-Based Extensions of the Brock, 
Dechert, Scheinkman Test.” Journal of the American Statistical Association 102 (480): 1363–76.  

Ghoudi, Kilani, and Bruno Rémillard. 2018. “Serial Independence Tests for Innovations of Conditional 
Mean and Variance Models.” TEST 27 (1): 3–26.  

Ghoudi, Kilani, Reg J. Kulperger, and Briuno Rémillard. 2001. “A Nonparametric Test of Serial 
Independence for Time Series and Residuals.” Journal of Multivariate Analysis 79 (2): 191–201.  

Gorfine, Malka, Ruth Heller, and Yair Heller. 2012. “Comment on “Detecting Novel Associations in Large 
Data Sets’ by Reshef et al.", Science Dec 16, 2011.”  

Gómez, Eusebio, Miguel A. Gómez-Villegas, and J.Miguel Mari’in. 2003. “A Survey on Continuous 
Elliptical Vector Distributions.” Revista Matemática Computense 16: 345–61.  

Granger, Clive, and Jin-Lung Lin. 1994. “Using the Mutual Information Coefficient to Identify Lags in 
Nonlinear Time Series Models.” Journal of Time Series Analysis 15 (4): 371–84.  

Granger, Clive, Esfandiar Maasoumi, and Jeffrey Racine. 2004. “A Dependence Metric for Possible 
Nonlinear Processes.” Journal of Time Series Analysis 25 (5): 649–70.  



Grassberger, Peter, and Itamar Procaccia. 1983. “Measuring the Strangeness of Attractors.” Physica D: 
Nonlinear Phenomena 9 (1-2): 189–208.  

Gretton, Arthur. 2017. “Introduction to RKHS, and Some Simple Kernel Algorithms.” Lecture notes Gatsby 
Computational Neuroscience Unit.  

Gretton, Arthur, and László Györfi. 2010. “Consistent Nonparametric Tests of Independence.” Journal of 
Machine Learning Research 11 (Apr): 1391–1423.  

———. 2012. “Strongly Consistent Nonparametric Test of Conditional Independence.” Journal of 
Multivariate  
Analysis 82 (6): 
1145–50.  

Gretton, Arthur, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. 2005. “Measuring Statistical            
Dependence with Hilbert-Schmidt Norms.” In International Conference on Algorithmic Learning Theory,           
edited by S. Jain, U. Simon, and E. Tomita, 63–77. Springer, Berlin.  

Gretton, Arthur, Ralf Herbrich, Alexander Smola, Olivier Bousquet, and Bernhard Schölkopf. 2005. “Kernel 
Methods for Measuring Independence.” Journal of Machine Learning Research 6 (Dec): 2075–2129.  

Hall, Peter. 1992. The Bootstrap and Edgeworth Expansion. Springer, New 
York.  

Hallin, Marc, and Guy Mélard. 1988. “Rank Based Tests for Randomness Against First Order Serial 
Dependence.” Journal of the American Statistical Association 83 (404): 1117–29.  

Hallin, Marc, Jean-François Ingenbleek, and Madan L Puri. 1985. “Linear Serial Rank Tests for 
Randomness Against ARMA Alternatives.” The Annals of Statistics 13 (3): 1156–81.  

Hastie, Trevor, and Rob Tibshirani. 1990. Generalized Additive Models. Chapman; Hall, London.  

Heller, Ruth, Yair Heller, and Malka Gorfine. 2013. “A Consistent Multivariate Test of Association Based 
on Ranks of Distances.” Biometrika 100 (2): 503–10.  

Heller, Ruth, Yair Heller, Shachar Kaufman, Barak Brill, and Malka Gorfine. 2016. “Consistent Distribution- 
Free K-Sample and Independence Tests for Univariate Random Variables.” Journal of Machine Learning  

4
1  

Research 17 (1): 
978–1031.  

Hinich, Melvin J. 1982. “Testing for Gaussianity and Linearity of a Stationary Time Series.” Journal of 
Time Series Analysis 3 (3): 169–76.  

