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Preface

This lecture note has a fairly long history. Its starting point was an attempt to solve
some limit problems about the behaviour of non-linear functionals of a sequence
of independent random variables. These problems could not be solved by means of
classical probabilistic methods. I tried to solve them withthe help of some sort of
Taylor expansion. The idea was to represent the functional we are investigating as
a sum with a leading term whose asymptotic behaviour can be well described by
means of classical results of probability theory and with some error terms whose ef-
fect is negligible. This approach worked well, but to bound the error terms I needed
some non-trivial estimates. The proof of these estimates was interesting in itself, it
was a problem worth of a closer study on its own right. So I tried to work out the
details and to present the most important and most interesting results I met during
this research. This lecture note is the result of these efforts.

To solve the problems I met I had to give a good estimate on the tail distribution of
the integral of a function of several variables with respectto the appropriate power of
a normalized empirical distribution. Beside this I also hadto consider a generalized
version of this problem when the tail distribution of the supremum of such integrals
has to be bounded. The difficulties in these problems concentrate around two points.

a) We consider non-linear functionals of independent random variables, and we
have to work out some techniques to deal with such problems.

b) The idea behind several arguments is the observation thatindependent random
variables behave in many respects almost as if they were Gaussian. But we have
to understand how strong this similarity is, when we can apply the techniques
worked out for Gaussian random variables. Beside this we have to find meth-
ods to deal with our problems also in such cases when the techniques related to
Gaussian and almost Gaussian random variables do not work.

To deal with problem a) I have discussed the theory of multiple random inte-
grals and their most important properties together with theproperties of so-called
(degenerate)U-statistics. I considered the Wiener–Itô integrals which are multiple
Gaussian type integrals, and provide a useful tool to handlenon-linear functionals
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viii Preface

of Gaussian sequences. I also proved some results about a good representation of the
product of Wiener–It̂o integrals or degenerateU-statistics as a sum of Wiener–Itô in-
tegrals or degenerateU-statistics. A comparison of these results indicates some sim-
ilarity between the behaviour of Wiener–Itô integrals and degenerateU-statistics. I
tried to present a fairly detailed discussion of Wiener–Itô integrals and degenerate
U-statistics which contains their most important properties.

Problem b) appeared in particular in the study of the supremum of a class of
random integrals. It may be worth mentioning that there is a deep theory worked
out mainly by Michel Talagrand which gives good estimates insuch problems, at
least in the case if only one-fold integrals are considered.It turned out however that
the results and methods of this theory are not appropriate toprove such estimates
that I needed in this work. Roughly speaking, the problems I met have a different
character than those investigated in Talagrand’s theory. This point is discussed in
more detail in the main text of this work, in particular in Chapter 18, which gives an
overview of the problems investigated in this work togetherwith their history. The
problems get even harder if the supremum not only of one-foldbut also of multiple
random integrals have to be estimated. Here some new methodsare needed which
we can find by refining some symmetrization arguments appearing in the theory of
so-called Vapnik–̌Cervonenkis classes.

I have also considered an example in Chapter 2 which shows howto apply the
estimates proved in this work in the study of some limit theorem problems in math-
ematical statistics. Actually this was the starting point of the research described in
this work. I discussed only one example, but I consider it more than just an exam-
ple. My goal was to explain a method that can help in solving some non-trivial limit
problems and to show why the results of this lecture notes areuseful in their investi-
gation. I think that this approach works in a very general setting, but this is the task
of future research. Let me also remark that to understand howthis method works
and how to apply it one does not have to learn the whole material of this lecture
note. It is enough to understand the content of the results inChapter 8 together with
some results of Chapter 9 about the properties ofU-statistics.

I had two kinds of readers in mind when writing this lecture note. The first kind
of them would like to learn more about such problems in which relatively few in-
dependence is available, and as a consequence the methods ofclassical probability
theory do not work in their study. They would like to acquire some results and meth-
ods useful in such cases, too. The second kind of readers would not like to go into
the details of complicated, unpleasant arguments. They would restrict their attention
to some useful methods which may help them in proving the limit theorem problems
of probability theory they meet also in such cases when the standard methods do not
work. This lecture note can be considered as an attempt to satisfy the wishes of both
kinds of readers.

Budapest, January 2013
Péter Major



Chapter 1
Introduction

First I briefly describe the main subject of this work.
Fix a positive integern, considern independent and identically distributed ran-

dom variablesξ1, . . . ,ξn on a measurable space(X,X ) with some distributionµ
and take their empirical distributionµn together with its normalization

√
n(µn−µ).

Beside this, take a functionf (x1, . . . ,xk) of k variables on thek-fold product
(Xk,X k) of the space(X,X ), introduce thek-th power of the normalized em-
pirical measure

√
n(µn− µ) on (Xk,X k) and define the integral of the functionf

with respect to this signed product measure. This integral is a random variable, and
we want to give a good estimate on its tail distribution. Moreprecisely, we take the
integrals not on the whole space, the diagonalsxs = xs′ , 1≤ s,s′ ≤ k, s 6= s′, of the
spaceXk are omitted from the domain of integration. Such a modification of the
integral seems to be natural.

We shall also be interested in the following generalized version of the above
problem. Let us have a nice class of functionsF of k variables on the product space
(Xk,X k), and consider the integrals of all functions in this class with respect to the
k-fold direct product of our normalized empirical measure. Give a good estimate on
the tail distribution of the supremum of these integrals.

One may ask why the above problems deserve a closer study. I found them impor-
tant, because they may help in solving some essential problems in probability theory
and mathematical statistics. I met such problems when I tried to adapt the method
of proof about the Gaussian limit behaviour of the maximum likelihood estimate to
some similar but more difficult questions. In the original problem the asymptotic
behaviour of the solution of the so-called maximum likelihood equation has to be
investigated. The study of this problem is hard in its original form. But by applying
an appropriate Taylor expansion of the function that appears in this equation and
throwing out its higher order terms we get an approximation whose behaviour can
be well understood. So to describe the limit behaviour of themaximum likelihood
estimate it suffices to show that this approximation causes only a negligible error.

One would try to apply a similar method in the study of more difficult questions.
I met some non-parametric maximum likelihood problems, forinstance the descrip-
tion of the limit behaviour of the so-called Kaplan–Meyer product limit estimate
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2 1 Introduction

when such an approach could be applied. But in these problemsit was harder to
show that the simplifying approximation causes only a negligible error. In this case
the solution of the above mentioned problems was needed. In the non-parametric
maximum likelihood estimate problems I met, the estimationof multiple (random)
integrals played a role similar to the estimation of the coefficients in the Taylor ex-
pansion in the study of maximum likelihood estimates. Although I could apply this
approach only in some special cases, I believe that it works in very general situa-
tions. But it demands some further work to show this.

The above formulated problems about random integrals are interesting and non-
trivial even in the special casek = 1. Their solution leads to some interesting and
non-trivial generalization of the fundamental theorem of the mathematical statistics
about the difference of the empirical and real distributionof a large sample.

These problems have a natural counterpart about the behaviour of so-calledU-
statistics, which is a fairly popular subject in probability theory. The investigation
of multiple random integrals andU-statistics are closely related, and it turned out to
be useful to consider them simultaneously.

Let us try to get some feeling about what kind of results can beexpected in these
problems. For a large sample sizen the normalized empirical measure

√
n(µn−µ)

behaves similarly to a Gaussian random measure. This suggests that in the problems
we are interested in similar results should hold as in the analogous problems about
multiple Gaussian integrals. The behaviour of multiple Gaussian integrals, called
Wiener–It̂o integrals in the literature, is fairly well understood, and it suggests that
the tail distribution of ak-fold random integral with respect to a normalized empiri-
cal measure should satisfy such estimates as the tail distribution of thek-th power of
a Gaussian random variable with expectation zero and appropriate variance. Beside
this, if we consider the supremum of multiple random integrals of a class of func-
tions with respect to a normalized empirical measure or withrespect to a Gaussian
random measure, then we expect that under not too restrictive conditions this supre-
mum is not much larger than the ‘worst’ random integral with the largest variance
taking part in this supremum. We may also hope that the methods of the theory of
multiple Gaussian integrals can be adapted to the investigation of our problems.

The above presented heuristic considerations supply a fairly good description of
the situation, but they do not take into account a very essential difference between
the behaviour of multiple Gaussian integrals and multiple integrals with respect to
a normalized empirical measure. If the variance of a multiple integral with respect
to a normalized empirical measure is very small, what turns out to be equivalent to
a very smallL2-norm of the function we are integrating, then the behaviourof this
integral is different from that of a multiple Gaussian integral with the same kernel
function. In this case the effect of some irregularities of the normalized empirical
distribution turns out to be non-negligible, and no good Gaussian approximation
holds any longer. This case must be better understood, and some new methods have
to be worked out to handle it. The hardest problems discussedin this work are
related to this phenomenon.

The precise formulation of the results will be given in the main part of the work.
Beside their proofs I also tried to explain the main ideas behind them and the notions



1 Introduction 3

introduced in their investigation. This work contains somenew results, and also
the proof of some already rather classical theorems is presented. The results about
Gaussian random variables and their non-linear functionals, in particular multiple
integrals with respect to a Gaussian field, have a most important role in the study
of the present work. Hence they are discussed in detail together with some of their
counterparts about multiple random integrals with respectto a normalized empirical
measure and some results aboutU-statistics.

The proofs apply results from different parts of the probability theory. Papers
investigating similar results refer to works dealing with quite different subjects, and
this makes their reading rather hard. To overcome this difficulty I tried to work out
the details and to present a self-contained discussion evenat the price of a longer
text. Thus I wrote down (in the main text or in the Appendix) the proof of many
interesting and basic results, like results about Vapnik–Červonenkis classes, about
U-statistics and their decomposition to sums of so-called degenerateU-statistics,
about so-called decoupledU-statistics and their relation to ordinaryU-statistics, the
diagram formula about the product of Wiener–Itô integrals, their counterpart about
the product of degenerateU-statistics, etc. I tried to give such an exposition where
different parts of the problem are explained independentlyof each other, and they
can be understood in themselves.

As all the topics treated in the individual chapters relate to each other it seemed
natural to me to tell the history of how the various results were reached in one
last chapter. This last chapter, Chapter 18, just before theAppendix, also contains
the complete reference list. I tried to give satisfactory referencing to all essential
problems discussed, concentrate on explaining the main ideas behind the proofs
and indicate where they were published. I did not attempt to provide an exhaustive
literature list for fear that more would be less. As a consequence the reference list
reflects my subjctive preferences, my way of thinking.





Chapter 2
Motivation of the investigation. Discussion of
some problems

In this chapter I try to show by means of an example why the solution of the prob-
lems mentioned in the introduction may be useful in the studyof some important
problems of probability theory. I try to give a good picture about the main ideas, but
I do not work out all details. Actually the elaboration of some details omitted from
this discussion would demand hard work. But as the present chapter is quite inde-
pendent of the rest of the work, these omissions cause no problem in understanding
the subsequent part.

I start with a short discussion of the maximum likelihood estimate in the simplest
case. The following problem is considered. Let us have a class of density functions
f (x,ϑ) on the real line depending on a parameterϑ ∈ R1, and observe a sequence
of independent random variablesξ1(ω), . . . ,ξn(ω) with a density functionf (x,ϑ0),
whereϑ0 is an unknown parameter we want to estimate with the help of the above
sequence of random variables.

The maximum likelihood method suggests the following approach. Choose that
value ϑ̂n = ϑ̂n(ξ1, . . . ,ξn) as the estimate of the parameterϑ0 where the density
function of the random vector(ξ1, . . . ,ξn), i.e. the product

n

∏
k=1

f (ξk,ϑ) = exp

{
n

∑
k=1

log f (ξk,ϑ)

}

takes its maximum. This point can be found as the solution of the so-called maxi-
mum likelihood equation

n

∑
k=1

∂
∂ϑ

log f (ξk,ϑ) = 0. (2.1)

We are interested in the asymptotic behaviour of the random variableϑ̂n−ϑ0, where
ϑ̂n is the (appropriate) solution of the equation (2.1).

The direct study of this equation is rather hard, but a Taylorexpansion of the
expression at the left-hand side of (2.1) around the (unknown) point ϑ0 yields a
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6 2 Motivation of the investigation. Discussion of some problems

good and simple approximation of̂ϑn, and it enables us to describe the asymptotic
behaviour ofϑ̂n−ϑ0.

This Taylor expansion yields that

n

∑
k=1

∂
∂ϑ

log f (ξk, ϑ̂n) =
n

∑
k=1

∂
∂ϑ f (ξk,ϑ0)

f (ξk,ϑ0)

+(ϑ̂n−ϑ0)






n

∑
k=1






∂ 2

∂ϑ2 f (ξk,ϑ0)

f (ξk,ϑ0)
−

(
∂

∂ϑ f (ξk,ϑ0)
)2

f 2(ξk, ϑ̄0)









+O

(
n(ϑ̂n−ϑ0)

2)

=
n

∑
k=1

(
ηk+ζk(ϑ̂n−ϑ0)

)
+O

(
n(ϑ̂n−ϑ0)

2) , (2.2)

where

ηk =
∂

∂ϑ f (ξk,ϑ0)

f (ξk,ϑ0)
and ζk =

∂ 2

∂ϑ2 f (ξk,ϑ0)

f (ξk,ϑ0)
−

(
∂

∂ϑ f (ξk,ϑ0)
)2

f 2(ξk, ϑ̄0)

for k = 1, . . . ,n. We want to understand the asymptotic behaviour of the (random)
expression on the right-hand side of (2.2). The relation

Eηk =
∫ ∂

∂ϑ f (x,ϑ0)

f (x,ϑ0)
f (x,ϑ0)dx=

∂
∂ϑ

∫

f (x,ϑ0)dx= 0

holds, since
∫

f (x,ϑ)dx= 1 for all ϑ , and a differentiation of this relation gives the

last identity. Similarly,Eη2
k =−Eζk =

∫ ( ∂
∂ϑ f (x,ϑ0))

2

f (x,ϑ0)
dx> 0, k= 1, . . . ,n. Hence by

the central limit theoremχn =
1√
n

n
∑

k=1
ηk is asymptotically normal with expectation

zero and varianceI2 =
∫ ( ∂

∂ϑ f (x,ϑ0))
2

f (x,ϑ0)
dx> 0. In the statistics literature this number

I is called the Fisher information. By the laws of large numbers 1
n

n
∑

k=1
ζk ∼−I2.

Thus relation (2.2) suggests the approximation of the maximum-likelihood es-

timate ϑ̂n by the random variablẽϑn given by the identityϑ̃n − ϑ0 = −
n
∑

k=1
ηk

n
∑

k=1
ζk

,

and the previous calculations imply that
√

n(ϑ̃n − ϑ0) is asymptotically normal
with expectation zero and variance1

I2 . The random variablẽϑn is not a solution
of the equation (2.1), the value of the expression at the left-hand side is of or-
der O(n(ϑ̃n − ϑ0)

2) = O(1) in this point. On the other hand, some calculations
show that the derivative of the function at the left-hand side is large in this point,
it is greater than const.n with some const.> 0. This implies that the maximum-
likelihood equation has a solution̂ϑn such thatϑ̂n−ϑ̃n =O

(
1
n

)
. Hence

√
n(ϑ̂n−ϑ0)

and
√

n(ϑ̃n−ϑ0) have the same asymptotic limit behaviour.
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The previous method can be summarized in the following way: Take a simpler
linearized version of the expression we want to estimate by means of an appropriate
Taylor expansion, describe the limit distribution of this linearized version and show
that the linearization causes only a negligible error.

We want to show that such a method also works in more difficult situations. But
in some cases it is harder to show that the error committed by areplacement of the
original expression by a simpler linearized version is negligible, and to show this the
solution of the problems mentioned in the introduction is needed. The discussion
of the following problem, called the Kaplan–Meyer method for the estimation of
the empirical distribution function with the help of censored data shows such an
example.

The following problem is considered. Let(Xi ,Zi), i = 1, . . . ,n, be a sequence of
independent, identically distributed random vectors suchthat the componentsXi and
Zi are also independent with some unknown, continuous distribution functionsF(x)
andG(x). We want to estimate the distribution functionF of the random variablesXi ,
but we cannot observe the variablesXi , only the random variablesYi = min(Xi ,Zi)
andδi = I(Xi ≤ Zi). In other words, we want to solve the following problem. There
are certain objects whose lifetimeXi are independent andF distributed. But we
cannot observe this lifetimeXi , because after a timeZi the observation must be
stopped. We also know whether the real lifetimeXi or the censoring variableZi was
observed. We maken independent experiments and want to estimate with their help
the distribution functionF .

Kaplan and Meyer, on the basis of some maximum-likelihood estimation type
considerations, proposed the following so-called productlimit estimatorSn(u) to
estimate the unknown survival functionS(u) = 1−F(u):

1−Fn(u) = Sn(u) =







n
∏
i=1

(
N(Yi)

N(Yi)+1

)I(Yi≤u,δi=1)
if u≤ max(Y1, . . . ,Yn)

0 if u≥ max(Y1, . . . ,Yn), andδn = 1,
undefined ifu≥ max(Y1, . . . ,Yn), andδn = 0,

(2.3)

where

N(t) = #{Yi , Yi > t, 1≤ i ≤ n}=
n

∑
i=1

I(Yi > t).

