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Introduction
The growing number of completely sequenced organisms1 
offers the opportunity to systematically investigate, as a whole, 
large amounts of high-dimensional data. Typical examples of 
such investigations in genome data analysis include studies 
of predicted ORF products according to their codon2 and/or 
amino acid compositions,3 genes according to multiple exper-
imental conditions in microarray data analysis,4 or yet species 
distribution according to the criteria of different relationships 
as for example orthology and conservation between species.5 
A new class of multidimensional data concerns genotyping 
projects studying healthy populations as well as populations 
with disease phenotypes.6,7 Other popular projects concern 
the observed single-nucleotide polymorphisms (SNPs) in 
different human populations as obtained from ancient or 
present-day humans in migration or from disease studies.8 
Such investigations generally involve large and complex data 
tables, in which the rows (also called observations) are genes 
and the columns (also called variables) are conditions. Given 
the huge amount of available data that can be presented in 
data table forms (corresponding to genes in the considered 

species), analysis methods are needed to assist researchers in 
synthesizing the original data sets and in order to make their 
understanding easy. Often in these data tables, the amount of 
independent new information is much smaller than what the 
number of raw data suggests. The most expected result from 
such data analyses is a synthetic view of the observations and 
their characterization by specific variables. Thus, methods 
that can help extracting subsets of genes associated with sub-
sets of variables are likely to be useful. Such methods aim at 
clustering objects into discrete groups each possessing similar 
defined properties. Appropriate methods are multivariate, 
including factorial and classification methods. Among these, 
correspondence analysis (CA), developed by Benzecri in the 
1970s,9–12 is a powerful approach to associate specific obser-
vations with specific variables. CA is an exploratory and 
descriptive method that allows reducing high-dimensional 
data sets into a few independent factors. It reveals principal 
factorial axes, enabling projection of observations and vari-
ables onto a subspace of low dimensionality that accounts for 
the main variance in the data. The first factor is the com-
bination of columns that accounts for the largest amount of 
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variability in the data set. The second factor corresponds to 
the next largest amount of variability in the data set, and so 
on. CA represents observations and variables as vectors in a 
high-dimensional space. Unlike other multivariate methods, 
such as principal component analysis (PCA),13,14 CA enables 
the joint projection of observations and variables onto the 
same low-dimensional factorial subspace. CA directly visua-
lizes the associations between observations and variables 
by allowing their partitions into mutually linked sets, thus 
revealing which hypotheses can be put forward to help lead-
ing to discoveries. Early use of the CA method in sequence 
analysis involved the prediction of protein regions in nucleic 
acid sequences.15 It has also been used in genome data analy-
ses.2–5,16–22 However, despite its straightforward application 
and ease of interpretation of results, CA is still not as familiar 
to researchers in genomics as are other multivariate statistical 
analysis methods, particularly PCA.

In this review, I suggest the use of CA in genome 
data mining.

A short introduction of the method and some examples of 
its applications are provided in this review in order to demon-
strate its performance, effectiveness, and strength in genome 
data mining.

Method: correspondence Analysis
CA is an exploratory and descriptive data method designed 
to analyze two-way and multiway data tables containing 
measures of association between rows and columns. CA was 
developed by Benzecri, and his seminal work was published in 
1973.9 CA dramatically simplifies complex data and provides 
a detailed description of information they include, yielding a 
concise, yet exhaustive, analysis. CA has several features that 
distinguish it from other data projection analysis methods. 
The multivariate nature of CA can reveal relationships that 
would not be detected in a series of pairwise comparisons of 
variables. Another important feature is the graphical display 
of rows and columns as dots in planar representations, which 
can help in detecting structural relationships among the vari-
ables and/or observations. Finally, CA has highly flexible data 
requirements, as it can be used for contingency as well as met-
ric tables. The primary and straightforward use of CA applies 
for contingency data tables where each cell corresponds to 
the number of occurrences associating the corresponding line 
and column.

In heterogeneous data sets, a preliminary step of origi-
nal data coding is needed to consolidate nonuniform data and 
homogenize them prior to the application of CA. The only 
strict data requirement for CA is a rectangular data matrix 
with positive entries, where values on a given row can be 
meaningfully summed up (see Supplementary File 1A). CA is 
most effective if the following conditions are satisfied:

-	 The data matrix is large enough, so that visual inspection 
or simple statistical analyses cannot reveal its structure.

-	 The variables are homogeneous, so that calculation of 
statistical distances between rows (summing row values 
should make sense) or between columns is meaningful.

The primary goal of CA is to transform a table of numeri-
cal data into a graphical display, in which each row and each 
column is depicted as a point. CA yields graphical presentations 
producing two dual displays whose row and column geome-
tries have similar interpretations, facilitating analysis and 
detection of relationships, particularly associations between 
sets of rows and sets of columns. This duality is missing in 
other multivariate approaches to graphical data representation, 
as for example in the PCA method, and thus constitutes the 
most important feature yielded by CA as observed patterns 
of observations might be explained by patterns of variables to 
which they are linked.

