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Preface

This lecture note has a fairly long history. Its startingriaias an attempt to solve
some limit problems about the behaviour of non-linear fiomatls of a sequence
of independent random variables. These problems couldesblved by means of
classical probabilistic methods. | tried to solve them with help of some sort of
Taylor expansion. The idea was to represent the functioeahre investigating as
a sum with a leading term whose asymptotic behaviour can Wedescribed by
means of classical results of probability theory and witime@rror terms whose ef-
fect is negligible. This approach worked well, but to boulne &rror terms | needed
some non-trivial estimates. The proof of these estimatesimtaresting in itself, it
was a problem worth of a closer study on its own right. So dttie work out the
details and to present the most important and most intageséisults | met during
this research. This lecture note is the result of thesetsffor
To solve the problems | met | had to give a good estimate oraihéistribution of

the integral of a function of several variables with respethe appropriate power of
a normalized empirical distribution. Beside this | also badonsider a generalized
version of this problem when the tail distribution of the smmpum of such integrals
has to be bounded. The difficulties in these problems coratersaround two points.

a) We consider non-linear functionals of independent ramdariables, and we
have to work out some techniques to deal with such problems.

b) The idea behind several arguments is the observatiorintiependent random
variables behave in many respects almost as if they weresizaugut we have
to understand how strong this similarity is, when we can wappé techniques
worked out for Gaussian random variables. Beside this we avJind meth-
ods to deal with our problems also in such cases when theitpesirelated to
Gaussian and almost Gaussian random variables do not work.

To deal with problem a) | have discussed the theory of mdtigindom inte-
grals and their most important properties together withproperties of so-called
(degeneratel) -statistics. | considered the Wieneb-integrals which are multiple
Gaussian type integrals, and provide a useful tool to hameltelinear functionals
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viii Preface

of Gaussian sequences. | also proved some results aboud aggesentation of the
product of Wiener—Hh integrals or degenerdtk statistics as a sum of Wieneréln-
tegrals or degeneralté-statistics. A comparison of these results indicates some s
ilarity between the behaviour of Wienerélintegrals and degenerafestatistics. |
tried to present a fairly detailed discussion of Wiendr-iitegrals and degenerate
U -statistics which contains their most important propsttie

Problem b) appeared in particular in the study of the suprerotia class of
random integrals. It may be worth mentioning that there i®epdtheory worked
out mainly by Michel Talagrand which gives good estimatesunoh problems, at
least in the case if only one-fold integrals are considdtadrned out however that
the results and methods of this theory are not appropriapedee such estimates
that | needed in this work. Roughly speaking, the problem®1 have a different
character than those investigated in Talagrand’s thedrig foint is discussed in
more detail in the main text of this work, in particular in @ier 18, which gives an
overview of the problems investigated in this work togetivéh their history. The
problems get even harder if the supremum not only of onetatdlso of multiple
random integrals have to be estimated. Here some new methedseeded which
we can find by refining some symmetrization arguments appgarithe theory of
so-called Vapnik€ervonenkis classes.

| have also considered an example in Chapter 2 which showstti@apply the
estimates proved in this work in the study of some limit te@oproblems in math-
ematical statistics. Actually this was the starting poihthe research described in
this work. | discussed only one example, but | consider itertban just an exam-
ple. My goal was to explain a method that can help in solvirgeaon-trivial limit
problems and to show why the results of this lecture noteasetul in their investi-
gation. | think that this approach works in a very generdirsgtbut this is the task
of future research. Let me also remark that to understandthmamethod works
and how to apply it one does not have to learn the whole maiefrithis lecture
note. It is enough to understand the content of the resu@hapter 8 together with
some results of Chapter 9 about the propertidd-atatistics.

| had two kinds of readers in mind when writing this lecturéend he first kind
of them would like to learn more about such problems in whiatively few in-
dependence is available, and as a consequence the methmdssital probability
theory do not work in their study. They would like to acquioere results and meth-
ods useful in such cases, too. The second kind of readersiwotlike to go into
the details of complicated, unpleasant arguments. Theydvestrict their attention
to some useful methods which may help them in proving the timeiorem problems
of probability theory they meet also in such cases when tredsird methods do not
work. This lecture note can be considered as an attemptishystite wishes of both
kinds of readers.

Budapest, January 2013
Péter Major



Chapter 1
Introduction

First | briefly describe the main subject of this work.

Fix a positive integen, considem independent and identically distributed ran-
dom variable<ty, ..., &, on a measurable spa¢¥,.2") with some distributioru
and take their empirical distributiqu, together with its normalizatioyn(u, — ).
Beside this, take a functiori(xy,...,Xc) of k variables on thek-fold product
(XX, 27%) of the spacgX,.Z"), introduce thek-th power of the normalized em-
pirical measure,/n(un — ) on (XK, 27%) and define the integral of the functidn
with respect to this signed product measure. This integralrandom variable, and
we want to give a good estimate on its tail distribution. Mprecisely, we take the
integrals not on the whole space, the diagomals xy, 1< 5,5 <k, s# ¢, of the
spaceXk are omitted from the domain of integration. Such a modifiratf the
integral seems to be natural.

We shall also be interested in the following generalizedsioer of the above
problem. Let us have a nice class of functiocA=f k variables on the product space
(XK, 27K, and consider the integrals of all functions in this clasthwéspect to the
k-fold direct product of our normalized empirical measur&e@ good estimate on
the tail distribution of the supremum of these integrals.

One may ask why the above problems deserve a closer studyd them impor-
tant, because they may help in solving some essential pnstileprobability theory
and mathematical statistics. | met such problems whend toeadapt the method
of proof about the Gaussian limit behaviour of the maximugalihood estimate to
some similar but more difficult questions. In the originablplem the asymptotic
behaviour of the solution of the so-called maximum liketidaequation has to be
investigated. The study of this problem is hard in its orgjiiorm. But by applying
an appropriate Taylor expansion of the function that appéathis equation and
throwing out its higher order terms we get an approximatidvose behaviour can
be well understood. So to describe the limit behaviour ofrttaaxiimum likelihood
estimate it suffices to show that this approximation caussanegligible error.

One would try to apply a similar method in the study of mordidiit questions.

I met some non-parametric maximum likelihood problemsiristance the descrip-
tion of the limit behaviour of the so-called Kaplan—Meyebpguct limit estimate



2 1 Introduction

when such an approach could be applied. But in these prolitewes harder to
show that the simplifying approximation causes only a ry#iglé error. In this case
the solution of the above mentioned problems was needethelman-parametric
maximum likelihood estimate problems | met, the estimatbmultiple (random)
integrals played a role similar to the estimation of the fioeints in the Taylor ex-
pansion in the study of maximum likelihood estimates. Altfio | could apply this
approach only in some special cases, | believe that it warkery general situa-
tions. But it demands some further work to show this.

The above formulated problems about random integrals &eeisting and non-
trivial even in the special cade= 1. Their solution leads to some interesting and
non-trivial generalization of the fundamental theoremhaf inathematical statistics
about the difference of the empirical and real distributbtba large sample.

These problems have a natural counterpart about the bemaigo-calledJ -
statistics, which is a fairly popular subject in probaliliheory. The investigation
of multiple random integrals arid-statistics are closely related, and it turned out to
be useful to consider them simultaneously.

Let us try to get some feeling about what kind of results caexpected in these
problems. For a large sample sizéhe normalized empirical measuw@(pn, — 1)
behaves similarly to a Gaussian random measure. This sisgbasin the problems
we are interested in similar results should hold as in théogioas problems about
multiple Gaussian integrals. The behaviour of multiple &an integrals, called
Wiener—Ib integrals in the literature, is fairly well understooddahsuggests that
the tail distribution of &-fold random integral with respect to a normalized empiri-
cal measure should satisfy such estimates as the taildistn of thek-th power of
a Gaussian random variable with expectation zero and apptepariance. Beside
this, if we consider the supremum of multiple random intégyod a class of func-
tions with respect to a normalized empirical measure or vé#pect to a Gaussian
random measure, then we expect that under not too resérimbinditions this supre-
mum is not much larger than the ‘worst’ random integral with targest variance
taking part in this supremum. We may also hope that the metbhbthe theory of
multiple Gaussian integrals can be adapted to the inveistigaf our problems.

The above presented heuristic considerations supplylg égod description of
the situation, but they do not take into account a very esdatifference between
the behaviour of multiple Gaussian integrals and multiptegrals with respect to
a normalized empirical measure. If the variance of a muatiptegral with respect
to a normalized empirical measure is very small, what tutis@be equivalent to
a very smallL,-norm of the function we are integrating, then the behavadithis
integral is different from that of a multiple Gaussian imagwvith the same kernel
function. In this case the effect of some irregularitieshed hormalized empirical
distribution turns out to be non-negligible, and no good &&&an approximation
holds any longer. This case must be better understood, anel sew methods have
to be worked out to handle it. The hardest problems discusselis work are
related to this phenomenon.

The precise formulation of the results will be given in theimaart of the work.
Beside their proofs | also tried to explain the main ideasribthem and the notions
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introduced in their investigation. This work contains sonev results, and also
the proof of some already rather classical theorems is pregeThe results about
Gaussian random variables and their non-linear funct&gnalparticular multiple

integrals with respect to a Gaussian field, have a most irmpbrble in the study

of the present work. Hence they are discussed in detailltegetith some of their

counterparts about multiple random integrals with resfzeatnormalized empirical
measure and some results abdustatistics.

The proofs apply results from different parts of the probgbtheory. Papers
investigating similar results refer to works dealing witlitg different subjects, and
this makes their reading rather hard. To overcome this dlffid tried to work out
the details and to present a self-contained discussion a&vtre price of a longer
text. Thus | wrote down (in the main text or in the Appendixg throof of many
interesting and basic results, like results about Vapbéevonenkis classes, about
U-statistics and their decomposition to sums of so-callegederatdJ -statistics,
about so-called decoupléd-statistics and their relation to ordinddystatistics, the
diagram formula about the product of Wieneé-ihtegrals, their counterpart about
the product of degeneraté-statistics, etc. | tried to give such an exposition where
different parts of the problem are explained independesttigach other, and they
can be understood in themselves.

As all the topics treated in the individual chapters relatedch other it seemed
natural to me to tell the history of how the various resultseveeached in one
last chapter. This last chapter, Chapter 18, just beforédgpendix, also contains
the complete reference list. | tried to give satisfactorfemencing to all essential
problems discussed, concentrate on explaining the massiehind the proofs
and indicate where they were published. | did not attemptdewigde an exhaustive
literature list for fear that more would be less. As a consege the reference list
reflects my subijctive preferences, my way of thinking.






Chapter 2

Motivation of the investigation. Discussion of
some problems

In this chapter | try to show by means of an example why thetwiwf the prob-
lems mentioned in the introduction may be useful in the stofdgome important
problems of probability theory. | try to give a good pictulmat the main ideas, but
I do not work out all details. Actually the elaboration of sehetails omitted from
this discussion would demand hard work. But as the preseqtehis quite inde-
pendent of the rest of the work, these omissions cause néepndb understanding
the subsequent part.

| start with a short discussion of the maximum likelihoodreste in the simplest
case. The following problem is considered. Let us have aa@é&density functions
f(x,9) on the real line depending on a parametez R, and observe a sequence
of independent random variablég w), . .., &y (w) with a density functiorf (x, 9o),
wheredy is an unknown parameter we want to estimate with the helpeotove
sequence of random variables.

The maximum likelihood method suggests the following appho Choose that
value 3, = 9(&1,...,&n) as the estimate of the paramet®y where the density
function of the random vectdgy, ..., &), i.e. the product

n

79 —exp{kilogmw)}

k=

takes its maximum. This point can be found as the solutiomefsb-called maxi-
mum likelihood equation

kzljalogf(ék,ﬁ) =0. (2.1)

We are interested in the asymptotic behaviour of the randaabled, — 9o, where
I is the (appropriate) solution of the equation (2.1).

The direct study of this equation is rather hard, but a Taghgansion of the
expression at the left-hand side of (2.1) around the (unkggwint 3¢ yields a
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good and simple approximation 6f, and it enables us to describe the asymptotic
behaviour of9, — 3.
This Taylor expansion yields that

< 0 5 n (&, o)
—~ _logf S, = 197
kzlda Og (Ek7 ) kZl f( ks )
2
. 0 [ 26(8.9) (35 (&%) .
39 2
+(In — o) k; 90 &5 +0(n(dh — 90)?)
=Y M+ —90)) + 0 (n(d — o)) , 2.2)
k=1
where
2
ﬁf(fkvao) d Zk— (9192 (£k7190) (%f(fk,‘ﬂO))

~ (& 90) f (&, 90) £2(&, 90)

for k=1,...,n. We want to understand the asymptotic behaviour of the (namd
expression on the right-hand side of (2.2). The relation

019 (X 190)
f(x, 90)

holds, sincef f(x,3)dx= 1 for all 3, and a differentiation of this relation gives the

last identity. SimilarlyEnZ = —EZk = [(?;30) dx>0, k=1,...,n. Hence by

the central limit theoreny, = f Z Nk is asymptotically normal with expectation

Ene— F(x, 80) dx = aﬁ/fxﬁo )dx=0

(06 f(x‘90>)

T90) dx > 0. In the statistics literature this number

zero and varianc€ = [

| is called the Fisher information. By the laws of large numl%erg G~ —12.

=1
Thus relation (2.2) suggests the approximation of the mammkellhood es-

~ ~ o Nk

timate 9, by the random variablé?, given by the identityd, — 39 = — § o
Z k

and the previous calculations imply th@zﬁ(én do) is asymptotically normal
with expectation zero and varian(;b The random variablé, is not a solution
of the equation (2.1), the value of the expression at thehkefid side is of or-
der O(n(Jn — 90)2) = O(1) in this point. On the other hand, some calculations
show that the derivative of the function at the left-handcedillarge in this point,
it is greater than const.with some const> 0. This implies that the maximum-
likelihood equation has a solutidh, such thadh, — 9, = O (%). Hencey/n(dn — o)
and \m(5n — Jp) have the same asymptotic limit behaviour.
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The previous method can be summarized in the following wayeTa simpler
linearized version of the expression we want to estimate &gma of an appropriate
Taylor expansion, describe the limit distribution of thisslarized version and show
that the linearization causes only a negligible error.

We want to show that such a method also works in more diffictulasons. But
in some cases it is harder to show that the error committedrbplacement of the
original expression by a simpler linearized version is igggle, and to show this the
solution of the problems mentioned in the introduction ieded. The discussion
of the following problem, called the Kaplan—Meyer method tiee estimation of
the empirical distribution function with the help of censdrdata shows such an
example.

The following problem is considered. L&X;,Z;),i = 1,...,n, be a sequence of
independent, identically distributed random vectors shahthe component§ and
Z; are also independent with some unknown, continuous disioi functions= (x)
andG(x). We want to estimate the distribution functibrof the random variables,
but we cannot observe the variabMs only the random variableg = min(X, Z)
anda = (X < Z). In other words, we want to solve the following problem. Téer
are certain objects whose lifetin¥¢ are independent anél distributed. But we
cannot observe this lifetimg;, because after a timg the observation must be
stopped. We also know whether the real lifetifjer the censoring variablg was
observed. We makeindependent experiments and want to estimate with their hel
the distribution functiorf.

Kaplan and Meyer, on the basis of some maximum-likelihodamedion type
considerations, proposed the following so-called prodiutit estimator S,(u) to
estimate the unknown survival functi®iu) = 1 — F(u):

n o\ 1(Yi<ug=1)
n (%) if u<maxYi,...,Yn)
1—Fo(u) = Sh(u) = { 5 _
Oif u>maxVYi,...,Yn), anddy =1,

undefined ifu > max(Yi,...,Ys), andd, =0,

(2.3)

where n
N(t)=#Y, Yi>t,1<i<n}= Zil(Yi >1t).
i=

We want to show that the above estimate (2.3) is really goodttits goal we
shall approximate the random variabl&gu) by some appropriate random vari-
ables. To do this first we introduce some notations.

Put

,§=1), HU=P¥<u&=0) (2.4)

and
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Ho(u) = — > 1Y <u) (2.5)

I:In(u) :% n 1Y <u, & =1), ﬁn(u):i_il(%<u,c§=0).

ClearlyH (u) = H(u) + H (u) andHp(u) = Hn(u) + Hzn(u). We shall estimat&,(u) —
F(u) forue (—oo,T]i

1-H(T) > with some fixedd > 0. (2.6)

Condition (2.6) implies that there are more th‘%m sample point¥; larger thant
with probability almost 1. The complementary event has anlgxponentially small
probability. This observation helps to show in the subsatjoalculations that some
events have negligibly small probability.

We introduce the so-called cumulative hazard function &dmpirical version

A(u) = —log(1-F(u)), An(u)=—log(1—Fn(u)). (2.7)

SinceFR,(u) — F (u) = exp(—A (u)) (1 — exp(A (u) — An(u))) a simple Taylor expan-
sion yields

Fa(u) —F(u) = (1—=F(u) (An(u) = A(u) + Re(u), (2.8)

and it is easy to see th&(u) = O ((A(u) —An(u))?). It follows from the subse-
quent estimations that (u) — An(u) = O(n~Y/2), thusnRy(u) = O(1). Hence it is
enough to investigate the teriy(u). We shall show that\,(u) has an expansion
with A (u) as the main term plus /2 times a term which is a linear functional of an
appropriate normalized empirical distribution functidagan error term of order
o(n™1).

From (2.3) it is obvious that

An(u) = élm <u, & =1)log <11+Nl(Y|)> .

It is not difficult to get rid of the unpleasant logarithmiaiittion in this formula by
means of the relation log(1— x) = x-+ O(x?) for smallx. It yields that

Aol = zi'(Yﬁsz‘?:” TR =AW LR (29)

with an error ternR;(u) such thanR,(u) is smaller than a constant with probability
almost one. (The probability of the exceptional set is exgmtially small.)
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The expressionf\n(u) is still inappropriate for our purposes. Since the denom-
n
inatorsN(Y;) = ¥ I(Y; > Yj) are dependent for different indicésve cannot see
j=1

directly the limit behaviour of\q(u).

We try to approximateN,(u) by a simpler expression. A natural approach
would be to approximate the terni(Y;) in it by their conditional expectation
(n=1)H(Y) = (n—1)(1—H(Y)) = E(N(Y))|Y;) with respect to ther-algebra gen-
erated by the random variab¥ge This is a too rough ‘first order’ approximation, but
the following ‘second order approximation’ will be suffigigfor our goals. Put

, S 1Y > Y —nA(%)

N“%:;y%>%hmEM)1+‘l

AH (%)

and express the ter% in the sum defining\,, (with A, introduced in (2.9))
by means of the relatiogl; = § (—1)*Z = 1 — z+ £(2) with the choicez =
Ko

310> -H ()
= . As|g(2)| < 222 for |z| < § we get that

nH(Y)
n _ k
S (Y >Yi) —nH(Y))
o0 e lM<ua=1) o [ =2
MU= (YAl
Eum>w)—mﬂﬁ)
e lMi<ua=1) =1
A nH(Y,) 1= nH(Y) +Rs(W)
= 2A(u) — B(u) +Rs(u), (2.10)
where

and

02 <u, &=1I(Y; >V
RSP A T

It can be proved by means of standard methodsriRefu) is exponentially small.
Thus relations (2.9) and (2.10) yield that

An(u) = 2A(u) — B(u) + negligible error. (2.11)
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This means that to solve our problem the asymptotic behawbthe random
variablesA(u) andB(u) has to be given. We can get a better insight to this problem
by rewriting the sumA(u) as an integral and the double sBfu) as a two-fold
integral with respect to empirical measures. Then thesgiats can be rewritten
as sums of random integrals with respect to normalized écapimeasures and
deterministic measures. Such an approach yields a repagieenof An(u) in the
form of a sum whose terms can be well understood.

Let us write

Aw = [ 7Y d),

/+oo /+oo| y< u)l y) dHn (X)dHFin(y).

We rewrite the term#(u) andB(u) in a form better for our purposes. We express
these terms as a sum of integrals with respedHu), dH (u) and the normalized

empirical processes,/n(Hn(x) —H(x)) andd./n(Hx(y) —H(y)). For this goal ob-
serve that

Hn(\)Hn(y) = HX)H(Y) +H ) (Hn(y) = H(Y)) + (Hn(x) = H()H(y)

In the above decomposition &(u) the termB; is a deterministic functionB,,
B3 are linear functionals of normalized empirical processesBy is a nonlinear
functional of normalized empirical processes. The deteistic termB; (u) can be
calculated explicitly. Indeed,

0= [T iy [

Then the relationsi (u) = [“ (1—G(t)) dF(t) and 1-H = (1— F)(1— G) imply
that
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U dF(y)

Bi(u) = W1-F(y) = —log(1—F(u)) = A(u). (2.12)
Observe that
e dHin(y)
A= 1m H(y)
u dH /u d (v(Hn(y) —H(y)))
- f l H(y)
By )+Bz( ). (2.13)

From relations (2.11), (2.12) and (2.13) it follows that
An(u) —A(u) = By(u) — Bz(u) — B4(u) + negligible error. (2.14)

Integration ofB, andBs with respect to the variabbeand then integration by parts
in the expressioB; yields that

u d Hn(Y) H(Y)))
Bal f/ -

HY)
VA -AW) 1 Ay - A)
Rl HW) n/w o O

VAHY) o) 4

Bs(U) = f/ Tl

With the help of the above expressions ByrandBs (2.14) can be rewritten as

Fin(u) A () A
VA(An(U) — A(w)) = YW ><u>) s WET,(HY)(y)';z(y))dH(Y)

u \an HY) 415
+ /e (y))2 dH(y)
nBy(u )+neg|igib|e error. (2.15)

Formula (2.15) (together with formula (2.8)) almost agredth the statement
we wanted to prove. Here the random variapfie(A,(u) — A (u)) is expressed as a
sum of linear functionals of normalized empirical disttibas plus some negligible
error terms plus the error terginB,(u). So to get a complete proof it is enough to
show that,/nBy4(u) also yields a negligible error. BuiB,(u) is a double integral of
a bounded function (here we apply again formula (2.6)) wepect to a normalized
empirical distribution. Hence to bound this term we needa@dgestimate of multiple
stochastic integrals (with multiplicity 2), and this is fuke problem formulated in
the introduction. The estimate we need here follows fromofémm 8.1 of the present
work. Let us remark that the problem discussed here cornefgto the estimation of
the coefficient of the second term in the Taylor expansiorsiciamed in the study of
the maximum likelihood estimation. One may worry a littletmw to bounchBy(u)
with the help of estimations of double stochastic integrsitsce in the definition of
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B4 (u) integration is taken with respect to different normalizetp@ical processes in
the two coordinates. But this is a not too difficult technjgadblem. It can be simply
overcome for instance by rewriting the integral as a douftiegrral with respect to
the empirical procesy/n (Hn(X) — H(x)), /N (Ha(y) —H(y))) in the spacd?.

By working out the details of the above calculation we get tha linear func-
tional Bz(u) — Bz(u) of normalized empirical processes yields a good estimatieen
expression,/n(An(u) — A(u)) for a fixed parameten. But we want to prove some-
what more, we want to get an estimate uniform in the parameie. to show that
even the random variable spgn(An(u) —A(u)) —By(u) + Bs(u)| is small. This

u<T

can be done by making estimates uniform in the parameiarall steps of the

above calculation. There appears only one difficulty whgmdy to carry out this

program. Namely, we need an estimate on|a&(u)|, i.e. we have to bound the
u<T

supremum of multiple random integrals with respect to a raizad random mea-
sure for a nice class of kernel functions. This can be dortgtlthis point the second
problem mentioned in the introduction appears. This diffjccan be overcome by
means of Theorem 8.2 of this work.

Thus the limit behaviour of the Kaplan—Meyer estimate cardescribed by
means of an appropriate expansion. The steps of the catsuleiading to such
an expansion are fairly standard, the only hard part is theiso of the problems
mentioned in the introduction. It can be expected that sutiethod also works in
a much more general situation.

| finish this chapter with a remark of Richard Gill he made ireagonal conver-
sation after my talk on this subject at a conference. Whiledeegted my proof he
missed an argument in it about the maximum likelihood charaaf the Kaplan—
Meyer estimate. This was a completely justified remark,esifigve do not restrict
our attention to this problem, but try to generalize it tog@hnon-parametric maxi-
mum likelihood estimates, then we have to understand howmthémum likelihood
character of the estimate can be exploited. | believe thsitctm be done, but only
with the help of some further studies.



Chapter 3

Some estimates about sums of independent
random variables

We shall need a good bound on the tail distribution of sumadépendent random
variables bounded by a constant with probability one. Latdy the results about
sums of independent and identically distributed variakl#isbe interesting for us.
But since they can be generalized without any effort to sufsob necessarily
identically distributed random variables the conditioroatbidentical distribution
of the summands will be dropped. We are interested in thetigueghen these
estimates give such a good bound as the central limit thestggests, and what
can be told otherwise.
More explicitly, the following problem will be consideretet Xy, ..., X, be in-

dependent random variablésX; = 0, VarX; = ajz, 1< j <n, and take the random

n n
sum§, = 3 X; and its variance Ve, :Vn2 =3 ajz. We want to get a good bound
=1 =1
on the probabilityP(S, > uV,). The central limit theorem suggests that under gen-
eral conditions an upper bound of the order @(u) should hold for this probability,
where ®(u) denotes the standard normal distribution function. Siheestandard

2
e /2
> <1-®(u) <

normal distribution function satisfies the inequal(tg — u—lg)
1 e—u2/2
u vem
parable with the value**/2, More generally, we shall call an upper bound of the
form P(Sy > uVp) < e C¥ with some constar® > 0 a Gaussian type estimate.

First | formulate Bernstein’s inequality which tells for weh valuesu the prob-
ability P(S, > uV,) has a Gaussian type estimate. It supplies such an estimate if
u < consd,. On the other hand, far > constV, it yields a much weaker bound. |
shall formulate another result, called Bennett's inedualihich is a slight improve-
ment of Bernstein’s inequality. It helps us to tell what carelzpected if Bernstein’s
inequality does not provide a Gaussian type estimate.  alsal present an example
which shows that Bennett's inequality is in some sense sHdm@ main difficulties
we meet in this work are closely related to the weakness oéstienates we have
for the probabilityP(S, > uV;) if it does not satisfy a Gaussian type estimate. As
we shall see this happensifs> constV,,.

for all u > 0 it is natural to ask when the probabiliB(S, > u\;,) is com-

13
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In the usual formulation of Bernstein’s inequality a reafmherM is introduced,
and it is assumed that the terms in the sum we investigateoargded by this num-
ber. But since the problem can be simply reduced to theldasel | shall consider
only this special case.

Theorem 3.1 (Bernstein’s inequality).Let X, ..., X, be independent random vari-
n

ables, R[Xj| <1) =1 EX=0,1<j<n Putof =EX?,1<j<n,§= 3 X
j=1

n
and\2 =VarS,= 3y ajz. Then
<1

P(Sh > uwn) <exp TN forallu > 0. 3.1)
2(1+34)

Proof of Theorem 3.1Let us give a good bound on the exponential mom&@s
for appropriate parameters- 0. SinceEX; =0 andE|X!‘+2| < 012 for k>0 we can

22 22
erteEéxl_zk, xk<1+ (1+zk+2><1+ (1+23kt>

t t2 2
1+T1 p{ 1

3

}|f0<t<3 Hence

t22

EdS — nEéXJ<exp{ anlt} for0<t<3.
3

The above relation implies that

Sh UV ShatUV Ve 1
P(Sh > uWy) = P(e™ > ) < EdSe " < exp 51T UV

if 0 <t < 3. Choose the numbeiin this inequality as the solution of the equation
tZVnzlflfr =tu\j, i.e. putt = \ﬁig Then 0<t < 3, and we get tha®(S, > uV,) <
3 n

—tuVh/2 _ u?
e /2 —expd — o~ ¢
{ 2(1+3vuﬁ)}

If the random variableX;, . . ., X, satisfy the conditions of Bernstein’s inequality,

then also the random variablesXy, ..., —X, satisfy them. By applying the above
result in both cases we get th({|S,| > uV,) < 2exp{—2(1ﬁu)} under the con-
3Vn

ditions of Bernstein’s inequality.

By Bernstein’s inequality for alt > 0 there is some number(&) > 0 such that
in the casg < a(e) the inequalityP(S, > uv) < e~(1-6)%*/2 holds. Beside this,
for all fixed number#\ > 0 there is some consta@it=C(A) > 0 such that ifvin <A,

thenP(S, > u\}) < e ¥ This can be interpreted as a Gaussian type estimate for
the probabilityP(S, > u\,) if u < constV,.
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On the other hand, i\% is very large, then Bernstein’s inequality yields a much
worse estimate. The question arises whether in this casestén’s inequality can
be replaced by a better, more useful result. Next | preseabim 3.2, the so-called
Bennett's inequality which provides a slight improvemehBernstein’s inequal-
ity. But if i is very large, then also Bennett's inequality provides a lmweaker
estimate on the probabilit(S, > uVi) than the bound suggested by a Gaussian
comparison. On the other hand, | shall present an examplesiiosvs that (with-
out imposing some additional conditions) no real improvend# this estimate is
possible.

Theorem 3.2 (Bennett's inequality).Let X, ..., X, be independent random vari-
n

ables, R[Xj| <1) =1 EX=0,1<j<n Puto? =EX?,1<j<n,§= 73 X
j=1

and \2 = Vars, = Z 02 Then
J_

P(Si>u) < exp{ [(1+V2> log (1+V2> - \22] } forallu>0. (3.2)

As a consequence, for al> 0 there exists some B B(&) > 0 such that

P(S,>u) < exp{—(l— e)ulog\ﬂ} if u> BV2, (3.3
n
and there exists some positive constant i such that

P(Sh>u) < exp{—Kqug\fz} ifu>2v2 (3.4)
n

Proof of Theorem 3.20e have

. 00 tk =] 2
X k _ eof (€ -1-1)
Ed%i kaOHEXj <l+o0 E 1+a (¢—1-t) <e% )

1<j<n,

andEeS < /(€10 forallt > 0. HenceP(S, > u) < e WEES < g V(e -1-1)
for all t > 0. We get relation (3.2) from this inequality with the choite=
log (1+ . (This is the place of minimum of the functioatu +V2(¢ — 1 —t)
for fixed Uin the parametetr.)

Relation (3.2) and the observation | U l,olgg"\fl — =1 with the choice = %
imply formula (3.3). Because of relatlon (3.3) to prove foiten (3.4) it is enough
to check it for 2< ” < B with some sulfficiently large constaBt> 0. In this case
relation (3.4) follows directly from formula (3.2). Thismde seen for instance by
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il Gl e Y]
observing that the expressien n og 3, &) Vi is a continuous and positive

function of the varlabIQ/7 in the interval 2 v% B, hence its minimum in this
interval is strictly posmve

Let us make a short comparison between Bernstein’s and B&ninequalities.
Both results yield an estimate on the probabiR§S, > u), and their proofs are
very similar. They are based on an estimate of the momentragmg functions
Rj(t) = EdXi of the summandXj, but Bennett’s inequality yields a better estimate.
It may be worth mentioning that the estimate givenRp(t) = E€*i in the proof of
Bennett's inequality agrees with the moment generatingtfan E€(Yi—EY) of the
normalizatiorj — EY; of a Poissonian random variabfgwith parameter Vax;. As
a consequence, we get, by using the standard method of &atrteil-distributions
by means of the moment generating functions such an estiioratiee probability
P(S, > u) which is comparable with the probabiliB(T, — ET, > u), whereT, is a
Poissonian random variable with paraméfer VarS,. We can say that Bernstein’s
inequality yields a Gaussian and Bennett’s inequality a&wiian type estimate for
the sums of independent, bounded random variables.

RemarkBennett's inequality yields a sharper estimate for the gbdliy P(S, > u)
than Bernstein’s inequality for all numbars> 0. To prove this it is enough to show
that for all 0< t < 3 the inequalityEdS < e (€-1-1) appearing in the proof of
Bennett’s inequality is a sharper estimate than the cooregipg inequalitye €S <
exp{t \2/ 113 } appearing in the proof of Bernstein’s inequality. (Rechtyw we
estimate the probabilit?(S, > u) in these proofs with the help of the exponential

momentE&S.) But to prove this it is enough to check thét-1—t < %lér for
3

all 0 <t < 3. This inequality clearly holds, sin@&—-1—-t= Y % andgrlr =
K=2" ~3
3 3(3) Ak
k=2
Next | present Example 3.3 which shows that Bennett's inkguaelds a sharp
estimate also in the cases V2 when Bernstein’s inequality yields a weak bound.
But Bennett’s inequality provides only a small improvememhich has only a lim-

ited importance. This may be the reason why Bernstein’sualiy which yields a
more transparent estimate is more popular.

Example 3.3 (Sums of independent random variables with badsil distribution

for large values).Let us fix some positive integer n, real numbers uanduch that
0<02< % n>4u>6andu>4no?. Letd? be that solution of the equatior

X+ 0% = OWhICh is smaller tharg. Take a sequence of mdependent and identically
distributed random variableX, ..., X, such that I'\"XJ =1) = (XJ = O)

—g?forall 1< j<n. PutX =X —EX =X —0? 1<J<ns, zx,

and \? =na?. Then RB|X;| < 1) =1, EX =0, VarX; = g2, hence ES= 0 and
Var$, = V2. Beside this
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u
P(Sy>u) > exp{—Bqusz}
n

with some appropriate constant:B0 not depending on ng and u.

Proof of Example 3.3Simple calculation shows thEtX, =0, VarXj = 02— 0% =
P(|Xj| < 1) = 0, and also the inequalitg? < o2 < 02 holds To see the
upper bound in the last inequality observe that< 3, i.e. 1 02 > £, henceo? =
02(1—02) > 02. In the proof of the inequality of Example 3.3 we can restiat
attention to the case wheris an integer, because in the general case we can apply
the inequality withu = [u] 4 1 instead ofu, where[u] denotes the integer part of
and sinceu < u < 2u, the application of the result in this case supplies therddsi
inequality W|th a possibly worse constaht> 0.

PUtS, = Z X;. We can writeP(S, > u) = P(§, > u+ng?) > P(S, > 2u) >

P(S =2u) = ( 1)W1 — g2) (-2 > (19°)2u(1 _ 52)(-2) sinceu > a2, and
n > 2u. On the other han¢l — G2)("-2 > g20%(-2) > =210” > e~U hence

P(Ss>u) > exp{—Zqug( 2ulog2— u}

) -
:exp{—2ulog( ) 2ulog 2—2u|ogz u}

ool a3}

Example 3.3 is proved.

In the cases > 4V.2 Bernstein’s inequality yields the estimad®éS, > u) < e !
with some universal constant > 0, and the above example shows that at most an
additional logarithmic factoK log & vz can be expected in the exponent of the upper
bound in an improvement of this estimate. Bennett's inegushows that such an
improvement is really possible.

| finish this chapter with another estimate due to Hoeffdirngol will be later
useful in some symmetrization arguments.

Theorem 3.4 (Hoeffding’s inequality) Letey,..., & be independent random vari-
ables, Rej=1)=P(gj=-1)=3,1<j<n, and leta,...,a, be arbitrary real

n
numbers. Put\= 3 ajgj. Then
=1

2
PV >u) < exp{— . 2} forallu > 0. (3.5)

25518
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n
Remark 1ClearlyEV =0 and Vav = aJZ, hence Hoeffding's inequality yields
j=1
such an estimate fd?(V > u) which the central limit theorem suggests. This esti-
mate holds for all real numbess, ...,a, andu > 0.

Remark 2:The Rademacher functiong(x), k = 1,2,..., defined by the formu-
lasre(x) = 1 if (2j —1)2 kK <x<2j2Kandr(x) = -1if 2(j - 1)2 Kk <x<
(2j—1)27% 1< j< 21 forallk=1,2, ..., can be considered as random vari-
ables on the probability space= [0, 1] with the Borelo-algebra and the Lebesgue
measure as probability measure on the intej@gl]. They are independent random
variables with the same distribution as the random var&@ble .., &, considered
in Theorem 3.4. Therefore results about such sequencerddmavariables whose
distributions agree with those in Theorem 3.4 are alsodaltenetimes results about
Rademacher functions in the literature. At some points wkalgo apply this ter-
minology.

Proof of Theorem 3.4Let us give a good bound on the exponential moment
n n ajt | _—ajt

EeV for all t > 0. The identityE€Y = [ E€3& = ] w holds, and
j=1 j=1

(eajtJre—ajt) B 0 g2k oK

f_kzo(zilj()!t <

(ajt)Zk

0~ — /2 since(2K)! > 24! for all k > 0. This

™M 8

k=0

2 2

n
implies thate €Y < exp{ 5 jzlajz}. HenceP(V > u) < exp{ —tu+ % jzlajz}, and

-1
n
we get relation (3.5) with the choit¢e=u < S a12> .
j=1



Chapter 4
On the supremum of a nice class of partial sums

This chapter contains an estimate about the supremum oéalaiss of normalized
sums of independent and identically distributed randonatsées together with an
analogous result about the supremum of an appropriateafiase-fold random in-
tegrals with respect to a normalized empirical distribatibhe second result deals
with a one-variate version of the problem about the estimnadf multiple integrals
with respect to a normalized empirical distribution. Thisllem was mentioned
in the introduction. Some natural questions related toethmesults will be also dis-
cussed. It will be examined how restrictive their condii@me. In particular, we are
interested in the question how the condition about the @hlatcardinality of the
class of random variables can be weakened. A natural Gaussimterpart of the
supremum problems about random one-fold integrals willlbe eonsidered. Most
proofs will be postponed to later chapters.

To formulate these results first a notion will be introduckdttplays a most
important role in the sequel.

Definition of L,-dense classes of functiond.et a measurable spacg/,%’) be
given together with a clasg of % measurable real valued functions on this space.
The class of function¥ is called an l,-dense class of function,< p < o, with
parameter D and exponent L if for all numbérsc € < 1 and probability measures

v on the spac¢Y, %) there exists a finite-dense subsé&f; , = {g1,...,.0m} C ¥ in

the space L(Y,%,v) with m< De~" elements, i.e. there exists such a%e} C ¢
with m< De~* elements forwhicg |en(/f J19—0g;|Pdv < P for all functions gc ¢.

jEIev

(Here the se; , may depend on the measwrebut its cardinality is bounded by a
number depending only an)

In most results of this work the above definegtdense classes will be consid-
ered only for the parametgr= 2. But at some points it will be useful to work also
with Lp-dense classes with a different paramgteHence to avoid some repeti-
tions | introduced the above definition for a general parampt When working
with Lp-dense classes we shall consider only such classes ofdosetiwhose el-
ements are functions with bounded absolute value. Henaetedjrals appearing in
the definition ofL ,-dense classes of functions are finite.

19
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The following estimate will be proved.

Theorem 4.1 (Estimate on the supremum of a class of partial sus). Let us

consider a sequence of independent and identically digtibrandom variables
&1,...,&n, N> 2, with values in a measurable spaf¢, 2") and with some distri-
bution u. Beside this, let a countable and-dense class of function®g with some
parameter D> 1 and exponent > 1 be given on the spad&, 2") which satisfies
the conditions

[fllo =sup/f(x)| <1, forall fec.7 (4.1)
xeX
I£13 = /fZ(X)u(dx) <o forallfes 4.2)

with some constari < o < 1, and

/f(x)u(dx) —0 forall f € 7. 4.3)

n
Define the normalized partial sumg($) = \% y f(é&)forall f € #.
k=1

There exist some universal constant&CD,_a > 0 and M > 0 such that the
supremum of the normalized random sumsf f € .7, satisfies the inequality

2
P (supISq(f) > U) < Cexp{—a (%) } for those numbers u

fez

for which/na? > u > Ma(L¥*log? 2 + (logD)%/4), (4.4)

where the numbers D and L in formula (4.4) agree with the pat@mand exponent
of the Lo-dense class”.

Remark.Here and also in the subsequent part of this work we consatetom
variables which take their values in a general measuralaeedX, 2"). The only
restriction we impose on these spaces is that all sets ¢imgsizf one point are
measurable, i.gx} € 2 for all x € X.

The conditiony/no? > u > Mo (L¥*log'/? 2 + D%/4) for the numbersu for
which inequality (4.4) holds is natural. | discuss this afte formulation of Theo-
rem 4.2 which can be considered as the Gaussian countefgdmtorem 4.1. | also
formulate a resultin Example 4.3 which can be consideredeopthis discussion.

The condition about the countable cardinality.&f can be weakened with the
help of the notion of countable approximability introdudselow. For the sake of
later applications | define it in a more general form than eeed this chapter. In the
subsequent part of this work | shall assume that the prababiieasure | work with
is complete, i.e. for all such pairs of sét&ndB in the probability spacéQ, .o/, P)
for whichA € &7, P(A) = 0 andB C Awe haveB € & andP(B) = 0.
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Definition of countably approximable classes of random va@bles.Let us have

a class of random variables ), f € .7, indexed by a class of functionssf.%

on a measurable spad®,#/). This class of random variables is called countably
approximable if there is a countable subsgt C .% such that for all numbers i+ 0

the sets Au) = {w: sup|U(f)(w)| > u} and Bu) = {w: sup|U(f)(w)| >u}
fes fe.z!
satisfy the identity PA(u) \ B(u)) = 0.

Clearly,B(u) C A(u). In the above definition it was demanded that forual 0
the setB(u) should be almost as large Au). The following corollary of Theo-
rem 4.1 holds.

Corollary of Theorem 4.1. Let a class of functions? satisfy the conditions of The-
orem 4.1 with the only exception that instead of the comuliibout the countable
cardinality of .7 it is assumed that the class of random variablgéf$ f € .7,
is countably approximable. Then the random variablgsf§ f € .7, satisfy rela-
tion (4.4).

This corollary can be simply proved, only Theorem 4.1 hasstayplied for the
class.Z’. To do this it has to be checked that#f is anL,-dense class with some
parameteD and exponent, and.%#’ C .%, then.Z’ is also arnlL,-dense class with
the same exponeht only with a possibly different parameter.

To prove this statement let us choose for all numbers€< 1 and probability

measures on (Y, %) some functionds, ..., fn € .# withm< D (%)*L elements,
m

such that the set®; = {f: J1f = fj|2dv < (g)z} satisfy the relationJ Z; =Y.
=1

For all sets7; for which Z; N.%" is non-empty choose a functidin € Z; N.%". In
such a way we get a collection of functioh’jsfrom the classZ’ containing at most
2LDe~t elements which satisfies the condition imposedLfgdense classes with
exponent and parameter-D for this number and measure.

Next | formulate in Theorem .4’ a result about the supremum of the integral
of a class of functions with respect to a normalized emgirstribution. It can
be considered as a simple version of Theorem 4.1. | formaikduie result, because
Theorems 4.1 and. % are special cases of their multivariate counterparts atheut
supremum of so-called -statistics and multiple integrals with respect to a normal
ized empirical distribution discussed in Chapter 8. Thessailts are also closely
related, but the explanation of their relation demands seor&.

Given a sequence of independgrdistributed random variabldg, . . ., &, taking
values in(X, Z") let us introduce their empirical distribution ¢K, 2") as

Un(A)(w) = %#{j: 1<j<n &(w) €A} forallAc 2, (4.5)
and define for all measurable apdntegrable functiong the (random) integral

() =ha(1) = VA [ £00(kin(d) — (). (4.6)
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Clearly
Z —Ef(&)) = S(f)

with f(x) = f(x) — [ f(x)u(dx). It is not difficult to see that sud(x)| < 2 if
xeX

sup|f(x)] < 1, [ fu(dx) =0, [ F2()u(dx) < [ f2(x)u(dx), and if Z is anL-
xeX

dense class of functions Witmaaramd])mnd exponerit, then the class of functions
. consisting of the function§(x) = ( (X) — [ f(x)u(dx)), f € 7,is anL,-dense
class of functions with paramet@rand exponent. Indeed, smcq(f —g)%dv <
L1(f—g)2dv+ 3 [(f—g)2du = [(f —g)2%Eq hence(fy,..., fm} is ane-
dense set of# in the Lz(v)-norm if {f1,..., fm} is ane-dense set of# in the
Lg(“—;")-norm. Hence Theorem 4.1 implies the following result.

Theorem 4.1 (Estimate on the supremum of random integrals with respectad

a normalized empirical distribution). Let us have a sequence of independent and
identically distributed random variable§, ..., &,, n> 2, with distributionu on a
measurable spacgX, Z") together with some class of functio#s on this space
which satisfies the conditions of Theorem 4.1 with the plessiception of condi-
tion (4.3). The estimate (4.4) remains valid if the randoms&(f) are replaced

in it by the random integralsyJ f) defined in (4.6). Moreover, similarly to the corol-
lary of Theorem 4.1, the condition about the countable gaatifly of the set# can

be replaced by the condition that the class of random vaest(f), f € .Z#, is
countably approximable.

All finite dimensional distributions of the set of randomiedlesS,(f), f € .7,

considered in Theorem 4.1 converge to those of a Gaussiaomafield Z(f),

f € .7, with expectatiofEZ(f) = 0 and correlatioeZ(f)Z(g) = [ f(X)g(x)u(dx),

f,g e # asn — «. Here, and in the subsequent part of the paper a collection
of random variables indexed by some set of parameters widldtled a Gaussian
random field if for all finite subsets of these parameters #&melom variables in-
dexed by this finite set are jointly Gaussian. We shall alsindeso-called lin-

ear Gaussian random fields. They consist of jointly Gaussadom variables
Z(f), f € ¢4, indexed by the elements of a linear space ¢ which satisfy

the relationZ(af + bg) = aZ(f) + bZ(g) with probability 1 for all real numbers
aandb and f,g € 4. (Let us observe that a set of Gaussian random variables
Z(f), indexed by the elements of a linear spdce ¢ such thateZ(f) = 0, and
EZ(f)Z(g) = | f(x)g(x) u(dx) for all f,g € .# is a linear Gaussian random field.
This can be seen by checking the idenEty (af +bg) — (az(f)+bZz(g))]? = 0 for

all real numberg andb andf,g € ¢ in this case.)

Let us consider a linear Gaussian random fié{d), f € ¢, where the set of
indices¥ = ¢, consists of the function$ square integrable with respect taoa
finite measureu, and take an appropriate restriction of this field to someapater
set.Z C ¢4. In the next Theorem 4.2 | present a natural Gaussian cqanteof
Theorem 4.1 by means of an appropriate choiceZofLet me also remark that
in Chapter 10 the multiple Wieneréltintegrals of functions ok variables with
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respect to a white noise will be defined for Rl 1. In the special case= 1 the
Wiener—I6 integrals for an appropriate class of functidns .% yield a model for
which Theorem 4.2 is applicable. Before formulating thisulelet us introduce the
following definition which is a version of the definition bf-dense functions.

Definition of Ly-dense classes of functions with respect to a measuge Let a
measurable spacgX, Z") be given together with a measugeon the o-algebra

Z and a set# of 2" measurable real valued functions on this space. The set of
functions.# is called an L,-dense class of function$,< p < o, with respect to

the measurgt with parameter D and exponent L if for all numb@s: € < 1 there
exists a finitee-dense subse¥, = {f1,..., fm} C.# inthe space h(X, 2", u) with

m < De~ L elements, i.e. such a sét; C .# with m< D&t elements for which
fiQ; J|f—fj|Pdu < €P for all functions fe .Z.

€7

Theorem 4.2 (Estimate on the supremum of a class of Gaussiaamdom vari-
ables).Let a probability measurg: be given on a measurable spag¢, 2) to-
gether with a linear Gaussian random field &4, f € ¢, such that EZf) = 0,
EZ(f)Z(g) = [ f(xX)g(x)u(dx), f,ge ¢, where¥ is the space of square integrable
functions with respect to this measyrelLet.# C ¢ be a countable andj-dense
class of functions with respect to the measpravith some exponent & 1 and
parameter D> 1 which also satisfies condition (4.2) with sothe o < 1.

Then there exist some universal constants Cand M > 0 (for instance C= 4
and M= 16is a good choice) such that the inequality

P <f££|z(f)| > u> SC(D+1)exp{2156(;>2}

if u > MLY?glog" 2

2 - 4.7)

holds with the parameter D and exponent L introduced in tiéotem.

Remark.In formulas (4.4) of Theorem 4.1 and in (4.7) of Theorem 4.2had a
slightly different lower bound on the numbeusfor which these results give an
estimate on the probability that the supremum of certaideoamvariables is larger
thenu. Nevertheless in the most interesting cases when the erpanand the
parameteD of the Lo-dense class of functions we consider in these theorems are
separated both from zero and infinity these bounds behavkdimin such cases
they have the magnitude constog/2 2. In (4.7) the lower bound on the numher

did not depend on the paramelzrsince the dependence on this parameter appeared
in the coefficient at the right-hand side of the inequalityhis relation. The formula
providing a lower bound on the numbethad a coefficient 3 in (4.4) and not a
coefficientL/2 as in (4.7). This is a weak boundlifis very large, and it could be
improved. But we did not work on this problem, because we waamly interested

in a good bound in the case when the expoteistseparated from infinity.

The exponent at the right-hand side of inequality (4.7) de®sontain the best
possible universal constant. One could choose the coelel‘ifiégeé with arbitrary
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small ¢ > 0 instead of the coefficieng—6 in the exponent at the right-hand side
of (4.7) if the universal constan > 0 andM > 0 are chosen sufficiently large
in this inequality. Actually, later in Theorem 8.6 such atireate will be proved
which can be considered as the multivariate generalizatidineorem 4.2 with the
expression- (1;;;”2 in the exponent.

The condition about the countable cardinality of the.gein Theorem 4.2 could
be weakened similarly to Theorem 4.1. But | omit the discussif this question,
since Theorem 4.2 was only introduced for the sake of a casgrabetween the
Gaussian and non-Gaussian case. An essential differetwedre Theorems 4.1
and 4.2 is that the class of functior¥® considered in Theorem 4.1 had to bg
dense, while in Theorem 4.2 a weaker version of this propeaty needed. In The-
orem 4.2 it was demanded that there exists a finite subs#t of relatively small
cardinality which is dense in the () norm. In thel,-density property imposed in
Theorem 4.1 a similar property was demanded for all proliphiieasures. The
appearance of such a condition may be unexpected. It is @at wlhy we demand
this property for such probability measureswvhich have nothing to do with our
problem. But as we shall see, the proof of Theorem 4.1 camtaitonditioning ar-
gument where a lot of new conditional measures appear, ahditlensity property
is needed to work with all of them. One would also like to knawne results that
enable us to check when this condition holds. In the nexttenapnotion popular
in probability theory, the notion otVapniIéervonenkis classes will be introduced,
and it will be shown that a Vapnikzervonenkis class of functions bounded by 1 is
Lo-dense.

Another difference between Theorems 4.1 and 4.2 is thatdhditions of for-
mula (4.4) contain the upper bourdho? > u, and no similar condition was im-
posed in formula (4.7). The appearance of this conditionhiedfem 4.1 can be
explained by comparing this result with those of Chapter8w have seen, we do
not loose much information if we restrict our attention te traseu < constV;? =
constna? in Bernstein’s inequality (if sums of independent and iéily dis-
tributed random variables are considered). Theorem 4dsgan almost as good
estimate for the supremum of normalized partial sums unglamgriate conditions
for the class# of functions we consider in this theorem as Bernstein’s uradity
yields for the normalized partial sums of independent arohtidally distributed
random variables with variance bounded &%. But we could prove the estimate
of Theorem 4.1 only under the conditiqyino? > u. (Actually we could slightly
improve this result. We could impose the conditBgno? > u with an arbitrary
constantB > 0 in (4.4) if the remaining constants are appropriately ehas de-
pendence oB in this formula.) It has also a natural reason why condité) about
the supremum of the functiorfse .# appeared in Theorems 4.1 and’4and no
such condition was needed in Theorem 4.2.

The lower bounds for the level were imposed in formulas (4.4) and (4.7) be-
cause of a similar reason. To understand why such a condg#ioeeded in for-
mula (4.7) let us consider the following example. Take a \&feprocesan(t),

0 <t <1, define for all 0< s<'t <1 the functionsfs¢(-) on the interval[0, 1]
asfsi(u) =1if s<u<t, fst(u) =0if 0 <u<sort <u<1,and introduce for
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all o > 0 the following class of functions?,. .75 = {fs;: 0<s<t <1 t—s<
02, sandt are rational numbers. The integralZ(f) = folf(x)W(dx) can be de-
fined for all square integrable functiorfson the interval[0,1], and this yields a
linear Gaussian random field on the space of square integfabttions. In the
special casé = fs;y we haveZ(fst) = [ fse (U)W (du) =W(t) —W(s). Itis not dif-
ficult to see that the Gaussian random figld), f € .74, satisfies the conditions
of Theorem 4.2 with the number in formula (4.2). It is natural to expect that

P< sup Z(f) > u) < econstiu/0)® However, this relation does not hold uf=
fEegg'

1/2 1
g

u(o)<2(1-¢)olog with someg > 0. Insuch caseB| supZ(f)>u| —1,
feZs

as o — 0. This can be proved relatively simply with the help of théireate

P(Z(fst) > u(0)) > consto?1-€7 if [t — 5| = 2 and the independence of the ran-

dom integralsZ(fs;) if the functionsfs; are indexed by such paits,t) for which

the intervalg(s;t) are disjoint. This means that in this example formula (4alji&

only under the condition > Malog"/2 X with M = 2.

There is a classical result about the modulus of contindityiener processes,
and actually this result helped us to find the previous exanipis also worth men-
tioning that there are some concentration inequalities,Lsgloux [31] and Tala-
grand [56], which state that under very general conditidvesdistribution of the
supremum of a class of partial sums of independent randoiables or of the el-
ements of a Gaussian random field is strongly concentratmehdrthe expected
value of this supremum. (Talagrand’s result in this di@ttis also formulated in
Theorem 18.1 of this lecture note.) These results implytti&aproblems discussed
in Theorems 4.1 and 4.2 can be reduced to a good estimate ekpleeted value

E sup|Ss(f)| andE sup|Z(f)| of the supremum considered in these results. How-
feZ feF

ever, the estimation of the expected value of these supren@ much simpler than

the original problem.

Theorem 4.2 implies that under its conditions

E sup|Z(f)| < constolog®/? 2
fes o

with an appropriate multiplying constant depending on theameterD and ex-
ponentL of the class of functions”. In the case of Theorem 4.1 a similar es-
timate holds, but under more restrictive conditions. We dlave to impose that
V/No? > constolog!/? 2 with a sufficiently large constant. This condition is needed
to guarantee that the set of numbeisatisfying condition (4.4) is not empty. If this
condition is violated, then Theorem 4.1 supplies a weaki&émage which we get
by replacingo by an appropriates > o, and by applying Theorem 4.1 with this
numberg.

One may ask whether the above estimate on the expected ¥aheesupremum
of normalized partial sums holds without the conditigho? > constolog®/? 2.
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We show an example which gives a negative answer to thisigneStince here we
discuss a rather particular problem which is outside of cainrmterest in this work
| give a rather sketchy explanation of this example. | pretiga example together
with a Poissonian counterpart of it which may help to expitsackground.

Example 4.3 (Supremum of partial sums with bad tail behaviou). Letés,..., &,
be a sequence of independent random variables with uniféstnitdition in the
interval [0, 1]. Choose a sequence of real numbegsn=3,4,..., such that, — 0
as n— oo, and% > &, > n~% with a sufficiently small numbed > 0. Put o, =

em/"’%, and define the set of functiorlﬁsn(-) and fj n(-) on the intervall0, 1] by
the formulasf n(x) = 1if (j—1)02 < x < jo2, fjn(X) = O otherwise, and ffn(x) =
fin(x) — 02, n=3,4,...,1< < L. PutFn={fjn(): 1<j< 5}, S(f) =

(&) for f € Fpand u, = |09AA m% with a sufficiently small A- 0. Then

1 N
!

lim P(supSn(f) > un> =1

n—re feZn

This example has the following Poissonian counterpart.

Example 4.3 (A Poissonian counterpart of Example 4.3)Let R,(x) be a Poisson
process on the intervald, 1] with parameter n and ffx) = \% [Pa(x)—nx,0<x<1.
Consider the same sequences of numlsgro, and y, as in Example 4.3, and
define the random variables,Z= P(jo2) — Pa((j —1)02) for alln = 3,4,... and
1<j< o%? Then

imP | sup Znj>un| =1
n—oo . 1
13]3571

The classes of functions#, in Example 4.3 are_»-dense classes of func-
tions with some exponerit and parameteD not depending on the parameter
and the choice of the numbegs,. It can be seen that even the class of function
F ={fs1: fs1(x) =1, if s<x<t, fs¢(x) =0 otherwise} consisting of functions
defined on the interval0, 1] is anLy-dense class with some exponéntind pa-
rameterD. This follows from the results discussed in the later parthig work
(mainly Theorem 5.2), but it can be proved directly that gtstement holds e.g.
with L = 1 andD = 8. The classes of function#, also satisfy conditions (4.1),
(4.2) and (4.3) of Theorem 4.1 with? = 62 = 0? — o7, Am% =1, and the

numberu, satisfies the second conditian > Man(L¥*log"? Z + (logD)*/*)
in (4.4) for sufficiently largen. But it does not satisfy the first conditiaging? > up
of (4.4), and as a consequence Theorem 4.1 cannot be applied icase. On the

other hand, some calculation shows that (1-%5)"2- u% ronlog”2 2 Hence
nlog &
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I|mgf &rlog = = T/ZZHE fseu/p S\(f) > 0inthis case. A'anloga — 0 asn— oo,
n

this means that the expected value of the supremum of themasdms considered

in Example 4.3 does not satisfy the estimate I|m5ti|§>1/2—2E sSup $y(f) < e sug-

n—oo On feIn

gested by Theorem 4.1. Observe théio: ~ consts,dnlog"/2 2 in this case, since
V/na? eﬁ'?}”, andaylog'/? 2 -~ consté; '?%”

The proof of Examples 4.3 add3'. First we prove the statement of Exampl&'4

1 n n
For a fixed indexn the number of random variabl& | equal% > &2 Togn 2 Togn’

and they are independent. Hence it is enough to showFt(%n;J >Uy) >N 1/2
if first A > 0 and thend > 0 (appearing in the conditios, > n~%) are chosen
sufficiently small, andh > ng with some threshold indemy = ng(A, 9).

Putu, = [y/Nun + no?] + 1, where[] denotes integer part. Thé{Zn | > un) >

— — Un
P(Ph(02) > tn) > P(Pa(02) = ) = %) gnof > (“Tff) e 9% Some calcu-

ZAIogn noZ £710g 5 no?2

+&2logn+1< oo L W >~ aa and logpt >
%

lation shows thati, < IA'Og”

—2Iog£i if the constantsA > 0, d > 0 and threshold indery are appropriately
chosen. Henc®(Zn j > up) > e 2!09(1/&n)— nof > g-2Alogn—zlogn > \1[ if Ag>0
is small enough.

The statement of Example 4.3 can be deduced from Examléoy applying
Poissonian approximation. Let us apply the result of Exan8' for a Poisson
process,» with parametef and with such a numbe_xvz with which the value of
On/2 €quals the previously definem. ThenEn/z ~ 7 and the number of sample

points ofF7n/2 is less tham with probability almost 1. Attaching additional sample
points to get exactlyy sample points we can get the result of Example 4.3. | omit
the details.

In formulas (4.4) and (4.7) we formulated such a conditiontfe validity of
Theorem 4.1 and Theorem 4.2 which contains a large multiglgonstantiiL3/4
andMLY/2 of olog®/? 2 in the lower bound for the numbaiif we deal with such an
Lo-dense class of functiong which has a large exponeht At a heuristic level it
is clear that in such a case a large multiplying constantasp©n the other hand, |
did not try to find the best possible coefficients in the loweurd in relations (4.4)
and (4.7).

In Theorem 4.1 (and in its version, Theorerd’%it was demanded that the class
of functions.# should be countable. Later this condition was replaced bgaker
one about countable approximability. By restricting oueation to countable or
countably approximable classes we could avoid some urgriéaseasure theoret-
ical problems which would have arisen if we had worked wite upremum of
non-countably many random variables which may be non-nmaebku There are
some papers where possibly non-measurable models arecaismered with the
help of some rather deep results of the analysis and medseweyt Here | chose
a different approach. | proved a simple result in the follogvLemma 4.4 which
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enables us to show that in many interesting problems we carnateour attention to
countably approximable classes of random variables. Irptéhd8, in the discus-
sion of the content of Chapter 4 | write more about the refatibthis approach to
the results of other works.

Lemma 4.4.Let a class of random variables({), f € .#, indexed by some set

Z of functions be given on a spafé #). If there exists a countable subsgt C

Z of the setZ such that the sets(#) = {w: sup|U(f)(w)| > u} and Blu) =
fes

{w: sup|U(f)(w)| > u} introduced for all u> 0 in the definition of countable
fez!

approximability satisfy the relation(&) C B(u— &) for all u > € > 0, then the class

of random variables Uf), f € .#, is countably approximable.

_ The above property holds if for alld .7, € > 0andw € Q there exists a function

f=f(f,e,w) € .F suchthalU(f)(w)| > |U(f)(w)|—¢.

Proof of Lemma 4.41f A(u) C B(u—¢) for all € > 0, thenP*(A(U) \ B(u)) <
IimOP(B(uf €)\ B(u)) = 0, whereP*(X) denotes the outer measure of a not nec-
E—

essarily measurable s¥t cC Q, since (| B(u— &) = B(u), and this is what we
£—0

had to prove. Ifw € A(u), then for alle > O there exists somé = f(w) € .7
such thafU (f)(w)| > u— §. If there exists somé = f(f,§,w), f € .#’ such that
U (f)(w)] > U f(w)|—$,thenU(f)(w)| >u—¢, andw € B(u—¢). This means

thatA(u) C B(u—e¢).

The question about countable approximability also appedne case of multiple
random integrals with respect to a normalized empiricalsuea To avoid some
repetition we prove a result which also covers such casesthi®goal first we
introduce the notion of multiple integrals with respect ta@malized empirical
distribution.

Given a measurable functidi(xy,. .., x¢) on thek-fold product spacéxk, 2°%)
and a sequence of independent random variafiles. , &, with some distribution
u on the spacéX, 2") we define the integral,(f) of the functionf with re-
spect to thek-fold product of the normalized version of the empiricaltdizition
Uy introduced in (4.5) by the formula

%

e /l (X1, %) (Un(dX0) — p(dxe)) ... (Un(dX) — p(d%)),

nk(f) =

o/
where the prime in/ means that the diagonats= X,

1< j < <k, are omitted from the domain of integration. (4.8)

In the case& > 2 it will be assumed that the probability measuréas no atoms.
Lemma 4.4 enables us to prove that certain classes of ranutegrals, (f),

f € .#, defined with the help of some set of functiohs .% of k variables are

countably approximable. | present an example for a clasaaf eandom integrals.

| restrict my attention in this work to this case, becausg$kiems to be the most im-

portant case in possible statistical applications. Thelréformulate says roughly
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speaking that if we take the (multiple) integral of a funotiestricted to all possible
rectangles (with respect to a normalized empirical distidn), then the class of
these integrals is countably approximable. Hence theteesfithis lecture note is
applicable for them.

Let us consider the case wh&n= RS, the s-dimensional Euclidean space with
somes > 1. For two vectorsi = (UM, ... u®) € RS, v= (v1 ... V(¥) € R® such
thatu < v, i.e.ull) < vli) for all 1 < j < sletB(u,v) denote thes-dimensional rect-
angleB(u,v) = {z: u< z< v}. Let us fix some functior (x4, .. .,X«) of k variables
such that supf (xq,...,%)| < 1, on the spacgx®, 2°K) = (RS, %5), where %!
denotes the Borab-algebra on the Euclidean spa@g together with some proba-
bility measureu on (RS, %8%). For all pairs of vectorsug, ..., Ux), (v1,...,V) such
thatuj,v; € R®anduj <vj, 1< j <k, letus define the functiofy, .y, v,,...v, Which
equals the functiorf on the rectangl€us,vi) x --- x (uUk, V), and it is zero outside
of this rectangle. Let us call a class of functio#sconsisting of functions of the
form fy, . u.vi,..v Closed if it has the following property. iy, .y .v,...v € -7 for

some vectorgus, ..., ux) and(vy,..., V), andu; < uj; <Vvj <vj, 1< j <k then

fay,. G, € Z. InLemma 4.5 a closed class of functions will be considered,
and it will be proved that the random integrals of the fursidrom this class of
functions.# introduced in formula (4.8) constitute a countably appmeddle class.

Lemma 4.5. Let a function f on the Euclidean spac&SRatisfy the condition
[f| <1in all points, and let us consider a closed clagsof functions of the form
fuy. uevs...v € (RK 259, uj,vj € RS, uj <vj, 1< j <k, introduced in the previous
paragraph with the help of this function f. Let us take n inglegient and identically
distributed random variableé;, ..., &, with some distributioru and values in the
space(Rs, %%). Let u, denote the empirical distribution of this sequence. Then th
class of random integralsg( fu,....ucvy,....

fup,.uove,.. v € 7 is countably approximable.

Proof of Lemma 4.80Me shall prove that the definition of countable approximgpil
is satisfied in this model if the class of functio®’ consists of those functions
fug,tve,vie Ui < Vj, 1< j <k, for which all coordinates of the vectoug andv;

are rational numbers.

Given some functiorfy, .. u.v,,...v @ real number & € < 1 andw € Q let us
Vi =Vj(g,w) 1< j <Kk, with rational coordinates; < uj < Vvj <v;j in such a way
that the set&; = B(u;j,v;) \ B(Uj,V;) satisfy the relationg(K;) < g2-2+In=+/2,
andé(w) ¢ Kjforall j=1,... . kandl =1,...,n. Let us show that

‘Jn,k( fu_l,...,LTk,\Tl,...,\ﬂ()(w) - Jn,k(ful,...,uk,vl,...,vk)(w)| <e. (4.9

Lemma 4.4 (with the choicd (f) = J,x(f)) and relation (4.9) imply Lemma 4.5.
Relation (4.9) holds, since the difference of integralstaiéft-hand side can
be written as the sum of theé 2 1 integrals of the functiorf with respect to the
k-fold product of the measurg/n(p, — i) on the domain®; x --- x Dy with the
omission of the diagonalg = xj; 1 < j, j <k, j # |, whereDj is either the sei; or



30 4 On the supremum of a nice class of partial sums

B(uj,v;) andD;j = K; for at least one index. It is enough to show that the absolute
value of all these integrals is less the ¥, This follows from the observations that
1 (xa, %) < 1, v/ — ) (Kj) = =y (K)), u(K;) < 272752, and the
total variation of the signed measuyé(u, — () (restricted to the seB(uj,v;)) is
less than 2/n.

In Lemma 4.5 we have shown with the help of Lemma 4.4 about groim
tant class of functions that it is countably approximableefe are other interesting
classes of functions whose countable approximability eaproved with the help
of Lemma 4.4. But here we shall not discuss this problem.

Let us discuss the relation of the results in this chaptentorgortant result in
probability theory, to the so-called fundamental theordéthe mathematical statis-
tics. In that result a sequence of independent random Vesidh(w), ..., én(w)
is taken with some distribution functiofR(x), the empirical distribution function
Fn(X) = Fn(x, ) = 3#{j: 1< j <n, &(w) < x} is introduced, and the difference
Fna(X) — F(X) is considered. This result states that gtgpx) — F(x)| tends to zero

X

with probability one.
Observe that sufn(x) — F(x)| = n~Y/2 sup|Jn(f)|, where.Z consists of the
X fes

functionsfy(-), x € RY, defined by the relatiorfi(u) = 1 if u < x, and fy(u) = O if
u > x. Theorem 4.1yields an estimate for the probabiliti®s{ sup|J,(f)|>u|.
fez

We have seen that the above class of functighss countably approximable. The
results of the next chapter imply that this class of fundimalsa_,-dense. Let me
remark that actually it is not difficult to check this propedirectly. Hence we can
apply Theorem 4 to the above defined class of functions with= 1, and it yields

that P | n=%/2 sup|Jn(f)| > u) < eC" if 1 > u > Cn~Y/2 with some universal
feZ

constant<C > 0 andC > 0. (The condition > u can actually be dropped.) The
application of this estimate for the numbers- 0 together with the Borel-Cantelli
lemma imply the fundamental theorem of the mathematicébksitzs.

In short, the results of this chapter yield more informatout the closeness the
empirical distribution functiorr, and distribution functior- than the fundamental
theorem of the mathematical statistics. Moreover, sinesdhesults can also be ap-
plied for other classes of functions, they yield useful infation about the closeness
of the probability measurg to the empirical distributiomns,.



Chapter 5

Vapnik—Cervonenkis classes antl,-dense
classes of functions

In this chapter the most important notions and results wéllgresented about
Vapnik—éervonenkis classes, and it will be explained how they helghow in
some important cases that certain classes of functionk,agdlense. The classes of
Lo-dense classes played an important role in the previoudehdpe results of this
chapter may help to find interesting classes of functionb thiis property. Some of
the results of this chapter will be proved in Appendix A.

First | recall the definition of the following notion.

Definition of Vapnik- Cervonenkis classes of sets and functionket a set X be
given, and let us select a clasd of subsets of this set X. We call a Vapnik—
Cervonenkis class if there exist two real numbers B and K thatfor all positive
integers n and subset$r§ = {x1, ..., xn} C X of cardinality n of the set X the collec-
tion of sets of the form(8)ND, D € 2, contains no more than Brsubsets of @).
We shall call B the parameter and K the exponent of this Va@ékvonenkis class.
A class of real valued functions# on a space(Y,%') is called a Vapnik—
Cervonenkis class if the collection of graphs of these fanstis a VapnikE€ervo-
nenkis class, i.e. if the set§ & = {(y,t): yeY, min(0, f(y)) <t <max0, f(y))},
f € #, constitute a Vapniléervonenkis class of subsets of the product space
X=YxR.L

The following result which was first proved by Sauer playsredamental role in
the theory of Vapnik€ervonenkis classes. This result provides a relativelykm
condition for a clas¥ of subsets of a sef to be a Vapnik€ervonenkis class. Its
proof is given in Appendix A. Before its formulation | intrade some terminology
which is often applied in the literature.

Definition of shattering of a set.Let a set S and a clag$ of subsets of S be given.
A finite set FC S is called shattered by the clagsif all its subsets HC F can be
written in the form H= E N F with some element E & of the class of sets @f.

Theorem 5.1 (Sauer’'s lemma)Let a finite set S= S(n) consisting of n elements
be given together with a clas§ of subsets of S. ¥ shatters no subset of S of
cardinality k, then&’ contains at mosfg) + () +---+ (") subsets of S.

31
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The estimate of Sauer’s lemma is sharp. Indeed; dontains all subsets &
of cardinality less than or equal to— 1, then it shatters no subset of a §ebf
cardinalityk (a setF of cardinality k cannot be written in the forrE NF, E €
&), and¢& contains(g) + () +---+ (,",) subsets of. Sauer's lemma states, that
this is an extreme case. Any class of subgetsf S with cardinality greater than
@)+ (5) +--+ (") shatters at least one subseSafith cardinalityk.

Let us have a seX and a class of subsefg of it. One may be interested in
when 2 is a Vapnik-€Cervonenkis class. Sauer’s lemma gives a useful condition
for it. Namely, it implies that if there exists a positive égerk such that the class
2 shatters no subset of of cardinalityk, thenZ is a Vapnik-f:ervonenkis class.
Indeed, let us take some numier k, fix an arbitrary se§(n) = {x1,...,%,} C X of
cardinalityn, and introduce the class of subséts- £(S(n)) = {S(n)nD: D C Z}.

If 2 shatters no subset of of cardinalityk, then& shatters no subset &n) of
cardinalityk. Hence by Sauer’s lemma the clasontains at mosfg) + (7) +---+

(,",) elements. Let me remark that it is also proved tffat+ (7) + -+ (,.",) <

1.5&5—11)! if n> k+ 1. This estimate gives a bound on the parameter and exponent

of a Vapnik-Cervonenkis class which satisfies the above condition.

Moreover, Theorem 5.1 also has the following consequeralee @n (infinite)
setX and a class of its subse®. There are two possibilities. Either there is some
setS(n) C X of cardinalityn for all integersn such that?’(S(n)) contains all subsets
of S(n), i.e. Z shatters this set, or  sup |&(S)| tends to infinity at most in a

S SCX,|§=n
polynomial order a:m — o, where|S| and|&(S)| denote the cardinality o6 and
&(9S).

To understand why Sauer’s lemma plays an important role énttieory of
Vapnik-Cervonenkis classes let us formulate the following conerge of the
above considerations.

Corollary of Sauer's lemma.Let a set X be given together with a cla8®of subsets
of this set X. This class of set is a Vapnik-Cervonenkis class if there exists a
positive integer k such tha? shatters no subset E X of cardinality k. In other
words if each set F= {xq,...,x} C X of cardinality k has a subset G F which
cannot be written in the form & DNF with some De &, thenZ is a Vapnik—
Cervonenkis class.

The following Theorem 5.2, an important result of Richarddl2y, states that a
Vapnik-Cervonenkis class of functions bounded by 1 id astlense class of func-
tions.

Theorem 5.2 (A relation between thel;-dense class and Vapnikéervonenkis

class property).Let f(y), f € #, be a Vapnik€ervonenkis class of real valued

functions on some measurable sp&¢e?’) such thatsup|f(y)| < 1forall f € #.
yey

Then.# is an Ly-dense class of functions diY,#% ). More explicitly, if # is a
Vapnik-Cervonenkis class with parameter-B1 and exponent K> 0, then it is an
Li-dense class with exponent= 2K and parameter D= CB?(4K)? with some
universal constant G 0.



5 Vapnik—éervonenkis classes ahd-dense classes of functions 33

Proof of Theorem 5.2.et us fix some probability measureon (Y,#) and a real
number O0< € < 1. We are going to show that any finite sete, v) = {f1,...,fu} C

Z such thatf |f; — f|dv > € if j £k, fj, fx € Z(g,v) has cardinalityV < De~*
with someD > 0 andL > 0. This implies that# is anL;-dense class with parame-
terD and exponerit. Indeed, let us take a maximal subs#e,v) = {f1,..., fu} C
Z such that thé(v) distance of any two functions in this subset is at leadlax-
imality means in this context that no functidp 1 € .% can be attached @ (¢, v)
without violating this condition. Thus the inequallty < De~- means thaiZ (¢, v)

is ane-dense subset of in the space.1(Y,#,v) with no more tharDe~" ele-
ments.

In the estimation of the cardinalityl of a setZ(e,v) = {f1,..., fu} C .% with
the property[|f; — fy|dv > € if j # k we exploit the Vapnik€ervonenkis class
property of.Z in the following way. Let us choose relatively fgw= p(M, €) points
W),y eY,—-1<t <1,1<I < p,inthe spac& x [—1,1] in such a way that the
setSo(p) = {(¥i.1), 1 <1 < p} and grapha\(f;) = {(y.t): y € Y, min(0, fj(y)) <
t <max(0, fj(y))}, fj € Z(e,v) C .Z have the property that all sed¢f;) N S(p),
1< j <M, are different. Then the Vapnif;ervonenkis class property &f implies
thatM < BpX. Hence if there exists a s&(p) with the above property and with a
relatively small numbep, then this yields a useful estimate bh Such a se§(p)
will be given by means of the following random construction.