We want to show that the above estimate (2.3) is really good. For this goal we
shall approximate the random variablesSn(u) by some appropriate random vari-
ables. To do this first we introduce some notations.

Put

H(u) = P(Yi ≤ u) = 1− H̄(u),

H̃(u) = P(Yi ≤ u, δi = 1), ˜̃H(u) = P(Yi ≤ u, δi = 0) (2.4)

and
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Hn(u) =
1
n

n

∑
i=1

I(Yi ≤ u) (2.5)

H̃n(u) =
1
n

n

∑
i=1

I(Yi ≤ u, δi = 1), ˜̃Hn(u) =
1
n

n

∑
i=1

I(Yi ≤ u, δi = 0).

ClearlyH(u) = H̃(u)+ ˜̃H(u) andHn(u) = H̃n(u)+ ˜̃Hn(u). We shall estimateFn(u)−
F(u) for u∈ (−∞,T] if

1−H(T)> δ with some fixedδ > 0. (2.6)

Condition (2.6) implies that there are more thanδ
2 n sample pointsYj larger thanT

with probability almost 1. The complementary event has onlyan exponentially small
probability. This observation helps to show in the subsequent calculations that some
events have negligibly small probability.

We introduce the so-called cumulative hazard function and its empirical version

Λ(u) =− log(1−F(u)), Λn(u) =− log(1−Fn(u)). (2.7)

SinceFn(u)−F(u) = exp(−Λ(u))(1−exp(Λ(u)−Λn(u))) a simple Taylor expan-
sion yields

Fn(u)−F(u) = (1−F(u))(Λn(u)−Λ(u))+R1(u), (2.8)

and it is easy to see thatR1(u) = O
(
(Λ(u)−Λn(u))2

)
. It follows from the subse-

quent estimations thatΛ(u)−Λn(u) = O(n−1/2), thusnR1(u) = O(1). Hence it is
enough to investigate the termΛn(u). We shall show thatΛn(u) has an expansion
with Λ(u) as the main term plusn−1/2 times a term which is a linear functional of an
appropriate normalized empirical distribution function plus an error term of order
O(n−1).

From (2.3) it is obvious that

Λn(u) =−
n

∑
i=1

I(Yi ≤ u, δi = 1) log

(

1− 1
1+N(Yi)

)

.

It is not difficult to get rid of the unpleasant logarithmic function in this formula by
means of the relation− log(1−x) = x+O(x2) for smallx. It yields that

Λn(u) =
n

∑
i=1

I(Yi ≤ u, δi = 1)
N(Yi)

+R2(u) = Λ̃n(u)+R2(u) (2.9)

with an error termR2(u) such thatnR2(u) is smaller than a constant with probability
almost one. (The probability of the exceptional set is exponentially small.)
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The expressioñΛn(u) is still inappropriate for our purposes. Since the denom-

inatorsN(Yi) =
n
∑
j=1

I(Yj > Yi) are dependent for different indicesi we cannot see

directly the limit behaviour ofΛ̃n(u).
We try to approximateΛ̃n(u) by a simpler expression. A natural approach

would be to approximate the termsN(Yi) in it by their conditional expectation
(n−1)H̄(Yi) = (n−1)(1−H(Yi)) = E(N(Yi)|Yi) with respect to theσ -algebra gen-
erated by the random variableYi . This is a too rough ‘first order’ approximation, but
the following ‘second order approximation’ will be sufficient for our goals. Put

N(Yi) =
n

∑
j=1

I(Yj >Yi) = nH̄(Yi)







1+

n
∑
j=1

I(Yj >Yi)−nH̄(Yi)

nH̄(Yi)







and express the terms1
N(Yi)

in the sum definingΛ̃n, (with Λ̃n introduced in (2.9))

by means of the relation1
1+z =

∞
∑

k=0
(−1)kzk = 1− z+ ε(z) with the choicez =

n
∑
j=1

I(Yj>Yi)−nH̄(Yi)

nH̄(Yi)
. As |ε(z)|< 2z2 for |z|< 1

2 we get that

Λ̃n(u) =
n

∑
i=1

I(Yi ≤ u, δi = 1)
nH̄(Yi)








1+
∞

∑
k=1






−

n
∑
j=1

I(Yj >Yi)−nH̄(Yi)

nH̄(Yi)







k







=
n

∑
i=1

I(Yi ≤ u, δi = 1)
nH̄(Yi)







1−

n
∑
j=1

I(Yj >Yi)−nH̄(Yi)

nH̄(Yi)







+R3(u)

= 2A(u)−B(u)+R3(u), (2.10)

where

A(u) = A(n,u) =
n

∑
i=1

I(Yi ≤ u, δi = 1)
nH̄(Yi)

and

B(u) = B(n,u) =
n

∑
i=1

n

∑
j=1

I(Yi ≤ u, δi = 1)I(Yj >Yi)

n2H̄2(Yi)
.

It can be proved by means of standard methods thatnR3(u) is exponentially small.
Thus relations (2.9) and (2.10) yield that

Λn(u) = 2A(u)−B(u)+negligible error. (2.11)
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This means that to solve our problem the asymptotic behaviour of the random
variablesA(u) andB(u) has to be given. We can get a better insight to this problem
by rewriting the sumA(u) as an integral and the double sumB(u) as a two-fold
integral with respect to empirical measures. Then these integrals can be rewritten
as sums of random integrals with respect to normalized empirical measures and
deterministic measures. Such an approach yields a representation of Λn(u) in the
form of a sum whose terms can be well understood.

Let us write

A(u) =
∫ +∞

−∞

I(y≤ u)
1−H(y)

dH̃n(y),

B(u) =
∫ +∞

−∞

∫ +∞

−∞

I(y≤ u)I(x> y)

(1−H(y))2 dHn(x)dH̃n(y).

We rewrite the termsA(u) andB(u) in a form better for our purposes. We express
these terms as a sum of integrals with respect todH(u), dH̃(u) and the normalized
empirical processesd

√
n(Hn(x)−H(x)) andd

√
n(H̃n(y)− H̃(y)). For this goal ob-

serve that

Hn(x)H̃n(y) = H(x)H̃(y)+H(x)(H̃n(y)− H̃(y))+(Hn(x)−H(x))H̃(y)

+(Hn(x)−H(x))(H̃n(y)− H̃(y)).

Hence we can write thatB(u) = B1(u)+B2(u)+B3(u)+B4(u), where

B1(u) =
∫ u

−∞

∫ +∞

−∞

I(x> y)

(1−H(y))2 dH(x)dH̃(y) ,

B2(u) =
1√
n

∫ u

−∞

∫ +∞

−∞

I(x> y)

(1−H(y))2 dH(x)d
(√

n(H̃n(y)− H̃(y))
)
,

B3(u) =
1√
n

∫ u

−∞

∫ +∞

−∞

I(x> y)

(1−H(y))2 d
(√

n(Hn(x)−H(x))
)

dH̃(y) ,

B4(u) =
1
n

∫ u

−∞

∫ +∞

−∞

I(x> y)

(1−H(y))2 d
(√

n(Hn(x)−H(x))
)

d
(√

n(H̃n(y)− H̃(y))
)
.

In the above decomposition ofB(u) the termB1 is a deterministic function,B2,
B3 are linear functionals of normalized empirical processes and B4 is a nonlinear
functional of normalized empirical processes. The deterministic termB1(u) can be
calculated explicitly. Indeed,

B1(u) =
∫ u

−∞

∫ +∞

−∞

I(x> y)

(1−H(y))2 dH(x)dH̃(y) =
∫ u

−∞

dH̃(y)
1−H(y)

.

Then the relations̃H(u) =
∫ u
−∞ (1−G(t)) dF(t) and 1−H = (1−F)(1−G) imply

that
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B1(u) =
∫ u

−∞

dF(y)
1−F(y)

=− log(1−F(u)) = Λ(u). (2.12)

Observe that

A(u) =
∫ u

−∞

dH̃n(y)
1−H(y)

=
∫ u

−∞

dH̃(y)
1−H(y)

+
1√
n

∫ u

−∞

d
(√

n(H̃n(y)− H̃(y))
)

1−H(y)

= B1(u)+B2(u). (2.13)

From relations (2.11), (2.12) and (2.13) it follows that

Λn(u)−Λ(u) = B2(u)−B3(u)−B4(u)+negligible error. (2.14)

Integration ofB2 andB3 with respect to the variablex and then integration by parts
in the expressionB2 yields that

B2(u) =
1√
n

∫ u

−∞

d
(√

n(H̃n(y)− H̃(y))
)

1−H(y)

=

√
n
(
H̃n(u)− H̃(u)

)

√
n(1−H(u))

− 1√
n

∫ u

−∞

√
n(H̃n(y)− H̃(y))

(1−H(y))2 dH(y),

B3(u) =
1√
n

∫ u

−∞

√
n(H(y)−Hn(y))

(1−H(y))2 dH̃(y).

With the help of the above expressions forB2 andB3 (2.14) can be rewritten as

√
n(Λn(u)−Λ(u)) =

√
n(H̃n(u)−H̃(u))

1−H(u) − ∫ u
−∞

√
n(H̃n(y)−H̃(y))

(1−H(y))2
dH(y)

+
∫ u
−∞

√
n(Hn(y)−H(y))

(1−H(y))2
dH̃(y)

−√
nB4(u)+negligible error. (2.15)

Formula (2.15) (together with formula (2.8)) almost agreeswith the statement
we wanted to prove. Here the random variable

√
n(Λn(u)−Λ(u)) is expressed as a

sum of linear functionals of normalized empirical distributions plus some negligible
error terms plus the error term

√
nB4(u). So to get a complete proof it is enough to

show that
√

nB4(u) also yields a negligible error. ButnB4(u) is a double integral of
a bounded function (here we apply again formula (2.6)) with respect to a normalized
empirical distribution. Hence to bound this term we need a good estimate of multiple
stochastic integrals (with multiplicity 2), and this is just the problem formulated in
the introduction. The estimate we need here follows from Theorem 8.1 of the present
work. Let us remark that the problem discussed here corresponds to the estimation of
the coefficient of the second term in the Taylor expansion considered in the study of
the maximum likelihood estimation. One may worry a little bit how to boundnB4(u)
with the help of estimations of double stochastic integrals, since in the definition of
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B4(u) integration is taken with respect to different normalized empirical processes in
the two coordinates. But this is a not too difficult technicalproblem. It can be simply
overcome for instance by rewriting the integral as a double integral with respect to
the empirical process

(√
n(Hn(x)−H(x)) ,

√
n
(
H̃n(y)− H̃(y)

))
in the spaceR2.

By working out the details of the above calculation we get that the linear func-
tionalB2(u)−B3(u) of normalized empirical processes yields a good estimate onthe
expression

√
n(Λn(u)−Λ(u)) for a fixed parameteru. But we want to prove some-

what more, we want to get an estimate uniform in the parameteru, i.e. to show that
even the random variable sup

u≤T
|√n(Λn(u)−Λ(u))−B2(u)+B3(u)| is small. This

can be done by making estimates uniform in the parameteru in all steps of the
above calculation. There appears only one difficulty when trying to carry out this
program. Namely, we need an estimate on sup

u≤T
|nB4(u)|, i.e. we have to bound the

supremum of multiple random integrals with respect to a normalized random mea-
sure for a nice class of kernel functions. This can be done, but at this point the second
problem mentioned in the introduction appears. This difficulty can be overcome by
means of Theorem 8.2 of this work.

Thus the limit behaviour of the Kaplan–Meyer estimate can bedescribed by
means of an appropriate expansion. The steps of the calculation leading to such
an expansion are fairly standard, the only hard part is the solution of the problems
mentioned in the introduction. It can be expected that such amethod also works in
a much more general situation.

I finish this chapter with a remark of Richard Gill he made in a personal conver-
sation after my talk on this subject at a conference. While he accepted my proof he
missed an argument in it about the maximum likelihood character of the Kaplan–
Meyer estimate. This was a completely justified remark, since if we do not restrict
our attention to this problem, but try to generalize it to general non-parametric maxi-
mum likelihood estimates, then we have to understand how themaximum likelihood
character of the estimate can be exploited. I believe that this can be done, but only
with the help of some further studies.



Chapter 3
Some estimates about sums of independent
random variables

We shall need a good bound on the tail distribution of sums of independent random
variables bounded by a constant with probability one. Lateronly the results about
sums of independent and identically distributed variableswill be interesting for us.
But since they can be generalized without any effort to sums of not necessarily
identically distributed random variables the condition about identical distribution
of the summands will be dropped. We are interested in the question when these
estimates give such a good bound as the central limit theoremsuggests, and what
can be told otherwise.

More explicitly, the following problem will be considered:Let X1, . . . ,Xn be in-
dependent random variables,EXj = 0, VarXj = σ2

j , 1≤ j ≤ n, and take the random

sumSn =
n
∑
j=1

Xj and its variance VarSn =V2
n =

n
∑
j=1

σ2
j . We want to get a good bound

on the probabilityP(Sn > uVn). The central limit theorem suggests that under gen-
eral conditions an upper bound of the order 1−Φ(u) should hold for this probability,
whereΦ(u) denotes the standard normal distribution function. Since the standard

normal distribution function satisfies the inequality
(

1
u − 1

u3

)
e−u2/2√

2π < 1−Φ(u) <

1
u

e−u2/2√
2π for all u > 0 it is natural to ask when the probabilityP(Sn > uVn) is com-

parable with the valuee−u2/2. More generally, we shall call an upper bound of the
form P(Sn > uVn)≤ e−Cu2

with some constantC> 0 a Gaussian type estimate.
First I formulate Bernstein’s inequality which tells for which valuesu the prob-

ability P(Sn > uVn) has a Gaussian type estimate. It supplies such an estimate if
u≤ constVn. On the other hand, foru≥ const.Vn it yields a much weaker bound. I
shall formulate another result, called Bennett’s inequality, which is a slight improve-
ment of Bernstein’s inequality. It helps us to tell what can be expected if Bernstein’s
inequality does not provide a Gaussian type estimate. I shall also present an example
which shows that Bennett’s inequality is in some sense sharp. The main difficulties
we meet in this work are closely related to the weakness of theestimates we have
for the probabilityP(Sn > uVn) if it does not satisfy a Gaussian type estimate. As
we shall see this happens ifu≫ const.Vn.

13
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In the usual formulation of Bernstein’s inequality a real numberM is introduced,
and it is assumed that the terms in the sum we investigate are bounded by this num-
ber. But since the problem can be simply reduced to the caseM = 1 I shall consider
only this special case.

Theorem 3.1 (Bernstein’s inequality).Let X1, . . . ,Xn be independent random vari-

ables, P(|Xj | ≤ 1) = 1, EXj = 0, 1≤ j ≤ n. Putσ2
j = EX2

j , 1≤ j ≤ n, Sn =
n
∑
j=1

Xj

and V2
n = VarSn =

n
∑
j=1

σ2
j . Then

P(Sn > uVn)≤ exp






− u2

2
(

1+ 1
3

u
Vn

)






for all u > 0. (3.1)

Proof of Theorem 3.1.Let us give a good bound on the exponential momentsEetSn

for appropriate parameterst > 0. SinceEXj = 0 andE|Xk+2
j | ≤ σ2

j for k≥ 0 we can

write EetXj =
∞
∑

k=0

tk
k! EXk

j ≤ 1+
t2σ2

j
2

(

1+
∞
∑

k=1

2tk

(k+2)!

)

≤ 1+
t2σ2

j
2

(

1+
∞
∑

k=1
3−ktk

)

=

1+
t2σ2

j
2

1
1− t

3
≤ exp

{
t2σ2

j
2

1
1− t

3

}

if 0 ≤ t < 3. Hence

EetSn =
n

∏
j=1

EetXj ≤ exp

{
t2V2

n

2
1

1− t
3

}

for 0≤ t < 3.

The above relation implies that

P(Sn > uVn) = P(etSn > etuVn)≤ EetSne−tuVn ≤ exp

{
t2V2

n

2
1

1− t
3
− tuVn

}

if 0 ≤ t < 3. Choose the numbert in this inequality as the solution of the equation
t2V2

n
1

1− t
3
= tuVn, i.e. putt = u

Vn+
u
3
. Then 0≤ t < 3, and we get thatP(Sn > uVn)≤

e−tuVn/2 = exp

{

− u2

2(1+ 1
3

u
Vn )

}

.

If the random variablesX1, . . . ,Xn satisfy the conditions of Bernstein’s inequality,
then also the random variables−X1, . . . ,−Xn satisfy them. By applying the above

result in both cases we get thatP(|Sn|> uVn)≤ 2exp

{

− u2

2(1+ 1
3

u
Vn )

}

under the con-

ditions of Bernstein’s inequality.

By Bernstein’s inequality for allε > 0 there is some numberα(ε)> 0 such that
in the caseu

Vn
< α(ε) the inequalityP(Sn > uVn) ≤ e−(1−ε)u2/2 holds. Beside this,

for all fixed numbersA> 0 there is some constantC=C(A)> 0 such that if u
Vn

< A,

thenP(Sn > uVn) ≤ e−Cu2
. This can be interpreted as a Gaussian type estimate for

the probabilityP(Sn > uVn) if u≤ const.Vn.
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On the other hand, ifuVn
is very large, then Bernstein’s inequality yields a much

worse estimate. The question arises whether in this case Bernstein’s inequality can
be replaced by a better, more useful result. Next I present Theorem 3.2, the so-called
Bennett’s inequality which provides a slight improvement of Bernstein’s inequal-
ity. But if u

Vn
is very large, then also Bennett’s inequality provides a much weaker

estimate on the probabilityP(Sn > uVn) than the bound suggested by a Gaussian
comparison. On the other hand, I shall present an example that shows that (with-
out imposing some additional conditions) no real improvement of this estimate is
possible.