basic concepts. A concise description of CA is presented 
here; more thorough explanations with worked examples can 
be found in Refs. 9 and 10 (see also Supplementary File 1B 
for suggested web links). CA is a multivariate method that 
applies to positive numerical data tables. Rows (denoted I) of 
such tables are called observations, individuals, or objects; col-
umns are the variables (denoted J). Such a table is generally  
denoted as KIJ = {kij; i = l, …, n; j = l, …, p}, where n is the 
number of individuals and p is the number of variables. CA 
aims at embedding rows and columns of a numerical data table 
in the same space constructed with the first few (two or three) 
dimensions that include most of the information and where 
each row and each column is depicted as a point. CA allows 
the construction of an orthogonal system of axes (called fac-
tors and denoted F1, F2, etc.) where observations and variables 
can be jointly displayed. Each factor is a linear combination 
of variables that accounts for the variability in the data table. 
The first corresponds to the largest variability, the second fac-
tor to the second largest variability in the data table and that 
is orthogonal to the first factor, and so on. Thus, each fac-
tor is constructed according to the information it represents, 
independent of the other factors and that are presented in a 
decreasing order of importance. The origin of this orthogonal 
system is placed on the barycenter of both the individuals and 
variables. A maximum of m - 1 such factors can be defined, 
where m is the lower of the two numbers of observations (n) 
and variables (p). The factors thus determined constitute an 
orthogonal system where observations and variables can be 
displayed. The information included in a subspace of dimen-
sion q (q # m - 1) equals the sum of information included in 
each of the corresponding q factors. The average proportion of 
the total information represented by one factor is 100/(m - 1). 
This value serves as a guide in determining the relative impor-
tance of a given factor. Practically, only the few first factors that 
account for the largest amount of variability in the data table 
are considered for results interpretation. In this system, close-
ness between observations or between variables provides evi-
dence of similarity, while closeness between observations and 
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variables is interpreted as significant relationships. The ability 
of displaying observations and variables simultaneously in the 
same factorial space facilitates the discovery of salient infor-
mation included in a given data table.

Formally, let ki = ∑ j kij; kj = ∑i kij and k = ∑i,j kij = ∑i ki = ∑ j kj  
corresponding, respectively, to the total of line i, column j, 
and grand total k of the table KIJ. From the frequency table 
with elements fij = kij/k and the corresponding totals fi = ∑ j fij 
and fj = ∑i fij, respectively, of lines and columns, a symmetric 
matrix S is derived with elements sij = (fij – fi.fj).(fi fj)1/2. S is 
submitted to singular value decomposition23 and is decom-
posed into the product of three matrices: S = UΛV t where 
U tU = V tV = VV t = Identity. The matrix U is the orthonormal-
ized eigenvectors (denoted F1, F2, F3,., Fα,.) associated with 
the largest eigenvalues of SSt. The matrix V consists of the 
orthonormalized eigenvectors (denoted G1, G2, G3,., Gα,.) of 
StS. Λ is a diagonal matrix of nonnegative square roots of the 
eigenvalues of StS (they are called singular values). The eigen-
values are assumed to be sorted from the largest to the smal-
lest and are denoted λα.

Principal and illustrative observations and variables. 
CA applies to data tables with rows and columns that are, 
respectively, called principal observations and principal 
variables. The term active is also sometimes used. For illus-
trative reasons, supplementary observations and/or vari-
ables can be added to the principal data table. The term 
supplementary is sometimes exchangeable with dummy or 
illustrative to denote observations or variables that do not 
contribute to the construction of the factorial axes, but sim-
ply plotted on the determined factorial axes based on the 
transition formulae: F i f G j p

j
i

α α αλ( ) ( ) , }= =− ∑1 2/ . { 1  and 
G i f F i i n

i
j

α α αλ( ) ( ) , }= =− ∑1 2/ . { ; 1  where Fα(i) is the coor-
dinate of i on the α factor in the individuals space, λα (eigen-
value) is the total inertia relative to Fα, f j

i  is the frequency of 
i relative to the total of the jth variable, and Gα( j) is the coor-
dinate of j on the α factor in the variables space.10 Only the 
principal observations and variables contribute to the factors 
determination. The main goal of using supplementary indi-
viduals and variables is to show with which active observa-
tions and/or variables they are close to. This may also have an 
explanatory interest, by providing hints for similarity between 
supplementary and principal individuals or variables.

Furthermore, considering supplementary elements in an 
analysis might be very important, for example, in typology 
validation. By plotting new samples, considered as supple-
mentary elements, on a determined typology (following a 
principal data table), the positions of the new samples on the 
factorial space are indicative of their possible assignments to 
closely situated principal individuals.

data coding to conform to cA: disjunctive coding 
scheme. CA can be directly performed on data tables where 
the sum of each row is meaningful; otherwise, a preliminary 
step of data homogenization is necessary. For example, it 
makes no sense to sum up columns if the set J includes metric 

variables expressed in different units (ie, distances cannot be 
summed with weights). In this case, we need to divide metric 
variables into ordinal classes and consider presence or absence 
of individuals in such classes. This procedure is called disjunc-
tive coding scheme and provides a simple way to standardize 
heterogeneous data tables. With this coding, the original data 
are recoded to ensure the summing of column values in a given 
row. This coding consists of considering categories of each of 
the considered variables instead of the continuous original 
data. The original values are replaced by a series of 0 and 1 
corresponding to the absence or presence in a given category. 
One may, for instance, consider three categories of distances 
and three of weights: small, medium, and large classes delimi-
ted by suitable interval limits. A medium distance value will 
be represented by 010 and a large weight value is represented 
by 001, etc.

Each individual is then represented by a vector of 0 and 1 
(absence and presence, respectively) implying the sum of each 
line to be equal to the number of variables. CA can then be 
applied to such a transformed data table.