Let us choose the points (y;,t), 1 <1 < p, of the (random) se&(p) in-
dependently of each other in such a way that the coordipate chosen with
distribution v on (Y,%) and the coordinat® with uniform distribution on the
interval [—1,1] independently ofy;. (The numberp will be chosen later.) Let
us fix some indices ¥ j,k < M, and estimate from above the probability that
the setsA(fj) N S(p) and A(fx) N So(p) agree, whereA(f) denotes the graph
of the function f. Consider the symmetric differeno&( f;)AA(fx) of the sets
A(fj) and A(fx). The setsA(fj) N S(p) and A(fx) N S(p) agree if and only if
(W,t) € A(T))AA(Ty) for all (yi,t) € S(p). Let us observe that for a fixddthe
estimateP((y1.t)) € A(f))AA(fi) = 2(v x A) (A(f)AA(R)) = § [ fj— fijdv > §
holds, whereA denotes the Lebesgue measure. This implies that the ptobabi
ity that the (random) seta(fj) N S(p) andA(fx) N So(p) agree can be bounded
from above by(1 - §)P < e P¥/2. Hence the probability that all sef§ f;) N So(p)
are different is greater than—l("é')e‘pf/2 >1- MTZe‘Ps/Z. Choosep such that
Tepe/2 > lPr12/2 5 M2 > ePE/2, (We may assume thd > 1, in which case there
is such a numbep > 1. We may really assume thislt > 1, since we want to give an
upper bound oM. Moreover, the estimate we shall give on it, satisfies tregjiral-
ity.) Then the above probability is greater thénand there exists some s&f(p)
with the desired property.

The inequalitied < Bp< andM? > ePé/2 imply thatM > MP&/4 > gsMY/</48Y%
i.e. 'Osﬂ“f/ZK > Jxer: As 'og“l"/i/K < CM~Y2K for M > 1 with some universal con-
stantC > 0, this estimate implies that Theorem 5.2 holds with the agpbL and
parameteD given in its formulation.
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Let us observe that i is anL;-dense class of functions on a measure space

(Y,2/') with some exponerit and parametdDd, and also the inequality syp(y)| <1
yey
holds for allf € .%#, then.Z is anL,-dense class of functions with exponehtanhd

parameteiD2". Indeed, if we fix some probability measuveon (Y, %) together
with a number 0< € < 1, andZ(g,v) = {f1,...,fm} is an e—zz-dense set of# in
the space.1(Y,#,v), M < 2-De~2, then for all functionf € .# some function
fj € (e, v) can be chosen in such a way tifaf — fj)>dv <2 [|f — fj|dv < €2
This implies that# is anLp-dense class with the given exponent and parameter.

It is not easy to check whether a collection of subsetsf a setX is a Vapnik—
Cervonenkis class even with the help of Theorem 5.1. Thezefe following Theo-
rem 5.3 which enables us to construct many non-trivial Vegbervonenkis classes
is of special interest. Its proof is given in Appendix A.

Theorem 5.3 (A way to construct Vapnik—éervonenkis classes).et us consider

a k-dimensional subspa¢k of the linear space of real valued functions defined on
aset X, and define the level-sétgh= {x: x € X, g(x) > 0} for all functions gc %.
Take the class of subse#s= {A(g): g € %} of the set X consisting of the above
introduced level sets. No subsetSS(k+ 1) C X of cardinality k+ 1 is shattered
by 2. Hence by Theorem 5Z is a Vapnik-éervonenkis class of subsets of X.

Theorem 5.3 enables us to construct interesting Va;ﬁrélwonenkis classes.
Thus for instance the class of all half-spaces in a Euclidgzate, the class of
all ellipses in the plane, or more generally the level setk-ofder algebraic
functions of p variables with a fixed numbéet constitute a VapnikServonenkis
class in thep-dimensional Euclidean spaé®. It can be proved that i’ and 2
are Vapnikéervonenkis classes of subsets of aSQdhen also their intersection
¢N2={CND: Ce¥,D e 7}, theiruniong U = {CUD: Cc ¥¢,D € 7}
and complementary set® = {S\C: C € ¢} are Vapnik-€ervonenkis classes.
These results are less important for us, and their proofisbeilomitted. We are
interested in Vapnikéervonenkis classes not for their own sake. We are going to
find Lp-dense classes of functions, and Vapﬁ.llewonenkis classes help us in this.
Indeed, Theorem 5.2 implies that4# is a Vapnik—éervonenkis class of subsets
of a setS, then their indicator functions constitute a Vapriilervonenkis class of
functions, and as a consequencd_afense, hence also an-dense class of func-
tions. Then the results of Lemma 5.4 formulated below enabl® construct new
L,o-dense classes of functions.

Lemma 5.4 (Some useful properties of,-dense classes).et¥ be an L,-dense
class of functions on some spgde? ) whose absolute values are bounded by one,
and let f be a function oY, %) also with absolute value bounded by one. Then
f-9={f-g: ge ¥} is also an lp-dense class of functions. L& and % be
two Lp-dense classes of functions on some sgdc®’) whose absolute values are
bounded by one. Then the classes of functiéns % = {91+ 02: 91 € %1, 02 €
D} G ={hT2: €%, G €%}, MN(%,%2) ={mMin(d1,02): Q1 €%, Q€

D}, max(41,%) = {max(g91,02): 01 € %, 2 € %} are also lp-dense. 17 is an
L,-dense class of functions, aftd C ¢, then¥’ is also an lo-dense class.
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The proof of Lemma 5.4 is rather straightforward. One hashseove for instance
that if 1,01 € %1, 92,02 € % then|min(g1,92) — Min(g1,092)| < |01 —01)| + |92 —

02|, hence ifgy1,...,01m, is an§-dense subset of; andgy1,...,92m, is an §-
dense subset &, in the space.(Y, % ,v) with some probability measung, then

the functions mifgy,j,g2k), 1 < j <Mz, 1 <k < My constitute are-dense subset
of min(¥,%) in La(Y,%/,v). The last statement of Lemma 5.4 was proved after
the Corollary of Theorem 4.1. The details are left to the eead

The above result enable us to construct samelense class of functions. We
give an example for it in the following Example 5.5 which is ensequence of
Theorem 5.2 and Lemma 5.4.

Example 5.5.Take m measurable functiong(X), 1 < j < m, on a measurable
space(X, 2") which have the propertsup| fj(x)| < 1forall 1< j <m. LetZ be a
xeX

VapnikCervonenkis class consisting of measurable subsets oéthé. Define for
all pairs (f,D), fj, 1< j <m, and De Z the function fp(-) as fjp(x) = fj(x) i
xeD,and fip(x) =0ifx ¢ D, i.e. fjp(-) is the restriction of the function; ) to
the set D. Then the set of functiofs= {fjp: 1< j<m Dec Z}is Ly-dense.

Beside this, Theorem 5.3 helps us to construct Va}ﬁvrékvonenkis classes of
sets. Let me also remark that it follows from the result of tthapter that the random
variables considered in Lemma 4.5 are not only countablyamable, but the
class of functiondy, ... y.v;....v, @ppearing in their definition iso-dense.






Chapter 6

The proof of Theorems 4.1 and 4.2 on the
supremum of random sums

In this chapter we prove Theorem 4.2, an estimate about thgigaibution of the
supremum of an appropriate class of Gaussian random vesialith the help of a
method, called the chaining argument. We also investig@@toof of Theorem 4.1
which can be considered as a version of Theorem 4.2 aboutigteraum of par-
tial sums of independent and identically distributed rand@riables. The chaining
argument is not a strong enough method to prove Theorem dtlt énables us
to prove a weakened form of it formulated in Proposition @.kis result turned
out to be useful in the proof of Theorem 4.1. It enables us tlice the proof of
Theorem 4.1 to a simpler statement formulated in PropasBi@. In this chapter
we prove Proposition 6.1, formulate Proposition 6.2, amflice the proof of Theo-
rem 4.1 with the help of Proposition 6.1 to this result. Thegbof Proposition 6.2
which demands different arguments is postponed to the reagqiter. Before pre-
senting the proofs | briefly describe the chaining argument.

Let us consider a countable class of functichi®n a probability spaceX, 2, 1)
which is L,-dense with respect to the probability measyrelLet us have ei-
ther a class of Gaussian random variab#é$) with zero expectation such that
EZ(f)Z(g) = [ f(X)g(x)u(dx), f,g € %, or a set of normalized partial sums

n

Si(f) = %jglf(fj), f € 7, whereés,..., &, is a sequence of independemt

distributed random variables with values in the spé¥eZ’), and assume that
Ef(;) =0 for all f € .. We want to get a good estimate on the probability

P <supZ(f) >u| or P| supS(f) >u | if the class of functions# has some
fez fes

nice properties. The chaining argument suggests to prode an estimate in the
following way.
Let us try to find an appropriate sequence of sulget %, C --- C .% such that

U #n =7, % is such a set of functions frorF with relatively few elements for
N=1 .

whichf inf [(f— f)2du < &y with an appropriately chosen numbgy for all func-
[SEAN]

37
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tionsf € .%, and letus give a good estimate on the probamié/ sup Z(f) > uN>
fegn

or P( sup S(f) > un | forall N =1,2,... with an appropriately chosen mono-
fEEQN

tone increasing sequenag such thatN limuy = u.
—00

We can get a relatively good estimate under appropriateittonsl for the class
of functions.# by choosing the classes of functiog®, and numbergy anduy in
an appropriate way. We try to bound the difference of the abdlties

P< sup Z(f)> uN+1> -P < sup Z(f) > uN>
feIns1 fen

or of the analogous difference Z( f) is replaced bys,(f). For the sake of com-
pleteness define this difference also in the ¢dsel with the choiceZp = 0, when
the second probability in this difference equals zero.

The above mentioned difference of probabilities can beredéd in a natural
way by taking for all functiond, , € #n.1 afunctionfj € .7y which is close to
it, more explicitly [ (.., — fjy)?du < 8%, and calculating the probability that the
difference of the random variables corresponding to theseftinctions is greater
thanun.1 — Un. We can estimate these probabilities with the help of sorselte
which give a relatively good bound on the tail distributidrzeg) or S,(q) if [g?du
is small. The sum of all such probabilities gives an upperniofor the above
considered difference of probabilities. Then we get amese for the probability

fE:?N
we get a bound on the probability we are interested in by taktie limit N — co.
This method is called the chaining argument. It got this ndmeeause we estimate
the contribution of a random variable corresponding to afion fj, , € #ni1
to the bound of the probability we investigate by taking taedom variable corre-
sponding to a functiorj € .# close to it, then we choose another random variable
corresponding to a functiofy, , € .%N_1 close to this function, and by continuing
this procedure we take a chain of subsequent functions andatidom variables
corresponding to them.

First we show how this method supplies the proof of Theoreta #hen we
turn to the investigation of Theorem 4.1. In the study of ghisblem the above
method does not work well, because if two functions are veygecto each other in
the Lo(u)-norm, then the Bernstein inequality (or an improvement)a$upplies a
much weaker estimate for the difference of the partial sunnsesponding to these
two functions than the bound suggested by the central limiotem. On the other
hand, we shall prove a weaker version of Theorem 4.1 in Piopo$.1 with the
help of the chaining argument. This result will be also ukfuus.

P< sup Z(f) >uy | forallN=1,2,..., by summing up the above estimate, and

Proof of Theorem 4.2.et us list the elements of as{fo, f1,...} = .%#, and choose
forall p=0,1,2,... asetof functions?, = { fa1,p),-- -, fa(mp_,p)} C F withm, <
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2pL 5L i fF_f )2 —4p 52
(D+1)2°P-c eIementsmsuchawayth?éjglnr;fj(f fagj,p) du <27Pa

for all f € .7, and let the set’, contain also the functiori,. (We imposed the
condition f, € .7 to guarantee that the relatidne .7, holds with some index
for all f € .. We could do this by slightly enlarging the upper bound we gige
for the numbem, by replacing the factob by D + 1 in it.) For all indicesa(j, p)
of the functions in%,, p=1,2,..., define a predecessafj’,p— 1) from the
indices of the set of functions”,_1 in such a way that the functionf; ) and

fa(j p-1)) Satisfy the relatiorf (f(j o — f(j7 p-1))2du < 2-4P~D g2, With the help of
the behawour of the standard normal distribution functi@can write the estimates

PAG.P) =P (|Z(fa<i.,p)) —Z(fa(y p-1)l = 2_(1+p>u>
2—2(p+1)2 22p 2
< 2exp{—2_2_4<p_1w2} = 2exp{—12802}
1<j<my, p=12...,

and

P(B(1) =P (Z(taj0)] > 5) <ol oy b, 1<i<my

The above estimates together with the relatign, = .# which implies that
p=0

{1Z(f)| > u} C U U A(j,p)U rLTJb B(s) for all f € .7 yield that
p=1j=1 s=1

<sup|Z( >u><P<ODpAJ p) UUB )

pl]l

A(j,p) +ZP
2p, 2

2
2(D+ 1)22p'-a"-exp{ 1228;2 } +2(D+ 1)0"-exp{8l;2} .

IA IN
EMs HMS
HM 3

If u>MLY2glog"? 2 with M > 16 (andL > 1 and 0< 0 < 1), then

2p; 2 22PM2L /256
22pL 5L exp{ 2256;2} < 92pLg-L (3) / <o PP

forall p=0,1..., hence the previous inequality implies that
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P( sup|z(f)| 2D+1) 5 2" il
sup >u| < + - exp{ —— }
fez DZO 25&-2

u2

Theorem 4.2 is proved.

With an appropriate choice of the bound of the integrals endbfinition of the
sets%p in the proof of Theorem 4.2 and some additional calculatioan be proved
thatthe coeﬁicien%% in the exponent of the right-hand side (4.7) can be replaged b
1;25 with arbitrary small > 0 if the remaining (universal) constants in this estimate
are chosen sufficiently large.

The proof of Theorem 4.2 was based on a sufficiently good estiion the prob-

abilitiesP(]Z(f) —Z(g)| > u) for pairs of functionsf,g € .# and numbersi > 0.
In the case of Theorem 4.1 only a weaker bound can be giveméocdrrespond-
ing probabilities. There is no good estimate on the taikittistion of the difference
Si(f) —S(g) ifits variance is small. As a consequence, the chainingraegu sup-
plies only a weaker result in this case. This result, wheeet#il distribution of
the supremum of the normalized random sugf) is estimated on a relatively
dense subset of the class of functiohs .% in the Lo(u) norm will be given in
Proposition 6.1. Another result will be formulated in Prejimn 6.2 whose proof
is postponed to the next chapter. It will be shown that Thaodel follows from
Propositions 6.1 and 6.2.

Before the formulation of Proposition 6.1 | recall an estien&hich is a simple

n
consequence of Bernstein’s inequality.Sf(f) = % S f(&j) is the normalized
i=1

sum of independent, identically random variabRgf (&1)| <1) =1,Ef(&1) =0,
E f(&1)? < d?, then there exists some constant- 0 such that

P(ISu(f)] > u) < 2679/ if 0 <u< no?. (6.1)
In Proposition 6.1 we shall give a good (Gaussian type) edéran the probabil-

ity P sup |Sh(f)| > 7 | with some parametek > 1, whereZ is an appropriate
feZs
finite subset of a set of function® satisfying the conditions of Theorem 4.1. (We
introduced the numbek because of some technical reasons. We can formulate with
its help such a result which simplifies the reduction of theopiof Theorem 4.1 to
the proof of another result formulated in Proposition 6\ cannot give a good
estimate for the above probability for all> 0, we can do this only for such num-
bersu which are in an appropriate interval depending on the pateraeappearing
in condition (4.2) of Theorem 4.1 and the paraméteve chose in Proposition 6.1.
This fact may explain why we could prove the estimate of Theo#.1 only for
such numbera which satisfy the condition imposed in formula (4.4). Theick of
the set of functions?s C .% depends of the numberappearing in the probability
we want to estimate. It is such a subset of relatively smatlinality of .# whose
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L2(u)-norm distance from all elements &f is less tharo = o(u) with an appro-
priately defined numbew (u). With the help of Proposition 6.1 we want to reduce
the proof of Theorem 4.1 to a result formulated in the subsegBRroposition 6.2.
To do this we still need an upper bound on the cardinality4f and some upper
and lower bounds on the value afu). In Proposition 6.1 we shall formulate such
results, too.

Proposition 6.1.Let us have a countablepidense class of functiong with pa-
rameter D> 1 and exponent > 1 with respect to some probability measyreon
a measurable spadeX, Z") whose elements satisfy relations (4.1), (4.2) and (4.3)
with this probability measurg on (X, 27) and some real numbé& < o < 1. Take
a sequence of independeptdistributed random variablegs, ..., &, n> 2, and

n
define the normalized random sumgf§ = % y (&), forall f € .Z. Let us fix
I=1

some numb_eﬁ_\z 1. There exists some number MM (A) such that with these

parametersA and M= M(A) > 1 the following relations hold.

For all numbers u> 0 such that @? > (5)2 > M(Llog 2 +logD) a number
0=0(u),0< 0 <0 <1, and a collection of functions?s = {f1,..., fm} C .F
with m< Do+ elements can be chosen in such a way that the union of the sets
2y ={f: fe.7,[|f —fj2du < 0%}, 1< j <m, cover the set of function®,

m

i.e. U 2; =%, and the normalized random sumg §), f € %5, n> 2, satisfy the

j=1
inequality

u u \2
> | < -
P (éiﬂ's“(f” = A) —4eXp{ a (10A0) }
under the condition @ > (£)? > M(Llog 2 +logD) (6.2)

with the constants in formula (6.1) and the exponent L and parameter D of the

2
L,-dense class?. The inequalitylis(A%)2 >no’> & (K%) also holds with the

numbero = g (u). If the number u satisfies also the inequality

2 (U)? 32109 2 3/2
no?> () >M<L log = +(logD) 6.3)

with a sufficiently large number M M(A), then the relation @? > Llogn+logD
holds, too.

Remark.Under the conditiond > 1 andD > 1 of Proposition 6.1 the condition
formulated in relation (6.3) (with a sufficiently large nuemt = M(A)) is stronger
than the conditiomg)2 > M(Llogg +logD) imposed in formula (6.2). To see this
observe that althougfiog D)3/2 <logDiflogD < 1, but this effect can be compen-
sated by choosing a sufficiently large parameter M in forn6ld) and exploiting
thatLlog 2 > log 2.
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Proposition 6.1 helps to reduce the proof of Theorem 4.1 éodéise when
such classes of functiong are considered whose elements are such functions
whoselL,-norm is bounded by a relatively small number In more detail, the
proof of Theorem 4.1 can be reduced to a good estimate on shébdtion of the
supremum of random variables s{f(f — f;)| for all classeszj, 1 < j <m, by

feP;
means of Proposition 6.1. To carrjy out such a reduction wersed the inequality
na? > Llogn+logD (or a slightly weaker version of it). This is the reason why we
have finished Proposition 6.1 with the statement that traquiality holds under the
condition (6.3). We also have to know that the numiveof the classe®; is not
too large. Beside this, we need some estimates on the number (u) which is an
upper bound for thé&,-norm of the functions — fj, f € %;. To get such bounds
for o that we need in the applications of Proposition 6.1 we intoedl a large pa-
rameterA in the formulation of Proposition 6.1 and imposed a conditiaith a
sufficiently large numbeM = M(A) in formula (6.3). This condition reappears in
Theorem 4.1 in the conditions of the estimate (4.4).

Let me remark that one of the inequalities the numbéntroduced in Proposi-
tion 6.1 satisfies has the consequenceconst./na? with an appropriate constant.
Hence to complete the proof of Theorem 4.1 we have to estithat@robability

feF

bounded with such a numberfor which u > const./na?. On the other hand, we
got an estimate in Proposition 6.1k /no?, (see formula (6.2), and this is an in-
equality in the opposite direction. Hence to complete tlewpof Theorem 4.1 with
the help of Proposition 6.1 we need a result whose proof ddman essentially
different method. Proposition 6.2 formulated below is sactesult. | shall show
that Theorem 4.1 is a consequence of Propositions 6.1 and@position 6.1 is
proved at the end of this chapter, while the proof of Projpmsi6.2 is postponed to
the next chapter.

P (sup&(fﬂ > u | also in such cases when thg norm of the functions in& is

Proposition 6.2. Let us have a probability measuge on a measurable space
(X, Z") together with a sequence of independent andistributed random vari-
ablesé;, ..., &, n> 2, and a countable, 4-dense class of functions=f f(x) on
(X, Z") with some parameter D- 1 and exponent > 1 which satisfies condi-
tions (4.1), (4.2) and (4.3) with sonfe< o < 1 such that the inequality a? >
Llogn+logD holds. Then there exists a threshold indgA5 such that the nor-
malized random sums,&), f € %, introduced in Theorem 4.1 satisfy the inequality

P (sup|Sn(f)| > An1/202> <e A2 iE A > A, (6.4)
fes

| did not try to find optimal parameters in formula (6.4). Eviie coefficient
—AY2in the exponent at its right-hand side could be improved.r€kalt of Propo-
sition 6.2 is similar to that of Theorem 4.1. Both of them gae estimate on
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a probability of the formP | sup|S(f)| > u | with some class of functions?.
fes

The essential difference between them is that in TheorenthMslprobability is

considered foru < n/2¢2 while in Proposition 6.2 the case= An/2g2 with

A > Ag is taken, wherélg is a sufficiently large positive number. Let us observe

that in this case no good Gaussian type estimate can be givethd probabil-

ities P(Sy(f) > u), f € .Z. In this case Bernstein’s inequality yields the bound

P(S1( ) > AnY/2g2) = P<z f(&)> uvn) < e ConstAne? with y = A,/no and

= y/no for each single functiorf € .# which takes part in the supremum of
formula (6.4). The estimate (6.4) yields a slightly weakstireate for the supre-
mum of such random variables, since it contains the coefiiéi&’? instead ofA in
the exponent of the estimate at the right-hand side. Butsalsb a bound will be
sufficient for us.

In Proposition 6.2 such a situation is considered when ttegidarities of the
summands provide a non-negligible contribution to the philitiesP(|S,(f)| > u),
and the chaining argument applied in the proof of Theoremdé&s not give a
good estimate on the probability at the left-hand side of)(6This is the reason
why we separated the proof of Theorem 4.1 to two differertestants given in
Proposition 6.1 and 6.2.

In the proof of Theorem 4.1 Proposition 6.1 will be appliedhaa sufficiently
large numbeA > 1 and an appropriate numbkt = M(A) appearing in the for-
mulation of this result. Proposition 6.2 will be applied fibre sets of functions

F=F = {g_—zf": ge @j} and numbewo = g, with the numbeio, functionsf;
and sets of functions; introduced in Proposition 6.1 and with the parametgr
appearing in the formulation of Proposition 6.2. We canevrit

P( suplsi(f)|>u| <P( sup|s(f)|> 2 (6.5)
feZz fe7s A
m fi—g 1 1
<3e(sls (592 (3-30)0)

wherem s the cardinality of the set of functiongs appearing in Proposition 6.1,
which is bounded bpn< Do L. We want to choose the numb&in such a way that
the mequallt}(— - ;)u > Ag\/NG? holds, since in this case Proposition 6.2 with the

choiceA = Ag ylelds a good estimate on the second term in (6.5). This ial@gu

is equivalent tong? < (ZAO ZAloA)z(%)z. On the other hand,z:-)? > na? by

Proposition 6.1, hence the desired inequality holdﬁf— ﬁ > L. Hence with
the choiceA = max(1, %) and a sufficiently larg® = M(A) we can bound both
terms at the right-hand side of (6.5) with the help of Propmss 6.1 and 6.2.

With such a choice of\ we can write by Proposition 6.2
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P SUpSn(J )‘>(—a>u <P sup&( > Agv/no
(geﬁj 2 2 2A 9e7; 2

< e A 52/2 for all 1 <j<m
(Observe that the set of funcnoni‘r g € 9j, is anLy-dense class with parameter
D and exponent.) Hence Proposition 6.1 together with the boumet Do~ and
formula (6.5) imply that

. u L 7A0/
P <](S€L:|£|Sq(f) > u) <4exp{ a (10Aa) }+Da (6.6)

To get the estimate in Theorem 4.1 from inequality (6.6) wewskhat the in-
equalityng? > Llogn+logD (with L > 1, D > 1 andn > 2) which is valid un-
der the conditions of Proposition 6.1 implies thiad - < o’ Indeed, we have
to show that lod + LlogZ < ng?2. But we haveng? > Llogn > logn, hence

Iogn
as we have claimed.
This inequality together with the inequalihg? > ei(Ai) proved in Proposi-
tion 6.1 imply that

12— 1/2 1/2
DEﬁLe*Ao/ no /2<exp{— <A;—1> } { A](.)28A2 ) (0)2}.

Hence relation (6.6) yields that

P (f:gsn(f) > U> < 4exp{—ﬁ (3)2} +exp{—%86\22) (3)2}

and because of the relatid > 5 this estimate implies Theorem 4.1. Let me re-
mark that the conditiog/no? > u> Mo (L%*log"? 2 + (logD)¥/*) appears in for-
mula (4.4) because of condition (6.3) imposed in Propasid. (The parametd

in formula (4.4) can be chosen as twice the paramdter (6.3).)

1 <./ < n, thus Iog— <'logn, and IogD+LIogG < logD + Llogn < na?,

| finish this chapter with the proof of Proposition 6.1.

Proof of Proposition 6.1Let us list the members of7, asfy, fo,..., and choose
forall p=0,1,2,... asetZp = {fa1p):--- fam, p )} C F with my < D2%PLg-L
elements in such a way th%jgmﬂ(f - f Jyp)) du < 2-%Pg? for all f € .Z.
For all indicesa(j,p), p=1,2,..., 1< j < my, choose a predecessafj’,p—
1), i"=Jj(,p), 1 < j <mpy, in such a way that the functiong,; , and
fa(jr.p_1) Satisfy the relation) | fa(j ) — facjr p_1)|2dp < 022-4P=1. Then we have

faip)~Tai'p-1) | 2 294
f( > ) du < 402%2-%° and
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sup fa(j,p)(xla---axk) — fa(j/7p,1)(X1,...,)q() ’ <1
xjEX, 1< <k 2
Relation (6.1) yields that
P(A(] P 2Py
= >
(A(J,p) |31( faj.p-1)l A
2Pu u \2
<2 — if ng? > 2P ( ——
o a(SA )} ooz (in)”
1§J§mp» p:1,2,...7 (67)

and

PB(S) =P (|Sits0)| > 57) <2exp{-a (o)} 125<m,
u 2
if no? > (%) . (6.8)

Choose an integdR = R(u), R> 1, by the inequality

define g2 = 2-%Rg? and .%5 = Zr. (As no? > (g)2 andA > 1 by our condi-
tions, there exists such a numhbee> 1. The numbeR was chosen as the largest
number p for which the second relation of formula (6.7) holds.) Thée tar-
dinality m of the set.Z5 equalsmg < D22Rtg~L = Do+, and the sets@J are
Zi={f: f €7, [(fajr — F)2du <27R0?}, 1 < j < g, henceU P =

: =1
Beside this, with our choice of the numbRrinequalities (6.7) and (6.8) can be
applied for 1< p < R. Hence the definition of the predecessor of an intiex)

implies that{w: sup |Si(f)(w)| > %} C G U A(j,p)u rLTJb B(s), and
p=1j=1 s=1

feZs

R Mp my
<sup5n( )| > )<P<U UA(j,p)UUB(S)>
=1 =1

feZs s=1
R Mp Mo

<3 S PAGP)+ S PB(S)
p=1j=1 s=1
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If the relation(£)? > M(Llog % +logD) holds with a sufficiently large constakt
(depending o), ando < 1, then the inequalities

D22PL 5L exp{—a (%)2} < 2—Pexp{—a (épAua)z}
hold forallp=1,2,..., and
Da"-exp{a (5,:‘0)2} < exp{a (10qu>2}'
Hence the previous estimate implies that
P( sup |Sy(f)] > %) < i 2-2"exp{—a (j):u )2}
fe s ] o

+2exp{—a (1010)2} < 4exp{—a (muAa)z},

and relation (6.2) holds.
As g2 = 2°Rg? the inequality

2R, %Z (A'l:;)z < no? =2*Rno?
6(R+1)
<z®. 2256 (%)2 - %'Z_ZR (ALE)Z

holds, and this implies (together with the relati® 1) that

1 /u\2 — 1 /u\2

—(—) < <—(—=

64(Aa> =N%"= 16 (Aa) :
as we have claimed. It remained to show that under the cond{.3)ng? >
Llogn+logD.

This inequality clearly rllolds under the conditions of Prsiion 6.1 ifo < n~1/3,
since in this case lo§ > “§", andna? > g;(:%)? > zmM(Llog 5 +logD) >
ﬁKZM(LIog_njL logD)) > Llogn+logD if M > Mp(A) with a sufficiently large
numberMg(A).

2
If 0 >n"%3, we can exploit that the inequalitf'?(%) < 25607 holds be-
cause of the definition of the numbRr It can be rewritten as
(L)Z 2/3
4R -, 9—16/3 Ao
- no? '
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Hencenag? = 2~ *Rng? > %(MZ)M (g)4/3. Aslog2 >log2> 1 the inequali-
tiesno? > nt/2and(2)% > M(L%¥2log 2 + (logD)%/2) > ¥ (L¥2 + (logD)®/2) hold.
They yield that

A3 U\ R g (M
—2 21/3 (Y > 1/9 ( M 3/2 3/2\2/3
no“ > 50 (no?) (a) 2 —gg " <2> (L¥“+ (logD)*/©)

M2/3nY/9(L +logD)
- 100A4/3

> Llogn+logD

if M = M(A) is chosen sufficiently large.

a7






Chapter 7
The completion of the proof of Theorem 4.1

This chapter contains the proof of Proposition 6.2 with takplof a symmetrization
argument, and this completes the proof of Theorem 4.1. Bynsgimization argu-
ment | mean the reduction of the investigation of sums of thenfy ; f(&;) to sums
of the form y; ;f(&;), whereg; are independent random variables, independent
also of the random variable§, andP(gj = 1) = P(g; = —1) = 1. First a sym-
metrization lemma is proved, and then such an inductivestant is formulated
in Proposition 7.3 which implies Proposition 6.2. Proposit7.3 will be proved
with the help of the symmetrization lemma and a conditiorangument. To carry
out such a program we shall need some estimates which fotlomy Hoeffding'’s
inequality formulated in Theorem 3.4.

First | formulate the symmetrization lemma we shall apply.

Lemma 7.1 (Symmetrization Lemma).Let Z, and Z,, n= 1,2,..., be two se-
quences of random variables independent of each other, etritié random vari-
ablesz,, n=1,2,..., satisfy the inequality

P(|Zo|<a)>p foralln=12,... (7.1)

with some numberg > 0andf > 0. Then

P( sup |Zy| >u+a> géP( sup |Zn—Z_n\ >u) forallu > 0.

1<n<o 1<n<o

Proof of Lemma 7.1Put T = min{n: |Z,| > u+ o} if there exists such an index
n, andt = O otherwise. Then the evefit = n} is independent of the sequence of
random variableZ;,Z,,... foralln=1,2,..., and because of this independence

P({T=n}) < SP((T=n} N {|Z] < @) < 5PUT =N} (120~ 2o > )

foralln=1,2,.... Hence

49
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P( sup |Zn| > u+a) = ZP(T:
1<n<w 1=

<5 S PUT=1}n{iz -] > u)
I=1
12 -
SEI; ({T—|}ﬂl§S:<pm|Zn—Zn|>u})
1
<gP(smim2io0)

Lemma 7.1 is proved.

We shall apply the following Lemma 7.2 which is a consequenfcéhe Sym-
metrization Lemma 7.1.

Lemma 7.2.Let us fix a countable class of functio® on a measurable space
(X, 2") together with a real numbeb < o < 1. Consider a sequence of in-
dependent and identically distributed random variabégs..., &, with values in
the space(X,.2") such that E {&) = 0, Ef?(&;) < o? for all f € . together
with another sequeng, .. sn of independent random variables with distribution

P(ej=1)=P(g=-1)= 2, 1< j <n, independent also of the random sequence
&1,...,&n. Then
P sup| 5 1(&)| > Ant20?
Nter &
1 n A 3V2
<4P| —sup|S & f(&)| > =n20?| ifA>Z22. (7.2)
( feF le &)= 3 vho

Proof of Lemma 7.2.et us construct an independent coj_ax. . E_n_of the sequence
&1,...,&nin such a way that all three sequendgs .., &y, &1,...,énandey,. .., &,
are independent. Define the random variables

Sh(f foEJ and S,(f Z

forall f € .#. The inequality

P<sup|Sq(f)| >Aﬁ62> §2P<sup|&(f)—§(f)| > gAﬁfﬂ)- (7.3)

fez fez

follows from Lemma 7.1 if it is applied for the countable sétrandom vari-
ablesz,(f) = S(f) andZ,(f) = Si(f), f € Z, and the numbers = 2A/no?
anda = %Aﬁaz since the random fieldS,(f) and S,(f) are independent, and
P(IS\(f)| < a) > L forall f € . Indeed,a = $A/N0? > V20, ES,(f)? < 02,
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NI

thus Chebishev’s inequality implies that|S,(f)| < a) > P(|S\(f)| < v20) >
forall f € .7.
Let us observe that the random field

Si(f)—Sa(f) (f(&)—1(&)), fez, (7.4)

I%ZE]

_ 1
v,

1

and its randomized version

%les,—(f@j)—f(éj)), fe, (7.5)

have the same distribution. Indeed, even the conditiorstildiition of (7.5) under
the condition that the values of tleg-s are prescribed agrees with the distribution
of (7.4) for all possible values of thg-s. This follows from the observation that the
distribution of the random field (7.4) does not change if wehange the random
variablestj andéj for those indiceg for which g; = —1 and do not change them for
those indiceg for which g; = 1. On the other hand, the distribution of the random
field obtained with such an exchange of its variables agra@stihe conditional
distribution of the random field defined in (7.5) under theditan that the random
variablese; take these prescribed values.

The above relation together with formula (7.3) imply that

n
P<1 sup| Y (&) >An1/202>
feF =1
<2P isup ; & [T(&)—1(&)] > 2pnti2g2
Vh R g, i@ =T 2 5
1 A
<2P| —=su g f(&)| > =nY2g?
( fegg ;1 it(&)) 3
1 n A
+2P —= su g f(&)] > Znt/2g2
1 n A
=4P [ —sup| Y &f(&)| > =nt/20?
(\mfefEJ JZ;L : ( J) 3

Lemma 7.2 is proved.
First | try to explain briefly the method of proof of Propositi6.2. A probability

n
of the formP | n™Y2 sup| 5 f(&j)| > u | has to be estimated. Lemma 7.2 enables
fez |j=1
us to replace this problem by the estimation of the proktsbili
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S 4
3

with some independent random variablgs P(g; = 1) = P(gj = —1) = % i=
1,...,n, which are also independent of the random varialflesie shall bound
the conditional probability of the event appearing in thigdified problem under
the condition that each random varialflgtakes a prescribed value. This can be
done with the help of Hoeffding’s inequality formulated ifmmdorem 3.4 and the
Lo-density property of the class of functios we consider. We hope to get a sharp
estimate in such a way which is similar to the result we gothia $tudy of the
Gaussian counterpart of this problem, because Hoeffdingtguality yields always

a Gaussian type upper bound for the tail distribution of #wedom sum we are
studying.

Nevertheless, there appears a problem when we try to apply @au approach.
To get a good estimate on the conditional tail distributibnhe supremum of the
random sums we are studying with the help of Hoeffding's uradify we need a
good estimate on the supremum of the conditional varianice sandom sums we

fes

P (n‘l/z sup

S &f(&)
=1

n
are studying, i.e. on the tail distribution of s%pz f2(&;). This problem is similar
fez j=1

to the original one, and it is not simpler.

But a more detailed study shows that our approach to get a gstbdate with
the help of Hoeffding’s inequality works. In comparing oufginal problem with
the new, complementary problem we have to understand ahvigvel we need a
good estimate on the tail distribution of the supremum indb@plementary prob-
lem to get a good tail distribution estimate at lewvein the original problem. A
detailed study shows that to bound the probability in thgional problem with pa-

n
rameteru we have to estimate the probabili®/{ n=1/2 sup > f(EJ)‘ > ylta
fes’ |i=1

with some new nice, appropriately definegidense class of bounded functiogg
and some numbear > 0. We shall exploit that the numbatis replaced by a larger
numberu'*? in the new problem. Let us also observe that if the sum of bednd
random variables is considered, then for very large numbéhe probability we
investigate equals zero. On the basis of these observatioappropriate backward
induction procedure can be worked out. Inrtth step we give a good upper bound

n

on the probabilityP [ n~1/2 sup' S f(&j)| >u | if u> T, with an appropriately
fez |i=1

chosen numbefF,, and try to diminish the numbé@, in each step of this induction

procedure. We can prove Proposition 6.2 as a consequenhe oégult we get by

means of this backward induction procedure. To work out #taits we introduce

the following notion.

Definition of good tail behaviour for a class of normalized random sums.Let
us have some measurable spéxe.2") and a probability measurg on it together
with some integer &» 2 and real numbeo > 0. Consider some clasg of functions
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f(x) on the spacéX, 2"), and take a sequence of independent andistributed
random variable<, . . ., &, with values in the spadeX, 2"). Define the normalized

n
random sums3f) = in s f(&), f € #. Given some real number ¥ 0 we say
=1

that the set of normalized random suméfS, f € .#, has a good tail behaviour at
level T (with parameters n ang? which will be fixed in the sequel) if the inequality

P <sup|31(f)| > Aﬁ02> < exp{—Al/znoz} (7.6)
fes

holds for all numbers A T.
Now | formulate Proposition 7.3 and show that Propositichféllows from it.

Proposition 7.3.Let us fix a positive integer i 2, areal numbe < o < land a

probability measurgt on a measurable spad&, .2") together with some numbers

L > 1 and D> 1 such that w? > Llogn+ logD. Let us consider those countable

L,-dense classe¥ of functions f= f(x) on the spacéX, .2") with exponent L and

parameter D for which all functions & .# satisfy the conditionsup] f (x)| < 1,
xeX

[f(x)u(dx)=0and [ f2(x)u(dx) < a2.
Let a number T> 1 be such that for all classes of functiofs which satisfy the

n
above conditions the set of normalized random sum$)S= % j;f(fj), feZ,

defined with the help of a sequence of indepengedistributed random variables
&1,...,&n have a good tail behaviour at level®. There is a universal constaA
such that if T> A, then the set of the above defined normalized sugid,),S
f € .#, have a good tail behaviour for all such classes of functighsiot only at
level T*3 but also at level T.

Proposition 6.2 simply follows from Proposition 7.3. To shthis let us first
observe that a class of normalized random s&y(g), f € %, has a good tail
behaviour at levelly = 4%2 if this class of functions# satisfies the conditions of
Proposition 7.3. Indeed, in this case

P suplss(f)| > Avic? | <P [ supisi(f)> Y1) =0
feF feF 4

for all A> To. Then the repetitive application of Proposition 7.3 yieldatta class

of random sums;,(f), f € 7, has a good tail behaviour at all levels> T0(3/4)]

with an indexj such that’l'0<3/4>J > A if the class of functions7 satisfies the con-

ditions of Proposition 7.3. Hence it has a good tail behaviouT = A2 with the
numberAg appearing in Proposition 7.3. If a class of functidns .# satisfies the

conditions of Proposition 6.2, then the class of functichs= {f_: %: fe 9}

satisfies the conditions of Proposition 7.3, with the sanrarpaterso, L andD.
(Actually some of the inequalities that must hold for thengdats of a class of
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functions.# satisfying the conditions of Proposition 7.3 are valid watmaller
parameters. But we did not change these parameters toysalisf the condition
no? > Llogn+logD.) Hence the class of functior®(f), f € .%, has a good tail

behaviour at levell = E‘g“. This implies that the original class of functions
satisfies formula (6.4) in Proposition 6.2, and this is whath&d to show.

Proof of Proposition 7.3Fix a class of functions” which satisfies the conditions
of Proposition 7.3 together with two independent sequeéges. , &, andey, ..., &
of independent random variables, whéeis p-distributed,P(g; = 1) = P(g; =
-1)= % 1< j <n, and investigate the conditional probability

Elv"wfl’l)

for all functionsf € #, A>T and values(éy,...,&,) in the condition. By the
Hoeffding inequality formulated in Theorem 3.4

> %ﬁaz

1
P(f,A|El,...,En):p<\m

> &if(&)
=1

L A2ng?
P(faA|Ela~~~7En)§29Xp{m} (7.7)
with

S(f,X1,... %) = % S fx), fes.

Let us introduce the set

H=H(A) = {(xl,...,xn): SUpS(f,Xa, ..., %)) > (1+A4/3> 02}. (7.8)

fes

| claim that s
P((&,...,&) e H) < e no® it oS T, (7.9)

(The setH is the small exceptional set of those poifis,...,X,) for which we
cannot give a good estimate f&(f, A& (w),...,&(w)) with &(w) = xq,. ..,
én(w) = X, for somef € F#.) -

To prove relation (7.9) let us consider the functidns- f(f), f(x) = f?(x) —
[ f2(x)u(dx), and introduce the class of functions = {f(f): f € Z}. Let us
show that the class of function8 satisfies the conditions of Proposition 7.3, hence
the estimate (7.6) holds for the class of functioAsf A > T#3,

The relation/ f(x)u(dx) = 0 clearly holds. The condition siif(x)| < 3 < %
also holds if supf (x)| < 7, and[ f2(x)u(dx) < [ F4(x)p(dx) < & [ F2(x) p(dx) <
‘{—Z < g2if f € Z. Itremained to show thaZ is anL,-dense c_Iass with exponelnt
and parameteD. For this goal we need a good estimate dri (x) — g(x))?p(dx),
wheref, ge.%, andp is an arbitrary probability measure.

Observe that



7 The completion of the proof of Theorem 4.1 55
[(F60-g0)2p(ax
< 2/ p(dx) +2/ )20 (dx)
< 2(su] (0] + [gx))? ( J(£60-g00) (p(dx>+u<dx>>
< [ (100~ g0y

forall f,ge %, f = f(f), g= g(g) and probability measurg, wherep = p;“
This means that if f1, ..., f} is ane-dense subset of in the space., (X, 2, p),
then{fy,..., fn} is ane- dense subset o in the spaceé.(X,.2",p), and not only
7, but also,? is anL,-dense class with exponelntand parameteb.

Because of the conditions of Proposition 7.3 we can writéffemumbei®/3 >

T4/3 and the class of function& that

P((Ela"')fn) E H)
=P sup }i E] 4= ZEfz 2<1+A4/3)0'2
fes nj
n —_—
<P <§Upln f(fj) > A4/3nl/20'2> < e7A2/3n02,

i.e. relation (7.9) holds.
By formula (7.7) and the definition of the gdtgiven in (7.8) the estimate

P(f, A1, ... &) < 26~ A°n0?/144 e (g, £y ¢ H (7.10)

holds for all f € .% andA > T > 1. (Here we used the estimate-1A%/3 < 2A%/3)
Let us introduce the conditional probability
517 LB )

ZEJ (&)

for all (&1,...,&,) andA > T. We shall estimate this conditional probability with
the help of relation (7.10) ifé1,...,&n) ¢ H.
Given a vectox(™ = (X1,...,%1) € X", let us introduce the probability measure

P(fi,A|El,...,En):P<sup fa

V=Vv(X1,...,%) = v(xX"V) on(X,2)

which is concentrated in the coordinates of the vectdt = (X1,...,%), and
v({xj}) = % for all pointsxj, j = 1,....n. If [f2(u)v(du) < &2 for a function

n
f, then % s ejf(xj)‘ < n¥/2 [|f(u)|v(du) < n¥25. As a consequence, we can
i£1

write that
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n
> &ifx) - z £9(x;)

2\ 2
if /(f(u)—g(u))zdv(u)g (Ag> . (7.11)

\fa

RemarkWe may assume in our proof that the distribution of the randarrables
¢j, 1< j <n, are non-atomic, and as a consequence we can restrict eatiart
to such measures(x(") for which all coordinates of the vectat” are different.
Otherwise we can define independent and uniformly distitbubndom variables
on the interval0,1], ns, ..., Nn, which are also independent of the random variables
&j, 1 < j < n. With the help of these random variablgg we can introduce the
random var|able5§J (&;,n;), 1< j <n, and the class of functiong on the space
X x [0,1] consisting of functiond’ (x y)=f(x), f € .#,withxe Xand 0<y < 1.

It is not difficult to see that the random varlabléjsand the class of functiong’
satisfy the conditions of Proposition 7.3, and the distiduof the random variables
&; is non-atomic. Hence we can apply Proposition 7.3 with suchace, and this
provides the statement of Proposition 7.3 in the originak¢#oo.

Let us list the elements of the (countable) s&tas.# = {fi, fa,...}, fix

the numberd = A%z, and choose for all vectorg™ = (xg,...,x)) € X" a se-
quence of indicepy(x™),..., pm(xX(") taking positive mteger values withh =

max(1,D5 ) = max1,D(z,)") elements in such a way thrilt<|<|nf( (u) —
<I<m

oy ) (U)Zdv(XM) (u) < 82 for all f € .7 andx™ € X" with the above defined

measurev( xW) on the spacéX, .2"). This is possible because of the-dense prop-
erty of the class of function& . (This is the point where thie,-dense property of the
class of functions” is exploited in its full strength.) In a complete proof of Posi-
tion 7.3 we still have to show that we can choose the indigés™), 1< j <m, as
measurable functions of their argumett on the spacé¢X”, .2™"). We shall show
this in Lemma 7.4 at the end of the proof.

PutéM(w) = (&1 (w),...,&(w)). Because of relation (7.11), the choice of the
numberd and the property of the functlon‘a n) ) we have

n A
{w fseuf\f ]Zl j(w)f(&(w)) 23ﬁ02} (7.12)
CU{‘*’ foy (e (@) (€5 (@) Zéﬁaz}-
=1

We can estimate the conditional probability at the rightéhaide of (7.12) under
the condition that the vectqi€i(w),...,én(w)) takes such a prescribed value for
which (&1(w),...,&n(w)) € H. We get with the help of (7.12), inequality (7.10) and
the definition of the quantit(f,A|és,.. ., &y) before formula (7.7) that
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m
P(F AL &) <3 P(f, e AldL....&)
=1
<2 1.D 6 \" —A2/3n02 /144
< 2max A? e
if (&1,...,&n) ¢ HandA>T. (7.13)

If A> Ay with a sufficiently large constaro, then this inequality together with
Lemma 7.2 and the estimate (7.9) imply that

1 n
>(Grw| 3o

=1
n

S4P<ffseuf JZ if(&)] =

L
< max (4 8D ( 6 ) ) g APn0?/144 | po-R2Pna? g A T

> Ant/2 02>

% Yoo 2) (7.14)

Ag?

(We may apply Lemma 7.2 iA > Ay with a sufficiently largeAq, sincencg? >
Llogn+logD >log2, hence/no > \/log2, and the conditioA > ?}f demanded
in relation (7.2) is satisfied.)

By the conditions of Proposition 7.3 the inequalities® > Llogn+logD hold
with someL > 1, D > 1 andn > 2. This implies thano? > Llog2 > 1, (AGZ)'- <
(505)t <nb=eHloan < &9” if A> Ag with some sufficiently large constafg > 0,
and D = 092+oaD < &310” Hence the first term at the right-hand side of (7.14)
can be bounded by

6\ ~A?Pno?/144 - ~A2Pno?/144 4 Ano? 1 ~Al/2ng?
max| 4,8D Ag? e <€ 467 < €
if A> Ay with a sufficiently largeAy. The second term at the right-hand side
of (7.14) can also be bounded asf°no’ < %e*Al/ 2no? with an appropriate choice

of the number.
By the above calculation formula (7.14) yields the inegyali

JEr g

if A>T, and the constar is chosen sufficiently large.

> Anl/20.2> < e—Al/zno2

To complete the proof of Proposition 7.3 we still show in thdwing Lemma
7.4 that the functiong, (x), 1 < | < m, we have introduced in the above argu-
ment can be chosen as measurable functions in the $pdce ™). This implies
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that the expressiont, (E(n)w))(fj(w)) in formula (7.12) are7 (&1, ..., ) measur-
able random variables. Hence the formulation of (7.13)g#ilme, no measurability
problem arises. We shall present Lemma 7.4 together witleggemeralizations in
Lemma 7.4A and Lemma 7.4B that we shall apply later in the fpabd”roposi-

tions 15.3 and 15.4 which are multivariate versions of Psitjpm 7.3. We shall
need these results in the proof of the multivariate versibRroposition 6.2. We
have formulated them not in their most general possible fowrmin the form as we
shall need them.

Lemma 7.4.Let % = {fq, f2,...} be a countable andJ-dense class of functions
with some exponentt 0 and parameter D> 1 on a measurable spa¢, 2"). Fix
some positive integer n, and define for dMx= (X1,...,%1) € X" the probability
measurev(xM) = v(xq,...,%,) on the spacéX, 2") by the formulav (x")(x;) =
1,1<j <n. ForanumbeO < & < 1 put m=m(¢) = [De"1], where[-] denotes
integer part. For all0 < £ < 1 there exists ra= m(g) measurable functions; x("),

1 <1 <m, on the measurable spa@¢", 2™") with positive integer values in such a
way that inf f(f(u)—f, o (W)?V(xM)(du) < e?forall XV € X" and fe 7.

In the proof of Proposition 15.3 we need the following result

Lemma 7.4A.Let.7 = {fy1, f2,...} be a countable andj-dense class of functions
with some exponent £ 0 and parameter D> 1 on the k-fold productX¥, 2°%)
of a measurable spade, 2") with some k> 1. Fix some positive integer n, and

define for all vectors ® = (x,(”, 1<1<n1<j<k) e Xk where *j) e X for
all j and | the probability measur@(x(™) in the spaceg XX, 2°¥) by the formula
! _ > !
p(x(n>)(x|<j‘), 1<j<k1<lj<n)= ni for all seqqence@qf),...,)(,(k)) , 1< <Kk,
1 <1j < n, with coordinates of the vectofk = (xl(”,l <I1<n/1<j<Kk). Forall
0 < & < 1there exist m= m(¢) = [De 1] measurable functions, (x"), 1 <r <m,

on the measurable spa¢¥*", .2°k") with positive integer values in such a way that

i - 2, 5(0) 2 k
1S|rr1;nf(f(u) o oy (U)2P(XM) (du) < g2 for all x(V € X" and fe 7.

In the proof of Proposition 15.4 the following result will beeded.
Lemma 7.4B.Let.# = {fy, f,...} be a countable and jJ-dense class of func-

tions with some exponent 0 and parameter D> 1 on the product space
(XKxY, 2% x %) with some measurable spades 2°) and (Y, %) and integer k>

1. Fix some positive integer n, and define for all vectdfs x (xl(j’l>,x|(j"71), 1<

| <n,1<j<Kk) e XN where *j’ﬂ) e X for all j and | a probability measure
a(xM) in the spaceg X x Y, 2K x #) in the following way. Fix some probabil-
ity measurep in the spacdY,# ) and two+1 sequencesik) = (&11,...,& 1) and
eék) = (&1,2,...,&2) of length k. Define with their help first the following proba-
bility measuresr, (xM) = a; (xV, e el p) andap(xM) = ap(x™, M £l p)

in the spacg XX x Y, 2% x @) for all x™ ¢ 272", Let al(x(”))({m(ll’sl'”} X +ee X

{Xl(:ask.l)} x B) = % and az(x(n))({)q(ll,slﬁz)} SO {)(I(:"gKZ)} x B) = % with
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1<lj<nforall1<j<kandBec % if xl(jj’gj’l) and >{j"£j’2) are the appropriate co-

ordinates of the vector® € X%, Puta (x(") = % Forall0<e<1
there exist m= m(e) = [De~'] measurable functions,x"), 1 <r < m, on the

measurable spacéx?" 272 with positive integer values in such a way that
inf [(f(u)—f_ o u)2a(xXM)(du) < e forall x™ € X*"and fe .7
1<r<m pr (x(M)

Proof of Lemma 7.4Fix some 0< € < 1, put the numbem = m(¢) introduced in
the lemma, and let us list the set of all vect¢js, ..., jm) of lengthm with pos-

itive integer coordinates in some way. Define for all of thesetors(ji,..., jm)
the setB(j1,...,jm) C X" in the following way. The relatiox™ = (xq,...,%,) €
B(jl,...,jm) holds if and only if inf [(f(u)— fj(u u))2dv(x(M)(u) < &2 for all
f € .Z. Then all setsB(ji,.. ,Jm) are measurable, and U B(j1,...,Jm) =
(j1ssim)

X" because is an Lz -dense class of functions with expondntand parame-
ter D. Given a pointx(" = (xq,...,X,) let us choose the first vectOi1, ..., jm) =
(jl(xm)) ...,jm( x(n ))) in our list of vectors for whichx™ € B(jy,..., jm), and de-
fine p (x(W) = j; (x(") for all 1 < | < mwith this vector(js,..., jm). Then the func-
tions p (x(") are measurable, and the functiof)s, ) 1 <1 < m, defined with

their help together with the probability measurgs(™) satisfy the inequality de-
manded in Lemma 7.4.

The proof of Lemmas 7.4A and 7.4B is almost the same. We ong ttamodify
the definition of the set8(js,. .., jm) in a natural way. The space of argumexif¥
are the spacexkn andXan in these lemmas, and we have to integrate With respect
to the measureg(x(") in the spaceéx* and with respect to the measue&") in
the spacex® x Y respectively. The se®(js,..., jm) are measurable also in these
cases, and the rest of the proof can be applied without armgeha






Chapter 8
Formulation of the main results of this work

Former chapters of this work contain estimates about thdistiibution of normal-
ized sums of independent, identically distributed randaniables and of the supre-
mum of appropriate classes of such random sums. They wesideved together
with some estimates about the tail distribution of the irae@f a (deterministic)
function with respect to a normalized empirical distribatiand of the supremum
of such integrals. This two kinds of problems are closelgtesl, and to understand
them better it is useful to investigate them together wighrthatural Gaussian coun-
terpart.

In this chapter | formulate the natural multivariate vensi@f these results. They
will be proved in the subsequent chapters. To formulate thverhave to introduce
some new notions. | shall also discuss some new problemsengaiations help
in their proof. | finish this chapter with a short overview abthe content of the
remaining part of this work.

| start this chapter with the formulation of two results, dhems 8.1 and 8.2
together with some simple consequences. They vyield a slsimppate about the
tail distribution of a multiple random integral with respéa a normalized empir-
ical distribution and about the analogous problem when dliaistribution of the
supremum of such integrals is considered. These resultbamatural versions of
the corresponding one-variate results about the tail betewf an integral or of the
supremum of a class of integrals with respect to a normagnepirical distribution.
They can be formulated with the help of the notions introduoefore, in particular
with the help of the notion of multiple random integrals wigispect to a normalized
empirical distribution introduced in formula (4.8).

To formulate the following two results, Theorems 8.3 and&hd their conse-
quences, which are the natural multivariate versions ofréselts about the tail
distribution of partial sums of independent random vagapand of the supremum
of such sums we have to make some preparations. First welirteathe so-called
U-statistics which can be considered the natural multiv@ggneralizations of the
sum of independent and identically distributed randomaldes. Beside this, ob-
serve that in the one-variate case we had a good estimatair #ie tail distribu-
tion of sums of independent random variables only if the samis had expectation

61



62 8 Formulation of the main results of this work

zero. We have to find the natural multivariate version of fmsperty. Hence we
define the so-called degeneréatestatistics which can be considered as the natural
multivariate counterparts of sums of independent and idalhy distributed random
variables with zero expectation. Theorems 8.3 and 8.4 ooe&timates about the
tail-distribution of degeneraté-statistics and of the supremum of such expressions.
In Theorems 8.5 and 8.6 | formulate the Gaussian counterpéthe above re-
sults. They deal with multiple Wienerétintegrals with respect to a so-called white
noise. The notion of white noise and multiple Wiened-htegrals with respect to
it and their properties needed to have a good understandithgse results will be
explained in Chapter 10. Still two results are discussetismdhapter. They are Ex-
amples 8.7 and 8.8, which state that the estimates of Thed8eésand 8.3 are in a
certain sense sharp.

To formulate the first two results of this chapter let us cdesia sequence of
independent and identically distributed random variables. ., &, with values in a
measurable spagX, 2"). Let u denote the distribution of the random variabfgs
and introduce the empirical distribution of the sequeége. ., &, defined in (4.5).
Given a measurable functiof(xy,...,x) on thek-fold product spacéx, 2
consider its integrall,x(f) with respect to thek-fold product of the normalized
empirical distribution,/n(u, — 1) defined in formula (4.8). In the definition of this
integral the diagonalgj = x, 1 < j < | <k, were omitted from the domain of
integration. The following Theorem 8.1 can be considerethasnultiple integral
version of Bernstein’s inequality formulated in Theorerh. 3.

Theorem 8.1 (Estimate on the tail distribution of a multiple random integral
with respect to a normalized empirical distribution). Let us take a measurable
function f(xy, ..., %) on the k-fold productx, 2°¥) of a measurable spad¥, 2")
with some k> 1 together with a non-atomic probability measyreon (X, 2") and

a sequence of independent and identically distributed oamdariablesé, ..., &,
with distributionu on (X, 27). Let the function f satisfy the conditions

[flle="sup [f(xe,...,x)[ <1, 8.1

xjeX, 1<j<k
and
||f||%:/fz(xlv-~~7Xk)ll(dxl)---ll(d)‘k) < g? (8.2)

with some constart< o < 1. There exist some constants(C, > 0anda = ay >
0 such that the random integrah J(f) defined in formulas (4.5) and (4.8) satisfies
the inequality

P(‘k!Jn,k(fH >u) < Cmax(efa(u/a)Z/k7e—a(nuz)l/(k+1)) (8.3)

for all u > 0. The constants & C, > 0 and a = ay > 0 in formula (8.3) depend
only on the parameter k.

Theorem 8.1 can be reformulated in the following equivatern.
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Theorem 8.1. Under the conditions of Theorem 8.1
P([Kln(F)] > u) <Ce 91U forall0<u< 20kl (8.4)

with a numberg, 0 < o < 1, satisfying relation in (8.2) and some universal con-
stants C=Cy > 0, a = ay > 0, depending only on the multiplicity k of the integral
JnAk(f)'

Theorem 8.1 clearly implies Theorem18 since in the casel < nk/2gk+l
the first term is larger than the second one in the maximum etrigtht-hand
side of formula (8.3). On the other hand, Theorerdf 8nplies Theorem 8.1 also
if u> n2¢g%*1 Indeed, in this case Theoremi18can be applied witho =

(un*k/z)l/(kﬂ) > o if u< n¥2, since the condition & & < 1 is satisfied. This
yields thatP (k! Jnk(f)| > u) < Cexp{—a (H)z/k} = Cexp{—a(nu2)1/<k+1>} if

g

nk/2 > u > nk/2g%1, and relation (8.3) holds in this case. uf> 2n*/2, then
P(K!|Jnk()| >u) =0, and ifn/? < u < 2n¥/2, then

Pk Ink(F)] > u) < P([K1Jnk(f)] > nk/2)
< Cexp{ —a((n-nH2) 0} < cexp{ ~2 Ka(n) /]

Hence relation (8.3) holds (with a possibly different pae#éena) in these cases,
too.

Theorem 8.1 or Theorem.B state that the tail distributioR(k!|Jyk(f)| > u)
of the k-fold random integrak!J, «(f) can be bounded similarly to the probability
P(|constanX| > u), wheren is a random variable with standard normal distribu-
tion, and the number & o < 1 satisfies relation (8.2), provided that the leuel
we consider is less tham/20%™1. As we shall see later (see Corollary 1 of The-
orem 9.4), the value of the numbe? in formula (8.2) is closely related to the
variance ofk!J, k(f). At the end of this chapter an example is given which shows
that the conditionu < n*/2gk*+1 s really needed in Theorem®.

The next result, Theorem 8.2, is the generalization of Témmot1’ for multiple
random integrals with respect to a normalized empiricalsuea In its formula-
tion the notions ofL,-dense classes and countably approximability introduped i
Chapter 4 are applied.

Theorem 8.2 (Estimate on the supremum of multiple random inégrals with re-
spect to an empirical distribution). Let us have a non-atomic probability measure
u on a measurable spadeX, 2") together with a countable andtdense class
F of functions f= f(xy,...,Xc) of k variables with some parameter ®2 and
exponent > 1 on the product spacex¥, 2 %) which satisfies the conditions

[fllo=sup [f(X1,...,X)| <1, forall f € .7 (8.5)
XjGX,lSjgk

and



64 8 Formulation of the main results of this work

If13 = Ef2(&,..., &) :/f2<xl,...,xk>u<dxl>...u<dxk>goz
forall f € 7 (8.6)

with some constarft< o < 1. There exist some constants<C(k) > 0, o = a (k) >

0 and M= M(K) > 0 depending only on the parameter k such that the supremum
of the random integrals!ld, k(f), f € .%, defined by formula (4.8) satisfies the in-
equality

u\ 2/k
P suplklJnk(f)|>u] < Cexp{—a (—) } for those numbers u
fez g

for which o2 > (5)2/k > M(L%2log 2 + (logD)¥2),  (8.7)
o o
where the numbers D and L agree with the parameter and expofdme L,-dense
class.%.
The condition about the countable cardinality of the cla8scan be replaced
by the weaker condition that the class of random variablgls Kf), f € .7, is
countably approximable.

The condition given for the numberin formula (8.7) appears in Theorem 8.2
for a similar reason as the analogous condition formulat€d.4) in its one-variate
counterpart, Theorem 4.1. The lower bound is needed, simchave a good es-
timate in formula (8.7) only fou > E sup|k!Jnk(f)|. The upper bound appears,

feZ

since we have a good estimate in Theorer 8nly for 0 < u < n¥/2gk+1 If a
pair of numbergu, o) does not satisfy condition (8.7), then we may try to get an
estimate by increasing the numkor decreasing the number

To formulate such a version of Theorems 8.1 and 8.2 whictesponds to the
results about sums of independent random variables in gekea 1 the following
notions will be introduced.

Definition of U-statistics. Let us consider a function # f(xy,...,x) on the k-th
power (XK, 2°%) of a space(X,.2") together with a sequence of independent and
identically distributed random variableg, .. ., &y, n >k, which take their values in
this spacg X, 2"). The expression

1
= g f (E|17' "aak) (88)
(It 1550, =1k
A it ]

|n,k(f)

is called a U-statistic of order k with the sequergze. .., &,, and kernel function f.

Remarkln later calculations sometimes we shall work witkstatistics with kernel
functions of the formf (xy,,..., Xy, ) instead off (xy,..., %), where{us,...,uc} is
an arbitrary set with different elements. THestatistic with such a kernel function
will also be defined, and it equals thiestatistic with the original kernel functioh
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defined in (8.8), i.e.

I (F(Xugs -5 X)) = Ink(F(X1, ..., %))- (8.9)

(Observe that if we define the functidia(xy,. .., %) = f(Xp1),- .-, X)) for all
permutationst of the set{1,... k}, thenl,k(f7) = Ink(f), hence the above defini-
tion is legitimate.) Such a definition is natural, and it slifigxs the notation in some
calculations. A similar convention will be introduced ab®viener—Ib integrals in
Chapter 10.

Some specidl -statistics, called degenerafestatistics, will also be introduced.
They can be considered as the natural multivariate verdisurns of identically dis-
tributed random variables with expectation zero. Degdaélestatistics will be de-
fined together with canonical kernel functions, becaussgh&o notions are closely
related. For the sake of simpler notation in later discussiwe shall allow general
indexation of the variables in the definition of canonicahdtions, and we shall
consider functions of the form(x,,...,x, ) instead off (xg, ..., x).

Definition of degenerateU-statistics. A U-statistic |x(f) of order k with a se-
quence of independent and identically distributed rand@mables &;,...,¢&, is
called degenerate if its kernel functiorix, . .., X) satisfies the relation

E(f(él;"'vékﬂfl:le"'véjfl:XjflaEH»l:Xj+1a"'7€k:Xk):0
forall 1< j<kandxe X, s#j.

Definition of a canonical function. A function f(x,,...,x,) taking values in the
k-fold product of a measurable spa¢¥, 2") is called a canonical function with
respect to a probability measugeon (X, 2") if

/f(x|l7...,)(.jfl,u,)qu,...,x|k)u(du):O
forall 1< j<k and x, € X, s# j. (8.10)

For the sake of more convenient notations in the subseqaenofthis work we
shall also speak df -statistics of order zero. We shall writgo(c) = c for any con-
stantc, andlnp(c) will be called a degeneraté-statistic of order zero. A constant
will be considered as a canonical function with zero argusen

It is clear that &J-statisticl,(f) with kernel functionf and independent-
distributed random variablds, ..., &, is degenerate if and only if its kernel function
is canonical with respect to the probability measuré.et us also observe that

|n,k(f) = |n,k(symf) (8-11)

for all functions ofk variables.
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The next two results, Theorems 8.3 and 8.4, deal with degéagrstatistics.
Theorem 8.3 is th&J-statistic version of Theorem 8.1, and Theorem 8.4 idthe
statistic version of Theorem 8.2. Actually Theorem 8.3 géeh sharper estimate
than Theorems 8.1, because it contains more explicit aridrhetiversal constants.
| shall return to this point later.

Theorem 8.3 (Estimate on the tail distribution of a degenerte U-statistic).
Let us have a measurable functiorix{, ..., %) on the k-fold productX¥, 2°¥),

k > 1, of a measurable spaceX, 2") together with a probability measurg on
(X, Z") and a sequence of independent and identically distribtaedom variables
&1,...,&n, N > Kk, with distributionpu on (X, 2"). Let us consider the U-statistic
Ink(f) of order k with this sequence of random variabfgs. .., &, Assume that
this U-statistic is degenerate, i.e. its kernel functidixif. .., xx) is canonical with
respect to the measune. Let us also assume that the function f satisfies condi-
tions (8.1) and (8.2) with some numbi&x o < 1. Then there exist some constants
A= A(k) > 0 and B= B(k) > 0 depending only on the order k of the U-statistic
Ink(f) such that

w2k

2g2/k (1+ B (un—k/za—(kJrl))l/k)

P(N 2|kt k()] > u) < Aexp{ — (8.12)

for all 0 < u < nk/2gk+1,
Let us also formulate the following simple corollary of Them 8.3.

Corollary of Theorem 8.3. Under the conditions of Theorem 8.3 there exist some
universal constants € C(k) > 0O anda = a(k) > 0 that

2/k
P(N2 Kl (f)] > u) < Cexp{—a (5) / } for all 0 < u< /2",
(8.13)

The following estimate holds about the supremum of degéabrastatistics.

Theorem 8.4 (Estimate on the supremum of degeneraté-statistics).Let us have
a probability measurg: on a measurable spad&, 2") together with a countable
and Ly-dense class# of functions f= f(x,...,xx) of k variables with some pa-
rameter D> 2 and exponent > 1 on the product spacex¥, 2°¥) which satisfies
conditions (8.5) and (8.6) with some consté@nt. o < 1. Let us take a sequence
of independeny distributed random variable§s, ..., &, n> k, and consider the
U-statistics h () with these random variables and kernel functions f#. Let us
assume that all these U-statistigg(f), f € .7, are degenerate, or in an equivalent
form, all functions fe .# are canonical with respect to the measyreThen there
exist some constants€C(k) > 0, a = a(k) > 0 and M= M(k) > 0 depending
only on the parameter k such that the inequality
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P <supn‘k/2k!ln7k(f)| > u> < Cexp{ ( ) } holds for those
fes

2/k
numbers u for which o > (g) M(L3/2Iog + (logD)¥?),
(8.14)

where the numbers D and L agree with the parameter and expohéme L-dense
class.%.

The condition about the countable cardinality of the clagscan be replaced
by the weaker condition that the class of random variable€%, (), f € .7
countably approximable.

Next | formulate a Gaussian counterpart of the above restdtslo this | need
some notions that will be introduced in Chapter 10. In thaptar the white noise
with a reference measugewill be defined. It is an appropriate set of jointly Gaus-
sian random variables indexed by those measurablésetg” of a measure space
(X, 2", 1) with a o-finite measureu for which p(A) < . Its distribution depends
on the measurg which will be called the reference measure of the white noise

In Chapter 10 it will also be shown that given a white ngigewith a non-atomic
o-additive reference measureon a measurable spa¢¥, 2") and a measurable
function f (xg,.. ., x«) of k variables on the product spag¢¥, 2°%) such that

/fz(xl,...,xk)u(dxl)...u(dxk)gaz<oo (8.15)

ak-fold Wiener-16 integral of the functiorf with respect to the white noigay

Zu(1) =g [ 100 () . () (8.16)

can be defined, and the main properties of this integral ilbtoved there. It will
be seen that Wienerétintegrals have a similar relation to degenetatstatistics
and multiple integrals with respect to normalized emplrica@asures as normally
distributed random variables have to partial sums of inddpet random variables.
Hence it is useful to find the analogues of the previous resoléstimates about the
tail distribution of Wiener-Io integrals. This will be done in Theorems 8.5 and 8.6.

Theorem 8.5 (Estimate on the tail distribution of a multiple Wiener—It0 inte-
gral). Let us fix a measurable spa¢¥, 2") together with ac-finite non-atomic
measureu on it, and letuyw be a white noise with reference measpren (X, 27).

If f(xq,...,X) is a measurable function aix, 2°%) which satisfies relation (8.15)
with somed < g < o, then

P(KIZy k()] > u) SCexp{—; (g)z/k} (8.17)

for all u > 0 with some constants € C(k) depending only on k.
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Theorem 8.6 Estimate on the supremum of Wiener—k integrals). Let.# be a
countable class of functions of k variables defined on thaldkgroduct(X*, .27
of a measurable spade, .2") such that

/f X1, .. XOM(dxg) ... p(dx) < 0 withsomeO< o < 1forall f € .7

with some non-atomic-additive measurg: on (X, .2"). Let us also assume that
% is an Lp-dense class of functions in the sp@’é‘, 5&”") with respect to the mea-
sure uk with some exponent & 1 and parameter D> 1, where X is the k-fold
product of the measurg. (The classes ofj-dense classes with respect to a mea-
sure were defined in Chapter 4.)

Take a white noisgyy on (X, 2") with reference measurg, and define the
Wiener—Ib integrals Z, () for all f € 7. Fix some0 < € < 1. The inequality

1/(1— 2/k
P (?EL_J}JK!Z“"((W > u) gCDexp{2 <( GS)U> } (8.18)

k/2 2 2.4

holds for those numbers u which satisfy the inequality ML¥/201(log

log®/2 2). Here C=C(k) > 0, M = M(k) > 0 are some universal constants depend-
ing only on the multiplicity k of the integrals.

Remark:Theorem 8.6 is the multivariate version of Theorem 4.2 atiwitail distri-
bution of the supremum of Gaussian random variables. In fEmed.2 we could get
good estimates for such levalsvhich satisfy the inequality > constalogl/2 2
with an appropriate constant, while in Theorem 8.6 we hadhdai estimate under
the conditionu > constalogk/2 2 with an appropriate constant. In Chapter 4 we
presented an example which shows that the above conditidineolevelu in The-
orem 4.2 cannot be dropped. A similar example can be giventahe necessity
of the analogous condition in Theorem 8.6 with the help ofghlesequent Exam-
ple 8.7.

Put fst(ug,...,u) = |‘| fst(uj) Wherefo( u) denotes the indicator function of

the interval[s,t]. Take the class of functions
F=Fs={fsy: 0<s<t<lt—s< 0%/%, sandt are rationa},

and define for all functionss; € .# thek-fold Wiener—Ib integral
1
Z(fer) = E/fs,t(ul,...,uk)W(dul)...W(duk).

ThenEZ( fsgt)2 g for all fs; € .#, and it can be seen with the help of Example 8.7
similarly to the correspondmg argument applied in Chaptéiat there is some> 0

k/2 2 2

suchthaP | sup Z(fst) > colog — 1l aso — 0. Beside this, it can be seen

fsteZo
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that.# is anL,-dense class with respect to the Lebesgue measure. Thig#ntipht
the lower bound imposed anin Theorem 8.6 cannot be dropped. | omit the details
of the proof.

Formula (8.18) yields an almost as good estimate for theesupm of Wiener—
Itd integrals with the choice of a small> 0 as formula (8.17) for a single Wiener—
Itd integral. But the lower bound imposed on the numbar the estimate (8.18)
depends o, and for a small numbeg > 0 it is large.

The subsequent result presented in Example 8.7 may helpderstand why
Theorems 8.3 and 8.5 are sharp. Its proof and the discuskibe question about
the sharpness of Theorems 8.3 and 8.5 will be postponed tot€HE3.

Example 8.7 (A converse estimate to Theorem 8.5)et us have a-finite mea-
sure on some measure spag€, 2") together with a white noisgw on (X, 2")
with counting measurg. Let f(x) be a real valued function ofX, 2") such that
[ fo(X)?u(dx) = 1, and take the function (ky,...,x) = ofo(x1)--- fo(x) with
some numbeo > 0 together with the Wiener-atintegral Z, \(f) introduced in
formula (8.16).

Then the relatiorf f (xq,...,%)2p(dx). .. p(dx) = o2 holds, and the Wiener—
Itd integral Z, k() satisfies the inequality

c 1 /uy\2/k
P(|k!Z;,7|((f)|>u)2ul/kleexp{2 <5) } forallu>0 (8.19)

—~
Q
~—

with some constar@ > 0.

The above results show that multiple integrals with respeetnormalized em-
pirical distribution or degeneraté-statistics satisfy some estimates similar to those
about multiple Wiener—tintegrals, but they hold under more restrictive condiion
The difference between the estimates in these problemmikasito the difference
between the corresponding results in Chapter 4 whose rees®explained there.
Hence this will be only briefly discussed here.

The estimates of Theorem 8.1 and 8.3 are similar to that obféme 8.5. More-
over, for 0< u < en®/2gk+1 with a small numbek > 0 Theorem 8.3 yields an
almost as good estimate about degenethigtatistics as Theorem 8.5 yields for
a Wiener—Id integral with the same kernel functidnand underlying measune.
Example 8.7 shows that the constant in the exponent of fa@®17) cannot be im-
proved, at least there is no possibility of an improvemenniiy thelL,-norm of the
kernel functionf is known. Some results discussed later indicate that rreltleees-
timate of Theorem 8.3 can be improved. The main differentedsen Theorem 8.5
and the results of Theorem 8.1 or 8.3 is that in the latter tas&ernel functionf
must satisfy not only ah, but also arL., norm type condition, and the estimates
of these results are formulated under the additional ciamdit < n*/2g¥+1. It can
be shown that the condition about the norm of the kernel function cannot be
dropped from the conditions of these theorems, and a vedi&xample 3.3 will
be presented in Example 8.8 which shows that in the oasen®/2c%*1 the left-
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hand side of (8.12) may satisfy only a much weaker estimatis. dstimate will be
given only fork = 2, but with some work it can be generalized for general irglice

Theorems 8.2, 8.4 and 8.6 show that for the tail distributibthe supremum of
a not too large class of degenerbkestatistics or multiple integrals a similar upper
bound can be given as for the tail distribution of a singleethegatdJ -statistic or
multiple integral, only the universal constants may be wansthe new estimates.
However, they hold only under the additional condition tthegt level at which the
tail distribution of the supremum is estimated is not too.l8vgimilar phenomenon
appeared already in the results of Chapter 4. Moreover, suehtriction had to be
imposed in the formulation of the results here and in Chapfer the same reason.