Theorem 3.2 (Bennett’s inequality).Let X1, . . . ,Xn be independent random vari-

ables, P(|Xj | ≤ 1) = 1, EXj = 0, 1≤ j ≤ n. Putσ2
j = EX2

j , 1≤ j ≤ n, Sn =
n
∑
j=1

Xj

and V2
n = VarSn =

n
∑
j=1

σ2
j . Then

P(Sn > u)≤ exp

{

−V2
n

[(

1+
u

V2
n

)

log

(

1+
u

V2
n

)

− u
V2

n

]}

for all u > 0. (3.2)

As a consequence, for allε > 0 there exists some B= B(ε)> 0 such that

P(Sn > u)≤ exp

{

−(1− ε)ulog
u

V2
n

}

if u > BV2
n , (3.3)

and there exists some positive constant K> 0 such that

P(Sn > u)≤ exp

{

−Kulog
u

V2
n

}

if u > 2V2
n . (3.4)

Proof of Theorem 3.2.We have

EetXj =
∞

∑
k=0

tk

k!
EXk

j ≤ 1+σ2
j

∞

∑
k=2

tk

k!
= 1+σ2

j

(
et −1− t

)
≤ eσ2

j (e
t−1−t),

1≤ j ≤ n,

andEetSn ≤ eV2
n (e

t−1−t) for all t ≥ 0. HenceP(Sn > u)≤ e−tuEetSn ≤ e−tu+V2
n (e

t−1−t)

for all t ≥ 0. We get relation (3.2) from this inequality with the choicet =

log
(

1+ u
V2

n

)

. (This is the place of minimum of the function−tu+V2
n (e

t −1− t)

for fixedu in the parametert.)
Relation (3.2) and the observation lim

v→∞
(v+1) log(v+1)−v

vlogv = 1 with the choicev= u
V2

n

imply formula (3.3). Because of relation (3.3) to prove formula (3.4) it is enough
to check it for 2≤ u

V2
n
≤ B with some sufficiently large constantB> 0. In this case

relation (3.4) follows directly from formula (3.2). This can be seen for instance by
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observing that the expression
V2

n

[(

1+ u
V2

n

)

log

(

1+ u
V2

n

)

− u
V2

n

]

ulog u
V2

n

is a continuous and positive

function of the variableu
V2

n
in the interval 2≤ u

V2
n
≤ B, hence its minimum in this

interval is strictly positive.

Let us make a short comparison between Bernstein’s and Bennett’s inequalities.
Both results yield an estimate on the probabilityP(Sn > u), and their proofs are
very similar. They are based on an estimate of the moment generating functions
Rj(t) = EetXj of the summandsXj , but Bennett’s inequality yields a better estimate.
It may be worth mentioning that the estimate given forRj(t) = EetXj in the proof of
Bennett’s inequality agrees with the moment generating function Eet(Yj−EYj ) of the
normalizationYj −EYj of a Poissonian random variableYj with parameter VarXj . As
a consequence, we get, by using the standard method of estimating tail-distributions
by means of the moment generating functions such an estimatefor the probability
P(Sn > u) which is comparable with the probabilityP(Tn−ETn > u), whereTn is a
Poissonian random variable with parameterVn =VarSn. We can say that Bernstein’s
inequality yields a Gaussian and Bennett’s inequality a Poissonian type estimate for
the sums of independent, bounded random variables.

Remark.Bennett’s inequality yields a sharper estimate for the probability P(Sn > u)
than Bernstein’s inequality for all numbersu> 0. To prove this it is enough to show
that for all 0≤ t < 3 the inequalityEetSn ≤ eV2

n (e
t−1−t) appearing in the proof of

Bennett’s inequality is a sharper estimate than the corresponding inequalityEetSn ≤
exp
{

t2V2
n

2
1

1− t
3

}

appearing in the proof of Bernstein’s inequality. (Recall,how we

estimate the probabilityP(Sn > u) in these proofs with the help of the exponential

momentEetSn.) But to prove this it is enough to check thatet −1− t ≤ t2
2

1
1− t

3
for

all 0≤ t < 3. This inequality clearly holds, sinceet −1− t =
∞
∑

k=2

tk
k! , and t2

2
1

1− t
3
=

∞
∑

k=2

1
2(

1
3)

k−2tk.

Next I present Example 3.3 which shows that Bennett’s inequality yields a sharp
estimate also in the caseu≫V2

n when Bernstein’s inequality yields a weak bound.
But Bennett’s inequality provides only a small improvementwhich has only a lim-
ited importance. This may be the reason why Bernstein’s inequality which yields a
more transparent estimate is more popular.

Example 3.3 (Sums of independent random variables with bad tail distribution
for large values).Let us fix some positive integer n, real numbers u andσ2 such that
0< σ2 ≤ 1

8, n> 4u≥ 6 and u> 4nσ2. Let σ̄2 be that solution of the equation x2−
x+σ2 = 0 which is smaller than12. Take a sequence of independent and identically
distributed random variables̄X1, . . . , X̄n such that P(X̄j = 1) = σ̄2, P(X̄j = 0) =

1− σ̄2 for all 1 ≤ j ≤ n. Put Xj = X̄j −EX̄j = Xj − σ̄2, 1 ≤ j ≤ n, Sn =
n
∑
j=1

Xj

and V2
n = nσ2. Then P(|X1| ≤ 1) = 1, EX1 = 0, VarX1 = σ2, hence ESn = 0, and

VarSn =V2
n . Beside this
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P(Sn ≥ u)> exp

{

−Bulog
u

V2
n

}

with some appropriate constant B> 0 not depending on n,σ and u.

Proof of Example 3.3.Simple calculation shows thatEXj = 0, VarXj = σ̄2− σ̄4 =
σ2, P(|Xj | ≤ 1) = 0, and also the inequalityσ2 ≤ σ̄2 ≤ 3

2σ2 holds. To see the
upper bound in the last inequality observe thatσ̄2 ≤ 1

3, i.e. 1− σ̄2 ≥ 2
3, henceσ2 =

σ̄2(1− σ̄2)≥ 2
3σ̄2. In the proof of the inequality of Example 3.3 we can restrictour

attention to the case whenu is an integer, because in the general case we can apply
the inequality with ¯u= [u]+1 instead ofu, where[u] denotes the integer part ofu,
and sinceu≤ ū≤ 2u, the application of the result in this case supplies the desired
inequality with a possibly worse constantB> 0.

Put S̄n =
n
∑
j=1

X̄j . We can writeP(Sn ≥ u) = P(S̄n ≥ u+ nσ̄2) ≥ P(S̄n ≥ 2u) ≥

P(S̄n = 2u) =
( n

2u

)
σ̄4u(1− σ̄2)(n−2u) ≥ (nσ̄2

2u )2u(1− σ̄2)(n−2u), sinceu ≥ nσ̄2, and

n≥ 2u. On the other hand(1− σ̄2)(n−2u) ≥ e−2σ̄2(n−2u) ≥ e−2nσ̄2 ≥ e−u, hence

P(Sn ≥ u) ≥ exp
{

−2ulog
( u

nσ̄2

)

−2ulog2−u
}

= exp

{

−2ulog
( u

nσ2

)

−2ulog
σ̄2

σ2 −2ulog2−u

}

≥ exp

{

−100ulog

(
u

V2
n

)}

.

Example 3.3 is proved.

In the caseu> 4V2
n Bernstein’s inequality yields the estimateP(Sn > u)≤ e−αu

with some universal constantα > 0, and the above example shows that at most an
additional logarithmic factorK log u

V2
n

can be expected in the exponent of the upper

bound in an improvement of this estimate. Bennett’s inequality shows that such an
improvement is really possible.

I finish this chapter with another estimate due to Hoeffding which will be later
useful in some symmetrization arguments.

Theorem 3.4 (Hoeffding’s inequality).Let ε1, . . . ,εn be independent random vari-
ables, P(ε j = 1) = P(ε j = −1) = 1

2, 1≤ j ≤ n, and let a1, . . . ,an be arbitrary real

numbers. Put V=
n
∑
j=1

a jε j . Then

P(V > u)≤ exp

{

− u2

2∑n
j=1a2

j

}

for all u > 0. (3.5)



18 3 Some estimates about sums of independent random variables

Remark 1:ClearlyEV = 0 and VarV =
n
∑
j=1

a2
j , hence Hoeffding’s inequality yields

such an estimate forP(V > u) which the central limit theorem suggests. This esti-
mate holds for all real numbersa1, . . . ,an andu> 0.

Remark 2:The Rademacher functionsrk(x), k = 1,2, . . . , defined by the formu-
las rk(x) = 1 if (2 j − 1)2−k ≤ x < 2 j2−k and rk(x) = −1 if 2( j − 1)2−k ≤ x <
(2 j −1)2−k, 1≤ j ≤ 2k−1, for all k = 1,2, . . . , can be considered as random vari-
ables on the probability spaceΩ = [0,1] with the Borelσ -algebra and the Lebesgue
measure as probability measure on the interval[0,1]. They are independent random
variables with the same distribution as the random variables ε1, . . . ,εn considered
in Theorem 3.4. Therefore results about such sequences of random variables whose
distributions agree with those in Theorem 3.4 are also called sometimes results about
Rademacher functions in the literature. At some points we will also apply this ter-
minology.

Proof of Theorem 3.4.Let us give a good bound on the exponential moment

EetV for all t > 0. The identityEetV =
n
∏
j=1

Eeta j ε j =
n
∏
j=1

(eaj t+e−aj t)
2 holds, and

(eaj t+e−aj t)
2 =

∞
∑

k=0

a2k
j

(2k)! t
2k ≤

∞
∑

k=0

(a j t)2k

2kk!
= ea2

j t
2/2, since(2k)! ≥ 2kk! for all k≥ 0. This

implies thatEetV ≤ exp

{

t2
2

n
∑
j=1

a2
j

}

. HenceP(V > u)≤ exp

{

−tu+ t2
2

n
∑
j=1

a2
j

}

, and

we get relation (3.5) with the choicet = u

(
n
∑
j=1

a2
j

)−1

.



Chapter 4
On the supremum of a nice class of partial sums

This chapter contains an estimate about the supremum of a nice class of normalized
sums of independent and identically distributed random variables together with an
analogous result about the supremum of an appropriate classof one-fold random in-
tegrals with respect to a normalized empirical distribution. The second result deals
with a one-variate version of the problem about the estimation of multiple integrals
with respect to a normalized empirical distribution. This problem was mentioned
in the introduction. Some natural questions related to these results will be also dis-
cussed. It will be examined how restrictive their conditions are. In particular, we are
interested in the question how the condition about the countable cardinality of the
class of random variables can be weakened. A natural Gaussian counterpart of the
supremum problems about random one-fold integrals will be also considered. Most
proofs will be postponed to later chapters.

To formulate these results first a notion will be introduced that plays a most
important role in the sequel.

Definition of Lp-dense classes of functions.Let a measurable space(Y,Y ) be
given together with a classG of Y measurable real valued functions on this space.
The class of functionsG is called an Lp-dense class of functions,1≤ p< ∞, with
parameter D and exponent L if for all numbers0< ε ≤ 1 and probability measures
ν on the space(Y,Y ) there exists a finiteε-dense subsetGε ,ν = {g1, . . . ,gm} ⊂ G in
the space Lp(Y,Y ,ν) with m≤ Dε−L elements, i.e. there exists such a setGε ,ν ⊂ G

with m≤Dε−L elements for which inf
g j∈Gε ,ν

∫ |g−g j |pdν < ε p for all functions g∈G .

(Here the setGε ,ν may depend on the measureν , but its cardinality is bounded by a
number depending only onε.)

In most results of this work the above definedLp-dense classes will be consid-
ered only for the parameterp= 2. But at some points it will be useful to work also
with Lp-dense classes with a different parameterp. Hence to avoid some repeti-
tions I introduced the above definition for a general parameter p. When working
with Lp-dense classes we shall consider only such classes of functionsG whose el-
ements are functions with bounded absolute value. Hence allintegrals appearing in
the definition ofLp-dense classes of functions are finite.

19
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The following estimate will be proved.

Theorem 4.1 (Estimate on the supremum of a class of partial sums). Let us
consider a sequence of independent and identically distributed random variables
ξ1, . . . ,ξn, n≥ 2, with values in a measurable space(X,X ) and with some distri-
butionµ . Beside this, let a countable and L2-dense class of functionsF with some
parameter D≥ 1 and exponent L≥ 1 be given on the space(X,X ) which satisfies
the conditions

‖ f‖∞ = sup
x∈X

| f (x)| ≤ 1, for all f ∈ F (4.1)

‖ f‖2
2 =

∫

f 2(x)µ(dx)≤ σ2 for all f ∈ F (4.2)

with some constant0< σ ≤ 1, and
∫

f (x)µ(dx) = 0 for all f ∈ F . (4.3)

Define the normalized partial sums Sn( f ) = 1√
n

n
∑

k=1
f (ξk) for all f ∈ F .

There exist some universal constants C> 0, α > 0 and M> 0 such that the
supremum of the normalized random sums Sn( f ), f ∈ F , satisfies the inequality

P

(

sup
f∈F

|Sn( f )| ≥ u

)

≤Cexp

{

−α
( u

σ

)2
}

for those numbers u

for which
√

nσ2 ≥ u≥ Mσ(L3/4 log1/2 2
σ +(logD)3/4), (4.4)

where the numbers D and L in formula (4.4) agree with the parameter and exponent
of the L2-dense classF .

Remark.Here and also in the subsequent part of this work we consider random
variables which take their values in a general measurable space(X,X ). The only
restriction we impose on these spaces is that all sets consisting of one point are
measurable, i.e.{x} ∈ X for all x∈ X.

The condition
√

nσ2 ≥ u ≥ Mσ(L3/4 log1/2 2
σ + D3/4) for the numbersu for

which inequality (4.4) holds is natural. I discuss this after the formulation of Theo-
rem 4.2 which can be considered as the Gaussian counterpart of Theorem 4.1. I also
formulate a result in Example 4.3 which can be considered as part of this discussion.

The condition about the countable cardinality ofF can be weakened with the
help of the notion of countable approximability introducedbelow. For the sake of
later applications I define it in a more general form than needed in this chapter. In the
subsequent part of this work I shall assume that the probability measure I work with
is complete, i.e. for all such pairs of setsA andB in the probability space(Ω ,A ,P)
for whichA∈ A , P(A) = 0 andB⊂ A we haveB∈ A andP(B) = 0.
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Definition of countably approximable classes of random variables.Let us have
a class of random variables U( f ), f ∈ F , indexed by a class of functions f∈ F

on a measurable space(Y,Y ). This class of random variables is called countably
approximable if there is a countable subsetF ′ ⊂F such that for all numbers u> 0
the sets A(u) = {ω : sup

f∈F

|U( f )(ω)| ≥ u} and B(u) = {ω : sup
f∈F ′

|U( f )(ω)| ≥ u}

satisfy the identity P(A(u)\B(u)) = 0.

Clearly,B(u) ⊂ A(u). In the above definition it was demanded that for allu> 0
the setB(u) should be almost as large asA(u). The following corollary of Theo-
rem 4.1 holds.

Corollary of Theorem 4.1.Let a class of functionsF satisfy the conditions of The-
orem 4.1 with the only exception that instead of the condition about the countable
cardinality of F it is assumed that the class of random variables Sn( f ), f ∈ F ,
is countably approximable. Then the random variables Sn( f ), f ∈ F , satisfy rela-
tion (4.4).

This corollary can be simply proved, only Theorem 4.1 has to be applied for the
classF ′. To do this it has to be checked that ifF is anL2-dense class with some
parameterD and exponentL, andF ′ ⊂ F , thenF ′ is also anL2-dense class with
the same exponentL, only with a possibly different parameterD′.

To prove this statement let us choose for all numbers 0< ε ≤ 1 and probability
measuresν on (Y,Y ) some functionsf1, . . . , fm ∈ F with m≤ D

( ε
2

)−L
elements,

such that the setsD j =
{

f :
∫ | f − f j |2dν ≤

( ε
2

)2
}

satisfy the relation
m⋃

j=1
D j =Y.

For all setsD j for whichD j ∩F ′ is non-empty choose a functionf ′j ∈ D j ∩F ′. In
such a way we get a collection of functionsf ′j from the classF ′ containing at most
2LDε−L elements which satisfies the condition imposed forL2-dense classes with
exponentL and parameter 2LD for this numberε and measureν .

Next I formulate in Theorem 4.1′ a result about the supremum of the integral
of a class of functions with respect to a normalized empirical distribution. It can
be considered as a simple version of Theorem 4.1. I formulated this result, because
Theorems 4.1 and 4.1′ are special cases of their multivariate counterparts aboutthe
supremum of so-calledU-statistics and multiple integrals with respect to a normal-
ized empirical distribution discussed in Chapter 8. These results are also closely
related, but the explanation of their relation demands somework.