Hjort, Nils Lid, and M. Chris Jones. 1996. “Locally Parametric Nonparametric Density Estimation.” Annals 
of Statistics 24 (4): 1619–47.  

Hoeffding, Wassily. 1940. “Mass-Stabinvariante Korrelationstheorie.” Schriften Des Mathematischen 



Seminars Und Des Instituts Für Angewandte Mathematik Der Universität Berlin 5 (3): 179–233.  

———. 1948. “A Nonparametric Test of Independence.” Annals of Mathematical Statistics 19 (4): 546–57.  

———. 1963. “Probability Inequalities for Sums of Bounded Random Variables.” Journal of the American  
Statistical Association 58 (301): 
13–30.  

Holland, Paul W, and Yuchung J Wang. 1987. “Dependence Functions for Continuous Bivariate 
Densities.” Communications in Statistics 16 (3): 863–76.  

Hong, Yongmiao. 1998. “Testing for Pairwise Serial Independence via the Empirirical Distribution 
Function.” Journal of the Royal Statistical Society Series B 60 (2): 429–60.  

———. 1999. “Hypothesis Testing in Time Series via the Empirical Characteristic Function: A Generalized  
Spectral Density Approach.” Journal of the American Statistical Association 94 (448): 1201–20.  

———. 2000. “Generalized Spectral Tests for Serial Dependence.” Journal of the Royal Statistical Society  
Series B 62 (3): 
557–74.  

Hong, Yongmiao, and Tae-Hwy Lee. 2003. “Inference on Predictability of Foreign Exchange Rates via              
Generalized Spectrum and Nonlinear Time Series Models.” Review of Economics and Statistics 80 (4):              
188–201.  

Hong, Yongmiao, and Halbert White. 2005. “Asymptotic Distribution Theory for Nonparametric Entropy 
Measures of Serial Dependence.” Econometrica 73 (3): 837–901.  

Huang, Tzee-Ming. 2010. “Testing Conditional Independence Using Maximal Nonlinear Conditional 
Correla- tion.” Annals of Statistics 38 (4): 2047–91.  

Ibragimov, Rustam. 2009. “Copula Based Characterizations for Higher-Order Markov Processes.” 
Econometric Theory 25 (3): 819–46.  

Inci, A Can, Hsi-Cheng Li, and Joseph McCarthy. 2011. “Financial Contagion: A Local Correlation 
Analysis.” Research in International Business and Finance 25 (1): 11–25.  

Jentsch, Carsten, Anne Leucht, Marco Meyer, and Carina Beering. 2018. “Empirical Characteristic            
Functions- Based Estimation and Distance Correlation for Locally Stationary Processes.” Working paper,            
University of Mannheim.  

Joe, Harry. 2014. Dependence Modeling with Copulas. Chapman; Hall, 
London.  

Jones, M. Chris. 1996. “The Local Dependence Function.” Biometrika 83 (4): 899–904.  

———. 1998. “Constant Local Dependence.” Journal of Multivariate Analysis 64 (2): 148–55.  

Jones, M. Chris, and Inge Koch. 2003. “Dependence Maps: Local Dependence in Practice.” Statistics and 
Computing 13 (3): 241–55.  

Jordanger, Lars Arne, and Dag Tjøstheim. 2017a. “Nonlinear Cross-Spectrum Analysis via the Local 
Gaussian Correlation.” arXiv Preprint arXiv:1708.02495.  



———. 2017b. “Nonlinear Spectral Analysis via the Local Gaussian Correlation.” arXiv Preprint  

4
2  

arXiv:1708.02166v
2.  

Kendall, Maurice G. 1938. “A New Measure of Rank Correlation.” Biometrika 30 (1/2): 81–89.  

———. 1970. Rank Correlation Methods. 4th ed. Griffin, London.  

King, Maxwell L. 1987. “Testing for Autocorrelation in Linear Regression Models: A Survey.” In              
Specification Analysis in the Linear Regression Model, edited by M.L. King and D.E.A. Giles, 19–73.               
Rutledge; Kegan Paul, London.  