In Theorem 8.2 and 8.4 dm-dense class of kernel functions was considered,
and this meant that the class of random integrald @tatistics we consider in this
result is not too large. In Theorem 8.6 a similar, but weakedition was imposed
on the class of kernel functions. They had to satisfy a sintiéandition, but only
for the reference measuge of the white noise appearing in the Wieneé-lhte-
gral. A similar difference appears in the comparison of Teatws 4.1 or 4 with
Theorem 4.2, and this difference has the same reason in thestses.

Next | present the proof of the following Example 8.8 whichaisnultivariate
version of Example 3.3. For the sake of simplicity | restnigt attention to the case
k=2.

Example 8.8 (A converse estimate to Theorem 8.3)Let us take a sequence of
independent and identically distributed random variabies .., &, with values in
the plane X= R? such thatj = (nj1,nj.2), Nj.1 andnj 2 are independent random
variables with the following distributions. The distrilmn of n;j ; is defined with
the help of a parametes?, 0 < g2 < %, in the same way as the distribution of the
random variables Xin Example 3.3, i.enj1=1nj1—Enj1 with P(nj 1 =1) = 02,
P(nj1 = 0) = 1— 02, whered? is that solution of the equatior’x x+ 02 = 0,
which is smaller thar%. The distribution of the random variablgs,» is given by the
formula Rnj2 =1) = P(nj2 = —1) = 3 for all 1 < j < n. Introduce the function
f(xy) = f((x1,%), (Y1,¥2)) = XaY2 + Xoy1, X = (X1,%2) € R2, y = (y1,y2) € R? if
(x,y) is in the support of the distribution of the random veqtdr, &»), i.e. if x; and
y; take the valueg — 62 or —g2 and % and y, take the values-1. Put f(x,y) =0
otherwise. Define the U -statistic
1 1
ha(f)=5 > F(&5:8) = 3

2 (NjaMk2+ Mkani2)
1< KM, £k

1<jk=n, j#k

of order 2 with the above kernel function f and sequence adprddent random
variablesés, ..., &y Then ho(f) is a degenerate U-statistic such thaupf (x,y)| <
1and E #(&j,¢j) = 02

If u > Byno® with some appropriate constani B- 2, B, *n > u > Bon~%/2 with
a sufficiently large fixed numbd, > 0 and > o2 > n—lz and n is a sufficiently
large number, then the estimate
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P(n"na(f) >u) > exp{—Bn1/3u2/3Iog (%) } (8.20)

holds with some B- 0.

Remark:In Theorem 8.3 we got the estima®én 11, ,(f) > u) < e 97 for the
above defined degeneratiestatisticlno(f) if 0 <u < no®. In the particular case

u=no®we have the estimaf(n~l,,»(f) > ng3) < e~9"9°_ On the other hand, the
above example shows that in the case no® we can get only a weaker estimate. It
is worth looking at the estimate (8.20) with fixed parameteasdu and to observe
the dependence of the upper bound on the variarfcef In»(f). In the caser? =

u?/3n~2/3 we have the upper bouret @ Example 8.8 shows that in the case
02 < u?/3n~2/3 we can get only a relatively small improvement of this estena
similar picture appears as in Example 3.3 in the dasel.

It is simple to check that thg -statistic introduced in the above example is de-
generate because of the independence of the random vamghlandn; » and the
identity En;j 1 = Enj 2 = 0. Beside thisE f(&;,&;)? = 2. In the proof of the esti-
mate (8.20) the results of Chapter 3, in particular Exam@ean be applied for the
sequence)j 1, j =1,2,...,n. Beside this, the following result, known from the the-
ory of large deviations will be applied. X1, ..., X, are independent and identically
distributed random variableB(X; = 1) = P(X; = —1) = % then for any number
0 < a < 1 there exists some numbeZs = C(a) > 0 andC, = Cy(a) > 0 such

n
thatP ( s Xj > u) >Cre /N forall0<u<an.
i£1

Proof of Example 8.8The inequality

P(n n2(f) > u) (8.21)

n n n
> P((Z nj,1> <Z nj,2> > 4nu> -P <Z NjiNj2 > 2nu>
=1 = =1

holds. Because of the independence of the random varighleandn; » the first
probability at the right-hand side of (8.21) can be boundethfbelow by bounding
the multiplicative terms in it withy, = 4n'/3u%/3 andv, = n?/3u/3. The first term
will be estimated by means of Example 3.3. This estimate eaapplied with the
choicey = v, since the relation; > 4ng? holds ifu > Bino® with By > 1, and the
remaining conditions & 02 < % andn > 4v; > 6 also hold under the conditions of
Example 8.8. The second term can be bounded with the helpdathe-deviation
result mentioned after the remark, singe< 3nif u < B, 'nwith a sufficiently large
B, > 0. In such a way we get the estimate



72 8 Formulation of the main results of this work
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with appropriate constanB; > 1, B, > 0 andB3 > 0. On the other hand, by apply-
ing Bennett’s inequality, more precisely its consequericergin formula (3.4) for
the sum of the random variabl®$ = n; 1n; > at levelnuinstead of level we get
the following upper bound for the second term at the rightehside of (8.21).

P (élnmnjz > 2nu) < exp{—Knqug%}
< exp{—284n1/3u2/3log (%) } ;

sinceEn; 1nj 2 =0,En? nf, = 0% nu>Bin°0> > 2na® because of the conditions
B; > 2 andno > 1. Hence the estimate (3.4) (with parametgy can be applied in
this case. Beside this, the const@tcan be chosen sufficiently large in the last
inequality if the numben or the boundB, in Example 8.8 us chosen sufficiently
large. This means that this term is negligible small. Thevalestimates imply the
statement of Example 8.8.

Let me remark that under some mild additional restrictidrese@stimate (8.20)
can be slightly sharpened, the term log can be replaced B{flogthe exponent of
the right-hand side of (8.20). To get such an estimate somi¢i@uhl calculation is

needed where the numbersandv, are replaced by; = 4n/3u%/3log~1/3 ( n%s >
andv, = n?/3ut/3log!/3 (T%)

| finish this chapter with a short overview about the remajmart of this work.

In our proofs we needed some results abdestatistics, and this is the main
topic of Chapter 9. One of the results discussed there isdbmalked Hoeffding
decomposition ofJ-statistics to the linear combination of degenetdtstatistics
of different order. We also needed some additional resutisiwexplain how some
properties (e.g. a bound on thg andL., horm of a kernel function, thie,-density
property of a class” of kernel function) is inherited if we turn from the original
U -statistics to the degenerdiestatistics appearing in their Hoeffding decomposi-
tion. Chapter 9 contains some results in this direction.tAeoimportant result in
it is Theorem 9.4 which yields a decomposition of multipleegrals with respect
to a normalized empirical distribution to the linear condtion of degeneratd -
statistics. This result is very similar to the Hoeffding detposition ofU -statistics.
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The main difference between them is that in the decompaositionultiple integrals
much smaller coefficients appear. Theorem 9.4 makes pedsilbeduce the proof
of Theorems 8.1 and 8.2 to the corresponding results in Ene®8.3 and 8.4 about
degenerat¥ -statistics.

The definition and the main properties of Wieneb-ititegrals needed in the proof
of Theorems 8.5 and 8.6 are presented in Chapter 10. It aigaios a result, called
the diagram formula for Wiener-étintegrals which plays an important role in our
considerations. Beside this, we proved a limit theorem reviage expressed the limit
of normalized degeneralté-statistics with the help of multiple Wienerélintegrals.
This result may explain why it is natural to consider Theoi@® as the natural
Gaussian counterpart of Theorem 8.5, and Theorem 8.6 asatheahGaussian
counterpart of Theorem 8.6.

We could prove Bernstein’s and Bennett’s inequality by nseafra good estima-
tion of the exponential moments of the partial sums we werestigating. In the
proof of their multivariate versions, in Theorems 8.3 arfal tBis method does not
work, because the exponential moments we have to boundse tases may be in-
finite. On the other hand, we could prove these results by smeba good estimate
on the high moments of the random variables whose tail bigion we wanted to
bound. In the proof of Theorem 8.5 the moments of multiple Wiel® integrals
have to be bounded, and this can be done with the help of tigeagimformula for
Wiener—Ib integrals. In Chapter 11 and 12 we proved that there is aoveas the
diagram formula for degenerdtkstatistics, and this enables us to estimate the mo-
ments needed in the proof of Theorem 8.3. In Chapter 13 weedrdtieorems 8.3,
8.5 and a multivariate version of the Hoeffding inequalythe end of this chapter
we still discussed some results which state that in ceregerswhen we have some
useful additional information about the behaviour of thenké function f beside
the upper bound of thelt, andL., norm the estimates of Theorems 8.3 or 8.5 can
be improved.

Chapter 14 contains the natural multivariate versions @fésults in Chapter 6.
In Chapter 6 Theorem 4.2 is proved about the supremum of @ausshdom vari-
ables and in Chapter 14 its multivariate version, Theoreén Both results are
proved with the help of the chaining argument. On the otherdh#he chaining
argument is not strong enough to prove Theorem 4.1. But assttdwn in Chap-
ter 6, it enables us to prove a result formulated in Propwmsii.1, and to reduce
the proof of Theorem 4.1 with its help to a simpler result fatated in Proposi-
tion 6.2. One of the results in Chapter 14, Proposition 1i4.4 multivariate version
of Proposition 6.1. We showed that the proof of Theorem 8Mbeareduced with its
help to the proof of a result formulated in Proposition 14Rich can be considered
a multivariate version of Proposition 6.2. Chapter 14 cimstatill another result. It
turned out that it is simpler to work with so-called decoulilestatistics introduced
in this chapter than with usuél-statistics, because they have more independence
properties. In Proposition 12 a version of Proposition 14.2 is formulated about
degenerat®) -statistics, and it is shown with the help of a result of de éadand
Montgomery—Smith that the proof of Proposition 14.2, angtbf Theorem 8.4 can
be reduced to the proof of Proposition.2’4
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Proposition 14£’ is proved similarly to its one-variate version, Proposit&?2.
The strategy of the proof is explained in Chapter 15. The rdidfarence between
the proof of the two propositions is that since the indepandgroperties exploited
in the proof of Proposition 6.2 hold only in a weaker form instcase, we have
to apply a more refined and more difficult argument. In paldicwe have to ap-
ply instead of the symmetrization lemma, Lemma 7.1, a moreeige version of
it. We presented an appropriate version of this result in ib@nd5.2. It is hard
to check the conditions of Lemma 15.2 when we try to apply ithe problems
arising in the proof of Proposition 1. This is the reason why we had to prove
Proposition 14’ with the help of two inductive propositions, formulated iropo-
sitions 15.3 and 15.4, while in the proof of Proposition @.&a&s enough to prove
a single result, presented in Proposition 7.3. We discuess¢iails of the problems
and the strategy of the proof in Chapter 15. The proof of Psitjpms 15.3 and 15.4
is given in Chapters 16 and 17. Chapter 16 contains the syrizgn arguments
needed for us, and the proof is completed with its help in @ely.

Finally in Chapter 18 we give an overview of this work, andlekpits relation
to some similar researches. The proof of some results i givihe Appendix.



Chapter 9
Some results aboutJ -statistics

This chapter contains the proof of the Hoeffding decompmsiheorem, an impor-
tant result about -statistics. It states that all-statistics can be represented as a sum
of degeneraté®) -statistics of different order. This representation carctesidered
as the natural multivariate version of the decompositiom sim of independent
random variable to the sum of independent random variahitbsexpectation zero
plus a constant (which can be interpreted as a random veradletero variable).
Some important properties of the Hoeffding decompositidhalso be proved. In
particular, it will be investigated how some properties lod kernel function of a
U-statistic is inherited in the behaviour of the kernel fuoies of theU -statistics in
its Hoeffding decomposition.

If the Hoeffding decomposition of bl-statistic is taken, then thie, and Le-
norms of the kernel functions appearing in ttestatistics of the Hoeffding de-
composition will be bounded by means of the correspondingnnaf the kernel
function of the original -statistic. It will also be shown that if we take a class of
U-statistics with arL,-dense class of kernel functions (and the same sequence of
independent and identically distributed random variaisiéise definition of eacky -
statistic) and consider the Hoeffding decomposition ofUaBtatistics in this class,
then the kernel functions of the degenetatstatistics appearing in these Hoeffding
decompositions also constitute bsrdense class. Another important result of this
chapter is Theorem 9.4. It yields a decomposition &ffald random integral with
respect to a normalized empirical distribution to the line@mbination of degener-
ateU-statistics. This result enables us to derive Theorem 8t ffheorem 8.3 and
Theorem 8.2 from Theorem 8.4, and it is also useful in the foobd heorems 8.3
and 8.4.

Let us first consider the Hoeffding’s decomposition. In the@al cas&k = 1 it

n
states that the sur&, = S ¢; of independent and identically distributed random
=1

n n

variables can be rewritten & = Y (§j —E¢&j) + | ¥ E¢j |, i.e. as the sum of
j=1 j=1

independent random variables with zero expectation plasmatant. We introduced

75
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the convention that a constant is the kernel function of aderatdJ-statistic of
order zero, and,o(c) = ¢ for aU-statistic of order zero. | wrote down the above
trivial formula, because Hoeffding’s decomposition isuadly its adaptation to a
more general situation. To understand this let us first seetbhcadapt the above
construction to the cade= 2.

In this case a sum of the form(f) = > f(&;,&k) has to be consid-
1< k<n,j#k

ered. Writef (&, &) = [f (&), &) —E(F (&, &)|&)]+E( (&), &)1&) = f1(&), &)+
f1(&) with f1(&), &) = (&}, &) —E(f (&), &)|&), andf1(&) = E(f (&), &)|&) to
make the conditional expectation &f(&;,&k) with respect toé, equal zero. Re-
peating this procedure for the first coordinate we defis&;, &) = f1(&j, &) —
E(f1(&), &)|&)) and fa(&)) = E(1(&;. &)|&)). Let s also writefy (&) = [f1(&) —
Ef1(&)] + Ef1(&) and f2(&j) = [f2(&j) — Ef2(&j)] + Ef2(&;). Simple calcula-
tion shows that B »(f2) is a degenerat¥l-statistics of order 2, and the identity
2n2(f) = 2In2(f2) + Ina((N=1)(f1 — Ef1)) + Ina((n—1)((f2 — Efz)) + n(n —
1)E(f1 + f2) yields the decomposition of,»(f) into a sum of degenerate-
statistics of different orders.

Hoeffding’s decomposition can be obtained by working od tletails of the
above argument in the general case. But it is simpler to Ekuhe appropriate
conditional expectations by working with the kernel funot of theU -statistics.
To carry out such a program we introduce the following notai

Let us consider th&-fold product(X*, 2%, u¥) of a measure spad¥, 2", 1)
with some probability measuye and define for all integrable functiori$xy, .. ., Xx)
and indices K j <kthe projectiorP; f of the functionf to its j-th coordinate, i.e.
integration of the functiorf with respect to itg-th coordinate.

For the sake of simpler notations in our later consideratioie shall define
the operatorP; in a slightly more general setting. Let us consider a Aet
{p1,..., Ps} C{L,..., K}, pUtX® = Xp, X Xp, X+ X Xpg, 278 = Zp, X Xpy X+ X
P per A = Up, X tp, X -+ X Up,, take the product spa¢¥?, 274, u?) and if j € A,
then define the operat® as mapping a function on this product space to a function
on the product spagg”\ti}, 2" A\ih)p by the formula

(P f)(Xpys - s Xpr_1:Xpr 15+ - -+ Xps) :/f(xpl,...,xps)u(dxj), if j=pr. (9.2)

Let us also define the (orthogonal projection) opera@rs: | — P asQ;f = f —P; f
for all integrable functions on the spacéx”, 22, u?), andj € A, i.e. put

(QjF)(Xpys - %ps) = (1 =P F(Xpy -, Xps)
- f(xpl,...,xps)—/f(xpl,...,xps)u(dx,-). 9.2)
In the definition (9.1)P; f is a function not depending on the coordingfebut in

the definition ofQ; we introduce the fictive coordinatg to make the expression
Qjf = f —P; f meaningful.
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Remark. shall use the following notatior(P; f)(Xp,, ..., Xp,_1,Xpr,q5- - - Xps) Will
denote the value of the functid?) f in the point(Xp,,...,Xp_;,Xp1,--->Xps). ON
the other hand, | writ®; f (xp,,. .., Xp,) (Without parentheses) if | want to denote the
action ofP; to f, butitis more natural to denote also the arguments of thetiimmf .
The same notation will be applied for the opera@gr

The following result holds.

Theorem 9.1 (The Hoeffding decomposition o) -statistics).Let f(xy,...,X) be
an integrable function on the k-fold produ@et®, 2%, u*) of a spacé X, 2", i) with
a probability measurg:. It has a decomposition of the form

f(X1,. ., %) = (Z fV(le,...,ij), (9.3)
T...

with fv<xj1,..-,xjv>=< M Pj|‘|Q,-f>f<xl,...,xk>
je{l. . k\V  jev

with V.= {ja,..., jjv}, 1 < J2 < - <y, forall vV C {1,... k}. Beside this,
all functions {, V C {1,...,k}, defined in (9.3) are canonical with respect to the
probability measurg: with |V | arguments.

Leté,..., &, be a sequence of independendistributed random variables, and
consider the U-statistics k(f) and |, | (fv) corresponding to the kernel functions
f, fy defined in (9.3) and random variablés, ..., &,. Then

Kink(f)= > (n=V)(n=N[=1)---(n=k+ V|l (fv) (9.4

is a representation oflk,(f) as a sum of degenerate U-statistics, whiféde-
notes the cardinality of the setV. (The prodtet- |V|)(n—[V|—1)---(n—k+1)

is defined as 1 for \&= {1,...,k}, i.e. if V| = k.) This representation is called the
Hoeffding decomposition of lig i ().

Proof of Theorem 9.1Write f = |‘| (P + Qj)f. By carrying out the multipli-

cations in this identity and applylng the commutativity btoperators; and
Qj for different indicesj we get formula (9.3). To show that the functiofig
in formula (9.3) are canonical let us observe that this priypean be rewritten
in the form Pjfy = 0 (in all pomts (X, s€V\{j}) if j €V). SinceP; = P

and the identityP;Q; = P, — PF = 0 holds for allj € {1,...,k} this relation foI-
lows from the above mentioned commutativity of the opelsalar and Qj, as

termsf(&j,,...,&j,) in the sum defining the -statistick! I, () (see formula (8.8))
and then summing them up we get relation (9.4).

In the Hoeffding decomposition we rewrote a genéfadtatistic in the form of
a linear combination of degeneratestatistics. In many applications of this result
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we still we have to know how the properties of the kernel fiorct of the original
U-statistic are reflected in the properties of the kernel fions fy of the degen-
erateU-statistics taking part in the Hoeffding composition. Intgaular, we need

a good estimate on tHe, andL. norm of the functionsy by means of the corre-
sponding norm of the functioh. Moreover, if we want to prove estimates on the tail
distribution of the supremum &f -statisticsl, x( f) defined with the help of ah,-
dense class of kernel functio® with some exponerit and parameteb, then we
may need a similar estimate on the classes of kernel furctign= {fy: f .7}
with functionsfy,V € {1,... k} appearing in the Hoeffding decomposition of these
functions. We have to show that this class of functions is bjsdense, and we also
need a good bound on the exponent and parameter dfffisense class. In the next
result such statements will be proved.

Theorem 9.2 (Some properties of the Hoeffding decompositi). Let us consider
a square integrable function(%y,. .., x) on the k-fold product spacg, 2%, u*)
and take its decomposition defined in formula (9.3). Theunéties

[ 1604, 5 eV [T udx) < [ 120a,xdu(dx). p(dx)  (25)
jev
and
sup [fv(xj, jeV)| <2Vl sup |f(xq,..., %) (9.6)
Xj, jeV Xj,1<j<k

hold for all vV C {1,...,k}. In particular,

fo < /f X1,.. X )M (dX) ... p(dx) forV =0.

Let us consider an4-dense class# of functions with some parameter ®1
and exponent > 0 on the spacegXX, 2°%), take the decomposition (9.3) of all
functions fe .#, and define the classes of functiofig = {2*|V‘ fv: fe.Z}forall
V C {1,...,k} with the functions.\f taking part in this decomposition. These classes
of functions.%y are also L,-dense with the same parameter D and exponent L for
allv c {1,... k}.

Theorem 9.2 will be proved as a consequence of Proposit®pr8sented below.
To formulate it first some notations will be introduced.

Let us consider the produ€¥ x Z, % x %) of two measurable spac€y, %)
and(Z, #) together with a probability measugeon (Z, 2°) and the operator

(PH(y) = /fy, (d2), yeY,zez 9.7)

defined for thosg € Y for which the above integral is finite. Letlenote the identity
operator on the space of functions¥i Z, i.e. let(1 f )(y,z) = f(y, 2), and introduce
the operatoQ =Qu =1 —-P=1—-P,
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QuH)(,2 = (1 =P)H) .2 = (.2 = (Puf)(y,2) = F(y,2) - / f(y.2u(d2),
(9.8)
defined for those point§/, z) € Y x Z whose first coordinatg is such that the ex-
pression(P, f)(y) is meaningful. (Here, and in the sequel a functigy) defined
on the spacé¢Y, % ) will be sometimes identified with the functiaty,z) = g(y) on
the spacéY x Z,% x %) which actually does not depend on the coordirzgt&he
following result holds:

Proposition 9.3.Let us consider the direct produ€Y x Z,% x %) of two mea-
sure spaces$Y, %) and (Z, %) together with a probability measuye on the space
(Z,%). Take the transformations,Rand Q, defined in formulas (9.7) and (9.8).
Given any probability measurg on the spacedY,#?') consider the product mea-
surep x pon(Y x Z,% x Z). Then the transformationg,Rand Q,, as maps from
the space k(Y x Z,% x Z,u x p) to Lo(Y,%,p) and Lo(Y X Z,% x Z,p x W)
respectively, have a norm less than or equal to 1, i.e.

[t ?o(ay) < [ fv.2%0(dy)u(da, (99)

and
J@unv2p(dyu(dd < [ f(v.2%p(dyu(ds (.10

for all functions fe La(Y X Z,% x Z,p x U).

If Z is an Lp-dense class of functiong¥tz) in the product spac€Y x Z, % x
%), with some parameter D 1 and exponent > 0, then also the classe%, =
{P.f, fe Z}and¥, = {3Quf = 3(f —P,f), f € F} are L,-dense classes with
the same exponent L and parameter D in the sp&¥e®’) and (Y x Z,% x &)
respectively.

The following corollary of Proposition 9.3 is formally mogeneral, but it is a
simple consequence of this result. Actually we shall neegidbrollary.

Corollary of Proposition 9.3. Let us consider the produ€¥; x Z x Yo, %4 x % x
%5) of three measurable spac€¥;,#4), (Z,2) and (Y2,%5) with a probability
measureu on the spacé€Z, 2°) and a probability measurp on i x Yz, %1 x %5),
and define the transformations

(Puf)(ypy2) = / fyLzy2)u(d2), yieYy z€Z, yaeYo (9.12)
and

(Quf)(yr,zy2) = (I =Pu)f)(y1,2y2) = f(y1,2Y2) — (Puf)(y1,2y2) (9.12)
= f(yl,z,yz)—/f(yl,z,yz)u(dZ), YLEYL, ZEZ Y2€Y2

for the measurable functions f on the spage<¥Z x Y, integrable with respect the
measureu x p. Then



80 9 Some results abolt-statistics

JPun Y2 ?p(ds dye) < [ (1270 x WA, dz o) (0.13)

for all probability measure® on (Y1 x Yz, 24 x %5), wherep x u is the product of
the probability measurg on (Y1 x Y2,%4 x %,) and U is a probability measure on
(Z,%). Also the inequality

/(Qu f)(y1. 2 y2)?p(dy1, dys)p(d2) < / f(y1,2y2)?p(dy1, dyo)p(dz) (9.14)

holds for all functions fe Lo(Y X Z,% x %, p x U).

If & is an Ly-dense class of functions(yfi,zYy») on the product spacéY; x
Zx Y2, x % xY,), with some parameter D 1 and exponent > 0, then also
the classes?, = {P,f, f € Z} and¥, = {3Quf = 3(f —P,f), f € F} are Lp-
dense classes with exponent L and parameter D in the sg#cests, %1 x #%5) and
(Y1 X Zx Y2, x & x %) respectively.

This corollary is a simple consequence of Proposition 9®dfapply it with
(Y, %) = (Y1 x Y2, %1 x %) and take the natural mappirig(y1,y2),2) — f(y1,2Y2)
of a function from the spac®’ x Z,% x %) to a function onY1 x Z x Yo, %4 x & X
%). Beside this, we apply that measure@f x Z x Y2, %1 x Z x %,) which is the
image of the product measupex u with respect to the map induced by the above
transformation on the space of measures.

Proposition 9.3, more precisely its corollary implies Treen 9.2, since itimplies
that the operator®;, Qs, 1 < s <k, applied in Theorem 9.2 do not increase the
L2(¢) norm of a functionf, and it is also clear that the norm &% is bounded
by 1, the norm ofQs = | — Ps is bounded by 2 as an operator frdm spaces to
L. spaces. The corollary of Proposition 9.3 also implies tha¥ iis anL,-dense
class of functions with parametérand exponent, then the same property holds
for the classes of functiongp, = {Psf: f € F} and Fg, = {3Qsf: f € 7},

1 <s< k. These relations together with the identfty = M Ps QS> f

imply Theorem 9.2.
Proof of Proposition 9.3The Schwarz inequality yields that

(P < [ f(.2%u(dz) forallyeY,

and integrating this inequality with respect to the probighineasurep( dy) we get
inequality (9.9). Also the inequality

JQuns.2%p(dyu(dz) = [ (142~ Ruf(v.21p(dy) (2

< [ f(22p(dyu(dz
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holds, and this is relation (9.10). This follows for instarftom the observation
that the functionsf (y,z) — (P, f)(y,z) and (P, f)(y,z) are orthogonal in the space
Lo(Y X Z,% x Z,p X H).

Let us consider an arbitrary probability measpren the spac€Y, #'). To prove
that.#,, is anL,-dense class with parametgrand exponenit if the same relation
holds for.# we have to find for all 0< ¢ <1 a set{fy,...,fm} C .Fy, 1< j<m
with m < De~t elements, such that mff(fJ —f)?dp < e2forall f e Zu. Buta

similar property holds fog in the space( x Z with the probability measure x u.
This property together with the property Bf formulated in (9.9) imply that7, is
anL,-dense class.

To prove that¥, is alsol,-dense with parametdd and exponent under the
same condition we have to find for all numbers @ < 1 and probability measurgs
onY x Zasubsefgs, .. .,0m} C ¥, with m< D&~ elements such th?ﬁj!l%ff(gj -

0)%dp < g2 forallge ¥,.

To show this let us consider the probability measpre- (p +pxH)O
(Y x Z,% x &), wherep is the projection of the measupeto (Y %), i.e.p(A )
p(Ax Z) for all A e %, take a class of functiot#y(e,p) = {f1,...,fm} C F
with m < De~L elements such tha1t<j<i%ff(fj —f)2dp < €2 for all f € .7

and put{gi,...,Om} = {3Quf1...., 3Qu fm}. All functions g € ¥, can be writ-
ten in the formg = 3Quf with some f € .#, and there exists some function
fj € Fo(e, p) such that/ (f — f;)2dp < €2. Hence to complete the proof of Proposi-
tion 9.3 it is enough to show thgftl(Q“f —Quf f)2dp < [(f — f)2dp for all pairs
f,f € . This inequality holds, sincé 3(Quf —Quf)2dp < [1(f — f)2dp +

[ 4(Ruf —Ru)2dp, and [(R,f — R,F)?dp — [Rul(f — NPdp < [ (f - )2d(p x
u) by formula (9.9). The above relations imply tryag(Q”f —Qu f_)zdp < [J(f-
f)21d(p+p x p) = [(f — f)?dp as we have claimed.

Now we shall discuss the relation between Theoreth &d Theorem 8.3 and
between Theorem 8.2 and Theorem 8.4. First we show that &he8rl (or Theo-
rem 81') is equivalent to the estimate (8.13) in the corollary of dieen 8.3 which
is slightly weaker than the estimate (8.12) of Theorem 8.8.al§o claim that The-
orems 8.2 and 8.4 are equivalent. Both in Theorem 8.2 and é&ofEm 8.4 we can
restrict our attention to the case when the class of funstiiis countable, since the
case of countably approximable classes can be simply rddaodhis situation. Let
us remark that integration with respect to the meagure 1 in the definition (4.8)
of the integrald, «(f) yields some kind of normalization which is missing in the
definition of theU-statisticsl, (). This is the cause why degener&testatistics
had to be considered in Theorems 8.3 and 8.4. The deductitreaforollary of
Theorem 8.3 from Theorems18 or of Theorem 8.4 from Theorem 8.2 is fairly
simple if the underlying probability measugeis non-atomic, since in this case the
identity Ik (f) = Jnk(f) holds for a canonical function with respect to the measure
U. Let us remark that the non-atomic property of the meagui® needed in this
argument not only because of the conditions of Theorerffsa®d 8.2, but since
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in the proof of the above identity we need the identfty(xs,...,x)u(dx;) =0
in the case when the domain of integration is not the wholeepabut the set
XAAXL, -, Xj—1, Xy -5 Xic)

The case of possibly atomic measugesan be simply reduced to the case of non-

atomic measures by means of the following enlargement oplaee(X, 2", ).

Let us introduce the product spat¢, 27, 1) = (X, 27, 1) x ([0,1],%,1), where

2 is the g-algebra and\ is the Lebesgue measure {f1]. Define the function
f((X1,u1),. .., (% Uk)) = T(X1,...,X) inthis enlarged space. Thén(f) = lnk(f),

the measurel = u x A is non-atomic, and is canonical with respect ta if f is
canonical with respect tg. Hence the corollary of Theorem 8.3 and Theorem 8.4
can be derived from Theoremsl8and 8.2 respectively by proving them first for
their counterpart in the above constructed enlarged sp#betie above defined
functions.

Also Theorems &’ and 8.2 can be derived from Theorems 8.3 and 8.4 respec-
tively, but this is a much harder problem. To do this let usenbs that a random
integralJ, k(f) can be written as a sum bf-statistics of different order, and it can
also be expressed as a sum of degen&fastatistics if Hoeffding’s decomposition
is applied for eachJ-statistic in this sum. Moreover, we shall show that the mul-
tiple integral of a functionf of k variables with respect to a normalized empirical
distribution can be decomposed to the linear combinatiategénerat®l -statistics
with the same kernel function, which appeared in Theorem 9.1 with relatively
small coefficients. This is the content of the following Tham 9.4. For the sake of
a better understanding | shall reformulate it in a more eiplorm in the special
casek = 2 in Corollary 2 of Theorem 9.4 at the end of this chapter.

Theorem 9.4 (Decomposition of a multiple random integral wih respect to

a normalized empirical measure to a linear combination of dgenerate U-
statistics). Let a non-atomic measune be given on a measurable spac¢, 2")
together with a sequence of independendistributed random variableg, ..., &,.
Take a function fxs,...,X) of k variables integrable with respect to the product
measureu® on the product spacgxk, 2°¥), and consider the empirical distribution
Un of the sequencéy, ..., &, introduced in (4.5) together with the k-fold random
integral J,(f) of the function f defined in (4.8). The identity

KlJnk(f) = (Z c(nk, V)n~ M2V |1, v (fv) (9.15)
Vc{l,..k}

holds with the set of (canonical) functiong(X;, j € V) (with respect to the measure
) defined in formula (9.3) together with some appropriatd reanbers Cn,k, p),
0 < p <k, where },y|(fv) denotes the (degenerate) U-statistic of oré| with
the random variablegs, ..., &, and kernel function\f. The constants @,k, p) in
formula (9.15) satisfy the inequalitg(n,k, p)| < C(k) foralln > kand0 < p<k
with some constant(®) < e« depending only on the order k of the integrak{f).
The relationsrLLnloC(n, k, p) = C(k, p) hold with some appropriate constantiCp)

forall 1< p<k,and Qn,k k) = 1.
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Remark.As the proof of Theorem 9.4 will show, the const&in,k, p) in for-
mula (9.15) is a polynomial of ordér— 1 of the argumenh—'/2 with some co-
efficients depending on the parametkrand p. As a consequenc€(k, p) equals
the constant term of this polynomial.

Theorems &8’ and 8.2 can be simply derived from Theorems 8.3 and 8.4 re-
spectively with the help of Theorem 9.4. Indeed, to get TeepB1' observe that
formula (9.15) implies the inequality

u

Kl Jnk( N2 g (F - .
P> 0% 5 P(rYEV I ()] g ) 019

with a constanC(k) satisfying the inequalityp!C(n,k, p) < k!C(k) for all coef-
ficientsC(n,k, p), 1 < p <k, in (9.15). Hence Theorem.B follows from The-
orem 8.3 and relations (9.5) and (9.6) in Theorem 9.2 by whteh_,-norm of
the functionsfy is bounded by thé,-norm of the functionf and theLs-norm of
fy is bounded by ¥/-times theL.-norm or f. It is enough to estimate each term
at the right-hand side of (9.16) by means of Theorem 8.3.ntlmassumed that
2KC(k) > 1. Let us first assume that also the inequaﬁ% > 1 holds. In this

case formula (8.4) in Theorem18 can be obtained by means of the estimation of
2/s
each term at the right-hand side of (9.16). Observe tha{e;qp (W) } <

)
m < 1, formula (8.4) holds again with a sufficiently lar@e> 0, because in

this case its right-hand side of (8.4) is greater than 1.
Theorem 8.2 can be similarly derived from Theorem 8.4 by nlisg that re-

lation (9.16) remains valid ifd,k(f)| is replaced by suplk(f)| and |l y|(fv)]
feF
by sup [lnv|(fv)| in it, and we have the right to choose the constdnin for-
fyeFAy

2/k .
exp{—a (?C?W) for all s < k if ?CL('W > 1. In the other case, when

mula (8.7) of Theorem 8.2 sufficiently large. The only diffece in the argument is
that beside formulas (9.5) and (9.6) the last statement ebfidm 9.2 also has to be
applied in this case. It tells that i# is anL,-dense class of functions on a space
(XK, 27%), then the classes of function, = {2~ VIfy: f € .#} are alsd.,-dense
classes of functions for af  {1,...,k} with the same exponent and parameter.

Before its proof | make some comments about the content obrEime 9.4.
The expressiod, () was defined as k-fold random integral with respect to the
signed measurg, — U, where the diagonals were omitted from the domain of in-
tegration. Formula (9.15) expresses the random intelliglf) as a linear com-
bination of degeneratbl-statistics of different order. This is similar to the Ho-
effding decomposition of thé&-statisticl,k(f) to the linear combination of de-
generatdJ-statistics defined with the same kernel functidigs The main differ-
ence between these two formulas is that in the expansio®)(®flJ,(f) the
termsly, v |(fv) appear with small coefficien@&(n,k; [V[)[V |! W As we shall see,
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E(C(nk V)V[!' 577 Inv (fv))? < K with a constanK <  not depending om

for each seV C {1,...,k}. This can be so interpreted that the sum at the right-
hand side of (9.15) consists of such random varia®lesk, [V )|V [In~- V1721, (fy)
which are of constant magnitude. The smallness of thesdideats is related to
fact that in the definition of, () integration is taken with respect to the signed
measuregi, — U instead of the empirical measyrg, which means some kind of nor-
malization. On the other hand, these coeffici€d{s, k,|V|) may have a non-zero
limit as n — o also for|V| < k. In particular, the expansion (9.15) may contain a
constant tern€(n, k, 0) # 0 such that evep_)lcinrﬁ:(nj k,0) # 0. In such a case also the

expected valu& J, x(f) does not equal zero. But even in such a case this expected
value can be bounded by a finite number not depending on thglesaimen. Next |
show an example for a two-fold random integdap(f) such that £J,»(f) = —1.

Let us choose a sequence of independent random vari&bles, &, with uni-
form distribution on the unit interval, let, denote its empirical distribution, let
f = f(x,y) denote the indicator function of the unit square, i.e.flét,y) =1
if 0 <xy<1, andf(xy) =0 otherwise. Let us consider the random integral
2Jn2(f) = n [iy F(XY)(Un(dX) — dX)(Hn(dy) — dy), and calculate its expected
value £J,>(f). By adjusting the diagonat =y to the domain of integration
and taking out the contribution obtained in this way we gett tlEJ,»>(f) =
nE(fol(un(dx) — p(dx)?—n?. n—lz = —1. (The last term is the integral of the func-
tion f(x,y) on the diagonak =y with respect to the product measuyrex u, which
equals(un — 1) x (Un — ) on the diagonal.)

Now | turn to the proof of Theorem 9.4.

Proof of Theorem 9.4_et us remark that for a canonical functigrfwith respect to
the measurg) of p variables the identityl‘p/zplln_yp(g) = pldn p(g) holds. (At this
point we also exploit that is a non-atomic measure, which implies that the identity
JO9(Xq,...,Xp)u(dx;) =0 for all 1 < j < p remains valid for arbitrary arguments
Xu, 1 <u< p,u=#j, also if we omit finitely many points from the domain of in-
tegration.) This relation implies that if we calculate tin@ndom) integrap!Jn p(9)
for a canonical functiorg we do not change the value of this integral by replacing
the measures,(dx;) — p(dx;) by tn(dx;) for all 1 < j < p. The integral we get
after such a replacement equpl:m*l/zln,p(g). Since all functionsfy appearing in
formula (9.15) are canonical, the above relation betwéestatistics and random
integrals has the consequence that formula (9.15) can biéiteewin an equivalent
form as

k!Jn,k(f) = z C(n,k, |V|)|V|!‘]n,|V\(fV)' (9.17)

Here we use the convention that a constaista canonical function of order zero,
andJso(c) = c. We shall prove identity (9.17) by means of induction witBpect
to the ordeik of the integrak!J, « ().

In the cas&k = 1 fy1)(x) = f(x) — [ F(X)u(dXx), fo = [ f(x)u(dx), and

Ina(fy) = VA [ (100 = fo) (ka(cb9 — H(cb) = na(1),



9 Some results abolt-statistics 85

since[ (Un(dx) — pu(dx)) =0. Hence formula (9.17) holds fa= 1 withC(n,1,1) =

1 andC(n,1,0) = 0. Fork = 0O relation (9.17) holds witiC(n,0,0) = 1 if the con-
vention fy = f is applied for a functiorf of zero variables, i.e. if is a constant
function, andV = 0. In the cas&k > 2 we can write by taking the identity (9.3)
formulated in the Hoeffding decomposition Theorem 9.legnating it with respect

K
to the product measurf] (Un(dx;) — u(dx;)) and omitting the diagonals from the
j=1

domain of integration that

k!Jn"k(f) = k!Jn,k(f{l ,,,,, k}) + Kl Ink(fg)- (9.18)
Vi, kb VA{1,...k}

Observe that in the casec {1,...,k},V # {1,...,k} the functionfy has strictly
less thark arguments, while the terml «(fy) at the right-hand side of (9.18) are
random integrals of ordée We can rewrite thesefold integrals as the linear com-
binations of random integrals of smaller multiplicity witte help of the following

Lemma 9.5.Let us take a measure spaf€, 2", 1) with a non-atomic probabil-
ity measureu and an integrable function (kg,...,x_1) on its k— 1-fold product,
(XK=t 27k=1 puk=1) k> 2. Let us also take the operatéR f)(xj, j € {1,...,k—
LIA\{I}) = [ f(Xa,...,X-1)u(dx) forall 1 <| < k-—1. Let us consider the func-
tion f also as a function (i, ...,x) of k variables which does not depend on its
last coordinate . The identity

KiJnk(f) = —n""2(k=1)- (k= 1)1 k() - kil(k— 2)hk—2(RT)  (9.19)
=)

holds. The function|® has arguments with indicesq {1,...,k—1}\ {l}, and in
the term Jx_»(R f) in (9.19) we take integration with respect to

nf22 1 (dun(x) — p(dx).
jef1,.. k—11\{I}

Proof of Lemma 9.5-ormula (9.19) is equivalent to the identity
!/
/ Fxe, - Xe-1) (Hn(dxe) — p(dx)) ... (Hn(dX) — p(dX))

B / k-1
- _%/ f(xl,...,xk,l)g(un(d&)—u(dxs))

1 k—1

- Izl'// |:/ f(Xl,...,Xkl)Il(d)Q)]

n(dxs) — L (dxs)).
1§S§Dl7s¢|(“( %) — H(dX))
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The expressions at the two sides of this identity are lineartinations of terms of
the form

[ 100w [aldx) ] w(ex)

lev le{1,... k—1}\V

withV c {1,...,k—1}. Aterm of this form with|V| = p at the left-hand side of this
identity has coefficient—1)*~P(1— "-2) = (—1)*~PL. To see this let us calculate
the integral

[ 0 X [Tknle) ] () (i) — (o)
- lev le{L,..k-1}\V

by successive integration, and integrating with respetii¢ovariablex, in the last
step. Then we integrate a constant function in the last &epide this, since the
(random) measurgt, is concentrated im points with weights%, and in the in-
tegration /" we omit the diagonals from the domain of integration, we grege
with respect to a measure with total mé}$§ when we are integrating with respect
to un(dxg). On the other hand, the first term at the right-hand side ofdéetity
we want to prove has coefficiefit-1)(<—P) % and the second term has coefficient

(—1)k-P-DKLP | emma 9.5 follows from these calculations.

Lemma 9.5 was proved by means of elementary calculations.n@xy ask how
its form can be found. It may be worth observing that theresarae diagram for-
mulas that play an important role in some subsequent praafsthey also supply
the identity formulated in Lemma 9.5 together with its proof

In these diagram formulas the product of some random irlegradJ -statistics
are expressed by means of the sum of appropriately definddmamtegrals ot -
statistics. In the subsequent part of this lecture notedusis the diagram formula
for Wiener—Ib integrals andl -statistics. | shall also mention that there is a diagram
formula for the product of multiple integrals with respexit normalized empirical
distribution, and | shall indicate what its form looks lilén explicit formulation and
proof of this result can be found in [35]. Lemma 9.5 can be iokth as a special
case of this formula.

To get Lemma 9.5 with the help of the diagram formula take tinefione(x) = 1
on the spacéX, £"). Then we hava, 1(e) = 0 with probability one. Given a func-
tion f(xg,...,%_1) write up the identityd, x_1(f)Jn1(€) = O with probability one,
and rewrite its left-hand side by means of the diagram foamthe identity we get
in such a way agrees with Lemma 9.5. One of the terms in thigtitgés k!J, ()
which appears as the integral of the functibfxy, ..., ) = f(X1,...,%_1)e(%),
and writing up all terms we get the desired formula.

Now | return to the proof of Theorem 9.4.

Completion of the proof of Theorem 9.4 with the help of Lemrba/#e shall prove
the following slightly more general version of (9.17) flifx;, j € V) is an integrable
function with arguments indexed by a 8ét- {1,...,k}, then
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Kdnk(F) =5 Cnk V[, VDIV 15 (F) (9.20)
vcv

with some coefficient€(n,k, p,q), 0 < p < g < ksuch thatC(n,k, p,q)| <Cy < o
for all arguments and 0< p < g <k, the limit nIiﬁrr(]o(.‘,(n, k,p,q) =C(k, p,q) exists,
andC(n,k, k., k) = 1.

At the left-hand side of formulas (9.20) and (9.17) the santegiralJ,(f) of
orderk of a functionf with less than or equal toarguments is taken. (We define this
integral by redefining its kernel functiohas a function ok arguments by means
of the introduction of some additional fictive coordina}est the right-hand side
of these formulas the same canonical functidpsV C {1,...,k}, appear. They
were introduced in the Hoeffding decomposition (9.3). Bui(9.20) we take the
integrals of the function$; only with respect to their ‘real’ coordinates with indices
| €V C V. For the sake of simpler notations first we restrict our ditberto the case
V ={1,...,q} with some 0< g < k. (Actually, it can be seen with the help of
the subsequent proof that we can choBse k, p,q) = C(n,k, p) with the constant
C(n,k, p) appearing in (9.15) or (9.17).)

We shall prove (9.20) by means of induction with respeét this relation holds
for k=0, and to prove it fok = 1 we still we have to check that it also holds in the
special case whehis a function of zero variable, i.e. if it is a constant, ahe- 0.
But relation (9.20) holds in this case wi{n, 1,0,0) = 0, sinceJ,1(f) =0iif f is
a variable of zero arguments, i.e. if it is a constant.

We shall prove relation (9.20) for general parametewrith the help of for-
mula (9.18), Lemma 9.5 and formula (9.3) in the Hoeffdingateposition which
gives the definition of the functiong; appearing in (9.18). | formulate a formally
more general result than relation (9.19) which follows frbemma 9.5 if we rein-
dex the variables of the functiohconsidered in it. | formulate this result, because
this will be applied in our calculations.

Let us take a numbep € {1,...,k}, k> 2, and a functiorf (xj, j € {1,...,k}\
{p}), integrable with respect to the appropriate direct prodiiche measure
together with the function® (f) = R(f)(xj, j € {1,....k} \ {l,p}) for all | €
{1,...,k} \ {p} that we get by integrating the functiohwith respect to the mea-
surep(dx). The following modified version of (9.19) holds in this case.

Knk(f) = —n" Y2 k=Dl k=DIka(f)— 5 (k=2)lhk2(RS)

le{1,...k\{p}
(9.21)

whereJ, 1 (f) is the integral of the functiori with respect to the measure

D2 T () — p(dx;))
je{l,...k\{p}

andJnk_2(R f) is the integral of the functioR f with respect to the measure

n(k-2)/2 |1 ((Hn(dx)) — p(dx;)).
je{l,.. K\{p.!}
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(Naturally the diagonals are omitted from the domain ofgné¢ion.)

First we prove (9.20) in the case= {1,...,k}. We rewritek! J, (f) by means
of (9.18) as a sum of random integrals of ordtewith kernel functionsfy, V C
{1,....k}. We rewrite each terrk!J, (fy) with V. {1,...,k},V # {1,....k} in
this sum (i.e. we do not consider the integki, k(f(1. ky)) as a linear combi-
nation of multiple random integrals of the fordpx_1(fy) andJnk_2(R fy) of or-
derk — 1 andk — 2 respectively with the help of identity (9.21). Then we caplg
formula (9.20) for them because of our inductive hypothesisus understand what
kind of kernel functions appear in the integrals we get irhsaivay. IfV C V, then
(fy)v = fv by formula (9.3). On the other hanf,fy = fy\ ;. and in the expan-
sion of Jy k(R fy)) by means of (9.20) we get a linear combination of random inte-
gralsd, v (fy) withV C V\ {I}. By applying all these identities, summing them up,
adding to them the terd k(f(1, .. k) and applying formula (9.21) we get because of
our inductive assumptions a representaik(f) = 3 C(n,k,V)V[13, v ()

vcv

(whereV = {1,...,k}) of the random integrak!J,(f) with such coefficients
C(n,k,V) for which |C(n,k,V)| < C(k) and the limitC(,V) = rI]i_rEOC(n, k,\V) ex-
ists. We still have to show that these coefficients can beeshossuch a way that
C(n,k,V) =C(n,k, |V]), i.e.C(n,k, V1) = C(n,k, Vo) if V1| = |Va|.

Given a seV C {1,...,k},V # {1,...,k}, let us express the random integrals
Ink-1(fy) andInk—2(R fy) for all pe {1,...,k} \V in the above way, and write
Ink(fy) anddy k(R fy) as the average of these sums. Working with these expressions
for Jnk(fy) andJn k(R fy) it can be seen that our inductive assumption also holds
with such coefficient€(n,k,V) for whichC(n,k,V1) = C(n,k,Vz) if |V1| = |Vo|.

In the next step let us consider the case wiiea f(x;, j € V) with a setV =
{1,...,9} such that < q < k. | claim that in this case the identitly, = 0 holds for
those set®¥  {1,...,k} for whichV n{q+1,...,k} # 0, and as a consequence
Jnk(fy) = 0 with probability 1 for such setg. First | show that relation (9.20) can
be proved in the present case with the help of this relatiarilaily to the previous
case.

In the present case formula (9.18) has the fé¢da(f) = 3 klJnk(fy), and

Vev
we can express each tekid, «(fy), V CV, in this sum by means of formula (9.21)
by choosingfy as the functionf and an integeip such thatg+1 < p <k (i.e.
pe{l,....k}\V)init. In such a way we can writelJ, () as the linear combina-
tion of random integrals of the forritk — 1)!J,x_1(fy) and(k—2)1Jnk_2(R fy) =
(k—2)!3nk-2(fg\ 1) with some set¥ C V and numberse {1,...,k}\ {p}, where
we took some number such thafj+ 1 < p < k. Then we can apply relation (9.20)
for parameter& — 1 andk — 2 by our inductive hypothesis, and this enables us to
write J,(f) as the linear combination of random integrids!J, | (fy) with sets
V C V. Moreover, it can be seen similarly to the previous case (tiyng the above
identities for allp € {1,...,k} \V and taking their average) that the coefficients in
this linear combination can be chosen in such a way as it wasdéed in for-
mula (9.20).
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To prove thatfg = 0 if VN{q+1,....k} # 0 andf = f(xq,...,X) is the ex-
tension of a functiorf = f(x;, j € {1,...,q}) to X¥ with the help of some ‘fictive’
coordinates take a numbee V N {q+1,...,k}, observe thal f = f andQ,f =0
for the operator® andQ; defined in (9.1) and (9.2), sineez V = {1,...,q}. The
definition of the functionfy; is given in formula (9.3). Observe that in the present
case the operatd®; and not the operatd® appears in the formula defininfy.
Hence formula (9.3) and the exchangeability of the opes&pandQ; imply that
fy =0.

Formula (9.20) in the general case simply follows from thieadly proved results
by a reindexation of the variables of the functibnSince (9.17) is a special case
of (9.20) Theorem 9.4 is proved.

Two corollaries of Theorem 9.4 will be formulated. The firsteoexplains the
content of conditions (8.2) and (8.6) in Theorems 8.1—8.4.

Corollary 1 of Theorem 9.4.1f I, (f) is a degenerate U-statistic of order k with
some kernel function f, then

E (n*k/zln,k(f))2
N n(n_l)'k!'rgl?_kﬂ)/SymfZ(XL--ka)lJ(Xm)"'“(ka)

= %/fZ(Xlw-,xk)u(dxl)--#(dx«), (9.22)

where i is the distribution of the random variables taking part iretdefinition
of the U-statistic x(f), and Symf is the symmetrization of the function f. The
k-fold multiple random integralk(f) with an arbitrary square integrable kernel
function f satisfies the inequality

Edu( )2 < €9 [ 12010 XOH(dba) .. (o)

with some constari(k) depending only on the order k of the integrakdf ).
Proof of Corollary 1 of Theorem 9.&he identity

E(n21hk())? = (k,)lznk S Ef(Ey &) (&g &) (9.23)

holds, where the prime iy’ means that summation is taken for such pair&-of
tuples(la, ..., lk), (1, 1g), < 15,15 < n, for whichlj # 1}, andlf # I], if j#j.
On the other hand, the degeneracy oflthstatisticl, ( f) implies that

Ef(E|1,...,E|k)f(E|/l7...,E|L):0

if the two sets{ly,...,I} and{l3,...,I;} differ. This can be seen by taking such
an indexl; from the firstk-tuple which does not appear in the second one, and by
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observing that the conditional expectation of the produetcensider equals zero
by the degeneracy condition of thestatistic under the condition that the value of
all random variables except thata[ is fixed in this product. On the other hand,

Ef(&,,- &) f (&, &)
=/f(Xl,.--»Xk)f(xn(l),~~~=Xn<k))ﬂ(dX1)~~~H(d><k)

if (17,...,1) = (m(l1),..., m(ly)) with some(rt(1),..., (k) € Mk, wherelTy de-
notes the set of all permutations of the $&t...,k}. By summing up the above
identities for all pairgly,...,lx) and(l7,...,l;) and by applying formula (9.23) we
get the identity at the left-hand side of formula (9.22). Bkeeond relation in (9.22)
is obvious.

The bound ford, k() follows from Theorem 9.4, formula (9.5) in Theorem 9.2
by which theL,-norm of the functionsfy is not greater than the,-norm of the
function f and the bound that formula (9.22) yields for the second mormokthe
degenerat®-statisticsnVI/21,, | (fy) appearing in the expansion (9.15).

In Corollary 2 the decomposition (9.15) of a random intedpal( f) of order 2
is described in an explicit form. This result follows frormetproof of Theorem 9.4.

Corollary 2 of Theorem 9.4.Let the random integral,h( f) satisfy the conditions
of Theorem 9.4. In this case formula (9.15) can be writterhafollowing explicit
form:

2 1 1
20 2(f) = ﬁln,Z(f{l,Z}) - ﬁln,l(f{l}) - ﬁ'n,l(f{Z}) —fo

with the functions
fazyey) = 100y) -~ [ fxyu(d - [ fxyu(dy
+/f(x,y>u(dx)u<dy),
0 = [ feyudy — [ fxyu(u(dy).
) = [ 1oeyu(e) - [ feeyu(u(ay. and
fo = [ 1xy)H(du(dy)

Corollary 2 of Theorem 9.4 states that in the dase2 formula (9.15) holds with

C(n,2,2) =1,C(n,2,1) = f% andC(n,2,0) = —1.



Chapter 10

Multiple Wiener—It 6 integrals and their
properties

In this chapter | present the definition of multiple Wienéd-integrals and some
of their most important properties needed in the proof ofrésilts formulated in
Chapter 8. Wiener-dtintegrals provide a useful tool to handle non-linear figret
als of Gaussian processes. To define them first | introducadtien of the white
noise with some reference measure. Then | define the muliaer—I6 integrals
with respect to a white noise with some non-atomic referaneasure. A most
important result in the theory of multiple Wiene&lintegrals is the so-called dia-
gram formula presented in Theorem 10.2A. This enables uswdte the product
of two Wiener—I6 integrals in the form of a sum of Wienerélintegrals. The proof
of the diagram formula is given in Appendix B. This resultiié generalized in
Theorem 10.2 to a formula about the representation of theyataof finitely many
Wiener—Ib integrals as a sum of Wiener&lintegrals. As a consequence of this re-
sult we get a formula about the expectation of products Widtteintegrals. This
formula will play an important role in some of our later careiations.

Another interesting result about Wieneg-lintegrals, formulated at the end of
this chapter in Theorem 10.5 states that the class of ran@wiales which can be
written in the form of a sum of Wiener-é8tintegrals of different order is sufficiently
rich. All random variables with finite second moment whick ameasurable with
respect to ther-algebra generated by the (Gaussian) random variableaapgén
the underlying white noise in the construction of multipléevier—Io integrals can
be written in such a form.

| shall also give a heuristic explanation of the diagram falanvhich may in-
dicate why it has the form appearing in Theorem 10.2A. It disips to find its
analogue for (random) integrals with respect to the prodtiobrmalized empirical
measures. Such a result will be useful later. A simple anfulsensequence of
Theorem 10.2A about the representation of the product définmany Wiener—f
integrals in the form of a sum of Wienerélintegrals will be formulated in Theo-
rem 10.2. This result will be also called the diagram formiitidnas an important
corollary about the calculation of the moments of Wiendrifitegrals. Theorem 8.5
will be proved with the help of this corollary.

91
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| shall give the proof of two other results about Wiened-tegrals in Ap-
pendix C. The first one, Theorem 10.3, is calldddfformula for Wiener—Ib inte-
grals, and it explains the relation between multiple Wielt@integrals and Hermite
polynomials of Gaussian random variables. This result &atively simple conse-
quence of the diagram formula and some basic recursivaam$atbout Hermite
polynomials.

The other result proved in Appendix C, Theorem 10.4, is atlth@orem about
a sequence of appropriately normalized degenddastatistics. Here the limit is
presented in the form of a multiple Wiene&-lintegral. This result is interesting
for us, because it helps to compare Theorems 8.3 and 8.1 méih dne-variate
counterpart, Bernstein’s inequality. In the one-variadsec Bernstein’s inequality
provides a comparison between the tail distribution of safisdependent random
variables and the tail of the standard normal distributibime normal distribution
appears here in a natural way as the limit in the central lingibrem.

Theorem 8.3 yields a similar result about degenetiistatistics. The upper
bound for the tail-distribution of a degeneraiestatistic given in Theorem 8.3 or
in its Corollary is similar to the bound of Theorem 8.5 abd tail-distribution of
a Wiener—Id integral with the same kernel function. On the other hadT feo-
rem 10.4 this Wiener-8tintegral also appears as the limit of degenetatsatistics
with the same kernel function. This shows some similaritijeen Theorem 8.3,
and its one-variate version, the Bernstein inequality.ofé 8.1 which is an esti-
mate of multiple integrals with respect to a normalized eioai distribution also
has a similar interpretation.

My Lecture Note [32] contains a rather detailed descriptidrwiener—Id in-
tegrals. But in that work the emphasis was put on the studysiigatly different
version of it. The original version of this integral intrackd in [26] was only briefly
discussed there, and not all details were worked out. Inqodat, the diagram for-
mula needed in this work was formulated and proved only fodiffed Wiener—Id
integrals. | shall discuss the difference between thes#orarintegrals together with
the question why a modified version of Wieneé-htegrals was studied in [32] at
the end of this chapter.

To define multiple Wiener—itintegrals first | introduce the notion of white noise.

Definition of a white noise with some reference measuré.et us have ar-finite
measureu on a measurable spad¥, 2"). A white noise with reference measuyre
is a Gaussian random fieldw = {tw(A): A€ 27, u(A) < «}, i.e. a set of jointly
Gaussian random variables indexed by the above sets A, wéiidfies the relations
Epw(A) = 0 and Epw (A) pw (B) = u(ANB) for all A,B € 2" such thatu(A) < «
and u(B) < .

| make some comments about this definition.

Remark:In the definition of a white noise sometimes also the propguyA U
B) = pw(A) + pw(B) with probability 1 if ANB =0, andu(A) < o, t(B) < o is
mentioned. But this condition can be omitted, becauselivid from the remaining
properties of the white noise. Indeed, simple calculatfoows thate (i (AUB) —
tw(A) — tw(B))? = 0 if ANB = 0, hencepiw (AUB) — Liw(A) — ptiw(B) = 0 with
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probability 1 in this case. It can also be observed that ifsgetsAy, ..., A € 2,
H(Aj) <o, 1< j <Kk are disjoint, then the random variableg (Aj), 1 < j <Kk,
are independent because of the uncorrelatedness of thete @aussian random
variables.

It is not difficult to see that for an arbitrary reference measu on a space
(X, Z") a white noisepw with this reference measure really exists. This follows
simply from Kolmogorov’s fundamental theorem, by whichhiétfinite dimensional
distributions of a random field are defined in a consistent, Wagn there exists a
random field with these finite dimensional distributions.

Now | turn to the definition of multiple Wiener-8tintegrals with respect to a
white noise with some reference measurd-irst | introduce the class of functions
whose Wiener—&i integrals with respect to a white noigg, with a non-atomic
reference measune will be defined.

Let us consider a measurable sp@ge.2"), a o-finite, non-atomic measurg
on it and a white noisgeyy on (X, 2") with reference measune. Let us define the
classes of functions?, «, k = 1,2,..., consisting of functions ok variables on
(X, Z") by the formula

Tk = {f(xl, o) f(xa,. .., %) is an2’¥ measurable, real valued
function onxX, and/ fz(xl, X M(dxg) .., p(dx) < oo}. (10.1)

We shall call ac-finite measureu on a measurable spa¢¥, .2") non-atomic if
for all setsA € 2" such thatu(A) < o and all numbers > 0 there is a finite

N
partition A = |J Bs of the setA with the propertyu(Bs) < € for all 1 <s<N.

Thereisa forﬁélly weaker definition of a non-atomic meastsewhich ag-finite
measurgu is non-atomic if for all measurable se&&such that O< t(A) < e there is
ameasurable sBtC Awith the property 8< u(B) < u(A). But these two definitions
of non-atomic measures are actually equivalent, althobghequivalence is not
trivial. | do not discuss this problem here, since it is ddithit outside from the
direction of the present work. In our further consideragiore shall work with the
first definition of non-atomic measures.

| would also remark that non-atomic measures behave notledehpso, as our
first heuristic feeling would suggest. It is true thatufis a non-atomic measure,
thenu({a}) = O for all one-point set$a}. But the reverse statement does not hold.
There are (in some sense degenerate) meaguf@swhich each one-point set has
zero measure, and which are nevertheless not non-atomic. | bmidiscussion
of this question.

The k-fold Wiener-16 integrals of the functions € 7, « with respect to the
white noiseuy will be defined in a rather standard way. First they will be ke
for some simple functions, called elementary functionsnttt will be shown that
the integral for these elementary functions had.arcontraction property which
makes possible to extend it to the class of all functiongéjpy.
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Let us first introduce the following class of elementary fiimas .77},  of k vari-
ables. A functionf (xy,...,x) on (XX, 2%) belongs tos7  if there exist finitely
many disjoint measurable subséts ...,Ay, 1 < M < o, of the setX with finite
pu-measure (i.eAjNAy =0 if j # ', andu(Aj) < forall 1 < j < M) such that
the functionf has the form

Clj1y--ey k) 0F (X1, %) € Aj; X --- x Aj, with
some indicegj1,...,jk), 1< js<M,1<s<Kk,
f(X1,..., X) = such that all numberf, ..., jx are different
0 if (x1,...,%) ¢ U Aj X - XA,
and alljy,..., jy are different.

(10.2)
with some real numbers(j1,..., jk), 1 < js <M, 1 < s <k, defined for such ar-
guments for whichj,..., jx are different numbers. This means that the function
f is constant on alk-dimensional rectangledj;, x --- x A;, with different, non-
intersecting edges, and it equals zero on the complemeseaof the union of these
rectangles. The property that the support of the functigon the union of rectan-
gles with non-intersecting edges is sometimes interpredeithiat the diagonals are
omitted from the domain of integration of Wienei-integrals.

The Wiener-16 integral of an elementary functidiixs, ..., X«) of the form (10.2)
with respect to a white noisgy with the (non-atomic) reference measyres
defined by the formula

[ 106 xomw (). ()
1<js<M; 1<5<k

all j1,...,jk are different

(The representation of the functionin (10.2) is not unique, the sefs can be
divided into smaller disjoint sets, but the Wieneé-iititegral defined in (10.3) does
not depend on the representation of the functiohis can be seen with the help
of the additivity propertypiw (AUB) = uw(A) + pw(B) if ANB = 0 of the white
noisephy.) The notation

Zuk1) = o [ 100 0B (), (10.4)

will be used in the sequel, and the expressigr( f) will be called the normalized
Wiener—I6 integral of the functiorf. Such a terminology will be applied also for
the Wiener—Ib integrals of all functiong < .77},  to be defined later.

If fis an elementary function inZ}, x defined in (10.2), then its normalized
Wiener—I6 integral defined in (10.3) and (10.4) satisfies the relation
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EKZ,k(f) =0,

f
E(KZx(f))? = iz JClinmays -+ imky)

(J1ydK) - 1<]s<M, 1<s<Kk, ";k
and alljy,..., |k are different.

El‘t\N(Ajl) e ”W(Aik)IJW(Ajn(i)) o '”W(Ajn(k))
=k /Symfz(xl,...,xk)u(dxl) . p(dx)

gk!/fz(xl,...,xk)u(dxl)...u(dxk), (10.5)

with Symf(xa,....%) = & 5 f(Xm1),---.Xm), Wherel, denotes the set of all
' ey

permutationst= {7(1),..., (k) } of the set{1,..., k}.

The identities written down in (10.5) can be simply checKEde first relation
follows from the identityE i (Aj,) - - tw(Aj,) = O for disjoint setsA;,, ..., A;,,
which holds, since the expectation of the product of indepehrandom variables
with zero expectation is taken. The second identity follgmsilarly from the iden-
tity

Epw (Aj;) - w (Ajy ) Hw (Ajr) -+~ w (A ) = 0
if the sets of indicegj1,..., jx} and{j1,..., ji} are different,
Epiw (Aj;) - w (Ajy ) w (Ajr) - w (Ayp ) = H(A,) - H(Aj,)

if (i, ik = {0n- o dkd e i L= Jnay -0 k= g
with some permutation € [y,

which holds because of the facts that themeasure of disjoint sets are independent
with expectation zero, anBuy (A)? = p(A). The remaining relations in (10.5) can
be simply checked.

It is not difficult to check that

EZk(f)Zyk(9) =0 (10.6)
for all functionsf € ffz_,k andg € %7k/ if k£ K, and
Z,k(f) = Zy k(Symf) (10.7)

for all functionsf € .77}, .

The definition of Wiener—@ integrals can be extended to general functibrs
0, x with the help of formula (10.5). To carry out this extensioa gtill have to
know that the class of functions?}, x is a dense subset of the clagg,  in the
Hilbert space_p(XX, 27K, u¥), wherepX is thek-th power of the reference measure
u of the white noisguy. | briefly explain how this property aof#, x can be proved.
The non-atomic property of the measyrés exploited at this point.

To prove this statement it is enough to show that the indiclatoction of any
product sef\; x - -- x A such thaju(Aj) <, 1< j <Kk, butthe setdy,..., A, may
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be non-disjoint is in th&,(uk) closure of%{,,k. In the proof of this statement it will
be exploited that sincg is a non-atomic measure, the ségscan be represented
for all € > 0 and 1< j < k as a finite unior; = | JBj s of disjoint setsB; s with the

S
propertyu(B;s) < €. By means of these relations the prodagtx - - - x A can be
written in the form

Apx--xAc= | ) Brg x -+ xByg, (10.8)

with some set8; ; such thatu(Bj,sj) < ¢ for all sets in this union. Moreover, we
may assume, by refining the partitions of the #gt# this is necessary that any two
setsBj 5; andB;, ¢ in this representation are either disjoint, or they agrakeBuch

’ 9 ]/

a representation dfy x --- x Ay, and consider the set we obtain by omitting those
productsB; s, x --- x Bx g, from the union at the right-hand side of (10.8) for which
Bis = B,-,sj_for some 1< i < j < k. The indicator function of the remaining setis in
the class7, . Hence it is enough to show that the distance between thisaitut
function and the indicator function of the s&f x --- x A is less than const.in
the Lz(uk) norm with some const. which may depend on the 8gts. ., Ac, but not
on €. Indeed, by lettinge tend to zero we get from this relation that the indicator
function of the sef\; x Ay x --- x A¢ is in the closure of7, i in theLo(u¥) norm.
Hence to prove the desired property.#f, it is enough to prove the following
statement. Take the representation (10.8)0% - - - x Ax (which depends og) and
fix an arbitrary pair of integersand j such that I<i < j < k. Then the sum of the
measureqm"(Bl,Sl X .- x Byg, ) Of those set8; s, x --- x By g at the right-hand side
of (10.8) for whichB; § = Bj 5; is less than const. To prove this estimate observe
that theuk measure of such a set can be bounded bythé measure of the set we
obtain by omitting thé-th term from the product defining it in the following way:

pX(Brg, x - X Brg) < EUN H(Brg X - X Bi_1g, X Bit1s,, X - XBks)-

Let us sum up this inequality for all such s&ts, x - - - x By 5, at the right-hand side

of (10.8) for whichB; 5 = Bjs;. The left-hand side of the inequality we get in such

a way equals the quantity we want to estimate. The expressitsright-hand side

islessthare 1 U(As), sincee-times thep*~1 measure of such disjoint sets
1<s<k,s#i

are summed up insifwhich are contained in thefsek - - x Aj_1 X Aj;1 X - X Ax.

In such a way we get the estimate we wanted to prove.

Knowing that.77], x is a dense subset 6#,  in Lz(uk) norm we can finish the
definition of k-fold Wiener—it integrals in the standard way. Given any function
f € 77, x a sequence of functionfy € 7, x, n=1,2,..., can be defined in such a
way that

/|f(x1,...7xk)— fa(X1, ..., % )| ?H(dxe) ... u(dx) — 0 asn— oo
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By relation (10.5) the already defined Wieneé-titegralsZ,, ( fn) of the functions
fn, N=1,2,..., constitute a Cauchy sequence in the space of the squageable
random variables living on the probability space, wherewihée noise is given.
(Observe that the difference of two functions from the clé$s, also belongs to this
class.) Hence the IimLt_)I‘i”nZu,k(fn) exists inL, norm, and this limit can be defined

as the normalized WienerélintegralZ, «(f) of the functionf. The definition of
this limit does not depend on the choice of the approximatfimgtions f,, hence

it is meaningful. It can be seen that relations (10.5) and&)lBemain valid for

all functions f € 77, . The following Theorem 10.1 describes the properties of
multiple Wiener—Ib integrals. It contains already proved results. The onillynsin-
discussed part of this Theorem is Property f) of Wienéridtegrals. But it is easy
to check this property by observing that one-fold Wienér-itegrals are (jointly)
Gaussian, they are measurable with respect tataggebra generated by the white
noise ty. Beside this, the random variabley(A) for a setA € 27, u(A) < o,
equals the (one-fold) Wienerélintegral of the indicator function of the s&t

Theorem 10.1 (Some properties of multiple Wiener—b integrals). Let a white
noisepyy be given with some non-atomig;additive reference measure on a mea-
surable spacegX, 2"). Then the k-fold Wienerdtintegrals of all functions in
the classs7 x introduced in formula (10.1) can be defined, and their noineal
versions Z x(f) = & [ f(xe,....%) pw(dx) ... i (dxc) satisfy the following rela-
tions:

a) Zyx(af+Bg) =az,k(f)+ BZ,k(g) for all f,g e 7 and real numbers
andp.

b) IfAq,...,Acare disjoint setsp(Aj) < o, then the function . s defined by the
relation fa, . a (X1,...,X) =1if X1 € A, ..., % € A, fag,..a(X1,...,X) =0
otherwise, satisfies the identity

Zuk o A0 0) = 1 Hn(Ar) -+ (A,

<)
1 1
EZ,k(f)=0, and Ejk(f):HHSyme%gEHfH%

for all f € 7, , where||f[|3 = [ f2(xq,....x)u(dx)... u(dx) is the square
of the L, norm of a function fc J7 .

d) Relation (10.6) holds for all functionsd .77, x and g€ 7, v ifk #K'.

e) Relation (10.7) holds for all functionsd J7, .

f) The Wiener-fi integrals 7, 1( ) of order k= 1 are jointly Gaussian. The small-
esto-algebra with respect to which they are all measurable agmeéh theo-
algebra generated by the random variablag (A), Ac 27, u(A) < «, of the
white noise.

We have defined Wienerélintegrals of ordek forallk =1,2,.... For the sake
of completeness let us introduce the clagg o for k = 0 which consists of the
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real constants (functions of zero variables), andfjug(c) = c. Because of rela-
tion (10.7) we could have restricted our attention to Wiettérintegrals with sym-
metric kernel functions. But at some points it was more corem to work also
with Wiener—Ib integrals of not necessarily symmetric functions.

Now | formulate the diagram formula for the product of two Wee—I© integrals.
For this goal first | introduce some notations. Then | fornmitae diagram formula
with their help in Theorem 10.2A. To make this result moreansthndable | shall
present after its formulation an example together with spitteires which may help
to understand how to calculate the terms appearing in tlyeatimformula. A similar
approach will be applied when the generalization of thisiltefor the product of
several Wiener—{t integrals will be discussed, and also in the next chaptemwh
a version of the diagram formula will be presented for thedpo of degenerate
U -statistics.

To present the product of the multiple Wieneé-integrals of two functions
f(X1,...,%) € Ak andg(xy,...,x) € ) in the form of sums of Wiener-8t
integrals a class of diagranis= I" (k1) will be defined. The diagramge I" (k1)
have verticeq1,1),...,(1,k) and (2,1),...,(2,1), and edgeg(1, j1),(2,j})),-- -,
((1,]s),(2,j5)) with some 1< s < min(k,l). The indicesj, ..., s in the definition
of the edges are all different, and the same relation holdthtindicesjy, ..., j5.
All diagramsy with such properties belong fo(k,1). The set of vertices of the form
(1,]), 1< j <k, will be called the first row, and the set of vertices of thei@®, j'),
1< j’ <I, the second row of a diagram. We demanded that edges of adiagm
connect only vertices of different rows, and at most one edgg start from each
vertex of a diagram.

Given a diagrany € I" (k,1) with the set of edges

E(y) = {(1a jl)a (2a Jél.))v ) ((17 jS)a (2a J/s)}

let
Vl(y) = {(17 1)7"‘7(17 k)}\{(l, jl)>~-'7(17 JS)}
and

Va(y) ={(2,1),....(2D}I\{(2.]2),-- . (2,])}

denote the set of those vertices in the first and in the seaomabf the diagranmy
respectively from which no edge starts. RPy((1,j)) = (2,j') if ((1,)),(2,j)) €
E(y) anday((1,])) = (1,]) if the diagramy contains no edge which is of the form
((1,)),(2,i")) € E(y). In words, the functior,(-) is defined on the vertices of
the first row of the diagrany. It replaces a vertex to the vertex it is connected to
by an edge of the diagram if there is such a vertex, and it doeshange those
vertices from which no edge starts. Pyt=k+1 — 2s, i.e. let|y| equal the number
of vertices iny from which no edge starts. Given two functioh&y, . .., Xk) € 7k
andg(xy,...,x) € 7, let us introduce their product

(fo@)(Xw,1)s- - Xk X2,1)s - X21))
= f(X@1),- - X1k)IX21)- > X21)) (10.9)
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together with its transform
(fog),(xwj: (L)) €VA(Y), Xz 1< <)
f(xay((l 1)+ Xay (1K) 9X2,1), - - X(21))- (10.10)

(Here the functionf (xy, ..., X«) is replaced byf (X1 1),---,X1k)) and the function
g(X1,---,%) byg(X2,1): - - -, X2)-) With the help of the above introduced se{sy),
V>(y) and functionay(-) let us introduce the functiorfy,(f,g) as

F(f,9) (X)X (L) eValy), (2,§) € Va(y))
)y Xay(in: (L1) €Va(V), X21),----X2r))
p(dx2 ) (10.11)

(2iNe{(22),...(21)}\Va(y)

for all diagramsy € I (k,1). In words: We take the product defined in (10.9), then
if the index (1, j) of a variablex, j) is connected with the indef, j') of some
variablex, j;, by an edge of the diagram then we replace the variabie, j) by
X(2,iny in this product. Finally we integrate the function obtaimedguch a way with
respect to the arguments with indicg j7), ..., (2, j5), i.e. with those vertices of
the second row of the diagramfrom which an edge starts. It is clear tHgtis a
function of |y| variables. It depends on those coordinates whose indieesuah
vertices ofy from which no edge starts.

For the sake of simpler notations we shall also consider @idid integrals
with such kernel functions whose variables are more gelyeradexed. If thek-
fold Wiener—Ib integral with a kernel functiorf (x1,...,x) is well-defined, then
we shall say that the Wiener8lintegral with kernel functiorf (x,, ..., Xy, ), where
{u1,...,u} is an arbitrary set witlk different elements, is also well defined, and it
equals the Wiener-dtintegral with the original kernel functiofi(xs, ..., Xk), i.e. we
write

[ £ Xa () () = [ £ X . ().

(10.12)
(We have right to make such a convention since the value ofem®¥-16 integral
does not change if we permute the indices of the variablebeokérnel function
in an arbitrary way. This follows e.g. from (10.7).) In pattiar, we shall speak
about the Wiener-dt integral of the functiorf,( fy, f2) defined in (10.11) without
reindexing its variableg, j) andx, j, ‘in the right way’. Now we can formulate
the diagram formula for the product of two WieneB-ihtegrals.