Given a sequence of independentµ distributed random variablesξ1, . . . ,ξn taking
values in(X,X ) let us introduce their empirical distribution on(X,X ) as

µn(A)(ω) =
1
n

#
{

j : 1≤ j ≤ n, ξ j(ω) ∈ A
}

for all A∈ X , (4.5)

and define for all measurable andµ integrable functionsf the (random) integral

Jn( f ) = Jn,1( f ) =
√

n
∫

f (x)(µn(dx)−µ(dx)). (4.6)



22 4 On the supremum of a nice class of partial sums

Clearly

Jn( f ) =
1√
n

n

∑
j=1

( f (ξ j)−E f(ξ j)) = Sn( f̂ )

with f̂ (x) = f (x)− ∫ f (x)µ(dx). It is not difficult to see that sup
x∈X

| f̂ (x)| ≤ 2 if

sup
x∈X

| f (x)| ≤ 1,
∫

f̂ (x)µ(dx) = 0,
∫

f̂ 2(x)µ(dx)≤ ∫ f 2(x)µ(dx), and ifF is anL2-

dense class of functions with parameterD and exponentL, then the class of functions
F̄ consisting of the functions̄f (x)= 1

2 ( f (x)− ∫ f (x)µ(dx)), f ∈F , is anL2-dense
class of functions with parameterD and exponentL. Indeed, since

∫
( f̄ − ḡ)2dν ≤

1
2

∫
( f − g)2dν + 1

2

∫
( f − g)2dµ =

∫
( f − g)2 dµ+dν

2 , hence{ f̄1, . . . , f̄m} is an ε-
dense set ofF̄ in the L2(ν)-norm if { f1, . . . , fm} is an ε-dense set ofF in the
L2(

µ+ν
2 )-norm. Hence Theorem 4.1 implies the following result.

Theorem 4.1′ (Estimate on the supremum of random integrals with respect to
a normalized empirical distribution). Let us have a sequence of independent and
identically distributed random variablesξ1, . . . ,ξn, n≥ 2, with distributionµ on a
measurable space(X,X ) together with some class of functionsF on this space
which satisfies the conditions of Theorem 4.1 with the possible exception of condi-
tion (4.3). The estimate (4.4) remains valid if the random sums Sn( f ) are replaced
in it by the random integrals Jn( f ) defined in (4.6). Moreover, similarly to the corol-
lary of Theorem 4.1, the condition about the countable cardinality of the setF can
be replaced by the condition that the class of random variables Jn( f ), f ∈ F , is
countably approximable.

All finite dimensional distributions of the set of random variablesSn( f ), f ∈ F ,
considered in Theorem 4.1 converge to those of a Gaussian random field Z( f ),
f ∈F , with expectationEZ( f ) = 0 and correlationEZ( f )Z(g) =

∫
f (x)g(x)µ(dx),

f ,g ∈ F as n → ∞. Here, and in the subsequent part of the paper a collection
of random variables indexed by some set of parameters will becalled a Gaussian
random field if for all finite subsets of these parameters the random variables in-
dexed by this finite set are jointly Gaussian. We shall also define so-called lin-
ear Gaussian random fields. They consist of jointly Gaussianrandom variables
Z( f ), f ∈ G , indexed by the elements of a linear spacef ∈ G which satisfy
the relationZ(a f + bg) = aZ( f ) + bZ(g) with probability 1 for all real numbers
a and b and f ,g ∈ G . (Let us observe that a set of Gaussian random variables
Z( f ), indexed by the elements of a linear spacef ∈ G such thatEZ( f ) = 0, and
EZ( f )Z(g) =

∫
f (x)g(x)µ(dx) for all f ,g∈ F is a linear Gaussian random field.

This can be seen by checking the identityE[Z(a f +bg)−(aZ( f )+bZ(g))]2 = 0 for
all real numbersa andb and f ,g∈ G in this case.)

Let us consider a linear Gaussian random fieldZ( f ), f ∈ G , where the set of
indicesG = Gµ consists of the functionsf square integrable with respect to aσ -
finite measureµ , and take an appropriate restriction of this field to some parameter
setF ⊂ G . In the next Theorem 4.2 I present a natural Gaussian counterpart of
Theorem 4.1 by means of an appropriate choice ofF . Let me also remark that
in Chapter 10 the multiple Wiener–Itô integrals of functions ofk variables with
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respect to a white noise will be defined for allk ≥ 1. In the special casek = 1 the
Wiener–It̂o integrals for an appropriate class of functionsf ∈ F yield a model for
which Theorem 4.2 is applicable. Before formulating this result let us introduce the
following definition which is a version of the definition ofLp-dense functions.

Definition of Lp-dense classes of functions with respect to a measureµ . Let a
measurable space(X,X ) be given together with a measureµ on theσ -algebra
X and a setF of X measurable real valued functions on this space. The set of
functionsF is called an Lp-dense class of functions,1 ≤ p < ∞, with respect to
the measureµ with parameter D and exponent L if for all numbers0< ε ≤ 1 there
exists a finiteε-dense subsetFε = { f1, . . . , fm} ⊂F in the space Lp(X,X ,µ) with
m≤ Dε−L elements, i.e. such a setFε ⊂ F with m≤ Dε−L elements for which
inf

f j∈Fε

∫ | f − f j |pdµ < ε p for all functions f∈ F .

Theorem 4.2 (Estimate on the supremum of a class of Gaussian random vari-
ables).Let a probability measureµ be given on a measurable space(X,X ) to-
gether with a linear Gaussian random field Z( f ), f ∈ G , such that EZ( f ) = 0,
EZ( f )Z(g) =

∫
f (x)g(x)µ(dx), f ,g∈ G , whereG is the space of square integrable

functions with respect to this measureµ . LetF ⊂ G be a countable and L2-dense
class of functions with respect to the measureµ with some exponent L≥ 1 and
parameter D≥ 1 which also satisfies condition (4.2) with some0< σ ≤ 1.

Then there exist some universal constants C> 0 and M> 0 (for instance C= 4
and M= 16 is a good choice) such that the inequality

P

(

sup
f∈F

|Z( f )| ≥ u

)

≤C(D+1)exp

{

− 1
256

( u
σ

)2
}

if u ≥ ML1/2σ log1/2 2
σ

(4.7)

holds with the parameter D and exponent L introduced in this theorem.

Remark.In formulas (4.4) of Theorem 4.1 and in (4.7) of Theorem 4.2 wehad a
slightly different lower bound on the numbersu for which these results give an
estimate on the probability that the supremum of certain random variables is larger
then u. Nevertheless in the most interesting cases when the exponent L and the
parameterD of the L2-dense class of functions we consider in these theorems are
separated both from zero and infinity these bounds behave similarly. In such cases
they have the magnitude const.σ log1/2 2

σ . In (4.7) the lower bound on the numberu
did not depend on the parameterD, since the dependence on this parameter appeared
in the coefficient at the right-hand side of the inequality inthis relation. The formula
providing a lower bound on the numberu had a coefficientL3/4 in (4.4) and not a
coefficientL1/2 as in (4.7). This is a weak bound ifL is very large, and it could be
improved. But we did not work on this problem, because we weremainly interested
in a good bound in the case when the exponentL is separated from infinity.

The exponent at the right-hand side of inequality (4.7) doesnot contain the best
possible universal constant. One could choose the coefficient 1−ε

2 with arbitrary
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small ε > 0 instead of the coefficient1256 in the exponent at the right-hand side
of (4.7) if the universal constantsC > 0 andM > 0 are chosen sufficiently large
in this inequality. Actually, later in Theorem 8.6 such an estimate will be proved
which can be considered as the multivariate generalizationof Theorem 4.2 with the

expression− (1−ε)u2

2σ2 in the exponent.
The condition about the countable cardinality of the setF in Theorem 4.2 could

be weakened similarly to Theorem 4.1. But I omit the discussion of this question,
since Theorem 4.2 was only introduced for the sake of a comparison between the
Gaussian and non-Gaussian case. An essential difference between Theorems 4.1
and 4.2 is that the class of functionsF considered in Theorem 4.1 had to beL2-
dense, while in Theorem 4.2 a weaker version of this propertywas needed. In The-
orem 4.2 it was demanded that there exists a finite subset ofF of relatively small
cardinality which is dense in theL2(µ) norm. In theL2-density property imposed in
Theorem 4.1 a similar property was demanded for all probability measuresν . The
appearance of such a condition may be unexpected. It is not clear why we demand
this property for such probability measuresν which have nothing to do with our
problem. But as we shall see, the proof of Theorem 4.1 contains a conditioning ar-
gument where a lot of new conditional measures appear, and theL2-density property
is needed to work with all of them. One would also like to know some results that
enable us to check when this condition holds. In the next chapter a notion popular
in probability theory, the notion of Vapnik–̌Cervonenkis classes will be introduced,
and it will be shown that a Vapnik–̌Cervonenkis class of functions bounded by 1 is
L2-dense.

Another difference between Theorems 4.1 and 4.2 is that the conditions of for-
mula (4.4) contain the upper bound

√
nσ2 > u, and no similar condition was im-

posed in formula (4.7). The appearance of this condition in Theorem 4.1 can be
explained by comparing this result with those of Chapter 3. As we have seen, we do
not loose much information if we restrict our attention to the caseu≤ const.V2

n =
const.nσ2 in Bernstein’s inequality (if sums of independent and identically dis-
tributed random variables are considered). Theorem 4.1 gives an almost as good
estimate for the supremum of normalized partial sums under appropriate conditions
for the classF of functions we consider in this theorem as Bernstein’s inequality
yields for the normalized partial sums of independent and identically distributed
random variables with variance bounded byσ2. But we could prove the estimate
of Theorem 4.1 only under the condition

√
nσ2 > u. (Actually we could slightly

improve this result. We could impose the conditionB
√

nσ2 > u with an arbitrary
constantB > 0 in (4.4) if the remaining constants are appropriately chosen in de-
pendence ofB in this formula.) It has also a natural reason why condition (4.1) about
the supremum of the functionsf ∈ F appeared in Theorems 4.1 and 4.1′, and no
such condition was needed in Theorem 4.2.

The lower bounds for the levelu were imposed in formulas (4.4) and (4.7) be-
cause of a similar reason. To understand why such a conditionis needed in for-
mula (4.7) let us consider the following example. Take a Wiener processW(t),
0 ≤ t ≤ 1, define for all 0≤ s< t ≤ 1 the functionsfs,t(·) on the interval[0,1]
as fs,t(u) = 1 if s≤ u ≤ t, fs,t(u) = 0 if 0 ≤ u < s or t < u ≤ 1, and introduce for
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all σ > 0 the following class of functionsFσ . Fσ = { fs,t : 0≤ s< t ≤ 1, t − s≤
σ2, s andt are rational numbers.}. The integralZ( f ) =

∫ 1
0 f (x)W(dx) can be de-

fined for all square integrable functionsf on the interval[0,1], and this yields a
linear Gaussian random field on the space of square integrable functions. In the
special casef = fs,t we haveZ( fs,t) =

∫
fs,t(u)W(du) =W(t)−W(s). It is not dif-

ficult to see that the Gaussian random fieldZ( f ), f ∈ Fσ , satisfies the conditions
of Theorem 4.2 with the numberσ in formula (4.2). It is natural to expect that

P

(

sup
f∈Fσ

Z( f )> u

)

≤ e−const.(u/σ)2. However, this relation does not hold ifu =

u(σ)< 2(1−ε)σ log1/2 1
σ with someε > 0. In such casesP

(

sup
f∈Fσ

Z( f )> u

)

→ 1,

as σ → 0. This can be proved relatively simply with the help of the estimate
P(Z( fs,t)> u(σ))≥ const.σ2(1−ε)2 if |t −s|= σ2 and the independence of the ran-
dom integralsZ( fs,t) if the functions fs,t are indexed by such pairs(s, t) for which
the intervals(s, t) are disjoint. This means that in this example formula (4.7) holds
only under the conditionu≥ Mσ log1/2 1

σ with M = 2.
There is a classical result about the modulus of continuity of Wiener processes,

and actually this result helped us to find the previous example. It is also worth men-
tioning that there are some concentration inequalities, see Ledoux [31] and Tala-
grand [56], which state that under very general conditions the distribution of the
supremum of a class of partial sums of independent random variables or of the el-
ements of a Gaussian random field is strongly concentrated around the expected
value of this supremum. (Talagrand’s result in this direction is also formulated in
Theorem 18.1 of this lecture note.) These results imply thatthe problems discussed
in Theorems 4.1 and 4.2 can be reduced to a good estimate of theexpected value
E sup

f∈F

|Sn( f )| andE sup
f∈F

|Z( f )| of the supremum considered in these results. How-

ever, the estimation of the expected value of these suprema is not much simpler than
the original problem.

Theorem 4.2 implies that under its conditions

E sup
f∈F

|Z( f )| ≤ const.σ log1/2 2
σ

with an appropriate multiplying constant depending on the parameterD and ex-
ponentL of the class of functionsF . In the case of Theorem 4.1 a similar es-
timate holds, but under more restrictive conditions. We also have to impose that√

nσ2 ≥ const.σ log1/2 2
σ with a sufficiently large constant. This condition is needed

to guarantee that the set of numbersu satisfying condition (4.4) is not empty. If this
condition is violated, then Theorem 4.1 supplies a weaker estimate which we get
by replacingσ by an appropriatēσ > σ , and by applying Theorem 4.1 with this
numberσ̄ .

One may ask whether the above estimate on the expected value of the supremum
of normalized partial sums holds without the condition

√
nσ2 ≥ const.σ log1/2 2

σ .
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We show an example which gives a negative answer to this question. Since here we
discuss a rather particular problem which is outside of our main interest in this work
I give a rather sketchy explanation of this example. I present this example together
with a Poissonian counterpart of it which may help to explainits background.

Example 4.3 (Supremum of partial sums with bad tail behaviour). Letξ1, . . . ,ξn

be a sequence of independent random variables with uniform distribution in the
interval [0,1]. Choose a sequence of real numbers,εn, n= 3,4, . . . , such thatεn → 0
as n→ ∞, and 1

2 ≥ εn ≥ n−δ with a sufficiently small numberδ > 0. Put σn =

εn

√
logn

n , and define the set of functions̄f j,n(·) and fj,n(·) on the interval[0,1] by

the formulasf̄ j,n(x) = 1 if ( j−1)σ2
n ≤ x< jσ2

n , f̄ j,n(x) = 0 otherwise, and fj,n(x) =
f̄ j,n(x)−σ2

n , n= 3,4, . . . , 1 ≤ j ≤ 1
σ2

n
. Put Fn = { f j,n(·) : 1 ≤ j ≤ 1

σ2
n
}, Sn( f ) =

1√
n

n
∑

k=1
f (ξk) for f ∈ Fn and un =

A
log 1

εn

logn√
n with a sufficiently small A> 0. Then

lim
n→∞

P

(

sup
f∈Fn

Sn( f )> un

)

= 1.

This example has the following Poissonian counterpart.

Example 4.3′ (A Poissonian counterpart of Example 4.3).Let P̄n(x) be a Poisson
process on the interval[0,1]with parameter n and Pn(x)= 1√

n[P̄n(x)−nx], 0≤ x≤ 1.
Consider the same sequences of numbersεn, σn and un as in Example 4.3, and
define the random variables Zn, j = Pn( jσ2

n)−Pn(( j −1)σ2
n) for all n = 3,4, . . . and

1≤ j ≤ 1
σ2

n
. Then

lim
n→∞

P



 sup
1≤ j≤ 1

σn

Zn, j > un



= 1.

The classes of functionsFn in Example 4.3 areL2-dense classes of func-
tions with some exponentL and parameterD not depending on the parametern
and the choice of the numbersσn. It can be seen that even the class of function
F = { fs,t : fs,t(x) = 1, if s≤ x< t, fs,t(x) = 0 otherwise.} consisting of functions
defined on the interval[0,1] is an L2-dense class with some exponentL and pa-
rameterD. This follows from the results discussed in the later part ofthis work
(mainly Theorem 5.2), but it can be proved directly that thisstatement holds e.g.
with L = 1 andD = 8. The classes of functionsFn also satisfy conditions (4.1),
(4.2) and (4.3) of Theorem 4.1 withσ2 = σ̄2

n = σ2
n − σ4

n , lim
n→∞

σ̄n
σn

= 1, and the

numberun satisfies the second conditionun ≥ Mσ̄n(L3/4 log1/2 2
σ̄n

+ (logD)3/4)

in (4.4) for sufficiently largen. But it does not satisfy the first condition
√

nσ̄2
n ≥ un

of (4.4), and as a consequence Theorem 4.1 cannot be applied in this case. On the
other hand, some calculation shows thatun ≥ ( 2

1+4δ )
1/2 A

εn log 1
εn

σn log1/2 2
σ n. Hence
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liminf
n→∞

εn log 1
εn
· 1

σ̄n log1/2 2
σ̄n

E sup
f∈Fn

Sn( f )> 0 in this case. Asεn log 1
εn

→ 0 asn→ ∞,

this means that the expected value of the supremum of the random sums considered
in Example 4.3 does not satisfy the estimate limsup

n→∞

1
σ̄n log1/2 2

σ̄n

E sup
f∈Fn

Sn( f )<∞ sug-

gested by Theorem 4.1. Observe that
√

nσ̄2
n ∼ const.εnσ̄n log1/2 2

σ̄n
in this case, since

√
nσ̄2

n ∼ ε2
n

logn√
n , andσ̄n log1/2 2

σ̄n
∼ const.εn

logn√
n .