Kinney, Justin B, and Gurinder S Atwal. 2014. “Equitability, Mutual Information, and the Maximal 
Information Coefficient.” Proceedings National Academy of Science USA 111: 3354–9.  

Klaassen, Chris AJ, and Jon A Wellner. 1997. “Efficient Estimation in the Bivariate Normal Copula Model: 
Normal Margins Are Least Favorable.” Bernoulli 3 (1): 55–77.  

Knoke, James D. 1977. “Testing for Randomness Against Autocorrelation: Alternative Tests.” Biometrika 
64 (3): 523–29.  

Kojadinovic, Ivan, and Mark Holmes. 2009. “Tests of Independence Among Continuous Random Vectors             
Based on Cramér–von Mises Functionals of the Empirical Copula Process.” Journal of Multivariate             
Analysis 100 (6): 1137–54.  

Koyak, R. 1987. “On Measuring Internal Dependence in a Set of Random Variables.” Annals of Statistics 
15 (3): 1215–28.  

Lacal, Virginia, and Dag Tjøstheim. 2017a. “Estimating and Testing Nonlinear Local Dependence Between 
Two Time Series.” Journal of Business and Economic Statistics, to Appear.  

———. 2017b. “Local Gaussian Autocorrelation and Tests of Serial Dependence.” Journal of Time Series  
Analysis 38 (1): 
51–71.  

Landsman, Zinoviy M, and Emiliano A Valdez. 2003. “Tail Conditional Expectations for Elliptical Distribu- 
tions.” North American Actuarial Journal 7 (4). Taylor & Francis: 55–71.  

Lehmann, Erich Leo. 1966. “Some Concepts of Dependence.” Annals of Mathematical Statistics 37 (5): 
1137–53.  

Loader, Clive R. 1996. “Local Likelihood Density Estimation.” Annals of Statistics 24 (4): 1602–18.  

Low, Rand Kwong Yew, Jamie Alcock, Robert Faff, and Timothy Brailsford. 2013. “Canonical Vine Copulas               
in the Context of Modern Portfolio Management: Are They Worth It?” Journal of Banking and Finance 37                 



(8): 3085–99.  

Lyons, Russell. 2013. “Distance Covariance in Metric Spaces.” Annals of Probability 41 (5): 
3284–3305.  

Mangold, Benedikt. 2017. “A Multivariate Rank Test of Independence Based on a Multiparametric 
Polynomial Copula.” IWQW Discussion Papers 10/2015, University of Erlangen-Nürnberg.  

Markowitz, Harry. 1952. “Portfolio Selection.” Journal of Finance 7 (1): 77–91.  

McLeod, Allan I, and William K Li. 1983. “Diagnostic Checking ARMA Time Series Models Using Squared 
Residuals and Autocorrelations.” Journal of Time Series Analysis 4 (4): 269–73.  

Meucci, A. 2011. “A New Breed of Copulas for Risk and Portfolio Management.” Risk 24 (9): 122–26.  

Murrell, Ben, Daniel Murrell, and Hugh Murrell. 2014. “R2-Equitability Is Satisfiable.” Proceedings National 
Academy of Science USA 111 (21): E2160.  

Muscat, Joseph. 2014. Functional Analysis: An Introduction to Matric Spaces, Hilbert Spaces and Banach 
Algebras. Springer, New York.  

Nelsen, Roger B. 1999. An Introduction to Copulas. Springer, New York.  

Neumann, John von. 1941. “Distribution of the Ratio of Mean Square Successive Differences to the 
Variance.”  

4
3  

Annals of Mathematical Statistics 12 (4): 
367–95.  

———. 1942. “A Further Remark Concerning the Distribution of the Ratio of Mean Square Difference to 
the  
Variance.” Annals of Mathematical Statistics 13 (1): 86–88.  

Oh, Dong Hwan, and Andrew J. Patton. 2018. “Time-Varying Systemic Risk from a Dynamic Copula 
Model of Cds Spreads.” Journal of Business and Economic Statistics 36 (2): 181–95.  