A possible disadvantage of this coding scheme is the loss 
of information, upon substituting the original continuous 
values by discrete values of 0 and 1. This is true, but in return 
there is a significant gain of simplification and ease of inter-
preting the results, as CA will show possible categories of 
associations. For example, middle category classes of a subset 
of variables can be associated with large classes of different 
sets of variables facilitating their interpretation.24

For this reason, disjunctive coding scheme is systemati-
cally performed prior to performing CA on mixed continuous 
variables describing sets of observations. An example of such a 
coding scheme can be found in Ref. 25.

combining cA and clustering methods. One of the 
objectives of data set processing is the ability to tackle bio-
logical questions from accumulated data and interpretation 
of their analyses. Clustering of observations is one of such 
objectives that aim at delineating common characteristics 
and discriminative features to members of groups of obser-
vations. As previously indicated, CA may help synthesizing 
large sets of observations described by a set of variables, by 
constructing orthogonal factorial axes and projecting obser-
vations on factorial spaces. Using coordinates of the observa-
tions on such spaces allows calculation of Euclidian distances 
between pairs of observations, leading to a distance matrix 
between all the considered observations. It is common use to 
consider such a matrix in tree-constructing methods in order 
to cluster observations according to their neighborhood. The 
main advantage of this procedure is to avoid the noisy data, 
arising from the possible partial correlation between numer-
ous variables, and reduce fluctuations present in trees directly 
constructed from the original raw data. Since factorial axes 
are orthogonal, they constitute independent information that 
can be considered additively as a whole or partial vision of the 
analyzed data table.
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Applications of this procedure include construction of 
genome trees.5,17

Graphical representations. CA results are displayed on 
graphs that represent the distribution of observations and vari-
ables, in projection planes formed by the first principal facto-
rial axes taken two at a time or three at a time in spatial (or 
3D) presentations. It is a common use to summarize the row 
and column coordinates in a single plot. From such presenta-
tions, neighborhood (respectively, distance) between observa-
tions and variables provides evidence for strong relationships 
(respectively, weak relationships). From the coordinates of the 
observations and variables on all constructed factors, it is pos-
sible to calculate the Euclidean distances between the obser-
vations or between the variables to look for the neighbors of a 
given point or a set of points. However, it is important to note 
that calculating distances between observations and variables 
in such plots is not accurate, whereas it makes sense to inter-
pret the relative positions of one point in one set with respect 
to all the points in the other set. This is due to the transition 
formula (see above) that links rows and columns (see Supple-
mentary File 1C for some hints in interpreting factorial repre-
sentations). This possibility is of fundamental importance for 
the interpretation of the positions of supplementary elements, 
where the aim of such plotting is looking for most closely 
related observations to such supplementary elements.

examples: Application of cA in Genome and 
Genotyping data
In the following sections, we present some examples of dif-
ferent genomic data tables that have been submitted to CA 
and show how efficient is the method in extracting significant 
information from the considered data tables.

species versus amino acid compositions. CA has been 
used in exploring the relationships between species, genes, 
and proteins following their corresponding amino acid and 
codon compositions.2,3,16,18–20

If I denotes the set of predicted ORFs (respectively, their 
corresponding ORF products) in a given species and J denotes 
the set of the 20 amino acids, the following tables can be con-
structed: Kij represents the number of amino acid j included in 
the ORF product i. It is generally a good practice to normalize 
the counts of each amino acid relative to the total number of 
amino acids in the ORF product i. In this case, Kij represents 
a proportion (or frequency) of amino acid j in ORF product i. 
Observations and variables are defined by their coordinates on 
the factorial space as obtained by CA. They can then be classi-
fied according to their neighborhood (distances), thus allowing 
the determination of homogeneous clusters or patterns of ORF 
products and amino acids. A tree can then be constructed to 
represent the degree of homogeneity between these clusters. 
Thus, when observations represent ORF products and vari-
ables represent the 20 amino acids, it is possible to display ORF 
products according to their composition and to define patterns 
of genes with similar amino acid compositions.

Generally, observations and variables are displayed 
jointly on the same factorial plane defined by the first (F1) 
and the second (F2) factors. By definition, this first factorial 
plane includes the largest part of the information included in 
the analyzed data table. But it may be useful to consider and 
interpret other combinations of factors as they may show rela-
tionships not displayed on the first factorial plane.

CA also allows the representation of subsets of variables 
or observations as illustrative elements, so that they can be 
placed with regard to all other active variables or observa-
tions. For example, charged, polar, and hydrophobic subsets 
of amino acids can be represented as illustrative variables.18

Using ORFs, Kij can also correspond to the transformed 
data tables as, for example, the relative synonymous codon 
usage (RSCU) corresponding to the codon j in the ORF i.16,21

In the following sections, we consider two examples using 
CA in the study of species versus amino acid compositions.

yeast and fungal species versus amino acid composi-
tions. A list of 43 yeast and 48 fungal species (see the list in 
Table 1) is considered. The yeast species were selected mainly 
following the criteria reported in Refs. 26 and 27.

For each species, the amino acid composition has been 
calculated and expressed in frequency, ie, percent relative to 
the total amino acids composition of the species. A table of 
91 species versus 20 amino acids has been submitted to CA 
(see Supplementary Table 1). The main objective of such an 
analysis is to look for species patterns showing similar amino 
acid compositions.

Figure 1 shows amino acids as well as yeast and fungal 
species displayed on the first factorial plane representing more 
than 91% of the total information included in the analyzed 
data table. It is interesting to note the overwhelming impor-
tance relative to the first factorial axis (F1) that corresponds 
to 88.8% of the total information included in the analyzed 
data table. Sorting the species following their coordinates on 
the first factorial axis shows that the species are presented 
in increasing order of their GC content. This observation is 
confirmed by the significant Pearson correlation coefficient 
(r = 0.86, P , 0.0001) between the species GC content and 
their coordinates on the first factorial axis (Supplementary 
Table 1). It is interesting to note that apart from the three fun-
gal low GC content Pneumocystis species, yeasts have almost 
systematically lower GC content than fungal species and that 
there is almost no overlap between the yeast and fungal groups 
(Fig. 1). The three fungal low GC content Pneumocystis species 
constitute a specific group that is segregated from all other 
fungal and yeast species. The three species have significant 
higher composition rates in I (Ile) and K (Lys) than all other 
species (Supplementary Table 1).