The proof of Examples 4.3 and4.3′. First we prove the statement of Example 4.3′.
For a fixed indexn the number of random variablesZn, j equals 1

σ2
n
≥ 1

ε2
n

n
logn ≥ n

logn,

and they are independent. Hence it is enough to show thatP(Zn, j > un) ≥ n−1/2

if first A > 0 and thenδ > 0 (appearing in the conditionεn > n−δ ) are chosen
sufficiently small, andn≥ n0 with some threshold indexn0 = n0(A,δ ).

Put ūn = [
√

nun+nσ2
n ]+1, where[·] denotes integer part. ThenP(Zn, j > un) ≥

P(P̄n(σ2
n) ≥ ūn) ≥ P(P̄n(σ2

n) = ūn) =
(nσ2

n )
ūn

ūn! e−nσ2
n ≥

(
nσ2

n
ūn

)ūn
e−nσ2

n . Some calcu-

lation shows that ¯un ≤ Alogn
log 1

εn

+ ε2
n logn+1≤ 2Alogn

log 1
εn

, nσ2
n

ūn
≥ ε2

n log 1
εn

2A , and lognσ2
n

ūn
≥

−2log 1
εn

if the constantsA > 0, δ > 0 and threshold indexn0 are appropriately

chosen. HenceP(Zn, j > un) ≥ e−2ūn log(1/εn)−nσ2
n ≥ e−2Alogn−ε2

n logn ≥ 1√
n if A0 > 0

is small enough.
The statement of Example 4.3 can be deduced from Example 4.3′ by applying

Poissonian approximation. Let us apply the result of Example 4.3′ for a Poisson
processP̄n/2 with parametern2 and with such a number̄εn/2 with which the value of
σn/2 equals the previously definedσn. Thenε̄n/2 ∼ εn√

2
, and the number of sample

points ofP̄n/2 is less thann with probability almost 1. Attaching additional sample
points to get exactlyn sample points we can get the result of Example 4.3. I omit
the details.

In formulas (4.4) and (4.7) we formulated such a condition for the validity of
Theorem 4.1 and Theorem 4.2 which contains a large multiplying constantML3/4

andML1/2 of σ log1/2 2
σ in the lower bound for the numberu if we deal with such an

L2-dense class of functionsF which has a large exponentL. At a heuristic level it
is clear that in such a case a large multiplying constant appears. On the other hand, I
did not try to find the best possible coefficients in the lower bound in relations (4.4)
and (4.7).

In Theorem 4.1 (and in its version, Theorem 4.1′) it was demanded that the class
of functionsF should be countable. Later this condition was replaced by a weaker
one about countable approximability. By restricting our attention to countable or
countably approximable classes we could avoid some unpleasant measure theoret-
ical problems which would have arisen if we had worked with the supremum of
non-countably many random variables which may be non-measurable. There are
some papers where possibly non-measurable models are also considered with the
help of some rather deep results of the analysis and measure theory. Here I chose
a different approach. I proved a simple result in the following Lemma 4.4 which
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enables us to show that in many interesting problems we can restrict our attention to
countably approximable classes of random variables. In Chapter 18, in the discus-
sion of the content of Chapter 4 I write more about the relation of this approach to
the results of other works.

Lemma 4.4.Let a class of random variables U( f ), f ∈ F , indexed by some set
F of functions be given on a space(Y,Y ). If there exists a countable subsetF ′ ⊂
F of the setF such that the sets A(u) = {ω : sup

f∈F

|U( f )(ω)| ≥ u} and B(u) =

{ω : sup
f∈F ′

|U( f )(ω)| ≥ u} introduced for all u> 0 in the definition of countable

approximability satisfy the relation A(u)⊂ B(u−ε) for all u > ε > 0, then the class
of random variables U( f ), f ∈ F , is countably approximable.

The above property holds if for all f∈F , ε > 0andω ∈Ω there exists a function
f̄ = f̄ ( f ,ε ,ω) ∈ F ′ such that|U( f̄ )(ω)| ≥ |U( f )(ω)|− ε.

Proof of Lemma 4.4.If A(u) ⊂ B(u− ε) for all ε > 0, thenP∗(A(U) \B(u)) ≤
lim
ε→0

P(B(u− ε) \B(u)) = 0, whereP∗(X) denotes the outer measure of a not nec-

essarily measurable setX ⊂ Ω , since
⋂

ε→0
B(u− ε) = B(u), and this is what we

had to prove. Ifω ∈ A(u), then for all ε > 0 there exists somef = f (ω) ∈ F

such that|U( f )(ω)|> u− ε
2 . If there exists somēf = f̄ ( f , ε

2 ,ω), f̄ ∈ F ′ such that
|U( f̄ )(ω)| ≥ |U f (ω)|− ε

2 , then|U( f̄ )(ω)|> u− ε, andω ∈ B(u− ε). This means
thatA(u)⊂ B(u− ε).

The question about countable approximability also appearsin the case of multiple
random integrals with respect to a normalized empirical measure. To avoid some
repetition we prove a result which also covers such cases. For this goal first we
introduce the notion of multiple integrals with respect to anormalized empirical
distribution.

Given a measurable functionf (x1, . . . ,xk) on thek-fold product space(Xk,X k)
and a sequence of independent random variablesξ1, . . . ,ξn with some distribution
µ on the space(X,X ) we define the integralJn,k( f ) of the function f with re-
spect to thek-fold product of the normalized version of the empirical distribution
µn introduced in (4.5) by the formula

Jn,k( f ) =
nk/2

k!

∫ ′
f (x1, . . . ,xk)(µn(dx1)−µ(dx1)) . . .(µn(dxk)−µ(dxk)),

where the prime in
∫ ′

means that the diagonalsx j = xl ,

1≤ j < l ≤ k, are omitted from the domain of integration. (4.8)

In the casek≥ 2 it will be assumed that the probability measureµ has no atoms.
Lemma 4.4 enables us to prove that certain classes of random integralsJn,k( f ),

f ∈ F , defined with the help of some set of functionsf ∈ F of k variables are
countably approximable. I present an example for a class of such random integrals.
I restrict my attention in this work to this case, because this seems to be the most im-
portant case in possible statistical applications. The result I formulate says roughly
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speaking that if we take the (multiple) integral of a function restricted to all possible
rectangles (with respect to a normalized empirical distribution), then the class of
these integrals is countably approximable. Hence the results of this lecture note is
applicable for them.

Let us consider the case whenX = Rs, thes-dimensional Euclidean space with
somes≥ 1. For two vectorsu= (u(1), . . . ,u(s)) ∈ Rs, v= (v(1), . . . ,v(s)) ∈ Rs such
thatu< v, i.e.u( j) < v( j) for all 1≤ j ≤ s let B(u,v) denote thes-dimensional rect-
angleB(u,v) = {z: u< z< v}. Let us fix some functionf (x1, . . . ,xk) of k variables
such that sup| f (x1, . . . ,xk)| ≤ 1, on the space(Xk,X k) = (Rks,Bks), whereBt

denotes the Borelσ -algebra on the Euclidean spaceRt , together with some proba-
bility measureµ on (Rs,Bs). For all pairs of vectors(u1, . . . ,uk), (v1, . . . ,vk) such
thatu j ,v j ∈Rs andu j ≤ v j , 1≤ j ≤ k, let us define the functionfu1,...,uk,v1,...,vk which
equals the functionf on the rectangle(u1,v1)×·· ·× (uk,vk), and it is zero outside
of this rectangle. Let us call a class of functionsF consisting of functions of the
form fu1,...,uk,v1,...,vk closed if it has the following property. Iffu1,...,uk,v1,...,vk ∈ F for
some vectors(u1, . . . ,uk) and(v1, . . . ,vk), andu j ≤ ū j < v̄ j ≤ v j , 1≤ j ≤ k, then
fū1,...,ūk,v̄1,...,v̄k ∈F . In Lemma 4.5 a closed classF of functions will be considered,
and it will be proved that the random integrals of the functions from this class of
functionsF introduced in formula (4.8) constitute a countably approximable class.

Lemma 4.5. Let a function f on the Euclidean space Rks satisfy the condition
| f | ≤ 1 in all points, and let us consider a closed classF of functions of the form
fu1,...,uk,v1,...,vk ∈ (Rsk,Bsk), uj ,v j ∈Rs, uj ≤ v j , 1≤ j ≤ k, introduced in the previous
paragraph with the help of this function f . Let us take n independent and identically
distributed random variablesξ1, . . . ,ξn with some distributionµ and values in the
space(Rs,Bs). Let µn denote the empirical distribution of this sequence. Then the
class of random integrals Jn,k( fu1,...,uk,v1,...,vk) defined in formula (4.8) with functions
fu1,...,uk,v1,...,vk ∈ F is countably approximable.

Proof of Lemma 4.5.We shall prove that the definition of countable approximability
is satisfied in this model if the class of functionsF ′ consists of those functions
fu1,...,uk,v1,...,vk, u j ≤ v j , 1≤ j ≤ k, for which all coordinates of the vectorsu j andv j

are rational numbers.
Given some functionfu1,...,uk,v1,...,vk, a real number 0< ε < 1 andω ∈ Ω let us

choose a functionfū1,...,ūk,v̄1,...,v̄k ∈ F ′ determined with some vectors ¯u j = ū j(ε ,ω),
v̄ j = v̄ j(ε ,ω) 1≤ j ≤ k, with rational coordinatesu j ≤ ū j < v̄ j ≤ v j in such a way
that the setsK j = B(u j ,v j) \B(ū j , v̄ j) satisfy the relationsµ(K j) ≤ ε2−2k+1n−k/2,
andξl (ω) /∈ K j for all j = 1, . . . ,k andl = 1, . . . ,n. Let us show that

|Jn,k( fū1,...,ūk,v̄1,...,v̄k)(ω)−Jn,k( fu1,...,uk,v1,...,vk)(ω)| ≤ ε . (4.9)

Lemma 4.4 (with the choiceU( f ) = Jn,k( f )) and relation (4.9) imply Lemma 4.5.
Relation (4.9) holds, since the difference of integrals at its left-hand side can

be written as the sum of the 2k − 1 integrals of the functionf with respect to the
k-fold product of the measure

√
n(µn− µ) on the domainsD1× ·· ·×Dk with the

omission of the diagonalsx j = x j̄ , 1≤ j, j̄ ≤ k, j 6= j̄, whereD j is either the setK j or



30 4 On the supremum of a nice class of partial sums

B(u j ,v j) andD j = K j for at least one indexj. It is enough to show that the absolute
value of all these integrals is less thanε2−k. This follows from the observations that
| f (x1, . . . ,xk)| ≤ 1,

√
n(µn−µ)(K j) =−√

nµ(K j), µ(K j)≤ ε2−2k+1n−k/2, and the
total variation of the signed measure

√
n(µn− µ) (restricted to the setB(u j ,v j)) is

less than 2
√

n.

In Lemma 4.5 we have shown with the help of Lemma 4.4 about an impor-
tant class of functions that it is countably approximable. There are other interesting
classes of functions whose countable approximability can be proved with the help
of Lemma 4.4. But here we shall not discuss this problem.

Let us discuss the relation of the results in this chapter to an important result in
probability theory, to the so-called fundamental theorem of the mathematical statis-
tics. In that result a sequence of independent random variables ξ1(ω), . . . ,ξn(ω)
is taken with some distribution functionF(x), the empirical distribution function
Fn(x) = Fn(x,ω) = 1

n#{ j : 1≤ j ≤ n, ξ j(ω) < x} is introduced, and the difference
Fn(x)−F(x) is considered. This result states that sup

x
|Fn(x)−F(x)| tends to zero

with probability one.
Observe that sup

x
|Fn(x)− F(x)| = n−1/2 sup

f∈F

|Jn( f )|, whereF consists of the

functions fx(·), x∈ R1, defined by the relationfx(u) = 1 if u< x, and fx(u) = 0 if

u ≥ x. Theorem 4.1′ yields an estimate for the probabilitiesP

(

sup
f∈F

|Jn( f )|> u

)

.

We have seen that the above class of functionsF is countably approximable. The
results of the next chapter imply that this class of functions is alsoL2-dense. Let me
remark that actually it is not difficult to check this property directly. Hence we can
apply Theorem 4.1′ to the above defined class of functions withσ = 1, and it yields

that P

(

n−1/2 sup
f∈F

|Jn( f )|> u

)

≤ e−Cnu2
if 1 ≥ u ≥ C̄n−1/2 with some universal

constantsC > 0 andC̄ > 0. (The condition 1≥ u can actually be dropped.) The
application of this estimate for the numbersε > 0 together with the Borel–Cantelli
lemma imply the fundamental theorem of the mathematical statistics.

In short, the results of this chapter yield more informationabout the closeness the
empirical distribution functionFn and distribution functionF than the fundamental
theorem of the mathematical statistics. Moreover, since these results can also be ap-
plied for other classes of functions, they yield useful information about the closeness
of the probability measureµ to the empirical distributionµn.



Chapter 5
Vapnik–Červonenkis classes andL2-dense
classes of functions

In this chapter the most important notions and results will be presented about
Vapnik–Červonenkis classes, and it will be explained how they help to show in
some important cases that certain classes of functions areL2-dense. The classes of
L2-dense classes played an important role in the previous chapter. The results of this
chapter may help to find interesting classes of functions with this property. Some of
the results of this chapter will be proved in Appendix A.

First I recall the definition of the following notion.

Definition of Vapnik- Červonenkis classes of sets and functions.Let a set X be
given, and let us select a classD of subsets of this set X. We callD a Vapnik–
Červonenkis class if there exist two real numbers B and K suchthat for all positive
integers n and subsets S(n)= {x1, . . . ,xn}⊂X of cardinality n of the set X the collec-
tion of sets of the form S(n)∩D, D∈D , contains no more than BnK subsets of S(n).
We shall call B the parameter and K the exponent of this Vapnik–Červonenkis class.

A class of real valued functionsF on a space(Y,Y ) is called a Vapnik–
Červonenkis class if the collection of graphs of these functions is a Vapnik–̌Cervo-
nenkis class, i.e. if the sets A( f ) = {(y, t) : y∈Y, min(0, f (y))≤ t ≤ max(0, f (y))},
f ∈ F , constitute a Vapnik–̌Cervonenkis class of subsets of the product space
X =Y×R1.

The following result which was first proved by Sauer plays a fundamental role in
the theory of Vapnik–̌Cervonenkis classes. This result provides a relatively simple
condition for a classD of subsets of a setX to be a Vapnik–̌Cervonenkis class. Its
proof is given in Appendix A. Before its formulation I introduce some terminology
which is often applied in the literature.

Definition of shattering of a set.Let a set S and a classE of subsets of S be given.
A finite set F⊂ S is called shattered by the classE if all its subsets H⊂ F can be
written in the form H= E∩F with some element E∈ E of the class of sets ofE .

Theorem 5.1 (Sauer’s lemma).Let a finite set S= S(n) consisting of n elements
be given together with a classE of subsets of S. IfE shatters no subset of S of
cardinality k, thenE contains at most

(n
0

)
+
(n

1

)
+ · · ·+

( n
k−1

)
subsets of S.

31
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The estimate of Sauer’s lemma is sharp. Indeed, ifE contains all subsets ofS
of cardinality less than or equal tok− 1, then it shatters no subset of a setF of
cardinality k (a setF of cardinality k cannot be written in the formE ∩ F , E ∈
E ), andE contains

(n
0

)
+
(n

1

)
+ · · ·+

( n
k−1

)
subsets ofS. Sauer’s lemma states, that

this is an extreme case. Any class of subsetsE of S with cardinality greater than
(n

0

)
+
(n

1

)
+ · · ·+

( n
k−1

)
shatters at least one subset ofSwith cardinalityk.

Let us have a setX and a class of subsetsD of it. One may be interested in
when D is a Vapnik–̌Cervonenkis class. Sauer’s lemma gives a useful condition
for it. Namely, it implies that if there exists a positive integerk such that the class
D shatters no subset ofX of cardinalityk, thenD is a Vapnik–̌Cervonenkis class.
Indeed, let us take some numbern≥ k, fix an arbitrary setS(n) = {x1, . . . ,xn}⊂X of
cardinalityn, and introduce the class of subsetsE = E (S(n)) = {S(n)∩D : D⊂D}.
If D shatters no subset ofX of cardinalityk, thenE shatters no subset ofS(n) of
cardinalityk. Hence by Sauer’s lemma the classE contains at most

(n
0

)
+
(n

1

)
+ · · ·+

( n
k−1

)
elements. Let me remark that it is also proved that

(n
0

)
+
(n

1

)
+ · · ·+

( n
k−1

)
≤

1.5 nk−1

(k−1)! if n≥ k+1. This estimate gives a bound on the parameter and exponent

of a Vapnik–̌Cervonenkis class which satisfies the above condition.
Moreover, Theorem 5.1 also has the following consequence. Take an (infinite)

setX and a class of its subsetsD . There are two possibilities. Either there is some
setS(n)⊂ X of cardinalityn for all integersn such thatE (S(n)) contains all subsets
of S(n), i.e. D shatters this set, or sup

S: S⊂X, |S|=n
|E (S)| tends to infinity at most in a

polynomial order asn → ∞, where|S| and |E (S)| denote the cardinality ofS and
E (S).