Otneim, Håkon. 2016. “Multivariate and Conditional Density Estimation Using Local Gaussian Approxima- 
tions.” PhD thesis, Doctoral thesis, University of Bergen.  

Otneim, Håkon, and Dag Tjøstheim. 2017. “The Locally Gaussian Density Estimator for Multivariate Data.” 
Statistics and Computing 27 (6). Springer: 1595–1616.  

———. 2018. “Conditional Density Estimation Using the Local Gaussian Correlation.” Statistics and 
Computing 28 (2). Springer: 303–21.  

Patton, Andrew J. 2012. “A Review of Copula Models for Economic Time Series.” Journal of Multivariate 
Analysis 110: 4–18.  

Pearson, Karl. 1896. “Mathematical Contributions to the Theory of Evolution. Iii. Regression, Heredity and 
Panmixia.” Philosophical Transactions of the Royal Society of London 187: 253–318.  



———. 1922. Francis Galton: A Centenary Appreciation. Cambridge University Press, Cambridge.  

———. 1930. The Life, Letters and Labors of Francis Galton. Cambridge University Press, Cambridge.  

Pfister, Niklas, and Jonas Peters. 2017. dHSIC: Independence Testing via Hilbert Schmidt Independence 
Criterion. https://CRAN.R-project.org/package=dHSIC.  

Pfister, Niklas, Peter Bühlmann, Bernhard Schölkopf, and Jonas Peters. 2018. “Kernel-Based Tests for 
Joint Independence.” Journal of the Royal Statistical Society Series B 80 (1): 5–31.  

Pinkse, Joris. 1998. “Consistent Nonparametric Testing for Serial Independence.” Journal of Econometrics 
84 (2): 205–31.  

Prudnikov, A.P., A. Brychkov, and O.I Marichev. 1986. Integrals and Series. Gordon Breach Science 
Publisher, New York.  

Reshef, David N, Yakir A Reshef, Hilary K Finucane, Sharon R Grossman, Gilean McVean, Peter J                
Turnbaugh, Eric S Lander, Michael Mitzenmacher, and Pardis C Sabeti. 2011. “Detecting Novel             
Associations in Large Datasets.” Science 334 (6062): 1518–24.  

Reshef, David N, Yakir A Reshef, Michael Mitzenmacher, and Pardis C Sabeti. 2014. “Cleaning up the                
Record on the Maximal Information Coefficient and Equitability.” Proceedings National Academy of            
Science USA 111 (33): E3362–E3363.  

Reshef, David, Yakir Reshef, Michael Mitzenmacher, and Pardis Sabeti. 2013. “Equitability Analysis of the 
Maximal Information Coefficient, with Comparisons.”  

Rényi, Alfréd. 1959. “On Measures of Dependence.” Acta Mathematica Hungarica 10 (3-4): 
441–51.  

Rényi, Alfréd. 1961. “On Measures of Information and Entropy.” In Proceedings of the 4th Berkeley 
Symposium on Mathematical Statistics and Probability 1960, 547–61.  

Rizzo, Maria L., and Gabor J. Szekely. 2018. Energy: E-Statistics: Multivariate Inference via the Energy of 
Data. https://CRAN.R-project.org/package=energy.  

Robinson, Peter M. 1991. “Consistent Nonparametric Entropy-Based Testing.” Review of Economic 
Studies 58 (3): 437–53.  

Rosenblatt, Murray. 1975. “A Quadratic Measure of Deviation of Two-Dimensional Density Estimates and 
a  

4
4  

Test of Independence.” Annals of Statistics 3 (1): 
1–14.  

Sankaran, P.G., and R.P. Gupta. 2004. “Characterizations Using Local Dependence Function.” 
Communica- tions in Statistics. Theory and Methods 33 (12): 2959–74.  



Sejdinovic, Dino, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. 2013. “Equivalence of 
Distance-Based and RKHS-Based Statistics in Hypothesis Testing.” Annals of Statistics 41 (5): 2263–91.  