It is striking to note that the first factorial plane displays 
the species following a parabolic-like curve. Yeast and fun-
gal species are clearly separated. Yeast species are displayed 
on a gradient going from the left side (negative F1) and end-
ing with the small cluster YALI (Yarrowia lipolytica) and 
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table 1. list of 43 yeast and 48 fungal species considered in the analyses of amino acid composition and in pairwise shared orthologs.

iDEnt #PRotS SizE (mb) GC% SPECiES (YEASt)

sacE 5769 12.2 38.2 Saccharomyces_cerevisiae

saar 5527 11.6195 37.9 Saccharomyces_arboricola

naca 5592 11.2195 36.7 Naumovozyma_castellii_CBS_4309

KaZa 5378 11.13 36.2 Kazachstania_africana_CBS_2517

cagl 5204 12.3182 38.6 Candida_glabrata

nadE 5112 10.9691 38.5 Nakaseomyces_delphensis

dEca 6219 11.76 36.7 Debaryomyces_carsonii

Piso 11175 21.4596 41.3 Pichia_sorbitophila

Klla 5083 10.6891 38.7 Kluyveromyces_Lactis

PiPa 5040 9.2163 41.1 Pichia_pastoris_GS115

Pist 5816 15.4411 41.1 Pichia_Stipidis

catE 6985 10.75 42.2 Candida_tenuis

caor 5677 12.6594 36.9 Candida_orthopsilosis

sPPa 5983 13.1821 37.0 Spathaspora_passalidarum_NRRL_Y-27907

loEl 5796 15.4 36.7 Lodderomyces_elongisporus

caPa 5817 12.9984 38.7 Candida_parapsilosis

dEfa 6182 12.00 34.8 Debaryomyces_fabryi

dEha 6272 12.2 36.3 Debaryomyces_hansenii

dEty 6747 12.40 35.6 Debaryomyces_tyrocola

catr 6258 14.5798 33.0 Candida_Tropicalis

caal 6112 14.4176 33.3 Candida_albicans_WO-1

cadU 5983 14.6184 33.2 Candida_dubliniensis_CD36_uid38659

stam 5790 unk unk Starmera_amethionina

nada 5772 13.5275 34.0 Naumovozyma_dairenensis_CBS_421

tEPh 5250 12.1 33.5 Tetrapisispora_phaffii_CBS_4417

tEBl 5388 14.0486 31.7 Tetrapisispora_blattae

cagU 5920 10.61 43.6 Candida_guilliermondii

scPo 5142 12.6 36.0 Schizosaccharomyces_pombe

dEBr 5255 13.0582 39.1 Dekkera_Bruxellensis_STO5_12_22

Ercy 4434 9.6694 40.3 Eremothecium_cymbalariae_DBVPG_7215

saKl 5306 11.3458 41.5 Saccharomyces_kluyveri

todE 4972 9.2207 42.0 Torulaspora_delbrueckii_CBS_1146

Zyro 4997 9.7646 39.1 Zygosaccharomyces_rouxii

Kana 5321 10.8458 45.8 Kazachstania_naganishii_CBS_8797

cyJa 6038 13.0184 43.6 Cyberlindnera_ jadinii

KUca 6031 11.3712 45.5 Kuraishia_capsulata

ogPa 5325 8.8786 47.8 Ogataea_parapolymorpha_DL-1

Klth 5103 10.3928 47.2 Kluyveromyces_thermotolerans

calU 5936 12.1148 44.3 Candida_lusitaniae

scJa 5167 11.7332 41.5 Schizosaccharomyces_ japonicus_yfs275_5

Ergo 4718 9.0957 51.7 Eremothecium_gossypii_(AGOS)

arad 6152 11.8046 48.1 Arxula_adeninivorans

yali 6434 20.5029 49.0 Yarrowia_lipolytica

iDEnt #PRotS SizE (mb) GC% SPECiES (fUnGi)

cath 11703 28.1975 42.5 Calcarisporiella_thermophila

Boci 16389 42.6630 39.1 Botrytis_cinerea

fUgr 13321 36.3130 48.1 Fusarium_graminearum
(Continued)
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table 1. (Continued)

iDEnt #PRotS SizE (mb) GC% SPECiES (fUnGi)