Theorem 10.2A (The diagram formula for the product of two Wiener—Itd in-
tegrals). Let a non-atomico-finite measureu be given on a measurable space
(X, Z") together with a white noisgyy with reference measurg, and take two
functions f(x1,...,%) € #x and gx1,...,x) € 7. (The classes of functions
0, x and .77, were introduced in (10.1).) Let us consider the class of diats
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I" (k,1) introduced above together with the functionga), y € I' (k,1), defined by
formulas (10.9), (10.10) and (10.11) with its help. Theys$athe inequality

IFy(f,9)ll2 < [Ifll2llgll forallye (k1) (10.13)

where the k norm of a (generally indexed) functiofd,, . .., Xy is defined as

I3 = [ 12y X () - ).

Beside this, the product X, «(f)I'Z,(g) of the Wiener—f integrals of the func-
tions f and g (the notationZ was introduced in (10.4)) satisfies the identity

(KZu(£)(11Z200(9) = > V112 (Fy(f.9))
yel (k)

= z \y\!ZHM(SymFy(f,g)). (10.14)
yel (k)

The next example may help to understand how to apply the aiadprmula.

Take two Wiener—h integrals 2Z,(f) = [ f(x1,X2) thw(dxq) thw (dx2) and

3!Z3(g) = /g(xl7X27>@)lJW(dxl)IJW(dXZ)“W(d)@)

with kernel functionsf (x1,X2) andg(xi, X2, %3). Let us understand how to calculate
a term in the sum at the right-hand side of (10.14) which esg@e the product
21Z,(1)3!Z3(g) as a sum of Wiener-8tintegrals.

When we apply the diagram formula first we reindex the argumefthe functions
f andg by the indiceg1,1),(1,2) and(2,1),(2,2), (2, 3) respectively, and take the
product of these reindexed functions. We get the function

(fog)(X(11):X(1.2):X21):X22):X23) = F(X11),X12)9(X2.1), X22), X(2.3))-

We define the two rows of the diagrams we will be working witeTlabels of
their vertices agree with the indices of the arguments ofuhetionsf andg. (See
picture.)

1,1) 1,2)

[ ] [ ]

[} [} [ J
@1 @2 @3

The vertices of the diagrams
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We consider all diagramg in which vertices from the first and second row are
connected by edges, and from each vertex there starts zereadge. We define
with the help of these diagramssome functiorF( f,g) which will be the kernel
functions of the Wiener—itintegrals appearing in the diagram formula (10.14). Let
us consider that diagramwhich contains one edge connecting the vertice®)
and(2,1).

(1,1) 1,2)
[}
[ ] [
(2,1) (2,2) (2.3)

The diagram we consider

We make a relabelling of the vertices by replacing the labéhe vertices from
the first row from which an edge starts with the label of theesewith which this
vertex is connected. Then we make the same reindexationthétindices of the
function(f o g). In the present case the diagram we take is

1,1) 2,1)
[ ]
[} [ J
@) (22 @3

The reindexed version of our diagram

and we define the function

—~

fog),(Xw1),X21):X22):X23) = f(X11):X21))9(X21),X2.2), X23))-

Finally we define the functiof,(f,g) by integrating the functiof og), with re-
spect to those variables whose indices agree with the ldbalvertex from the
second row of the diagrapfrom which an edge starts. (In the present case this is

X(2,1)-)

Fy(f,0)(X1,1),X22):X23) = /(f 00),(X(1,1):X2,1):X2.2), X(2:3) ) H(AX2,1))-
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We got a function of 3 variables, and the contribution of thewe diagrany to the
diagram formula (10.14) is

31Z,,3(Fy(f,9))
:/Fv(f»9)(X(1,1)’X(2,2)7X(2,3))I~‘\N(dx(1,1))IJW(dX(z,z))IlW(dX(z,s))~

In the last step some technical inconvenience appearsin@ligwe defined the
Wiener—Id integral of functions of the fornf(xs,...,Xs), i.e. of functions whose
variables have a different indexation. Generally this in@mience is overcome in
the literature by a reindexation of the variables of the kkfonctionF,(f,g). |
chose a slightly different approach by introducing a folgnadore general Wiener—
Itd integral in (10.12) which makes the above integral meduning

Theorem 10.2A will be proved in Appendix B. The following cideration
yields a heuristic explanation for it. Actually it can alse tonsidered as a sketch of
proof.

In the theory of general &t integrals when stochastic processes are integrated
with respect to a Wiener processes, one of the most basittsésutd’s formula
about differentiation of functions of@tintegrals. It has a heuristic interpretation by
means of the informal ‘identity(dW)? = dt. In the case of general white noises this
‘identity’ can be generalized agiy(dx))? = u(dx). We present a rather informal
‘proof’ of the diagram formula on the basis of this ‘identignd the fact that the
diagonals are omitted from the domain of integration in tefnition of Wiener—Id
integrals.

In this ‘proof’ we fix two numberk > 1 andl > 1, and consider the product of
two Wiener—Ib integrals of the function$ andg of orderk andl. This product is a
bilinear form of the functiong andg. Hence it is enough to check formula (10.14)
for a sufficiently rich class of functions. It is enough to smter functions of the
form f(xq,...,X) =la, (X1) - - - 1a (%) @ndg(xa, ..., %) = I, (X1) - - - Ig, (X ) with dis-
joint setsAy, ..., A¢ and disjoint set8s, ..., B;, wherela(X) is the indicator function
of a setA. (Here we have exploited that the functiohandg disappear in the diag-

onals.) Let us divide the sefg into the union of small disjoint seBEm), 1<j<k
with some fixed number £ m< M in such a way thaﬂ(Dﬁ”D) < & with some fixed

€ >0, and the setB; into the union of small disjoint setﬁ(m), 1< j <1, with some
fixed number 1< m < M, in such a way thap(Fj(m)) < € with some fixeds > 0.
Beside this, we also require that two sa%m and Fj(/m() should be either disjoint
or they should agree. (The s@#m) are disjoint for different indices, and the same

relation holds for the sel"sj(,m) )
Then the identities

k /M -
KIZ,(f) = I‘I z i (D™
qu( ) L < . ( j ))
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and

1z =[S mE™
Zu@ = [1( 3 mH™).

hold, and the product of these two Wiened-ihtegrals can be written in the
form of a sum by means of a term by term multiplication. Let ugde the
terms of the sum we get in such a way into classes indexed byitggams
y € (k1) in the following way: Each term in this sum is a product of tioenf

K Dy ()
le“W(ngJ>)j/|]1uW(Fj’ ’
y with edges((1, j1),(2,j1)),-.., and((1, js),(2, js)) if the elements in the pairs

. (m-,) n "
(DET“),FJ., ER N (D(-m'S) F<m‘5)) agree, and otherwise all terms are different.
1

). Let it belong to the class indexed by the diagram

Is 7 s

Then lettinge — 0 (and taking partitions of the sel¥ andF; corresponding to
the parameteg) the sums of the terms in each class turn to integrals, andadcu-
lation suggests the identity

KZuk()1Zui(@) = Y Z(f,0) (10.15)
yel (k1)
with
Z_y( f, g) = / f(xay((l,l))v oo 7Xay((l,k)))g(x(2,l)a o ,X(27|)) (10.16)

P (A% ((1,1))) - - - B (OXg, (1)) ) Hw (dX2,1)) - - Hw (X2 )

with the functiona,(-) introduced before formula (10.9). The indiae€l, j) of the
arguments in (10.16) mean that in the cag€(1, j)) = (2, ]’) the argumenkq )
has to be replaced by, /). In particular,

P (A%, (1,1 Hw (X2, ) = (tw (dX2,51)? = H(dX2 )

in this case because of the ‘identifyiy (dx))? = u(dx). Hence the above informal
calculation yields the identitg,(f,g) = |y'Z, ,(F,(f,g)), and relations (10.15)
and (10.16) imply formula (10.14).

A similar heuristic argument can be applied to get formutastifie product of
integrals of normalized empirical distributions or (notim@d) Poisson fields, only
the starting ‘identity’(uw(dx))? = u(dx) changes in these cases, some additional
terms appear in it, which modify the final result. | returnticstquestion in the next
chapter.

It is not difficult to generalize Theorem 10.2A with the helpsome additional
notations to a diagram formula about the product of finitegnmWiener—Id in-
tegrals. We shall do this in Theorem 10.2. Then to understhisdresult better |
present an example which shows how to calculate the ternigisum expressing
the product of three Wienerélintegrals as a sum of Wienerélintegrals.
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We consider the product of the Wienei-Integralskp!Zy, k,(fp), 1 < p < m, of
m> 2 functionsfp(xl,...,xkp) € Hikys of orderk, > 1, 1< p < m, and define a
class of diagramf =TI (ky, ..., km) in the following way.

The diagramgy € I' =T (ky, ..., km) have vertices of the fornip,r), 1< p <
m, 1 <r < kp. The set of verticed(p,r): 1 <r < kp} with a fixed numberp
will be called thep-th row of the diagrany. A diagramy € I =T (ky,...,kn)
may have some edges. All edges of a diagram connect vertmegifferent rows,
and from each vertex there starts at most one edge. All dizgysatisfying these
properties belong td (ky,...,km). If a diagramy contains an edge of the form
((p1,r1), (P2,r2)) with p1 < pp, then(ps,r1) will be called the upper angy, r,) the
lower end point of this edge. L&(y) = {((p",r"), (p3”, r{")), pl < pi¥, 1 <
u < s} denote the set of all edges of a diagranithe number of edges ip was
denoted bys = [E(y)|), and let us also introduce the setgy) = {((p\",rl")), 1 <

u < s}, the set of all upper end points awl(y) = {((ps",r}"), 1< u< s}, the set
of all lower end points of edges in a diagrgmLetV =V (y) ={(p,r): 1<p<
m,1<r <kp} denote the set of all vertices gfand lety| = ki + - - - + km— 2|E(y)|
denote the number of verticesyrirom which no edge starts. Vertices from which no
edge starts will be called free vertices in the sequel. Letlsis define the function
ay((p,r)) for a vertex(p,r) of the diagramy in the following way:ay((p,r)) =
(p,r), if there is some pair of integer®,r) such that((p,r),(p,r)) € E(y) and
p<p ie.(pr)€Viy) and((p.r),(p.r) € E(y), and putay((p,r)) = (p,r) for
(p.1) €V(y)\VY(y). In words, the functiomr,(-) was defined on the set of vertices
V(y) in such a way that it replaces the label of an upper end poiahafdge with
the label of the lower end point of this edge, and it does nahgk the labels of the
remaining vertices of the diagram.

With the help of the above quantities the appropriate maultate version of the
functions given in (10.9), (10.10) and (10.11) can be defifred

(frofao-ofm)(Xpr, 1< p<m1<r<kp)
m

= |_| fp(x(p,l)> v ax(p,kp)>7 (1017)
p—1

(frofz0---0fm) (Xpr), (R,1) €V(V\VI(Y))

= |_|1 fp(xay((p,l))a - 7Xay((p,kp)))a (1018)
p:

and
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Fy(f1,-, f) Xy, (1) €V \ (VE(Y) UVU(1) (10.19)
:/(flo fa0--0fm), (Xpr): (P.1) €V (Y)\V'(Y))
I_I p(dXpr))-
(Pr)EVh(y)

In words, first we replace the indices. 1,k of the functionfy(xa, ..., X,) by
(p,1),...,(p.kp), and take the product of the functiorig with these reindexed
variables in (10.17). Then we replace those indices of thiabis in this product
which agree with the index of the upper end-point of an edge with the index
of the lower end-points of this edge in (10.18). Finally weegrate the function
obtained in such a way with respect to those variables whakeds agree with the
index of a lower end-point of an edge wfn (10.19).

With the help of the above notations the diagram formula fer product of
finitely many Wiener—Id integrals can be formulated.

Theorem 10.2 (The diagram formula for the product of finitely many Wiener—

It © integrals).Let a non-atomicg-finite measurgs be given on a measurable space
(X, Z") together with a white noisgy with reference measuge. Take nm> 2 func-
tions fp(xl,...,xkp) S with some order k> 1, 1 < p < m. Let us consider
the class of diagram§ (ki,...,kyn) introduced above together with the functions
Fy(f1,...,fm), y € I (K,...,km), defined by formulas (10.17), (10.18) and (10.19)
with its help. The k-norm of these functions satisfies the inequality

m
[IFy(f1,..., fm)]|2 < |'| [Ifpll2 forall ye (ka,... km). (10.20)
p=1

m
Beside this, the producf] kp!Z,, k,(fp) of the Wiener—fi integrals of the functions
p=1

fp, 1 < p < m, satisfies the identity

m
I_l kp!ZH,kp(fp) = z |y|!Zu,M(Fy(f1,...,fm)) (10.21)
p=1 vel (ki,....km)
= Z |V|!Zu,\y\(sym|:y(fl7~~a fm)).
yel'(kl,...,knﬂ

To understand the notations of the above result better leakes the product of
three Wiener—fi integrals 22, »(f2)4!Z, 4(2)3!Z, 3(f3) with kernel functions
f1(Xa1,%2), f2(X1,%2,X3,Xa) and f3(xz,%2,x3) and see how to calculate a term in the
sum of diagram formula (10.21) which expresses this prodsie sum of Wiener—
Itd integrals.

Let us first define the rows of the diagrams we shall workindpwagether with their
labelling. There will be three rows with labe(§, 1), (1,2), then with(2,1), (2,2),
(2,3), (2,4) and finally with(3,1), (3,2), (3,3). We consider all possible diagrams
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which are graphs containing these vertices and edges dimgpeertices from dif-
ferent rows with the restriction that from each vertex thene start at most one edge.
We define with the help of all diagrams a function which willthe kernel-function
of a Wiener-1d integral appearing in the diagram formula (10.21). Letarssader
for instance the diagramg containing the edge§1,1),(3,2)), ((1,2),(2,2)) and
((2,4),(3,3)), (see picture).

11 @12

° °
21 \ 22 (273 2.4

°
31 G2 63
The diagram we consider

Let us relabel the vertices of the diagranby relabelling the upper vertices of
each edge by the lower vertex of this edge.

B2 (2

[ ] [ d
21 \ 22 (253 (3,3)

o
31 G2 (3,3)
The relabelled version of our diagram

We take the product of our functions with the indexation @& thariables corre-
sponding the labels of the diagrams. Then we reindex thetasbles corresponding
to the relabelling of our diagram i.e. define first the function

(frof20 f3)(X(1,1), X(1.2): X(2,1): X(2.2), X(2,3), X(2.4): X(3.1): X(3.2), X(3,3))
= f1(X1.1):X12)) F2(X2,1): X2.2), X(2.3): X2.4)) F3(X(3.1), X(3,2): X(3.3))

and then
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(frof201f3),(X21):X2,2): X(23):X3.1):X3.2): X(3.3))
= f1(X32):X22)) f2(X2,1):X2.2), X(2,3), X3,3)) f3(X(3.1), X3,2): X(3:3))-

Then we integrate the functioff o f0 fg)y with respect to the variables whose
indices correspond to the labels of those vertices whiclharéower labels of some
edge. In our cases these are the indi&?2), (3,2) and(3.3). This means that we
define the function

Fy(fio f20 f3)(X2,1):X2,3):X3.1))
= / (frof20f3),(X21),X22): X(2.3): X(3.1): X(3.2):X3.3))
H(dX22)) U (dX32))U(dXs3)-

The functionF,(f1, f2, f3) is a function of three variables, and the contribution of the
diagramy to the sum at the right-hand side of (10.17) equalg,3{Fy( f1, f2, f3))
with the above defined kernel functiéy( f1, f2, f3). In the definition of this integral
we apply again the convention described in (10.12).

Theorem 10.2 can be relatively simply derived from Theoré2A by means of
induction with respect to the number of terms whose prodctansider. We still
have to check that with the introduction of an appropriat@tion Theorem 10.2A
remains valid also in the case when the functios a constant.

Let us also consider the case whenr= c is a constant, and € 7. In this
case we apply the conventiah, o(c) = ¢, introduce the class of diagramg0, 1)
that consists only of one diagram whose first row is empty, its second row
contains the vertice$2,1),...,(2,1), and it has no edge. Beside this, we define
Fy(C,9)(X2,1)s-- - X21)) = CA(X2,1); - - - »X(2,1)) for this diagramy. With such a con-
vention Theorem 10.2A can be extended to the case of the grofltwo Wiener—
Itd integrals of ordek > 0 andl > 1. Theorem 10.2 can be derived from this slightly
generalized result by induction with respect to the numb&ronsmin the product.

| explain only briefly the proof of Theorem 10.2 which is siarilto the proof
of Theorem 11.2 about the product of degenetatstatistics given in Chapters 11
and 12, only some technical difficulties disappear in thigeca

We can define, similarly to the corresponding definition ira@ter 11 where the
diagram formula for the products bf-statistics will be formulated such a diagram
Yor € I (Ke,...,km-1) for all y € I" (kq, ..., km) which is actually the restriction of
the diagramy to its firstm— 1 rows. Beside this, we can define a diagrme
I (|Ypr|, km), where|yy| denotes the number of free verticesypf in the following
way. This diagram consists of two rows wifjp,;| andkm vertices respectively. It
contains those edges pf(after a reenumeration of the free vertices/gfwith the
numbers 12,...,|ypr|) Whose lower end points are in theth row of y. It can be
seen thaky(fy,..., fm) = Fy, (Fy, (f1,..., fm-1), fm), and there is such a one to one
correspondency, ) «+ y between the pairs of diagrarg y), y € I (ka, ..., km_1),

y € I (]y],km) and diagramy € I" (ky, ..., km) for whichy = ypr andy = yg.
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m
To prove the diagram formula for a product of the fof kp!Z, k, (fp) first we
p=1 '

—1
express the produg]ﬂ kp!Zyk, (fp) with the help of the diagram formula by ex-
=1

ploiting that by our FiJnductive hypothesis it can be appliedthe parametem— 1.

In such a way we can rewrite the above product as a sum of Wikbeéntegrals
with such kernel functions which can be calculated with tak lof the restrictions
Ypr to the firstm— 1 rows of the diagramg € I (ky, ..., km). Then by multiplying
each term of this sum biy!Z, «.,(fm), calculating these products with the help
of Theorem 10.2A and summing up the expressions we get in @wadly we can
rewrite the product at the left-hand side of (10.21) as a simdiener—ID integrals.

It can be seen with the help of the properties of the diagnams (ka, ..., kmn) men-
tioned in the previous paragraph that the identity we getighs way is equivalent
to formula (10.21) in Theorem 10.2.

By statement c) of Theorem 10.1 all Wienet-Ihtegrals of ordek > 1 have
expectation zero. This fact together with Theorem 10.2 lenab to compute the
expectation of a product of Wienerélintegrals. Theorem 10.2 makes possible to
rewrite the product of Wiener-dtintegrals as a sum of Wienerélintegrals. Then
its expectation can be calculated by taking the expectegevaf each term and
summing them up. Only Wiener8lintegrals of order zero yield a non-zero contri-
bution to this expectation. These terms agree with the iate@f kernel functions
Fy(f1,..., fm) corresponding to diagrams with no free vertices. In the nesallary
| write down the result we got in this way.

Corollary of Theorem 10.2 about the expectation of a productof Wiener—Ito
integrals. Let a non-atomiao-finite measureu be given on a measurable space
(X, Z") together with a white noisgyy with reference measurg. Take m> 2
functions (x4, .., %,) € )1 ky» and consider their Wiener-&tntegrals Z.,’kp( o),

1 < p < m. The expectation of the product of these random varialagsfies the
identity

E <|‘| kp!zu,kp(fp)> = Y Rl f), (10.22)
p=1

yer (ky,....km)

wherel” (Ky, ...,Kn) denotes the set of those diagraps I (ky, . .., km) which have
no free vertices, i.ely| = 0. Such diagrams will be called closed diagrams in the
sequel. (Iff (ka,...,km) is empty, then the sum at the right-hand side of (10.22)

equals zero.) The functiong(f1,..., fm) for y € I (ki, ..., kn) are constants, and
they satisfy the inequality

m -
Fy(fe,.... fm)[ < [] Ifpllz forally el (ki, ... km). (10.23)
p=1
Proof of the CorollaryRelation (10.22) is a straight consequence of formula ([@Q.2

part ¢) of Theorem 10.1 and the identify, o(F,(f1,..., fm)) = Fy(f1,..., fm), if
|yl = 0. Relation (10.23) follows from (10.20).
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The next result | formulate isdts formula for multiple Wiener— integrals. It
can also be considered as a consequence of the diagram dotinulIl be proved
in Appendix C.

Theorem 10.3 (I©'s formula for multiple Wiener—It & integrals). Let a non-
atomic,o-finite measurgi be given on a measurable spacé 2") together with a
white noiseuyy with reference measune. Let us take some real valued, orthonor-
mal functionsg(X),. .., dm(X) on the measure spac¢X, 2", u). Let H(u) denote
the k-th Hermite polynomial with leading coefficient 1. Taleone-fold Wiener-t
integralsnp, = Z;1(¢p), 1 < p < m, and introduce the random variableﬁplflnp)

1< p <m, with some integerspk> 1, 1 < p <m. Put K, = zk, 1<p<m,

Ko = 0. Thenns,...,nm are independent, standard normal random variables, and
the identity

m m Kp
l!:llHkp(np) = Kn!Zy km <‘!_|1 <ij_|1+l¢p(Xj)>> (10.24)
m Kp
om0

holds. In particular, if¢ (x) is a real valued function such thdtg?(x)u(dx) = 1,
then

Hk <./¢(X) ) /¢> X1)- tiw (dxq) ... tw (dXe). (10.25)

| also formulate a limit theorem about the distribution ofmalized degenerate
U-statistics that will be proved in Appendix C. The limit dibution in this result
is given by means of multiple Wienerélintegrals.

Theorem 10.4 (Limit theorem about normalized degeneraté) -statistics).Let us
consider a sequence of degenerate U-statistigéfl) of order k, n=kk+1,...,
defined in (8.8) with the help of a sequence of independentiderdically dis-
tributed random variablegs, &>, ... taking values in a measurable space, 2")
with a non-atomic distributiory and a kernel function (i, ...,xx), canonical
with respect to the measure defined on the k-fold produ(:xk, %k) of the space
(X, ) for which [ f2(xq, ..., x)p(dx) ... u(dx) < . Then the sequence of nor-
malized U -statistics ﬁ‘/zln,k(f) converges in distribution, as # o, to the k-fold
Wiener—I6 integral

Zuw(f) = %/ F(Xe, . ) tw (A1) ... i (%)

with kernel function fxa,...,Xc) and a white noisgy with reference measure.
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RemarkThe limit behaviour of degeneraté-statisticd, «(f) with an atomic mea-
sure  which satisfy the remaining conditions of Theorem 10.4 cardbscribed

in the following way. Take the probability spa¢e, % ,A), whereU = [0,1],

is the Borelo-algebra and\ is the Lebesgue measure on it. Introduce a sequence
of independent random variablgs, 2, . .. with uniform distribution on the interval
[0,1], which is independent also of the sequeége», . ... Define the product space
(X, 2 ;) = (XxU, 2 x %1 x )) together with the functiorf (%,...,%) =
T((Xg,u1),..., (% Uk)) = f(Xq,...,%) with the notationx= (x,u) € X x U, and

& =(&.nj), 1=12,.... Thenl(f) = In7k(f~) (with the above defined function

f andfi distributed random variableg). Beside this, Theorem 10.4 can be applied

for the degeneratd -statisticsln (), n=1,2,....

In the next result | give an interesting representation efHiibert space consist-
ing of the square integrable functions measurable witheetsjp a white noisgay.

An isomorphism will be given with the help of Wienerglintegrals between this
Hilbert space and the so-called Fock space to be defined b&wofermulate this
result first some notations will be introduced.

Let %?k C .k denote the class of symmetric functions in the spacex,
k=0,12,...,ie.f € 7 isinits subspac%”p‘fk if and only if f(xg,...,X) =
Symf(xa,...,%). Let us introduce for alk = 0,1,2,... the Hilbert space’ con-
sisting of those random variablgs(on the probability space where the white noise
Ly is defined) which can be written in the form

1= Zu(1) = o [ 100 x0m(eba) ()

with somef € .70,

It follows from part a) and c) of Theorem 10.1 that the mlap> Z, k(f) is a
linear transformation o0, to %, andg || f (|5 = EZ; \(f) for all f € 72, where
|| f||2 denotes the usuéb-norm of the functionf with respect to thé-fold power
of the measuregi. By the definition of Wiener—& integrals the se¥; consists of
jointly Gaussian random variables with expectation zette $paces?), o and%
consist of the real constants. Let us define the spacé.&gp of infinite sequences

F=(fo, ), f€ #0 k=0.12,..., such thal|f[3 = 5 &[fll3 < . The
’ k=0 "

space Exj.7#;,) with the natural addition and multiplication by a constand &he
above introduced normf||> for f € Exp(Hy) is a Hilbert space which is called the
Fock space in the literature.

Let¥ denote the class of random variables of the form

Z(f): izutk(fk), fZ(fo, fl,fg,...)EEXp(%).
k=

The next result describes the structure of the space of mngwiables?. It is
useful for a better understanding of Wiened-tegrals, but it will be not used in
the sequel. In its proof | shall refer to some basic measwerétical results.
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Theorem 10.5 (Isomorphism of the space of square integrableandom vari-
ables measurable with respect to a white noise with a Fock spe).Let a non-
atomic, o-finite measureu be given on a measurable space, Z") together with

a white noiseuy with reference measung. Let us consider the class of functions

%”Lffk, k=0,1,2,..., andExp(7,) together with the spaces of random variables

%, k=0,1,2,...,and¥ defined above. The transformation Z(f) = E Zyyk(f),
k=0

f = (fo, f1, f2,...) € Exp(74,), is a unitary transformation from the Hilbert space
Exp(7,) to ¢. The Hilbert spaces consists of all random variables with finite
second moment, measurable with respect tattedgebra generated by the random
variables i (A), A€ 27, u(A) < . This og-algebra agrees with ther-algebra
generated by the random variableg £ f1), f1 € %”“071.

RemarkFor the sake of simpler notations we restrict our attentiotiné case when
the measure spadeX, £, 1) is such that the Hilbert space of square integrable
functions on this space is separable. This condition isfdi in all interesting
cases.

Proof of Theorem 10.Froperties a) and c) in Theorem 10.1 imply that the trans-
formation fx — Z, k(f«) is a linear transformation of#0, to %, and fl3 =

EZuk(f)? Beside thisEZ, k(f)Zuw(fy) = 0 if fi € 7,0, and fy, € S0, with
k # K by properties d) and c). (The latter property is needed taaguae this re-

lation also holds itk = 0 or kK = 0.) It follows from these relations that the map
Z: Z(f)= 3 Zuk(f), f = (fo, f1, f2,...) € Exp(7,) is an isomorphism between
k=0

the Hilbert spaces Exp#},) and¥.

It remained to show tha¥ contains all random variables with finite second
moment, measurable with respect to the correspondiadgebra. Let;(u), j =
1,2,..., be an orthonormal basis iﬁﬁgl = J, 1, and introduce the random vari-
ablesnj = Z,,1(9j), j = 1,2,.... These random variables are independent with
standard normal distribution, and by'k formula for Wiener—ib integrals (Theo-
rem 10.3) all productslr, (nj,) ... Hr,(nj,) withry +---+rp =kare in the spacé,
whereH;(-) denotes the Hermite polynomial of ordewith leading coefficient 1.
We also recall the following results from the classical gaist

a) Hermite polynomials constitute a complete orthonorngatesm in thel ,-space
on the real line with respect to the standard normal didtiobu (This result will
be proved in Appendix C in Proposition C2.)

b) If a random variabl€ is measurable with respect to tbrealgebra generated by
some random variableg, 2, . .., then there exists a Borel measurable function
f(x1,X2,...) on the infinite product of the real ling”, %) in such a way that

{="f(n1,n2,...).

This means in our case that any random varigblmeasurable with respect to
the o-algebra generated by the random variabjes= Z,,1(g;), j = 1,2,..., can
be written in the form{ = f(n1,n2,...) with the above introduced independent,
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standard normal random variablgs, 2, . ... If { has finite second moment, then
the functionf appearing in its representation is a function of fiigenorm in the
infinite product of the real line with the infinite product dfet standard normal
distribution on it. Hence some classical results in analgsiable us to expand the
function f with respect to products of Hermite polynomials, and thé®alields the
identity

(= zc(jl,l‘17-~~ajs7 rs)Hr, (Njy) - - Hrs(Njs)

with some coefficients(j1,r1,..., js,I's) such that
S Plin,- s, 1) [Hry (W2 [[Heg (W) [* < oo.

(Actually it is known thati|Hk(u)|?> = k!, but here we do not apply this fact.)
The above relations yield the desired representation afidoma variablel with
finite second moment, if it is measurable with respect tastbedgebra generated by

the random variables i#;. Indeed, the identity = E {x holds with
k=0

Zk: Z C(j17r17“'7jSarS)Hrl(njl)"'Hfs(njs)v
ri4--+rs=k

andd{k € % by Itd’s formula.

To complete the proof it is enough to remark that ¢halgebra generated by the
random variableg)1,nz,... andpuw(A), Ae 27, u(A) < « agree, as it was stated
in part f) of Theorem 10.1.

The results about Wiener8lintegrals discussed in this Chapter are useful in the
study of non-linear functionals of a white noise. In my LeetiNote [32] similar
problems were discussed, but in that work a slightly diffiérersion of Wiener—&
integrals was introduced. The reason for this modificatiais that the solution of
the problems studied in [32] demanded different methods.

In work [32] stationary Gaussian random fields were considieand | was
mainly interested in it in limit theorems for sequences oh+liaear functionals
on a stationary Gaussian random field. In a stationary Gamsandom field a shift
operator can be introduced. This shift operator can be dgtbin a natural way to
all random variables measurable with respect to the unidegrstationary Gaussian
random field. In [32] we needed a technique which helps in wgrkvith this shift
operator. In an analogous case, when functions on the reahlie considered, the
Fourier analysis is a useful tool in the study of the shiftrapar. In the work [32] we
tried to unify the tools of multiple Wiener-atintegrals and Fourier analysis. This
led to the definition of a slightly different version of Wier#d integrals.

In the work [32] we have shown that not only the correlationdtion of a sta-
tionary Gaussian field can be given by means of the Fouriastoam of its spec-
tral measure, but also a random spectral measure can beuwmaedtwhose Fourier
transform expresses the stationary Gaussian procedsAtftel the introduction of
this random spectral measure a version of the multiple Widtieintegral can be
defined with respect to it, and all square integrable randariables, measurable
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with respect to ther-algebra generated by the underlying Gaussian statioaary r
dom field can be expressed as the sum of such integrals. Maeoxh an approach
enables us to apply the methods of multiple Wienériitegrals and Fourier anal-
ysis simultaneously. The modified Wieneb-ihtegral introduced in [32] behaves
similarly to the original Wiener—t integral, only it has to be taken into account
that the random spectral measure behaves not like a whise it as its ‘Fourier
transform’. | omit the details. They can be found in [32].

The space$ consisting of alk-fold Wiener—Io integrals were introduced also
in [32], and this was done for a special reason. In that woekHiiibert space of
square integrable functions, measurable with respect tonaerlying stationary
Gaussian field was studied together with the shift operatting on this Gaussian
field. The shift operator could be extended to a unitary dpe this Hilbert space.
The introduction of the subspac@gturned out to be useful, because they supplied
such a decomposition of this Hilbert space which consistertfogonal subspaces
invariant with respect to the shift operator.

In the present work no shift operator was defined, and lingbtkms for non-
linear functionals of a Gaussian field were not studied hHEne.introduction of the
spacesé% was useful because of a different reason. In the study of mblems
we need good estimates on theth moment of random variables, measurable with
respect to the underlying white noise for large integerés it will be shown, the
high moments of the random variables in the spagesvith different indicesk
show an essentially different behaviour. The high momehésrandom variable in
% behave similarly to those of tHeth power&K of a Gaussian random variable
& with zero expectation. This statement will be formulate@ imore explicit form
in Proposition 13.1 or in its consequence, formula (13.2paftial converse of this
result will be presented in Theorem 13.6.






Chapter 11

The diagram formula for products of degenerate
U -statistics

There is a natural analogue of the diagram formula for theyets of Wiener—f
integrals both for the products of multiple integrals widlspect to normalized em-
pirical measures and for the products of degenddatgatistics. These two results
are closely related. They express the product of multipidoan integrals or degen-
erateU-statistics as a sum of multiple random integrals or degaaél-statistics
respectively. The kernel functions of the random integaal) -statistics appear-
ing in this sum are defined, — similarly to the case of Wiertériitegrals, — by
means of diagrams. This is the reason why these resultssarealled the diagram
formula. The main difference between these diagram forsnahal their version for
Wiener—I6 integrals is that in the present case we have to work with @ mgen-
eral class of diagrams. The diagram formula for multiplegngéls with respect to a
normalized empirical measure will be discussed only at &rmmal level, while a
complete proof of the analogous result about degenkragtistics will be given.
The reason for such an approach is that the diagram formuléhéproduct of
degeneratt) -statistics can be better applied in this work.

We want to prove the estimates about the tail distributiordedenerateJ-
statistics and multiple integrals with respect to a noreealiempirical distribution
formulated in Theorems 8.3 and 8.1 with the help of good bswrdthe high mo-
ments of degeneraté-statistics and multiple random integrals. In the case géde
erateU -statistics the diagram formula yields an explicit formfdathese moments.
We exploit that this formula expresses the product of degdabl -statistics as a
sum of degeneratd-statistics of different order. Beside this, the expectalde of
all degeneratél -statistics of ordek > 1 equals zero. Hence the expected value we
are interested in equals the sum of the zero order terms apgea the diagram
formula.

The analogous problem about the moments of multiple integrith respect to a
normalized empirical measure is more difficult. The diagfarmula enables us to
express the moments of multiple random integrals as the $uhe @xpectation of
such integrals of different order also in this case. But tieeted value of random
integrals of ordek > 1 with respect to a normalized empirical distribution may be
non-zero. Before the proof of Theorem 9.4 we showed this iexample.

115
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First I give an informal description of the diagram formuta the product of two
random integrals with respect to a normalized empiricalsuea Its analogue, the
diagram formula for the product of two Wieneéintegrals can be described in an
informal way by means of formulas (10.15) and (10.16) togethith the ‘identity’
(tw (dx))? = p(dx) in their interpretation. The diagram formula for the prodoic
two multiple integrals with respect to a normalized empirimeasure has a similar
representation. (Observe that in the definition of the raméfwegralJ, k(-) given
in formula (4.8) the diagonals are omitted from the domaimtgfgration, similarly
to the case of Wiener-8tintegrals.) In this case such a version of formulas (10.15)
and (10.16) can be applied, where the random integtalsare replaced by k,
and the white noise measurgy is replaced by the normalized empirical measure
Vn = /N(n — ). But the analogue of the ‘identity iy (dx))2 = u(dx) needed in
the interpretation of these formulas has a different fotrstdtes thafv,(dx))? =
p(dx) + %vn(dx). Let us ‘prove’ this new ‘identity’.

Take a small sef\, i.e. a setA such thatu(A) is very small, write down the
identity (va(4))? = n(un(4))? +n(u(A))? — 2nus(A)u(A) and observe that only
a second order error is committed if the term(g(A))? and Dy (A)u(A) are
omitted at the right-hand side of this identity. Moreovdsoaa second order er-
ror is committed ifn(uin(A))? is replaced byun(4), because it has second order
small probability that there are at least two sample pomteé small sefA. On the
other handn(un(4))? = un(4) if A contains only zero or one sample point. The

above considerations suggest that dx))? = pn(dx) = p(dx) + \%[ﬁ(un(dx) -

p(dx)] = p(dx) + %vn(dx). (This means that in the ‘identity’ expressing the
square(vy(dx))? of a normalized empirical measure a correcting te\i}ﬁvn(dx)
appears. If the sample sime— o, then the normalized empirical measure tends to
a white noise with counting measyue and this correcting term disappears.)

The diagram formula for the product of two multiple integralith respect to a
normalized empirical measure was proved in paper [35] withiffarent notation.
Informally speaking, the result in this work states thatittentity suggested by the
above heuristic argument really holds. We remark that ifftmen of this identity
is found, then it can be proved with the help of some algekraiculations sim-
ilarly to the proof of Lemma 9.5. We omit the proof of this résgince we shall
not work with it. We shall prove instead a version of it abdut product of de-
generatdJ -statistics that we can better apply. This result is simtitathe diagram
formula for the products of multiple integrals with respteca normalized empirical
distribution. This similarity will be discussed Remark 4after Theorem 11.1.

In this chapter first | formulate the diagram formula abow groduct of two
degeneraté) -statistics in Theorem 11.1, then its generalization altiegitproduct
of finitely many degeneratd-statistics in Theorem 11.2. Their proofs is postponed
to the next chapter. | also present a Corollary of Theorerf &thout the expected
value of the product of degenerdtiestatistics which follows from this result and
the observation that the expected value &f-atatistic of ordek > 1 equals zero.
This result together with Lemma 11.3 which yields a boundr@it-norm of the
kernel functions of the degeneratestatistics appearing in the diagram formula will
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enable us to prove good estimates on the high moments of eleged -statistics.
We can prove Theorem 8.3 about the tail distribution of degatieU -statistics with
the help of such estimates. One might try to prove the ana®gesult, Theorem 8.1
about the tail distribution of multiple integrals with resg to a normalized empir-
ical distribution in a similar way with the help of the diagrdormula for multiple
random integrals. But that would be much harder, since tagrdm formula for
multiple integrals with respect to a normalized empiridatribution does not sup-
ply such a good formula for the moments of random integralk@analogous result
about degeneraté-statistics.

To describe the results of this chapter we introduce somen@aions. In the
formulation of the diagram formula for the product of degeeU -statistics a more
general class of diagrams has to be considered than in teeotasultiple Wiener—
Itd integrals. | shall define them under the name coloured aimgr The kernel
functions of thelJ -statistics appearing in the diagram formula will be defimgith
their help. First | introduce the notations needed in thenfdation of the diagram
formula for the product of two degenerdtestatistics, then | present this result in
Theorem 11.1. After this, to understand the notations be#gplain with the help
of an example how to calculate a general term in this diag@amuila.

A class of coloured diagranis(ky, . . ., km) will be defined whose vertices will be
the pairs(p,r), 1< p<m, 1<r <kp, and the set of vertice®,r), 1 <r < kp, with
a fixed numbeip will be called thep-th row of the diagram. To define the coloured
diagrams of the clasg (ki,...,km) first the notions of chains and coloured chains
will be introduced. A sequengg@= {(p1,r1),...,(Ps,fs)fWith1<pi < pp<--- <
ps < mand 1< ry < kp, for all 1 < u < swill be called a chain. The numbsrof
vertices(py,ry) in this sequence, denoted B{f3), will be called the length of the
chainf. Chains of lengtlf(3) = 1, i.e. chains consisting only of one vertgx,r1)
are also allowed. We shall define a functiof8) = +1 which will be called the
colour of the chainB, and the pai3,c(8)) will be called a coloured chain. We
shall allow arbitrary colouring(3) = +1 of a chain with the only restriction that a
chain of length 1 can only get the coloud, i.e.c(8) = —1if ¢/(3) = 1.

A coloured diagramy € I" (ki,...,kn), is a partition of the set of vertices
A(ky,....km) = {(p,r): 1< p<m1<r <kp} to the union of some coloured
chainsp €y, i.e. U B =A(Ki,...,kn), and each vertexp,r) € A(ky,...,km) is

Bey
the element of exactly one chgthe y. Beside this, each chaf € y has a colour
cy(B) = £1. The setl (ki,...,kn) consists of all coloured diagramswith the
above properties with the only restriction that for a ch@ia {(p,r)} € y of length
¢(B) =1 of adiagrany € I (ki, ..., km) we havec, () = —1.

Let us define for all coloured diagramrse I (ki, ..., km) the set of open chains
O(y) = {B: B €vy,cy(B) =—1} and the set of closed chai®y) = {B: B €
¥, cy(B) = 1} of this diagramy. We shall define for all sets of bounded func-
tions fp = fp(x1,...,%,) € La(Xke, 27 pke), 1 < p < m, and diagramsy €
I (K, ..., km) @ bounded functiofy(fy,..., fm) =Fy(f1,..., fm)(X1,. .., X0(y)) With
|O(y)| variables on the product spa¢/CWl 27 10WI oWy where|O(y)| de-
notes the number of open chains in the diagsarmhe arguments of the function
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Fy(f1,..., fm) will correspond to the open chains of the diagrariVe will see that
the functionF,(f1,..., fm) is canonical (with respect to the measyneif the same
relation holds for the function$, ..., f,. In the diagram formula we shall express

m

the product of normalized degener&testatistics [ n*kp/zkpllmkp(fp) as a linear
p=1

combination of the normalized degenerdtestatistics

nf\O(v)l/2|o(y)|1|n7‘0(y)‘(Fy(f17 oy Tm)).

To define the above mentioned functidfg f1,..., fm) first we fix for all pairs
of positive integer, ko = 1,2,... and diagramy € I (kg, k2) an enumeration of
the chains ofy, and beside this we also fix an enumeration of the open chéins o
all diagramsy € I' (kg,...,kn), m=2,3,.... (For m> 3 we shall need an enu-
meration only for the open chains.) For the sake of simpld¢atian we choose
such an enumeration of the chains of a diagnafor m = 2 where the chains
get the labels 2,...,|0(y)| + |C(y)|, and the open chains get the fil€(y)]
labels, i.e.B(l) is an open chain if K | < |O(y)|, and it is a closed chain if
[O(y)|+1 <1 <|O(y)|+ |C(y)|. In the casem > 3 we give an enumeration only
of the open chains of a diagram and they will be indexed by the numbers
1 <1 < |O(y)|. This means thgB(l) will be defined for 1< 1 < |O(y)|, and it is
an open chain of.

We shall fix an enumeration of the chains of the diagrams withrows and of
the open chains of the diagrams with at least three rows aténe and during the
application of the diagram formula we shall always apply tanumeration of the
chains. The subsequent definition of the functibpy, . . ., fm) will depend on this
enumeration, but the results formulated with the help adétfenctions are valid for
an arbitrary (previously fixed) enumeration of the chainsnét the non-uniqueness
in the definition of the functionby( fy, ..., fm) will cause no problem.

First we formulate the diagram formula for the product of tdegenerate
U-statistics, i.e. we consider the cage= 2. Let us have a measurable space
(X, Z") with a probability measurgt on it together with two measurable func-
tions f1(xy, ..., %, ) andfa(xy,...,X,) of ky andk; variables on this space which are
canonical with respect to the measurd_eté;, &», ... be a sequence ¢K, 2") val-
ued, independent and identically distributed random temwith distributionyt.
We want to express the produtt*t/ky !y, (f1)n/2ka!l, 4, (f2) of normalized
degenerat¥ -statistics defined with the help of the above random vaegmbhd ker-
nel functionsf; and f, as a sum of normalized degenerdtestatistics. For this goal
we define some functiorfs,( fy, f2) for all y € I (ky, ko).

We shall define the functioR,( 1, f2) with the help of the previously fixed enu-
meration of the chains of the diagrgmWe shall introduce with the help of this enu-
meration also an enumeration of the verti¢és), (2,q), 1 < p <k, 1 < g <k,
of the diagramy. We put

ay((p,r)) =1 if(pr)ep(l), p=12 1<r<k,. (11.1)
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Let us have two functiondy(xy,...,X,) and fa(xg,...,X,) together with a
coloured diagrany € I (k1, ko). We define the functiof( f1, f2) in two steps. First
we define the function

(fl [¢) fz)y(xl, - 7XS(V))
= F1(Xay(1,2))- - Xay((Lk)) F2(Xay(21))s -+ Xay((2k)))s (11.2)

wheres(y) = |O(y)| +|C(y)| is the number of chains ig, and the indicesr,(1, j)
anday(2, j’) were defined in (11.1). (In formula (11.2) the arguments ¢htfonc-
tions f; andf, have different indices. But two indices,((1, j)) anday((2, j')) may
agree in some cases. This happens if the vertitgs and(2, j') belong to the same
chainf € y of length 2.) In the second step we define the function

Fy( fl, fZ)(XLn-,X\O(y) ) (11.3)

= ( M1 P Tl Qj’) (fro f2)y(Xa,- - X0y +ic))
jrB(EC(y) 1" B(1")€O2(Y)

with the operator®; andQ;: defined in formulas (9.1) and (9.2), wheZ¢y) is the
set of closed chains of the diagragrandO;(y) C O(y) is the set of open chains gf
with length 2,i.eO,(y) = {B: ¢y(B) = —1, and/(p) = 2}. Let us also remark that
the operator®; andQj, in formula (11.3) are exchangeable, hence itis notimportan
in what order we apply them.

Let me remark that if we applied a different enumeration af thagrams
y € I (ki,k2) then we would get a different functiof,(f1, f2). This would be a
reindexed version of the original functidt( f1, f2). But the value of th&J -statistic
In,jom)| (Fy(f1, f2)) does not depend on the indexation of the variables in its ker-
nel function. Hence the identity which will be formulatedformula (11.4) of the
subsequent Theorem 11.1 does not depend on the enumeritienamains of the
diagramsy € I (k1,kz2). Now we can formulate the following result.

Theorem 11.1 (The diagram formula for the product of two deg@erate U-
statistics).Let a sequence of independent and identically distribuéediom vari-
ablesés, &, ... be given with some distributiopn on a measurable spad&, 2")
together with two bounded, canonical functiongxf,..., X ) and %(x,...,Xg,)
with respect to the probability measureon the product spacegx’t, 2k) and
(Xk2, 27%2) respectively. Let us take the class of coloured diagrarfig, k) in-
troduced above together with the functiong fz, f2) defined in formulas (11.1)—
(11.3).

The functions [ f1, f2) are bounded and canonical with respect to the meagure
with |O(y)| arguments for all coloured diagramys= I, where Qy) and Cy) denote
the set of open and closed chains of the diaggariihe product of the normalized
degenerate U-statistics /2! In, (f1) and m /2kollnk, (f2), n > max(ky, k),
defined in (8.8) can be expressed as
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Sl /n_ i
N4 2 1 (Fr) R/ 2k0 g (F2) = z’(”> (ns(y)—H>
verke) 1= n

W2 00210y 1y oy (Fy(fa, T2)) (11.4)
with W(y) = k1 +kz — |O(y)| — 2|C(y)| (we explain in Remark 1 after Theorem 11.1
that W(y) = |O2(y)|, i.e. it equals the number of open chains with length 2) and

s(y) = |O(y)| + |C(y)| (which equals the number of coloured chaingjnHere"("
means that summation is taken only for such coloured diaggae/™ (ki, k») which

IC(y)!
satisfy the inequality(y) <n, and [] equals 1 in the casfE(y)| = 0. The term
j=1

In,jory)| (Fy(f1, f2)) can be replaced by, |0y (SymFy(f1, f2)) in formula (11.4).
Consider the k-norm of the functions f f1, f2)

1O(y)]

IRyt f2) B = [ Ry, 2220 Koy [1 #(dx).
p=
The inequality
IR f2)ll2 < [Ifallall fall2 - if W(y) =0 (11.5)

holds for this norm. The condition /) = 0 in formula (11.4) means that the di-
agramy € I (kg,kz) has no chaing3 of length/(f3) = 2 with colour G,(B8) = —1.
For a general diagrany € I (kg k2) under the conditiosup] f(x1,. .., X, )| < 1the
inequality

IFy(fr, f2)ll2 < 2V 1]l (11.6)

holds. Inequalities (11.5) and (11.6) remain valid alsolie tase when;fand %
may be non-canonical functions.

Inequality (11.5) is actually a repetition of estimate (13).about the diagrams
appearing in the case of Wiene@-lintegrals. Inequality (11.6) yields a weaker
bound about thés-norm||Fy( fy, f2)||2 for a general diagram. We formulated it in
a form where the function§; and f; do not play a symmetrical role. This estimate
depends on thiez-norm of the functionfy, and itis assumed in it that the supremum
of the function| f2| is less than 1. We chose such a formulation of this inequiaéity
cause it can be well generalized to the case when the protiseverall -statistics
is considered. The appearance of the condition about theeswmn of the func-
tion |f2| in the estimate (11.6) is closely related to the fact thah#éstimates on
the tail distribution ofU-statistics, — unlike the case of Wieneg-ihtegrals, — a
condition is imposed not only on the-norm of the kernel functiorf, but also on
its Lo-norm. | return to this question later.

Next | show an example which may help to understand how toyahpldiagram
formula for the product of two degenerddestatistics.

Take two normalized degeneratestatisticsn3/23!1, 3(f1) andn24!l, 4( f2) with
kernel functionsfy(x1,X2,X3) and fa(x1,X2,X3,X4), and let us see how to calculate
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with the help of formula (11.4) a term of the sum which expessthe product
3l 3(f1)4!h4(f2) as a sum of degenerdiestatistics.

Let us first understand which are the coloured diagrams we twagonsider in
the diagram formula (11.4), and then let us calculate thma worresponding to a
coloured diagram at the right-hand side of this formula.

The coloured diagrams we have to consider have two rows wittices labelled
by (1,1), (1,2), (1,3) and (2.1), (2,2), (2,3), (2,4) redpety. The coloured dia-
grams are such partitions of the vertices whose elementaiadinom each row at
most one element. The elements of these partitions whichallecltains contain
1 or 2 elements. (We speak here about chains and not aboutsgiagcause we
want to apply such a terminology which also works in the maeegal case when
we consider the diagram formula for the product of severgkderatéJ -statistics.)
We give each chain either the colour +1-et. Chains consisting of only 1 vertex
(chains of length 1) get the colourl while chains containing 2 vertices (chains of
length 2) can get both coloursl and—1. We take all coloured diagrams satisfy-
ing the above properties, and each of them yields a conioibtd the sum at the
right-hand side of (11.4). Let us look what kind of contributyields the coloured
diagramy which contains a closed chail1,1),(2,2)) (with colour +1) and an
open chair((1,3),(2,4)) (with colour—1) of length two, and beside this it contains
chains of length 1 and colourl. They arg1,2) from the first row, and2,1), (2,3)
from the second row. (See the picture.)

11 @12 (@53

°(1)

21 22 @23 (249
The diagram with the labelling of its chains
(0—0 denotes open ande denotes closed chains)

We fix a labelling of the chains of the digrapnand define with its help a rela-
belling of the vertices. We label the chains subsequentinft to 5 in such a way
that the open chains get the smaller labels, 1,2,3 and 4n@te we choose arbi-
trary labelling. We have the right for it, since although Keenel function of théJ-
statistic we shall define with the help of the diagrgmuill depend on this labelling,
but theU -statistic determined by it will not depend on it. Let us gifie following
labels for the chains(1,2)—label 1,(2,1)—label 2,((1,3),(2,4))-label 3,(2,3)-
label 4,((1,1),(2,2))—label 5. (This was an arbitrary choice.) Then we relabel the
vertices contained in a chain with the label of this chaieg e picture). (We used
such a notation where the labels of the chains are put in alikexhis )
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5 1 3
°(1]

3

o
2

S
~o(®)

5

The relabelled version of our diagram

Then we reindex the variables of the functioiisand f, corresponding to the
new labels of the vertices in the first and second row resgegtiln the present
case we take the reindexed functiofigxs,x1,X3) and fa(Xo, Xs,X4,%3). Then we
define the product of these reindexed functions

(frof2)y(X1,%2,X3,Xa,X5) = f1(X5,X1,%3) f2(X2, X5,%X4,%3).
Next we define the functioR,( f1, f2) introduced in (11.3) as
Fy(f1, f2) (X1, %2, X3,%4) = QaPs(f1 0 2) (X1, X2, X3, X4, Xs5),

wherePs and Q3 corresponding to the closed chain with label 5 and open abfain
length 2 with label 3 are the operators defined in (9.1) ar®) ®ith j =5andj =3
respectively. Thus

P5(fro f2)y (X1, X2, X3, X4, X5) =/f1(x5,xl,x3) f2(X2, X5, X4,%3) U (dXs5),
and

Fy(f1, f2)(X1,X2,X3,X4a) = QaP5(f1 0 f2)y (X1, X2, X3, X4, X5) (11.7)
:/fl(XS,X17X3)fZ(X27X57X47)%)u(dX5)

— [ 110,31, 30) a0, X, X X (i) a0
The normalized degenerdtestatistic corresponding to the diagrass

n—241ln 4(Fy(f1, f2)),

and the contribution of the diagrapto the sum in the diagram formula, i.e. to the
sum at the right-hand side of (11.4) 1% - n=Y/2. n=2411,4(F,(f1, f2)). Here the
factorn—1/2 is the terrm~W(¥)/2 in (11.4) which is a contraction term which roughly
speaking depends on the difference of the diagyaimom the ‘regular diagrams’
appearing also in the diagram formula for Wienei-ttegrals. The facto?%4 isa
technical term which has no great importance. Its appearsmelated to the form
of the Hoeffding decomposition. In formula (9.4), expressthis relation a factor
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of the form(n—|V|)(n—|V|—-1)--- (n—k+1) appears instead of the ‘regular term’
nk~VI, and this is the reason for the appearance of this factor.

Finally the notatiory”™ in formula (11.4) means that the above calculated term
corresponding to the diagrayrtakes part in the summation only if the sample size
of theU-statistic satisfies the inequality> 5. This restriction is related to the fact
that ak-fold U-statistic can be defined only iif > k for the sample size. The-
statistic with kernel functiofr,( f1, f2) has order 4. Nevertheless, a slightly stronger
restriction is imposed. The reason for it is that, as the fpoddheorem 11.3 will
show, theJ -statistic we considered here appears as a term in the Hiogfieécom-
position of theU-statistic with kernel functior{fy o f2),. This is aU-statistic of
order 5, and the conditiom> 5 comes from here.

Next we make some comments to Theorem 11.1.

Remark 1The expressiolV(y) = ki + ko — |O(y)| — 2|C(y)| appearing in formu-
las (11.4) and (11.5) equal®>(y)|, i.e. it is the number of the chair € y for
which¢(B) =2, andc, () = —1. Indeed, iW(y) equals the number of chaifisc y
for which ¢(B) = 1 (and as a consequencg3) = —1), then|O2(y)|+W(y) =
|O(y)|, and Z|(y)|+2|O(y)| — W(y) = ki + ko. (In the last identity we calculated
the number of vertices ipin two different ways.) Because of the definitiorMif y)
the last identity can be rewritten 8%(y) +W(y) = |O(y)|. These relations imply
the statement of this remark.

Remark 2The termly, oy (Fy(f1, f2)) with some coloured diagrame I (ky, kz)
appeared in the sum at the right-hand side of (11.4) onlyefabnditions(y) < n
was satisfied, which means that the sample gipé the U-statistic is sufficiently
large. This restriction in the summation had a technicatattar, which has no great
importance in our investigations. It is related to the fhet U -statisticl, x(f) was
defined only ifn > k. As a consequence, sorbestatistics disappear at the right-
hand side of (11.4) if the sample simeof the U-statistics is relatively small. The
termly, oy (Fy(f1, f2)) appeared in (11.4) through the Hoeffding decomposition of
aU-statistic with kernel functiorif; o f2), defined in (11.2). This function hasy)
arguments, and thd-statistic corresponding to it appears in our calculationly

if the sample siza is not smaller than the numbsy).

Remark 3.As | earlier mentioned the functiors,(f1, f2) depended on the la-
belling of the chaing € I' (ky, ky). This non-uniqueness in the formulation of iden-
tity (11.4) has no importance in its applications. Morepweg can get rid of this
non-uniqueness by working with symmetrical functidirsand f, (with functions
which do not change by a permutation of their variables) gnéplacing the func-
tions Fy(fy, f2) by their symmetrizations. A similar remark holds for the gt
version of the diagram formula to be discussed later, whexenay consider the
product of several degenerdfestatistics.

Remark 4The diagram formula formulated in Theorem 11.1 is similatsoersion
about the product of two multiple integrals with respect tooamalized empirical
distribution. The latter result was not written up here @iy, but its form was
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explained in an informal way at the beginning of this chaptée kernel functions
of theU-statistics and random integrals appearing in these fasnaile indexed by
the same diagrams. Their definitions are different, becawtbeU -statistic case we
have to work with canonical functions while in the multiptéegral case we have no
such restriction. As a consequence we define the funchg(fs, f) in this case by
means of a modified version of formula (11.3), where the dpes&), are omitted
from the definition. The coefficients of the normalized degyaiteU -statistics and
random integrals in the two results are slightly differdntthe multiple integral
case we have to multiple with-W(¥)/2 while in the U-statistic case this term is
multiplied with a factor between 0 and 1. This is related ®fthrm of the Hoeffding
decomposition ol -statistics given in (9.3). The restriction in the summal'zj(“)

is also related to the propertiesldfstatistics.

Let us turn to the formulation of the general form of the dagrformula for
the product of finitely many degenerdtestatistics. After introduction of some
notations we present this result in Theorem 11.2. Then waugésan example to
understand its notation better.

This result has a more complicated form than its analoguetaldener-16 in-
tegrals, because in the present case we cannot define thel kemaotions of the
U-statistics appearing in the diagram formula in a simpleeaiway. We shall de-
fine them with the help of an inductive procedure. To do th fire introduce some
conventions which will be useful later.

Let us recall the convention introduced after the definitbrcanonical degen-
erateU-statistics by whichlno(c) is a degeneratt-statistic of order zero, and
Ino(c) = cforaconstant. If y € I (k1, ko) is such a diagram for whicl®(y)| =0,
i.e.cy(B) = 1 for all chainsp € y, then the expressioR,( f1, f) defined in (11.3)
is a constant, and for such a diagramve define the terny, o, (Fy(f1, f2)) in
relation (11.4) by means of the previous convention.

We introduce another convention (similarly to the discoisgif Wiener—I inte-
grals in Chapter 10) which enables us to extend the validifyheorem 11.1 to the
case wherk; = 0, and the functiorfy, = ¢ with a constant. In this casd™ (ki, k)
consists of only one diagram containing the chaing, = {(2,p)} of length
one and with colouc,({(2,p)}) = —1, 1< p < ko, and we defind=(fq, f2) =
cfa(xy,...,X,). Beside this, we hav€(y) =0, O(y) = {(2,1),...,(2,k2)}, hence
W(y) = ki +k2 — |O(y)| — 2|C(y)| = 0, |C(y)| = 0. We also haves(y) = kp, thus
the inequality(y) < n holds under the conditions of Theorem 11.1. Hence for-
mula (11.4) remains valid also in the cage= 0. For the sake of completeness
we introduce a listing of the (open) chaifisc O(y) of the diagram(s) of the set
I (0,kz2). We defineB(l) = {(2,1)}, 1 < < ky in this case. We have introduced the
above conventions because they are useful in the inductivereent we shall apply
in the proof of the diagram formula for the product of degenald -statistics in the
general case.

To formulate the diagram formula for the product of degetedydastatistics in the
general case first we define a functigni fa, ..., fm) =Fy(f1,..., fm) (X1, .-, X0()|)
for each coloured diagrame I (ki, . ..,kn) and collection of canonical functions



11 The diagram formula for products of degenetatstatistics 125

(canonical with respect to a probability measpuren a measurable spac¥, 2"))
f1,..., fm With Ky,... km variables. The functiofr,(fy,..., fm) we shall define has
|O(y)| arguments. It will appear as the kernel function of the degeteU -statistic
corresponding to the diagraymat the right-hand side of the diagram formula.

The functionsF(f1,..., fm) will be defined by induction with respect to the
numberm of the components in the product of degenetatstatistics. Form =
2 we have already defined them. Let the functidf$fy,..., fm—1) be defined
for each coloured diagramy € I (ky,...,km-1). To defineFy(f1,...,fm) for a
coloured diagrany € I" (ky, ... ,km) first we define the predecessgr = yur(y) €
I (kq,...,km—1) Of y. It consist of the restrictions of the chains of the diagram
to the firstm— 1 rows of this diagram together with an appropriate colayif
these restricted chains. Then we define the fundgigrify,. .., fm-1) with [O(ypr)|
arguments in our inductive procedure. We shall also defineleuced diagram
Yei € I (|O(Ypr)|, km) Of two rows, which has the heuristic content that it contétires
additional information we need to reconstruct the diaggam/l™ (ky, ..., km) from
its predecessoy,,. We shall defind=,(f1,..., fm) which will be a canonical func-
tion with |O(y)| variables with the help of the diagrayg and the pair of functions
prr ( fl, R fm_j_) and fm.

The diagramypr € I (g, . .., km-1) will consist of the chains

Bpr:B\{(mvl)v"'a(mvkm)}7 B ey,

i.e. we get the chaiis,, by dropping fromp its vertex contained in the last row
{(m1),...,(mky)} of the diagram if it contains such a vertex. If we get an empty
setin such away (this happengitonsists of a single vertex of the fofm, p)) then
we disregard it, i.e the empty set will be not taken as a chhig,0 We define the
colour of By ascy, (Bor) = ¢y(B) if B = Bor, i.e.if BA{(M1),..., (Mkn)} =0,
and cypr(Bpr) = —1if B contains a vertex of the forrtm, p), 1 < p < k. After
the definition of the diagramg, € I (k,...,km—1) we can define the canonical
functionpr,(fl, .oy fme1) with argumentsq, . ... X0y by means of our inductive
procedure.

We also define the diagray € I (|O(Ypr)|, km) for a diagramy € I" (ky, ..., km).
We must tell which are the chaifg1,p),(2,r)}, 1 < p < |O(Ypr)|, 1 <1 < Km,
of length two of the diagrany,, and we have to define their colour. The set
{(1,p),(2,r)} is a chain of length two of the diagrasg if and only if the open
chainf(p) € ypr (the chainB(p) is that open chain ofpr € I (K1, ..., km-1) Which
got the labelp in the enumeration of the open chainsyg) is the restrictiorB,, of
that chaing € y for which (m,r) € B. If {(1,p),(2,r)} € Y, then its colour iny
is defined agy, ({(1,p),(2,r)}) = ¢y(B) with the chainB = B(p) € y, which is
the chain for whichkm,r) € B. Those vertice¢l1, p) and(2,r), 1 < p < |O(Vpr)|,

1 <r < kmn, which are not contained in such a chain of length 2 will beichaf
length 1 ofy with colour—1.

Given some bounded functiorts, ..., f,, of ky variables, 1< p < m, and a
diagramy € I (Kg,...,km) we shall define the functiofr,(f1,..., fm) with the
help of the pair of functiond, (f1,..., fm-1) and f,, and the diagramy, €
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I (1O(Ypr)|), km) by the formula

Fy( fl7 R fm)(Xl,Xz, oo vX\O(y)|)
= FVC| (prr(fl7 ceey fm—1)7 fm) (Xl7 o ,X‘O(ycl)‘)). (11.8)

Here we applied formula (11.3) with the choige= y; and pair of functions; =
prr(fl, ..., fm-1) and f = fy,. To justify the correctness of formula (11.8) we still
have to show thgO(y)| = [O(yu )|

To prove this identity observe that the number of those opame ofy, which
contain a vertex from the first row gf equals the number of those open chains of
B € ywhich have a vertex outside of thheth row of the diagrany. The remaining
open chains o contain one vertex from the second rowgf and they correspond
to those open diagrams @fwhich consist of one vertex from thre-th row of the
diagram. The above observations imply the desired identity

To formulate the general form of the diagram formula for thedpict of degener-
ateU -statistics we introduce some quantities which are themesof the quantities
W(y), s(y) appearing in the identity (11.4) in Theorem 11.1 in the gase?2. Put

W)= Y (B -1+ Y (UB)-2), yel (k. kn), (119
BeO(y) BeC(y)

where/() denotes the length of the chghn

To define the next quantity let us introduce some notations.cdhsider the
chains of the forn8 = {(p1,r1),...,(p,1)}, 1< p1< p2 <--- < p <m, with ele-
ments in the seA(ky,....km) = {(p,r): 1< p<m, 1<r <kp}, and define their up-
per levelu(f3) = p1, and deepest level(8) = p;. With the help of these notions we
introduce for all diagramg € I (ki,...,kn) and integer, 1 < p < m, the follow-
ing subsets of the diagramPut#1(y,p) ={B: B <y, c/(B)=1,d(B)=p}, and
P2y, p)={B: Bey.cy(B)=-1,d(B) <p}U{B: By, u(B)<p,d(B)>p}
In words, %1(y, p) consists of those chain$ € y which have colour 1, all their
vertices are in the firgb rows of the diagram, and contain a vertex in fih row.
The set%,(y, p) consists of those chairfse y which have either colour1, and alll
their vertices are in the firgi rows of the diagram, or they have (with an arbitrary
colour) a vertex both in the firgi rows and in the remaining rows of the diagram.
PutBi(y, p) = |%1(y, p)| andBa(y, p) = | B2(Y. p)|. With the help of these numbers
we define

BiVP) 1 By (yp) Baly.p)t))

n—Bi(v:p)BalyP)ti) it g >1

Jn(v,p)—{ ALy ( n ) T B1(y,p) 2 (11.10)
1 ifBy(y,p)=0

forall 2 < p<mand diagramy € I' (kg ... ,Kkn).
Theorem 11.2 will be formulated with the help of the aboveations.

Theorem 11.2 (The diagram formula for the product of severaldegenerateU -
statistics).Let a sequence of independent and identically distribuéediom vari-
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ablesés, &, ... be given with some distributiop on a measurable spad¥, 2")
together with m> 2 bounded functionspfxy, ... ,xkp) on the space$xkp, 2%,
1 < p < m, canonical with respect to the probability measyre Let us con-
sider the class of coloured diagranfs(ks,...,ky) together with the functions
Fy=F/(f1,...,fm), Y€ (Ke,...,km), defined in formulas (11.8) and the constants
W(y) and &(v,p), 1 < p<m, given in formulas (11.9) and (11.10).

The functions [{ f1,.. ., fm) are bounded and canonical with respect to the mea-
surep with |O(y)| variables, and the product of the degenerate U -statisfigs(Ifp),
1<p<m,n> l&np@;]kp, defined in (8.8) can be written in the form

m k)2 7(n,m) m
10 %kt () = S [ 9n(v:P)
p=1 p=2

yel (K,....km)
nWw/2, nf‘o<y)‘/2|o(y)“|n.|O(y)|(Fy(fla oo ), (11.112)

wherez’(”' ™ means that summation is taken for thgser (ky,...,kn) which sat-
isfy the relation B(y, p) +B2(y, p) < nfor all 2 < p < m with the quantities By, p)
and B(y, p) introduced before the definition of(, p) in (11.10), and the expres-
sionW(y) was defined in (11.9). The termsd,, (Fy(f1,..., fm)) at the right-hand
side of formula (11.11) can be replaced Ryd,y) (SymFy(fy,..., fm)).

To understand better the formulation of Theorem 11.2 leonsicler the follow-
ing example.

Take three normalized degenerafestatisticsn™2/23!1,3(f1), n~24!,4(f2) and
n~3/2311,3(f3) with canonical kernel functiongs (x1,X2,X3), f2(X1,%2,X3,X4) and
f3(X1,%2,X%3), and let us see how to calculate a term from the sum at the higid
side of formula (11.11) which expresses the product

n3/2311y 5(f1)n 241y 4(f2)n"%/231n 5(fs)

in the form of a linear combination of degenerbltestatistics.

In this case we have to consider coloured diagrams with rdwenices (1,1),
(1,2), (1,3), then (2,1), (2,2), (2,3), (2,4), and finallyl(B (3,2), (3,3). We have to
consider all coloured diagrams with these rows, and to tatliedheir contribution
to the sum at the right-hand side of (11.11). Let us consideirfstance the dia-
gram containing two closed chains (with colour(1}, 3),(2,4),(3,3)) of length 3,
((1,1),(2,2)) of length 2, an open chain (with coloul) ((2,1),(3,1)) of length 2,
and the remaining vertices (1,2), (2,3), (3,2) are chaidergfth 1 which are conse-
quently open (with colour-1). (See picture.)
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11 @2 @3
o

21 @2 (3,3) (2.4)

o
3,1 (2 (353
Our diagrany

We want to calculat&,(f1, f2, f3). For this goal first we have to determine the
coloured diagramgpr € " (3,4) and y; € I (4,3) (here the first parameter 4 in
the definition of the class of diagrams wheggbelongs to is the number of open
chains iny,, which is, as we will see, equals 4), and the kernel fundﬁ,grr( f1, f2).
(See the picture of the diagrayg, together with a labelling of its chains and the
diagramyg to which we also attached a labelling.)

1,1 12 (13 11 @12 @3 14

o1 o o

(o] (o]
21 22 (23 (2.4 21) 22 (2,3

The diagramy constructed
with the help of y,r and of
the enumeration of its open
chains

The diagramy,, correspond-
ing to y together with the enu-
meration of its open chains

In our exampleyy is a diagram with two rows (1,1), (1,2), (1,3) and (2,1), §2,2
(2,3), (2,4). It contains a closed chdifi, 1), (2,2)) and an open chaif(1,3),(2,4))
of length 2, (the latter is the restriction of a chain of ldng), and open chains of
length 1, which are the vertices (1,2), (2,1), (2,3). Thithis same diagram which
we considered in the example after Theorem 1.1. In that ebeamp have fixed
an enumeration of the chains of this diagram. We also madedheention that
the enumeration of the chains of a diagram fixed at the stariatabe modified
later. Hence we have the following enumeration of the opetinshof this diagram:
(1,2)-label 1, (2,1)-label Z(1,3),(2,4))-label 3, and (2,3)-label 4.

We define the coloured diagrayy with the help of the diagrarg,r and the enu-
meration of its open chains. It has two rows. The verticeshefftrst row(1,1),
(1,2), (1,3) and(1,4) correspond to the open chains of the diagrgmwith la-
bels 1, 2, 3 and 4 respectively. The vertices of the second ), (2,2) and(2,3)
correspond to the verticé8, 1), (3,2) and(3,3) of the last row of the original di-
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agramy. The diagramy has an open chaif(1,2),(2,1)) of length two, (here the
open chain (2,1) of4 labelled by 2, is connected to the vertex (3,1) with second
index 1), a closed chain of length(21,3),(2,3)) (here the open chain ok, la-
belled by 3 is connected with the vertex (3,3)), and the raimgiopen chains of

Yo Of length 1 are (1,1), (1,4) (the open chains (1,2) and (Z,3)owith labels 1,
and 4), and (2,2).

Actually we have already calculated the functigg, (f1, f2) in formula (11.7).
We can calculate similarly the functidy(fy, f2, f3) = Fy, (Fy, (1, f2), f3). First
we fix a labelling of the chains of the diagram, say (1,1)-label 1((1,2),(2,1))—
label 2, (1,4)—label 3, (2,2)-label 4, afd, 3), (2,3))—label 5. (I have denoted this
labelling in the corresponding picture.) With such a labgll

Fy(f1, f2, f3) (X1, X2, X3, Xa) = Q2P5(Fy,, (X1, X2, X5, X3) f3(X2, X4, X5))

= /prr(xl’XZ,XS,X3)f3(X2,X4,X5)u(dx5)
- / I:Vpr (Xla X2, Xs, X3) f3(X27X4,X5)[.1(dX2)I_,l(dX5).
The normalized degenerdtestatistic corresponding tp is

N 2400 4(Fy(f1, T2, f2)),

and the term corresponding i in formula (11.11) is

n—4

2
(n) 24N 4(Fy(fr, f2, f3))

if n> 5. In the casa < 4 this term disappears.

In Theorem 11.2 the product of such degenetatstatistics were considered
whose kernel functions were bounded. This also impliesat&inctionsF, appear-
ing at the right-hand side of (11.11) are well-defined (he.integrals appearing in
their definition are convergent) and bounded. In the apiitica of Theorem 11.2 it
is useful to have a good bound on thenorm of the functiong,(f1,..., fm). Such
a result is formulated in the following

Lemma 11.3 (Estimate about theL,-norm of the kernel functions of the U-
statistics appearing in the diagram formula).Let m functions f(xq, ..., %,), 1 <

p < m, be given on the productX*e, 2%, u*») of some measure spat¥, 2", u),

1 < p < m, with a probability measurg, which satisfy inequality (8.1) (if the index
k is replaced by the index,kn formula (8.1)). Let us take a coloured diagram
y € I (K,...,km), and consider the function,Ff,..., fn) defined inductively by
means of formula (11.8). The4norm of the function [ fy,..., fm) (with respect
to the product measurg x --- x u on the space where/F1,..., fn) is defined)
satisfies the inequality
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HFV(flv' <y fm)Hz < 2W(y) I_l ” pr27
peuU(y)

where W) is given in (11.9), and the set(y)) C {1,...,m} is defined as

U(y) ={p: 1<p<m, forallvertices(p,r), 1<r <kpthechaingey
for which (p,r) € B has the property that either(3) = p
ord(B) =pandg/(B) =1}. (11.12)

(If the point(p,r) is contained in a chaifs = {(p,r)} € y of length 1, then (8) =
d(B) = p, and ¢(B) = —1. In this case the vertegp,r) satisfies that condition
which all vertices(p,r), 1 < r < kp, must satisfy to guarantee the property=p

U(y).)

Remark.Let us give a less formal definition of the 4é{y) in formula (11.12). It
contains the indices of those rows of the diagiawhose vertices behave in a sense
nicely. This nice behaviour means the following. Each veidecontained in a chain

B of the diagramy. We sat that a vertex has nice behaviour if it is either at the
highest or the lowest level of the chghe y containing it. Moreover, if it is at its
lower level, then we also demand th&tmust be closed, i.e&(f) = 1. If a vertex

is contained in a chain containing no other vertex, then litoth at the higher and
lower level of this chain. In this case we say that the vertxave nicely.

The last result of this chapter is a corollary of Theorem 1th2his corollary we
give an estimate on the expected value of a product of degtidrstatistics. To
formulate this result we introduce the following termingyo We call a (coloured)
diagramy € I (ky, ..., km) closed ifc, () = 1 for all chaingB € y, and denote the set
of all closed diagrams by (ki,...,km). Observe thaF(f1,..., fm) is constant (a
function of zero variable) if and only if is a closed diagram, i.g.€ I" (ki, ..., kn),
and

In‘o(y)l(Fy( fl, ey fm)) e |n70(Fy( f]_7 ey fm)) - Fy( f]_, ey fm)
in this case. Now we formulate the following result.

Corollary of Theorem 11.2 about the expectation of a productof degenerate
U -statistics. Let a finite sequence of functiong(Xy, ... ,xkp), 1< p<m,begiven
on the productgXk», 27%) of some measurable spat¥,.2") together with a se-
quence of independent and identically distributed randamables with value in
the spaceéX, 2") and some distributiop which satisfy the conditions of Theorem
11.2.

Let us apply the notation of Theorem 11.2 together with th®nf the above
introduced class of closed diagrarngks, ..., ky). The identity
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m
E <|‘| n‘kp/zkp!lnﬁkp(fkp)> (11.13)
p=1

holds. This identity has the consequence

m
E <|‘| nkp/zkpnn,kp(fkp))
p=1

Beside this, if the functions,,f1 < p < m, satisfy conditions (8.1) and (8.2) (with
indices k instead of k in them), then the numbéfg(fy, ..., fm)| at the right-hand
side of (11.14) satisfy the inequality

< 5 nYORR(fL L fe)| (11.14)

yerl (Ky,....km)

Fy(f1,..., fm)| <2VWGVWI forall y e I (ky, ..., kn). (11.15)

In formula (11.15) the same numbernW and set Uy) appear as in Lemma 11.3.
The only difference is that in the present case the defindgfdu(y) becomes a bit
simpler, since ¢(3) = 1 for all chainsp € y.