To understand why Sauer’s lemma plays an important role in the theory of
Vapnik–Červonenkis classes let us formulate the following consequence of the
above considerations.

Corollary of Sauer’s lemma.Let a set X be given together with a classD of subsets
of this set X. This class of setsD is a Vapnik–̌Cervonenkis class if there exists a
positive integer k such thatD shatters no subset F⊂ X of cardinality k. In other
words if each set F= {x1, . . . ,xk} ⊂ X of cardinality k has a subset G⊂ F which
cannot be written in the form G= D∩F with some D∈ D , thenD is a Vapnik–
Červonenkis class.

The following Theorem 5.2, an important result of Richard Dudley, states that a
Vapnik–Červonenkis class of functions bounded by 1 is anL1-dense class of func-
tions.

Theorem 5.2 (A relation between theL1-dense class and Vapnik–̌Cervonenkis
class property). Let f(y), f ∈ F , be a Vapnik–̌Cervonenkis class of real valued
functions on some measurable space(Y,Y ) such thatsup

y∈Y
| f (y)| ≤ 1 for all f ∈ F .

ThenF is an L1-dense class of functions on(Y,Y ). More explicitly, if F is a
Vapnik–Červonenkis class with parameter B≥ 1 and exponent K> 0, then it is an
L1-dense class with exponent L= 2K and parameter D= CB2(4K)2K with some
universal constant C> 0.
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Proof of Theorem 5.2.Let us fix some probability measureν on (Y,Y ) and a real
number 0< ε ≤ 1. We are going to show that any finite setD(ε ,ν) = { f1, . . . , fM}⊂
F such that

∫ | f j − fk|dν ≥ ε if j 6= k, f j , fk ∈ D(ε ,ν) has cardinalityM ≤ Dε−L

with someD > 0 andL > 0. This implies thatF is anL1-dense class with parame-
terD and exponentL. Indeed, let us take a maximal subsetD̄(ε ,ν) = { f1, . . . , fM}⊂
F such that theL1(ν) distance of any two functions in this subset is at leastε. Max-
imality means in this context that no functionfM+1 ∈ F can be attached tōD(ε ,ν)
without violating this condition. Thus the inequalityM ≤ Dε−L means thatD̄(ε ,ν)
is anε-dense subset ofF in the spaceL1(Y,Y ,ν) with no more thanDε−L ele-
ments.

In the estimation of the cardinalityM of a setD(ε ,ν) = { f1, . . . , fM} ⊂ F with
the property

∫ | f j − fk|dν ≥ ε if j 6= k we exploit the Vapnik–̌Cervonenkis class
property ofF in the following way. Let us choose relatively fewp= p(M,ε) points
(yl , tl ), yl ∈Y, −1≤ tl ≤ 1, 1≤ l ≤ p, in the spaceY× [−1,1] in such a way that the
setS0(p) = {(yl , tl ), 1≤ l ≤ p} and graphsA( f j) = {(y, t) : y∈Y, min(0, f j(y))≤
t ≤ max(0, f j(y))}, f j ∈ D(ε ,ν)⊂ F have the property that all setsA( f j)∩S0(p),
1≤ j ≤ M, are different. Then the Vapnik–Červonenkis class property ofF implies
thatM ≤ BpK . Hence if there exists a setS0(p) with the above property and with a
relatively small numberp, then this yields a useful estimate onM. Such a setS0(p)
will be given by means of the following random construction.

Let us choose thep points (yl , tl ), 1 ≤ l ≤ p, of the (random) setS0(p) in-
dependently of each other in such a way that the coordinateyl is chosen with
distribution ν on (Y,Y ) and the coordinatetl with uniform distribution on the
interval [−1,1] independently ofyl . (The numberp will be chosen later.) Let
us fix some indices 1≤ j,k ≤ M, and estimate from above the probability that
the setsA( f j) ∩ S0(p) and A( fk) ∩ S0(p) agree, whereA( f ) denotes the graph
of the function f . Consider the symmetric differenceA( f j)∆A( fk) of the sets
A( f j) and A( fk). The setsA( f j)∩ S0(p) and A( fk)∩ S0(p) agree if and only if
(yl , tl ) /∈ A( f j)∆A( fk) for all (yl , tl ) ∈ S0(p). Let us observe that for a fixedl the
estimateP((yl , tl )∈A( f j)∆A( fk)) =

1
2(ν ×λ )(A( f j)∆A( fk)) =

1
2

∫ | f j − fk|dν ≥ ε
2

holds, whereλ denotes the Lebesgue measure. This implies that the probabil-
ity that the (random) setsA( f j)∩S0(p) andA( fk)∩S0(p) agree can be bounded
from above by

(
1− ε

2

)p ≤ e−pε/2. Hence the probability that all setsA( f j)∩S0(p)

are different is greater than 1−
(M

2

)
e−pε/2 ≥ 1− M2

2 e−pε/2. Choosep such that
7
4epε/2 > e(p+1)ε/2 > M2 ≥ epε/2. (We may assume thatM > 1, in which case there
is such a numberp≥ 1. We may really assume thatM > 1, since we want to give an
upper bound onM. Moreover, the estimate we shall give on it, satisfies this inequal-
ity.) Then the above probability is greater than1

8, and there exists some setS0(p)
with the desired property.

The inequalitiesM ≤BpK andM2 ≥ epε/2 imply thatM ≥Mpε/4 ≥ eεM1/K/4B1/K
,

i.e. logM1/K

M1/K ≥ ε
4KB1/K . As logM1/K

M1/K ≤ CM−1/2K for M ≥ 1 with some universal con-
stantC > 0, this estimate implies that Theorem 5.2 holds with the exponentL and
parameterD given in its formulation.
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Let us observe that ifF is anL1-dense class of functions on a measure space
(Y,Y )with some exponentL and parameterD, and also the inequality sup

y∈Y
| f (y)| ≤ 1

holds for all f ∈ F , thenF is anL2-dense class of functions with exponent 2L and
parameterD2L. Indeed, if we fix some probability measureν on (Y,Y ) together

with a number 0< ε ≤ 1, andD(ε ,ν) = { f1, . . . , fM} is an ε2

2 -dense set ofF in
the spaceL1(Y,Y ,ν), M ≤ 2LDε−2L, then for all functionf ∈ F some function
f j ∈ D(ε ,ν) can be chosen in such a way that

∫
( f − f j)

2dν ≤ 2
∫ | f − f j |dν ≤ ε2.

This implies thatF is anL2-dense class with the given exponent and parameter.
It is not easy to check whether a collection of subsetsD of a setX is a Vapnik–

Červonenkis class even with the help of Theorem 5.1. Therefore the following Theo-
rem 5.3 which enables us to construct many non-trivial Vapnik–Červonenkis classes
is of special interest. Its proof is given in Appendix A.

Theorem 5.3 (A way to construct Vapnik–Červonenkis classes).Let us consider
a k-dimensional subspaceGk of the linear space of real valued functions defined on
a set X, and define the level-set A(g) = {x: x∈X, g(x)≥ 0} for all functions g∈Gk.
Take the class of subsetsD = {A(g) : g∈ Gk} of the set X consisting of the above
introduced level sets. No subset S= S(k+1) ⊂ X of cardinality k+1 is shattered
byD . Hence by Theorem 5.1D is a Vapnik–̌Cervonenkis class of subsets of X.

Theorem 5.3 enables us to construct interesting Vapnik–Červonenkis classes.
Thus for instance the class of all half-spaces in a Euclideanspace, the class of
all ellipses in the plane, or more generally the level sets ofk-order algebraic
functions of p variables with a fixed numberk constitute a Vapnik–̌Cervonenkis
class in thep-dimensional Euclidean spaceRp. It can be proved that ifC andD

are Vapnik–̌Cervonenkis classes of subsets of a setS, then also their intersection
C ∩D = {C∩D : C ∈ C , D ∈ D}, their unionC ∪D = {C∪D : C ∈ C , D ∈ D}
and complementary setsC c = {S\C: C ∈ C } are Vapnik–̌Cervonenkis classes.
These results are less important for us, and their proofs will be omitted. We are
interested in Vapnik–̌Cervonenkis classes not for their own sake. We are going to
find L2-dense classes of functions, and Vapnik–Červonenkis classes help us in this.
Indeed, Theorem 5.2 implies that ifD is a Vapnik–̌Cervonenkis class of subsets
of a setS, then their indicator functions constitute a Vapnik–Červonenkis class of
functions, and as a consequence anL1-dense, hence also anL2-dense class of func-
tions. Then the results of Lemma 5.4 formulated below enableus to construct new
L2-dense classes of functions.

Lemma 5.4 (Some useful properties ofL2-dense classes).Let G be an L2-dense
class of functions on some space(Y,Y ) whose absolute values are bounded by one,
and let f be a function on(Y,Y ) also with absolute value bounded by one. Then
f ·G = { f · g: g ∈ G } is also an L2-dense class of functions. LetG1 and G2 be
two L2-dense classes of functions on some space(Y,Y ) whose absolute values are
bounded by one. Then the classes of functionsG1+G2 = {g1+g2 : g1 ∈ G1, g2 ∈
G2}, G1 ·G2 = {g1g2 : g1 ∈G1, g2 ∈G2}, min(G1,G2) = {min(g1,g2) : g1 ∈G1, g2 ∈
G2}, max(G1,G2) = {max(g1,g2) : g1 ∈ G1, g2 ∈ G2} are also L2-dense. IfG is an
L2-dense class of functions, andG ′ ⊂ G , thenG ′ is also an L2-dense class.
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The proof of Lemma 5.4 is rather straightforward. One has to observe for instance
that if g1, ḡ1 ∈ G1, g2, ḡ2 ∈ G2 then|min(g1,g2)−min(ḡ1, ḡ2)| ≤ |g1− ḡ1)|+ |g2−
ḡ2|, hence ifg1,1, . . . ,g1,M1 is an ε

2-dense subset ofG1 andg2,1, . . . ,g2,M2 is an ε
2-

dense subset ofG2 in the spaceL2(Y,Y ,ν) with some probability measureν , then
the functions min(g1, j ,g2,k), 1≤ j ≤ M1, 1≤ k ≤ M2 constitute anε-dense subset
of min(G1,G2) in L2(Y,Y ,ν). The last statement of Lemma 5.4 was proved after
the Corollary of Theorem 4.1. The details are left to the reader.

The above result enable us to construct someL2 dense class of functions. We
give an example for it in the following Example 5.5 which is a consequence of
Theorem 5.2 and Lemma 5.4.

Example 5.5.Take m measurable functions fj(x), 1 ≤ j ≤ m, on a measurable
space(X,X ) which have the propertysup

x∈X
| f j(x)| ≤ 1 for all 1≤ j ≤ m. LetD be a

Vapnik-Červonenkis class consisting of measurable subsets of the set X. Define for
all pairs ( f j ,D), f j , 1≤ j ≤ m, and D∈ D the function fj,D(·) as fj,D(x) = f j(x) if
x∈ D, and fj,D(x) = 0 if x /∈ D, i.e. fj,D(·) is the restriction of the function fj(·) to
the set D. Then the set of functionsF = { f j,D : 1≤ j ≤ m, D ∈ D} is L2-dense.

Beside this, Theorem 5.3 helps us to construct Vapnik-Červonenkis classes of
sets. Let me also remark that it follows from the result of this chapter that the random
variables considered in Lemma 4.5 are not only countably approximable, but the
class of functionsfu1,...,uk,v1,...,vk appearing in their definition isL2-dense.





Chapter 6
The proof of Theorems 4.1 and 4.2 on the
supremum of random sums

In this chapter we prove Theorem 4.2, an estimate about the tail distribution of the
supremum of an appropriate class of Gaussian random variables with the help of a
method, called the chaining argument. We also investigate the proof of Theorem 4.1
which can be considered as a version of Theorem 4.2 about the supremum of par-
tial sums of independent and identically distributed random variables. The chaining
argument is not a strong enough method to prove Theorem 4.1, but it enables us
to prove a weakened form of it formulated in Proposition 6.1.This result turned
out to be useful in the proof of Theorem 4.1. It enables us to reduce the proof of
Theorem 4.1 to a simpler statement formulated in Proposition 6.2. In this chapter
we prove Proposition 6.1, formulate Proposition 6.2, and reduce the proof of Theo-
rem 4.1 with the help of Proposition 6.1 to this result. The proof of Proposition 6.2
which demands different arguments is postponed to the next chapter. Before pre-
senting the proofs I briefly describe the chaining argument.

Let us consider a countable class of functionsF on a probability space(X,X ,µ)
which is L2-dense with respect to the probability measureµ . Let us have ei-
ther a class of Gaussian random variablesZ( f ) with zero expectation such that
EZ( f )Z(g) =

∫
f (x)g(x)µ(dx), f ,g ∈ F , or a set of normalized partial sums

Sn( f ) = 1√
n

n
∑
j=1

f (ξ j), f ∈ F , whereξ1, . . . ,ξn is a sequence of independentµ

distributed random variables with values in the space(X,X ), and assume that
E f(ξ j) = 0 for all f ∈ F . We want to get a good estimate on the probability

P

(

sup
f∈F

Z( f )> u

)

or P

(

sup
f∈F

Sn( f )> u

)

if the class of functionsF has some

nice properties. The chaining argument suggests to prove such an estimate in the
following way.

Let us try to find an appropriate sequence of subsetF1 ⊂F2 ⊂ ·· · ⊂F such that
∞⋃

N=1
FN =F , FN is such a set of functions fromF with relatively few elements for

which inf
f∈FN

∫
( f − f̄ )2dµ ≤ δN with an appropriately chosen numberδN for all func-

37



38 6 The proof of Theorems 4.1 and 4.2 on the supremum of random sums

tions f̄ ∈F , and let us give a good estimate on the probabilityP

(

sup
f∈FN

Z( f )> uN

)

or P

(

sup
f∈FN

Sn( f )> uN

)

for all N = 1,2, . . . with an appropriately chosen mono-

tone increasing sequenceuN such that lim
N→∞

uN = u.

We can get a relatively good estimate under appropriate conditions for the class
of functionsF by choosing the classes of functionsFN and numbersδN anduN in
an appropriate way. We try to bound the difference of the probabilities

P

(

sup
f∈FN+1

Z( f )> uN+1

)

−P

(

sup
f∈FN

Z( f )> uN

)

or of the analogous difference ifZ( f ) is replaced bySn( f ). For the sake of com-
pleteness define this difference also in the caseN = 1 with the choiceF0 = /0, when
the second probability in this difference equals zero.

The above mentioned difference of probabilities can be estimated in a natural
way by taking for all functionsf jN+1 ∈ FN+1 a function f jN ∈ FN which is close to
it, more explicitly

∫
( f jN+1 − f jN)

2dµ ≤ δ 2
N, and calculating the probability that the

difference of the random variables corresponding to these two functions is greater
thanuN+1−uN. We can estimate these probabilities with the help of some results
which give a relatively good bound on the tail distribution of Z(g) or Sn(g) if

∫
g2dµ

is small. The sum of all such probabilities gives an upper bound for the above
considered difference of probabilities. Then we get an estimate for the probability

P

(

sup
f∈FN

Z( f )> uN

)

for all N = 1,2, . . . , by summing up the above estimate, and

we get a bound on the probability we are interested in by taking the limit N → ∞.
This method is called the chaining argument. It got this name, because we estimate
the contribution of a random variable corresponding to a function f jN+1 ∈ FN+1

to the bound of the probability we investigate by taking the random variable corre-
sponding to a functionf jN ∈FN close to it, then we choose another random variable
corresponding to a functionf jN−1 ∈ FN−1 close to this function, and by continuing
this procedure we take a chain of subsequent functions and the random variables
corresponding to them.

First we show how this method supplies the proof of Theorem 4.2. Then we
turn to the investigation of Theorem 4.1. In the study of thisproblem the above
method does not work well, because if two functions are very close to each other in
theL2(µ)-norm, then the Bernstein inequality (or an improvement of it) supplies a
much weaker estimate for the difference of the partial sums corresponding to these
two functions than the bound suggested by the central limit theorem. On the other
hand, we shall prove a weaker version of Theorem 4.1 in Proposition 6.1 with the
help of the chaining argument. This result will be also useful for us.

Proof of Theorem 4.2.Let us list the elements ofF as{ f0, f1, . . .}=F , and choose
for all p= 0,1,2, . . . a set of functionsFp = { fa(1,p), . . . , fa(mp,p)} ⊂ F with mp ≤
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(D+ 1)22pLσ−L elements in such a way that inf
1≤ j≤mp

∫
( f − fa( j,p))

2dµ ≤ 2−4pσ2

for all f ∈ F , and let the setFp contain also the functionfp. (We imposed the
condition fp ∈ Fp to guarantee that the relationf ∈ Fp holds with some indexp
for all f ∈ F . We could do this by slightly enlarging the upper bound we cangive
for the numbermp by replacing the factorD by D+1 in it.) For all indicesa( j, p)
of the functions inFp, p = 1,2, . . . , define a predecessora( j ′, p− 1) from the
indices of the set of functionsFp−1 in such a way that the functionsfa( j,p) and

fa( j ′,p−1)) satisfy the relation
∫
( f( j,p)− f( j ′,p−1))

2dµ ≤ 2−4(p−1)σ2. With the help of
the behaviour of the standard normal distribution functionwe can write the estimates

P(A( j, p)) = P
(

|Z( fa( j,p))−Z( fa( j ′,p−1))| ≥ 2−(1+p)u
)

≤ 2exp

{

− 2−2(p+1)u2

2·2−4(p−1)σ2

}

= 2exp

{

− 22pu2

128σ2

}

1≤ j ≤ mp, p= 1,2, . . . ,

and

P(B( j)) = P
(

|Z( fa( j,0))| ≥
u
2

)

≤ exp

{

− u2

8σ2

}

, 1≤ j ≤ m0.