giZE 11578 36.2585 47.8 Gibberella_zeae_PH-1_uid243

fUVE 14195 41.1043 48.6 Fusarium_verticillioides

fUoX 17608 57.7206 47.4 Fusarium_oxysporum

asfl 12587 36.7902 48.2 Aspergillus_flavus

asor 12063 37.0886 48.2 Aspergillus_oryzae

PEch 11396 31.3410 48.6 Penicillium_chrysogenum

PErU 12790 32.2237 48.9 Penicillium_rubens

astE 10406 29.3312 52.6 Aspergillus_terreus

asng 8592 34.0066 50.2 Aspergillus_niger

asni 9410 29.7113 50.0 Aspergillus_nidulans

asfU 9630 29.3849 48.8 Aspergillus_fumigatus

nEfi 10407 32.5517 49.4 Neosartorya_fischeri

ascl 9120 27.8594 49.1 Aspergillus_clavatus

coim 9910 28.9479 46.0 Coccidioides_immitis_RS

PaBr 8390 29.9525 43.6 Paracoccidioides_brasiliensis

fomE 11338 63.3544 40.8 Fomitiporia_mediterranea_MF3-22

coci 13544 36.2944 51.6 Coprinus_cinereus

thaU 10450 31.4823 49.0 Thermoascus_aurantiacus

thla 8133 19.9438 51.0 Thermomyces_lanuginosus

tath 7920 19.8875 51.7 Talaromyces_thermophilus

Poan 10219 33.7760 51.5 Podospora_anserina_S_mat+

nEcr 9822 40.4631 48.4 Neurospora_crassa

crga 6565 18.3748 47.8 Cryptococcus_gattii_WM276

crnE 7302 19.0519 48.5 Cryptococcus_neoformans_var._JEC21

miVi 7819 26.1389 53.4 Microbotryum_violaceum

Usma 6522 19.6439 53.9 Ustilago_maydis

sPrE 6673 18.4769 58.6 Sporisorium_reilianum

thEr 9815 36.9196 54.4 Thielavia_terrestris

thnt 9204 40.6623 51.2 Thielavia_antarctica

chth 8280 28.3147 52.5 Chaetomium_thermophilum_ATTC1651

scth 10945 29.3248 55.0 Scytalidium_thermophilum

myth 9099 38.7442 51.4 Myceliophthora_thermophila_ATCC_42464

chgl 11124 34.8869 54.6 Chaetomium_globosum

coth 10644 33.3614 51.0 Corynascus_thermophilus

myrt 8635 31.6872 52.0 Myriococcum_thermophilum

thst 10387 29.5796 56.9 Thermomyces_stellatus

VEda 10535 33.9000 54.2 Verticillium_alfalfae

maor 12755 41.0278 51.5 Magnaporthe_oryzae

magr 11054 41.6955 51.3 Magnaporthe_grisea

fUPg 12447 36.9329 47.7 Fusarium_pseudograminearum_CS3096

PnJi 3520 8.1799 28.3 Pneumocystis_ jirovecii

Pnca 6874 6.3 29.8 Pneumocystis_carinii

PnmU 3838 7.4514 26.9 Pneumocystsis_murina

tadE 4663 13.7735 49.0 Taphrina_deformans_JCM_22205

Zytr 10931 39.6863 52.1 Zymoseptoria_tritici

note: Each species is characterized by its identification (represented by four-letter code), number of predicted proteins, size in Mbp, and GC content. References 
relative to the species are shown in supplementary table 1.
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ARAD (Arxula adeninivorans) with the first fungi CATH 
(Calcarisporiella thermophila). The clustering of yeast species 
follows their phylogenetic relationships. The distribution con-
tinues with all the considered fungi and shows small subclus-
ters, including similar fungal species. Amino acids are placed 
according to their abundance in the species. Amino acids N 
(Asn), I (Ile), K (Lys), Y (Tyr), and F (Phe) are situated in 
the yeast species area, whereas A (Ala), R (Arg), W (Trp), G 
(Gly), and P (Pro) are in the area of the fungi species. C (Cys), 
V (Val), L (Leu), and E (Glu) are in the frontier between yeast 
and fungal species. A few amino acids [particularly S (Ser), 
D (Asp), Q (Gln), and T (Thr)] are placed in the cavity of the 
parabolic-like curve, reflecting their rather equivalent abun-
dance in all considered species.

This example shows the impressive ability of CA to 
extract the most informative relationships between the ana-
lyzed observations and variables, particularly the overwhelm-
ing importance of species GC content, that is not included 
in the set of variables, represented by the first factorial 
axis F1. It is interesting to note that yeast and fungal spe-
cies can be so clearly segregated by considering their amino 
acids compositions.

Species clustering can be sharpened by considering 
their coordinates on all orthogonal factorial axes and by 
computing Euclidean distances between all pairs of species. 
The tree obtained by the reciprocal neighborhood clustering 
method is shown in Supplementary Figure 1. The separation 

between patterns of yeast and fungal species is clearly empha-
sized on this tree. The fungal Pneumocystis low GC species 
form a distinct cluster that is grouped with low GC content 
yeast species.

Viruses and phages versus amino acid composition. 
A second example is related to the amino acid compositions 
of large viruses, ie, viruses with genomes including more than 
100 ORF products. A set of 181 viruses and 407 phages have 
been downloaded from the NCBI (May 2015). Top large 
viruses include the Pandoravirus (salinus and dulcis) contain-
ing, respectively, 2541 and 1487 ORF products28 and the 
Megavirus (lba and chiliensis) containing, respectively, 1176 
and 1120 ORF products. Top large phages include the Bacil-
lus phage G (675 ORF products), Escherichia phage 121Q (611 
ORF products), and Cronobacter phage vB CsaM GAP32 (545 
ORF products). Calculation of the composition in amino acids 
of the corresponding proteomes allowed the construction of a 
data table of 588 species versus 20 amino acids. Figure 2 shows 
the distribution of the viral species and amino acids on the first 
factorial plane. The first factorial axis corresponds to 70.6% 
of the total information included in the analyzed data table, 
whereas the second axis corresponds to 9.6%, thus totaling 
more than 80% on the first factorial plan. Viruses are repre-
sented in blue squares and phages in purple triangles.

Examination of the species distribution on this factorial 
plan strikingly reveals a clear segregation between viruses and 
phages (except for a few species).

figure 1. distribution of yeast and fungal species as well as the 20 amino acids.  
notes: This figure illustrates the first factorial plane as obtained by CA and representing 91% of the total information included in the data table of yeast and 
fungal species versus their amino acid compositions (see Supplementary Table 1). Species identification follows Table 1. Note the segregation of yeast species 
(blue dots) from fungal species (green dots). the three fungal Pneumocystis low gc species are clearly separated from yeast and other fungal species.
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The distribution of the species following the first 
factorial axis shows a significant correlation between GC 
content and coordinates on the first factorial axis (r = 0.92, 
P , 0.0001). Viruses and phages are spread all along the 
first factorial axis. Positions along the second factorial 
axis (F2) show a significant segregation between viruses 
and phages.

A cluster of Entomopoxviruses with low GC content 
is separated from the rest of the species at the left hand side 
of F1. The two Pandoraviruses (salinus and dulcis) with high 
GC content are situated at the rightmost hand of F1. The few 
viruses that overlap with phages include three giant viruses 
(Marseillevirus, Lausannevirus, and Melbournevirus) and the 
algae virus Aureococcus anophagefferens that is situated at the 
left side of the phages area.