Remark:We have applied a different terminology for diagrams in tthapter and

in Chapter 10, where the theory of Wiened-tegrals was discussed. But there is
a simple relation between their terminology. If we take dhlyse diagrams consid-
ered in this chapter which contain only chains of length 1,cartl beside this the
chains of length 1 have colourl, and the chains of length 2 have colour 1, then
we get the diagrams considered in the previous chapter. dMergthe functions

Fy = Fy(fy,..., fm) are the same in the two cases. Hence formula (10.22) in the
Corollary of Theorem 10.2 and formula (11.14) in the Comyllaf Theorem 11.2
make possible to compare the moments of Wienéridtegrals and degenerdie
statistics.

The main difference between the estimates of this chaptetrense given in the
Gaussian case is that formula (11.14) contains some additierms. They are the
contributions of those diagranysc I (ki, . .., km) which contain chain$ € y with
length ¢(B) > 2. These are those diagrams I (kg,...,kn) for which W(y) >
1. The estimate (11.15) given for the terfscorresponding to such diagrams is
weaker, than the estimate given for the teffpsvith W(y) = 0, sincelU(y)| <m
if W(y) > 1, and|U(y)] = mif W(y) = 0. On the other hand, such terms have a
coefficientn™W(V)/2 at the right-hand side of formula (11.14). A closer study of
these formulas may explain the relation between the estgngiven for the tail
distribution of Wiener—Ib integrals and degenerdtestatistics.






Chapter 12
The proof of the diagram formula for U -statistics

In this chapter the results of the previous chapter will baved. First | prove its
main result, the diagram formula for the product of two degyateU -statistics.

Proof of Theorem 11.1n the first step of the proof the product

Killnk, (f1)ka!Ink, (T2)

of two degeneratb) -statistics will be rewritten as a sum of not necessarilyetieg
erateU-statistics. In this step a term by term multiplication isre=d out for the
productky !l (f1)ko!Ink,(f2), and the terms of the sum obtained in such a way are
put into different classes indexed by the (non-colouredydims with two rows of
lengthk; andk,. This step is very similar to the heuristic argument leada@rmu-
las (10.15) and (10.16) in our explanation about the diagoamula for Wiener-1d
integrals.

In this step we consider all sets of pairs

{(13,17), .., (1)}, 1<r <min(ky, k),

with the following properties: X 11 <l < --- < Iy <kq, the numbers/,... .|| are
all different, and I< 1, <k, forall 1< s<r.

To a set of paird(l1,17),..., (Ir,17)} with the above properties let us correspond
the following diagramy((11,17),...,(I,17)) € I (ki kz), wherel™ (k1, ko) denotes the
set of (hon-coloured) diagrams with two rows of lengthand k,. The diagram
y((11,17), ..., (It,1})) has two rows{(1,1)...,(1,ki)}, and{(2,1),...,(2,k2)}, its
chains of length 2 are the sefél,ls), (2,1}, 1 < s <, and beside this it con-
tains the chaing(1,p)}, pe {1,....ki} \{l1,....Ir },and{(2,p)}, pe {1,... . ko} \
{l7,....1;} of length 1. All (non-coloured) diagramg € I" (ki,kz) can be rep-
resented in the formy = y((I1,17),...,(I+,17)) with the help of a set of pairs
{(1,17),.... (I, 11) }, 1 <r <min(ke, k2), with the above properties in a unique way.

To make the notation in the subsequent discussion simplantneduce, sim-
ilarly to the notation of Chapter 11, a labelling of the clwiof the diagrams

133
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y € I (ki,kz2), and then we define the labelling of the vertices of this diegy
with its help.

Let us choose the following natural labelling of the chaifs aliagram. Con-
sider the diagrany = y((I1,1%),...,(Ir,1})) € I (ki, kz) which hass(y) = ki + ko —r
chains. The chaif € y containing the vertexl, p) gets the labep, i.e.{(1,p)} =
B(p) if 1 <p<ky,andp¢ {l,....Ir}, and {(L,1s),(2,1)} = B(p) if p=1s
with some 1< s <r. The remaining chains of have the form{(2,p)} with p €
{1,...,ka}\{l1,..., I} }. Let us list the numbers with this property in an increasing
order, i.e. write{1,... ko} \ {I3,..., I/} = {l1,... .o} With 1 <11 < -+ < Iy,
and defing{(2,1p)} = B(ki +p) for 1 < p < ko —r. In such a way we have labelled
the chains of a diagrame I (k;, k). After this, we label its verticegp,r) by the
formulaay((p,r)) = | with that labell for which (p,r) € B(I). Let us also define
the setd/, ZVl()_/) = {1,...,k1+k2—r}\{|1,...,|r} andV, =V2()_/) = {|17-~~7|r}-
These sets yield the labels of the chains of length 1 andhehgespectively, i.e.
B(p) is a chain of length 1 ip € V4, and it is a chain of length 2 ip € V.

We have defined a special labelling of the chains of the diagsac I (ky, kz),
and we shall work with it during the proof. First we prove ayblly modified ver-
sion of relation (11.4) with functionBy( f1, f2) defined with the help of the above
labelling of the chains, which may not satisfy all condisone imposed for a la-
belling of the chains before the formulation of Theorem 1THhen we show that
identity (11.4) remains valid with the formulation of Thean 11.1 (i.e. with that
labelling of the chains which we considered there).

Let us consider the produét!ln, (f1)ko!lnk,(f2), and let us rewrite it in the
form of the sum we get by carrying out a term by term multigiimain this expres-
sion. We put the terms obtained in such a way into disjoirésga indexed by the
diagramsy € I (ky, ko) in the following way: A product

fl(fjl,...,fjkl)fz(fjfl,---wfj’kz)

belongs to the class indexed by the diagrgitis,),. .., (Ir,17)) with the parame-
ters(I1,19),....(Ir,1}), 1 <r <min(ky, ko), where 1< 1y <lp < --- < Iy <k, the
numbersly,..., I} are different, and K I{ < kp, for all 1 < s <r if the indices
| T A LR j/k2 in the arguments of the variables fp(-) and f,(-) satisfy the
relation jj, = j,/é, 1< s<r, and there is no more coincidence between the indices
IEVRTO PP P

It is not difficult to see by applying the above partition oétterms in the prod-
uct ky!lng, (f1)ko!lnk, (f2), and exploiting that each diagrayne I (ki, ko) can be
represented in the fory((I1,17),....(I+,17)) in a unique way that the identity

n—k1/2k1! |n)k1( fl)kZI n_k2/2|n7k2(f2)

N z/(ﬂ) n-(atk) 2511 4o (fro o)) (12.1)
yer (Ki.ko)



12 The proof of the diagram formula fok-statistics 135

holds, where the function§fi o fo); = (f1o fg)y(xl,...,xs(y)) are defined in for-
mula (11.2) with the help of the above introduced labelliigh® chains of the
diagramy, ands(y) = k; + ks — |V»(y)| denotes the number of chainsyin(Observe
that with our labelling of the chalns the indices of the fumt(fy o fo); are the
numbers 1...,s(y).) The no_tanonz ) in (12.1) means that summation is taken
only for such diagramy_e I (k1,kz) for which n > s(y). (Let me remark that al-
though formula (11.2) was defined for coloured diagramsgtieurs of the chains
played no role in it.)

Relation (12.1) is not appropriate for our purposes, sihedunctiong fyo f2);;
in it may be non-canonical. To get the desired formula, Hbef’s decomposition
will be applied for theJ -statistics, 5 (( f1 0 f2)y) appearing at the right-hand side
of formula (12.1). This decomposition becomes slightly @ien because of some
special properties of the functidriy o f2);which follow from the canonical property
of the initial functionsf; and fo.

To carry out this procedure let us observe that a functioa, . . . , X«) is canonical
if and only if (P; f)(xs, s€ {1,...,k}\ {j}) = O with the operatoP; defined in (9.1)
for all indicesj and{xs: 1 < ]IeK s# j}. Beside this, the condition that the func-
tions f1 and f, are canonical implies the relatidt( fyo f2);=0if ve Vy(y) for all
diagramsy € I (k1,kz). (The seti(y) denoted the labels of the chains of length 1
in the diagramy.) This relation remains valid if the functioff; o f,); is replaced
by such functions which we get by applying the product of sdraesformations
R, andQy, V € Vx(y), for the function( f; o o)y with the transformation&, and
Qv defined in formulas (9.1) and (9.2).

Beside this, the transformatioRs or Q, are exchangeable with the operatBys
or Q. for any pairs of indices,V, andR, + Qy = |, wherel denotes the identity op-
erator. Beside thiR,Qy =0, sinceRQ, =R, — P2 0. The above relations make
possible the following decomposition of the funcumo f2)y to the sum of canon-
ical functions for ally € I' (k, kz). (In the proof of the Hoeffding decomposition a
similar argument was applied.)

(fiofa)y= [] (R+Q(fiof2)y (12.2)
veVsp(y)

= z (l-/LPV I_k QV> frofo)y yf17f2
AL (y) \VEA  veEVL\A yel (y)

wherel” (y) denotes the set of those coloured diagramas™ (k;, kz) which contain
the same chains (with colour 1 erl) as the non-coloured diagraynHerel7; de-
notes the set of all such coloured coloured diagrams whieh tiee same chains as
the diagrany, their chains of length 2 may have colour 1-et, while the colour
of their chains with length 1 is-1. The functionF( fy, f») is defined for a diagram
y € I (y) in the following way.

If the colouring of the chains of a coloured diagrgma I" () is defined with the
help of a setA C V»(y) by the relations,(B(v)) =1 if ve A ¢, (B(v)) = —1 if
ve Vo(y) \ A (and for the remaining chairs e y with length 1c,(B) = —1), then
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Fy(fa. f2) = Fy(fr f2) (X, X0, )
= I_LPV Qv(flo fz)ﬂxl,...,xsm). (12.3)
ve veVo\A

Here the indicedl,...,l‘o(y)‘, h << I|O(y)|1 of the variables of the function
Fy(f1, f2) are the labels of the open chains (chains with colelly of the diagrany,
i.e, they are the elements of the §é4(y) \ A) UV4(y). (Clearly,s(y) = s(y) for the
number of chains of andy if y € I" (y).) In such a way we have defin€(f1, f2)
for eachy € I" (y). The definition of this function is very similar to that Bf( f1, f2)
in formula (11.3). They differ only in the indexation of thefariables. (The vari-
ables of the functiof,( fy, f2) have indicesy, .. .| o(y)|» and the set of these indices
may be different of the s€t, ..., |O(y)|}. But we have defined tHg-statistics with
a kernel function also in this case.)

Itis not difficult to check relation (12.2). We claim thatritplies that &J -statistic
with kernel function( f; o f2); satisfies the identity

n7<kl+k2>/25(®!|n7§w ((flo f2))7) (124)

= n (ka)/2nCWL3, () [O(y) [t oy (Fy(F1, F2))
yel (v)

with the functionF,( f1, f2), whereC(y) is the set of closed chains pfanddn(y) is
defined ash(y) = 1if |C(y)| =0, and

[C(y)l n—s(y)+j .
=T (n) it 1C(y)| >0 (12.5)

forally e I (kg k).

Relation (12.4) follows from relation (12.2) in the same was/formula (9.4)
follows from formula (9.3) in the proof of the Hoeffding deuposition. Let us
understand why the coefficienf(¥)|J,(y) appears at the right-hand side of (12.4).

This coefficient can be calculated in the following way. Letrite up the iden-
tity

(k) /2§ o f2)7(&ins- -5 €igy)

_ —(ki+ko) /22 . .
- n Fy(fla fZ)(EJ a"'?f] )
VEZ( 7 1 %]

with the help of (12.2) for all sequencég, .. ., ‘EJW) , and letus sum it up for all such

sets of argumentsy, ..., jgy) for which all indicesjp, 1 < p < s(y), are different,
and 1< jp < n. Then we get at the left-hand side of the identity thetatistic

nf(kﬁkz)/zs(ﬂ!lnls—m ((flo fZ)V) :
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We still have to check that at the right-hand side of this iitewe get a sum, where
a term of the forrm~(a+k2)/2F, (fy, fz)(Ehl’.“’Ejl\o(y)\) appears with multiplicity

nWJy(y). Indeed, such a term appears for such vectjrs .., jy) for which
the value offO(y)| arguments are fixed, the remaining arguments can takeasbitr
value between 1 armuwith the only restriction that all coordinates must be digfa.
(The operator®, are applied for these remaining coordinates.) Therel&ré!J,(y)
such vectors. The above observations imply identity (12.4)

Let us observe that; + ko — 2|C(y)| = |O(y)| + W(y) with the numbeW(y)
introduced in the formulation of Theorem 11.1. Hence

- (kitke) /20/COI - W(y)/2-10m)/2.

Let us replace the left-hand side of the last identity byightrhand side in (12.4),
and let us sum up the identity we get in such a way fowyall I (ky,kz) such that
s(y) < n. The identity we get in such a way together with formulas{1and (12.5)
imply such a version of identity (11.4) where the kernel fiimres F,( f1, f2) of the

U -statistics at the right-hand side of the equation are oeldy the kernel functions
Fy(fl, f2) defined in (12.3). But we can get the functip( f1, f2) by reindexing
the arguments of the functldﬁ/(fl, f2). This can be seen by taking the original
indexation of the chains gfand looking at the indexation of the vertices it implies.
On the other hand, we know that the reindexation of the vegabf the kernel
function_does not change the value of thestatistic. Hencey, oy (Fy(f1, f2)) =
In,jo( )‘(Fy(fl, f5)), and identity (11.4) holds in its original form.

Clearly, Injoy) (Fy(f1, f2)) = Injoy) (SYmFy(f1, f2)), henceln oy (Fy(f1, f2))
can be replaced bly, o) (SymFy( fl, fz)) in formula (11.4). Beside this, we have
shown that the functionB,( f1, f2) are canonical, and it can be simply shown that
they are bounded, if the functiorig and f, have this property. We still have to prove
inequalities (11.5) and (11.6).

Inequality (11.5), the estimate of the-norm of the functiorf,(f1, f2) follows
from the Schwarz inequality, and actually it agrees withgimnaity (10.13), proved
at the start of Appendix B. Hence its proof is omitted here.

To prove inequality (11.6) let us introduce, similarly tarfala (9.2), the opera-
tors

Qi) (X, %) = h(xe, .., X +/hX1, SX)p(dx), 1<j<r,

in the space of functiort®(x,, . . ., ) with coordinates in the spa¢¥, 2”). Observe
that both the operato@; and the operator§; defined in (9.1) are positive, i.e. they
map a non-negative function to a non-negative functionidgethis,Q; < Q;, and

the norms of the operato%*} andP; are bounded by 1 both in tha (1), theLo(u)
and the supremum norm.
Let us define the function
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)

Fy(fr. f2) (X0, ... Xoy)

- < P Qy) (fro f2)y(Xas -+ Xy +/c(y))
i1 BUECY) 't BNEO(Y)

with the notation of Chapter 11. The functicﬁp(fl, f2) was defined similarly to
Fy(f1, f2) defined in (11.3) with the help dff; o f2), only the operatorQ; were
replaced byQj in its definition.

The properties of the operatd?pand@,— listed above together with the condition
sup| fa(Xq, ..., %) | < 1imply that

Fy(f1, f2)] < Fy(|faf, |f2]) < Fy(Ifa], 1), (12.6)

where ‘<’ means that the function at the right-hand side is greaten tr equal
to the function at the left-hand side in all points, and threntd in (12.6) denotes
the function which equals identically 1. Because of thetiete(12.6) to prove rela-
tion (11.6) it is enough to show that

I(Fy(If2, Dyll2

( Pj Qj’) [F2(Xary((1,2))s - - » Xay((Lke)))|
it B()eCly) 't B(i').€02(y) 2

< 2102 RATES 2W(V>|| f1)|2. (12.7)

But this inequality trivially holds, since the norm of all eqtorsP; in formula
(12.7) is bounded by 1, the norm of all operat@;sis bounded by 2 in théo(u)
norm, and Oz (y)| =W(y).

Proof of Theorem 11.Z'lheorem 11.2 will be proved with the help of Theorem 11.1
by induction with respect to the numbmrof the terms in the product of the degen-
erateU -statisticskp!Ink, (fp), 1 < p < m. Itis not difficult to check with the help
of Theorem 11.1 and the recursive definition of the functigpy applying induc-
tion with respect tan that the function(fy,..., fm) are bounded and canonical if
the functionsfy, ..., f, satisfy the same properties. We still have to prove the iden-
tity (11.11). This will be proved also by induction with resp tom with the help of
Theorem 11.1.

Form= 2 formula (11.11) follows from Theorem 11.1, since in thise# agrees
with relation (11.4). To prove this formula fon > 3 first we express with the help
of our inductive hypothesis the product of the finst- 1 terms in the product of
degeneraté) -statistics as a sum of degenerétestatistics. Then we express the
product of each term in this sum with the laststatistic of the product as a sum
of U-statistics with the help of Theorem 11.1, and sum up thesetiides. In such
a way we express the product mfdegeneraté -statistics in the form of a sum of
degenerat¥l -statistics. We have to show that in such a way we get forniulal().

In the proof of this statement we shall exploit that in thecoldtion of the product of
the firstm— 1 U -statistics we have to work with the diagramps and if we calculate
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the product of these terms with theth theU -statistic, then we calculate with the
diagramsy.

To carry out the above program first we observe that a diagrarf (ky, ..., km)
is uniquely determined by the pairs Ofjr, Y1) defined with the help o, i.e.
if y,y € (ki,...,km), andy # vy, then eitheryyr # v, O Yo # V- Hence we
can identify each diagrany € I (kq,...,km) with the pair (Vpr, yo1) we defined
with its help. Beside this, the pairs of diagrany,ye) satisfy the relations
Yor € I (Ke,...,km—1) andyg € I (|O(Ypr)|, km). Moreover, the class of pairs of di-
agrams(Ypr, ¥e1), Y € I' (Ke,...,km), have the following characterization. Take all
such pairs of diagram@, y) for which y € I" (ky, ..., km_1) andy € I (|O(y)|, km).
There is a one to one correspondence between the pairs ofdiagy, y) with this
property and the diagramse I (ki, ..., km) in such a way thay = y,r andy = yg.
(This correspondence depends on the labelling of the opainglof the diagrams
y e (ky,...,kn 1) that we have previously fixed.) It is not difficult to check the
above statements, and | leave it to the reader.

Because of our inductive hypothesis we can write by applyehation (11.11) of
Theorem 11.2 with parametar— 1 the identity

m-1
I_I n_kp/zkpllnkp(fp) (nm-1 < |_L‘Jn y? >
p:]_ y€l— kl ..... km 1
*W(Vj/z . nf‘o(%vzlo V)|| |n7‘o(®|( )ﬁfl7 R fmfl)). (128)

(Here we use the notations of Chapter 11.)
We get by applying the identity (11.4) of Theorem 11.1 for pineduct

n“O(W‘/Z|O(ﬂ|!In,‘O(W(Fy( f1,eey fme1)) - 2k (Fm),

m—1
and by multiplying it with( M (v, p)) n-W(/2 that the identity
p=2

m—1
(I‘IZJn@p)) Wn/2nOIZ0(y)ly jo 7 (Fi fas - fm-1)
p:

K2k ke (Fim)

m-1 CO /y—o(0) 4 i

_ <|_|2‘]”(V’p)> n-W(1),/2 2/(n> I—L (”S(V)*J) (12.9)
p fer (O ke) 1= "
n-WW/2. n-leWI2 1oy DM o) (Fy(Fy(f1 .., fmo1), fm)).

holds for ally € I (ky,...,km_1), where 3" means that summation is taken
yer (10(y])-km)

[C(¥l

for such diagramg € I (|O(y)|, km) for whichs(y) = |O(y)| +|C(y)| < n, and []

j=1

equals 1, ifiC(y)| = 0.
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We shall prove relation (11.11) for the parameterwith the help of rela-
tions (12.8) and (12.9).

Let us sum up formula (12.9) for all such diagrayns ™ (ky, . .. ,km_1) for which
Bi(y, p) +Bz(y,p) <nforall2< p<m-1. The number8;(-) andBy(-) in these
inequalities are the numbers introduced before formulal@1 only in this case
the diagramy is replaced byy. We imposed those conditions on the terms
this summation which appear in the conditions of the sununati z“”vm*l) at the
right-hand side of formula (12.8) when it is applied with gaweterm— 1. Hence
formula (12.8) implies that the sum of the terms at the leiftdhside of these identi-

m
ties equals|‘| n- kp/zkpllnk (fp), i.e. the left-hand side of (11.11) for parameter

To prove formula (11.11) for the parameteit is enough to show that the sum of the
right-hand side terms of the above identities equals thHe-tignd side of (11.11).

In the proof of this relation we shall apply the propertieshaf pairs of diagrams
(Yprs Yer) coming from a diagrany € I (ky, ..., km) mentioned before. Namely, we
shall exploit that there is a one to one correspondence ketitle diagramy
I (ka,...,km) and pairs of diagraméy, y), y € I (ka,...,Km-1), ¥ € I (|O()|,Kkm)
in such a way thay and the pairy, ) correspond to each other if and onlyif=
andy = V. This correspondence enables us to reformulate the statemechave
to prove in the following way. Let us rewrite formula (12.9) teplacingy with ypr
andy by yq, with that diagrany € I" (ky, ..., km) for which y = ypr andy = yg. Itis
enough to show that if we take those modified versions of ji&tfich we get by
replacing the pairéy, y) by the pairgypr, i) with somey € I" (ky, . .., km) and sum
up them for thosg for which By (Ypr, p) + B2(Vpr, p) < nforall2 < p<m-1, then
the sum of the right-hand side expressions in these idesiuals the right-hand
side of (11.11).

We shall prove the above identity with the help of the follog/statements to be
verified later.

Forally e I (ky,...,km) the identitiesN(yyr) +W(ye) = W(y) and

\C Ve )l

I_IZJn Yor: P) I_L (n e +J> I_Ian Y, p),

hold, where r] = 1if |C(yu)| = 0. The inequalitie8 (y, p) + B2(y, p) < n hold

S|multaneously for all X p < mfor a diagramy if and only if the inequalities
B1(Ypr, P) +B2(Ypr, p) < nforall 2 < p < m—1ands(y;) < nhold simultaneously
for thisy.

To prove the identity we claimed to hold with the help of theabrelations let
us first check that we sum up for the same sey af " (ky, ... ,kn) if we take the
sum of modified versions of (12.9) for glisuch thaBi (Vpr, p) + B2(Vpr, p) < nfor
all 2< p< m—1 and if we take thg'(™™ at the right-hand side of (11.11). Indeed,
in the second case we have to take those diaggeiorswhich By (y, p) + Ba(y, p) <
n for all 2 < p < m, while in the first case we take those diagrayn®r which



12 The proof of the diagram formula fok-statistics 141

B1(Ypr, P) +B2(Vpr, p) < nforall 2 < p<m-—1, ands(y) < n. The last condition is
contained in a slightly hidden form in the summat'@’ﬁ”) of formula (12.9). Hence
the above mentioned relations imply that have to sum up fs#ime diagramgin
the two cases.

Beside this, it follows from (11.8) that the sarbestatistics appear for a dia-
gramy € I (Ky,...,km) in (11.11) and in the modified version of (12.9). We still
have to check that they have the same coefficients in the taesc®8ut this holds,
because the previously formulated identities imply that

= Wp)/20-WiKe) 2 — - W(y)/2

IC Yer)|

rL\]n Yor, P) I_II (n sl +J) I_IZJn Y

andn~100=)l/2|0(y )|t = n~1OWI/2|0(y) |1, since|O(y)| = |O(ye)|, as we have seen
before.

To complete the proof of the identity it remained to checkr#iations we applied
in the previous argument. We start with the proof of the idgMW (ypr) +W(yel) =
W(y) for the functionw(-) defined in (11.9).

Let us first remark thaW/(ye1 ) = |O2(Ver) |, whereOz( ) is the set of open chains
in vz with length 2. Beside this i € y is such tha3 N {(m,1),...,(mKk)} = 0,
i.e. if the chainf contains no vertex from the last row of the diagrgmthen
£(B) = £(Bpr), and cy(B) = Cy, (Bpr)- If BN {(m1),...,(mKk)} # 0, then ei-
ther c¢y(B) = 1, £(Bpr) = ¢(B) — 1, andcy, (B) = —1 or ¢,(B) = —1 and one
of the following cases appears. Eith€B3) = 1, and the chair3,, does not ex-
ists, or{(B) > 1, and/(Byr) = £(B) — 1, ¢y, (Bpr) = —1. We get by calculating
W(y) with the help of the above relations that(y) = W(ypr) + |7 (y)|, where
¥(y) ={B: Bey,Bn{(m).....(mk} #0 £B) > 1c,(B) = —1}. Since
|7 (y)| = |O2(ye)|, the above relations imply the desired identity.

To prove the remaining relations first we observe that fohediagramy <
I (Kg,...,km) and number X p < m— 1 the identitiesB1(ypr, p) = B1(y, p) and
B2(Ypr, P) = Ba(y, p) hold. Beside thisiC(y)| = B1(y,m) and|O(yer)| = Ba(y, m).
The identity aboutC(y )| simply follows from the definition of andBi(y,m).
To prove the identity abouO(y. )| observe thatO(y)| = |O(y)|, and |O(y)| =
Bz (y,m). (Observe that in the cage= mthe definition of the se®,(y,m) becomes
simpler, because there is no chffire y for whichd(3) > m.)

The remaining relations can be deduced from these facteethdhey imply that

)

In(Yors p) =dn(y,p)forall2< p<m-—1. BeS|deth|s |‘| <%> Jn(y,m)

because of the relationS(y)| = Ba(y.m) [O(y)| = Baly.m). r) = ()| +
|O(]ye1)| and the definition 08,(y, m). Hence the identity about the product of the
termsJn(y, p) holds. It can be seen similarly that the relati@sy, p) + Bz(y, p) <

n holds for all 2< p < m— 1 if and only if B1(Vpr, p) + B2(ypr, p) < nfor all 2 <
p<m-1,andB;(y,m)+By(y,m) < nifand only if s(yz) < n.
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Thus we have proved identity (11.11). To complete the prddfteorem 11.2
we still have to show that under its conditioRg fs,..., fm) is a bounded, canon-
ical function. But this follows from Theorem 11.1 and redeti(11.8) by a simple
induction argument.

Proof of Lemma 11.3Lemma 11.3 will be proved by induction with respect to
the numbem of the terms in the product &f -statistics with the help of inequali-
ties (11.5) and (11.6). These relations imply the desirequility form= 2. In the
casem > 2 we apply the identity (11.8),(f1, ..., fm) = Fy, (Fy, (f1,.. ., fm-1), fm).
We have seen thaW(y) = W(ypr) +W(ya), and it is not difficult to show that
U(y) =U(Yor) +U(y). Hence ifU (y) = 0, i.e. if yg contains a chain of length 2
with colour—1, thenU (y) = U(Y,r), and an application of (11.8) and (11.6) for the
diagramyg implies Lemma 11.3 in this case.

If U(yer) = 1, thenW(yer) = 0, U(y) = U(ypr) + 1, W(y) = W(ypr), and the
application of (11.8) and (11.5) for the diagramimplies Lemma 11.3 in this case.

The corollary of Theorem 11.2 is a simple consequence of fEmed. 1.2 and
Lemma 11.3.

Proof of the corollary of Theorem 11.®bserve thaf, is a function of|O(y)|
arguments. Hence a coloured diagrgma I (Ki,...,km) is in the class of closed
diagrams, i.ey € I (k,...,km) if and only if F,(fy,..., fy) is a constant. Thus
formula (11.13) is a simple consequence of relation (11abtl)the observation that
Eljory) (Fy(f1,-.., fm)) = 0if |O(y)| > 1,i.e.ify & I (ka,...,km), and

Injo) (Fy(f1s.-s fm)) =Ino(Fy(f1,..., fm)) = Fy(f1,..., fm)

if yerl (ki,...,kn).

Relations (11.14) and (11.15) follow from relation (11.88d Lemma 11.3.



Chapter 13
The proof of Theorems 8.3, 8.5 and Example 8.7

In this chapter we prove the estimates on the distributioa afiultiple Wiener—
Itd integral or degeneraté-statistic formulated in Theorems 8.5 and 8.3, and also
present the proof of Example 8.7. Beside this, we prove aivadlate version of
Hoeffding’s inequality (Theorem 3.4). The latter resultigeful in the estimation of
the supremum of a class of degenetatstatistics. The estimate on the distribution
of a multiple random integral with respect to a normalizedpival distribution
given in Theorem 8.1 is omitted, because, as it was shown apteh 9, this result
follows from the estimate of Theorem 8.3 on degenethtatistics. We finish this
chapter with a separate part Chapter 13 B, where the resoliegin this chapter
are discussed together with the method of their proofs amgtsecent results. These
new results state that in certain cases the estimates aailtbistribution of Wiener—
Itd integrals andU -statistics considered in this chapter can be improved ihaxe
some additional information on the kernel function of thédener—Ib integrals or

U -statistics.

The proof of Theorems 8.5 and 8.3 is based on a good estimdtiglomoments
of Wiener—I9 integrals and degenerdtestatistics. Such estimates can be proved
with the help of the corollaries of Theorems 10.2 and 11.2s &pproach slightly
differs from the classical proof in the one-variate casee ®he-variate version of
the above problems is an estimate about the tail distributf@ sum of independent
random variables. Such an estimate can be obtained withelpeoha good bound
on the moment generating function of the sum. This method do¢ work in the
multivariate case, because, as later calculations willstitere is no good estimate
on the moment-generating functionldfstatistics or multiple Wiener-8tintegrals
of orderk > 3. Actually, the moment-generating function of a Wiendi-ttegral
of orderk > 3 is always divergent, because the tail distribution behavof such a
random integral is similar to that of theth power of a Gaussian random variable.
On the other hand, good bounds on the mom&#é" of a random variabl&
for all positive integerdvl (or at least for a sufficiently rich class of parameters
together with the application of the Markov inequality ## and an appropriate
choice of the parametd yield a good estimate on the tail distributionf

143
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Propositions 13.1 and 13.2 contain some estimates on thentsmof Wiener—f
integrals and degenerdtestatistics.

Proposition 13.1 (Estimate on the moments of Wiener—& integrals). Let us
consider a function (xy, ..., Xc) of k variables on some measurable spéxe.2")
which satisfies formula (8.15) with sorgefinite non-atomic measurg. Take the
k-fold Wiener—Ib integral Z, «(f) of this function with respect to a white noigg
with reference measuye. The inequality

E(KZu(f))™M <1-3.5...(kM—1)0™ forallM =1,2,...  (13.1)

holds.

By Stirling’s formula Proposition 13.1 implies that

kM
E(KZyk(f))M < mam < A(E) (kM)Mg2M (13.2)

for anyA > v/2if M > Mo = Mp(A). Formula (13.2) can be considered as a simpler,
better applicable version of Proposition 13.1. It can beebatompared with the
moment estimate on degenerbltestatistics given in formula (13.3).

Proposition 13.2 provides a similar, but weaker inequdlitythe moments of
normalized degeneraté-statistics.

Proposition 13.2 (Estimate on the moments of degeneraté-statistics). Let us
consider a degenerate U-statistigql f) of order k with sample size n and with a
kernel function f satisfying relations (8.1) and (8.2) wiibme0 < g2 < 1. Fix a
positive numben > 0. There exist some universal constants & and C< o such
that

/24 ™ aam [ 2\ kM _2M
E(nKiI() " <A@+eym™™ (2) kMo
for all integers M such thad < kM < nnoz. (13.3)

In formula (13.3) the constant C can be chosen as ¢2.

Theorem 13.2 yields a good estimate IEl(nn‘k/zk!Imk(f))ZM with a fixed ex-
ponent 21 with the choicen = r‘% With such a choice of the number for-

mula (13.3) yields an estimate on the momeEt(m‘k/Zk!In,k(f))ZM comparable
with the estimate on the corresponding Wiendr-iitegral if M < na?, while it
yields a much weaker estimateNf > no?.

Now I turn to the proof of these propositions.

Proof of Proposition 13.1Proposition 13.1 can be simply proved by means of the
Corollary of Theorem 10.2 with the choice= 2M, andf, = f forall 1 < p < 2M.
Formulas (10.22) and (10.23) yield that
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. M
E (KZyu(HM) < (/ fz(x1,...,xk)u(dxl)...u(dxk)> 1Mo (K)|

< [Fam(K)|a®™,

where [om (k)| denotes the number of closed diagraynm the classl (K, ..., k)
N——
2M times

introduced in the corollary of Theorem 10.2. Thus to comgtae proof of Propo-

sition 13.1 it is enough to show thdby (k)] < 1-3-5---(2kM — 1). But this can
easily be seen with the help of the following observatiori./kg (k) denote the class
of all graphs with vertice$l, j), 1 <1 <2M, 1 < j <k, such that from all vertices
(1, ]) exactly one edge starts, all edges connect different estlaut edges connect-
ing vertices(l, j) and(l, j’) with the same first coordinaleare also allowed. Let
|Fom (K)| denote the number of graphsiigv (k). Then clearlyilom (K)| < [Fom (K)|.
On the other hand/om(k)| =1-3-5---(2kM —1). Indeed, let us list the vertices
of the graphs fronT,u (k) in an arbitrary way. Then the first vertex can be paired
with another vertex in BM — 1 way, after this the first vertex from which no edge
starts can be paired wittk®1 — 3 vertices from which no edge starts. By following
this procedure the next edge can be chodavl 2 5 ways, and by continuing this
calculation we get the desired formula.

Proof of Proposition 13.2Relation (13.3) will be proved by means of relations
(11.14) and (11.15) in the Corollary of Theorem 11.2 with twicem = 2M
and fp, = f for all 1 < p < 2M. Let us take the class of closed coloured dia-
gramsl (k,M) = I (k,...,k). This will be partitioned into subclasségk,M,r),
N——
2Mtimes
1 <r <kM, wherel" (k,M,r) contains those closed diagrams I (k,M) for which
W(y) = 2r. Let us recall thatV(y) was defined in (11.9), and in the case of closed
diagramsN(y) = S (¢(B)—2). For adiagrany € I (k, M), W(y) is an even num-
Bey
ber, sinceW(y) +2s(y) = 2kM, i.e.W(y) = 2r with r = kM — s, wheres = s(y)
denotes the number of chainsyn
First we prove an estimate about the cardinality ¢k, M, r). We claim that there
exists a universal constaAt< c such that

I (k,M,1)| < (2lz(:\/|>1-3-5-~(2kM—2r—1)(kM—r)2r (13.4)
kM
<A<2) (Zgl\ﬂ)Z‘r(kM)kM” forall 0 <r < kM

with some universal constaAt< co.

To prove formula (13.4) let us first observe thatk, M, r)| can be bounded from
above with the number of such partitions of a set wiklMooints which consists of
s= kM —r sets containing at least two points. Indeed, for egehl” (k,M,r) the
chains of the diagrampyield a partition of the sef(p,r): 1<p<2M,1<k<r}
consisting of 2 sets such that each of them contains at least two points.dderge
the partition given in such a way determines the chaing bécause the vertices of a
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chain are listed in a prescribed order. Namely, the indi¢é&seorows which contain
them follow each other in increasing order. This implieg tha can correspond to
each diagrany € I' (k,M,r) a different partition of a set ofNk elements with the
prescribed properties.

The number of the partitions with the above properties cabdended from
above in the following way. Let us calculate the number ofggumbties for choos-
ing s = kM —r disjoint subsets of cardinality two from a set of cardinakM,
and multiply this number with the possibility of attachinach of the remainingr2
points of the original set to one of these sets of cardinality

We can choose these sets of cardinality 2%")1-3-5--- (2kM — 1) ways,
since we can choose the union of these sets, which consigisMf- 2r points
in (yaM ) = (%M) ways, and then we can choose the pair of the first element
in 2kM — 2r — 1 ways, then the pair of the first still not chosen elementkiim2-
2r —3 ways, and continuing this procedure we get the above farfiouithe number
of choices for these sets of cardinality 2. Then the remgiBirpoints of the original
set can be put itkM —r)% ways in one of theskM —r sets of cardinality 2. The
above relations imply the first inequality of formula (13.4)

To get the second inequality observe that by the Stirlingnfda 1:3-5- - - (2kM —

r—1)= % < A(%)kwr (kM —r)XM-T with some universal constaAt<

. Beside this, we can writékM — r)M+T < (kM)" (kM — r)kM = (kM)kM+T (1 —
)M < e7" (kM)KMHT These estimates imply the second inequality in (13.4).
We prove the estimate (13.3) with the help of the relatiork14), (11.15)
and (13.4). First we estimate the term"V(Y)/2|F,| for a diagramy € I (k,M,r)
under the conditionsM < nna? anda? < 1 with the help of relation (11.15).
In this case we can writ®J (y)| > 2M —W(y) = 2M — 2r for the functionU (y)
defined in (11.12). Hence by relation (11.15)

an(V)/2|Fy| < 22rn7r0\u(y)\ < 22r (naz)—r 02M < r]r22r(kM)7r02M

for y € I' (k,M,r) because of the conditiok® < nno? anda? < 1.
This estimate together with relation (11.14) imply thatkd < nno?

2M
E(n’k/zklln,k(fk)) Y n W2 R
yerl (kM)

kM
Z)|I’(k7M,r)|nr22’(kM)’r02M.
r=

IN

Hence by formula (13.4)

kM

E (n*k/zklln,k(fk))ZM < A(i) kM(kM)kMGZM %(2;:\5 (\@)Zr

<A (2) kM (k)Mo (14 V2y/7) o
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if 0 < kM < nno?. Thus we have proved Proposition 13.2 with= v/2.
It is not difficult to prove Theorem 8.5 with the help of Projtims 13.1.

Proof of Theorem 8.8y formula (13.2) which is a consequence of Proposition 13.1
and the Markov inequality

P(IKZyk(f)| >u) < (13.5)

kM
E (KIZy () _ a [ 2eMa?

with some constam > /2 if M > Mo with some constaritlp = Mg(A), andM is
an integer.

PUtM = M(u) = & (£)%¥, andM = M(u) = [M], where[x] denotes the integer

part of a real numbex. Choose some numbep such that; (%")Z/k > Mo+ 1.
Then relation (13.5) can be applied with= M(u) for u > up, and this yields that

ew/k
1 2/k .
= Aé‘exp{— (%) } if u> uo. (13.6)

2kM02/k K KM KM
P(IKZyk(f)] >u) <A <e "M < Adem

2
Relation (13.6) means that relation (8.17) holdsufoer ug with the pre-exponential

coefficientAek. Beside thisug < const. By enlarging this coefficient if it is needed
it can be guaranteed that relation (8.17) holds fouall 0. Theorem 8.5 is proved.

Theorem 8.3 can be proved similarly by means of Proposit®B. Nevertheless,
the proof is technically more complicated, since in thisectee optimal choice of
the parameter in the Markov inequality cannot be given irhsadlirect form as
in the proof of Theorem 8.5. In this case the Markov inequasitapplied with an
almost optimal choice of the paramebdr

Proof of Theorem 8.3The Markov inequality and relation (13.3) witlh = r'%"z
imply that
E (n K21 (£)) "

2 kM
1 vkM o\ 2/k
<A|=-2kM|1 —_— —
- (e (+Cﬁa> (u) )
for all integersMm > 0.

Relation (8.12) will be proved with the help of estimate {)3inder the condi-
tion0< g < nk/2gX. To this end let us introduce the numbdrby means of the
formula

PN %2kl k()] > u) < (13.7)
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— 1 /u\2/k 1 1/u\2k 1
kM==(—= —— ===
2(0) 1_‘_%(%)% 2(0) 1_~_B(unfk/20—(k+1))1/k

with a sufficiently large numbeB = B(C) > 0 andM = [M], where[x] means the
integer part of the numbet

1/k
Observe that/’kM < (g)l/k VEM (un*k/za*(k“)) / <1,and

1 /no
2
\/ \/ 1/k
1icYMY g gVKM g (un-k/za-<k+l>) /
vno vno

with a sufficiently largeB = B(C) > 0 if ¥ < nk/2g¥. Hence

2 2
1 vkM o\2/k 1 - vkM o\ 2/k
Z. bl = < Z. by -
- 2kM<1+Cﬁa> (u) < <2 <1+c\ma> (u)

2
(l—l—C%) 1
<= (13.8)
1_|_B(un—k/20-—(k+l))1/k e

DIl

if 4 <nk2gX. Inequalities (13.7) and (13.8) together yield that
P(n M2l (F)] > u) < Ae*M < Adte M

if 0 < 4 <n¥2gk. Hence the choice of the numbidrimplies that inequality (8.12)
holds with the pre-exponential consta and the sufficiently large but fixed num-
berB > 0. Theorem 8.3 is proved.

Remark.One would like to understand why the introduction of the dities M
andM in the proof of Theorem 8.3 was a good choice. The naturalcehfmr M
would have been that number where the right-hand side esipres (13.7) takes
its minimum. But we cannot calculate this number in a simpdg.\iHence we chose
instead a sufficiently good and simple approximation foi\e get a first order
approximation of this quantity if we consider the minimuntiod simplified expres-

2
sion we get by dropping the factoé[lJr C%) from the formula at the right-hand

side of (13.7). We get in such a way the approximatidn= % (%)%, but this

is a not good enough choice of the numidrfor our purposes. We get a better
approximation by determing the place of minimum of the egpien we get by re-
placing the numbel with the numbeiMg in the factor we omitted in the previous
approximation, i.e. we look for the place of minimum of
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A(i.ZkM <1+cm)2 (0)2/"> kM

Vvno u
1 C uy /k\ 2 /o 2/k K
=A(=--2kM|1+—(— —
(e ( * V2no (a) ) (u) )
This suggests the approximatiofy, = 5 (%)yk L , for the place of

(1+ c (g)l/k)
- . . Vono '@ .
minimum we are looking for. We can choose a similar expres&io the parame-
ter M which is almost as good as this number, but it is simpler tokweth it. To
find it observe that under the conditions of Theorem 8.3 wemitra small error
by replacing the ternfl + ﬁ(g)l/k)2 in the denominator of the formula defin-

ing My by 1+ \/zz%a(g)l/k. To see this observe that the conditign< n¥/2g* of

Theorem 8.3 implies tha\/{%—a(g)l/k < 1. Moreover, in the really interesting cases
this expression is very close to zero. This suggests to ekfenabove square, and
make an approximation by omitting the quadratic term. Wetcartio choose the
numberM obtained in such a way in the proof of Theorem 8.3. Moreovés, use-
ful to replace the paramet€rwith another number with which we can work better.
It turned out that we can work better if the numlizis replaced with another large

coefficient. This led to the introduction of the quantityl = 2 (g)z/leil(u)l/k
with a sufficiently large (but fixed) numbé&rin the proof of Theorem 8.3.

Example 8.7 is a relatively simple consequence oflformula for multiple
Wiener—I6 integrals.

Proof of Example 8.ANe may restrict our attention to the cdse 2. 1td’s formula

for multiple Wiener-16 integrals, more explicitly relation (10.25), implies thhae
random variablé!Z,, \ (f) can be expressed B, «(f) = aHy (/ fo(X) w(dX)) =
oHk(n), whereH(x) is thek-th Hermite polynomial with leading coefficient 1, and
n = [ fo(X)w(dx) is a standard normal random variable. Hence we get by exploit
ing that the coefficient af~1 in the polynomiaH(x) is zero thaP(k!|Z,, k(f)| >

u) = P(|H(n)| > ) > P(|n¥ - D|n*~?| > &) with a sufficiently large constant
D > 0if & > 1. There exist such positive constaAtandB for which

P(In1-0in* 2> 2) > P (Inf> 5 +A(5) e

Hence

Pzl = (1> (5) (1ea(3) ™))
1

59Xp{‘§ (%)z/k}
(™"

g

>

+
[
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with an appropriat€ > 0 if & > B. SinceP(k!|Z, k()| > 0) > 0, the above in-
equality also holds for & g < Bif the constanC > 0 is chosen sufficiently small.
This means that relation (8.19) holds.

Next we prove a multivariate version of Hoeffding’s inedtyaBefore its formu-
lation some notations will be introduced.

Let us fix two positive integerk andn and some real numbeegsj,..., jx) for
all sequences of argumerttsy, . . ., jx} such that I< j; <n, 1 <1 <k, andj, # ji
if | £1.

With the help of the above real numbea§) and a sequence of independent

random variablesy, ..., &, P(gj = 1) = P(¢gj = —1) = 3, 1< j < n, the random
variable
V= > a(j1,..-, jk)&j; - Ejy (13.9)
(J1,-Jk) : 1< <nfor all 1<I<k,
iy i 12
and number
= a(j1,..., jk)- (13.10)
(j15-Jk): I<ji<nfor all 1<I<k,
gy 1A

will be introduced.
With the help of the above notations the following result barformulated.

Theorem 13.3 (The multivariate version of Hoeffding’s ineaality). The random
variable V defined in formula (13.9) satisfies the inequality

2/k
P(|V|>u)§Cexp{—; (%) /} forallu>0 (13.11)

with the constant S defined in (13.10) and some constamt®@epending only on
the parameter k in the expression V.

Theorem 13.3 will be proved by means of two simple lemmasoietheir for-
mulation the random variable

Z= > (i1, - )My N (13.12)
gy 1A

will be introduced, where),...,n, are independent random variables with stan-
dard normal distribution, and the numbetji,..., jx) agree with those in for-
mula (13.9). The following lemmas will be proved.

Lemma 13.4.The random variables V and Z introduced in (13.9) and (13sk?)
isfy the inequality
EVM<EZM forallM=12,....

Lemma 13.5.The random variable Z defined in formula (13.12) satisfiesirthe
equality
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EZM <1.3.5...(2kM—1)SM forallM =1,2,... (13.13)

with the constant S defined in formula (13.10).

Proof of Lemma 13.4\Ne can write, by carrying out the multiplications in the ex-
pression€VM andEZ?M, by exploiting the additive and multiplicative properties
of the expectation for sums and products of independenbrandgriables together

with the identitiesEe?*** = 0 andEn*** =0 forallk=0,1,... that

EVM — > Ajz.....jr.my....m)E&™. . Ee™ (13.14)
. (J25esJ1, M, my)
1<js<n, mg>1, 1<s<I|, m+---+m=kM
and
EZM — > B(j1.-..j1.My....,m)En.™...Eni™ (13.15)

. (Jseesdrs My, my)
1<js<n, mg>1, 1<s<|, my+--+m=kM

with some coefficient#A(j1,. .., ji,m,...,m) and B(j1,...,ji,My,...,m) such
that

IA(2, - drs M, M) < B(ja, o iy My, my). (13.16)

The coefficientsA(-,-,-) andB(-,-,-) could be expressed explicitly, but we do not
need such a formula. What is important for us is thét-,-) can be expressed as
the sum of certain terms, al-, -,-) as the sum of the absolute value of the same
terms. Hence relation (13.16) holds. SirEmlzm < Enjzm for all parameterg andm
formulas (13.14), (13.15) and (13.16) imply Lemma 13.4.

Proof of Lemma 13.9.et us consider a white noi&¥(-) on the unit interval0, 1]
with the Lebesgue measufeon [0,1] as its reference measure, i.e. let us take a
set of Gaussian random variabM&A) indexed by the measurable séts” [0, 1]
such thaEW(A) = 0, EW(A)W(B) = A (AN B) with the Lebesgue measukeor all
measurable subsets of the inter{@ll]. Let us introducen orthonormal functions
$1(X), ..., Pn(x) with respect to the Lebesgue measure on the int¢dya], and de-
fine the random variableg; = [ ¢;(x)W(dx), 0< j <n. Thenny,...,n, are inde-
pendent random variables with standard normal distribytience we may assume
that they appear in the definition of the random variabie formula (13.12). Be-
side this, the identityyj, ---nj, = [ ¢j,(X1) - - j, (})W(dx1) ...W(dxc) holds for
all k-tuples(j1,..., jk) such that < js < nfor all 1 < s<k, and the indice$y,. . .,
js are different. This identity follows from dts formula for multiple Wiener—&
integrals formulated in formula (10.24) of Theorem 10.3.

Hence the random variabledefined in (13.12) can be written in the form

Z:/f(x17...,xk)W(dxl)...W(dxk)

with the function
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f(xe,.. %) = > iz, Jid) 1952 (%) -~ b (%0)-

(J15--JK) : 1<ji<nfor all 1<I<k,
i 1A

Because of the orthogonality of the functiofpigx)
F= F2(x1, ..., %) dxq. .. dx.
0,1k

Lemma 13.5 is a straightforward consequence of the abowaiaces and for-
mula (13.1) in Proposition 13.1.

Proof of Theorem 13.3The proof of Theorem 13.3 with the help of Lemmas 13.4
and 13.5 is an almost word for word repetition of the proof bedrem 8.5. By
Lemma 13.4 inequality (13.13) remains valid if the randomialgle Z is replaced
by the random variablé at its left-hand side. Hence the Stirling formula yieldgtha

m gz o (M oy 2\
EVM <EZ SZKM(kM)!SZ <c(y) (mHs

for anyC > /2 if M > Mg(A). As a consequence, by the Markov inequality the

estimate "
EvM 2kM [ S\ ¥¥
P(V|>u) < 2N <C (e (u) (13.17)

holds for allC > v/2 if M > Mo(C). PutkM = kM(u) = 3 (£)** andM = M(u) =

[M], where[x] denotes the integer part of the numbetet us choose a threshold

numberug by the identitys (“—S")Z/k = Mp(C) + 1. Formula (13.17) can be applied
with M = M(u) for u > up, and it yields that

i 1 2/k .
P([V| > u) <Ce™™ < Cele™™ = Cé‘exp{—2 (g) } if u> up.

The last inequality means that relation (13.11) holdsifarug if the constan€ is re-
placed byCe in it. With the choice of a sufficiently large constatelation (13.11)
holds for allu > 0. Theorem 13.3 is proved.
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13. B) A SHORT DISCUSSION ABOUT THE METHODS AND RESULTS.

A comparison of Theorem 8.5 and Example 8.7 shows that thmast (8.17) is
sharp. At least no essential improvement of this estimgtessible which holds for
all Wiener—Ib integrals with a kernel functiof satisfying the conditions of Theo-
rem 8.5. This fact also indicates that the bounds (13.1) AB2] on high moments
of Wiener—Ib integrals are sharp. It is worth while comparing formula.2) with
the estimate of Proposition 13.2 on moments of degenkragtatistics.

Let us consider a normalizédfold degeneratdJ-statisticn=/2k!1, i (f) with
some kernel functiorf and au-distributed sample of size. Let us compare its
moments with those of k-fold Wiener—Io integral KZ,, () with the same kernel
function f with respect to a white noigay with reference measuye. Let o denote
theL,-norm of the kernel functiori. If M < eng? with a small numbeg > 0, then
Proposition 13.2 (with an appropriate choice of the paranmtwhich is small in
this case) provides an almost as good bound on ihdé2moment of the normal-
izedU -statistic as Proposition 13.1 does on tivé-th moment of the corresponding
Wiener—I6 integral. In the caskl < Cng? with some fixed (not necessarily small)
numberC > 0 the 2M-th moment of the normalizeld -statistic can be bounded by
C(k)M times the natural estimate on thslh moment of the Wiener-atintegral
with some constar€(k) > 0 depending only on the numb€r This can be so in-
terpreted that in this case the estimate on the moments abttmealizedJ -statistic
is weaker than the estimate on the moments of the Wierdeirtktgral, but they are
still comparable. Finally, in the cadé >> no? the estimate on theN2-th moment
of the normalized) -statistic is much worse than the estimate on thieth moment
of the Wiener—Id integral.

A similar picture arises if the distribution of the norma&d degeneraté -
statistic

Fa(u) = P(n ¥kt k()] > u)

is compared to the distribution of the Wienet-htegral
G(u) =P(|K'Zy k(f)| > u).

In the case (< u < en®/2g¥t1 with a smalle > 0 Theorem 8.3 yields an almost
as good estimate for the probabilif(u) as Theorem 8.5 yields fag(u). In the
case O< u < n¥/2gk*1 these results yield similar bound fB5(u) andG(u), only in

the exponent of the estimate &n(u) in formula (8.12) a worse constant appears.
Finally, if u>> nk/2gk+1 then — as Example 8.8 shows, at least in the &ase2,

— the (tail) distribution functior,(u) satisfies a much worse estimate than the
functionG(u).

A similar picture arose in the one-variate version of thishhem discussed in
Chapter 3, where the normalized sums of independent randaables were inves-
tigated, and their tail-distributions were compared td tifaa normally distributed
random variable. To understand this similarity better iugeful to recall Theo-
rem 10.4, i.e. the limit theorem about normalized degerdyastatistics. Theo-
rems 8.3 and 8.5 enable us to compare the tail behaviour ofal@med degenerate



154 13 The proof of Theorems 8.3, 8.5 and Example 8.7

U -statistics with their limit presented in the form of mulgpNiener—Ib integrals,
while the one-variate versions of these results compareidtgbution of sums of
independent random variables with their Gaussian limit.

The proofs of the above results show that good bounds on tmeemts of de-
generatdJ -statistics and multiple Wiener8ljprovide a good estimate on their dis-
tribution. To understand the behaviour of high moments gederateJ -statistics
better it is useful to have a closer look at the simplest kasd, when the moments
of sums of independent random variables with expectatiom ae considered.

Let us consider a sequence of independent and identicatyilited random

n
variableséy, ..., &, with expectation zero, take their sulBa= 3 ¢j, and let us try
=1

to give a good estimate on the momeBt§ for all M = 1,2,.... Because of the
independence of the random variabégsnd the conditiof&j = 0 the identity

M _
B - > %Eﬁ -EgP (13.18)
. (i1, Jst1,---ls) Ja: !
1t tis=2M, ju=2, fOI’ all 1<u<s
1<l <lp<--<ls<n

holds. Simple combinatorial considerations suggest tteatrtain contribution to the
right-hand side of (13.18) is given by such vect()'ﬂs .M 1, ..., Im) for which
ju=2forall 1< u < M. Their contribution |$(M) LEERM n"’I ;AMM, (EEXM
The last asymptotic relation holds if the numhjeof terms in the random surg,
is sufficiently large. The above considerations suggestuthder not too restrictive

conditionsESM ~ (naz) (ZMMI En2Y,, wherea? = EE? is the variance of the
terms in the sun§,, andn, denotes a random variable with normal distribution
with expectation zero and varianaeThe question arises when the above heuristic
argument gives a valid estimate.

For the sake of simplicity let us restrict our attention te ttase when the ab-
solute value of the random variablésis bounded by 1. Let us observe that even
in this case the above heuristic argument holds only undectmdition that the

varianceo? of the random variable; is not too small. Indeed let us consider such
random variableg;, for whichP(§; =1) =P(§j = —1) = 2 ,P(§j=0)=1-02
Then these random variabléshave variance2, and the contribution of the terms
EEM, 1< j<n, tothe sumin (13 18) equater?. If g2 is very small, then it may

happen thang? >> (naz) (2 , and the approximation given f&S in the pre-
vious paragraph does not hoId any longer. Hence the asyimpgtdtion for a very
high momenE M suggested by the above heuristic argument may only hole f th
varianceo? of the summands satisfies an appropriate lower bound.

In the proof of Proposition 13.2 a similar picture appears ihidden way. In
the calculation of the moments of a degenetatstatistic the contribution of cer-
tain (closed) diagrams, more precisely of some integrdiaei@ with their help, has
to be estimated. Some of these diagrams (those in which ailhgthave length 2)
appear also in the calculation of the moments of multiplen&feld integrals. In
the calculation of the moments of sums of independent randwiables the terms




13 The proof of Theorems 8.3, 8.5 and Example 8.7 155

consisting of products of second moments play a similar imlghe sum in for-
mula (13.18) as the ‘nice’ diagrams consisting of chaingofth 2 play in the cal-
culation of the moments of degenerbltestatistics in formula (11.14). In nice cases
the remaining diagrams (multiplied with their small coe#fias in formula (11.14)
do not give a greater contribution to the moments of degéaélestatistics than
these ‘nice’ diagrams, and we get an almost as good boundhéombments of a
normalized degeneraté-statistic as for the moments of the corresponding multi-
ple Wiener—Id integral. The proof of Proposition 13.2 shows that suchuatbn
appears under very general conditions.

Let me also remark that there is an essential differencedetthe tail behaviour
of Wiener—Ib integrals and normalized degenerblkestatistics. A good estimate
can be given on the tail distribution of Wienei®-integrals which depends only on
the Lo-norm of the kernel function, while in the case of nhormalizisgjeneraté) -
statistics the corresponding estimate depends not onlhehtnorm but also on
theL, norm of the kernel function. In Theorem 8.3 such an estingpgdved.

Fork > 2 the distribution ok-fold Wiener-16 integrals are not determined by the
Lo-norm of their kernel functions. This is an essential défeze between Wiener—
Itd integrals of ordek > 2 andk = 1. In the casd& = 1 a Wiener—Id integral is a
Gaussian random variable with expectation zero, and iianvee equals the square
of the Lo-norm of its kernel function. Hence its distribution is cdetely deter-
mined by thel.,-norm of its kernel function. On the other hand, the disthiitu of
a Wiener—Id integral of ordek > 2 is not determined by its variance. Theorem 8.5
yields a ‘worst case’ estimate on the distribution of Wiefir integrals if we have
a bound on their variance. In the statistical problems whiehe the main motiva-
tion for this work we need such estimates, but it may be isterg to know what
kind of estimates are known about the distribution of a rpldtWiener—I6 integral
or degeneraté®) -statistic if we have some additional information aboutkiésnel
function. Some results will be mentioned in this directibat most technical details
will be omitted from our discussion.

H. P. Mc. Kean proved the following lower bound on the disttibn of multiple
Wiener—Ib integrals. (See [32] or [44].)

Theorem 13.6 (Lower bound on the tail distribution of WienerItd integrals).
All k-fold Wiener—Ib integrals Z, x(f) satisfy the inequality

P(|Z,k(F)] > u) > Ke A (13.19)

with some numbers K K(f,u) > 0and A= A(f,u) > 0.

The constantA in the exponentAu?¥ of formula (13.19) is always finite, but
Mc. Kean’s proof yields no explicit upper bound on it. Thddaling example shows
that in certain cases if we fix the constdhin relation (13.19), then this inequality
holds only with a very large constaAt> 0 even if the variance of the Wiener&lt
integral equals 1.

Take a probability measune and a white noisgyy with reference measune
on a measurable spa¢¥, .2"), and let¢s, ¢2,... be a sequence of orthonormal
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functions on(X, Z") with respect to this measuge Define for allL =1,2,..., the
function

L
FOxL ) = fLlx %) = (RYPLTH2 Y 9i(xa)--95(x)  (13.20)
=1
and the Wiener— integral

Zui(F) = Zui(f) = k—ll/fL(xl,...,xk)uw(dxl)..‘uw(dx().

Then Ezﬁyk(f) =1, and the high moments @, \(f) can be well estimated. For a
large parametdr these moments are much smaller, than the bound given in §iropo
tion 13.1. (The calculation leading to the estimation ofrii@ments oZ, «(f) will
be omitted.) These moment estimates also imply that if thampaterL is large,
then for not too large numbetsthe probabilityP(|Z,, k()| > u) has a much better
estimate than that given in Theorem 8.5. As a consequence, lfsge numbeL
and fixed numbeK relation (13.19) may hold only with a very big number- 0.

We can expect that if we take a Gaussian random polyndé&l . .., &,) whose
arguments are Gaussian random variaBies. ., &,, and which is the sum of many
small almost independent terms with expectation zero, gh&milar picture arises
as in the case of a Wienerélintegral with kernel function (13.20) with a large
parametet.. Such a random polynomial has an almost Gaussian disoibbii the
central limit theorem, and we can also expect that its nohigh moments behave
so as the corresponding moments of a Gaussian random ‘eavidthl expectation
zero and the same variance as the Gaussian random polyneen@nsider. Such
a bound on the moments has the consequence that the estimtte probability
of the evenf{w: P(&1(w),...,&n(w)) > u} given in Theorem 8.5 can be improved
if the numberu is not too large. A similar picture arises if we consider Ven
Itd integrals whose kernel function satisfies some ‘almostpeadence’ properties.
The problem is to find the right properties under which we cetreggood estimate
that exploits the almost independence property of a Gausaraom polynomial or
of a Wiener—Ib integral. The main result of R. Latata’s paper [29] can bestdered
as a response to this question. | describe this result below.

To formulate Latata’s result some new notions have to benihtced. Given
a finite setA let Z(A) denote the set of all its partitions. If a partitidh =
{Bu,...,Bs} € Z(A) consists ofs elements then we say that this partition has or-
ders, and write|P| = s. In the special cas& = {1,...,k} the notation? (A) = P
will be used. Given a measurable spéxe 2") with a probability measurg on it
together with a finite seB = {bs,...,b;} let us introduce the following notations.
Take | different copies(Xy,, 2, ) and pp,, 1 <r < j, of this measurable space
and probability measure indexed by the elements of thB,smtd define their prod-

J ] J
UCt(X(B)vgbV(B%“(B)): <|_I Xbr7 |_| %bra |-| ubr>'The pOinthb]_v“-aij)eX(B)
r=1 r=1 r=1
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will be denoted by(® e X(B) in the sequel. With the help of the above notations |
introduce the quantities needed in the formulation of thiefang Theorem 13.7.

Let f = f(x1,...,%) be a function on thé-fold product (X*, 2°% uk) of a
measure spacéX, 2", u) with a probability measure:. For all partitionsP =

{By,...,Bs} € Zofthe set{1,..., k} consider the functiong; (x(Bf>) on the space
X(B) 1 <r <s and define with their help the quantities

a(P) =a(Pf,u)

where supremum is taken for such functions
O1,-.-,0s.  r: XB — R for which

/gr2 (X(Bf)> &) (dx(Bf)) <1 foralll<r<s,  (13.21)

and put

as=_ max a(P), 1<s<k (13.22)

Pe 2y, |P|=s

In Latata’s estimation of Wiener-étintegrals of ordek the quantitiesrs, 1 < s<Kk,
play a similar role as the number in Theorem 8.5. Observe that in the céBe= 1,
i.e.if P={1,...,k} the identitya?(P) = [ f2(xq,...,%)H(dxs)... u(dx) holds,
which means thatr; = g. The following estimate is valid for Wienerélintegrals
of general order.

Theorem 13.7 (Latata’s estimate about the tail-distributbn of Wiener—Itd inte-
grals). Let a k-fold Wiener—fi integral Z, k(f), k> 1, be defined with the help of a
white noisepyy with a non-atomic reference measyreand a kernel function f of
k variables such that

/ F2(xg,. .., x)u(dxg) ... pu(dx) < oo.

There is some universal constantkl < o depending only on the order k of the
random integral such that the inequalities

2M
E(Zux(F)™M < (C(k) 1r2§a<>(k(MS/zas)> , (13.23)
and "
P(Zk(F)] > ) <C(K) eXp{—C(lk)lrgsiQk<Oi) } (13.24)

holdforallM=1,2,... and u> Owith the quantitiesrs, defined in formulas (13.21)
and (13.22).

Inequality (13.24) is a simple consequence of (13.23). éngihecial case when
as < M~"D/2forall 1 < s< k, tinequality (13.23) yields such an estimate on the
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momentEZ,, x( f)?M which has the same magnitude as thveth moment of a stan-
dard Gaussian random variable multiplied by a constant(&B®4) yields a good
estimate on the probabilit(|Z, «(f)| > u). Actually the result of Theorem 13.7
can be reduced to the special case whert M~(5-1/2 for all 1 < s< k. Thus it
can be interpreted so that if the quantitiesof ak-fold Wiener—I6 integral are suf-
ficiently small, then these ‘almost independence’ condgianply that the R1-th
moment of this integral behaves similarly to a one-fold Wietiitd integral with the
same variance.

Actually Latata formulated his result in a different forrmcghe proved a slightly
weaker result. He considered Gaussian polynomials of tieafimg form:

-2 S a0l a2

jk ?
" (k) 1€)s<n, 1<s<k

whereEJ—(S), 1< j<nand 1< s<Kk, are independent standard normal random vari-
ables. Latata gave an estimate about the moments andggibdtion of such ran-
dom polynomials.

The problem about the behaviour of such random polynomeatsbe reformu-
lated as a problem about the behaviour of Wienéridtegrals in the following way:
Take a measurable spaf¢, Z") with a non-atomic measune on it. LetZ, be a
white noise with reference measuyue let us choose a set of orthogonal functions
hgs) (x), 1< j<n,1<s<k onthe spacéX, 2Z") with respect to the measure
and define the function

1
k!

(J1s-d)t 1<]s<n, 1<s<k

a(js,..., johiY (xa) W (%) (13.26)

Jk

f(X].v'";Xk):

together with the Wiener-8tintegralZ, \(f). Since the random integra%@ =

fh%s)(x)zy(dx), 1< j<n,1<s<k, are independent, standard Gaussian random
variables, it is not difficult to see with the help ob% formula (Theorem 10.3 in
this work) that the distributions of the random ponnon%Ej<s)7 1<j<ni1<

s< k) andZ,«(f) agree. Here we reformulated Latata’s estimates about rando
polynomials of the form (13.25) to estimates about Wiertéridtegrals with kernel
function of the form (13.26).

These estimates are equivalent to Latata’s result if weaicesiur attention to
the special class of Wienerélintegrals with kernel functions of the form (13.26).
But we have formulated our result for Wienei-integrals with a general kernel
function. Latata’s proof heavily exploits the special sture of the random polyno-
mials given in (13.25), the independence of the random bmﬁszs) for different
parametersin it. (It would be interesting to find a proof which does nopkit this
property.) On the other hand, this result can be generalizéie case discussed in
Theorem 13.7. This generalization can be proved by exptpithe theorem of de
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la Pdia and Montgomery—Smith about the comparisoty edtatistics and decou-
pled U-statistics (formulated in Theorem 14.3 of this work) and groperties of
the Wiener—Id integrals. | omit the details of the proof.

Latata also proved a converse estimate in [29] about randolympmials of
Gaussian random polynomials which shows that the estinadifEseorem 13.7 are
sharp. We formulate it in its original form, i.e. we restrigir attention to the case
of Wiener-Ib integrals with kernel functions of the form (13.26).

Theorem 13.8 (A lower bound about the tail distribution of Wiener—Itd inte-
grals). Arandom integral Z \( f) with a kernel function of the form (13.26) satisfies
the inequalities

2M
E(Zuk(f))M > <C(k) max(MS/2a5)> ,

1<s<k

and

2/s
P(1Zuk(F)] > u) > C(lk)exp{—c:(k) lTSiQk(OD }

forallM =1,2,... and u> 0 with some universal constantk) > 0 depending
only on the order k of the integral and the quantitees defined in formula (13.21)
and (13.22).

Let me finally remark that there is a counterpart of Theoren? &Bout degen-
erateU -statistics. Adamczak’s paper [1] contains such a resdtellve do not dis-
cuss it, because this result is far from the main topic of wosk. We only remark
that some new quantities have to be introduced to formulafiéhe appearance of
these conditions is related to the fact that in an estimateitathe tail-behaviour
of a degeneratbl-statistic we need a bound not only on thenorm but also on
the supremum norm of the kernel function. In a sharp estitiet&ound about the
supremum of the kernel function has to be replaced by a marplex system of
conditions, just as the condition about thenorm of the kernel function was re-
placed by a condition about the quantitis 1 < s <k, defined in formulas (13.21)
and (13.22) in Theorem 13.7.






Chapter 14
Reduction of the main result in this work

The main result of this work is Theorem 8.4 or its multiplesigtal version Theo-
rem 8.2. It was shown in Chapter 9 that Theorem 8.2 followmfiitheorems 8.4.
Hence it is enough to prove Theorem 8.4. It may be useful tdysthis problem
together with its multiple Wiener-dtintegral version, Theorem 8.6.

Theorems 8.6 and 8.4 will be proved similarly to their oneata versions, The-
orems 4.2 and 4.1. Theorem 8.6 will be proved with the helphefdfrem 8.5 about
the estimation of the tail distribution of multiple Wien&- integrals. A natural
modification of the chaining argument applied in the prooffb&orem 4.2 works
also in this case. No new difficulties arise. On the other hanthe proof of The-
orem 8.4 several new difficulties have to be overcome. | stitt the proof of
Theorem 8.6.

Proof of Theorem 8.6-ix a number < € < 1, and let us list the elements of the
countable setr asfy, fp,.... Forallp=10,1,2,... let us choose by exploiting the
conditions of Theorem 8.6 a set of functio®g = {fa(1,p),- - fam,,p)} -7 with

mp < 2D22P+4Lg~Lg-L elements in such a way th?gtjgriqr;ff(f — fa(jp))?du <
2-4-8¢2g2for all f € .7, and beside this let, € .. For all indicesa(j, p), p=
1,2,...,1<j<mp, choose apredecessalj’, p—1), ' = j'(j,p), 1< J <mp_yq,
in such a way that the functiorfg; ,) and f5j/ ,1) satisfy the relatiory' | f5(j p) —
fa(jr p-1)|?du < €20%2-4PD. Theorem 8.5 with the choiae=u(p) = 2~ (P*Veu
anda = a(p) = 2-?P~2¢0 yields the estimates

P(AGL,P) = P (IKZuk(fagy.p) — fairep-0)] 2 27 Peu)

1 /2Pty
< Cexp 2( >

forallp=1,2,...,and

2/k
)} 1<j<m,  (141)

161
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P(B(9)) = P (IKZuk(fao9)| = (1-5)u)
1 2/k
< Cexp{—; ((—02)u> } , 1<s<m. (14.2)

Since eachf € .7 is the element of at least one s&p, p=10,1,2,..., (We made a
construction, wherd, € .%)), the definition of the predecessor of an indgx, p)
and of the eventé\(j, p) andB(s) in formulas (14.1) and (14.2) together with the
previous estimates imply that

P(sup|k!Zu’k( >u><P<GUpAquUB )
fe.F

p=1j=1
Mp
z A(j,p) +ZLP

1\ 2/k
2CD2<2P+4>'-3"-0"-exp{ 1<2p+ u) }

||M8

8

IA

& 2 ()
2/k
1-£&)u
+21+4LCDsLaLexp{ 1 <(2)> } . (14.3)
2 g
Some calculations show thatit> ML¥20 2 (log"/? 2 + log¥/? 2 ) with a sufficiently

large constantl = M(k), then the |nequaI|t|es

1\ 2/ 2/k
2zl exp{ ;(55) }<2F’{—1<(1_5)“) }
2 o 2 o

hold forallp=1,2..., and

ALy —LU—LeXp{ ; ((105) u>2/k} g exp{—; <(1—UE)U)2/|<}.

These inequalities together with relation (14.3) implyatein (8.18). Theo-
rem 8.6 is proved.

The proof of Theorem 8.4 is harder. In this case the chainiggraent in itself
does not supply the proof, since Theorem 8.3 gives a goani&stiabout the distri-
bution of a degeneratg-statistic only if it has a not too small variance. The same
difficulty appeared in the proof of Theorem 4.1, and the metigaplied in that case
will be adapted to the present situation.

A multivariate version of Proposition 6.1 will be proved iroposition 14.1, and
another result which can be considered as a multidimenisi@nsion of Proposi-
tion 6.2 will be formulated in Proposition 14.2. It will be®lin that Theorem 8.4
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follows from Propositions 14.1 and 14.2. Most steps of th@sefs can be consid-
ered as a simple repetition of the corresponding argumeiteiproof of the results
in Chapter 6. Nevertheless, | wrote down them for the sakewiteteness.

The result formulated in Proposition 14.1 can be provednmost the same way
as its one-variate version, Proposition 6.1. The only esseatifference is that now
we apply a multivariate version of Bernstein’s inequalityegp in the Corollary of
Theorem 8.3. In the calculations of the proof of Propositldnl the terrr(g)z/k
shows a behaviour similar to the tel(rg)2 in Proposition 6.1. Theorem 14.1 con-
tains the information we can get by applying Theorem 8.3ttogyawith the chaining
argument. Its main content, inequality (14.4), yields adyestimate on the supre-
mum of degeneratd -statistics if it is taken for an appropriate finite subclags
of the original class of kernel function&. The class of kernel function; is a
relatively dense subclass &f in theL, norm. Proposition 14.1 also provides some
useful estimates on the value of the parametexhich describes how dense the
class of functions75 is in .%.

Proposition 14.1.Let the k-fold powe(X, 2°¥) of a measurable spad¥,.2") be
given together with some probability measyreon (X,.2") and a countable, -
dense classZ of functions fxi,...,Xs) of k variables with some exponentL1
and parameter D> 1 with respect to the measugeon the product spacex®, 27%)
which also has the following properties. All functionssf% are canonical with
respect to the measupe, and they satisfy conditions (8.5) and (8.6) with some real
numbel0 < o < 1. Take a sequence of independentistributed random variables
¢1,...,&n, n>maxk, 2), and consider the (degenerate) U-statisti¢g(If ), f € .7,
defined in formula (8.8), and fix some numbBes A, > 2%,

There is a number M= M(A, k) such that for all numbers &+ O for which the
inequality ro? > (g)z/k > M(Llog 2 +logD) holds, a numbed = g (u),0< 0 <
0 <1, and a collection of functions’s = F 5 = {f1,..., fm} € .7 with m<
Do elements can be chosen in such a way that the union of th&Zgetq f: f €

m
Z, [1f —fj|2du < 6%}, 1 < j < m cover the seZ. i.e. # = |J 2;, and the
=1

(degenerate) U-statisticg k(f), f € F5(), satisfy the inequality

2/k
P sup n™2Kil () > =] < 2Cex {—a u }
<f6f§u) Kink(f)] = 5 | < 2Cexp) —a (155-)

2/k 2
i 25 (Y > z
if no?> (G) >M <Llog = +IogD> (14.4)

with the constantsr = a(k), C = C(k) appearing in formula (8.13) of the Corollary
of Theorem 8.3 and the exponent L and parameter D of fhdelnse class?. Beside

. . . 2/k 2/k . _
this, also the inequality (KUE) >no? > 6—14 (A%) holds for this numbeo =

o(u). If the number u satisfies also the inequality
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2/k 2
no? > (g) > M(L¥?l0g = +(logD)*/?) (14.5)

with a sufficiently large number M M (A_\, k), then the relation @ > Llogn-+logD
holds, too.