The above estimates together with the relation
∞⋃

p=0
Fp = F which implies that

{|Z( f )| ≥ u} ⊂
∞⋃

p=1

mp⋃

j=1
A( j, p)∪

m0⋃

s=1
B(s) for all f ∈ F yield that

P

(

sup
f∈F

|Z( f )| ≥ u

)

≤ P

(
∞⋃

p=1

mp
⋃

j=1

A( j, p)∪
m0⋃

s=1

B(s)

)

≤
∞

∑
p=1

mp

∑
j=1

P(A( j, p))+
m0

∑
s=1

P(B(s))

≤
∞

∑
p=1

2(D+1)22pLσ−L exp

{

− 22pu2

128σ2

}

+2(D+1)σ−L exp

{

− u2

8σ2

}

.

If u≥ ML1/2σ log1/2 2
σ with M ≥ 16 (andL ≥ 1 and 0< σ ≤ 1), then

22pLσ−L exp

{

− 22pu2

256σ2

}

≤ 22pLσ−L
(σ

2

)22pM2L/256
≤ 2−pL ≤ 2−p

for all p= 0,1. . . , hence the previous inequality implies that
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P

(

sup
f∈F

|Z( f )| ≥ u

)

≤ 2(D+1)
∞

∑
p=0

2−pexp

{

− 22pu2

256σ2

}

= 4(D+1)exp

{

− u2

256σ2

}

.

Theorem 4.2 is proved.

With an appropriate choice of the bound of the integrals in the definition of the
setsFp in the proof of Theorem 4.2 and some additional calculation it can be proved
that the coefficient1

256 in the exponent of the right-hand side (4.7) can be replaced by
1−ε

2 with arbitrary smallε > 0 if the remaining (universal) constants in this estimate
are chosen sufficiently large.

The proof of Theorem 4.2 was based on a sufficiently good estimate on the prob-
abilitiesP(|Z( f )−Z(g)| > u) for pairs of functionsf ,g ∈ F and numbersu > 0.
In the case of Theorem 4.1 only a weaker bound can be given for the correspond-
ing probabilities. There is no good estimate on the tail distribution of the difference
Sn( f )−Sn(g) if its variance is small. As a consequence, the chaining argument sup-
plies only a weaker result in this case. This result, where the tail distribution of
the supremum of the normalized random sumsSn( f ) is estimated on a relatively
dense subset of the class of functionsf ∈ F in the L2(µ) norm will be given in
Proposition 6.1. Another result will be formulated in Proposition 6.2 whose proof
is postponed to the next chapter. It will be shown that Theorem 4.1 follows from
Propositions 6.1 and 6.2.

Before the formulation of Proposition 6.1 I recall an estimate which is a simple

consequence of Bernstein’s inequality. IfSn( f ) = 1√
n

n
∑
j=1

f (ξ j) is the normalized

sum of independent, identically random variables,P(| f (ξ1)| ≤ 1) = 1, E f(ξ1) = 0,
E f(ξ1)

2 ≤ σ2, then there exists some constantα > 0 such that

P(|Sn( f )|> u)≤ 2e−αu2/σ2
if 0 < u<

√
nσ2. (6.1)

In Proposition 6.1 we shall give a good (Gaussian type) estimate on the probabil-

ity P

(

sup
f∈Fσ̄

|Sn( f )|> u
Ā

)

with some parameter̄A> 1, whereFσ̄ is an appropriate

finite subset of a set of functionsF satisfying the conditions of Theorem 4.1. (We
introduced the number̄A because of some technical reasons. We can formulate with
its help such a result which simplifies the reduction of the proof of Theorem 4.1 to
the proof of another result formulated in Proposition 6.2.)We cannot give a good
estimate for the above probability for allu> 0, we can do this only for such num-
bersu which are in an appropriate interval depending on the parameterσ appearing
in condition (4.2) of Theorem 4.1 and the parameterĀ we chose in Proposition 6.1.
This fact may explain why we could prove the estimate of Theorem 4.1 only for
such numbersu which satisfy the condition imposed in formula (4.4). The choice of
the set of functionsFσ̄ ⊂ F depends of the numberu appearing in the probability
we want to estimate. It is such a subset of relatively small cardinality of F whose
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L2(µ)-norm distance from all elements ofF is less thanσ̄ = σ̄(u) with an appro-
priately defined number̄σ(u). With the help of Proposition 6.1 we want to reduce
the proof of Theorem 4.1 to a result formulated in the subsequent Proposition 6.2.
To do this we still need an upper bound on the cardinality ofFσ̄ and some upper
and lower bounds on the value of̄σ(u). In Proposition 6.1 we shall formulate such
results, too.

Proposition 6.1.Let us have a countable, L2-dense class of functionsF with pa-
rameter D≥ 1 and exponent L≥ 1 with respect to some probability measureµ on
a measurable space(X,X ) whose elements satisfy relations (4.1), (4.2) and (4.3)
with this probability measureµ on (X,X ) and some real number0< σ ≤ 1. Take
a sequence of independent,µ-distributed random variablesξ1, . . . ,ξn, n≥ 2, and

define the normalized random sums Sn( f ) = 1√
n

n
∑

l=1
f (ξl ), for all f ∈ F . Let us fix

some number̄A ≥ 1. There exists some number M= M(Ā) such that with these
parametersĀ and M= M(Ā)≥ 1 the following relations hold.

For all numbers u> 0 such that nσ2 ≥
(

u
σ
)2 ≥ M(L log 2

σ + logD) a number
σ̄ = σ̄(u), 0 ≤ σ̄ ≤ σ ≤ 1, and a collection of functionsFσ̄ = { f1, . . . , fm} ⊂ F

with m≤ Dσ̄−L elements can be chosen in such a way that the union of the sets
D j = { f : f ∈ F ,

∫ | f − f j |2dµ ≤ σ̄2}, 1 ≤ j ≤ m, cover the set of functionsF ,

i.e.
m⋃

j=1
D j = F , and the normalized random sums Sn( f ), f ∈ Fσ̄ , n≥ 2, satisfy the

inequality

P

(

sup
f∈Fσ̄

|Sn( f )| ≥ u

Ā

)

≤ 4exp

{

−α
( u

10Āσ

)2
}

under the condition nσ2 ≥ ( u
σ )

2 ≥ M(L log 2
σ + logD) (6.2)

with the constantsα in formula (6.1) and the exponent L and parameter D of the

L2-dense classF . The inequality 1
16(

u
Āσ̄ )

2 ≥ nσ̄2 ≥ 1
64

(
u

Āσ

)2
also holds with the

numberσ̄ = σ̄(u). If the number u satisfies also the inequality

nσ2 ≥
( u

σ

)2
≥ M

(

L3/2 log
2
σ
+(logD)3/2

)

(6.3)

with a sufficiently large number M= M(Ā), then the relation n̄σ2 ≥ L logn+ logD
holds, too.

Remark.Under the conditionsL ≥ 1 andD ≥ 1 of Proposition 6.1 the condition
formulated in relation (6.3) (with a sufficiently large numberM = M(Ā)) is stronger
than the condition( u

σ )
2 ≥ M(L log 2

σ + logD) imposed in formula (6.2). To see this
observe that although(logD)3/2 ≤ logD if log D ≤ 1, but this effect can be compen-
sated by choosing a sufficiently large parameter M in formula(6.3) and exploiting
thatL log 2

σ ≥ log2.
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Proposition 6.1 helps to reduce the proof of Theorem 4.1 to the case when
such classes of functionsF are considered whose elements are such functions
whoseL2-norm is bounded by a relatively small numberσ̄ . In more detail, the
proof of Theorem 4.1 can be reduced to a good estimate on the distribution of the
supremum of random variables sup

f∈D j

|Sn( f − f j)| for all classesD j , 1≤ j ≤ m, by

means of Proposition 6.1. To carry out such a reduction we also need the inequality
nσ̄2 ≥ L logn+ logD (or a slightly weaker version of it). This is the reason why we
have finished Proposition 6.1 with the statement that this inequality holds under the
condition (6.3). We also have to know that the numberm of the classesD j is not
too large. Beside this, we need some estimates on the numberσ̄ = σ̄(u) which is an
upper bound for theL2-norm of the functionsf − f j , f ∈ D j . To get such bounds
for σ̄ that we need in the applications of Proposition 6.1 we introduced a large pa-
rameterĀ in the formulation of Proposition 6.1 and imposed a condition with a
sufficiently large numberM = M(Ā) in formula (6.3). This condition reappears in
Theorem 4.1 in the conditions of the estimate (4.4).

Let me remark that one of the inequalities the numberσ̄ introduced in Proposi-
tion 6.1 satisfies has the consequenceu> const.

√
nσ̄2 with an appropriate constant.

Hence to complete the proof of Theorem 4.1 we have to estimatethe probability

P

(

sup
f∈F

Sn( f )|> u

)

also in such cases when theL2 norm of the functions inF is

bounded with such a number̄σ for which u> const.
√

nσ̄2. On the other hand, we
got an estimate in Proposition 6.1 ifu<

√
nσ2, (see formula (6.2), and this is an in-

equality in the opposite direction. Hence to complete the proof of Theorem 4.1 with
the help of Proposition 6.1 we need a result whose proof demands an essentially
different method. Proposition 6.2 formulated below is sucha result. I shall show
that Theorem 4.1 is a consequence of Propositions 6.1 and 6.2. Proposition 6.1 is
proved at the end of this chapter, while the proof of Proposition 6.2 is postponed to
the next chapter.

Proposition 6.2. Let us have a probability measureµ on a measurable space
(X,X ) together with a sequence of independent andµ distributed random vari-
ablesξ1, . . . ,ξn, n≥ 2, and a countable, L2-dense class of functions f= f (x) on
(X,X ) with some parameter D≥ 1 and exponent L≥ 1 which satisfies condi-
tions (4.1), (4.2) and (4.3) with some0 < σ ≤ 1 such that the inequality nσ2 >
L logn+ logD holds. Then there exists a threshold index A0 ≥ 5 such that the nor-
malized random sums Sn( f ), f ∈F , introduced in Theorem 4.1 satisfy the inequality

P

(

sup
f∈F

|Sn( f )| ≥ An1/2σ2

)

≤ e−A1/2nσ2/2 if A ≥ A0. (6.4)

I did not try to find optimal parameters in formula (6.4). Eventhe coefficient
−A1/2 in the exponent at its right-hand side could be improved. Theresult of Propo-
sition 6.2 is similar to that of Theorem 4.1. Both of them givean estimate on
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a probability of the formP

(

sup
f∈F

|Sn( f )| ≥ u

)

with some class of functionsF .

The essential difference between them is that in Theorem 4.1this probability is
considered foru ≤ n1/2σ2 while in Proposition 6.2 the caseu = An1/2σ2 with
A ≥ A0 is taken, whereA0 is a sufficiently large positive number. Let us observe
that in this case no good Gaussian type estimate can be given for the probabil-
ities P(Sn( f ) ≥ u), f ∈ F . In this case Bernstein’s inequality yields the bound

P(Sn( f ) > An1/2σ2) = P

(
n
∑

l=1
f (ξl )> uVn

)

< e−const.Anσ2
with u = A

√
nσ and

Vn =
√

nσ for each single functionf ∈ F which takes part in the supremum of
formula (6.4). The estimate (6.4) yields a slightly weaker estimate for the supre-
mum of such random variables, since it contains the coefficient A1/2 instead ofA in
the exponent of the estimate at the right-hand side. But alsosuch a bound will be
sufficient for us.

In Proposition 6.2 such a situation is considered when the irregularities of the
summands provide a non-negligible contribution to the probabilitiesP(|Sn( f )| ≥ u),
and the chaining argument applied in the proof of Theorem 4.2does not give a
good estimate on the probability at the left-hand side of (6.4). This is the reason
why we separated the proof of Theorem 4.1 to two different statements given in
Proposition 6.1 and 6.2.

In the proof of Theorem 4.1 Proposition 6.1 will be applied with a sufficiently
large numberĀ ≥ 1 and an appropriate numberM = M(Ā) appearing in the for-
mulation of this result. Proposition 6.2 will be applied forthe sets of functions

F = F j =
{

g− f j
2 : g∈ D j

}

and numberσ = σ̄ , with the numberσ̄ , functions f j

and sets of functionsD j introduced in Proposition 6.1 and with the parameterA0

appearing in the formulation of Proposition 6.2. We can write

P

(

sup
f∈F

|Sn( f )| ≥ u

)

≤ P

(

sup
f∈Fσ̄

|Sn( f )| ≥ u

Ā

)

(6.5)

+
m

∑
j=1

P

(

sup
g∈D j

∣
∣
∣
∣
Sn

(
f j −g

2

)∣
∣
∣
∣
≥
(

1
2
− 1

2Ā

)

u

)

,

wherem is the cardinality of the set of functionsFσ̄ appearing in Proposition 6.1,
which is bounded bym≤Dσ̄−L. We want to choose the numberĀ in such a way that
the inequality(1

2− 1
2Ā
)u≥A0

√
nσ̄2 holds, since in this case Proposition 6.2 with the

choiceA = A0 yields a good estimate on the second term in (6.5). This inequality
is equivalent tonσ̄2 ≤ ( 1

2A0
− 1

2A0Ā
)2( u

σ̄ )
2. On the other hand,( u

4Āσ̄ )
2 ≥ nσ̄2 by

Proposition 6.1, hence the desired inequality holds if1
2A0

− 1
2A0Ā

≥ 1
4Ā

. Hence with

the choiceĀ= max(1, A0+2
2 ) and a sufficiently largeM = M(Ā) we can bound both

terms at the right-hand side of (6.5) with the help of Propositions 6.1 and 6.2.
With such a choice of̄A we can write by Proposition 6.2
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P

(

sup
g∈D j

∣
∣
∣
∣
Sn

(
f j −g

2

)∣
∣
∣
∣
≥
(

1
2
− 1

2Ā

)

u

)

≤ P

(

sup
g∈D j

∣
∣
∣
∣
Sn

(
f j −g

2

)∣
∣
∣
∣
≥ A0

√
nσ̄2

)

≤ e−A1/2
0 nσ̄2/2 for all 1≤ j ≤ m.

(Observe that the set of functions
f j−g

2 , g∈ D j , is anL2-dense class with parameter
D and exponentL.) Hence Proposition 6.1 together with the boundm≤ Dσ̄−L and
formula (6.5) imply that

P

(

sup
f∈F

|Sn( f )| ≥ u

)

≤ 4exp

{

−α
( u

10Āσ

)2
}

+Dσ̄−Le−A1/2
0 nσ̄2/2. (6.6)

To get the estimate in Theorem 4.1 from inequality (6.6) we show that the in-
equalitynσ̄2 ≥ L logn+ logD (with L ≥ 1, D ≥ 1 andn ≥ 2) which is valid un-
der the conditions of Proposition 6.1 implies thatDσ̄−L ≤ enσ̄2

. Indeed, we have
to show that logD + L log 1

σ̄ ≤ nσ̄2. But we havenσ̄2 ≥ L logn ≥ logn, hence
1
σ̄ ≤

√
n

logn ≤ n, thus log1
σ̄ ≤ logn, and logD+ L log 1

σ̄ ≤ logD+ L logn ≤ nσ̄2,

as we have claimed.
This inequality together with the inequalitynσ̄2 ≥ 1

64(
u

Āσ )
2, proved in Proposi-

tion 6.1 imply that

Dσ̄−Le−A1/2
0 nσ̄2/2 ≤ exp

{

−
(

A1/2
0

2
−1

)

nσ̄2

}

≤ exp

{

− (A1/2
0 −2)

128Ā2

( u
σ

)2
}

.

Hence relation (6.6) yields that

P

(

sup
f∈F

|Sn( f )| ≥ u

)

≤ 4exp

{

− α
100Ā2

( u
σ

)2
}

+exp

{

− (A1/2
0 −2)

128Ā2

( u
σ

)2
}

,

and because of the relationA0 ≥ 5 this estimate implies Theorem 4.1. Let me re-
mark that the condition

√
nσ2 ≥ u≥ Mσ(L3/4 log1/2 2

σ +(logD)3/4) appears in for-
mula (4.4) because of condition (6.3) imposed in Proposition 6.1. (The parameterM
in formula (4.4) can be chosen as twice the parameterM in (6.3).)

I finish this chapter with the proof of Proposition 6.1.

Proof of Proposition 6.1.Let us list the members ofF , as f1, f2, . . . , and choose
for all p= 0,1,2, . . . a setFp = { fa(1,p), . . . , fa(mp,p)} ⊂ F with mp ≤ D22pLσ−L

elements in such a way that inf
1≤ j≤mp

∫
( f − fa( j,p))

2dµ ≤ 2−4pσ2 for all f ∈ F .