Silvapulle, Param, and Clive W.J. Granger. 2001. “Large Returns, Conditional Correlation and Portfolio 
Diversification. a Value-at-Risk Approach.” Quantative Finance 1 (5): 542–51.  

Simon, Noah, and Robert Tibshirani. 2014. “Comment on ‘Detecting Novel Associations in Large Data 
Sets’ by Reshev et Al Science Dec 16, 2011.” arXiv Preprint: 1401.7645v1.  

Skaug, Hans Julius. 1993. “The Limit Distribution of the Hoeffding Statistic for Tests of Serial 
Independence.” Manuscript, Department of Mathematics, University of Bergen.  

Skaug, Hans Julius, and Dag Tjøstheim. 1993a. “A Nonparametric Test of Serial Independence Based on 
the Empirical Distribution Function.” Biometrika 80 (3): 591–602.  

———. 1993b. “Nonparametric Tests for Serial Independence.” In Developments in Time Series Analysis, 
the  
Priestley Birthday Volume, edited by T. Subba Rao, 207–30. Chapman; Hall, London.  

———. 1996. “Testing for Serial Independence Using Measures of Distance Between Densities.” In Athens              
Conference on Applied Probability and Time Series Vol. Ii, in Memory of E.J. Hannan, edited by P. M.                  
Robinson and M. Rosenblatt, 115:363–78. Springer Lecture Notes in Statistics. Springer, Berlin.  

Sklar, A. 1959. Fonctions de Répartition à N Dimensions et Leurs Marges. Université Paris 8.  

Smith, Michael Stanley. 2015. “Copula Modelling of Dependence in Multivariate Time Series.” 
International Journal of Forecasting 31 (3): 815–33.  

Smith, Michael, Aleksey Min, Carlos Almeida, and Claudia Czado. 2010. “Modeling Longitudinal Data             
Using a Pair-Copula Decomposition of Serial Dependence.” Journal of the American Statistical            
Association 61 (492): 1467–79.  

Spearman, Charles. 1904. “The Proof and Measurement of Association Between Two Things.” American 
Journal of Psychology 15 (1): 72–101.  

Stanton, Jeffrey M. 2001. “Galton, Pearson, and the Peas: A Brief History of Linear Regression for 
Statistics Instructors.” Journal of Statistical Education 9 (3): 1–13.  

Stein, Michael L. 1999. Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.  

Stigler, Stephen M. 1989. “Francis Galton’s Account of the Invention of Correlation.” Statistical Science 4 
(2): 73–86.  

Støve, Bård, and Dag Tjøstheim. 2014. “Measuring Asymmetries in Financial Returns: An Empirical             
Investigation Using Local Gaussian Correlation.” In Essays in Nonlinear Time Series Econometrics, edited             
by M. Meitz N. Haldrup and P. Saikkonen, 307–29. Oxford University Press, Oxford.  

Støve, Bård, Dag Tjøstheim, and K. Hufthammer. 2014. “Using Local Gaussian Correlation in a Nonlinear 
Re-Examination of Financial Contagion.” Journal of Empirical Finance 25: 785–801.  

Su, Liangjun, and Halbert White. 2007. “A Consistent Characteristic-Function-Based Test for Conditional 
Independence.” Journal of Econometrics 141 (2): 807–37.  



Subba Rao, T., and M. M. Gabr. 1980. “A Test for Linearity of Stationary Time Series.” Journal of Time 
Series Analysis 1 (2): 145–58.  

Szekely, Gabor J, and Maria L Rizzo. 2005. “Hierarchical Clustering via Joint Between-Within Distances: 
Extending Ward’s Minimum Variance Method.” Journal of Classification 22 (2): 151–83.  

———. 2014. “Partial Distance Correlation with Methods for Dissimilarities.” Annals of Statistics 42 (6):  

4
5  

2382–241
2.  

Székely, Gábor J. 2002. “E-Statistics: The Energy of Statistical Samples.” Technical report 02-16, Bowling 
Green State University.  