Proof of Proposition 14.1Let us list the elements of the countable s&tas
f1,fp,.... Forallp=0,1,2,... let us choose by exploiting the-density prop—
erty of the class?, a set#p = {fa1p),-- -, fam, p )} € .Z with my < D22F"-0
elements in such a way that inf[(f — f J,p)) du < 27%Pg? for all f € .7
1<j<mp
For all indicesa(j,p), p=1,2,..., 1< j < mp, choose a predecessafj’, p— 1),
i"=17(j,p), 1< ' <mp_4, in such a way that the functiorfgj ,) and fajr p_1)
satisfy the relation | fy(j o) — fa(j p-1)|2du < 02274P~1. Then the inequalities

(e furen)® gy <022 ®and  sup fa“"”(xl""’m;a("""‘l)<xl""’xk)‘s
xjeX, 1<j<k
1 hold. The Corollary of Theorem 8.3 yields that
. B 2*<1+p)u
P(A(}, p)) =F’<n 2K In( fagjp) — Fatirp-1)| = A )
opy \ 2/ opy \ 2/
< — if 4ng?27% >
Cexp{ a <8A ) i no <8Aa) ,
1<j<mp, p=12,..., (14.6)
and
—k/2 u u \k
P(B(s)) =P (n¥2Kllni(fos)| > o) <Cexpi—a (5-) .
u 2k
1<s< ifno?>(—) . 14.7
<s<m, 'na—(on) (14.7)

Introduce an integeR = R(u), R > 0, which satisfies the relations
S(4+2/K)(R+1) (l)z/ Ko 22+6/kpg2 > o(d+2/KR (i)z/ K
Ao - - Ag/

and defineg? = 2-%Rg? and.75 = F (this is the class of functiongp, introduced
at the start of the proof witlp = R). We defined the numbée®, analogously to the
proof of Proposition 6.1, as the largest numpéor which the condition formulated
in (14.6) holds. Asig? > (g)z/k, andA > 2K by our conditions, there exists such
a positive integeR) The cardinalitym of the set.%; is clearly not greater than

Do+, and U 9; = 7. Beside this, the numbd& was chosen in such a way that

the mequalmes (14.6) and (14.7) hold forlp < R. Hence the definition of the
predecessor of an indexj, p) implies that
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—Kk/2 u R &
P(wpn HWMUM>K><P<ULJNLWUUB@>

feFs p=1j=1 s=1

< i;nzplpmu,p)wgp(s(s))

p
hd 2Py \ 2k u \2/k
<y cD2¥tgt —a (= CDo ‘“exps —a (=— :
< le o exp{ a <8A0) +CDo “expy —a (ZAO')

If the condition(%_)z/k >M(L Iog% +logD) holds with a sufficiently large constant

M (depending o®), then the inequalities

2P 2/k 2P 2/k
D2?PLgt —a | — <27P -
g exp{ a <8Ao) < expq —a (1 o>

hold forallp=1,2,..., and
L u \2/k u \2/k
—a(— < — .
oo ton{ 01"} <enf - (1)
Hence the previous estimate implies that
o opy \ 2K

P( supn M2k () > 2] < § Cc2Pex or< )
<feﬁ2 Mind D)2 7 ) < 5 C2"Pexp) —t { 155

+Cexp{a (10:0)2/k} = 2Cexp{a <1Ol;\a)2/k}’

and relation (14.4) holds.
The estimates

. (i)z/k < 2o (i)z/k _ 4R o(4+2/KR-2-6/k (L)Z/k

64 \Ac Ao Ao
< G2 = 2-Rpg? < 4R H(4+2/K)(R+D)-2-6/k (1)2/"
- - Ao
_ o2-4/k 2R/ (Y 2/k: 2-4/k o—2R/k( YU 2/k< R4
2l RN ()T =2 ()T <4 (55)

hold because of the relatidR > 1. This means thaig? has the upper and lower
bound formulated in Proposition 14.1. It remained to shaattid? > Llogn+ D if
relation (14.5) holds.

This inequality clearly holds under the conditions of Praifion 14.1 if o <
n~%/3, since in this case lo§ > '%9", and
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1/ un\2k_ 1= 2
72~ = (Y S & A-2/k <
no- > 64(Aa) > 64A M Lloga+logD)

%

%zg’z/kM(Llogm- logD) > Llogn+logD

if M = M(A k) is sufficiently large.

2/
If 0 > n~1/3, then the inequality @+2/KR AL < 22+6/kng2 can be applied.
" 2/k 4/(4+2/Kk)
This implies that 24R > 2-4(2+6/k))/(4+2/k) An02 , and
2— 16/3 4
2 _o-dRp 2 27 _ -2
no =2 "no* > A4/3 ( } with y 4+%_3

The inequalitiesno? > n*/3 and no? > (4)%k > M(L%2log 2 + (logD)%/?) >
M (L¥2 + (logD)®/2) hold, (since logz > 3). They yield that for sufficiently large

M = M(A,K)
2/k 2/Kk]2/3 U~ 2/k12/3
1y 1y — (na2 L2kt [ (Y
(no®) {(a) ] > (no?) [(a) } = (no%) {(0) } ’
and
A-4/3 2/k]2/3
=2 1/(2k+1)
not = 50 (no*) [(a) }
A-4/3 M 2/3
> ﬁn1/3(2k+1) (2) (L32 4+ (logD)*¥?)?/3 > Llogn+ logD.

A multivariate analogue of Proposition 6.2 is formulatedioposition 14.2, and
it will be shown that Propositions 14.1 and 14.2 imply Theoi&4.

Proposition 14.2.Let a probability measurg: be given on a measurable space
(X, 2") together with a sequence of independent andistributed random vari-
ablesés, ..., &, and a countable $-dense class# of canonical (with respect to
the measureu) kernel functions f= f(xy,...,X) with some parameter D> 1
and exponent > 1 on the product spacex®, 2°¥). Let all functions fe .# sat-
isfy conditions (8.1) and (8.2) with sorfe< o < 1 such that w? > Llogn+ D.
Let us consider the (degenerate) U-statistigg(f) with the random sequence
&1,...,&n, n>max2,k), and kernel functions & .. There exists a threshold index
Ao = Ag(k) > 0 and two number€ = C(k) > 0 andy = y(k) > 0 depending only on
the order k of the U-statistics such that the degeneratedfissics h(f), f € &
satisfy the inequality
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P <supn—k/2k! Ink()] > An"/zak“) <Ce VW taS A (14.8)
fez

Proposition 14.2 yields an estimate for the tail distribntof the supremum of
degeneratél -statistics at leveli > Ajn¥/20¥t1, i.e. in the case when Theorem 8.3
does not give a good estimate on the tail-distribution ofdimgle degeneratd -
statistics taking part in the supremum at the left-hand sfdé&4.8).

Formula (8.14) will be proved by means of Proposition 14.thvain appropriate
choice of the parametéXin it and Proposition 14.2 with the choiee= g = g (u)

and the classes of functions; = g_—zfj S g€ 9 } with the numbew, functionsf;

and sets of functiong;, 1 < j <m, introduced in Proposition 14.1. Clearly,

P (supnk/2|klln,k(f)| > U) <P < sup n X2kl k()] > %)

fesz feZs

k!|n7k<fj2_g)‘ > (;—%> u), (14.9)

wheremis the cardinality of the set of function®z appearing in Proposition 14.1.
We shall estimate the two terms of the sum at the right-hattel i (14.9) by means
of Propositions 14.1 and 14.2 with a good choice of the patersé and the cor-
respondingM = M(A) in Proposition 14.1 together with a paramefep Ap in
Proposition 14.2.

We shall choose the paramet&ér> Ag in the application of Proposition 14.2
so that it satisfies also the relatignA/2¢ > 2 with the numbery appearing in
relation (14.8), hence we put = maxAy, (%,)2"). After this choice we want to

define the parameteX in Proposition 14.1 in such a way that the numbesat-
isfying the conditions of Proposition 14.1 also satisfy tetation (3 — 5-)u >
Arf/2g%+1 with the already fixed numbeh and the numbeo = o (u) defined
in the proof of Proposition 14.1. This inequality can be ii&en in the form
A-2/K(S — L)2/K(4)2/k > ng2. On the other hand, under the conditions of Propo-
sition 14.1 the inequality 4 )%* > na? holds. Hence the desired inequality holds
if A=2/K(3 — 5)?/k > 4A~2/% Thus the numbeA = 2t*A+ 1 is an appropriate
choice. B _

With such a choice oA (together with the corresponding = M(A, k)) and A

we can write
fi—g 1 1
! ! >(Z- —
o ("9)]= (3-20)1)

P (Supn /
k!l K ( fJ )‘ >Ank/20' 1) <Ce v H2%ng
=N, 2 - =

supn¥/2
ge

m
+5P
=

1

IS

<P| supn¥?
ge%j
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for all 1 < j < m. (Observe that the set of functioﬁg—g, g€ %;, is anlLy-dense
class with parametdd and exponent.) Hence Proposition 14.1 (relation (14.4)
together with the inequalityn < Da ") and formula (14.8) with ouA > Ay and
relation (14.9) imply that

P (supnk/2|klln,k(f)| > u>

fes
u
10A0

2k
<ZCexp{—a( ) }JFCDcr—Le‘VA”Zk”E2 . (14.10)

We show by repeating an argument given in Chapter 6 Bat!t < €% In-
deed, we have to show that IDgt+ Llog% < na?. But, as we have seen, the rela-
tion na? > Llogn+ logD with L > 1 andD > 1 implies thatng? > logn, hence

1 1 2
logs < logn, and log + Llog 5 < logD + Llogn < ng<. On the other hand,
yAl/2 > 2 by the definition of the numbek, and by the estimates of Proposi-

. 2/k . . — | ALZKpo2
tion 14.1n0% > & (AL;) . The above relations imply th&@g e YA"" 0" <

e VAY*no?/2 < exp{—l—gagAl/ZkA_rz/k (%)z/k}. Hence relation (14.10) yields that

P <supnk/2klln_,k(f)| > u)
fe7

a N2k = Y a1/2ka2/k (U)K
<2cemn| s (5) e g A 2 ()

and this estimate implies Theorem 8.4.

To complete the proof of Theorem 8.4 we have to prove Praposit4.2. It
will be proved, similarly to its one-variate version Propios 6.2, by means of a
symmetrization argument. We want to find its right formudatilt would be natural
to formulate it as a result about the supremum of degeneratiatistics. However,
we shall choose a slightly different approach. There is @éonptalled decoupled
U -statistic. Decouplet -statistics behave similarly 1d-statistics, but it is simpler
to work with them, because they have more independence miegdt turned out
to be useful to introduce them and to apply a result of de feaR&d Montgomery—
Smith which enables us to reduce the estimatiod @ftatistics to the estimation of
decoupledJ-statistics, and to work out the symmetrization argumenti&zoupled
U -statistics.

Next we introduce the notion of decouplEdstatistics together with their ran-
domized version. We also formulate a result of de l[a@&and Montgomery—Smith
in Theorem 14.3 which enables us to reduce Proposition da/ersion of it, pre-
sented in Proposition 12. It states a result similar to Proposition 14.2 about decou-
pledU -statistics. The proof of Proposition 24is the hardest part of the problem.
In Chapter 15, 16 and 17 we deal essentially with this problEme result of de la
Peia and Montgomery—Smith will be proved in Appendix D.
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Definition of decoupled and randomized decoupled) -statistics. Let us have k
independent copieé{”,...,g‘rﬁ”, 1< j <k, of a sequencéy,...,&, of indepen-
dent and identically distributed random variables takihgit values in a measur-
able spacé X, 2") together with a measurable functiorix, . .., x) on the product
space(XK, 27%) with values in a separable Banach space. The decoupled tistita

I_n7k(f) determined by the random sequenéég,...,frgn, 1< j <k, and kernel
function f is defined by the formula

Ini(f) = = S f (E,(l”, o El(k">) . (14.11)
(Il 1<, =1,k
Ay i i

Let us have beside the sequences of random varii@iés. .,Eéj), 1<j<k,and
function f(xg, ..., %) a sequence of independent random varialgles(&, ..., &),
Plg=1)=P(g=-1)= % 1 <1 < n, which is independent also of the sequences

of random variable§1(j>, ey a&”, 1< j <k. Therandomized decoupled U -statistic

I_n7k(f,£) (depending on the random sequenéé%, . .,Erﬁj), 1< j <k, the kernel
function f and the randomizing sequerge. . ., &) is defined by the formula

_ 1 )
Ifik(f) = K Z £|1"'£ka (E|(ll)7--~af|f()> . (14.12)
(It 19052, =1, k,
Ly if i

A decoupled or randomized decouplegdstatistics (with a real valued kernel
function) will be called degenerate if its kernel functiercanonical. This terminol-
ogy is in full accordance with the definition of (usual) degeateU -statistics.

A result of de la Pa and Montgomery—Smith will be formulated below. It gives
an upper bound for the tail distribution ofastatistic by means of the tail distribu-
tion of an appropriate decouplét-statistic. It also has a generalization, where the
supremum ofJ -statistics is bounded by the supremum of decouplestatistics. It
enables us to reduce Proposition 14.2 to a version of it ftated Proposition 12/,
which gives a bound on the tail distribution of the supremuimdecoupledU -
statistics. It is simpler to prove this result than the arédione.

Before the formulation of the theorem of de lafl@eand Montgomery—Smith |
make some remark about it. In this result we consider morergdld -statistics with
kernel functions taking values in a separable Banach sgakwe compare the
norm of Banach space valuéb-statistics and decoupldd-statistics. (Decoupled
U -statistics were defined with general Banach space valueekieinctions, and the
definition ofU-statistics can also be generalized to separable Banack sphied
kernel functions in a natural way.) This result was formediin such a general form
for a special reason. This helped us to derive formula ()4of4he subsequent
theorem from formula (14.13). It can be exploited in the praioformula (14.14)
that the constants in the estimate (14.13) do not dependeoBahach space where
the kernel functiorf takes its values.
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Theorem 14.3 (Theorem of de la Pga and Montgomery—Smith about the com-
parison of U-statistics and decoupledJ-statistics). Let us consider a sequence
of independent and identically distributed random varédd;, ..., &, with values

in a measurable spac€X,.2") together with k independent copié%”,...frg”,

1 < j <k, of this sequence. Let us also have a functiox,f .., xc) on the k-fold
product spacéX¥, 2°K) which takes its values in a separable Banach space B. Let
us take the U-statistic and decoupled U- statls,tlra(lf) andln () with the help of

the above random sequenc&s..., &y, El & () , 1 < j <k, and kernel func-
tion f. There exist some constam& Ck) >0 and y = y(k) > 0 depending only
on the order k of the U-statistic such that

P ([[KHnk(f)]| > u) < CP([[Kllnx()]| > yu) (14.13)

forall u > 0. Here|| - | denotes the norm in the Banach space B where the function f
takes its values.

More generally, if we have a countable sequence of functigns= 1,2,...,
taking their values in the same separable Banach-space, the

( sup [k (fs) | >u) <CP< sup Hk'lnk (fs)|| > yu) (14.14)

1<s< 1<s<o0

Now | formulate the following version of Proposition 4.2.

Proposition 14.2. Let a probability measurg: be given on a measurable space
(X, Z") together with a sequence of independent andistributed random vari-
ablesés,..., &, n> maxk,2), and a countable j-dense class# of canonical
(with respect to the measuye) kernel functions f= f(xy,...,xc) with some pa-
rameter D> 1 and exponent > 1 on the product spac(axk 5&”") Let all func-
tions f € .# satisfy conditions (8.1) and (8.2) with sofle< o < 1 such that
no? > Llogn+ logD. Let us take k independent copléﬁ Wo1< j <Kk,
of the random sequendg, ..., &,, and consider the decoupled U statlstlg:a(f)
f € #, defined with their help in formula (14.11).

There exists a threshold index A Ag(k) > 0 depending only on the order k
of the decoupled U-statisticgd(f), f € .#, such that the (degenerate) decoupled
U-statisticsl, k(f), f € .7, satisfy the following version of inequality (14.8):

P (supnk/2|k! Ink(f)] > At/ 20"“) < g 2 WEVHIN G e A S A
feF
(14.15)

It is clear that Proposition 12 and Theorem 14.3, more explicitly formula
(14.14) in it, imply Proposition 14.2. Hence the proof of ©hem 8.4 was reduced
to Proposition 14’ in this chapter. The proof of Proposition .24is based on a
symmetrization argument. Its main ideas will be explaimethe next chapter.



Chapter 15

The strategy of the proof for the main result of
this work

In the previous chapter the proof of Theorem 8.4 was reducdtidt of Propo-
sition 142'. Proposition 142’ is a multivariate version of Proposition 6.2, and its
proof is based on similar ideas. An important step in the podd’roposition 6.2
was a symmetrization argument in which we reduced the estimaf the proba-

bility P (sup s (&) > u> to that of the probabilityP | sup Z g (&) >3
feZj=1 fesz j=1

whereéy, ..., &y is a sequence of independent and identically distributedam
variables, angj, 1 < j <n, is a sequence of independent random variables with
distributionP(g; =1) =P(gj = —1) = % independent of the sequenge We want
to prove a similar symmetrization argument which helps tvpProposition 1£2'.
The symmetrization argument applied in the proof of Prajpws6.2 was carried
outin two steps. We took a cogdy, . .., &, of the sequencé, ..., &,, i.e. a sequence
of independent random variables which is independent digwamriginal sequence
&1,..., &y, and has the same distribution. In the first step we compafedatl dis-
tribution of the expression su& [f(&)) — f(&))] with that of supz (&) with
fes j= ez =1
the help of Lemma 7.1. In the second step, in the proof of Lerﬂrﬁawe applied
a ‘randomization argument which stated that the distidiubf the random fields

z [f(&)—f(&j)] and Z &[f(&)— (&), f € 7, agree. The symmetrization ar-
=

gument was proved Wlth the help of these two observations.
In the proof of Proposition 12’ we would like to reduce the estimation of the

tail distribution of the supremum of decoupledstatistics sup,x(f) defined in
feF
formula (14.11) to the estimation of the tail distributiofitloe supremum of the ran-

domized decoupled -statistics supn () defined in formula (14.12) in a similar
fe

way. To do this we have to find the multivariate version of tletomization argu-
ment’ in the proof of Lemma 7.2. This will be done in the suhs=g Lemma 15.1.
In Lemma 7.2 this randomization argument was formulateti wie help of some
random variables introduced in formulas (7.4) and (7.5) .s\&ll define their mul-
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tivariate versions in formulas (15.1) and (15.2), and thdyplay a similar role in
the formulation of Lemma 15.1.

The adaptation of the first step of the symmetrization argunoé the proof
of Proposition 6.2 is much harder. The proof of Propositich Was based on a
symmetrization lemma formulated in Lemma 7.1. This resaésinot work in the
present case. Hence we shall generalize it in Lemma 15.2piidw of the sym-
metrization argument needed in the proof of Propositio®'1ig difficult even with
the help of this result. The hardest part of our problem agspaiethis point. | return
to it after the formulation of Lemma 15.2.

To formulate Lemma 15.1 we introduce the following notasion

Let % = {(v(1),...,v(K)): v(j) =<1, forall 1 < j <k} denote the set of all
+1 sequences of length Let m(v) denote the number of1 digits in a sequence
v=(v(1),...,v(k)) € %. Let a (real valued) functioffi(xs,...,X) of k variables be
given on a measurable spae, 2") together with a sequence of independent and
identically distributed random variablés, ..., &, with values in the spacgx, 2").
Take X independent copied"™” ... &Y andel Y gl 1< j <k, of
the sequencéy, ..., &,. Let us have beside them another sequeneg(ey, ..., &),
Plej=1)=P(gj=-1) = % of independent random variables, also independent
of all previously introduced random variables. With theghef the above quantities
we introduce the random variables

~ 1
Tnk(f) = ;H)m(v) S N ) I LED
T veTk (I,-5l) : I<le<n, r=1,...k,
Il if rr!
and
~ 1
() = ¥ (=)™ (15.2)
L5

g, &, f (El(ll,v(l)% L El(kk,v(k))>

(I, 1) 1<l <n,r=1,....k

WA A
The numbem(v) in the above formulas denotes the number of the digitsin
the +1 sequence of lengthk, hence it counts how many random variabféjél),

1 < j <k, were replaced by the ‘secondary coﬁ)%_"’*l) for av e % in the inner
sum in formulas (15.1) or (15.2).
The following result holds.

Lemma 15.1.Let us consider a (non-empty) class of functiohsof k variables
f(x1,...,%) on the spacex¥, 27%) together with the random variablégy( f) and
I,ik(f) defined in formulas (15.1) and (15.2) for allf.# . The distributions of the

random fielddyk(f), f € #, andif (f), f € 7, agree.
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Let me recall that we say that the distribution of two randcetdBX(f), f € .7,
andY(f), f € .7, agree if for any finite setgfy,..., fp} € .# the distribution of the
random vectorgX(f1),...,X(fp)) and(Y(f1),...,Y(fp)) agree.

Proof of Lemma 15.1.even claim that for any fixed sequence
u=(u(l),...,un), ul)==+1, 1<I<n,

of lengthn the conditional distribution of the fielfﬁyk(f), f € .7, under the con-
dition (&1,...,&) =u= (u(1),...,u(n)) agrees with the distribution of the field of
k() f€.Z.

Indeed, the random variablégy(f), f € .Z, defined in (15.1) are functions of
a random vector with coordinatég), V) = (£ £0Y) 1<1<n 1< <
k, and the distribution of this random vector remains the sértiee coordinates
(E|(J)>E|(J)) — (EI(JQL)’EI(J,*]-)) are replaced byfl(l)’ E|(J)) _ (5|(J’71)a5|(11)) for such
pairs of indices(l, j) for which u(l) = —1 (and the index is arbitrary), and the
coordinateg &, &) with such pairs of indice$l, j) for which u(l) = 1 are not
modified. As a consequence, the distribution of the randoia fig(f|u), f € .7,
we get by replacing the original vectogV 1)), 1<1<n 1< j<k inthe
definition of the expressiohk(f) in (15.1) for all f € .# by this modified vector
depending oru has the same distribution as the random fﬁa]g(f), feZ. 0On
the other hand, I claim that the distribution of the randortdfigy(f|u), f € %,
agrees with the conditional distribution of the random fi?ﬁ!g(f), f € .7, defined
in (15.2) under the condition théts, ..., &) = uwith u= (u(1),...,u(n)).

To prove the last statement let us observe that the conditaistribution of the
random fieldlﬁk(f), f € .#, under the conditior{es,..., &) = u is the same as
the distribution of the random field we obtain by puttind) = g, 1 <1 <n, in
all coordinatess of the random variablel%{k(f). On the other hand, the random
variables we get in such a way agree with the random variagesaring in the
sum definingi, (f|u), only the terms in this sum are listed in a different order.
Lemma 15.1 is proved.

Next | prove the following generalized version of Lemma 7.1.

Lemma 15.2 (Generalized version of the Symmetrization Lema). Let Z, and

Zp, p=1,2,..., be two sequences of random variables on a probability space
(Q,</,P). Let ao-algebra# C </ be given on the probability spad€,.«7,P)
together with az-measurable set B and two numbers> 0 and 3 > 0 such that

the random variables £ p=1,2,..., are % measurable, and the inequality

P(|Zp| < a|B)(w) > B forall p=1,2,...if weB (15.3)

holds. Then

P( sup |Zp| > a+u) < 1P( sup |Zp—Zp| > u) +(1-P(B)) (15.4)
1<p<oo B 1<p<oo
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forallu > 0.

Proof of Lemma 15.Rutt = min{p: |Z,| > a +u) if there exists such an index
p > 1, and putr = 0 otherwise. Then we have, &= p} NBec #

1
P({r:p}ﬁB):/{T p}mBl-dPg/{T ARt
({Tfp}ﬂ{|zp|<0’}m3)

P{t=p}n{|Zp—Zp|>u}) forallp=12,....

‘m\p‘m\

P( sup |Zp| > a+u> —(1-P(B)) < P<{ sup |Zp| > a+u}ﬂB>
1<p<o 1<p<ew

8
8

S P{T=p}NB) < 57 P({r=Pp}N{IZo~Zs| > u})
1

< Z=P| sup |Zp—Zp|>u
B <1§p<oo )

Lemma 15.2 is proved.

To find a symmetrization argument useful in the proof of Peitian 142" we

want to bound the probability (nk/z sup|k! I_n7k(f)| > u) by
feZz

C-P (nk/z sup|K!ink(f)| > cu) + anegligible error term
feF

with some appropriate numbe€s< « and 0< ¢ < 1. The random variabldg k(T)
andlnk( ) appearing in these formulas were defined in (14.11) and (1&\ttu-
ally we work W|th a slightly modified version of formula (14_)1where the ran-
dom varlablesfI are replaced by the random vanabl&:}(é .) We shall prove
such an estimate with the help of Lemma 15.2. To find the randanablesZ,
andZ, we want to work with in Lemma 15.2 let us list the elements @f ¢thass
of functions.# as.# = {fy, f,... }. We shall apply Lemma 15.2 with the choice
Zp = n ¥kl (fp) and Z, = n K2l [Ink(fp) — Ink(fp)], P = 1,2,..., together
with the o-algebraZ = %(E( ,1<I<n 1< j<Kk).

Let us observe thdl, is a decoupledﬂ -statistic depending on the random vari-
abIesEl(“l), 1<j<k 1<I<n,while Z,is a linear combination of decoupled
U-statistics whose arguments may contain not only the randaniables of the
form El("_l), but also the random variables of the foﬁlﬂ’m. As a consequence,
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the random variableZ, and Z, are not independent. This is the reason why we
cannot apply Lemma 7.2 in the proof of Proposition214

We shall show that Lemma 15.2 with the choice of the above eégfrandom
variablesZ, andZ, and theo-algebrazz may help us to prove the estimates we need
in our considerations. To apply this lemma we have to showdbadition (15.3)
holds with an appropriate pair of numbes, 3) and a# measurable seB of
probability almost 1. To check this condition is a hard buvable problem.

In Lemma 7.2 condition (7.1) played a role similar to coratiti(15.3) in
Lemma 15.2. In that case we could check this condition byreding the second
momentsEZ2 for all indicesn. In the present case we shall estimate the supremum
sup E(Z%L@) of conditional second moments. In this formidlgis a (complicated)
fpe#
rgndom variable depending on the functiigre .% . The estimation of the supremum
of the conditional second moments we want to work with is alpaoblem, and the
main difficulties of our proof appear at this point.

The conditional second moments whose supremum we wantitnagstcan be
expressed as the integral of a random function that can lieeidown explicitly.

In such a way we get a problem similar to the original one abloeiestimation of

supn—¥/2k! I_n’k(f). It turned out that these two problems can be handled siyilar
feF
We can work out a symmetrization argument with the help of el 5.2 in both

cases, and an inductive argument similar to Propositiorcdmi3be formulated and
proved which supplies the results we want to prove.

We shall prove Proposition 12 as a consequence of two inductive propositions
formulated in Propositions 15.3 and 15.4. Here we apply @nageh similar to the
proof of Proposition 6.2 which was done with the help of aruicttve proposition
formulated in Proposition 7.3. But now we have to prove twduictive proposi-
tions simultaneously, because we also have to bound therswpn of some condi-
tional variances, and this demands special attention. ffoulate the new inductive
propositions first we introduce the notionsgfod tail behaviour for a class of de-
coupled U-statisticendgood tail behaviour for a class of integrals of decoupled
U -statistics

Definition of good tail behaviour for a class of decoupledU -statistics.Let some
measurable spacgX, Z") be given together with a probability measyreon it. Let
us consider some countable clagsof functions fxy,...,%) on the k-fold product
(XX, 27%) of the spacéX, 2"). Fix some positive integer 1 k and a positive num-
ber0< g <1, and take k independent copiég), ceey Erﬁl), 1< j <k, ofasequence
of independenf-distributed random variable&, .. ., &,. Let us introduce with the
help of these random variables the decoupled U-stati$tigsf ), f € .7, defined
in formula (14.11). Given some real number=T0 we say that the set of decoupled
U-statistics determined by the class of functigiAshas a good tail behaviour at
level T (with parameters n angl? which are fixed in the sequel) if
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P (sup|n‘k/2k! Ink(f)] > Ank/zok“) < exp{ —A1/2kn02} forall A>T.
fes
(15.5)

Definition of good tail behaviour for a class of integrals of @&coupledU-
statistics. Let us have a product spa¢¥ x Y, 27K x #) with some product mea-
sure " x p, where(XK, 27K, %) is the k-fold product of some measurable space
(X, 2 ,u) with a probability measureu, and (Y,%,p) is some other measur-
able space with a probability measupe Fix some positive integer r k and a
positive numbe < o < 1, and consider some countable clags of functions
f(X1,...,XY) on the product spaceXk x Y, 2k x &, uk x p). Take k independent

copiesél(”, . .,E,S”, 1< j <k, of a sequence of independemidistributed random
variablesé,...,&,. Forall f €. and ye Y let us define the decoupled U-statistics
Ink(f,y) = Ink(fy) by means of these random variabEei@, L&D 1<y <k the
kernel function (s, ..., Xc) = f(X1,...,XYy) and formula (14.11). Define with the
help of these U-statistidg k(f,y) the random integrals

Ho(1) = [ Iink(.y)%0(dy), € 7. (15.6)

Choose some real number=¥ 0. We say that the set of random integralgyif ),
f € .#, has a good tail behaviour at level T (with parameters n arfdwhich we
fix in the sequel) if

P (supn‘an,k( f) > A2nk02k+2> < exp{—Al/(2k+1> naz}
fe7s

forallA>T. (15.7)

Propositions 15.3 and 15.4 will be formulated with the hdlfhe above notions.

Proposition 15.3.Let us fix a positive integer i max(k, 2), a real number0 <

o < 2-k+D 3 probability measurg: on a measurable spa¢X, 2") together with

two real numbers > 1 and D> 1 such that w? > Llogn+logD. Let us consider

those countable-dense classe¥ of canonical kernel functions £ f(x, ..., %)

(with respect to the measune) on the k-fold product spacéxX, 2¥) with ex-

ponent L and parameter D for which all functionsef.# satisfy the inequalities
sup [ f(x,...,%)| <2-® D and [ f2(xq,...,x)u(dx)... u(dx) < o2

XjEX,lgjgk

There is a real numberg= Ag(k) > 1 such that if for all classes of function8
which satisfy the above conditions the sets of decouplethtisticsl, i (f), f € .7,
have a good tail behaviour at level* for some T> Ao, then they also have a
good tail behaviour at level T.



15 The strategy of the proof for the main result of this work 177

Proposition 15.4.Fix some positive integer R max(k, 2), a real numbe < o <
2-(k+1) " a product spacéXk x Y, 2% x #) with some product measuye® x p,
where(XX, 275, u4) is the k-fold product of some probability space, 2", u), and
(Y, %, p) is some other probability space together with two real nushe> 1 and
D > 1 such that the inequalitya? > Llogn - logD holds.
Let us consider those countablg-iense classe& consisting of canonical func-

tions f(xg,...,XY) on the product spacex* x Y, 2k x %) with exponent [> 1
and parameter D> 1 whose elements € .# satisfy the inequalities

sup  |f(xq,... %0 y)| < 27D (15.8)
xjeX,1<j<kyeY

and
/fz(xl,‘..,xk,y)u(dxl)...u(d>q()p(dy)gaz forall f € Z.  (15.9)

There exists some numbeg A Ap(K) > 1 such that if for all classes of functions
Z which satisfy the above conditions the random integralg(H), f € .7, defined
in (15.6) have a good tail behaviour at level?rt1)/2 with some T> A, then they
also have a good tail behaviour at level T.

Remark:To complete the formulation of Proposition 15.4 we still &ao clarify
when we call a functiorf (xq, . .., X, y) defined on the product spaté x Y, 27K x
@, uk x p) canonical. Here we apply a definition which slightly différem that
given in formula (8.10).

We say that a functiorf (xy,...,X,Yy) on the product spacéxk x Y, 2% x
%, U x p) is canonical if

/f(xl,...,xj,l,u,xjﬂ,...,xk,y)u(du):0
forall1<j<k x€X,s#jandycY.

In this definition we do not require the analogous identityafintegrate with respect
to the variabler with fixed argumentg; ¢ X, 1< j <k

Let me also remark that the estimate (15.7) we have fornuliatéhe definition
of the property ‘good tail behaviour for a class of integi@fi&) -statistics’ is fairly
natural. We have applied the natural normalization, andl witch a normalization
it is natural to expect that the tail behaviour of the disttibn of supn=<H(f)

feF
is similar to that of const(on k)z, wheren is a standard normal random variable.
Formula (15.7) expresses such a behaviour, only the powttieaiumbeA in the
exponent at the right-hand side was chosen in a non-optiragl Rormula (15.5)
in the formulation of the property ‘good tail behaviour forckss of decoupled

U-statistics’ has a similar interpretation. It says that Bup/?k!Ink(f)| behaves
fez

similarly to consto|n¥| with a standard normal random varialsje
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We wanted to prove the property of good tail behaviour forasglof integrals
of decoupledJ-statistics under appropriate, not too restrictive caodg. Let me
remark that in Proposition 15.4 we have imposed beside flar(i.8) a fairly weak
condition (15.9) about thie,-norm of the functionf. Most difficulties appear in the
proof, because we did not want to impose more restrictivelitioms.

It is not difficult to derive Proposition 12’ from Proposition 15.3. Indeed, let us
observe that the set of decoupldestatistics determined by a class of functigfs
satisfying the conditions of Proposition 15.3 has a godebihaviour at levelp =
o~ (k+1 since under the conditions of this Proposition the prdiighit the left-
hand side of (15.5) equals zero far- o~ *1). Then we get from Proposition 15.3
by induction with respect to the numbgrthat this set of decouplédd-statistics has

a good tail-behaviour also for all = T = TO(‘?/“)j =g DG4 20,12,

with such indiceg for which Tj = o~ &+1(&/4’ > Ay, This implies that if a class of
functions.# satisfies the conditions of Proposition 15.3, then the seiecbupled
U-statistics determined by this class of functions has a dgaibthehaviour at level

T = Ag/?’, i.e. at a level which depends only on the orétesf the decoupledU-
statistics. This result implies Proposition.24 only it has to be applied for the class
of function.#’ = {2~ kD f f ¢ .Z} instead of the original class of functior&
which appears in Proposition 24 with the same parametees L andD.

Similarly to the above argument an inductive proceduredgied corollary of
Proposition 15.4 formulated below. Actually, we shall né&d corollary of Propo-
sition 15.4.

Corollary of Proposition 15.4. If the class of functions# satisfies the conditions
of Proposition 15.4, then there exists a constant= Ag(k) > 0 depending only on

k such that the class of integrals,i{ f), f € .#, defined in formula (15.6) have a
good tail behaviour at leved.

Proposition 15.3 will be proved by means of a symmetrizatimpument which
applies Lemma 15.2. The main difficulty arises when we wanthteck condi-
tion (15.3) with the quantities we are working with in Projios1 15.3. This dif-
ficulty can be overcome by means of Proposition 15.4, moreisgly by means
of its corollary. It helps us to estimate the conditionaliaaces of the decoupled
U-statistics we have to handle in the proof of Propositior815he proof of Propo-
sitions 15.3 and 15.4 apply similar arguments, and theyhalproved simultane-
ously. The following inductive procedure will be appliedtiveir proof. First Propo-
sition 15.3 and then Proposition 15.4 will be provedket 1. If Propositions 15.3
and 15.4 are already proved for &ll< k for some numbek, then first we prove
Proposition 15.3 and then Proposition 15.4 for this nunkber

The symmetrization arguments needed in the proof of Prtposil5.3 and 15.4
will be proved in Chapter 16. Then Propositions 15.3 and Wl¥be proved in
Chapter 17 with their help. These results imply Proposifidr2’, hence also Theo-
rem 8.4.



Chapter 16
A symmetrization argument

The proof of Propositions 15.3 and 15.4 applies some ideaitasito the argument
in the proof of Proposition 7.3. But here some additionahigcal difficulties have
to be overcome. As a first step, two results formulated in LemiGi 1A and 16.1B
will be proved. They can be considered as a randomizatiamaegt with the help
of Rademacher functions. They are analogous to Lemma 7.éhwiés applied in
the proof of Propositions 7.3. Lemma 16.1A will be appliedha proof of Propo-
sition 15.3 and Lemma 16.1B in the proof of Proposition 154his chapter these
lemmas will be proved. Their proofs will be based on sometamidil lemmas for-
mulated in Lemmas 16.2A, 16.2B, 16.3A and 16.3B. By expigithe structure of
Propositions 15.3 and 15.4 we may assume when proving thepafametek that
they hold (together with their consequences) for all patamns&’ < k.

Lemma 16.1A is a natural multivariate version of Lemma 7.@mima 7.2 en-
abled us to replace the estimation of the supremum of a classts of independent
random variables with the estimation of the supremum ofdineomized version of
these sums. Lemma 16.1A will enable us to reduce the proofagfddition 15.3 to
the estimation of the tail-distribution of the supremum ofappropriately defined
class of randomized decoupled, degenddastatistics. This supremum will be esti-
mated by means of the multi-dimensional version of Hoefjiimequality given in
Theorem 13.3. Lemma 16.B plays a similar role in the proofropBsition 15.4. But
its application is more difficult. In this result the problihiinvestigated in Propo-
sition 15.4 is bounded by means of an expression dependirgeosupremum of
some random variabl&¥/(f), f € .%, which will be defined in formula (16.7). The
expressiongV(f), f € #, are rather complicated, and they are worth studying more
closely. This will be done in the proof of Corollary of Lemm@.1B which yields a
more appropriate bound for the probability we want to esténvaProposition 15.4.
In the proof of Proposition 15.4 the Corollary of Lemma 16\l be applied in-
stead of the original Lemma 16.1B.

The proof of Lemmas 16.1A and 16.1B is similar to that of Lemrm2 First

we introducek additional independent copi%j),...,aﬁj) beside thek (indepen-
dent and identically distributed) copié%”,...,f,ﬁ”, 1< j <k, of the sequence

179
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&1,...,& and construct with their help some appropriate random siiesshall
prove in Lemmas 16.2A and 16.2B that these random sums hexgathe distribu-
tion as their randomized versions we shall work with in theghof Lemmas 16.1A
and 16.1B. These Lemmas formulate a natural multivariatsiae of an impor-
tant argument in the proof of Lemma 7.2. In the proof of Lemnfawe have ex-
ploited that the random sums defined in (7.4) have the same dastribution as
their randomized versions defined in (7.5). Lemmas 16.2AEh@B are natural
multivariate versions of this statement. They enable usil@ily to the correspond-
ing argument in the proof of Lemma 7.2) to reduce the proofropBsitions 16.1A
and 16.1B to the study of some simpler questions. This williliee with the help
of Lemmas 16.3A and 16.3B. In Lemma 16.3A the supremum of smonditional
variances is estimated under appropriate conditions.l&hisa plays a similar role
in the proof of Lemma 16.1A as condition (7.1) plays in thegfiaf Lemma 7.1. Its
result together with Lemma 15.2, which is a generalized fofrthe symmetriza-
tion Lemma, Lemma 7.1, enable us to prove Lemma 16.1A. LenBrEBlwill be
proved similarly, but here the conditional distribution afmore complicated ex-
pression has to be estimated. This can be done with the hélprofma 16.3B. In
Lemma 16.3B the supremum of the conditional expectatiorofesexpressions is
bounded.

The main results of this chapter are the following two lemmas

Lemma 16.1A (Randomization argument in the proof of Propodion 15.3).Let
Z be a class of functions on the spag€’, 2°%) which satisfies the conditions of
Proposition 15.3 with some probability measyrelet us have k independent copies

Eﬁ‘),...,féj), 1< j <k, of a sequence of independentistributed random vari-
ablesés,..., & and a sequence of independent random variables(éy, . .., &),
Pl =1)=P(g =-1) = % 1 <1 < n, which is independent also of the ran-

dom sequenceﬁ'), ...,&W 1< j <k. Consider the decoupled U-statistigg( f),
f € #, defined with the help of these random variables by formudal(ll) together
with their randomized versiokf () defined in formula (14.12).

There exist some constantg-AAy(k) > 0andy = y > 0such that the inequality

P (supn‘k/2 Kl ()] > Ank/zak“)

feF
< 2p (sup|k! 1£(F)] > 2—<'<+1>An‘<ak+1>
fer '

kL nAY B no?/k (16.1)

holds for all A> A,.

It may be worth remarking that the second term at the rightdhside of for-
mula (16.1) yields a small contribution to the upper bounthia relation because
of the conditioma? > Llogn+ logD.



16 A symmetrization argument 181

To formulate Lemma 16.1B first some new quantities have tont@duced.
Some of them will be used somewhat later. The quantiffeéf.y) introduced in
the subsequent formula (16.2) depend on the\ets{1,...,k}, and they are the
natural modifications of the inner sum terms in formula ().5SLich expressions are
needed in the formulation of the symmetrization resultigoldh the proof of Propo-
sition 15.4. Their randomized versmfﬁ%< f,y), introduced in formula (16.5), cor-
respond to the inner sum terms in formula (15.2). The integitthese expressions
will be also introduced in formulas (16.3) and (16.6).

Let us consider a clasg of functions f(xq,...,%.Y) € .Z on a spacéXk x
Y, 2% x ¥, uk x p) WhICh satisfies the conditions of Proposition 15.4. Let keta
2k independent copleﬁ &0, El(”,.. L&\ 1< j <k, of a sequence of inde-
pendeniu distributed random variabldg, ..., &, together with a sequence of inde-
pendent random variablésy, . . ., &), P(g = 1) =P(g=-1)= % 1<1 < n,which
is also independent of the previous random sequences. ligrogduce the notation
g0 — g andg! P = g, 1<1 <n, 1< j <k Forallsubsety  {1,...k} of
the sef{1,...,k} let|V| denote the cardinality of this set, and define for all funtsio
f(X1,...,%Y) € % and set¥ C {1,...,k} the decoupledl -statistics

1
I(f.y) = > fgra g ay),  ae2)
('17 St 1<Ti<n, j=1,... k
Ay if ]

wheredj(V) = +1, 1< j <k, is defined a®; (V) = 1if j eV, anddj(V) = —1if
j ¢ V, together with the random variables

HY(F) = [Ty Pp(dy). e (163

We shall con5|derVk(f y) defined in (16.2) as a random variable with values in the
spacd_x(Y, %, p).
Put
I_n,k(f,y)—r{l ..... k}( £.y), Hox(f) = H{l ..... k}( "), (16.4)

i.e. Ink(f,y) and Hnk(f) are the random variablel/,(f,y) and Hy () with
={1,...,k}, which means that these expressions are defined with theofielp

the random vanable& ( Yi1<j<k1<l<n,
Let us also define the randomlzed version’ of the randorraizﬂesl «(f,y)and

Hy(f) as

) 1 1,00(V k& (V
I_,(;\{(*‘:)(f,y) :H Z gll...glkf(fl(l a( ))77EIE<6K( ))’y)7
T(Ig,enl) s 1<l <n, j=1,...k
A1 1 7

if f e.7, (16.5)

and
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H (1) = [N (EyRp(ay), ez, (16.6)

whered;(V) =11if jeV,anddj(V) =—1if j e {1,...,k} \V. Similarly to for-
mula (16.2), we shall considlq?"lf(f,y defined in (16.5) as a random variable with

values in the spadex(Y, %/, p).
Let us also introduce the random variables

2
W(f):/[\/c;“k}(_lﬂkV>kn§fl’f>(f,y)] p(dy), fe.Z. (16.7)

With the help of the above notations Lemma 16.1B can be faatedlin the follow-
ing way.

Lemma 16.1B (Randomization argument in the proof of Propodion 15.4).Let
Z be a set of functions ofXk x Y, 2K x %) which satisfies the conditions of
Proposition 15.4 with some probability measwex p. Let us hav@k independent

Copiesfl(j’ﬂ>,...,Ergj’ﬂ), 1 < j <Kk, of a sequence of independgntistributed
random variable<y, ..., &, together with a sequence of independent random vari-
ablesey, ..., &, P(gj=1)=P(gj=—-1)= % 1 < j <n, which is independent also

of the previously considered random sequences.

Then there exist some constants=AAy(k) > 0 and y = y such that if the in-
tegrals H(f), f € .7, determined by this class of functio#s have a good tail
behaviour at level 12+1)/2 for some T> Ay, (this property was defined in Chap-
ter 15 in the definition of good tail behaviour for a class daiegrals of decoupled
U -statistics before the formulation of Propositions 15r@1d.5.4), then the inequal-

ity

_ 211
P sup|Hnk(f)| > A2n*g2D) | < 2P sup|W(f)| > A ok g2k
feg fes 2

+22k+1nk—1e—y1<A1/2kn02/k (168)

holds for all A>T with the random variables (f) introduced in the second
identity of relation (16.4) and witV( f) defined in formula (16.7).

A corollary of Lemma 16.1B will be formulated which can beteetpplied than
the original lemma. Lemma 16.B is a little bit inconvenielnécause the expres-
sion at the right-hand side of formula (16.8) contains a pbility depending on

sup|W(f)|, andw(f) is a too complicated expression. Some new formulas (16.9)
feZ

and (16.10) will be introduced which enable us to rewwitéf) in a slightly sim-
pler form. These formulas yield such a corollary of LemmaBl@hich is more
appropriate for our purposes. To work out the details firsdesaiagrams will be
introduced.

Let¥ =¥ (k) denote the set of all diagrams consisting of two rows, suattibth
rows of these diagrams are the §&¢. .., k}, and these diagrams contain some edges
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{(j1,i1)---,(Is,j5)}, 0 < s <k, connecting a point (vertex) of the first row with a
point (vertex) of the second row. The vertiggs... ., js which are end points of some
edge in the first row are all different, and the same relatmdsalso for the vertices
j1,--., Jsinthe second row. Given a diagra®e ¢ lete(G) = {(j1,j7)---.(Js: Js)}
denote the set of its edges, and\etG) = {j1,..., js} be the set of those vertices
in the first row ands»(G) = {j},..., js} the set of those vertices in the second row
of the diagranGG from which an edge o starts.

Given a diagranG € ¢, two setsVy, Vo C {1,...,k}, a functionf defined on
the spacéX*x,Y, 2% x %) and a probability measure on (Y,#) we define the
following random variablesi, (|G, V1, V>) with the help of the random variables
Eﬁ”l),...,frﬁ"l), 5{'*1%...,&21**1), 1< j <k ande = (e,...,&) taking part in
the definition of the random variablgg(f):

Hnk(f|G,V1,V2)

= Z &, &
(|1..4.,|k,|17...,|{<): je{l....kP\v1(G) je{1,...k}\v2(G)
1<lj<n 1Ay i J#£), 1<),/ <k,
1<lf<n 1A i )1 <k
=11, i (1.1") <e(G), 11, if (1.1') ¢e(G)
1,5 (Vs K, O (V-
/f(EI(l 01 ( 1))7_“75'( Ok ( 1))’y)

k

Fg M g ) y)p(ay), (16.9)
wheredj (V1) = 1if j €Vy, §j(V1) = —11if j ¢ Vi, anddj(Vo) =11if j € Vs, §j(V2) =
—1if j ¢ V. (Let us observe that if the grahcontainss edges, then the product of
thee-s in (16.9) contains (kX — s) terms, and the number of terms in the sum (16.9)
is less tham?~S.) As the Corollary of Lemma 16.1B will indicate, in the prouff
Proposition 15.4 we shall need a good estimate on the taillmison of the random
variablesH, k(f|G,Vi,V») for all f € .# andG € ¢, V1,Vo C {1,...,k}. Such an
estimate can be obtained by means of Theorem 13.3, the aridtie version of
Hoeffding’s inequality. But the estimate we get in such a waly be rewritten in
a form more appropriate for our inductive procedure. Thik lné done in the next
chapter.

The identity

W(f) = (=1)MIFN g L (F1G, VL V) (16.10)
Ge¥ Vi Vo {1,...k}

will be proved.
To prove this identity let us write first

W=y (DM [yt (fyp(ay).
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Let us express the produd{H_r(]\ll}‘S)(f,y)k! I_rsvf"s)(f,y) by means of formula (16.5).
Let us rewrite this product as a sum of products of the form

ﬁlajf(m)ﬁla;f(m»

and let us define the following partition of the terms in thiss The elements of this
partition are indexed by the diagrarisc ¢, and if we take a diagra® € ¢ with

the set of edges(G) = {(j1, j}),---,(Js, j5) }, then the term of this sum determined
by the indiced,....Ix,11,...,l; belongs to the element of the partition indexed by
this diagranG if and only ifl;, = I}ﬁ forall 1 <u<s,and no more numbers between

theindicess,..., I l1 ..., Iy may agree. Sincg, &/ = 1forall 1<u< sandthe set
]

of indices of the remaining random variabigsis ~Lflj s jedL,.. . kI\vi(G)}, the
set of indices of the remaining random variatﬁﬁ:&is {irie{l,....kI\v2(G)},

we get by integrating the prodeﬂln)kl’g) (f,y)k! ﬁvf’g) (f,y) with respect to the mea-
surep that '

[ ENIE(Ey)p(dy) = 5 Hul FIGVLV2)

Ge¥

for all Vi,Vo € {1,...,k}. The last two identities imply formula (16.10).
Since the number of terms in the sum of formula (16.10) is fleaa Z¥k!, this
relation implies that Lemma 16.1B has the following conglla

Corollary of Lemma 16.1B (A simplified version of the randomization argu-
ment of Lemma 16.1B).Let a set of functions# satisfy the conditions of Proposi-
tion 15.4. Then there exist some constants=Ao(k) > 0 andy = y > 0 such that
if the integrals H (f), f € .%, determined by this class of functiosshave a good
tail behaviour at level 71/ for some T> Ay, then the inequality

P ( sup|Hnk(f)| > A2nZg2k+D)
fes

<2

P (SUD‘Hn,k(”G’VLVz)\ >
Ge¥ V1 Vo {1,...k} fe.z

92Kk WAl Zno? /k (16.11)

A2n2k gr2(k+1)
T

holds for all A> T with the random variables (f) and H,k(f|G,V1,V-) defined
in formulas (16.4) and (16.9).

In the proof of Lemmas 16.1A and 16.1B the result of the foilmpLemmas 16.2A
and 16.2B will be applied.

Lemma 16.2A.Let us take?k independent copies
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g L&Y and YY) 1< <k

of a sequence of independeamtdistributed random variableg;, ..., &, together
with a sequence of independent random varialoigs. .., &,), P(g = 1) = P(g =
-1)= % 1 <1 <n, which is also independent of the previous sequences.

Let.# be a class of functions which satisfies the conditions of &sitjon 15.3.
Introduce with the help of the above random variables forsefls Vc {1,...,k}
and functions fe .%# the decoupled U-statistic

1 1,5,V k,&(V
ITn/.,k(f) K Z f (5|(:L ol ))7'”1EIE< & ))) (16.12)
T (gl 1<T<n, j=1, 0k,

A 0f j 2]
and its ‘randomized version’

4 1 1,6 (V K, & (V
ITn‘fkw(f) = Y gll...glkf(a(l ( >>’m75|<k ( >>)’
(Il 1<, =100k
li# i j#]

fe#, (16.13)
where &;(V) = £1, and we haved;(V) =1if j eV, and (V) = -11if j €

{1,...,k}\V.
Then the sets of random variables

sf= Yy (DMK, fez, (16.14)
Vil k}
and B
) = ; (MRS (), fe, (16.15)
vl .k

have the same joint distribution.

Lemma 16.2B.Let us take?k independent copies
gV E and gL 1< <k

of a sequence of independenptdistributed random variableds, ..., &, together
with a sequence of independent random varialfigs. .., &,), P(g = 1) = P(g =
-1)= % 1 <1 < n, which is independent also of the previous sequences.

Let us consider a clas§” of functions fxy,...,%.,Y) € .# on a spacg XK x
Y, 2K x %  uk x p) which satisfies the conditions of Proposition 15.4. For aild-
tions f€ . and V€ {1,...,k} consider the decoupled U-statistit$,(f,y) de-

fined by formula (16.2) with the help of the random variatﬂ{ejs”, . .,E,ﬁj’l) and
g0 &Y and define with their help the random variables
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W(f):/ L

Then the random vectof@V(f): f € .#} defined in (16.16) andW(f): f c .#}
defined in (16.7) have the same distribution.

2
(z (-1 MDY, (fy)| pldy), fez. (16.16)
1....,

Proof of Lemmas 16.2A and 16.2Bemma 16.2A actually agrees with the already
proved Lemma 15.1, only the notation is different. The probEemma 16.2B is
also very similar to that of Lemma 15.1. It can be shown tha&nethe follow-
ing stronger statement holds. For aityl sequences = (uy,...,uy) of lengthn
the conditional distribution of the random field(f), f € %, under the condition
(€1,...,&) =u=(ug,...,Un) agrees with the distribution of the random figl f),
feZz.

To see this relation let us first observe that the conditialistribution of the
field W(f) under this condition agrees with the distribution of thedam field we
get by replacing the random variablgsby u; for all 1 <I < nin formulas (16.5),
(16.6) and (16.7). Beside this, define the ved@®fu)", &)™), 1< j <k,
1< 1 <n, by the formula(& ()", £ (u)" ) = (£, 1Y) for those indices
(j,1) forwhichu = —1, and(& ()", & (u)Y) = (£, 1Y) for whichu, =
1 (independently of the value of the paramgterThen the joint distribution of the
vectors(E(u)f"l),E(u)l(“l)), 1<j<k 1<l<n, and(E,“’l),El“:l)), 1<j<Kk,
1 <1 <n, agree. Hence the joint distribution of the random vedt}?@f,y), feZ,
V c {1,...,k} defined in (16.2) and of the random vect@v§f), f < .#, defined
in (16.16) do not change if we replace in their definition thedom v:'slriableél("'l>

and&" Y by &(u)"Y and& (u)!" . But the set of random variabl&s(f), f ¢
%, obtained in this way agrees with the set of random variaktemtroduced to get
a set of random variables with the same distribution as thelitional distribution
of W(f), f €. under the conditioriey, ..., &) = u. (These random variables are
defined as the square integral of the same sum, only the tdiis gum are listed
in a different order in the two cases.) These facts imply Leni®.2B.

In the next step we prove the following Lemma 16.3A.

Lemma 16.3A.Let us consider a class of functions satisfying the conditions of
Proposition 15.3 with parameter k together wizk independent copie&l(”l),. .
E,ﬁj’l) andfl(j”l), e E,ﬁj”l), 1< j <k, of a sequence of independemidistributed
random variable<,. .., &,. Take the random variabld#k(f), defined for fe .7
andVc {1,...,k} in formula (16.12). Let

#=2EY, @Y 1<)<K
- ; & (i.1) ;
denote ther-algebra generated by the random variab. s En 1< <k,

i.e. by the random variables with upper indices of the fdijni), 1 < j < k. There
exists a number f= Ag(k) > 0 such that for allVc {1,...,k}, V #{1,... .k}, the



16 A symmetrization argument 187

inequality

(supE (KY, ()2 B) > 2733 a2nZg 2"*2) < nk-lg At na? jk
fes

(16.17)
holds with a sufficiently smajk > 0if A > Ao.

Proof of Lemma 16.3A.et us first consider the case= 0. In this case the estimate
E ((k! F,;{k(f))zl 93) —E ((k! F,;{k(f))Z) < kinka? < 2Xkin?g2+2 holds for all f ¢
% . In the above calculation it was exploited that the functibre .7 are canonical,
which implies certain orthogonalities, and beside thisitiegualityno? > % holds,
because of the relationog? > Llogn+ logD. The above relations imply that for
V = 0 the probability at the left-hand side of (16.17) equal®zthe numberg is
chosen sufficiently large. Hence inequality (16.17) hotdthis case.

To avoid some complications in the notation let us first feistur attention to
sets of the fornY = {1,...,u} with some 1< u < k, and prove relation (16.17) for
such sets. For this goal let us introduce the random vasable

ITn/,k(falqulv-u,lk)
_ 1 (1,1) (ul1) z(u+1,—1) (k1)
= E z f (Ell v ’Elu 7E|u+1 5. “’E|k )

J?é|1|f J;éj fora||1<] i'<k

for all f €. and sequencel§u) = (ly41,...,lk) with the properties K I; <n
forallu+1<j<kandlj#lyif j# ], i.e. let us fix the lask — u coordinates
E| R ..,Eik’_l) of the random variabl&/  ( f) and sum up with respect the first
u coordmates. Then we can write

E (IVk(F)?] 2) (16.18)
2
—E Ve(Foluet,.. ) | |2
(lys1seolk): lgljgn j=u+1,...k,
A i A
— )3 E(IVk(f lura, .., 102 2) .
(lus1sl) s 1T 0, j=Ut1,. K,
Ay i A

The last relation follows from the identity

E(l_g,k(fvlu+lv"'alk)l_g,k(fJ(H»la"'all/<)|'@) -

if (lugt,...,lk) # (Ie1,---,1g), which holds, sincef is a canonical function. We
still exploit that the random variable{é"l), 1< j <uareZ measurable, while the
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random varlableéIJ ,U+1< j <k, areindependent of the-algebraZ. These

facts enable us to calculate the above conditional expentet a simple way.
It follows from relation (16.18) that

{w supE ([kY, ()] 2) (w) > 273 FTIaZnZg 2"+2} (16.19)

feZ

< U
(lut,hi)
1<li<n, j=u+1,... k.

|,—¢|j, if j£j/

fes

5 A2n2ko-2k+2
w: SUPE (K (1., 1% ) (@) > Say g

The probability of the events in the union at the right-hait ©f (16.19) can be
estimated with the help of the Corollary of Proposition 1ith parameteu < k
instead ofk. (We may assume that Proposition 15.4 holdsufer k.) | claim that
this corollary yields that

A2 g 2k2
<SUpE([kllnk(f lust,. s 1)]P) 2) > 2(3k+3)>

feF
< g WA (nruko? (16.20)
with an appropriatgy > 0 for all sequencedy 1,...,lk), 1 <1 <nu+1<j <Kk,

suchthatj # Iy if j # j'.

Let us show that if a class of functionk € .# satisfies the conditions of
Proposition 15.3, then it also satisfies relation (16.2@x this goal introduce
the spaceY,%,p) = (XK~ U, 2% U ukY), the k — u-fold power of the measure
space(X, 2", 1), and for the sake of simpler notations wrjte= (Xy41,...,Xk) for
a pointy € Y. Let us also introduce the class of those functi&nin the space
(XUxY, 2% %, u!x p) consisting of functions of the form f(xl, LX) =
f(X1,...,%) with y = (Xy+1,...,%) and some functiorf (xq,...,%) € .Z. If the
class of function# satisfies the conditions of Proposition 15.3 (with paramiete
then the class of functiong satisfies the conditions of Proposition 15.4 with pa-
rameteru < k. Hence the Corollary of Proposition 15.4 can be appliedtierdiass
of functions.# by our inductive hypothesis. We shall apply it for decoupléd
statistics with the class of kernel function® and parameters+u—k andu
(instead ofn and k), with the help of the independent random sequerqué‘é),
1<j<ule{l,....n}\{ly+1,...,lk} of independentyu-distributed random vari-
ables of lengtm+ u—Kk, where the set of numbef$,1,...,l«} is the set of indices
appearing in formula (16.20). This means that we work wittdam variablefl("l)
with index| from the sef{1,...,n}\ {lys1,...,Ik} instead of IKu<n+u—k. As
a consequence we shall work in the application of Profmosii.4 with the ran-

dom variableg™™" y) andH'" () to be defined below which we get by

n+u ku(f n+u k,u
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slightly modifying the definition ofln,y ku(f,y) andHn u u(f) by taking into
account the indexation of the random variatﬁéél.
It can be seen by means of some calculation that the conditexpecation

E ([k!l_xk(f,luﬂ, e Ik)]2|%) we are working with can be calculated as

E (K (f,lust, -, 16))?[2)
= [t ey =M (D, sy

where the functionf € .7 is defined asf (xl, X Y) = f(xl,...,xk) with y =

(Xu41,---, ), and the random variabl¢s" +u ku(f y) andHn+u kul f f) are defined,
similarly to (16.2)—(16.4), by the formulas

+ _

In(—sl-JL)J—k,u( f 7y)

1 (El(Ll) El<u,1> y)
ub ,e{l ..... ;{w ..... b =1, ' ‘
ﬁél/lfJ#J

and

| PN it e PRS-
H D = [T (FyPp(dy, e 7.

The value 01Hn(+31 kuf f) depends on the choice of the sequekicg, but its distri-
bution does not depend on it. Hence we can make the followstignate with the
help of the corollary of Proposition (15.4) far< k and relation (16.21). Choose a

sufficiently smally = y > 0. Then we have

P(gupE([k! Y e(f st 101212) > 2 R (nu— k)2“02U+2)

fesz

(sup<n+u K™ Hr i >z»é““*2>A2<n+u—k>“azu+2>

fez

< e WA 0T gor A Ag(uyy D). (16.22)

It is not difficult to derive formula (16.20) from relation §122). It is enough to
check that the Ievc-!%fs2k+2 in the probability at the left-hand side of (16.20) can

be replaced by *""?A%(n+ u—k)21g2+2 if y > 0 is chosen sufficiently small.

This statement holds, singg™ 2 A2(n+ u— k)Xg2:+2 < y*F2) p2n2ug2us2 <

2 k+ 2k+2
A2<3+f3 if the constany > 0 is chosen sufficiently small, sinoe? > Llogn <

% by the conditions of Proposition 15.3.
Relations (16.19) and (16.20) imply that
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P <sup E (K1Y, (1)]?| 8) (w) > 2‘(3k+3>A2n2k02k+2>
fez '
< nkfuefykAl/(Z"“)(n+u7k)02.

Sincee UAY @ (ntu-kjo® < g-wAY* Uno?/k it |y < k—1,n > k andA > Ag with
a sufficiently large numbefy, inequality (16.17) holds for all set of the form
V={1,....u},1<u<k

The case of a general sétc {1,...,k}, 1 <|V| <k, can be handled similarly,
only the notation becomes more complicated. Moreover, #se ©f general sets
V can be reduced to the case of sets of form we have alreadydeoedi Indeed,
given some se¥ C {1,....,k}, 1 < |V| <k, let us define a new class of function
v we get by applying a rearrangement of the indices of the aegiis;, ..., Xk
of the functionsf € .# in such a way that the arguments indexed by the/sate
the first|V| arguments of the function, € %y, and putvV = {1,...,|V|}. Then
the class of functions’, also satisfies the condition of Proposition 15.3, and we
can get relation (16.17) with the Sétby applying it for the set of functio”, and
setV.

Now we prove Lemma 16.1A with the help of Lemma 16.2A, the gealineed
symmetrization lemma 15.2 and Lemma 16.3A.

Proof of Lemma 16.1Acirst we show with the help of the generalized symmetriza-
tion lemma, i.e. of Lemma 15.2 and Lemma 16.3A that

P (supnk/2 Klnk(F)| > Ank/zok“) (16.23)
fez

fes

- (s“plsmi > Z\”kak“) 4 gk T nAl i

with the functionS(f) defined in (16.14). To prove relation (16.23) introduce the
random variableZ(f) = k! réi""k}(f) and

Z(f) = (—) Mt ()

forall f € .#, theo-algebraZ considered in Lemma 16.3A and the set

B= ﬂ {w: supE ([K! ITn"k(f)}ZLQ) (W) < 2—(3k+3)A2n2k02k+2} .
Vc{l,...k} fez '
V(L. Kk}

Observe tha§(f) = Z(f) —Z(f), f € #, B € %, and by Lemma 16.3A the in-
equality 1— P(B) < 2knk-1e~%AY*“¥no?/k nods, To prove relation (16.23) apply
Lemma 15.2 with the above introduced random varialdlel) andZ(f), f € .7,
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(both here and in the subsequent proof of Lemma 16.1B we wadttk nandom
variablesZ(-) andZ(-) indexed by the countable set of functiohs .#, hence the
functionsf € .7 play the role of the parametepavhen Lemma 15.2 is applied) ran-
dom seB anda = 5nkg**, u= Snkg*+1, (At the left-hand side of (16.23) we can
replacek!l, «(f) with Z(f), f € &, because they have the same joint distribution.)
It is enough to show that

forall f e # if weB. (16.24)

NI =

P (Z_(f)| > ':nkak“%) (w) <

But
P (k! MG 2*<k+1>Aﬁok+l|%>) (@)

2MCVE(N(1)22) (w)

—(k+1)

for all functionsf € .# and set&/ C {1,...,k}, V #{1,...,k}, if w € B by the
‘conditional Chebishev inequality’, hence relations @4.and (16.23) hold.
Lemma 16.1A follows from relation (16.23), Lemma 16.2A aheé bbserva-

tion that the random variabldﬁf)(f), f € .7, defined in (16.13) have the same

distribution for allV C {1,...,k} as the random variableﬁk(f), defined in for-
mula (14.12). Hence Lemma 16.2A and the definition (16.18hefrandom vari-
ablesS(f), f € #, imply the inequality

fes fe.7

P <supS(f)| > gnkak“) =P (sup|S_(f) > ';nkok+1>

<2 (sup|k! 1€ (F)] > 2—('<+1)Ankak+1> :

fez

Lemma 16.1A is proved.

Lemma 16.1B will be proved with the help of the following Lerarb6.3B, which
is a version of Lemma 16.3A.

Lemma 16.3B.Let us consider a class of functior#s satisfying the conditions of
Proposition 15.4 together witBk independent copies

gy, e and gV gl 1< <k
of a sequence of independeptdistributed random variable&, ..., &,. Take the
random variabled, (f.y) and HY,(f), f € .#,V c {1,... K}, defined in formu-
las (16.2) and (16.3) with the help of these quantities. Let

B =& &MY 1<j<k
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denote thes-algebra generated by the random variabféél), ey a&’v”, 1<j<k,

i.e. by those random variables which appear in the definiobthe random vari-
ableslxk(f y) and HY, (f) introduced in formulas (16.2) and (16.3), and have sec-
ond argument 1 in their upper index.

a) There exist some numberg A Ag(k) > 0 andy = y > 0 such that for all VC
{1,...,k},V #{1,... k}, the inequality

v 2~ (4kt4) (2K-1) /kpy2k 242 k-1 WAY 2no2 Kk
P fsufE(Hn’k(f)‘Q) > WA o <n“-e
cF .

holds if A> Ag.

b) Given two subsetsW> C {1,...,k} of the set{1,... k} define the integrals (of
random kernel functions)

(16.25)

HA (1) = [ (LK) lp(dy), e .7, (16.26)

with the help of the functiori%{k(f,y) defined in (16.2). There exist some num-
bers A = Ag(k) > 0 and y = y > 0 such that if the integrals kk(f), f € .7,
determined by this class of functio® have a good tail behaviour at level
T(2+1)/Z for some T> Ao, then the inequality

(SupE( (V1. Vo) ()|2) > 2*(Iik+ )A2n2k 2k+2> < onk-1 ,WAl/zanz/k
fez

(16.27)
holds for any pairs of subsetg W> C {1,...,k} with the property that at least
one of them does not equal the §&1...,k} if the number A satisfies the condi-
tionA>T.

Proof of Lemma 16.3BRart a) of Lemma 16.3B can be proved in almost the same
way as Lemma 16.3A. Hence | only briefly explain the main stefhe proof. In
the cas¢/ = 0 the identityE (Hy (f)|#) = E(Hy,(f)) holds, hence it is enough to
show thatE(HY () < kinkg? < 2%kin*gZ+2 for all f € .7 under the conditions
of Proposition 15.4. (This relation holds, because thetians of the class” are
canonical.) The case of a general ¥e¥V # 0 andV # {1,...,k}, can be reduced
to the cas& = {1,...,u} with some 1< u < k.

GivenaseV = {1,...,u}, 1 <u <k, let us define for alf € .% and sequences
I(u) = (luy1,...,lk) with the properties X I <nforallu+1<j<kandlj #Ij
if j # j’ the random variable
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I_E/,k(f7lu+lﬂ"'7|k7y)
1 11 1) g(u+1-1 (k—1
K (1 ZI) f(f'iy T E'uu Elu'il )""’Elk ),y>.
1<|,~<1H,“i21 u,

.....

J7él 1 if j#j’ forall 1<j,j’<k

It can be shown, similarly to the proof of relation (16.18)tle proof of Proposi-
tion 16.3A that since the functiorfse .% have the canonical property the identity

EFLDIZ) = Y BTl ey #) p(ay

1<l <n, j=U+1,... K,
A1 it ]

holds, and the proof of part a) of Lemma 16.3B can be reduc#tetmequality

A(Zkfl)/knk+uo-2k+2
i (TSGU;)E (/[k' I_E/,k(f7|u+la [EER Ikay)]zp(dy) ’ '%) > (4k+4)(k|)

<e H(A(Zk—l)/2k(2u+l) (n+u—k) a2

with a sufficiently smally, > 0. This inequality can be proved, similarly to rela-
tion (16.20) in the proof of Lemma 16.3A with the help of thertary of Proposi-
tion 15.4. Only here we have to work in the sp&Bé x Y, 2™V x ', u“ x p) where
Y=XkUxY, o = 2k Uxw, p=puklxpwith the class of functiorf ¢ .#
consisting of the function defined by the formuld(xq, ..., %, Y) = f(X1,..., %, Y)
with somef(xq,...,X,Y) € %, wherey = (Xy11, .- xk,y) Here we apply the fol-
lowing version of formula (16.21).

E (K Foluras W) P12) = [ W0 (F502P(05) = oty
with the functionf € .Z for which the identity
.f_(X]J"'?XU)y):f(X].?"'?Xk?y)

holds Withy_: (Xu+1,- -+, %, Y), and we define the random variabl%%’&fk,u(f_,ﬂ

and Hn+u ku( ) similarly to the corresponding terms after formula (16,2)ly y

is replaced by, the measurg by p, and the presently defined functiohs .# are
considered. | omit the details.

Part b) of Lemma 16.3B will be proved with the help of Part &) #re inequality

1/2 1/2
geuBE(Hévﬁvz ()|%) < (fsupE( i (f )I%) (fsupE( R(f )%) :
(16.28)
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To prove inequality (16.28) observe that the random veeisid (Vl V2) (1), HX}((f)

andH2 () can be expressed as functions of the random van&;f e, El(j’_l),
1< j <k, 1< <nwhich are independent of each other, and the random vasiable

E“‘l) are% measurable, while the random variab&'«é'é‘_1 are independent of this
o- algebra Hence we can calculate the conditional expectsii(H, Vl V) (1)|4),
E( (f)|#) and E( “(f)[%) by putting the value of the random variables
&l 1)( w) in the approprlate coordinate of the functions expresdmagd random
variables and integrating by the remaining coordinatek vaspect the distribution

of the random variableﬁ(j”” . By writing up the above conditional expectations in
such a way and applying the Schwarz inequality for them wetgeinequality

EHUY(1)2) < (E(HX}((f)\,@))l/z (E(H;{i(f)\,%f))l/z forall f € 7.

It is not difficult to deduce relation (16.28) from this inegity by showing that it

remains valid if we put the supxpressions in it in that way as it is done in (16.28).
fes
In the proof of Part b) of Lemma 16.3B we may assume Yha¥ {1,... k}.
Inequality (16.28) implies that

o—(2+2)
<SUDE( (V1,V2) (f)|£) X S A2pZKgKt2

fez

2~ (k) (2k—1)/kpy2k 2K+ 2
<P supE( «(F)2) > —rr A o
fes (k)

+P(supE( 2 (1)) > AKFD/KnZK 5 2k+2>
f

Hence if we know that also the inequality
(supE( ()|8) > A2k k2K o 2k+2> < nk—1g—WAY*no? /k (16.29)
f

holds, then we can deduce relation (16.27) from the estifi®t&5) and (16.29).
Relation (16.29) follows from Part a) of Lemma 16.3®/4f=~ {1,...,k} andA> 1,
since in this case the levalZ+1D/knZXg2+2 can be replaced by the smaller number
2~ (Kt A1) /knZKkg2k+2 0 the probability of formula (16.29). In the cave =
{1,...,k} it follows from the conditions of Part b) of Lemma 16.3B if thembery,

is chosen so that < 1. Indeed, sincA(Z+1)/2k >, T(2+1)/2 gnd by the conditions
of Proposition 15.4 (and as a consequence of Lemma 16.38)ati¢y (15.7) holds
for all A> T(Z+1/Z we can apply this relation for the parameféf<t1/ |n
such a way we get inequality (16.29) also Yor={1,...,k}.

Now we turn to the proof of Lemma 16.1B.
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Proof of Lemma 16.1By Lemma 16.2B it is enough to prove that relation (16.8)
holds if the random variablé¥/( f) are replaced in it by the random variabW$f)
defined in formula (16.16). We shall prove this by applying tfeneralized form

of the symmetrization lemma, Lemma 15.2, with the choic&(df) = H,ﬁ"kw(f),
V={1..k,Z(f)=2(f)-W(f), f e Z, B=20E" &Y 1<j<Kk),
a = Bnkg%ki2,y— AnPg2+2 and the set

5= N

(Vl,Vz VJE{l ..... k} ] 1,2,
VIA{L.o. k) VoA {1 k)

{w SUPE(H. ") ()| %) (w) <

o (2K+2)

fes

A2 r]2k 2k+2 }

By part b) of Lemma 16.3B the inequality

1— P(B) < 22k+1nk—1e—y1<A1/2kn02/k

holds. Observe thaZ(f) = Hr(yk‘v)(f) = Hpk(f) for all f € .#. Hence to prove
Lemma 16.1B with the help of Lemma 15.2 it is enough to show tha

forall f € Z if weB. (16.30)

NI =

— A2
P<Z(f)| o n2ko.2k+2

%)w»g
To prove this relation observe that because of the definitfdhe setB

E(1Z(f)]|2)(w)

Vi Va) A?
< )3 E(Hpe ™ ()] ) (@) < Zon™o™ 2
(V1.Vo): Vie(T, ..k}, j=1,2,
V]jé{l ..... k} OI'Vzaé{l7 ,k}
if we Bforall fe.#. Hence the ‘conditional Markov inequality’ implies that
1Z(f)| > A2 -n2Kg2(k+1) ‘%) < %W < } if w € B, and inequal-

ity (16.30) holds. Lemma 16.1B is proved.






Chapter 17
The proof of the main result

In this chapter Propositions 15.3 and 15.4 are proved wéth#ip of Lemmas 16A1
and 16B1. They complete the proof of Theorem 8.4, of the nesnlt in this work.

A.) THE PROOF OF PROPOSITION 15.3.

The proof of Proposition 15.3 is similar to that of Propasiti7.3. It applies an
induction procedure with respect to the ordtesf the U-statistics. In the proof of
Proposition 15.3 for paramet&rwe may assume that Propositions 15.3 and 15.4
hold foru < k. We want to give a good estimate on the expression

P (sup]k! 1E ()] > 2("+1)Ankak+l>
fes

appearing at the right-hand side of the estimate (16.1) mrha 16.1A. To estimate
this probability we introduce (using the notation of Prdgios 15.3) the functions

RO 1<1<n 1< <k

-3 f2(><,<11>,...,>q(kk>), fe, (17.1)

1<lj<n, =1k,

with xi(j) eX, 1< <n, 1< j <k We define with the help of this function the
following setH = H(A) ¢ Xk for all A > T similarly to formula (7.8) in the proof
of Proposition 7.3:

H H(A){(xi(j),lgl <n 1< gk) :
sup ()¢, 1<1<n1<j<k) > 2"A4/3nk02}. (17.2)
fe.7

First we want to show that

197
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.2 i i ko—A%%*ng?
P{w: (§M(w),1<j<n1<j<k) eH}) <2e if A>T. (17.3)

To prove relation (17.3) we take the Hoeffding decompositibtheU -statistics
with kernel functionsf?(xy, ..., %), f € .#, given in Theorem 9.1, i.e. we write

f2(Xq,....%) = ‘Z fv(xj,jeV), fez, (17.4)
Vc{l,...k}

with fy(xj,j €V) = [ P, [1 Qjf2(X,...,X), whereP; andQj are the operators
jgv jev

defined in formulas (9.1) and (9.2).