Amino acids such as A (Ala), G (Gly), E (Glu), K (Lys), 
and D (Asp) are situated in the neighborhood of the phages, 
whereas R (Arg), P (Pro), H (His), L (Leu), N (Asn), F (Phe), 
and S (Ser) are in the neighborhood of viruses.

Supplementary elements PHAGE and VIRUS repre-
senting, respectively, the mean amino acid compositions of 
the considered sets of phages or viruses are indicative of the 
barycenter positions of their respective sets.

In this example too, CA shows a striking segregation 
between viruses and phages, which has not so far been men-
tioned in the literature, simply by considering their amino 
acid compositions.

comparison of yeast and fungal species according to 
their shared orthologs. A set of 91 yeast and fungal spe-
cies presented above for amino acid compositions (Table 1) is 
considered. Large-scale pairwise comparisons of their corre-
sponding predicted proteomes have been performed follow-
ing the methodologies developed in Refs. 29 and 30. For each 
pair of species, reciprocal best-hit proteins were considered 
to be orthologs.31 The square matrix including occurrences 
of shared orthologs between all pairs of species was trans-
formed into a matrix of similarities between the considered 
species. The similarity between a pair of species is expressed 
by the normalized score: kij = 100*sij/(ni + nj), where sij is the 
number of shared orthologs between species i and j; ni and nj 
are, respectively, the total number of proteins in species i and j. 
This score corresponds to the proportion of core-proteome (sij) 
relative to the pan-proteome (ni + nj) in each pair of species. 
A square symmetrical data table of dimension 91 is then con-
structed and submitted to CA. Figure 3 shows the obtained 
distribution of species on the first factorial plan representing 
more than 72% of the information included in the analyzed 
data table. The distribution shows a clear segregation between 
yeast and fungal species. The yeast species show patterns cor-
responding to clusters of Saccharomycotina members, and 
fungal species are clustered mainly into two groups: Basidio-
mycota and Pezizomycotina clearly separated from the yeast 
species. The obtained clustering corresponds roughly to the 
known phylogeny of the yeast and fungal species.26,27,32,33 The 

figure 2. distribution of large (ie, including more than 100 predicted proteins) viruses and phages as well as the 20 amino acids.  
notes: This figure illustrates the first factorial plane as obtained by CA and representing 80% of the total information included in the table of viruses 
(blue point) and phages (purple points) versus their amino acid compositions. note the segregation between viruses and phages and the positions of the 
barycenters corresponding to the mean amino acid compositions, respectively, of viruses (VIRUS) and phages (PHAGE). Some viruses are identified on 
the factorial plane as illustrative examples.
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Taphrinomycotina cluster includes the Schizosaccharomyces, the 
Pneumocystis, and Taphrina deformans species in accordance 
with the classifications shown in recent works.32–34

The corresponding genome tree, based on neighbor join-
ing obtained from Euclidean distances as calculated from the 
factorial coordinates, is shown in Supplementary Figure 2. 
Yeast and fungal species are separately clustered. The obtained 
clusters shown on the tree correspond to known phylogenetic 
classifications. The only mixed cluster associates A. adenini-
vorans and its closest sequenced relative Y. lipolytica35 with 
Taphrinomycotina species with which they share the highest 
proportion of orthologs among the yeast species.

A similar square data matrix including rates of duplica-
tion (intraspecies comparison) and conservation (interspecies 
comparisons) has been constructed. In this case, kii represents 
the rate of duplication in species i and kij represents the rate of 
conservation of species j in species i. A similar analysis con-
sidering a subset of the considered species is shown in Refs. 
26 and 27.

In this example, CA highlighted the patterns of species 
sharing orthologs and evolutionary relationships.

Microarray. DNA microarrays are used extensively for 
genomewide gene expression measurements. Large-scale 
transcriptional studies have catalyzed new discoveries and are 
generating important new insights into the behavior and func-
tioning of cells. Pattern discovery tools have played a key role 

in this process. Of the various multivariate methods available, 
clustering of genes has been the most common tool used for 
the analysis of microarray data.36 PCA37 and CA38 have also 
been used in such studies.

Before proceeding to clustering, it is often advantageous 
to visualize the data in order to understand the underlying 
structure. This initial exploration is useful in revealing pat-
terns and providing clues for further analysis relating subsets 
of genes and their characteristic properties.

CA defines a factorial space that captures the maximum 
information present in the initial data table by minimizing the 
error between the original data set and the reduced dimen-
sional data set.

DNA microarray technology allows for the monitoring 
of expression levels of thousands of genes under various condi-
tions. A major question in microarray studies is how to select 
genes associated with specific physiological states or clinical 
parameters, as for example, genes whose expression in a tumor 
sample is related to a specific tumor subtype or to patient sur-
vival. Such differentially expressed genes are often useful in 
identifying the clinical markers and may lead to improve diag-
nosis, treatment, and prediction of clinical outcomes.

Moreover, relating specific groups of genes with specific 
biological correlates is a critical step toward understanding 
the underlying molecular mechanisms and identifying novel 
therapeutic targets.

figure 3. distribution of yeast and fungal species as obtained from their shared orthologs.  
notes: This figure illustrates the first factorial plan as obtained by CA and representing 72% of the total information included in the matrix of similarity 
scores between species (see text). Species identification follows Table 1. Yeast (blue points) and fungal (green points) species distributions correspond to 
the major subdivisions defined from global comparisons. Note the clear-cut segregation between fungal and yeast species.
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The most commonly used methods for the identification 
of differentially expressed genes include qualitative observa-
tion (usually following some form of clustering of expres-
sion patterns), heuristic rules, and model-based probabi listic 
analysis.39

As microarray data are often noisy and not normally 
distributed,40 it is challenging to consider a typology structure 
that allows refined exploration of the data. In this context, 
CA followed by clustering methods is the step to perform in 
such studies.