Székely, Gábor J, and Maria L Rizzo. 2009. “Brownian Distance Covariance.” Annals of Applied Statistics 
3 (4): 1236–65.  

———. 2012. “On the Uniqueness of Distance Correlation.” Statistics and Probability Letters 82 (12): 
2278–82.  

———. 2013. “Energy Statistics: A Class of Statitics Based on Distances.” Journal of Statistical Planning  
and Inference 143 (8): 
1249–72.  

Székely, Gábor J, Maria L Rizzo, and Nail K Bakirov. 2007. “Measuring and Testing Dependence by 
Correlation of Distances.” Annals of Statistics 35 (6): 2769–94.  

Taleb, Nassim Nicholas. 2007. The Black Swan: The Impact of the Highly Improbable. Random 
house.  

Teräsvirta, Timo, Dag Tjøstheim, and Clive W.J. Granger. 2010. Modelling Nonlinear Economic Time 
Series. Oxford University Press.  

Tjøstheim, D., H. Otneim, and B. Støve. 2020. Statistical Modeling Using Local Gaussian Approximation. 
Elsevier, Amsterdam, to appear.  

Tjøstheim, Dag. 1996. “Measures of Dependence and Tests of Independence.” Statistics 28 (3): 
249–84.  

Tjøstheim, Dag, and Karl O. Hufthammer. 2013. “Local Gaussian Correlation: A New Measure of 
Dependence.” Journal of Econometrics 172 (1): 33–48.  

Tukey, John W. 1958. “A Problem of Berkson, and Minimum Variance Orderly Estimators.” Annals of 
Mathematical Statistics 29 (2): 588–92.  

Waerden, Bartel Leendert van der. 1952. “Order Tests for the Two-Sample Problem and Their Power.” 
Idagationes Mathematicae 55: 453–58.  

Wang, Yi, Yi Li, Hongbao Cao, Momiao Xiong, Yin Yao Shugart, and Li Jin. 2015. “Efficient Test for 



Nonlinear Dependence of Two Continuous Variables.” BMC Bioinformatics 16 (1): 260.  

Wang, Yi, Yi Li, Xiaoyu Liu, Weilin Pu, Xiaofeng Wang, Jiucun Wang, Momiao Xiong, Yin Yao Shugart,                 
and Li Jin. 2017. “Bagging Nearest-Neighbor Prediction Independence Test: An Efficient Method for             
Nonlinear Dependence of Two Continuous Variables.” Scientific Reports 7 (1).  

Wilcox, Rand R. 2005. “Estimating the Conditional Variance of Y , Given X, in a Simple Regression 
Model.” Journal of Applied Statistics 32 (5): 495–502.  

———. 2007. “Local Measures of Association: Estimating the Derivative of the Regression Line.” British  
Journal of Mathematical and Statistical Psychology 60 (1): 
107–17.  

Yao, Shun, Xianyang Zhang, and Xiaofeng Shao. 2018. “Testing Mutual Independence in High Dimension 
via Distance Covariance.” Journal of the Royal Statistical Society Series B 80 (3): 455–80.  

Yenigün, C Deniz, and Maria L. Rizzo. 2014. “Variable Selection in Regression Using Maximal Correlation 
and Distance Correlation.” Journal of Statistical Computation and Simulation 85 (8): 1692–1705.  

Yenigün, C Deniz, Gabor J. Székely, and Maria L. Rizzo. 2011. “A Test of Independence in Two-Way                 
Contingency Tables Based on Maximal Correlation.” Communications in Statistics - Theory and Methods             
40 (12): 2225–42.  

Zhang, Kun, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. 2012. “Kernel-Based Conditional            
Independence Test and Applications in Causal Discovery.” In Proceedings of the Uncertainty in Artificial              
Intelligence, 804–13. AUAI Press, Corvallis Oregon.  

Zhou, Zhou. 2012. “Measuring Nonlinear Dependence in Time Series, a Distance Correlation Approach.” 
Journal of Time Series Analysis 33 (3): 438–57.  

4
6  