The functionsfy appearing in formula (17.4) are canonical (with respechéo t
measuru), and the identitys? (f)(§ 1 <1 <n,1< j <k) = Klnx(?) holds for
all f € # with the expressioly, k(-) defined in (14.11). By applying the Hoeffding
decomposition (17.4) for each terﬁ?(él(ll)...,él(kk)) in the expressiorsik(f) we
get that

P (supsﬁjk(f)(gﬂ(j)? 1<1<n1<j<k) > 2kA4/3nk02>

Y P<supnk‘|v||V|!I_n7V|(fV)>A4/3nk0'2> (17.5)

fez

with the functionsfy appearing in formula (17.4). We want to give a good estimate
for each term in the sum at the right-hand side in (17.5). R goal first we
show that the classes of functiof§,: f € .%} in the expansion (17.4) satisfy the
conditions of Proposition 15.3 for al C {1,...,k}.

The functionsfy are canonical for al C {1,...,k}. It follows from the condi-
tions of Proposition 15.3 thaf?(xy, ..., xc)| < 2-2¢*1 and

/f4(x1,...7xk)u(dx1)...u(d>q<) <2 ki g2
Hence relations (9.5) and (9.6) of Theorem 9.2 imply that

sup fv(xj,jeV)| < 2~ (k+2) < = (k+1)

XjeX,jev

and [ f2(xj,j € V) 1 u(dx) <2-kDg2 < g?forallV c {1,...,k}. Finally, to
jev

check that the class of function&, = {fy: f € %} is Lo-dense with exponent
L and parameteD observe that for all probability measurpson (XX, .2°¥) and
pairs of functionsf, g € .# the inequality[ (f2 —g?)2dp < 2~ [(f —g)?dp holds.
This implies that if{ f;, ..., fn}, m< De~%, is ane-dense subset of in the space
Lo(XK, 27K p), then the set of functiong2Xf?,... ,2¢f2} is ane-dense subset of
the class of functions?’ = {2f2: f € .Z}, henceZ' is also anlL,-dense class
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of functions with exponentt and parameted. Then by Theorem 9.2 the class of
functions. %, is alsoL,-dense with exponerit and parameteb for all setsV C

{1,...,k}.
ForV = 0, the functionfy is constant, the relation

= [ 200, XOH(dx) .. H(dK) < 07

holds, andy(fy))| = fv < 0?. Therefore the term corresponding\fo= 0 in the
sum of probabilities at the right-hand side of (17.5) equal® under the conditions
of Proposition 15.3 with the choice of sorAg > 1. | claim that the remaining terms
in the sum at the right-hand side of (17.5) satisfy the inétyua

P (nkV sup|[V ! (fv)] > A4/3nk02>
fez

<P (SUpHV“ I_n\V|(fV)| > A4/3nV|g|V+1> < e*A2/3kn02
fes
if1<V[<k (17.6)

The first inequality in (17.6) holds, sinag/*! < g2 for [V| > 1, andn > k > |V|.
The second inequality follows from the inductive hypotkei§i|V| < k, since in
this case the middle expression in (17.6) can be boundedtkéthelp of Proposi-
tion 15.3 bye~(A"*)V#VIno? — o=A¥%n0? it Ay — Ay(K) in Proposition 15.3 is chosen
sufficiently large. Inthe casé = {1,...,k} it follows from the inequalityA > T and
the inductive assumption of Proposition 15.3 by which thgremum of decoupled
U -statistics determined by such a class of kernel-functieish satisfies the con-
ditions of Proposition 15.3 has a good tail behaviour atll@#?. Relations (17.5)
and (17.6) together with the estimate in the cdse 0 imply formula (17.3).

By conditioning the probabilit (‘k! I_rf’k( f)‘ > 2*("+2)Arf‘/20"+1) with respect

to the random variableél“), 1<1<n, 1<) <kwe get with the help of the
multivariate version of Hoeffding's inequality (Theorer8.3) that

P ( IKIE ()] > 2‘<k+2>Ankak+1’ ENw)y =xV1<I<n1<j< k)

1/k
- Cexp 1 A2n2k02(k+1)
- 2\ 22+4g ()¢, 1<1<n 1< j<k)

—4—4/k p2/3kn 2
g2 VYR ol f e 7

if (X, 1<1<n1<j<k) ¢H (17.7)

<C

with some appropriate constadt= C(k) > 0.
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Define for all 1< j < k and sets of pointxl(j) € X, 1 <1 < n, the probability
measurespj = p_ oD, 1<12n)’ 1< j <konX, uniformly distributed on the set of
points{xI 1< I < n}, i.e. letp; (xI ) 1 forall 1 <I <n. Let us also define the

productp = p(x| 1<1<n,1<j<Kk)=p1x---x pg of these measures on the
space(Xk, 27K). If f is a function on(Xk, 2°%) such thatf f2dp < &2 with some
0 > 0, then

sup KIE(H)(4, 1<l <n1<j<K)

, 1/2
< [, ulp(du, ﬂwﬁm%/ﬂw) < ks,
uj € RK, 1< j <k, and as a consequence
sup [KIE, ()4, 1<l <n1<j<Kk) (17.8)
&1,.-+€n '

KIS (@ 11 <n 1< <K
< (2 ppkgkil /(f _g)2dp < (2~ K2 AgkF12,

where I_rik(f)(x,(j), 1<I1<n1<j<k) equals the expressiot_ﬁ ) defined
in (14.12) if we replace:fI by xl( forall 1< j <k and 1<Ij <ninit, and
P is the measurp = p(xI 1<1<n,1<j<k)defined above.

RemarkSimilarly to the remark made in the proof of Proposition 7emay restrict

our attention to the case when the random variaﬁf@sare non-atomic. A similar
statement holds also in the proof of Proposition 15.4,

Let us fix the numbed = 2-<t2)Ag**1 and let us list the elements of the set
F asF ={f1,f,...}. Put
m=m(5) = max1,D5 ") = max(1,D(2*k2 A~ g=(k+Ly,
and choose for all vectors" = (X X ,1<1<n 1< j<k) e Xk such a sequence
of positive integery (x"), .. pm( ™)) for which

inf [ (f(u) = oy (U)2p(x"V)(du) < &® forall f € 7 andx™ € X"

1<I<m

(Here we apply the notatiop(x(M) = p( xV 1< <n1<j<k), whichis a

probability measure oX* depending onx(® ) This is possible, since is anly-

dense class with exponehtand parameteD, and we can choos@ = Do\, if

0 < 1, Beside this, we can ChOOBlﬁ 1if 6 > 1, sincef |f —g|>dp < sup|f( )
g(x)|? <2 % < 1forall f,g € .%. Moreover, we have shown in Lemma 7.4A that
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the functionsp (x™), 1 <| < m, can be chosen as measurable functions of the
argumeni(™ e Xkn,

Let us consider the random vect) (w) = (§V(w), 1< 1 <n, 1< j <k). By
arguing similarly as we did in the proof of Proposition 7.3 get with the help of
relation (17.8) and the property of the functlof})s(x ) ) constructed above that

{w: sup|KHE(f)(w)| > 2("“)Ankak+1}

fes
CU{ K (fpy g (@) > 2 K2 AU ]

The above relation and formula (17.7) imply that

- Ankg*t1] - .
P <§€U£|k!|ﬁ,k(f)(w)| > T 5|(J>(w) :X|(J),1§| <nl<ij< k)
m Ankgktl
Z (|k|| (EM (@) ((A))‘ > oz

ENw)y =xV1<1<n1<j< k)

<om(d)e 2 R - o | pkiepa-lg (ki))Lyg 2 R Fno?

if (XM 1<l<n1<j<k}¢H. (17.9)

Relations (17.3) and (17.9) imply that

P ( fsup||<! 1€ (F)] > 2‘(k+1)Ankak+1> (17.10)
eF

< C(1+D(2¢2A O-*(k+l))L)efz’4’4/kA2/3kn02 4 okg AFno? e AT

Proposition 15.3 follows from the estimates (16.1), (1yY.40d the condition
no? > Llogn+logD, L,D > 1, if A> Ay with a sufficiently large numbeA.
Indeed, in this casao? > 3, (2+2A-1g~ (k1)L < (&)'— < ntel)/2 —

(ZnUZ)(k+1 /2
ghlogn-(k+1)/2 < e(k+1)n02/2’ D = do9b < gho? _and

2-4-4/kp2/Yng? }87 AL/ g2

C(1+D(2¢?A g~ (k1)L

The estimation of the remaining terms in the upper bound efegtimates (16.1)
and (17.10) leading to the proof of relation (15.5) is simpie can exploit that
e—A2/3kna2 < (_:‘—Al/zkno2 and agik-1 < e(k—l)naz’ hence Qe—A2/3kn02 < %e—Al/Z'(nazl
and Fnk-Lle wAY#no?/k < gkelk-1)no? gAY Zno?/k o g-AYZn0? for g Jarge

numberA.
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Now we turn to the proof of Proposition 15.4.
B.) THE PROOF OF PROPOSITION 15.4.

Because of formula (16.11) in the Corollary of Lemma 16.1Brove Proposition
15.4 i.e. inequality (15.7) it is enough to choose a suffityelarge parametefg
and to show that with such a choice the random variallgg f|G,V1,V») defined
in formula (16.9) satisfy the inequality

A2n2k02(k+1) L2k 2
P (fseuan,k(fG,vl,vz)y > =gt | < ktlg-AT"na

foralGe¥ andVi,Voe{l,....k} ifA>T>Ag (17.112)

under the conditions of Proposition 15.4.

Let us first prove formula (17.11) in the calg€G)| = k, i.e. when all vertices
of the diagranG are end-points of some edge, and the expredsjif|G,V1,V>)
contains no ‘symmetrizing terng;. In this case we apply a special argument to
prove relation (17.11).

We will show with the help of the Schwarz inequality that fadliagramG such
that|e(G)| =k

[Hnk(f1G,V1,V2)| (17.12)
1/2

S|y [ rEDEN gk yp(dy)

K
(Il
1<l <n, 1<j<k,

1A it 2]
1/2

/ fZ(EI(lﬁl(Vz))’ o El(k-,@(vz))’y)p( dy)

1 k
(I, T0):
1<lj<n, 1<j<k,

1A if ]

with 6;(V1) = 1if j € Vq, §j(V1) = —1if j ¢ V4, anddj(Vo) = 1if j € Va, 6j(Vo) =
—1if j ¢ Vo

Relation (17.12) can be proved for instance by boundingtfiestaibsolute value
of each integral in formula (16.9) by means of the Schwarguiadity, and then by
bounding the sum appearing in such a way by means of the itisqfda;b;| <

2\ 1/2 5\ 1/2 . .
(Z aj) (Z bj) . Observe that in the cas$ge(G)| = k the summation in (16.9)

is taken for such vectordy, ..., I, 1,...,1}) for which (I7,...,I;) is a permutation
of the sequencéls,...,lx) determined by the diagra®. Hence the sum we get
after applying the Schwarz inequality for each integraflié.9) has the forny a;b;
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where the set of indicepin this sum agrees with the set of vectdrs .. ., lx) such
that 1<lp <nforall1<p<k,andl, #lyif p#p.
By formula (17.12)

24k+1

A2n2K g (2(k+1)
{w: fSUg‘Hn,k(f|G7V17V2)(w)‘ > T
€5

C{w: sup Y[ ER (@) 5 (@) y)p(dy)
(I1,l):

fez
1<lj<n, 1<j<k,
A i £

A2 n2k 0-2(k+ 1) k!
T Akl }

U{(A)Z sup 2 /f2(5|(11’61<\/2))(w)w-~aE|ik7d((V2))(w)’y)p(dy)
fes (llv-"vlk):
1<lj<n, 1<j<k,

1A 0 £
AZn2k 0-2(k+ Dkl
hence
A2k g2(k+1)
P sup|Hnk(f|G,V1,V: —_—
(ppactome > P
A2k g2(k+1)
< 2P| sup he(& M, g% > T —
fez (I1,.0k) : . b 2%t
1<lj<n, 1< <k,
A 0 j#
_ A2k g2(k+1)

Wherel_n‘,k(hf), f € #, are the decoupled-statistics defined in (14.11) with the
kernel functionshs (x1,...,%) = [ f2(x1,..., X, Y)p(dy) and the random variables
El“‘l), 1<j <k 1<I <n. (Inthis upper bound we could get rid of the terdjéVvy)
andd;(V-), i.e. of the dependence of the expresditi(f|G,Vi,V2) on the set¥/

andVy, since the probability of the events in the previous fornddanot depend on
them.)

| claim that

P ( sup|kiink(he)| > ZkAnkcrz) < ke AYHNO? for A> A (17.14)
fes
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if the constanAg = Ag(k) is chosen sufficiently large in Proposition 15.4. Relation
(17.14) together with the relatiof? ”zg{fﬁ U > 2karko? (if A> Ao with a suffi-
ciently largeAp) imply that the probability at the right-hand side of (17.£8n be
bounded by #t1e~A"*19? and the estimate (17.11) holds in the cag6)| = k.

Relation (17.14) is similar to relation (17.3) (togethetiwthe definition of the
random setl in formula (17.2)), and a modification of the proof of the datésti-
mate yields the proof also in this case. Indeed, it follovasrfrthe conditions of
Proposition 15.4 that & [hy(xq,...,x)u(dxy)... u(dx) < o? for all f € .7,
and it is not difficult to check that supf (x1,...,x)| < 2-2k+D, and the class of
functions.# = {2h¢, f € .7} is anL,-dense class with exponebtand parame-
ter D. Hence by applying the Hoeffding decomposition of the fiorghs, f € .,
similarly to formula (17.4) we get for aV C {1,...,k} such a set of functions
{ht)v, f € #}, which satisfies the conditions of Proposition 15.3. Henpataral
adaptation of the estimate given for the expression at tite-fiand side of (17.5)
(with the help of (17.6) and the investigation pf|!1y(fy) for V_= 0) yields
the proof of formula (17.14). We only have to reple@g(f) by k!l k(ht), then
IV[Hn v (Fv) by [V[Hg v ((he)v) and the levels'®*/3nko? in (17.3) andA*3nko?
in (17.5) by ¥Arka? andArka? respectively. Let us observe that each term of the
upper bound we get in such a way can be directly bounded, dimagg the proof of
Proposition 15.4 for parametkmve may assume that the result of Proposition 15.3
holds also for this parametkr

In the case of a diagraf® € ¢ such thae(G) < k formula (17.11) will be proved
with the help of the multivariate version of Hoeffding’s oqueality, Theorem 13.3. In
the proof of this case an expression, analogou& 1¢f) defined in formula (17.1)
will be introduced and estimated for all s&tsV, C 7{1, ...,k} and diagram& € ¢
such thate(G)| < k. To define it first some notations will be introduced.

Let us consider the sé§(G) = Jo(G, k,n),

30(G) = {(In,e il ) LI <L < <k Iy £ 1y if £,
£V 0 1 =10 (),]) € eG), 1 #1, i (1,]) ¢ e(G)}.
The setlp(G) contains those sequendés ..., I, 11, ..., ;) which appear as indices
in the summation in formula (16.9) for a fixed diagrden We also introduce an

appropriate partition of it.
For this aim let us first define the sets

Mi(G) ={i(1),....i(k=[e&(G)])} = {1,....k}\vi(G),
(1) < < j(k=[e(G)]),

and

M2(G) = {j(1),....j(k—|e(G])} = {L,....k} \v2(G),

j(1) < < j(k—|e(@)),
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the sets of those vertices of the first and second row of tlgratiaG, indexed in in-
creasing order, from which no edge starts. Let us also inredhe seV (G) =
V(G,n,k), which consists of the restriction of the vectdls,...,ll7,...,l;) €
Jo(G) to the coordinates indexed by the elements of theVig6G) UM(G). For-
mally,

V(G) ={Ujw---jnte@n iy een) : L= i) g <,
1< p<k—1eG),ljp) # lip) fip) #

ifp#p,1<pp <k-|eG),
p) 7 Iﬁp/)v 1<p,p <k-|eG)[}.

The elements o (G) are vectors with elements indexed by theldetG) UM, (G),
which take different integer values between 1 and

We write all vectors/ = (Iq), - - ljk—eq))) I’( 1) €V(G) in the

itk le(c))))
|/

Sl
— D) @)Y with (1) —
formv= (VM v@)with W = (I;4),....1jxje(e))) @anAV? = =5y e eey))

i.e. vl contains the firsk — |e(G)| coordinates of with indices of the seM;(G),
andvlV) contains the lagt — |e(G)| coordinates of with indices of the sei,(G).

We define with their help the sdfg(v) which consists of those vectors=
(I1,..., 114, .. ., 1p) € Jo(G) whose restrictions to the coordinates with indices in
M1(G) andM3(G) equalvi?) andv(? respectively. More explicitly, we put

Ea(v) ={(1,...llt, 1) 1<lj<n1<ib<n, for 1< j,j <Kk,
1 if #0171 j#7
lj =15if (j,]) € &(G) andlj £ I7if (], j) ¢ eG), and
Ij(r):v(r),lg—(r): v(r),1<r<k-1e(G)|}, forallveV(G),

where{j(1),...,](k— [&(G)|)} = M1(G), {j(1),.. _( —&(G)))} =M2(G), v=
(VD) with v = (v(1),....,v(k— [e(G)])) andvi® = ((1),..., vk |e(G)]))
in the last line of this definition. Beside this, let us define

Eé(V) = {(|1,...,|k)1 (|1,...,|k,|/1,...,||/<) S Eg(V)}

and

EZ(V) = {(1],....10): (I1...,0,17, ..., 1) € Eg(V)}.
The vectore = (Ig,..., g1, ..., i) € Eg(v) can be characterized in the following
way. Forj € M1(G) their coordinates$; agree with the corresponding elements of
v(l), for j_e M2(G) their coordinate$;—agree with the corresponding elements of

. The indices of the remaining coordinates/tan be partitioned into pairs
(Js, ]g) 1<s,8 <|e(G)| in such a way thatjs, j¢) € €G). The identityl;; = Ij—sl

holds if (js, j¢) € €(G), and if (js, j¢) ¢ €(G), then the coordinateg, andIE—g are
different. Otherwise, the coordinatgs andlg; can be freely chosen from the set
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{1,...,n}\ {vD vi@}. The setEL(v) andEZ(v) consist of the vectors containing
the firstk and the seconld coordinates of the vectorsc Eg (V).

The setEg(v), ve V(G), constitute a partition of the sé§(G), and the random
variablesH, x(f|G, V1, V2) defined in (16.9) can be rewritten with their help as

k—|e(G)] k—|e(G)|
H(fleviva)@ = 5 T ay@ [ &,
v=(vD v@)ev(G) S= =

[ 1@ @), g5 @),y

(|1,...,|k,|£...,|ll()€EG(V) :

f(& % (@),.... &% (@), y)p(dy),  (17.15)

whered; (V1) = 1if j €V, 0;(V1) = —11if j ¢ V1, andd; (Vo) =11 j € Vo, 6j(V2) =
—1if j ¢ Va.

Let us fix some diagrar® € ¢ and setd/1,V, C {1,...,k}. We will prove the
inequality

P (sz(y\e,vl,vz) > 2%p83n g 4) < kHlgA¥no? i A > Ag ande(G) < k

(17.16)
for the random variable

F(F|G,V1, Vo) = sup z <
{

/f E|161V1 ""7Ek 6K(Vl>>’y)
feZveVio) 1EEG(V

. |k.|' ,,,,,
2
(g, Eik’a‘(Vz”,y)p(dy)) SR EY)

wheredj (V1) = 1if j €V, §j(V1) = —11if j ¢ Vi, anddj(Vo) =11if j € Vs, §j(V2) =
—1if j ¢ V». The random variabl& (.7 |G, V1, V) defined in (17.17) plays a similar

role in the proof of Proposition 15.4 as the random variable g (f) with & (f)
fez '

defined in formula (17.1) played in the proof of Propositi@n3l
To prove formula (17.16) let us first fix sorwes V(G), and let us show that the
following inequality, similar to relation (17.12) holds.
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( / (& .. £k
{

1~,~u||<,|/ ~~~~~

s( >/ fZ(z.‘f’él(Vl”,...,f.ikw”,y)p(dy))
(11l €EES(V)

.....

( > fZ(E,(,ll’al(VZ”,..-,E|(fkk’6‘(V2)),Y)P(dY)) (17.18)
(T

forall f € .# andv e V(G). Indeed, observe that for a vector= (v1,V2) € Eg(V)
with v; € E&(v) andv, € E3(v), the coordinates of the vectur in the setV;(G)
and the coordinates of the vecterin the setM,(G) are prescribed, while the coor-
dinates ofv in the setv;(G) are given by a permutation of the coordinatg# the
setvz(G). (The setsr;(G) andv,(G) were defined before the introduction of for-
mula (16.9) as the sets of those vertices in the first and skewonof the diagrant
respectively from which an edge Gfstarts.) This permutation is determined by the
diagramG. Inequality (17.18) can be proved on the basis of the abogerohtion
similarly to formula (17.12).

We shall prove with the help of formula (17.18) the followimgquality.

P(Z|G,V1, Vo) (17.19)

<sup ¥ ( /f (At glkadw), )p(dy))
fE/VEV(G EEl

.....

<sup| Y /(eﬂ”lvl L&) y)o(dy)

fer (I, 1)
1<lj smlélék,
,#I rif j#§

sup Z / f2(5|<11761(\/2>>a ceey E|E/<k76k<\/2))7y)p( dy)

1<lf<n,1<j<k,
A i A
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The first inequality of (17.19) is a simple consequence aifda (17.18) and the
definition of the random variabl®(.% |G, V1,V»). To check its second inequality let

us observe that it can be reduced to the simpler relationenner expression sup
feZ
is omitted at each place. The simplified inequality obtaiaédr the omission of

the expressions sup can be checked by carrying out a ternrioyneltiplication
between the products of sums appearing in (17.19). At boéssdf the inequality
a sum consisting of terms of the form

/ ]cZ(EI(lil-afsl(Vl))7 o El(k75»<(vl))7y)p( dy)

k

[ gD ypay,  a7.20)

appears. It is enough to check that if a term of this form appeethe middle term
of the simplified version formula of (17.19), then it appewith multiplicity 1,
and it also appears at the right-hand side of this formulasékothis, observe that
each term of the form (17.20) which appears in the sum we getabgying out
the multiplications in middle term of (17.19) determinedquely the indexv =
(v, v@) € V(G) in the outer sum of the middle term in the inequality (17.19).
Indeed, if the random variables defining this expressiorhefform (17.20) have
indices? = (ly,...,lk17,...,1}), then this vecto¥ uniquely determines the vector
v= (VY V@) e V(G), sincevi’) must agree with the restriction of the vectos
(I1,....lx) to the coordinates with indices i (G) andv(? must agree with the
restriction of the vectol’ = (I3,...,l;) to the coordinates with indices M(G).
Beside this, by carrying out the multiplication at the rigiand side of (17.19) we
get such a sum which contains all such terms of the form () %2ich appeared
in the sum expressing the middle term in inequality (17.18e above arguments
imply inequality (17.19).

Relation (17.19) implies that

P(S(F|G,V1, Vo)) > 224A8/3n%g4) < 2P (supk! Ink(hf) > ZkA4/3nk02> ,

fesz

where I(hf), f € ., are the decoupletl-statistics defined in (14.11) with
the kernel function$i¢ (xq,...,xx) = [ f2(x1,..., X, Y)p(dy) and the random vari-

ablesfl“‘l), 1< j<k 1<1<n. (Here we exploited that in the last formula
S(F|G,V1,V,) is bounded by the product of two random variables whoseidistr
butions do not depend on the s¥fsandV,.) Thus to prove inequality (17.16) it is
enough to show that

2P (supk! nk(hy) > 2"A4/3nk02> < kg AHNO? it A A (17.21)
fez
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Actually formula (17.21) follows from the already provenrmula (17.14), only the
parameteA has to be replaced b4*/3 in it.

With the help of relation (17.16) the proof of Proposition4.6an be completed
similarly to Proposition 15.3. The following version of oaality (17.7) can be
proved with the help of the multivariate version of Hoeffgls inequality (The-
orem 13.3) and the representation of the random varidlg f |G, Vi, V») in the
form (17.15).

A2 i .
P( IHnk(F|G,V1,Va)| > 24k+2n2kaz(k+l> g 1<i<ni<j< k) (w)

< Cefzf(wz/k) A2/3Kng2

if S(F|G,Vi,Vo)(w) < 2%A8n*g* andA > Ag

(17.22)

with an appropriate consta@ = C(k) > 0 for all f € .% andG € ¢ such that
le(G)| < k andV1,Vo C {1,....k}. (Observe that the conditional probability esti-
mated in (17.22) can be represented in the following way. poiat w € Q fix the
values ofél“’il)(w) for all indices 1< | <nand 1< j <kin the random variable
Hnk (]G, V1, V), and the conditional probability in this point equals the proba-
bility that the random variable, (depending on the randonmattese, 1 < | < n),
obtained in such a way is greater thg@%nz"aak*l).)

Indeed, in this case the conditional probability consideire (17.22) can be
bounded because of the multivariate version of Hoeffdimgsgjuality by

1 Adntk Ak 1) 1/2j 1/ AY/3p2k gk 1/2
— < o —
cont 3 (msrn) =002 "awr)
with an appropriat€ = C(k) > 0, where 3 = 2k—2|e(G)|, and 0< |e(G)| < k—1.
Sincej <k, no? > % and aIsoz’fS% > 2 if Ag is chosen sufficiently large we can
write in the above upper bound for the left-hand side of (2Yj2=k, and in such a

way we get inequality (17.22).
The next inequality, in which we estimate sHpk(f|G,V1,V), is a natural ver-
feF

sion of formula (17.9) in the proof of Proposition 15.3. Waklkshow that

AZ
P( fS€U£|Hn7k(f |valav2)| > 24k+1 n2k02(k+1)

243\ b o (6+2/K) p2/3Kp g2

if (F|G,V1,Vo))(w) < 22A8n*g* andA > Ag (17.23)

g 1<i<n1<j< k>(w)

for all G € ¢ such thaje(G)| < kandVi, Vo C {1,....k}.
To prove formula (17.23) let us fix two se¥g, Vo C {1,...,k} and a diagran®

such thatje(G)| < k. We shall define for all vectors™ = (x,“’l),xl('-‘*l), 1<1<
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n, 1< j <k) € X% some probability measur@(x(") on the spac&X x Y (with
the space¥ which appears in the formulation of Proposition 15.4) withieh we
can work so as we did with the probability measurég™) andp(x(") in the proof
of Propositions 7.3 and 15.3.

To do this we define first for a vectof” = (xI(J’D,x,“"*l), 1<1<n1<j<

k) € X2 and for all 1< j < k two probability measureyj(l) = vj(1>(x<”),V1)

and vj(z) = vj(2>(x(“>,v2) in the space(X,2") in the following way. The mea-

suresvj(l) (xW, V1) and v}2>(x<”>,v2) are uniformly distributed in the set of points

x 1O 4 <) < nandx ™) 1<1 < n, respectively. More explicitly, we define

forall 1 < j <k (and set¥; andV,) the probability measurez%1 ({xiJ 9 Vl))}) =

i andv ({xjé] V2) }) =1L forall 1 <1 <n, wheredj(Va) =1 if j €V,
o;(V1) = —1 if j ¢ Vi, and similarlyd; (Vo) = 1if j € Vo anddj(Vz) = —1 if j & Va.
Let us consider the product measucgs= al(x“‘),vl) = vil) - X v ) % p and
az = ax (XM Vp) = Vf) X -ee X vliz) x p on the product spac(ex" xY, 3{" XX,
wherep is that probability measure ofY, %) which appears in Proposition 15.4.
With the help of the measures and a, we define the measure = a(x(") =
a (XM, V1,V,) = 9592 in the spacéX x Y, 2% x #). Let us also define the mea-
sured = & (xM) = (XM V3, Vo) = viV x -y 5 vl x ... y® x p in the space
(XK XY, 2% x ).

Define Hy, k(f|G V1,V2) as a function in the product spat¥?", 2"2M") (with
arguments<( andx| , 1< j <k 1<I<n)by means of formula (17.15) by

) ’Vl))( w) by X" and the random variables

replacing the random vanablé
EI,J 9 (V2) () byx (101 V2)) it for al1<j< kand 1<1j,15 < n. (We consider the

value of the coeff|C|ents|. andsv 9 in (17 5) fixed. ) Wlth such a notation we can

byx

write for any pairsf,g € ﬁ andx(™ (xI x1 ,1<j<k 1<l <n)eXxn
by exploiting the properties of the above defmed mea@uitee inequality

SUD [Hnk(F1G, V1, Vo) (X)) — Hn k(9] G, Vi, Vo) (X))

<
v—(v(l) V(z))EV( ) (I, ey |k~| )EEG(V)
(1,51(V1) (KB (V1) (1,31 (V- K, O (V-
/|f (R0 a0, )f(xl 81 z>>,“_,xl(/ &(\2) v
(1,01(Vq) (K, 0 (V1) 1,01(Vo) (K, (V2)
g0 gy gD aED, y) o dy)

S n2k/ ‘f(Xla-'-7Xk7y)f(xk+17'--7X2k7y)
=91, X6 Y)Y (Xier 1, X2k V) (dX, -, Ao, dy). (17.24)
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Beside this, since both sifi(xy,...,%Y)| < 1 and supg(xi,..., %, Yy)| < 1, we
have

[F(Xas X6 V) F (s Xa0 V) — 90X, - X Y) I (K1, - - - Xak V)|
<Xy X W) (Xerts - -0 X2k Y) — 9Kk 1y - - - X2k, Y) |
Okt 15 -5 %) [ F (X5 X, Y) = O(Xa, -+, Xk, V)
S (r 1y -5 X2k, Y) — 9Kkt 1, - -5 Xk, Y) |
(X1, X Y) — (X, - X Y) |-

It follows from this inequality, formula (17.24) and the defion of the measures
a, a1, op anda that

sup [Hnk( |G, V1,V2) (X)) — Hnk(9]G, V1, Vo) (X))

£1....n
< HZK/(|f(Xk+17-~-,X2k,Y)*Q(Xk+1,---,X2k,y)|
(X1, X Y) — (X, - X Y) A (dXg, - .., Xk, dY)
:nz"/|f(x1,...,xk,y)—g(xl,...,xk7y)|
(a1(dxq,..., dX, dy) 4+ az(dxq, ..., dX, dy)) (17.25)
:2n2k/|f(x1,...,xk,y)—g(xl,...,xk,y)|a(dx1,...,dxk,dy)

1/2
<2 ([ 11000 %e) - G0 X P . O )

with the previously defined probability measure= a (x("). Puté = Azchik;l),

list the elements of# as.% = {f1,f,,...}, and choose such a set of indices
pr(X™), ..., pm(x("V) taking positive integer values withn = max(1,D5 ") ele-
ments for which

min /(f(u) — T (Xm))(u))za(x(”))(dU) <% forall f €.Z andx(™ e X%,

1<I<m

(Here integration is taken with respectu@ XK x Y.)

Such a choice of the indicqrp(x(”)), 1 <1 <m,is possible, since” is L,-dense
with exponentL and parameteD. Moreover, by Lemma 7.4B we may chose the
functionsp, (x"), 1 <1 < m, as measurable functions of their argumeRtc X,

Puté ™ (w) = (& (w), 1<1 <n, 1< j <K). By arguing similarly as we did
in the proof of Propositions 7.3 and (15.3) we get with thelwlrelation (17.25)
and the property of the functiorfs, (x(”))(') constructed above that
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A2k g2(k+1) }

: >
{w. fsel{£|Hn7k(f|G,Vl,V2)(w)|7 ST

A2k g2(k+1)
C U { [Hnk(f (@) |G V1, V2) (@) (0)] 2 =5

Hence
A2nkgak+D) |
(supan(f|G VA Vo)l > =g — gt 1<i<n 1< <k)( )
fez
m A2n2K g2(k+1)
<2 P<ank(fmzww))|G’V1’V2)| > gt

g 1<1<n1<j< k)(w)

for almost allw. The last inequality together with (17.22) and the inedyat =
L
max(1,D67 ") <1+D <A227(k3+1)> imply relation (17.23).
It follows from relations (17.16) and (17.23) that

A2 g2(kt1) ol p2l%eg?
P (fSEU5|Hn,k(f|val,V2)| e — < 2ktlg AT g

24k+3 L o (6+2/K p2/%ng2

forallVq,Vo C {1,...,k} and diagranG € ¢ such thate(G)| < k— 1. This inequal-
ity implies that relation (17.11) holds also in the c¢s&)| < k— 1 if the constants
Ao is chosen sufficiently large in Proposition 15.4, and thisipketes the proof of
Proposition 15.4. To prove relation (17.11) in the cg$6)| < k— 1 with the help
of the last inequality it is enough to show tk&(%)'— < eonstna? if A 5 A
with a sufficiently largeAg, since this implies that t%e second term at the right-hand
of our last estimation is not too large.

This relation follows from the inequalitna® > Llogn -+ logD which implies
that

24k+3 L n(k+1) -
< < n(k-!—l)L _ e(k-&-l)LIogn < e(k+1)n0
A2g2(k+1) - (2n02)(k+1) - -

if Ao is sufficiently large, and = €°9° < g9”,



Chapter 18

An overview of the results and a discussion of
the literature

| discuss briefly the problems investigated in this work alesome basic results
related to them, and also give some references. | also vritetahe background of
these problems which may explain the motivation for theidgt I list the remarks

following the subsequent chapters in this work. Chapter dnisntroductory text,

the real work starts at Chapter 2.

CHAPTER 2

I met the main problem considered in this work when | tried dat the method
of proof of the central limit theorem for maximum-likelihdestimates to some
more difficult questions about so-called non-parametrigimam likelihood esti-
mate problems. The Kaplan—Meyer estimate for the empidisatibution function
with the help of censored data investigated in the seconpiteh& an example for
such problems. It is not a maximum-likelihood estimate mdclassical sense, but it
can be considered as a non-parametric version of it. In tire&son of the distribu-
tion function with the help of censored data we cannot agpyctassical maximum
likelihood method, since in this problem we have to choogeestimate from a too
large class of distribution functions. The main problenmhigttthere is no dominat-
ing measure with respect to which all candidates which magapas our estimate
have a density function. A natural way to overcome this difficis to choose an
appropriate smaller class of distribution functions, tonpare the probability of
the appearance of the sample we observed with respect tistaibdtion functions
of this class and to choose that distribution function asestimate for which this
probability takes its maximum.

The Kaplan—Meyer estimate can be found on the basis of theegirinciple in
the following way: Let us estimate the distribution functib (x) of the censored
data simultaneously together with the distribution fumist>(x) of the censoring
data. (We have a sample of simeand know which sample elements are censored
and which are censoring data.) Let us consider the classcbf gairs of estimates
(Fn(X),Gn(x)) of the pair(F(x),G(x)) for which the distribution functiori,(x) is
concentrated in the censored sample points and the distribfunction G,(x) is
concentrated in the censoring sample points; more prgclsels also assume that

213
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if the largest sample point is a censored point, then theilligion functionGp(X)

of the censoring data takes still another value which isslatigan any sample point,
and if it is a censoring point then the distribution functiBy(x) of the censored
data takes still another value larger than any sample pdihts modification at the
end of the definition is needed, since if the largest sampiet ofrom the class of
censored data, then the distributiG(x) of the censoring data in this point must be
strictly less than 1, and if it is from the class of censoriatpdthen the value of the
distribution functionF (x) of the censored data must be strictly less than 1 in this
point.) Let us take this class of pairs of distribution fuanos (F,(x),Gn(X)), and
let us choose that pair of distribution functions of thissslas the (non-parametric
maximum likelihood) estimate with respect to which our alsagon has the great-
est probability.

The above extremum problem about a pair of distributionfions (Fs(X), Gn (X))
can be solved explicitly, (see [28]), and it yields the estienofF,(x) written down
in formula (2.3). (The functiorsy(x) satisfies a similar relation, only the random
variablesX; andY; and the event$; = 1 andd; = 0 have to be replaced in it.) If
we want to prove that the estimate of the distribution fumttive found in such a
way satisfies the central limit theorem, then we can do thib thie help of a good
adaptation of the method applied in the study of maximuniliked estimates. We
apply an appropriate linearization procedure, and theyelisone really hard part of
the proof. We have to show that this linearization procedjives a small error. This
problem led to the study of a good estimate on the tail distidin of the integral of
an appropriate function of two variables with respect topteduct of a normalized
empirical measure with itself. Moreover, as a more detditdstigation showed,
we actually need the solution of a more general problem wiveréave to bound
the tail distribution of the supremum of a class of such irdksg The main subject
of this work is to solve the above problems in a more genettihgeto estimate not
only two-fold, but als&k-fold random integrals and the supremum of such integrals
for an appropriate class of kernel functions with respea tmrmalized empirical
distribution for allk > 1.

The proof of the limit theorem for the Kaplan—Meyer estimaxelained in this
work applied the explicit form of this estimate. It would bedresting to find such
a modification of this proof which only exploits that the Kap-Meyer estimate is
the solution of an appropriate extremum problem. We may expeat such a proof
can be generalized to a general result about the limit bebhavor a wide class
of non-parametric maximum likelihood estimates. Such sict@ration was behind
the remark of Richard Gill I quoted at the end of Chapter 2.

A detailed proof together with a sharp estimate on the spéedrvergence for
the limit behaviour of the Kaplan—Meyer estimate based enidiras presented in
Chapter 2 is given in paper [40]. Paper [41] explains moreutlie background,
and it also discusses the solution of some other non-paranmeaximum likeli-
hood problems. The results about multiple integrals wigpeet to a normalized
empirical distribution function needed in these works wereved in [33]. These
results were satisfactory for the study in [40], but theydlave some drawbacks.
They do not show that if the random integrals we are considdrave small vari-
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ances, then they satisfy better estimates. Beside thig famsider the supremum
of random integrals of an appropriate class of functionsnttihese results can be
applied only in very special cases. Moreover, the methodr@bfpof [33] did not
allow a real generalization of these results. Hence | hadtbdidifferent approach
when | tried to generalize them.

| do not know of other works where the distribution of muléphndom integrals
with respect to a normalized empirical distribution is $tad On the other hand,
there are some works where a similar problem is investigabexit the distribu-
tion of (degeneratel) -statistics. The most important results obtained in thisl fie
are contained in the book of de lafiReand Gig Decoupling, From Dependence
to Independencf]. The problems about the behaviour of degenethigtatistics
and multiple integrals with respect to a normalized emailrdistribution function
are closely related, but the explanation of their relat®ofar from trivial. The main
difference between them is that integration with respegt,te p instead of the em-
pirical distributionp, means of some sort of normalization, while this normalati
is missing in the definition df -statistics. | return to this question later.

Let me finish my discussion about Chapter 2 with some pergenarks. Here
| investigated a special problem. But in my opinion the mdtapplied in this chap-
ter works well in several similar problems about the limibhbeiour of a non-linear
functional of independent identically distributed randeaniables. In the study of
such problems we express the non-linear functional we a&esiigating as an inte-
gral with respect to the normalized empirical distributdtermined by the random
variables we are working with plus some negligibly smalbeterms. Then we have
to describe the limit behaviour of the random integral we gat this can be done
with the help of some classical results of probability thye@eside this we have to
show that the remaining error terms are really small. Thislmadone, but at this
point the results discussed in this work play a crucial rbleelieve that a similar
picture arises in many cases. In certain problems it maydrapmt the main termis
not a one-fold, but a multiple integral with respect to themalized empirical dis-
tribution. But the limit distribution of such functionalsue also be described. This
is the content of Theorem 10 proved in Appendix C.

CHAPTER 3

The main part of this work starts at Chapter 3. A general deanof the results
without the hard technical details can be found in [36].

First the estimation of sums of independent random varsatl@f one-fold ran-
dom integrals with respect to a normalized empirical disttion and the supremum
of such expressions is investigated in Chapters 3 and 4.dqugstion has a fairly
big literature. | would mention first of all the bools course on empirical pro-
cesseg13], Real Analysis and Probabilitj14] and Uniform Central Limit Theo-
rems[15] of R. M. Dudley. These books contain a much more detadlestription
of the empirical processes than the present work togethéraniot of interesting
results.

In Chapter 3 | presented the proof of some classical resbtisitathe tail be-
haviour of sums of independent and bounded random variatitesexpectation
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zero. They are Bernstein’s and Bennett’s inequalities.irfiv®ofs can be found
at many places, e.g. in Theorem 1.3.2 of [15] and [6].) We &se mterested in
the question when these results give such an estimate thaetitral limit theo-
rem suggests. Actually, as it is explained in Chapter 3, B#isninequality gives
such a bound that the Poissonian approximation of partrabsaf independent ran-
dom variables suggests. Bernstein’s inequality providesstimate suggested by
the central limit theorem if the variance of the sum we coasid not too small.
The results in Chapter 3 explain these statements morecékplif the variance
of the sum is too small, then Bennett's inequality providedight improvement
of Bernstein’s inequality. Moreover, as Example 3.3 shddennett’s inequality is
essentially sharp in this case. But these results are muaken¢han the estimates
suggested by a normal comparison.

The relative weakness of Bernstein’s and Bennett's indiyualr random sums
with small variance had a deep consequence in our investigabout the supre-
mum (of appropriate classes) of sums of independent ran@doiables. Because of
the weakness of these estimates in certain cases we had ®riea method. We
could overcome the difficulty we met with the help of a symnzetion argument
which is explained in Chapter 7. But to apply this method wedes another result,
known under the name Hoeffding’s inequality. It yields atireate about the tail
behaviour of linear combinations of independent Radenrdcinetions. This result
always provides such a good bound as the central limit tineaeggests. This is
the reason why | discuss this inequality at the end of Chajter Theorem 3.4. It
is also a classical result whose proof can be found for instém[25].

The content of Chapter 3 can be found in the literature, B [d.3]. The main dif-
ference between my discussion and that of earlier worksaid {put more emphasis
on the investigation of the question when the estimates endih distribution of
partial sums of independent random variables are simildreio Gaussian counter-
part. | had a good reason to discuss this question in moré.detas also interested
in the estimation of the tail distribution of the supremunpaftial sums of indepen-
dent random variables, and in the study of this problem we taunderstand when
the classical methods related to Gaussian random variedaelse applied and when
we have to look for a new approach.

CHAPTER 4

Chapter 4 contains the one-variate version of our maintabolut the supremum of
the integrals of a clasg of functions with respect to a normalized empirical mea-
sure together with an equivalent statement about the tstifilblition of the supre-
mum of a class of random sums defined with the help of a sequdiicdependent
and identically distributed random variables and a cladsmétions.# with some
nice properties. These results are formulated in Theoretsdd 41'. They ap-
peared in [33]. Also a Gaussian version of them is presemnt@éhéorem 4.2 about
the distribution of the supremum of a Gaussian random fietd some appropriate
properties. A deeper version of Theorem 4.2 is studied iepH[2]. The content of
these results can be so interpreted that if we take the supneshrandom integrals
or of random sums determined by a nice class of functi@nis the way described
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in Chapter 4, then the tail distribution of this supremunissigis an almost as good
estimate as the ‘worst element’ of the random variablestapiart in this supre-
mum. But such a result holds only if we consider the value isftdil distribution at
a sufficiently large level, since — as some concentratioguaéties imply — the
supremum of these random sums are larger than the expedtexdofahis supre-
mum with probability almost one. | also discussed a resuxample 4.3 which
shows that some rather technical conditions of Theoremahhat be omitted.

The most important condition in Theorem 4.1 was that thesatdigunctions 7
we considered in it ikp-dense. This property was introduced before the formuiatio
of Theorem 4.1. One may ask whether one can prove a bettéoweafsthis result,
which states a similar bound for a different, possibly laass of functions”. Itis
worth mentioning that Talagrand proved results similarbedrem 4.1 for different
classes of functions in his book [58]. These classes of functions are very differe
of ours, and Talagrand’s results seem to be incomparableawits. | return to this
question later in the discussion of Chapters 6 and 7, whielwah the proof of
the results of Chapter 4. In the remaining part of the disonssf Chapter 4 | write
about the notion of countably approximable classes of randlriables and its role
in the present work.

In the first formulation of our results we have imposed thedition that the
class of functions# is countable, i.e. we take the supremum of countably many
random variables. In the proofs this condition was heavilyl@ted. On the other
hand, in some important applications we also need resutltistdbe supremum of a
possibly non-countable set of random variables. To handib sases | introduced
the notion of countably approximable classes of randormaet#es and proved that
in the results of this work the condition about countabitign be replaced by the
weaker condition that the supremum of countably approxieatasses is taken.
R. M. Dudley worked out a different method to handle the somn@ of possibly
non-countably many random variables, and generally hisiotets applied in the
literature. The relation between these two methods dessonme discussion.

To understand the problem we are discussing let us firstlréedlif we take a
class of random variable3, t € T, indexed by some index s&t then for all set#\
measurable with respect to tiealgebra generated by the random varialdes €
T, there exists a countable sub3ét= T’(A) C T such that the sek is measurable
also with respect to the smaller-algebra generated by the random variaBle
t € T'. Beside this, if the finite dimensional distributions of treendom variables
S, t €T, are given, then by the results of classical measure théerpitobability
of all events measurable with respect to th@lgebra generated by these random
variablesS, t € T, is also determined. But it may happen that we want to dedl wit
such events whose probability cannot be defined in such alwagrticular, if T is

a non-countable set, then the eve{ts: supS (w) > u} are non-measurable with
teT
respect to the abowe-algebra, and generally we cannot speak of their probegsilit

To overcome this difficulty Dudley worked out a theory whigtabled him to work
also with outer measures. His theory is based on some raéegr ésults of the
analysis. It can be found for instance in his book [15].
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| restricted my attention to such cases when after the cdioplef the prob-
ability measureP we can also speak of the real (and not only outer) probagsiliti

P <sup$ > u). | tried to find appropriate conditions under which thesebpfuli-
teT

ties really exist. More explicitly, | was interested in treese when for alli > O there
exists some seh = A, measurable with respect to tlmealgebra generated by the
random variable§, t € T, such that the symmetric difference of the s&fsand

{w: sups (w) > u} is contained in a set which is measurable with respect to the
teT

o-algebra generated by the random varial§ies< T, and it has probability zero. In
such a case the probabﬂ@(sup& > u) can be defined aB(A,). This approach

led me to the definition of countable approximable classesmdom variables. If
this property holds, then we can speak about the probalofithe event that the
supremum of the random variables we are interested in igddlgn some fixed
value. | proved a simple but useful result in Lemma 4.4 whigvjgles a condition
for the validity of this property. In Lemma 4.5 | proved witis help that an impor-
tant class of functions is countably approximable. It seirasthis property can be
proved for many other interesting classes of functions ithhelp of Lemma 4.4,
but | did not investigate this question in more detail.

The problem we met here is not an abstract, technical difficlddeed, the dis-
tribution of the supremum of uncountably many random véaesloan become dif-
ferent if we modify each random variable on a set of probtuiero, although their
finite dimensional distributions remain the same after sarcloperation. Hence, if
we are interested in the probability of the supremum of a cammtable set of ran-
dom variables with prescribed finite dimensional distritis we have to tell more
explicitly which version of this set of random variables wansider. It is natural to
look for such an appropriate version of the random fig|d € T, whose ‘trajecto-
ries’ S(w),t € T, have nice properties for all elementary events Q. Lemma 4.4
can be interpreted as a result in this spirit. The conditimergfor the countable
approximability of a class of random variables at the endhisflemma can be con-
sidered as a smoothness type condition about the ‘trajestaf the random field
we consider. This approach shows some analogy to some iamp@rioblems in the
theory of stochastic processes when a regular version othastic process is con-
sidered, and the smoothness properties are investigatdbefdrajectories of this
version.

In our problems the version of the set of random varialfles € T, we work
with appears in a simple and natural way. In these problemisave finitely many
random variablegs, ..., &, at the start, and all random variabl&$w), t € T, we
are considering can be defined individually for eacas a function of these random
variablesti(w), ..., én(w). We take the version of the random fiddw),t € T, we
get in such a way and want to show that it is countably apprakim In Chapter 4
this property is proved in an important model, probably tfost important model
in possible applications we are interested in. In more carafgd situations when
our random variables are defined not as a function of finiteiypyrsample points,



18 An overview of the results and a discussion of the literature 9 21

for instance in the case when we define our set of random Vesiddy means of
integrals with respect to a Gaussian random field it is hawaiénd the right regular
version of our sets of random variables. In this case thgiate we consider are
defined only with probability 1, and it demands some extrakworfind their right
version. But in the problems studied in this work the abovetdked approach is
satisfactory for our purposes, and it is simpler than thddwdley; we do not have
to follow his rather difficult technique. On the other handhust admit that | do not
know the precise relation between the approach of this wadktlaat of Dudley.

CHAPTER 5

In Chapter 4 the notion df ,-dense classes,< p < o, also has been introduced.
The notion ofl,-dense classes appeared in the formulation Theorems 44 Hnd
It can be considered as a version of gientropy, discussed at many places in the
literature. (See e.g. [13] or [14].) On the other hand, ttserems to be no standard
definition of thee-entropy. The term off ,-dense classes seemed to be the appropri-
ate object to work with in this lecture note. To apply the iestelated td_,-dense
classes we also need some knowledge about how to check dipisrpy in concrete
models. For this goal | discussed here Vapfikrvonenkis classes, a popular and
important notion of modern probability theory. Several k®and papers, (see e.g.
the books [15], [49], [59] and the references in them) dedh\ilhis subject. An
important result in this field is Sauer's lemma, (Lemma 5.hjal together with
some other results, like Lemma 5.3 imply that several istarg classes of sets or
functions are VapnikServonenkis classes.

| put the proof of these results to the Appendix, partly beeathey can be found
in the literature, partly because in this work Vapriilervonenkis classes play a dif-
ferent and less important role than at other places. Heraikhéervonenkis classes
are applied to show that certain classes of function& gigense. At this point a re-
sult of Dudley formulated in Lemma 5.2 plays an importanerdt implies that
a Vapnik-Cervonenkis class of functions with absolute value bourtged fixed
constant is a1, and as a consequence alsolardense class of functions. The
proof of this important result which seems to be less knovaneamong experts of
this subject than it would deserve is contained in the maih f@udley’s original
result was formulated in the special case when the functisonsider are indi-
cator functions of some sets. But its proof contains all ingoat ideas needed in
the proof of Lemma 5.2. A proof of the result in the form foreeld in this work
can be found in [49]. This book also contains the other resaflthis chapter about
Vapnik—éervonenkis classes.

CHAPTERS 6 AND 7

Theorem 4.2, which is the Gaussian counterpart of Theoreinantl 41’ is proved
in Chapter 6 by means of a natural and important techniqguksdcthe chaining
argument. This means the application of an inductive pracedn which an appro-
priate sequence of finite subsets of the original set of nangiriables is introduced,
and a good estimate is given on the supremum of the randoailesiin these sub-
sets by means of an inductive procedure. The subsets be@merdubsets of the
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original set of the random variables at each step of thisqaore. This chaining
argument is a popular method in certain investigations. Iard to say with whom
to attach it. Its introduction may be connected to some wofk®. M. Dudley. It is
worth mentioning that Talagrand [58] worked out a sharperexdion of it which
yields in the study of certain problems a sharper and mortilusstimate. But it
seems to me that in the study of the problems of this work thirovement has a
limited importance, it turns out to be useful in the study iffiedent problems.

Theorem 4.2 can be proved by means of the chaining argumerthib method
is not strong enough to supply a proof of Theorem 4.1. It gtesionly a weak es-
timate in this case, because there is no good estimate omdbalplity that a sum
of independent random variables is greater than a prescvidee if these random
variables have too small variances. As a consequence, #igirngp argument sup-
plies a much weaker estimate than the result we want to pnoderithe conditions
of Theorem 4.1. Lemma 6.1 contains the result the chainiggraent yields under
these conditions. In Chapter 6 still another result, Lemma$formulated. It can
be considered as a special case of Theorem 4.1 where onlyghensum of partial
sums with small variances is estimated. We also show in thégpter that Lem-
mas 6.1 and 6.2 together imply Theorem 4.1. The proof is rfoituli, despite of
some non-attractive details. It has to be checked that treerpeters in Lemmas 6.1
and 6.2 can be fitted to each other.

Lemma 6.2 is proved in Chapter 7. It is based on a symmewizaigument.
This proof applies the ideas of a paper of Kenneth Alexand@grdnd although
its presentation is different from Alexander’s approatitain be considered as a
version of his proof. It may be worth mentioning that the syetmaation arguments
were first applied in the theory of Vapni&ervonenkis classes to get some useful
estimates (see e.g. [49]). But it turned out that an appatgriefinement of this
method supplies sharper results if we are working Withdense classes instead of
Vapnik-Cervonenkis classes of functions.

A similar problem should also be mentioned at this place. Magdrand wrote
a series of papers about concentration inequalities, (ge¢55] or [56]), and his
research was also continued by some other authors. | woubtionethe works of
M. Ledoux [30] and P. Massart [43]. Concentration ineqiegigive a bound about
the difference between the supremum of a set of appropridéfined random vari-
ables and the expected value of this supremum. They expoegsstiongly this
supremum is concentrated around its expected value. Ssaltgare closely re-
lated to Theorem 4.1, and the discussion of their relatimedes some attention.
A typical concentration inequality is the following resaoftTalagrand [56].

Theorem 18.1 (Theorem of Talagrand).Consider n independent and identically
distributed random variable<s,...,&, with values in some measurable space
(X, Z"). Let . be some countable family of real-valued measurable funstio

n
of (X,Z") such that||f|je < b < o for every fe #. Let Z= sup 5 (&) and
feFi=1

n
v=E (sup > fZ(Ei)> . Then for every positive number x
fezi=1
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1x xb
P(Z>EZ+x) <Kexp< —— —log( 1+ —

and

X2
P(Z>EZ+Xx) <Kexp{ —————
(Z2EZ+x) < p{ 2(Cyv+ Cobx) }
where K, K, ¢c; and ¢ are universal positive constants. Moreover, the same iakequ
ities hold when replacing Z by-Z.

Theorem 18.1 yields, similarly to Theorem 4.1, an estimbtiathe distribution
of the supremum for a class of sums of independent randorabtes. (The paper
of P. Massart [43] contains a similar estimate which is bdtteour purposes. The
main difference between these two estimates is that thecbgiren by Massart de-

n n
pends oro? = sup ¥ Varf(&) instead ov=E | sup 3 fZ(Ei)> .) Theorem 18.1
fezi=1 fezi=1

can be considered as a generalization of Bernstein’s andeB&sinequalities when
the distribution of the supremum of partial sums (and noy tmé distribution of one
partial sum) is estimated. A remarkable feature of thisltésuhat it assumes no
condition about the structure of the class of functiohqlike the condition ofL,-
dense property of the clasg imposed in Theorem 4.1). On the other hand, the

estimates in Theorem 18.1 contain the quariig/= E | sup E f(&) |. Such an
fezi=1
expectation of some supremum appears in all concentratemualities. As a con-
sequence, they are useful only if we can bound the expected gthe supremum
we want to estimate. It is difficult to find a good bound on thipected value in
the general case. Paper [18] provides a useful estimatafdhétexpected value of
the supremum of random sums is considered under the camglitioTheorem 4.1.
But | preferred a direct proof of this result. Let me remaritthecause of the above
mentioned concentration inequality the condition constolog¥/2 2 with some
appropriate constant which cannot be dropped from Theor&roah be interpreted
so that under the conditions of Theorem 4.1 cocmingl/zg is an upper bound for
the expected value of the supremum we investigated in thidtrd&Example 4.3 im-
plies that if the conditions of Theorem 4.1 are violatednttiee expected value of
the above supremum may be larger.

It is also worth mentioning Talagrand’s work [58] which caims several inter-
esting results similar to Theorem 4.1. But despite theimi@rsimilarity, they are
essentially different from the results of this work. Thiffelience deserves a special
discussion.

Talagrand proved in [58] by working out a more refined, betension of the

chaining argument a sharp upper bound for the expected EZadupé; of the supre-
teT
mum of countably many (jointly) Gaussian random variabléhwiero expecta-

tion. This result is sharp. Indeed, Talagrand proved alsowaeil bound for this
expected value, and the quotient of his upper and lower basiidunded by a
universal constant. By applying similar arguments he aése@n upper bound for
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E sup E f(&k) in Proposition 2.7.2 of his book #1, ..., &N is a sequence of inde-
feZ k=1

pendent, identically distributed random variables witmsdnown distributionu,

and.Z is a class of functions with some nice properties. Then hegaran Chap-

ter 3 of this book some estimates with the help of this resadtcertain models

which solved some problems that could not be solved with i bf the original

version of the chaining argument.

Let me make a short comparison between our Theorem 4.1 aadraald’s re-
sult. Talagrand investigated in his book [58] the expectaldes of the supremum
of partial sums, while we gave an estimate on its tail distrdn. But this is not an
essential difference. Talagrand’s results also give amata on the tail distribution
of the supremum by means of concentration inequalities,aatdally his proofs
also provide a direct estimate for the tail distribution we mterested in without
the application of these results. The main difference betwhe two works is that
Talagrand’s method gives a sharp estimate for differemsisela of functions”.

Talagrand could prove sharp results in such cases whenadks of functions
% for which the supremum is taken consists of smooth functidmsexample for
such classes of functions which he thoroughly investigetétk class of Lipschitz 1
functions. In particular, in Chapter 3 of his book [58] hey®d that ifé;, ..., &, is a
sequence of independent random variables, uniformlyibligad in the unit square
D =1[0,1] x [0,1], and.Z is the class of Lipschitz 1 functions on the unit squire
such thatf, fdA =0 for all f € .#, whereA denotes the Lebesgue measureon
thenE sup E f(&) < Ly/nlogn with a universal constarit. He was interested in

feZ1=1
this result, because it is equivalent to a theorem of Ajtairlds—Tus@ady [2]. (See
Chapter 3 of [58] for details.) On the other hand, we can ghaes results in such
cases wher# consists of non-smooth functions, (see Example 5.5), aladjiend’s
method does not work in the study of such problems.

This difference in the conditions of the results in these bwoks is not a small
technical detail. Talagrand heavily exploited in his prtwit he worked with such
classes of functions# from which he could select a subclass of functionsobf
relatively small cardinality which is dense i# not only in theL,(u)-norm with
the probability measurg he was working with, but also in the supremum norm.
He needed this property, because this enabled him to ggi seimates on the tail
distribution of the differences of functions he had to worithwby means of Bern-
stein’s inequality. The smallness of the supremum norm @$¢hrandom variables
was useful, since itimplied that Bernstein’s inequalitg\pdes a sharp estimate in a
large domain. Talagrand needed such sharp estimates to(apefined version of)
the chaining argument. On the other hand, we considereddasbes of functions
Z which may have no small subclasses which are densg im the supremum
norm.

| would characterize the difference between the resulth@ftitvo works in the
following way. Talagrand proved the sharpest possibleregés which can be ob-
tained by a refinement of the chaining argument, while oumnpadblem was to
get sharp estimates also in such cases when the chaining@ngdoes not work.
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Let me remark that we could prove our results only for suchksga of functions?
which arelL,-dense. (See Theorem 4.1.) In the Gaussian counterpars oétult, in
Theorem 4.2, it was enough to impose tiatis anL,-dense class with respect to a
fixed probability measurg. We needed the extra condition abagtdense property
to prove sharp results about the tail distribution of suprenof partial sums when
the chaining argument does not work.

CHAPTER 8

The main results of this work are presented in Chapter 8. Grikemn is Theo-
rem 8.3 which is a multivariate version of Bernstein’s inalify (Theorem 3.1)
about degeneratd -statistics. A weaker version of this result was first proved
a paper of Arcones and Ginn [4]. In the present form it was proved in my pa-
per [39]. Its version about multiple integrals with resp@ca normalized empirical
measure formulated in Theorem 8.1 is proved in [35]. Thisepapntains a direct
proof. On the other hand, Theorem 8.1 can be derived from rEne8.3 by means
of Theorem 9.4 of this paper. Theorem 8.5 is the natural Gaus®unterpart of
Theorem 8.3. The limit theorem about degenetistatistics, Theorem 10.4 (and
its version about limit theorems for multiple integrals kviespect to normalized
empirical measures, presented in Theoren?'16f Appendix C was discussed in
this work to explain better the relation between degendyasgatistics (or multiple
integrals with respect to normalized empirical measurad) raultiple Wiener—ib
integrals. A proof of this result based on similar ideas as$ tliscussed here can be
found in [16]. Theorem 6.6 of my lecture note [32] containstsa weaker version
of Theorem 8.5 which does not take into account the variahtteedandom integral
we are considering.

Example 8.7 is a natural supplement of Theorem 8.5. It shbaisthe estimate
of Theorem 8.5 is sharp if only the variance of a Wiendrfitegral is known. At
the end of Chapter 13 | also mentioned the results of papé@nd [29] without
proof which also have some relation to this problem. | disedsmainly the con-
tent of [29], and explained its relation to some resultswlsed in this work. The
proof of these papers apply a method different of those mhrk. | make some
comments about them in the discussion of Chapter 13.

Theorems 8.2 and 8.4 which are the natural multivariate teoparts of Theo-
rem 4.1 and 4’ yield an estimate about the supremum of (degenetatstatistics
or of multiple random integrals with respect to a normalizzdpirical measure
when the class of kernel functions in thdgestatistics or random integrals satisfy
some conditions. They were proved in my paper [37]. Actuladignsider these the-
orems the hardest and most important results of this lectote. Earlier Arcones
and Gire proved a weaker version of this result in paper [5], butrtverk did not
help in the proof of the results of this note. The proofs offitesent note were based
on an adaptation of Alexander’'s method [3] to the multivi@rigase. Theorem 8.6 is
the natural Gaussian counterpart of Theorems 8.2 and 8.4.

Example 8.8 in Chapter 8 shows that the condition constnog® imposed in
Theorem 8.3 in the case= 2 cannot be dropped. The paper of Arcones an@@th
contains another example explained by Talagrand to theesitti that paper which
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also has a similar consequence. But that example does natipreuch an explicit
comparison of the upper and lower bound on the probabilitgstigated in Theo-
rem 8.3 as Example 8.8. Similar examples could be consttdioteall k > 1.

Example 8.8 shows that at high levels only a very weak (and fseactical point
of view not really important) improvement of the estimatmmthe tail distribution
of degeneraté) -statistics is possible. But probably there exists a mailtate ver-
sion of Bennett's inequality, i.e. of Theorem 3.2 which pd®s such an estimate.
Moreover, there is some hope to get a similar strengtheraad ¢ Theorems 8.2
and 8.4 (or of Theorem 4.2 in the one-dimensional case).duestion is not inves-
tigated in the present work.

CHAPTER 9

Chapter 9 deals with the propertieslfstatistics. Its first result, Theorem 9.1, is
a classical result. It is the so-called Hoeffding decomjimsiof U-statistics to the
sum of degenerate statistics. Its proof first appeared irpéper [24], but it can
be found at many places. The explanation of this work costagime ideas similar
to [54]. | tried to explain that Hoeffding’s decompositianthe natural multivariate
version of the (trivial) decomposition of sums of indepemd@ndom variables to
sums of independent random variablgth expectation zerplus the sum of the ex-
pectations of the original random variables. Moreoverétie proof of Hoeffding's
decomposition shows some similarity to this simple decasitjum.

Theorem 9.2 and Proposition 9.3 can be considered as a wgatitin of the in-
vestigation about the Hoeffding decomposition. They tellhow some properties
of the kernel function of the origindl -statistic are inherited in the properties of
the kernel functions of the degeneréatestatistics taking part in its Hoeffding de-
composition. In several applications of Hoeffding’s degasition we need such
results.

The last result of Chapter 9, Theorem 9.4, enables us to egtiecestimation of
multiple random integrals with respect to normalized efplrmeasures to the es-
timation of degeneratd -statistics. This result is a version of Hoeffding’s decamp
sition, where instead df -statistics multiple integrals with respect to a normalize
empirical distribution are decomposed to the surderfenerate Lstatistics. In these
two decompositions the same degeneltaistatistics appear. The main difference
between them is that in the decomposition of the random iiategn Theorem 9.4
the coefficients of the degenerddestatistics are relatively small. The appearance
of small coefficients in this decomposition is due to the eflation effect caused
by integration with respect to mormalizedempirical measure/n(u, — ). The-
orem 9.4 was proved in [37]. The proof in this note is esséwntdifferent of the
original proof in [37], and it is simpler.

SOME REMARKS RELATED TO CHAPTERS 10, 11 AND 12
Theorem 8.1 can be derived from Theorem 8.3 and Theoremd@2 Theorem 8.4
by means of Theorem 9.4. The proof of the latter results ipEmChapters 10-12

contain the results needed in the proof of Theorem 8.3 antd @aussian counter-
part Theorems 8.5 and 8.7. They are proved by means of gaataéss on the high
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moments of degenerakte-statistics and multiple Wiener8lintegrals. The classical
proof of the one-variate counterparts of these resultssedban a good estimate of
the moment generating function. This method had to be reglag the estimation

of high moments, because the moment generating functiorkegbll Wiener—I6
integral is divergent for all non-zero parameterk it 3, (this is a consequence of
Theorem 13.6), and this property of Wieneb-itegrals is also reflected in the be-
haviour of degeneratd-statistics. On the other hand, we can give good estimates
on the tail distribution of a random variable if we have gostimates on its high
moments. The results of Chapters 10, 11 and 12 enable usve gomd moment
estimates.

I know of two deep and interesting methods to study high masefimulti-
ple Wiener-Id integrals. The first of them is called Nelson’s inequaliyned after
Edward Nelson who published it in his paper [45]. This indiquaimply implies
Theorem 8.5 about multiple Wienerélintegrals, although with worse constants.
Later Leonhard Gross discovered a deep and useful gersiatizof this result
which he published in the workogarithmic Sobolev inequalitig21]. Gross con-
sidered in his paperstationaryMarkov proces(t), t > 0, and gave a good bound
on theL p-norm of functions of the form (f)(x) = E(f(X(t)|X(0) = x), where the
Lp-norm is taken with respect to the distribution of the rand@mableX(0). The
proof of thisL p-norm estimate is based on the study of the infinitesimalatpeof
the Markov process. Gross’ results provide Nelson’s inkyu# they are applied
for the Ornstein—Uhlenbeck process.

Gross’ investigation in [21] revealed very much about theaw&ur of Markov
processes. The book [46] is partly based on this method.sGapproach turned
out to be very fruitful in the study of several hard problerhthe probability theory
and statistical physics. (See e.g [22] or [30]). It also jmes a good estimate for
the high moments of Wiener-8lintegrals.

There is another useful method to study Wiendr-ftegrals due to Kyoshi t
and Roland L'vovich Dobrushin. This seemed to me more uséfwke want es-
timate the high moments not only of Wienei-integrals but also of degenerate
U-statistics. | applied this method in Chapters 10, 11 and 4Bowed how we can
get with its help results that enable us to prove good momstitnates both for
Wiener—I integrals and degenerdtestatistics. The main step in this approach is
the proof of a so-called diagram formula which makes poediblewrite a product
of Wiener—Ib integrals as a sum of Wienerélintegrals. Moreover, this result also
has a natural counterpart for the products of degenéregtatistics.

CHAPTER 10

In Chapter 10 | discuss a method related to Kyoshidhd Roland L'vovich Do-
brushin. This is the theory of multiple Wiener&lintegrals with respect to a white
noise. This integral was introduced in paper [26]. It is ukdbecause every ran-
dom variable which is measurable with respect to dhalgebra generated by the
Gaussian random variables of the underlying white noisehasdinite second mo-
ment can be written as the sum of Wieneb-ittegrals of different order. More-
over, if only Wiener—Id integrals of symmetric kernel functions are taken, then
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this representation is unique. Actually this result wagjioally proved by Nor-
bert Wiener [60]. This representation also appeared iniphysder the name Fock
space. It plays an important role in quantum physics. Let rigdly explain the rea-
son for the name white noise for the appropriate notion ¢thtoed in Chapter 10.

The notion of white noise was originally introduced at a litia level as the
derivative of the trajectories of a Wiener process. But aséhrajectories are non-
differentiable the introduction of this notion demands #dreexplanation. A natu-
ral way to overcome the difficulties is to consider the ddieaof a trajectory of a
Wiener process as a generalized random function, and tatsakéegral on all mea-
surable sets. In such a way we get a collection of Gaussiatonawvariable<s (A)
with expectation zero, indexed by the measurable Aefhese random variables
have correlation functio&é (A)& (B) = A (ANB), whereA (-) denotes the Lebesgue
measure. In such a way we get a correct definition of the whiteenwhich pre-
serves the heuristic content of the original approach. éndéfinition of general
white noise we allow to work with an arbitrary measyreand not only with the
Lebesgue measure If we have a white noise we would like to have a tool that en-
ables us to study not only the Gaussian random variablesuradds with respect to
the g-algebra generated by the random variables of the whiteermisall random
variables measurable with respect to thislgebra. The Wiener-8tintegrals were
defined with such a goal.

An important result of the theory of Wienerélintegrals, the so-called diagram
formula, formulated in Theorem 10.2, expresses produdigiener—Id integrals as
a sum of such integrals. This result which shows some siityiley the Feynman
diagrams applied in the statistical physics was proved 1. [Actually this paper
discussed a modified version of Wiened-ihtegrals which is more appropriate to
study the action of shift operators for non-linear functitsof a stationary Gaussian
field. But these modified Wiener8lintegrals can be investigated in almost the same
way as the original ones. The diagram formula has a simplsemprence formulated
in Corollary of Theorem 10.2 of this note. It enables us teelgte the expectation
of products of Wiener—{ integrals. It yields an explicit formula for them. This
result was applied in the proof of Theorem 8.5, i.e. in thémesion of the tail-
distribution of Wiener—ib integrals. 1®’s formula for multiple Wiener—£i integrals
(Theorem 10.3) was proved in [26].

Actually the above results about WienebHitegrals would have been sufficient
for our purposes. But | also presented some other resulthéosake of complete-
ness. In particular, | discussed some results about Hepaoly@momials. Wiener—&
integrals are closely related to Hermite polynomials ohtgirtmultivariate version,
to the so-called Wick polynomials. (See e.g. [32] or [42]toe definition of Wick
polynomials.) Appendix C contains the most important propse of Hermite poly-
nomials needed in the study of Wienet-Ihtegrals. In particular, it contains the
proof of Proposition C2 about the completeness of the Herpalynomials in the
Hilbert space of the functions square integrable with resfrethe standard Gaus-
sian distribution. This result can be found for instance iedrem 5.2.7 of [53]. In
the present proof | wanted to show that this result is closglted to the so-called
moment problem, i.e. to the question when a distributiorei®nined by its mo-
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ments uniquely. The method of proof described in this notdesapplied with some
refinement to prove some generalizations of PropositiontRtthe completeness
of orthogonal polynomials with respect to more general Wefgnctions.

On the other hand, | did not try to give a complete picture alwiener—Io
integrals. The reader interested in it may consult with thekbof S. Janson [27].
There are also other interesting and important topicsaeltt Wiener—ib integrals
not discussed in this work. In some investigations of prditabheory and statis-
tical physics it is useful to study not only moments but alsmalants (called also
semiinvariants in the literature) of Wiene@-integrals. It is also useful to study the
moments and cumulants of polynomials and Wick polynomi&{Sanssian random
vectors. The book of Malyshev V. A. and Minlos R.A. [42] canamany interest-
ing results about this subject.

Another interesting and popular subject not discussedsmibrk is the problem
of limit theorems for Wiener—&tintegrals. In particular, one is interested in the ques-
tion when a sequence of such random integrals satisfies tiieacbmit theorem.
The study of such problems heavily exploits the diagram tdagor more precisely
its consequence about the calculation of moments and cuatsula some works,
see e.g. [46] or [48] this subject is worked out in detail. Bwrer, a popular subject
of recent research is the study of the speed of convergertbe irentral limit theo-
rem. In such investigations the so-called Stein methocetliout to be very useful.
In its application the integral of sufficiently smooth teshétions with respect to
the distribution we are investigating are estimated togyetith the integral of their
derivative (with respect to the same distribution). In a samat surprising way it
turned out that if we are studying the central limit theoremWiener—I6 integrals
with the help of the Stein method, then the role of the deieadf a function is
taken by the so-called Malliavin derivative. (See [46].)t8e theory of Malliavin
calculus, see [47], became very important in such reseBrdtthis problem is a bit
far from the main subject of this work, hence | do not go inte details.

CHAPTERS 11 AND 12

The diagram formula has a natural and useful analogue botddgenerate) -
statistics and multiple integrals with respect to a normeali empirical measure.
They enable us to rewrite the product of degenethgatistics and multiple inte-
grals as the sum of such expressions. Actually the proofesfehesults is simpler
than the proof of the original diagram formula for Wiened-titegrals. They make
possible to adapt several useful methods of the study oflinear functionals of
Gaussian random fields to the study of non-linear funct®ofhormalized empiri-
cal measures. But to apply them we also need some good estiméte»-norm of
the kernel functions of the random integraldistatistics appearing in the diagram
formula. Hence we also proved such results.

A version of the diagram formula was proved for degenddatatistics in [39]
and for multiple random integrals with respect to a nornealiempirical measures
in [35]. Let me remark that in the formulation of the resultie work [39] a differ-
ent notation was applied than in the present note. In thagrdaganted to formulate
such a version of the diagram formula fdrstatistics where we work with diagrams
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similar to those introduced in the study of Wiened+titegrals. | could do this only
in a somewhat artificial way. In this work | formulated the gliam formula forJ-
statistics with the help of diagrams of a more general formtrbduced the notion
of chains and coloured chains, and defined (coloured) diagveith their help. The
formulation of the results with the help of such more gendiagrams seems to
be more natural. | met some works where similar diagrams \wéreduced, see
e.g. [48], but | did not meet works where also the coloureddims introduced in
this work were applied. It is possible that this happenedsoause | do not know
the literature well enough, but this also may have a diffecanse.

In the work [48] the diagram formula was applied for the chidtion of mo-
ments and cumulants, and if we are working only with thempttiee results of
this work can also be formulated with the help of so-calle$et diagrams, and no
coloured diagrams are needed. They are needed if we wanptessxthe product
of U-statistics as a sum dJ-statistics. It may also be interesting that the results
considered in [48] are based on some combinatorial arguewesrked out in [50].

There are some works like [48], where diagram formulas ansidered for other
models too, e.g. in models where we integrate with respezihimrmalized Poisson
process. Nevertheless, in my opinion the results aboutitigraim formula for the
products of Wiener—{t integrals and in particular their modified versions for the
products of integrals with respect to normalized Poissocgsses, normalized em-
pirical distribution or for the product dfl -statistics did not get such an attention
in the literature as they would deserve. An interesting papthis direction is that
of Surgalilis [51], where a version of the diagram formularieved for Poissonian
integrals. It may be worth mentioning that the diagram fdariar Poisson integrals
shows a very strong similarity to the diagram formula for pineduct of integrals
with respect to normalized empirical distributions. (s with respect to normal-
ized empirical distribution were discussed only at an imfaklevel in this work.)

The Hermite polynomials and their multivariate versiohg, Wick polynomials
have their counterparts when instead of Wienéridtegrals we consider more gen-
eral classes of random integral€'stformula creates a relation between Wiendr—It
integrals and Hermite polynomials or their multivariatesiens, the Wick polyno-
mials. The relation between Wieneg-lintegrals and Hermite polynomials has a
natural counterpart in the study of other multiple randotegnals. In such a way a
new notion, the Appell polynomials appeared in the literat(See e.g. [52].)