Genotyping data. PCA is the most popular method 
used in genotyping data.41–45 In a recent work,45 PCA was 
used to compare the genome sequence of the 45,000-year-
old remains of a modern male human from Siberia (denoted 
Ust’_Ishim) to the genomes of 922 present-day human 
males belonging to 53 distinct populations. Each human is 
described by his/her genotyping data, ie, the observed SNPs 
on each of the 22 chromosomes with the following possi-
bilities: 0, 1, or 2 copies of reference allele. The plot of all 
considered humans on the two first principal components of 
the PCA analysis showed the distribution of the 922 humans 
according to their geographical origins and with respect to 
the genetic diversity. The main conclusion from this PCA 
was that Ust’_Ishim individual is more related to present-
day Eurasian than to present-day Africans (see Fig. 245). 
Unfortunately, the genetic diversity that is at the heart of the 
interpretation of these results is not shown. Also no indica-
tion is given about the relationships of the genetic diversity 
indicated here by the SNPs observed on the chromosomes 
and the considered individuals.

Considering the same data set used in this work (thanks 
to Fu et al who shared with us the data set used in the pub-
lished work45), we constructed a contingency data table T that 
crosses the 922 present-day individuals and Ust’_Ishim with 
the set of variables defined as follows:

Each variable is defined by nonnull SNP that is preceded 
by the corresponding chromosome number and ended by its 
modality (0, 1, or 2 according to the number of copies of refer-
ence allele). For example, 5GC2 corresponds to the SNP G/C 
observed on chromosome 5 with the modality 2 (2 copies of 
reference allele).

In total, there were 622 such defined SNPs. Note that 
in the original data, there were only 12 distinct SNPs, not 
taking into account their corresponding chromosomes and 
modalities. In the contingency table T, Tij = the number of 
positions corresponding to human individual i showing an 
SNP j (defined by its corresponding chromosome, SNP, and 
modality), ie, the number of SNPs defined by its chromosome 
and modality observed for individual i.

Fifty-three supplementary lines were constructed corre-
sponding to the distinct considered present-day populations 
by summing the corresponding lines in T for each population. 
These lines were considered as supplementary elements as well 
as the Ust’_Ishim line.

The final table T with 976 (922 + 53 + 1) lines and 622 
columns has been submitted to CA. Figure 4 shows the first 
factorial plan representing more than 62% of the total infor-
mation included in T (F1: 50.4%; F2: 12.1%).

SNPs (red dots) are displayed in three distinct clusters 
corresponding, respectively, to 1 (1 copy of reference allele) in 
the right part of the graph, 2 (2 copies of reference alleles) in 
the upper part of the graph, and 0 (0 copy of reference allele) 
in the left part of the graph. Note that dots corresponding to 
1 and 2 are rather compact, whereas dots corresponding to 0 
are largely dispersed.

Blue dots are grouped into different clusters, and some 
are scattered along the first axis toward the SNP region 0. 
A large compact cluster is situated between SNP regions 1 
and 2, meaning that these present-day humans are enriched 
in these SNP modalities. One other group is situated close to 
the SNP 1 modality meaning that this group is enriched in 
this SNP type. Four other smaller groups are situated between 
SNP modalities 2 and 0.

The purple dots represent the 53 supplementary con-
sidered populations corresponding to present-day human 
individuals.

The Ust’_Ishim supplementary individual is clearly 
situated between two clusters corresponding to SNP 
modalities 1 and 2 and between present-day human clus-
ters (Fig. 5). The most proximate populations to Ust’_Ishim 
shown on this graph are Tujia (China), Yakut (Sakha,  
Russia), and HanNChina and Xibo (China), among others. 
This is roughly in accordance with the conclusion reached 
in the work.45

More precisely, considering the coordinates of all 53 popu-
lations on the first 10 factorial axes (representing 75% of total 
information), the Euclidean distance of Ust’_ Ishim with each 
of the 53 populations was calculated and ranked in increased 
order (Table 2). Inspection of these distances shows that the 
most proximate population to Ust’_ Ishim are Chinese, and 
also Surui (Brazil) and Yakut (Sakha, Russia).

Considering the variables of the analyzed data table, 
it is interesting to note that the distribution of SNPs 
shows that not all of them contribute equally to the dis-
criminative positions of the individuals. For example, 
Figure 6 shows the distribution of all SNPs on chromo-
some 22. The scattering of the corresponding SNPs and 
modalities is indicative of their different weights in the 
considered populations. Human populations situated 
close to some SNPs are indicative of the abundance of 
such SNPs in these populations. On the contrary, popula-
tions that are distantly situated are indicative of the weak 
presence of such SNPs.

This example highlights how CA can provide more 
detailed information than PCA (see Supplementary File 1D), 
about human populations’ neighborhood and associated 
SNPs, thus allowing a finer interpretation of their migra-
tion history.
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figure 4. distribution of the considered modern humans, populations, and snPs.  
notes: This figure illustrates the first factorial plan representing the 922 present-day humans (represented by blue dots) observed on 622 SNPs (as 
defined in text and represented by red dots). Compact clusters of SNPs in the right and the upper parts of the graph correspond, respectively, to 
modalities 1 (1 copy of reference allele) and 2 (2 copies of reference allele). the dispersed snPs at the left part correspond to 0 (0 copy of reference 
allele). the green dot represents the 45,000-year-old modern human from siberia Ust’_ishim as supplementary individual and purple dots represent the 
53 distinct populations considered in the study.45 The first factorial axis F1 corresponds to 50.1% of the whole information included in the analyzed data 
table, whereas the second factor F2 corresponds to 12.1%. SNP patterns corresponding to modalities 1 and 2 (see text) are rather compact, whereas dots 
corresponding to modality 0 are more dispersed. note that some of the modern humans (blue dots) are compact, whereas others are scattered.