CHAPTER 13

Theorems 8.3, 8.5 and 8.7 were proved on the basis of thegseguChapters 10—
12 in Chapter 13. These proofs are slight modifications o$e¢hgiven in [39]. An
earlier proof of a result similar to Theorem 8.3 based on fe@int method was
given by Arcones and Gain [4]. Theorem 8.3 is a slightly stronger estimate than
that of Arcones and G It provides at not too high levels an estimate with almost
as good constants in the exponent as the correspondingagstanout Wiener-t
integrals in Theorem 8.5. Chapter 13 also contains the mf@multivariate version

of Hoeffding’s inequality formulated in Theorem 13.3. Thésult is needed in the
symmetrization argument applied in the proof of Theorem 8 weaker version of
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it (an estimate with a worse constant in the exponent) whighlgvbe satisfactory
for our purposes simply follows from a classical resultJeBorell's inequality,
which was proved in [8]. But since the methods needed to ptlugaesult are not
discussed in this note, and | was interested in a proof whigldy an estimate with
the best possible constant in the exponent | chose anotbef, given in [38]. It
is based on the results of Chapter 10-12. Later | have ledahadhis estimate is
contained in an implicit form also in the paper [7] of Aline Bami.

In Part B of Chapter 13 | discussed some results related tprifldems consid-
ered in this work. | would like to make some comments aboutekalt of R. Latata
presented in Theorem 13.7. The estimates of this resulindepe such quantities
which are hard to calculate. Hence they have a limited ingnae in the problems
I had in mind when working on this lecture note. On the othardhauch results
and the methods behind them may be interesting in the studgroé problems of
statistical physics, e.g. in the problems discussed in [5¥duld like to remark that
Latata’s proof works only for decoupled and not for usuabtatistics. Formally,
this is not a restriction, because the results of de l@aRed Montgomery—Smith
(see [10]) enable us to extend their validity also for uslratatistics. Nevertheless,
the lack of a direct proof of this estimate fdrstatistics disturbs me a bit, because
this means for me that we do not really understand this relshive some ideas
how to get the desired proof, but it demands some time andygtemwork out the
details.

CHAPTER 14

Chapters 14-17 are devoted to the proof of Theorems 8.4 &ndiBey are based
on a similar argument as their one-variate counterpartsoiéms 4.1 and 4.2. The
proof of Theorem 8.6 about the supremum of Wienér+itegrals is based, simi-
larly to the proof of Theorem 4.2, on the chaining argumemthle proof of The-
orem 8.4 the chaining argument yields only a weaker resuthditated in Propo-
sition 14.1 which helps to reduce Theorem 8.4 to the proofrop8sition 14.2. In
the one-variate case a similar approach was applied. Irctsat the proof of The-
orem 4.1 was reduced to that of Proposition 6.2 by means gfd3itoon 6.1. The
next step in the proof of Theorem 8.4 has no one-variate egpatt. The notion of
so-called decoupled -statistics was introduced, and Proposition 14.2 was redluc
to a similar result about decoupléedstatistics formulated in Proposition 24

The adjective ‘decoupled’ in the expression decouplestatistic refers to the
fact that it is such a version ofia-statistic where independent copies of a sequence
of independent and identically distributed random vagaldre put into different
coordinates of the kernel function. Their study is a popslasject of some math-
ematical schools. In particular, the main topic of the bo®ki§ a comparison of
the properties of) -statistics and decouplédi-statistics. A result of de la ha and
Montgomery—Smith [10] formulated in Theorem 14.3 helpssiducing some prob-
lems abouul -statistics to a similar problem about decoupléestatistics. In this
lecture note the proof of Theorem 14.3 is given in AppendiXtDollows the ar-
gument of the original proof, but several steps are workddrodetail where the
authors gave only a very short explanation. Paper [10] adstains some kind of
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converse results to Theorem 14.3, but as they are not needeéd present work, |
omitted their discussion.

DecoupledJ-statistics behave similarly to the origirldtstatistics. Beside this,
some symmetrization arguments become considerably siriipdee are working
with decoupledU -statistics instead of the original ones, because decduple
statistics have more independence property. This can beiggin some inves-
tigations. For example the proof of Proposition24s simpler than a direct proof
of Proposition 14.2. On the other hand, Theorem 14.3 enaBl&sreduce the proof
of Proposition 14.2 to that of Proposition .24 and we have exploited this possi-
bility. Let me finally remark that although our proofs could simplified with the
help of decoupled) -statistics, they could have been done also without it. Bigt t
would demand a much more complicated notation that woul@ naade the proof
much less transparent. Hence | have decided to introdu@aigksdU -statistics and
to work with them.

CHAPTERS 15, 16 AND 17

The proof of Theorem 8.4 was reduced to that of Propositio@’ 14 Chapter 14.
Chapters 15-17 deal with the proof of this result. The odgproof was given in
my paper [37]. It is similar to that of its one-variate versidroposition 6.2, but
some additional difficulties have to be overcome. The médiicdity appears when
we want to find the multivariate analogue of the symmetraratirgument which
could be carried out in the one-variate case by means of Lenindeand 7.2.

In the multivariate case Lemma 7.1 is not sufficient for ourppses. So we
work instead with a generalized version of this result, folated in Lemma 15.2.
The proof of Lemma 15.2 is not hard. It is a simple and naturadification of the
proof of Lemma 7.1. The real difficulty arises when we wantgplg it in the proof
of Proposition 1£'. When we applied the symmetrization argument Propositi#n 6.
in the proof of Lemma 7.1 we have worked with two independequences of ran-
dom variable<Z, andZ,. In the analogous symmetrization argument Lemma 15.2,
applied in the proof of Proposition 12, we had to work with two not necessarily in-
dependent sequences of random varialijgandZy,. This has the consequence that
it is much harder to check condition (15.3) needed in theiegipbn of Lemma 15.2
than the analogous condition (7.1) in Lemma 7.1. The hamteSiems in the proof
of Proposition 1£’ appear at this point.

Proposition 14" was proved by means of an inductive procedure formulated in
Proposition 15.3, which is the multivariate analogue ofg@sition 7.3. A basic in-
gredient of both proofs was a symmetrization argument. Buileithis symmetriza-
tion argument could be simply carried out in the one-var@se, its adaptation
to the multivariate case was a most serious problem. To owscthis difficulty
another inductive statement was formulated in Propositiod. Propositions 15.3
and 15.4 could be proved simultaneously by means of an apatefnductive pro-
cedure. Their proofs were based on a refinement of the argarnrethe proof of
Proposition 7.3. But some new difficulties arose. In the pafoProposition 7.3
we could simply apply Lemma 7.2, and it provided the necgssammetrization
argument. On the other hand, the verification of the cormedipg symmetrization
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argument in the proof of Propositions 15.3 and 15.4 was mactien. Actually this

was the subject of Chapter 16. After this we could prove Psitjpms 15.3 and 15.4
in Chapter 17 similarly to Proposition 7.3, although soméditamhal technical dif-

ficulties arose also at this point. Here we needed the mtiditeaversion of Hoeff-

ding’s inequality, formulated in Theorem 13.3 and some prtigs of the Hoeffding
decomposition ol -statistics proved in Chapter 9.






Appendix A
The proof of some results about
Vapnik—Cervonenkis classes

Proof of Theorem 5.1. (Sauer's lemmahis result has several different proofs.
Here | write down a relatively simple proof of P. Frankl anéach which appeared
in [17]. It is based on some linear algebraic arguments.

The following equivalent reformulation of Sauer’'s lemmal e proved. Let us
take a se6= §(n) consisting ofn elements and a clags of subsets of consist-
ing of m subsetsEy, ..., En C S Assume tham > mp + 1 with my = mp(n,k) =
() + () +---+ (") Then there exists a sEtC Sof cardinalityk which is shat-
tered by the class of se#s. Actually, it is enough to show that there exists alset
of cardinality greater than or equal kowhich is shattered by the class of séts
because if a set has this property, then all of its subsetsihakhis latter statement
will be proved.

To prove this statement let us first list the subs&is .., Xy, of the setS of
cardinality less than or equal to—- 1, and correspond to all seis € & the vector
&= (81,.--,8m) 1<i<m with elements

{1 ifngEi
€=

0 ifXZE 1<i<m,and 1< j<m.

Sincem > my, the vectorsy, ..., ey are linearly dependent. Because of the defi-

nition of the vectorg, 1 <i < m, this can be expressed in the following way: There
is a non-zero vectaf (Ez), ..., f(Em)) such that

Z f(E)=0 forall1<j<m. (A.1)
Ei: B2X;

LetF, F C S be aminimalset with the property

f(E) = a #0. A.2
Ei:ZQF (B)=a# (A-2)

Such a seF really exists, since every maximal element of the fanflly: 1 <i <
m, f(E;) # 0} satisfies relation (A.2). The requirement tikashould be a minimal

233
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set means that F is replaced by somid C F, H # F, at the left-hand side of (A.2),
then this expression equals zero. The inequakty> k holds because of relation
(A.1) and the definition of the sel§.

Introduce the quantities

Zr(H) = f(E)
E: EiZmF:H I
forallH CF.

ThenZg (F) = a, and for any set of the ford = F \ {x}, x € F,

ZF(H) :Ei: EiZﬁFzH f(Ei) :EiIZiQH f(Ei)_Ei:ZQFf(Ei) —0-a=-a

because of the minimality property of the et
Moreover, the identity

Zr(H) = (—=1)Pa forallH CF suchthatH|=|F|—p,0< p<|F|. (A.3)

holds. To show relation (A.3) observe that

P .
Ze(H) = f(E) = -1)! f(E A.4
#(t Ei: EiZﬂFZH (&) 1;)( : G: Hcecg|e\=|H|+j Ei:ZiQG &) A4

for all setsH C F with cardinality|H | = |F| — p. Identity (A.4) holds, since the term
| .
f(Ei) is counted at the right-hand side of (A.3) (—1)’ (:) =(1-1) =0timesif
j=0

EiNF = G with someH C G C F with |G| = |H| +1 elements, K | < p, while in
the casegjNF = H it is counted once. Relation (A.4) together with (A.2) and th
minimality property of the seff imply relation (A.3).

It follows from relation (A.3) and the definition of the fumah Zg (H) that for all
setsH C F there exists some s&f such thatH = E;NF, i.e. F is shattered by’.
Since|F| > k, this implies Theorem 5.1.

Proof of Theorem 5.3Let us fix an arbitrary seF = {xs,..., X1} of the set
X, and consider the set of vectat®(F) = {(9(x1),...,900%1)): 9 € %/ of the
k + 1-dimensional spac&+!. By the conditions of Theorem 5&(F) is an
at mostk-dimensional subspace &*1. Hence there exists a non-zero vector

k+1
a=(ay,...,a1) such thaty ajg(xj) = 0 for all g € %. We may assume that
=1
the setA=A(a) = {j: a; < 0,1 < j <k+ 1} is non-empty, by multiplying the
vectoraby —1 if it is necessary.
Thus the identity

Z\ajg(xj) = > (—aj)a(xj), for all g € % (A.5)
je je{1,...k+1H\A
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holds. PutB = {x;: j € A}. ThenB C F, andF \ B # {x: g(x) > 0} NF for all
g € %. Indeed, if there were somge % such thatr \ B = {x: g(x) > 0} NF,
then the left-hand side of the equation (A.5) would be d¥ripbsitive (asa; < 0,
g(xj) < 0if j € A, andA # 0) its right-hand side would be non-positive for this
g € %, and this is a contradiction.

The above proved property means thashatters no sét C X of cardinalityk+
1. Hence Theorem 5.1 implies th@tis a Vapnik-Cervonenkis class.






Appendix B

The proof of the diagram formula for
Wiener—Ito integrals

We start the proof of Theorem 10.2A (the diagram formula fer product of two
Wiener-Ib integrals) with the proof of inequality (10.13). To showatlthis relation
holds let us observe that the Cauchy inequality yields tileviing bound on the
functionF(f,g) defined in (10.11) (with the notation introduced there):

Fyz(f’g)(x(l,j)aX(Z,j’)v (1’ J) 6V1(V)7 (25 J/) EVZ(V))

< / F2(Xay(1.2)s - Xay(1k)) [ H(dx2 )
(2,))e{(2,1),....,(2) }\Va(y)

/92(X<2,1>,~--,X(2,|>) [ p(dxezj).  (B.1)
(2~j)€{(271)7"'7<2v|)}\VZ(V)

The expression at the right-hand side of inequality (B.1)his product of two
functions with different arguments. The first function hagumentsx; j) with
(1,)) € Va(y) and the second one, j, with (2, ") € Vz(y). By integrating both
sides of inequality (B.1) with respect to these argumentgetenequality (10.13).

Relation (10.14) will be proved first for the product of theaier—I6 integrals of
two elementary functions. Let us consider two (elementimgtionsf (xg, ..., %)
andg(xa,...,x) given in the following form: Let some disjoint sefy,...,Au,
H(As) < 00, 1 <s< M, be given together with some real numbetsy,...,s)
indexed with suchk-tuples (sq,...,s), 1 <sj <M, 1 < j <Kk, for which the
numberss,, ..., S in a k-tuple are all different. Puf (xa,...,x) = ¢(s1,...,%) if
(X1,...,X) € Ag; X --- x Ag With some vecto(sy, .. .,sc) with different coordinates,
and and leff (xg,...,x) = 0if (x1,...,Xx) is outside of these rectangles. Take simi-
larly some disjoint setBy, ..., By, H(Bt) < ©, 1<t < M’, and some real numbers
d(ts,...,t), indexed with such-tuples(ty, ....t;), 1<ty <M’, 1< j' <I, for which
the numberds,...,t in anl-tuple are different. Pug(xy,...,x) = d(ts,...,t) if
(X1,...,X) € By x --- x By with edges indexed with some of the above introduced
I-tuples, and leg(xa, . ..,x ) = 0 otherwise.

Let us take some small number- 0 and rewrite the above introduced functions
f(Xq,...,%) andg(xa,...,% ) with the help of this numbeg > 0 in the following

237
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M(e) M
way. Divide the setd\;,...,Ay to smaller setsAi,...,AgM(s), U A =UA,in
s=1 s=1
such a way that all seté{,...,A,‘fA(g) are disjoint, anqu(Af) < g, 1 <s< M(e).

M'() m’

Similarly, take setst,...,BfM,(E), U Bf = U B, in such a way that all sets
t=1 t=1

Bf.....Byy ) are disjoint, andu(Bf) < &, 1<t < M'(¢). Beside this, let us also

demand that two set& andBf, 1 < s< M(¢g), 1<t < M'(g), are either disjoint
or they agree. Such a partition exists because of the naniafaroperty of mea-
surep. The above defined functiorf§x, ..., X«) andg(xs,...,X ) can be rewritten
by means of these new seA§ andBf. Namely, letf(xq,...,x) = c®(s1,...,5)
on the rectanglesgl X -ee X Agk with 1 < 's; < M(¢), 1 < j <k, with different in-
dicessy, ..., S, wherecf(sy,...,) = ¢(p1, ..., px) With those indicesps, ..., pk)
for which A x--- x AL C Ap, x -+ x Ap,. The functionf disappears outside of
these rectangles. The functigix,...,x) can be written similarly in the form
g(xa,...,%) = d®(t1,...,t;) on the rectangleBf x --- x Bf with 1 <t <M’(¢),
1 < j’ <1, and different indicesty, .. .,t,. Beside this, the functiog disappears
outside of these rectangles.

The above representation of the functiohsand g through a parametes is
useful, since it enables us to give a good asymptotic fornioitathe product
KIZ, (f)1'Z,(g) which yields the diagram formula for the product of Wien&d-I
integrals of elementary functions with the help of a limitiproceduree — 0.

Fix a small numbee > 0, take the representation of the functidhandg with
its help, and write

KZ W (NZ(9) = > Zy(f.g.¢) (B.2)
yel k1)

with

zy(f,0.8) =3¢ (st,. 800 (t, . 1)
Hw(A) - tw (A Hw (B - pw (BY), (B.3)
wherel (k) denotes the class of diagrams introduced before the fotionlaf

Theorem 10.2A, ang¥ denotes summation fdt+ |-tuples(sy,...,Sct1, ..., )
such that I< sy <M(g), 1< j <k 1<ty <M'(e), 1< J <1, andA§ = Bf, if

((1,),(2,j") € E(y), i.e. if it is an edge ofy, and otherwise alll selzsgj and ij,

are disjoint. (This sum also depends @i In the case of an empty sufy(f,g,€)
equals zero.
We write the expressios,(f,g,¢) forall y e I (k1) in the form

z,(f.9.6) =2,V (f,9.6)+ 27 (f,0.8), yer(kl), (B.4)

with
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f ,0,& z C Sl7 .Sk (tl,...,t|)
uW<A§,.> N )
it (L))eva(y) i (2,))eValy)

u(Bf,) (B.5)

0 21)€{(21),,2D) Va(y)

and

fg, ZC St,.. S8 (b, .0 t)
wiA) T Hw(B)

in(@pevay) I (21)eva(y)

Hw (AS)

it (LDe{(LD), (L VA(Y)

w(B,)

i' 20)e{(22), 21\ eVa(y) :

- I_l “(Bf/) ’ (B-G)

i 200e{(21),...(21) }\Va(y) :

whereV (y) andVz(y) (introduced before formula (10.9) during the preparatmn t
the formulation of Theorem 10.2A) are the sets of verticethenfirst and second
row of the diagrany from which no edge starts.

| claim that there is some constabt> 0 not depending os such that

2
E(IM'Zu(F(f,9) -2 (f.g.8)) <Ce foralyer(kl)  (B.7)

with the Wiener—Id integral with the kernel functiofr,(f,g) defined in (10.9),
(10.10) and (10.11), and

E(Z(Z)(f g s))2<C£ forally e I (k,|
Yy ) Iy —= yE ( ) ) (BS)

Relations (B.2), (B.4), (B.7) and (B.8) imply relation (19) if f andg are ele-
mentary functions. Indeed, (B.4), (B.7) and (B.8) implyttha

l@o“ ' Zy 1 (Fy(f,9)) = Zy(f,g,€)||, » 0 forallye (k1)

and this relation together with (B.2) yield relation (10.¥4th the help of a limiting
procedures — 0.
To prove relation (B.7) let us introduce the function
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Fy (1.9 (Xwj) X2, (1 j) €Valy), (2.) e Va(y)
Fy(f,0)(X1 ) (L) eVay), (2,)) € Va(y)
if X(1,) EASJ,, for all (1,j) e Vi(y),
X2,j) € ij,, forall (2,j') € Va(y)), and
all setsAg, (1, ]) € Va(y), andij,, (2,") € Va(y) are different.

with the functionF,(f,g) defined in (10.10) and (10.11), and put
F;(f>g)(x(l,j)7x(2,j’)7 (1a J) € Vl(y)7 (27 ]/) € VZ(V)) =0 otherwise.

The functionF/ (f,g) is elementary, and a comparison of its definition with re-
lation (B.5) and the definition of the functid®(f,g) yields that

V) (£.9,8) = IV1Zy i (FE(F,0)). (B.9)

The functionF7 (f, g) slightly differs fromF,(f,g), since the functiofr,(f,g) may
not disappear in such pointg j), X2 i, (1,]) € Vi(y), (2,]) € Va(y)) for which
there is some paij, j’) with the propertyx, j, € Agj andx iy € ij, with some
setsAg and ij, such thatAg, = ij,, while F7(f,g) must be zero in such points.
On the other hand, in the casg = maxk,l) — min(k,1), i.e. if one of the sets
Va(y) orVa(y) is emptyFy(f,0) = F (f,0), 2, (,0,€) =112, 1y (Fy(f,9)), and
relation (B.7) clearly holds for such diagrams
In the casey| = max(k,l) —min(k,l) > O we prove a good estimate on the mea-

sure of the set wherg, # F; with respect to an appropriate power of the meagure

Relation (B.7) will be proved with the help of this estimateldormula (B.9).
M(e) M’(€)
Let us define the setd = U Af andB = U Bf. These seté\ andB do not

depend on the parameter Be5|de thisu (A) < o, and 1 (B) < co. Define for all
pairs(jo, jp) such tha(l, jo) € Va(y), (2, jg) € Vz(y) the set

D(jo,jo) ={(xa ) (1)) €Va(y), (2,)) € Va(y)):
X(1,jo) € As, x27j0 € Bf with some 1< s<M(¢g) and 1<t < M'(¢)
suchthahl =Bf, and xj) € Aforall (1,]) € a(y),
andx, j € Bforall (2,') € Va(y)}.
Introduce the notatior” = (x1,j),X2,j)), (1,]) € Va(y), (2,]") € Vz(y)), and con-

sider only such vectorg’ whose coordinates satisfy the conditions;) € Afor all
(1,)) € Va(y) andxy 1y € Bforall (2, ') € Va(y). Put

Dy = {x": Fy(f,g)(x") # Ry (f,g)(xX")}.
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The relationD,, C U U D(jo, Jp) holds, since ifF; (f,9)(x") # Fy(f,g)(x")
j=1j'=

for some vectox?, then it has some coordinaték jo) € Vi(y) and(2, jg) € Va(y)
such thaxy j,) € AS andxy j;) € Bf with some set#\{ = Bf, and the relation in

the last line of the definition dD( o, j;) must also hold for such a vectg¥, since
otherwiseF,(f,g)(xy) =0= Fyf(f,g)(xy).
| claim that there is some constalit such that

pEM0(D(jo, jo)) < Care  for all setsD(jo, jo),

wherepuMWI+N2()l denotes the direct product of the measuren some copies of

the original spacéX, 2") indexed by(1, j) € Vi(y) and(2, j’) € Va(y). To see this

relation one has to observe thay (A u(Bf) < 5 epu(AS) = eu(A). Thus the
A5=Bf

setD(jo, jp) can be covered by the direct product of a set whoseeasure is not
greater tharg i (A) and of a rectangle whose edges are either thé sethe seB.
The above relations imply that

u\Vl(V)Hle(V)\(DV) < Cye (B.10)

with some constar®, > 0.

Relation (B.9), estimate (B.10), the property c) formutkite Theorem 10.1 for
Wiener—Ib integrals and the observation that the functigqf,g) is bounded in
supremum norm if andg are elementary functions imply the inequality

2
E (M2 (Fy(F,9) -2 (F.0.6))
2
= [V2E (Zyuy (Ry(f,0) —FE(£.9)))° < IVIUIFy(f,9) — FE(f,0)[13
< KulVl(V)\HVz(V)I(Dy) <Cs.

Hence relation (B.7) holds.
2
To prove relation (B.8) we rewrite (Zi,z)(f,g, s)) in the following form:

( (f,g,¢ ) ZZC Sty S8 (b, .. t)CE (S, )

df (tl,...,t|)EU(S;|_,...,SK,tj_,...,thS_l,...,SK,tl,...,tT)
(B.11)

with
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U(Sl7'”7Sk7tl7'~°7t|7s_17"°7Sk7t_lv'”7t|)
= M oA [ ew(E)

it (Lpeva(y) it (2,))€Valy)
S0 w1 mw(B)
it (L1)eva(y) 't (2,))eValy)

[ 1,y ) N )
i (17]')6{(1%1 7"‘)(1vk)}\vl<y) i (2,]’)6{(2,1),...7(2,|)}\EVZ(Y)
- M ues, )|

i @1el2Y) 2D \Valy)

[ o was) o (BE,)
Jr (L)ef(1,2),. (LK) F\Va(y) ' (2,))e{(2,1),.,(2)) }\eVa(y)

- ). (8.12)

7 @De@D 2 \Valy)

The double suny¥sY in (B.11) has to be understood in the following way. The
first summation is taken for vectors,...,St1,...,t), and 3¥ is defined in
the same way as in formula (B.3). The second summation istéievectors
(St,.--,St1,...,11), and again the summatiop¥ is taken as in (B.3), only here
Sj plays the role 0§; andt_j/ plays the role of;.

Relation (B.8) will be proved by means of some estimates ath@uexpectation
of the above defined random variaklé-) which will be presented in the following
Lemma B. To formulate this result | introduce the followingPerties A and B.

Property A. A sequencess...,Sqt1,...,t,51,...,5t,...,t, with elementsl <
sj,S;< M(e), for 1< j,j <k, andl < tj,t_j—, <M'(g) for L < j',j’ <1, satisfies
Property A (depending on a fixed diagramand numbei > 0) if the sequence of
sets @J., (1,]) € Va(y), ij,, (2,j') € Vo(y), and the sequence of setgjﬁ(l, i) e

Vi(y), B, (2,)) € Va(y), agree. (Here we say that two sequences agree if they
J
contain the same elements in a possibly different order.)

Property B. A sequencess...,St1,...,t1,S1,...,St1,.... 1, with elementsl <
Sj,§;< M(¢), for 1 < j,j <k, and1 <tjty <M'(¢g) for 1 < j,j' <1, satisfies
Property B (depending on a fixed diagrgnand numbe > 0) if the sequences of
sets

Ay (L) {1, (LI\VA(Y), B, (21)€{(21),....(21N}\Va(y),

and

A5 (L1) €{(LD),...(LKI\Va(Y), BE, (2]) €{(2D),.-, (2D} \Va(y),

have at least one common element.
(In the above definitions two sef§ andBf are identified ifA = BE.)
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Now | formulate the following

Lemma B. Let us consider the function(J) introduced in formula (B.12). Assume
that its argumentsss...,Sqt1,....t,51,...,5t1,...,f are chosen in such a way
that the function U-) with these arguments appears in the double stfy in
formula (B.11), i.e. é} = ij, if ((1,]),(2,]')) € E(y), otherwise all sets?gand E{j/
are disjoint, and an analogous statement holds if the coatdis g, . .., S, t1, .. ..t
are replaced by, ..., S andty, ..., 1.

If the sequence of the arguments if-Ydoes not satisfies either Property A or
Property B, then

EU(SL,...,SotL .ot 50, -, S b1, ..o 1) = O, (B.13)

If the sequence of the arguments it Usatisfies both Property A and Property B,
then

EUGSL - Sotteo b8 Sl 1) < Ce [ (ASH(BE)  (B.14)

with some appropriate constant-€C(k,|) > 0 depending only on the number of
variables k and | of the functions f and g. The prime in the priqf]’ at the right-
hand side of (B.14) means that in this product the meaguoéthose sets%&and

Bf—j7 are considered, whose indices are listed among the argussgot t_p of U(+),
and the measurg of each such set appears exactly once. (This means th?jtzﬁ A
BE then one of the terms betweﬂloAg—j,) and u(Bf—j,/) is omitted from the product.
For the sake of definitiveness let us preserve thquségj_,) in such a case.)

Remark.The content of Lemma B is that most terms in the double sum iin fo
mula (B.11) equal zero, and even the non-zero terms are.small

The proof of Lemma B.et us prove first relation (B.13) in the case when Prop-
erty A does not hold. It will be exploited that for disjointtsehe random variables
uw(As) and tw (Bt) are independent, and this provides a good factorizatiohef t
expectation of certain products.

Let us carry out the multiplications in the expresdibfi) defined (B.12). We get
a sum consisting of 4 terms. We show that each of them has zgea&tion. Indeed,
if a sequencss,...,Sot1,...,t,51,...,511,. ...t does not satisfy Property A, but it
satisfies the remaining conditions of Lemma B, then eachitethe sum expressing
U (---) with these arguments is a product which contains a fmeAgjo), (1,]o) €
Vi (y) with the following property. It is independent of all thoserhs in this product
which are in the following Iist',uW(Agj) with somej # jo, 1< j <Kk, or HW(ij,)-
1<j<lor uW(Ag—j_) with (1, ) € Va(y), oruW(Bf—j7) with (2, ") € Va(y). We will
show with the help of this property that the expectation eftdrms we consider can
be written in the form of a product either with a factor of tloerh EuW(AgjO) =0

or with a factor of the fornEuW(A§j0)3 = 0. Hence this expectation equals zero.
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Indeed, although the above properties do not exclude ttstegde of a seﬁxfj,,,

(L) € {(1,2),...,(1,k) \Va(y) or B, (2, i€{(21),...,(21)}\Vo(y) such that
uW(Afj_,) or Mw(ij—,), is not independent qﬂW(Agjo), but this can only happen if
Afj,: pr = A5, - This implies that in such a case when our term does not goatai

factor of the forrrEuW(Agjo), then it contains a factor of the forEwW(AgjO)3 =0.

HenceEU(-) = 0 if the arguments df () do not satisfy Property A.

To finish the proof of relation (B.13) it is enough considee tbase when
the arguments ol (-) satisfy Property A, but they do not satisfy Property B.
The validity of Property A implies that the sef{, j € Va(y)} U{Bf,. |’ €

Va(y)} and{Agw jeVi(y)}U{BE,, |’ € Va(y)} agree. The conditions of Lemma B
J
also imply that the elements of these sets are disjoint ofsé’teAgj, B{j/, Ag—j,

andBf, with indices(1,j),(1,j) € {(1,1),...,(Lk)} \Va(y) and (2,}'),(2,}') €
]
{(2,2),...,(2,1)} \ Va(y). If Property B does not hold, then we can divide the lat-

ter class of sets into two disjoint subclasses in an apptgrvay. The first sub-
class consists of the sef§, and ij/, and the second one of the sé@j and B,
J

with indices such thatl, j), (1, ) € {(1,1),...,(1,k) } \Va(y) and(2,}'),(2,}") €
{(2,2),...,(2,1)}\ Vo(y). These facts imply thaEU(-) has a factorization, which
contains the term

E M Hw (AS) M Hw (B, )

10 (LDE{(LD), (LK HVA(Y) 17 (21)e{(22),,(2D}\eVa(y) :

- |—| IJ(B;/) :07
' (210e{(21),...2H A\Va(y)

hence relation (B.13) holds also in this case. The last ega has zero expec-
tation, since if we take such pailgj,Bf/_ for the sets appearing in it for which
]

that((1,]),(2,j")) € E(y), i.e. these vertices are connected with an edge tfen
Agj = Bf in a pair, and elements in different pairs are disjoint. Tdiiservation al-

lows a f;actorization in the product whose expectation istaknd then the identity
EuW(Agj)uW(ij,) = u(Agj) implies the desired identity.

To prove relation (B.14) if the arguments of the functidt) satisfy both Prop-
erties A and B consider the expression (B.12) which defihgy carry out the term
by term multiplication between the two differences at thd efthis formula, take
expectation for each term of the sum obtained in such a wayfauidrize them.
SinceEpw (A)? = u(A), Epw(A)* = 3u(A)? for all setsA € 27, u(A) < «, some
calculation shows that each term can be expressed as cttirsiesa product whose
elements are those probabilitiﬁ$A§j_) andu(ij,/) or their square which appear at

the right-hand side of (B.14). Moreover, since the argusment (-) satisfy Prop-
erty B, there will be at least one term of the fopdAZ)? in this product. Since
U(AE)? < eu(AY), these calculations provide formula (B.14). Lemma B is prbv
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Relation (B.11) implies that

( f97 ) <KZ ZV|EU .,S(,t]_,...,t|,S_]_7...,S_k7t_17...,ﬂ)| (815)

with some appropriat& > 0. By Lemma B it is enough to sum up only for such
termsU (+) in (B.15) whose arguments satisfy both Properties A and Brelder,
each such term can be bounded by means of inequality (B.&4ud write up the

2
upper bound we get da (Zy (f,0, )) in such a way. We get a sum consisting of

terms of the formu(Ag ) --- (A5 U(BE) - (Be) multiplied by constant times.
The setA{ andBf whose measurg appears in such a term are disjoint. Beside this
1<p<kand1<qg<l.

In the above indicated estimation Ef(Z&z)(f,g, €) ? with the help of for-
mula (B.15) and Lemma B we have exploited the following fécterm

H(AS) -+ H(A)H(BE) -+~ H(BE)

with prescribed indices;, ..., sp andty, ..., t; came up in the sum at the right-hand
of our bound as a contribution of only finitely many expressifeU(---)|. Hence
we get this term in the upper bound with a multiplying coeéficibounded by con-

stant timese.
M(g) M’ ()
We also havey p(Af)+ S u(Bf)=u(A)+ u(B) < . The above relations
s=1 t=1

imply that

2
E(Z7(fge) <Ce T 5 Y u(AL)-u(AL)H(BE) - H(BE)
1<p<kl<sg <M 1<t <M’
1<g<l 1<I<p 1<I<q

(k+1) )
<G ¥ (H(A)+u(B) <Ce.
=1

Hence relation (B.8) holds.

To prove Theorem 10.2A in the general case take for all pdifaretions f
7t x andg € 77, | two sequences of elementary functidas 77, « andg, € 77,1,
n=12,...,such thaf|f, — f||2 — 0 and||/gn — g||2 — 0 asnh — co. It is enough to
show that

and

IVI'E |Zu,\y\(FV(fag)) - Zu,\y\(FV( fn7gn))| —0asn— o
forallye I (kl), (B.17)
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since then a simple limiting procedune— «, and the already proved part of the
theorem for Wiener—{t integrals of elementary functions imply Theorem 10.2A.
To prove relation (B.16) write with the help of Property c)liheorem (10.1)

EIKIZ, k()12 (9) — K Zy e (Fa)11 2,1 (gn) |
<K (E[Zyuk(£)Zu1 (9= 9n)| + E|Zu i (f = fr)Zui (9n)) |

l 1/2
<Kt ((EZ2 E22|(9—gn)) /

1/2 1/2
+ (B2t 1) " (EZu(an) ")
< (Y2 (| 2llg - G2+ 1 ~ allolnl).

Relation (B.16) follows from this inequality with a limitgnproceduren — co.
To prove relation (B.17) write

|V|!E|Zu,\y\(Fv(fvg))_Zu,\y\(Fv(fn,gn))’
<IyI'E |Zu,|y\(Fy(f»9*gn))| +|yI'E |Zu,\y\(Fv(f - fn,gn))|
< Iy (EZ2 (Ryfa—an)” + vl (EZ2 (Rt — fngn)
< (Y2 (IFy(f.g—an)ll2+ IRy (f = fn,an)ll2) ,

and observe that by relation (10.18,(f,g— gn)|l2 < || f||2//g— gnl|2, and
[IFy(f = fn,Gn)l[2 < | — fal[2]lgnl[2. Hence

IVI'E |Zu,\y|(|:y(fvg>) - Zu,\yI(Fy< men))‘
< (VIDY2 (1129 gnll2+ 1T = fall2llgnll2) -

The last inequality implies relation (B.17) with a limitilyoceduren — . Theo-
rem 10.2A is proved.



Appendix C

The proof of some results about Wiener—Id
integrals

First | prove 16’s formula about multiple Wiener-étintegrals (Theorem 10.3). The
proof is based on the diagram formula for Wiened—thitegrals and a recursive
formula about Hermite polynomials proved in Propositionit€Proposition C2 |
present the proof of another important property of Hermdlyipomials. This result
states that the class of all Hermite polynomialsé®mpleteorthogonal system in an
appropriate Hilbert space. It is needed in the proof of Teept0.5 which provides
an isomorphism between a Fock space and the Hilbert spaesaged by Wiener—
Itd integrals with respect to a white noise with an appropriefierence measure. At
the end of Appendix C the proof of Theorem 10.4, a limit theoebout degenerate
U-statistics is given together with a version of this resblbat the limit behaviour
of multiple integrals with respect to a normalized empiriatribution.

Proposition C about some properties of Hermite polynomialsThe functions
kx2/2 d~ —x2/2
Hk(x) = (—1)%e* d—xke , k=0,1,2,... (C.1)

are the Hermite polynomials with leading coefficient 1,Hg(X) is a polynomial of
order k with leading coefficient 1 such that

© 1 2
H(XOH| (X) ——e X /2dx=0 ifk #£]I. c.2
== . (©2)
Beside this,
© 1 2

H2(X) ——=e */2dx=k! forallk=0,1,2.... c.3
| HE0——= (C.3)

The recursive relation
Hi(%) = XH-1(x) — (k= 1)Hc—2(x) (C9)

holds forallk=1,2,....

247
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Remarklt is more convenient to consider relation (C.4) valid alsthie casé = 1.
In this caseHi(x) = x, Ho(x) = 1, and relation holds with an arbitrary function
Hfl(X).

Proof of Proposition Clt is clear from formula (C.1) that(x) is a polynomial of
orderk with leading coefficient 1. Take> k, and write by means of integration by
parts

o o
[ Hi(X)Hi (x \/i—n’x/zdx /w\/%[Hk(x)(_l)lcidex/zdx

L d-t
/w\/TTdX ()(-1) lm

e ¥/2dx

Successive partial integration together with the idert?;kgy-lk(x) = k! yield that

/ 1)k d*
\/TT dx—x

The last relation supplies formulas (C.2) and (C.3).

To prove relation (C.4) observe thid(x) — xHk_1(X) is a polynomial of order
k—2. (The termxX*"1 is missing from this expression. Indeedk is an even number,
then the polynomiaHg(x) — xHx_1(x) is an even function, and it does not contain
the termx¥~1 with an odd exponerk— 1. Similar argument holds if the numblers
odd.) Beside this, it is orthogonal (with respect to the déaid normal distribution)
to all Hermite polynomialdd; (x) with 0 <| < k— 3. HenceHy(x) — xHk_1(X) =
CHy_2(x) with some constar® to be determined.

Multiply both sides of the last identity withl_»(x) and integrate them with
respect to the standard normal distribution. Apply the @gtinality of the polyno-
mialsHy(x) andHy_2(x), and observe that the identity

e ¥/2dx

/. Hk H| 2 7Xz/2d =k!

/ Hk_l(x)ka_z(x)\/%Te‘xz/zdx: / sz,l(x)%e‘xz/zdx: (k—1)!

holds. (In this calculation we have exploited thit 1 (x) is orthogonal tdH,_1(x) —
xHk_2(x), because the order of the latter polynomial is less tharl.) In such a
way we get the identity-(k— 1)! = C(k— 2)! for the constan€ in the last identity,
i.e.C=—(k—1), and this implies relation (C.4).

m
Proof of Itd’s formula for multiple Wiener-@tintegrals.LetK = 5 kp, the sum of
p=1
the order of the Hermite polynomials, denote the order oktiression in relation
(10.24). Formula (10.24) clearly holds for expressions rofeoK = 1. It will be
proved in the general case by means of induction with regpehbe ordeiK.

In the proof the functions$ (x1) = ¢1(x1) and
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g(X1, .-+, Xkp-1) I_ll o1(xj) - FL KIle dp(Xj),
p-1

will be introduced and the produdy, 1(f)(Km— 1)!Z k,—1(9) will be calculated
by means of the diagram formula. (The same notation is aquiiein Theorem

10.3. In particularK = Km, and in the cas&; = 1 the conventlon |‘| ¢1(XJ)

1 is applied.) In the application of the diagram formula dégs V\Jnth two rows
appear. The first row of these diagrams contains the véite and the second
row contains the vertice@,1),...,(2,Km—1). It is useful to divide the diagrams
to three disjoint classes. The first claggscontains only the diagramg without any
edges. The second claEgconsists of those diagrams which have an edge of the
form ((1,1), (2, )) with some 1< j < k; —1, and the third clas’ is the set of those
diagrams which have an edge of the fofth, 1), (2, j)) with somek; < j < Kyn—1.
Because of the orthogonality of the functiopsfor different indicess F, =0 and
Zy km—2(Fy) = 0 fory € . The clasd; containsk; — 1 diagrams. Let us consider
a diagramy from this class with an edgg1,1),(2, jo)), 1 < j < ki — 1. We have
K

m Kp—
for such a diagranf, = M o1(X2,5)) T T‘| ¢p(X2,j)), and by our
je{l...Ki—=1\{jo} =2]j=Kp-1 /
m
inductive hypothesi$km — 2)!Zy, k,,—2(Fy) = Hi,—2(1) [ Hk,(Np)- Finally

m Kp
Km!Zy ki (Fyo) = Kl Zy1 ki (Lll (szp_LH‘pp(Xi)))

for the diagramy € o without any edge.
Our inductive hypothesis also implies the following idénfior the expression
we wanted to calculate with the help of the diagram formula.

Z1()(Km— 1)1Zp k6, -1(9) = N1Hig_1(n1) FLHkpmp).
I

The above calculations together with the observafioh= ki — 1 yield the iden-
tity
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m Kp
Km!'Zy km i = Km! Zy ki (F
1K (Dl (j:;Jp_|1+1¢p(X])>> 11Km (Fyo)

=Zya(F)(Km—1)'Zy kn-1(9) — Z (Km—2)'Zy ken—2(Fy)
yel
= M1Hk-1(N1) [] Hi, (Np) — (ks — 1)Hi—2(N1) ['] Hk, (Mp)
1kllF|):Lkp 1 k21£Lkp
= [n1Hi,-1(n1) — (ks — 1)Hi, —2(n1)] |_|2Hkp('7p)- (C.5)
p=

On the other handyiHy, —1(N1) — (k1 — 1)Hi, —2(N1) = Hi, (n1) by formula (C.4).
These relations imply formula (10.24), i.e0’® formula.

| present the proof of another important property of the Hegpolynomials in
the following Proposition C2.

Proposition C2 on the completeness of the orthogonal systeafi Hermite poly-
nomials. The Hermite polynomials jix), k=0,1,2,..., defined in formula (C.5)
constitute a complete orthonormal system in thespace of the functions square
integrable with respect to the Gaussian meas%eTe‘Xz/ 2dx on the real line.

Proof of Proposition C2Let us consider the orthogonal complement of the sub-
space generated by the Hermite polynomials in the spaceecddgbare integrable
functions with respect to the meas 7Te‘xz/zd)c It is enough to prove that this
orthogonal completion contains only the identically zerodtion. Since the orthog-
onality of a function to all polynomials of the formf, k=0,1,2, ... is equivalent to
the orthogonality of this function to all Hermite polynonsiddy(x), k=0,1,2,...,
Proposition C2 can be reformulated in the following form:

If a functiong(x) on the real line is such that

wakg(x)% /24x—0 forallk=0,12,... (C.6)
and
| ¢ %e’xz/ “dx< e, C.7)

theng(x) = 0 for almost allx.
Given a functiong(x) on the real line whose absolute value is integrable with

respect to the Gaussian meas%%e*xz/ 2dx define the (finite) measung,,

vl = [ g(x)\/%Te‘ 22 g

on the measurable sets of the real line together with itsi€otransformig(t) =
[, €™ vg(dx). (This measureg and its Fourier transform can be defined for all
functionsg satisfying relation (C.7), because their absolute valuetégrable with
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respect to the Gaussian measure.) First | show that Prapo€i2 can be reduced to
the following statement: If a functiog satisfies both (C.6) and (C.7) thég(t) =
forall —oo <t < oo,

Indeed, if there were a functiamsatisfying (C.6) and (C.7) which is not iden-
tically zero, then the non-negative functiogs(x) = max(0,g(x)) andg~(x) =
—min(0,g(x)) would be different. Then also their Fourier transfoig (t) and
Vg~ (t) would be different, since a finite measure is uniquely deiieenh by its
Fourier transform. (This statement is equivalent to an irgyd result in proba-
bility theory, by which a probability measure on the reaklis determined by its
characteristic function.) But this would mean thgtt) = Vg (t) — Vg (t) # O for
somet. Hence Proposition C2 can be reduced to the above statement.

Since‘e‘tx —1—(itx) —--- — ('tx) ’ < ™Y ¢or all real numbers, x and integer

(k+l)
k=1,2,... we may write because of relation (C.6)

3ot = [ (10—~ ) g9 Lotz

V2
@tk 1 «p
< X X)|——=¢€ dx
< | e
forallk=1,2,... and real number if the functiong satisfies relation (C.6). If it

satisfies both relation (C.6) and (C.7), then from the lalsttien and the Schwarz
inequality

2kt1) oo
V(1) SconstL/ i L g2y

(k+1)1)2 V2mn
|t|2(k+1)

for all real numbet and integek= 1,2, .... Simple calculation shows that the right-
hand side of the last estimate tends to zerk-asc. This implies thaty(t) = 0 for
all't, and Proposition C2 holds.

| finish Appendix C with the proof of Theorem 10.4, a limit tmem about a
sequence of normalized degenerdtestatistics. It is based on an appropriate rep-
resentation of thé&J-statistics by means of multiple random integrals which esak
possible to carry out an appropriate limiting procedure.

Proof of Theorem 10.4or alln=1,2,..., the normalized degenerdtkestatistics
n%/2kil, (f) can be written in the form

/
rrk/Zk!ln,k(]C = nk/z/ f(X1,. ., X)) Un(dX) . .. Hn(dX) (C.8)

— 2 /f %) (Ha(da) = (X)) .. (kn(d) — p1(dxa)),
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wherepy, is the empirical distribution of the sequenge. . ., &, defined in (4.5), and
the prime in/’ denotes that the diagonals, i.e. the poiits (xg,...,X¢) such that

xj = X for some pairs of indices & j, ]’ <k, j # j', are omitted from the domain
of integration. The second identity in relation (C.8) carjustified by means of the
identity

[ 10050 bl ) — () . (i %) — ()~ Ini( 1)

_ s (—1)|V‘/lf(x1,...,xk)

ViVe{liok, V=1

dx; n(dxj)) =0. C.9
jl;l/“( Xj)je{lrl,k}\vu( Xj)) (C.9)

This identity holds for a functiorf canonical with respect to a non-atomic mea-
sure, because each term in the sum at the right-hand side of (GU®I® zero.
Indeed, the integral of a canonical functibrwith respect tqu(dx;) with some in-
dex j € V equals zero for all fixed values, ..., Xj_1,Xj+1,.-.,%. The non-atomic
property of the measurg was needed to guarantee that this integral equals zero
also in the case when the diagonals are omitted from the doofidimtegration.

We would like to derive Theorem 10.4 from relation (C.8) byams of an ap-
propriate limiting procedure which exploits the convercef the random fields
nY2(ua(A) — u(A), Ae 27, to a Gaussian field(A), Ac 2, asn — . But
some problems arise if we want to carry out such a prograngusecthe fields
nl/z(un — W) converge to a non white noise type Gaussian field. The limigetes
similar to a Wiener bridge on the real line. Hence a relatietwieen Wiener pro-
cesses and Wiener bridges suggests to write the followirgiareof formula (C.8).

Let us take a standard Gaussian random varigbliedependent of the random
sequencés, &2, . ... For a canonical functiof the following version of (C.8) holds.

N9 2KIn(f) = I (F) (C.10)

with

(D)= [ 10 %0 [Viln(dx) — () + ()]
co [VR(pn(dX%0) — p(dx)) +np(dx)] - (C.11)

This relation can be seen similarly to (C.8).

The random measured/?(u, — 1) + nu converge to a white noise with refer-
ence measurg. Hence Theorem 10.4 can be proved by means of formulas (C.10)
and (C.11) with the help of an appropriate limiting proceduvliore explicitly, |
claim that the following slightly more general result holdie expressiond, , (f)
introduced in (C.11) converge in distribution to the WieA#y integralklzy;k(f)
asn — oo for all functionsf square integrable with respect to the product measure
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uk. This result also holds for non-canonical functidnd his limit theorem together
with relation (C.10) imply Theorem 10.4.

The convergence of the random variab]§§( f) defined in (C.11) to the Wiener—
Itd integralk!Z, k() can be easily checked for elementary functidns .77, k. In-
deed, ifA;,...,Ay are disjoint sets withu(As) < o, then the multi-dimensional
central limit theorem implies that the random vectdrgn((un(As) — L(As)) +
nu(As), 1 <s< M} converge in distribution to the random vectdw (As), 1 <
s< M}, i.e. to asetof independent normal random varialeE{s =0, 1< s< M,
with varianceEZ2 = U(As) asn — . The definition of the elementary functions
given in (10.2) shows that this central limit theorem imgltee demanded conver-
gence of the sequendg, () tok!Z, k(f) for elementary functions.

To show the convergence of the sequedfg(f) to k!Z, «(f) in the general

case take for any functioh € 7], x a sequence of elementary functiofsc 77, «
such that||f — fn|l2 — 0 asN — . ThenE(Z, k() — Zuk(fn))? = E(Zux(f —
fn))? — 0 asN — o by Property c) in Theorem 10.1. Hence the already proved part
of the theorem implies that there exists some sequence @fvgoisitegers,N(n),
n=12,...,insuch away thall(n) — e, and the sequenck (fn()) converges to
K!Z,, k(f) in distribution ash — . Thus to complete the proof of Theorem 10.4 it is
enough to show tha (), (fam) — k()% = E(Fy(fnm — f))? — 0 asn — oo,

It is enough to show that

E(Jw(f)?<C||f|5 forall f e 7 (C.12)

with a constan€ = Cy depending only on the ord&rof the functionf and to apply
inequality (C.12) for the function$y, — f. Relation (C.12) is a relatively simple
consequence of Corollary 1 of Theorem 9.4.

Indeed,
hk(f) = (z n* MV (13 v (fv)
1,...,

with _
Mg eV) = [foa o) [T udx)
jefl,.. K\

and the random integrd «(-) defined in (4.8), hence

EGu(f)?<2¢ 5 (VIEn?MLEZ, (fv).  (C.13)

Inequality || fv ||2 < || f||2 holds for all sets/ C {1,...,k}, hence an application of
Corollary 1 of Theorem 9.4 to all random integrd}sy,(f) supplies (C.12).

The above proof also yields the following slight generdl@aof Theorem 10.4.
Let us consider a finite sequence of functidpg 7, j, 1 < j <k, canonical with
respect to a non-atomic probability measpurerhe vectorin‘i/zlm(f,—), 1<j<
k}, consisting of normalized degenerétestatistics defined with the help of a se-
quence of independept-distributed random variables converge to the random vec-
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tor {Z,,j(f),1 < j <k} in distribution asn — c. This result together with Theo-
rem 9.4 imply the following limit theorem about multiple @om integralsl, ().

Theorem 10.4 (Limit theorem about multiple random integrals with respect to

a normalized empirical measure).Let a sequence of independent and identically
distributed random variable&;, &», ... be given with some non-atomic distribution
1 on ameasurable spa¢X, .2") together with a function (fy, . . ., %) on the k-fold
product (XX, 27K of the spacéX, 2") such that

/f2(x1,...,xk)u(dx1)...u(dxk)<oo.

Let us consider for all r= 1,2, ... the random integrals,)(f) of order k defined
in formulas (4.5) and (4.8) with the help of the empiricaltdiition p, of the
sequencéy, ..., &, and the function f. These random integraigJf) converge in
distribution, as n— o, to the following sum Wf) of multiple Wiener-f integrals:

U(f) (Z C(k,\V)Zy v (fv)
Vc{l,.. k}
C(k,v .
- WY [, 5 € V) [ i),
\Vi |V|! i
c{1,...k} jev

where the functions\ix;, j € V), V C {1,...,k}, are those functions defined
in formula (9.3) which appear in the Hoeffding decompositif the function
f(xq,...,%), the constants (V) are the limits appearing in the limit relation
A[}‘n C(n,k,V) = C(k,V) satisfied by the coefficients(itk,V) in formula (9.15),
and Ly is a white noise with reference measyre

An essential step of the proof of Theorem 10.4 was the regudi the case of
general kernel functions to the case of elementary kermeltions. Let me make
some comments about it.

It would be simple to make such a reduction if we had a goodamation of a
canonical function with such elementary functions whioh also canonical. But it
is very hard to find such an approximation. To overcome tHfgdity we reduced
the proof of Theorem 10.4 to a modified version of this resuiere instead of a
limit theorem for degeneratd-statistics a limit theorem for the random variables

| «(f) introduced in formula (C.11) has to be proved. In the procfuath a version
we could apply the approximation of a general kernel fumctigth not necessar-
ily canonical elementary functions. Theorem 9.4 helpedousidrk with such an
approximation. Another natural way to overcome the aboffecdity is to apply a
Poissonian approximation of the normalized empirical measSuch an approach
was applied in [16] and in [34], where some generalizatidnheorem 10.4 were
proved.



Appendix D

The proof of Theorem 14.3 aboutJ -statistics
and decoupledU -statistics

The proof of Theorem 14.8 will be simpler to formulate and prove a general-
ized version of Theorem 14.3 where such generalizesiatistics are considered in
which different kernel functions may appear in each termhefgum. More explic-
itly, let £ = ¢(n,k) denote the set of all such sequentes(l4,...,lx) of integers of
lengthk for which 1<1j <n, 1< j <k. To define generalized-statistics let us fix a
set of functions{ fi, 1, (X1.....%), (I1,...,lk) € £} which map the spacg®, 27¥)

.....

yeens

for some indicesj # j’. (The last condition corresponds to that propertyUof
statistics that the diagonals are omitted from the summatiotheir definition.)
Let us denote this set of functions ly¢), and define, similarly to the-statistics
and decoupled) -statistics the generalizdd-statistics and generalized decoupled
U -statistics by the formulas

Ink(£(0) = o= S foa(Eed)  ©D

and

_ 1 K
(=g Y e (d8Y) 02
(with the same independent and identically distributedioamvariable<, andg‘l(j),
1<1<n, 1< j <Kk asinthe definition of the origindl -statistics and decoupled
U -statistics.)

The following generalization of relation (14.13) will beqwed.

P (IInk(F(0)11 > u) < ARP ([[Ink(f(£)]| > y(k)u) (D.3)

with some constant&(k) > 0 andy(k) > 0 depending only on the ordé&rof these
generalized) -statistics. The sigii- || in (D.3) denotes the norm in the Banach space
we are working in.

255
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We concentrate mainly on the proof of the generalizatior3Yaf relation
(14.13). Formula (14.14) is a relatively simple conseqeeofcit. Formula (D.3)
will be proved by means of an inductive procedure which warkly in this more
general setting. It will be derived from the following statent.

Let us take two independent copiél@, e Er(,l) andEl(z), R E,ﬁz) of our original
sequence of random variablés. . ., &y, and introduce for all set C {1, ... k} the
functionay (j), 1< j <k, defined asny (j) =1if j €V anday(j) =21if j¢ V.
Let us define with their help the following version of deccgll -statistics:

1
Inkv (F(0) =— > e (Elg.m/(l))"'"EIE(UV(I()))
k
forallvV c {1,...,k}. (D.4)

The following inequality will be proved: There are some danssCy > 0 and
Dk > 0 depending only on the ord&rof the generalizet) -statisticl, k(f (£)) such
that for all numbersi > 0

P(||In‘,k(f(£))|| > u) < z CkP(Dk||In7k1V(f(€))|| > u). (D.5)
Vc{l,.. kI I<|V|<k—1

Here|V| denotes the cardinality of the 3ét and the condition X V| <k—1in
the summation of formula (D.5) means that the 8tts 0 andV = {1,...,k} are
omitted from the summation, i.e. the terms where eithgfj) =1 oray (j) = 2 for
all 1 < j <k are not considered. Formula (D.3) can be derived from foan(DL5)
by means of an inductive argument. The hard part of the pnoldeto prove for-
mula (D.5). To do this first we prove the following simple lemm

Lemma D1. Let £ and n be two independent and identically distributed random
variables taking values in a separable Banach space B. Then

3P<f+l7| >§u) >P(|€| >u) forallu>D0.

Proof of Lemma D1. Lef, n and { be three independent, identically distributed
random variables taking values in B. Then

3P(|E+n>§u> :P<|£+n|>§u>+P<IE+Z>§u>
+2(1-(n+0)1> 2u)
>P(IE+n+&+{—n—|>2u)=P(|&] > u).

To prove formula (D.5) we introduce the random variable
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1
WO =g Y (& 8%)
1s--50k)s .

77777

= (z Inkv (f(£)). | (D.6)
T,

The random variablésg k(f(¢)), Inkoe(f(¢)) andl, 11,k (f(£)) are identically dis-
tributed, and the last two random variables are independfeeach other. Hence
Lemma D1 yields that

Plas( 1)1 > 1) <3 Il 1(0) + . (FE)] > 5u)

2
:3P< >3U>

< 3P(3- 2 Tk (F(0))] > u)

+ Z 3P(3- 2 Ml (FO)| >u).  (D.7)
V:vc{l,.. kT 1<V|<k-1

Tak((€)) — Z Inj v (F(€))
Vi ve{L. K 1<v|<k-1

To derive relation (D.5) from relation (D.7) we need a googempbound on the
probability P(3- 21| Tok((£))| > u). To get such an estimate we shall compare
the tail distribution of|| Ty« (f(¢))|| with that of ||l v (f(¢))|| for an arbitrary set

V C {1,...,k}. This will be done with the help of Lemmas D2 and D4 formulated
below.

In Lemma D2 such a random variabé kv (f(¢))]|| will be constructed whose
distribution agrees with that dfinkv (f(¢))||. The expressiomyky (f(¢)), whose
norm will be investigated will be defined in formulas (D.8)Y&D.9). It is a random
polynomial of some Rademacher functians.. ., &,. The coefficients of this poly-
nomial are random variables, independent of the Rademdghetionse;, ..., &,.
Beside this, the constant term of this polynomial eqliglg f (¢)). These properties
of the polynomialinky (f(¢)) together with Lemma D4 formulated below enable
us prove such an estimate on the distributiofj Bf(f (¢))| that together with for-
mula (D.7) imply relation (D.5). Let us formulate these leasn

Lemma D2.Let us consider a sequence of independent random variahles, €,
P(g =1) =P(g = —1) = 3, 1 < < n, which is also independent of the random

variablesfl(l), . .,E,ﬁl) and Ef), .. .,fn@ appearing in the definition of the modified
decoupled U-statistics, kv (f(¢)) given in formula (D.4). Let us define with their

help the sequences of random variabléé), ey nrﬁl) and nf), ey n,ﬁz) whose ele-
ments(n|(1>, n|<2)) = (r;l(l)(a), nl(z)(a)), 1 <1 <n, are defined by the formula

1 2 1+ . 1-8_.2 1-a_.0  1+8_¢
(f7|”(€|)7'7|”(81)>=< g Lofge Loagm 1t E|”),

i.e. let
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(nP(&),n? &) =(&",§?) ife=1,

and
(nM(&).n? @) =(&§?.8Y) ifg=-1, 1<i<n

Then the joint distribution of the pair of sequences of rarndmriablesfl(l), . E,ﬁ”
and 51(2)7...,5,22) agrees with that of the pair of sequencs;§1)7...,l‘/,(1l> and

nf% el r/,(12>, which is also independent of the sequesage. ., .
Let us fix some \& {1,...,k}, and introduce the random variable

1

iy (1(0) = 1 S fi (M@ (D)

where similarly to formula (D.4yy (j) =1if j €V, anday(j) =2if j ¢ V. Then
the identity

My (f(0)) (D.9)
1 1 K
- T @k a) - 1k f, (E|(1$1)""7EIE(SK>)
Y (lgyelk)s (S1,-%)
1(_1Ij gnl,(> i =S%. or ZJ()_Z,
j=1,..k

holds, wherec.), = 1andky), = —1if j €V, andk(}) = —Land k) = 1if j ¢V,
i.e. Ki’\), =3—2av(]) anng\), = —KW

Before the formulation of Lemma D4 another Lemma D3 will begamted
which will be applied in its proof.

Lemma D3.Let Z be a random variable taking values in a separable Barspeite
B with expectation zero, i.e. letdfZ) = O for all k € B/, where B denotes the
(Banach) space of all (bounded) linear transformations dbBhe real line. Then

2
P(Iv-+2|| > |v[) > inf % for all v € B.
Lemma D4. Let us consider a positive integer n and a sequence of indigpen
random variablegs, ..., &, P(g =1) =P(g = -1) = % 1 <1 < n. Beside this, fix
some positive integer k, take a separable Banach space Bhanode some elements
as(l1,...,ls) of this Banach space B, <s<k,1<lj<n,lj#lyifj#),1<],j' <
s. With the above notations the inequality

k
Pl v+ as(ly,...,ls)a, ---&4l| > |V | = e (D.10)
=1 (Ig,...,ls): 1<Ij<n, j=1,....5,

Ay A

holds for all ve B with some constani.c> 0 which depends only on the parameter
k. In particular, it does not depend on the norm in the seplr&anach space B.
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Proof of Lemma D2Let us consider the conditional joint distribution of the se
quences of random variableé”,...,n,(]l) and r]f),...,n,ﬁz) under the condition
that the random vectas, .. ., &, takes the value of some prescribéd series of
lengthn. Observe that this conditional distribution agrees withjtint distribution
of the sequenceél(l),...,fél) and 51(2>,...,5r§2) for all possible conditions. This

fact implies the statement about the joint distributionhe sequence(snl(l), r]l(z)),
1< | <nand their independence of the sequegge. ., &,.

To prove identity (D.9) let us fix a sé¥l C {1,...,n}, and consider the case
wheng =1ifl e Mandg = —1ifl ¢ M. PutBym(j,I) =11if j eV andl € M or
j ¢V andl ¢ M, and letBym(j,!) = 2 otherwise. Then we have for &lh, ..., lx),
1<1;<n,1<j <k and our fixed se¥

1
(1+Ké1_’{/£|1) (1+Kék)\/8|k)f|l ..... Ik <E| 9 7£|E<Sk))
(S1,08) !
sj=lorsj=2, j=1,...k
(1,17) (kl)
=21y, (E.M D gt k)) (D.11)

since the produgtl+ Kéi{,£|1) (14 Kéﬁ{,s|k) equals either zero ok2and it equals

2% for that sequencesy, .. ., s¢) for which Ks(jj")vaj =1forall 1< j <k, andtherela-

tion Ks(jj’)\/£|j =1lis equivalentt@ym(j,l;) =sj forall1 < j <k. (Inrelation (D.11)
itis sufficient to consider only such products for whigh# 1 if j # j’ because of
the properties of the functionfg, ., .)

Beside thiszlﬁ"’“"(l’j) = nla"(” forall 1<l <nand 1< j <k, and as a conse-
quence

(1,11) (k,I)
£|(EVM 1) .. 7E| B\/M k) ) fll,“.‘ (n|1 .. ~~7n|<kaV(k))> .

Summing up the identities (D.11) for all<4 I4,...,lx < n and applying the last
identity we get relation (D.9), since the identity obtaineduch a way holds for all
Mc{1,...,n}.

Proof of Lemma D3Let us first observe that i is a real valued random vari-
able with zero expectation, thét{& > 0) > (E‘E‘?% since(E|&|)? = 4(E(E1({& >

0}))? < 4P(& > 0)E&? by the Schwarz inequality, whel¢A) denotes the indicator
function of the sef. (In the above calculation and in the subsequent proofsliapp
the conventiorg = 1. We need this convention &2 = 0. In this case we have the
identitiesP(¢ = 0) = 1 andE|&| = 0, hence the above proved inequality holds in
this case, t00.)

Given somes € B, let us choose a linear operatosuch that| k|| = 1, andk (v) =
|Iv]]. Such an operator exists by the Banach—Hahn theorem. Gbtetf{ c: ||v+
Z(w)|| > |IVlI} D {w: kK(V+Z(w)) > k(v)} = {w: K(Z(w)) > 0}. Beside this,
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Ek(Z) = 0. Hence we can apply the above proved inequalityéfer k(Z), and it

yields thatP(||v+ Z|| > ||v||) > P(k(Z) > 0) > (ElE';(é))‘f. Lemma D3 is proved.

Proof of Lemma D4Take the class of random polynomials

|4 it £

whereg, 1 <| < n, are independent random variables wittg; = 1) = P(g =

-1) = % and the coefficientbs(l1,...,ls), 1 < s <k, are arbitrary real numbers.
The proof of Lemma D4 can be reduced to the statement that #xésts a constant
¢k > 0 depending only on the ordkrof these polynomials such that the inequality

(E|Y])? > 4cEY2. (D.12)

holds for all such polynomialg. Indeed, consider the polynomial

k
Z= Z z as(ly,....ls)&, - &,
1A if A

and observe thaEk(Z) = 0 for all linear functionalsk on the spacd3. Hence
Lemma D3 implies that the left-hand side expression in (Pid@ounded from be-

low by Kig; (ElE’j((é))‘%z. On the other hand, relation (D.12) implies tfgg\é’ ,;(é))‘%z >

Ck.
To prove relation (D.12) first we compare the momeB¥ and EY*. Let us
introduce the random variables

YS: bs(|l7...,|s)£|l"'£|s 1SSS k
(I1,-0): 1<hj<n, j=1,... 5,
|1 0f ]/
We shall show that the estimates of Chapter 13 imply that
EYZ < 2% (EY2) (D.13)

for these random variablés.
Relation (D.13) together with the uncorrelatedness of #mlom variable¥s,
1 <s<k, imply that
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k 4 K k
EY*=E Yol <k®Y EYA <K% Y (EY2)2
(;§> ;;s E;(s)
K 2
S k324k ZEYSZ — k324k(EY2)2
=

This estimate together with thedttler inequality withp = 3 andq = % yield that
EYZ = E|Y|%3. Y23 < (BYH3(E|Y()¥3 < k2% (EY2)Y3(E|Y|)?3,

i.e. EY2 < k32%(E|Y|)?, and relation (D.12) holds withag = k-32-%. Hence to
complete the proof of Lemma D4 it is enough to check relat®i8).

In the proof of relation (D.13) we may assume that the coeffitsbs(l4,...,ls)
of the random variabl¥; are symmetric functions of the argumenhts..,ls, since
a symmetrization of these coefficients does not change the w&Y. Put

BZ= b2(ly,...,ls), 1<s<k.
L if J#5

Then
EYZ=sIBZ,

and

4 4 (49 4

EY;<1-3.5-.-(4s—1)B; = 225(29)] Bs
by Lemmas 13.4 and 13.5 with the choide= 2 andk = s. Inequality (D.13) fol-
lows from the last two relations. Indeed, to prove formulal(®) by means of these
relations it is enough to check th ((2‘3!(5‘)2 < 2%, But it is easy to check this in-
equality with induction with respect ® (Actually there is a well-known inequality
in the literature, known under the name Borell's inequalithiich implies inequal-
ity (D.13) with a better coefficient at the right hand sidelutestimate.) We have
proved Lemma D4.

Let us turn back to the estimation of the probabiP8- 2<~1(| T, «(f)|| > u). Let
us introduce thes-algebra? = %(El(l),fl(z), 1 < < n) generated by the random

variablesE,<l),El<2>, 1<I < n,andfix some séf C {1,...,k}. | show with the help
of Lemma D4 and formula (D.9) that there exists some congjant O such that
the random variable§, x f (¢)) defined in formula (D.6) andhxy (f (¢)) defined in
formula (D.8) satisfy the inequality

P<||2kfn,kﬁv(f(€))||>|\Tn7k(f(€))|||9>zck with probability 1. (D.14)

In the proof of (D.14) we shall exploit that in formula (D.95f@k,\/(f(£)) is
represented by a polynomial of the Rademacher functgns. , &, whose constant
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term isT,k(f(¢)). The coefficients of this polynomial are functions of thedam

variablesfl(l) andfl(z), 1< 1 <n. The independence of these random variables from
&, 1 <1 <n, and the definition of ther-algebra# yield that

P (I12hsew (F(O) > [T F ()17 (D.15)

1 1 K
(fE 3 aediaardla

1<lj<nsj=1orsj=2,
j=1,...k,

whereP;, means that the values of the random variali|%1§, El(z), 1<1<n,are
fixed, (their value depend on the atom of elgebra# we are considering) and
the probability is taken with respect to the remaining randariabless, 1 <1 <n.
At the right-hand side of (D.15) the probability of such aretis considered that
the norm of a polynomial of ordek of the random variablesy, ..., &, is larger
than \lTn,k(f(f))(f|(J)7 1<1<n,j=1,2)|. Beside this, the constant term of this
polynomial equals'|'n7k(f(£))(5|<‘), 1<I<n, j=12). Hence this probability can
be bounded by means of Lemma D4, and this result yields oeléi.14).

The distributions of kv ((¢)) andinky (f(¢)) agree by the first statement of

Lemma D2 and a comparison of formulas (D.4) and (D.8). Heetation (D.14)
implies that

P (12 (10 2 3+20) =P (12T (1)) > 3-2740)
> P12k (O] = [Tasl )1, [Tl FED] > 3-2740)

-/ P (1124w (FO) | > [Tk (F(£)].7) dP
o oo s (O] > Tu10)]17)

> GP(3- 27 Y Tok(F(0))] = u).

The last inequality with the choice of any 8étc {1,...,k}, 1< V| <k-1, to-
gether with relation (D.7) imply formula (D.5).

We shall formulate an inductive hypothesis, and relatiotBJvill be proved
together with it by means of an induction procedure with egspo the ordek of
the U-statistic. In the proof of this inductive procedure we slagiply the already
proved relation (D.5). To formulate it some new quantitiél pe introduced.

Let 7 = # (k) denote the set of all partitions of the ddt ... k}. Let us fixk

independent copieél(j), . .,E,ﬁj), 1< j <Kk, of the sequence of random variables
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&1,...,&n. Given a partitionV = (U,...,Us) € # (k) let us introduce the function
sw(j), 1 < j <k, which tells for all arguments$ the index of that element of the
partitionW which contains the poirt, i.e. the value of the functiogy (j), 1< j <Kk,
in a pointj is defined by the relatiop€ Vg, (j). Let us introduce the expression

1
hkw(F(0) =15 > fy.a, (500, g0
forallW € 7 (k).

An expression of the form, . .w(f(¢)), W € #, will be called a decouplet)-
statistic with generalized decoupling. Given a partitibn= (Uy,...,Us) € # let
us call the numbes, i.e. the number of the elements of this partition the rantkbo
of the partitionW and of the decouplet)-statisticlnw(f(¢)) with generalized
decoupling.

Now | formulate the following hypothesis. For &> 2 and 2< j < k there exist
some constant€(k, j) > 0 andd(k, j) > 0 such that for alWW € #4 a decoupled
U-statisticly kw ( f (¢)) with generalized decoupling satisfies the inequality

P(lakw (F(0)[ > u) < Ck )P ([[Tnk(f ()] > 3(k, j)u)
forall 2 < j < kif the rank ofW equalsj. (D.16)

It will be proved by induction with respect tahat both relations (D.3) and (D.16)
hold forU-statistics of ordek. Let us observe that fdt= 2 relation (D.3) follows
from (D.5). Relation (D.16) also holds fér= 2, since in this case we have to con-
sider only the casg= k= 2. Relation (D.16) also holds in this case wif2,2) = 1
andd(2,2) = 1. Hence we can start our inductive proof witk- 3. First | prove re-
lation (D.16).

In relation (D.16) the tail-distribution of decouplétstatistics with generalized
decoupling is compared with that of the decoupledtatisticl, x( f (¢)) introduced
in (D.2). Given the ordek of theseJ -statistics it will be proved by means of a back-
ward induction with respect to the rarjlof the decoupledl -statisticsly w (f(£))
with generalized decoupling.

Relation (D.16) clearly holds foj = k with C(k,k) = 1 andd(k,k) = 1. If we
already know that these relations hold ugxte 1, then we prove first relation (D.16)
for generalized decoupling -statistics of ordek with respect to backward induc-
tion for the rank < j < k.

For this goal the following observation will be made. If trenk j of a parti-
tion W = (Uy,...,Uj) satisfies the relation 2 j < k— 1, then it contains an ele-
ment with cardinality strictly less thak and strictly greater than 1. For the sake
of simpler notation let us assume that the elemgnof this partition is such an
element, andl; = {t,...,k} with some 2<t < k— 1. The investigation of general
U-statistics of rankj, 2 < j < k—1, can be reduced to this case by a reindexa-
tion of the arguments in thd-statistics if it is necessary. Let us consider the parti-
tionW = (Uy,...,Uj_1,{t},...,{k}) and the decoupled-statisticl,, , w( f (£)) with
generalized decoupling corresponding to this partithnt will be shown that our
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inductive hypothesis implies the inequality

P(llnsew (D) > 1) < AMRP ([[1kw (F(£))]] > y(k)u) (D.17)

with A(k) = sup A(p), y(k) = inf y(p) if the rank j of W is such that
2<p<k-1 2=psk-1

2 < j < k-1, where the constan&(p) and y(p) agree with the corresponding

coefficients in formula (D.3).

To prove relation (D.17) (wherg; = {t,... k} is the last element of the parti-
tion W) let us define ther-algebra.# generated by the random variables appear-
ing in the firstt — 1 coordinates of thedd-statistics, i.e. by the random variables
EISJ_W(’),lg j<t—1,andi<lj<nforall1<j<t—1. Wehave Xt<k-1.By
our inductive hypothesis relation (D.3) holds forstatistics of ordep=k—t+1,
since 2< p < k— 1. I claim that this implies that

P([llnjew ((O)]| > ul.7) < Ak=t+ 1P (|llnew (F(0)]| > v(k—t+1)u.7)
(D.18)
with_probability_l. Indeed, by the independence propeuigfe random variables
gV @ndg) 1< j<k 1<l <n,

P(Ilaxw (FO)I > ul.7) =P, (Mosew (FCO1 > u)

e 1cjcta
and
P (lllnkw (f ()] > y(k—t+1)ul.7)
=Peaw ;g4 (i (O > y(k=t+Du),
whereP o), _. denotes that the values of the random variama‘sm(w),
gV gj<t-1

1<j<t—1,1<I| <n, are fixed, and we consider the probability that the appropri
ate functions of these fixed values and of the remaining nanguiablest () and
&swli) t < j <k, satisfy the desired relation. These identities and thegicel be-
tween the setg/ andW imply that relation (D.18) is equivalent to the identity @).
for the generalizet) -statistics of order X k—t + 1 < k— 1 with kernel functions

f|t,..4,|k(xt7 s 7Xk)
1 -1
= )3 G (@), E Y (@), %, %)

l1,eliz1): 1<lij<n, 1<j<t—1
J

Relation (D.17) follows from inequality (D.18) if expediat is taken at both sides.
As the rank oWV is strictly greater than the rank @f, relation (D.17) together with
our backward inductive assumption imply relation (D.16)d06 2 < j <k.

Relation (D.16) implies in particular (with the applicat®of partitions of ordek
and rank 2) that the terms in the sum at the right-hand sidé®df) (satisfy the
inequality
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P (Dilllnkv (F(£))]| > u) < C(K, )P (|llnk(f(£))[| > Dyu)

with some appropriat€ > 0 andDy > 0 for all vV c {1,....k}, 1< |V| < k—1.
This inequality together with relation (D.5) imply that opeality (D.3) also holds
for the parametek.

In such a way we get the proof of relation (D.3) and its spec&sde, rela-
tion (14.13). Let us prove formula (14.14) with its help firsthe simpler case when
the supremum of finitely many functions is takenMf< o functionsfy, ..., fiy are
considered, then relation (14.14) for the supremum ofubk&tatistics and decou-
pled U-statistics with these kernel functions can be derived fformula (14.13)
if it is applied for the functionf = (f4,..., fim) with values in the separable Ba-
nach spac@y which consists of the vectorss,...,vm), vj € B, 1< j <M, and
the norm||(vy,...,vm)|| = sup |lvj| is introduced in it. The application of formula

1<j<m

(14.13) with this choice yields formula (14.14) for this seimum. Let us emphasize
that the constants appearing in this estimate do not depetidteonumbeM. (We
took only M < o kernel functions, because with such a choice the Banaclespac
By defined above is also separable.) Since the distributioheofandom variables

sup ||Ink(fs)|| converge to that of sup|l,(fs)||, and the distribution of the ran-
1<s<M 1<s<w

dom variables supl|ink(fs)|| converge to that of suf|ink(fs)|| asM — e, re-
1<s<M 1<s<o0

lation (14.14) in the general case follows from its alreadyvpd special case and a
limiting procedureM — oo,

Remark.The above proved formula (D.3) can be slightly generalitiealso holds
if the expressions, k(f(¢)) andlnk(f(¢)) appearing in this inequality are defined
in a more general way. Namely, they are the random functiommeduced in for-
mulas (D.1) and (D.2), but the sequendgs...,¢&, and their independent copies

Ei”,...,{,ﬁj) in these formulas are independent random variables whighaisa
be non-identically distributed. Such a generalization lwaproved without any es-
sential change in the original proof.
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