figure 5. The same first factorial plan as in Figure 4, emphasizing the distribution of the 53 human populations (purple points) considered as 
supplementary elements as well as the position of the Ust ’_Ishim individual.  
note: This figure shows their corresponding positions relatively to each others as well as to the SNPs represented by red points.
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concluding Notes
CA is a descriptive multivariate data analysis method that 
allows to synthesize information included in a large data table 
by constructing an orthogonal system (factors) and by display-
ing observations and variables on a reduced number of factors 
that account for a significant part of the whole information 
included in the original data table. Planar graphical represen-
tations of observations and variables allow salient relationships 
to be easily detected. CA permits to account for general trends 
in the data, while ignoring minor fluctuations.

In genome data analyses, researchers are facing new 
challenges related to huge amount of data of multidimensional 
structures. High-throughput sequencing technologies are 
producing large amounts of sequences related among others to 
infectious and cancer diseases observed in natural and experi-
mental conditions. For such genotyping data, huge data tables 
are constructed generally by crossing genes with SNPs, taking 
into account their corresponding localizations (chromosomes 
and positions) as well as possible clinical characters that are 
associated with the diseases under study.

CA proved to be an efficient method in data reduction of 
such large data tables. It also proved to be useful in the analy-
sis of ORF products in whole-sequenced species according to 
their amino acid and codon compositions.

With the expected development of big data sets related 
to complex systems biology studies, CA might be a helpful 
method in global analyses by extracting salient trends and 
patterns embedded in such data.

Application of CA can be extended to data-driven 
learning and sample classification problems. It facilitates the 
identification of strong underlying structures in the data. The 
most important characteristic of CA as compared to PCA 
is the ability in linking clusters of individuals with subsets 
of variables to which they are significantly related. This is 
an important advantage as it facilitates the interpretation of 
each individual cluster by considering the related character-
istic variables.

The application examples discussed above, revealing the 
interesting underlying data structures, show the effective-

table 2. square Euclidean distances of Ust’_ishim to each of the 
53 considered human populations as calculated from the 10 first 
factorial axes obtained by ca.

PRESEnt-DAY hUmAnS SqUARE DiStAnCE to Ust’_IshIm

tujia (china) 0.0001

dai (china) 0.0003

daur (china) 0.0003

surui (Brazil) 0.0003

Uygur (china) 0.0003

Xibo (china) 0.0003

yakut (sakha, russia) 0.0003

yoruba (West africa) 0.0005

cambodian 0.0006

druze 0.0006

hannchina 0.0006

mandenka (senegal) 0.0006

maya 0.0006

tuscan 0.0006

hazara (Persian afghan) 0.0011

sindhi (Pakistan) 0.0011

yi (china) 0.0011

Balochi (Baloshistan) 0.0014

french 0.0014

Karitiana (Brazil) 0.0014

lahu (Vietnam-china) 0.0014

Burusho (Pakistan) 0.0015

colombian 0.0018

Papuan 0.0018

mongola 0.0019

Palestinian 0.0019

makrani (Pakistan) 0.0021

mbutiPygmy 0.0021

oroqen (mongolia – china) 0.0021

Pathan (Pashtun) 0.0021

she (fuji – china) 0.0021

tu (mongoe – china) 0.0021

hezhen (china) 0.0026

mozabite 0.0026

Bedouin 0.0027

italian 0.0027

Kalash (nuristan – Pakistan) 0.0027

orcadian (orkney –scotland) 0.0027

Pima (indigenous americans) 0.0027

san (south africa) 0.0027

sardinian 0.0027

adygei (caucasus) 0.0030

BiakaPygmy 0.0036

han 0.0037

naxi (china) 0.0040

(Continued)

table 2. (Continued)

PRESEnt-DAY hUmAnS SqUARE DiStAnCE to Ust’_IshIm

russian 0.0041

Brahui (Pakistan) 0.0053

miao (china) 0.0054

Basque 0.0066

Bantusouthafrica 0.0067

melanesian 0.0070

Japanese 0.0105

BantuKenya 0.0146

note: the present-day humans are presented in increasing order of their 
distance to Ust’_ishim.
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ness and straightforward utilization of CA, which might be 
a helpful tool for researchers in the emerging biology Big 
Data era.
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supplementary Material
supplementary Figure 1. Hierarchical clustering tree 

of yeast (blue colored) and fungal (green colored) species as 
obtained from Euclidean distances between species calculated 

using their coordinates on the correspondence analysis factors, 
resulting from the 91 species versus amino acid compositions. 
Different clusters are shown with different colors on the tree. 
Note the fungal Pneumocystis low GC species that are close to 
yeast species with low GC content.

supplementary Figure 2. Genome tree of yeast (blue 
colored) and fungal (green colored) species as obtained from 
the Euclidean distances between species calculated using 
coordinates on the correspondence analysis factors, resulting 
from the 91 species shared orthologs (see text). Clusters cor-
respond to known phylogenetic classifications27,32,33 indicated 
on the tree.

supplementary table 1. List of yeast and fungal spe-
cies shown in Table 1 with their respective references, size 
in Mbp, GC content of the corresponding genome, coordi-
nates on factorial axes F1 and F2, and composition in the 20 
amino acids.

supplementary File 1. (A) Examples of data tables that 
might be submitted to correspondence analysis. (B) Corre-
spondence analysis presentations on the web. (C) Key hints 
for interpreting the factorial graphs. (D) Examples of what 
differentiates correspondence analysis from principal compo-
nent analysis methods.
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