For all indicesa( j, p), p = 1,2, . . . , 1 ≤ j ≤ mp, choose a predecessora( j ′, p−
1), j ′ = j ′( j, p), 1 ≤ j ′ ≤ mp−1, in such a way that the functionsfa( j,p) and

fa( j ′,p−1) satisfy the relation
∫ | fa( j,p)− fa( j ′,p−1)|2dµ ≤ σ22−4(p−1). Then we have

∫
( fa( j,p)− fa( j′,p−1)

2

)2
dµ ≤ 4σ22−4p and
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sup
x j∈X,1≤ j≤k

∣
∣
∣
∣

fa( j,p)(x1, . . . ,xk)− fa( j ′,p−1)(x1, . . . ,xk)

2

∣
∣
∣
∣
≤ 1.

Relation (6.1) yields that

P(A( j, p)) = P

(

1
2
|Sn( fa( j,p)− fa( j ′,p−1))| ≥

2−(1+p)u

2Ā

)

≤ 2exp

{

−α
(

2pu

8Āσ

)2
}

if nσ2 ≥ 26p
( u

16Āσ

)2
,

1≤ j ≤ mp, p= 1,2, . . . , (6.7)

and

P(B(s)) = P
(

|Sn( fs,0)| ≥
u

2Ā

)

≤ 2exp

{

−α
( u

2Āσ

)2
}

, 1≤ s≤ m0,

if nσ2 ≥
( u

2Āσ

)2
. (6.8)

Choose an integerR= R(u), R≥ 1, by the inequality

26(R+1)
( u

16Āσ

)2
> nσ2 ≥ 26R

( u

16Āσ

)2
,

define σ̄2 = 2−4Rσ2 and Fσ̄ = FR. (As nσ2 ≥
(

u
σ
)2

and Ā ≥ 1 by our condi-
tions, there exists such a numberR≥ 1. The numberR was chosen as the largest
number p for which the second relation of formula (6.7) holds.) Then the car-
dinality m of the setFσ̄ equalsmR ≤ D22RLσ−L = Dσ̄−L, and the setsD j are

D j = { f : f ∈ F ,
∫
( fa( j,R)− f )2dµ ≤ 2−4Rσ2}, 1≤ j ≤ mR, hence

m⋃

j=1
D j = F .

Beside this, with our choice of the numberR inequalities (6.7) and (6.8) can be
applied for 1≤ p ≤ R. Hence the definition of the predecessor of an index( j, p)

implies that

{

ω : sup
f∈Fσ̄

|Sn( f )(ω)| ≥ u
Ā

}

⊂
R⋃

p=1

mp⋃

j=1
A( j, p)∪

m0⋃

s=1
B(s), and

P

(

sup
f∈Fσ̄

|Sn( f )| ≥ u

Ā

)

≤ P

(
R⋃

p=1

mp
⋃

j=1

A( j, p)∪
m0⋃

s=1

B(s)

)

≤
R

∑
p=1

mp

∑
j=1

P(A( j, p))+
m0

∑
s=1

P(B(s))

≤
∞

∑
p=1

2D22pLσ−L exp

{

−α
(

2pu

8Āσ

)2
}

+2Dσ−L exp

{

−α
( u

2Āσ

)2
}

.
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If the relation( u
σ )

2 ≥ M(L log 2
σ + logD) holds with a sufficiently large constantM

(depending on̄A), andσ ≤ 1, then the inequalities

D22pLσ−L exp

{

−α
(

2pu

8Āσ

)2
}

≤ 2−pexp

{

−α
(

2pu

10Āσ

)2
}

hold for all p= 1,2, . . . , and

Dσ−L exp

{

−α
( u

2Āσ

)2
}

≤ exp

{

−α
( u

10Āσ

)2
}

.

Hence the previous estimate implies that

P

(

sup
f∈Fσ̄

|Sn( f )| ≥ u

Ā

)

≤
∞

∑
p=1

2·2−pexp

{

−α
(

2pu

10Āσ

)2
}

+2exp

{

−α
( u

10Āσ

)2
}

≤ 4exp

{

−α
( u

10Āσ

)2
}

,

and relation (6.2) holds.
As σ2 = 24Rσ̄2 the inequality

2−4R · 26R

256

( u

Āσ

)2
≤ nσ̄2 = 2−4Rnσ2

≤ 2−4R · 26(R+1)

256

( u

Āσ

)2
=

1
4
·2−2R

( u

Āσ̄

)2

holds, and this implies (together with the relationR≥ 1) that

1
64

( u

Āσ

)2
≤ nσ̄2 ≤ 1

16

( u

Āσ̄

)2
,

as we have claimed. It remained to show that under the condition (6.3) nσ̄2 ≥
L logn+ logD.

This inequality clearly holds under the conditions of Proposition 6.1 ifσ ≤ n−1/3,
since in this case log2σ ≥ logn

3 , andnσ̄2 ≥ 1
64(

u
Āσ )

2 ≥ 1
64Ā2 M(L log 2

σ + logD) ≥
1

192Ā2 M(L logn+ logD)) ≥ L logn+ logD if M ≥ M0(Ā) with a sufficiently large
numberM0(Ā).

If σ ≥ n−1/3, we can exploit that the inequality 26R
(

u
Āσ

)2
≤ 256nσ2 holds be-

cause of the definition of the numberR. It can be rewritten as

2−4R ≥ 2−16/3






(
u

Āσ

)2

nσ2






2/3

.
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Hencenσ̄2 = 2−4Rnσ2 ≥ 2−16/3

Ā4/3 (nσ2)1/3
(

u
σ
)4/3

. As log 2
σ ≥ log2> 1

2 the inequali-

tiesnσ2 ≥ n1/3 and( u
σ )

2 ≥M(L3/2 log 2
σ +(logD)3/2)≥ M

2 (L
3/2+(logD)3/2) hold.

They yield that

nσ̄2 ≥ Ā−4/3

50
(nσ2)1/3

( u
σ

)4/3
≥ Ā−4/3

50
n1/9

(
M
2

)2/3

(L3/2+(logD)3/2)2/3

≥ M2/3n1/9(L+ logD)

100Ā4/3
≥ L logn+ logD

if M = M(Ā) is chosen sufficiently large.





Chapter 7
The completion of the proof of Theorem 4.1

This chapter contains the proof of Proposition 6.2 with the help of a symmetrization
argument, and this completes the proof of Theorem 4.1. By symmetrization argu-
ment I mean the reduction of the investigation of sums of the form∑ j f (ξ j) to sums
of the form ∑ j ε j f (ξ j), whereε j are independent random variables, independent
also of the random variablesξ j , andP(ε j = 1) = P(ε j = −1) = 1

2. First a sym-
metrization lemma is proved, and then such an inductive statement is formulated
in Proposition 7.3 which implies Proposition 6.2. Proposition 7.3 will be proved
with the help of the symmetrization lemma and a conditioningargument. To carry
out such a program we shall need some estimates which follow from Hoeffding’s
inequality formulated in Theorem 3.4.

First I formulate the symmetrization lemma we shall apply.

Lemma 7.1 (Symmetrization Lemma).Let Zn and Z̄n, n = 1,2, . . . , be two se-
quences of random variables independent of each other, and let the random vari-
ablesZ̄n, n= 1,2, . . . , satisfy the inequality

P(|Z̄n| ≤ α)≥ β for all n = 1,2, . . . (7.1)

with some numbersα > 0 andβ > 0. Then

P

(

sup
1≤n<∞

|Zn|> u+α
)

≤ 1
β

P

(

sup
1≤n<∞

|Zn− Z̄n|> u

)

for all u > 0.

Proof of Lemma 7.1.Put τ = min{n: |Zn| > u+α} if there exists such an index
n, andτ = 0 otherwise. Then the event{τ = n} is independent of the sequence of
random variables̄Z1, Z̄2, . . . for all n= 1,2, . . . , and because of this independence

P({τ = n})≤ 1
β

P({τ = n}∩{|Z̄n| ≤ α})≤ 1
β

P({τ = n}∩{|Zn− Z̄n|> u})

for all n= 1,2, . . . . Hence

49
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P

(

sup
1≤n<∞

|Zn|> u+α
)

=
∞

∑
l=1

P(τ = l)

≤ 1
β

∞

∑
l=1

P({τ = l}∩{|Zl − Z̄l |> u})

≤ 1
β

∞

∑
l=1

P({τ = l}∩ sup
1≤n<∞

|Zn− Z̄n|> u})

≤ 1
β

P

(

sup
1≤n<∞

|Zn− Z̄n|> u

)

.

Lemma 7.1 is proved.

We shall apply the following Lemma 7.2 which is a consequenceof the Sym-
metrization Lemma 7.1.

Lemma 7.2.Let us fix a countable class of functionsF on a measurable space
(X,X ) together with a real number0 < σ < 1. Consider a sequence of in-
dependent and identically distributed random variablesξ1, . . . ,ξn with values in
the space(X,X ) such that E f(ξ1) = 0, E f2(ξ1) ≤ σ2 for all f ∈ F together
with another sequenceε1, . . . ,εn of independent random variables with distribution
P(ε j = 1) = P(ε j =−1) = 1

2, 1≤ j ≤ n, independent also of the random sequence
ξ1, . . . ,ξn. Then

P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

f (ξ j)

∣
∣
∣
∣
∣
≥ An1/2σ2

)

≤ 4P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

ε j f (ξ j)

∣
∣
∣
∣
∣
≥ A

3
n1/2σ2

)

if A ≥ 3
√

2√
nσ

. (7.2)

Proof of Lemma 7.2.Let us construct an independent copyξ̄1, . . . , ξ̄n of the sequence
ξ1, . . . ,ξn in such a way that all three sequencesξ1, . . . ,ξn, ξ̄1, . . . , ξ̄n andε1, . . . ,εn

are independent. Define the random variables

Sn( f ) =
1√
n

n

∑
j=1

f (ξ j) and S̄n( f ) =
1√
n

n

∑
j=1

f (ξ̄ j)

for all f ∈ F . The inequality

P

(

sup
f∈F

|Sn( f )|> A
√

nσ2

)

≤ 2P

(

sup
f∈F

|Sn( f )− S̄n( f )|> 2
3

A
√

nσ2

)

. (7.3)

follows from Lemma 7.1 if it is applied for the countable set of random vari-
ablesZn( f ) = Sn( f ) and Z̄n( f ) = S̄n( f ), f ∈ F , and the numbersu = 2

3A
√

nσ2

andα = 1
3A

√
nσ2, since the random fieldsSn( f ) and S̄n( f ) are independent, and

P(|S̄n( f )| ≤ α) > 1
2 for all f ∈ F . Indeed,α = 1

3A
√

nσ2 ≥
√

2σ , ES̄n( f )2 ≤ σ2,
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thus Chebishev’s inequality implies thatP(|S̄n( f )| ≤ α) ≥ P(|S̄n( f )| ≤
√

2σ) ≥ 1
2

for all f ∈ F .
Let us observe that the random field

Sn( f )− S̄n( f ) =
1√
n

n

∑
j=1

(
f (ξ j)− f (ξ̄ j)

)
, f ∈ F , (7.4)

and its randomized version

1√
n

n

∑
j=1

ε j
(

f (ξ j)− f (ξ̄ j)
)
, f ∈ F , (7.5)

have the same distribution. Indeed, even the conditional distribution of (7.5) under
the condition that the values of theε j -s are prescribed agrees with the distribution
of (7.4) for all possible values of theε j -s. This follows from the observation that the
distribution of the random field (7.4) does not change if we exchange the random
variablesξ j andξ̄ j for those indicesj for whichε j =−1 and do not change them for
those indicesj for which ε j = 1. On the other hand, the distribution of the random
field obtained with such an exchange of its variables agrees with the conditional
distribution of the random field defined in (7.5) under the condition that the random
variablesε j take these prescribed values.

The above relation together with formula (7.3) imply that

P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

f (ξ j)

∣
∣
∣
∣
∣
≥ An1/2σ2

)

≤ 2P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

ε j
[

f (ξ j)− f̄ (ξ j)
]

∣
∣
∣
∣
∣
≥ 2

3
An1/2σ2

)

≤ 2P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

ε j f (ξ j)

∣
∣
∣
∣
∣
≥ A

3
n1/2σ2

)

+2P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

ε j f (ξ̄ j)

∣
∣
∣
∣
∣
≥ A

3
n1/2σ2

)

= 4P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

ε j f (ξ j)

∣
∣
∣
∣
∣
≥ A

3
n1/2σ2

)

.

Lemma 7.2 is proved.

First I try to explain briefly the method of proof of Proposition 6.2. A probability

of the formP

(

n−1/2 sup
f∈F

∣
∣
∣
∣
∣

n
∑
j=1

f (ξ j)

∣
∣
∣
∣
∣
> u

)

has to be estimated. Lemma 7.2 enables

us to replace this problem by the estimation of the probability
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P

(

n−1/2 sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

ε j f (ξ j)

∣
∣
∣
∣
∣
>

u
3

)

with some independent random variablesε j , P(ε j = 1) = P(ε j = −1) = 1
2, j =

1, . . . ,n, which are also independent of the random variablesξ j . We shall bound
the conditional probability of the event appearing in this modified problem under
the condition that each random variableξ j takes a prescribed value. This can be
done with the help of Hoeffding’s inequality formulated in Theorem 3.4 and the
L2-density property of the class of functionsF we consider. We hope to get a sharp
estimate in such a way which is similar to the result we got in the study of the
Gaussian counterpart of this problem, because Hoeffding’sinequality yields always
a Gaussian type upper bound for the tail distribution of the random sum we are
studying.

Nevertheless, there appears a problem when we try to apply such an approach.
To get a good estimate on the conditional tail distribution of the supremum of the
random sums we are studying with the help of Hoeffding’s inequality we need a
good estimate on the supremum of the conditional variances of the random sums we

are studying, i.e. on the tail distribution of sup
f∈F

1
n

n
∑
j=1

f 2(ξ j). This problem is similar

to the original one, and it is not simpler.
But a more detailed study shows that our approach to get a goodestimate with

the help of Hoeffding’s inequality works. In comparing our original problem with
the new, complementary problem we have to understand at which level we need a
good estimate on the tail distribution of the supremum in thecomplementary prob-
lem to get a good tail distribution estimate at levelu in the original problem. A
detailed study shows that to bound the probability in the original problem with pa-

rameteru we have to estimate the probabilityP

(

n−1/2 sup
f∈F ′

∣
∣
∣
∣
∣

n
∑
j=1

f (ξ j)

∣
∣
∣
∣
∣
> u1+α

)

with some new nice, appropriately definedL2-dense class of bounded functionsF ′

and some numberα > 0. We shall exploit that the numberu is replaced by a larger
numberu1+α in the new problem. Let us also observe that if the sum of bounded
random variables is considered, then for very large numbersu the probability we
investigate equals zero. On the basis of these observationsan appropriate backward
induction procedure can be worked out. In itsn-th step we give a good upper bound

on the probabilityP

(

n−1/2 sup
f∈F

∣
∣
∣
∣
∣

n
∑
j=1

f (ξ j)

∣
∣
∣
∣
∣
> u

)

if u ≥ Tn with an appropriately

chosen numberTn, and try to diminish the numberTn in each step of this induction
procedure. We can prove Proposition 6.2 as a consequence of the result we get by
means of this backward induction procedure. To work out the details we introduce
the following notion.

Definition of good tail behaviour for a class of normalized random sums.Let
us have some measurable space(X,X ) and a probability measureµ on it together
with some integer n≥ 2 and real numberσ > 0. Consider some classF of functions
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f (x) on the space(X,X ), and take a sequence of independent andµ distributed
random variablesξ1, . . . ,ξn with values in the space(X,X ). Define the normalized

random sums Sn( f ) = 1√
n

n
∑
j=1

f (ξ j), f ∈ F . Given some real number T> 0 we say

that the set of normalized random sums Sn( f ), f ∈ F , has a good tail behaviour at
level T (with parameters n andσ2 which will be fixed in the sequel) if the inequality

P

(

sup
f∈F

|Sn( f )| ≥ A
√

nσ2

)

≤ exp
{

−A1/2nσ2
}

(7.6)

holds for all numbers A> T.

Now I formulate Proposition 7.3 and show that Proposition 6.2 follows from it.

Proposition 7.3.Let us fix a positive integer n≥ 2, a real number0< σ ≤ 1 and a
probability measureµ on a measurable space(X,X ) together with some numbers
L ≥ 1 and D≥ 1 such that nσ2 ≥ L logn+ logD. Let us consider those countable
L2-dense classesF of functions f= f (x) on the space(X,X ) with exponent L and
parameter D for which all functions f∈ F satisfy the conditionssup

x∈X
| f (x)| ≤ 1

4,
∫

f (x)µ(dx) = 0 and
∫

f 2(x)µ(dx)≤ σ2.
Let a number T> 1 be such that for all classes of functionsF which satisfy the

above conditions the set of normalized random sums Sn( f ) = 1√
n

n
∑
j=1

f (ξ j), f ∈ F ,

defined with the help of a sequence of independentµ distributed random variables
ξ1, . . . ,ξn have a good tail behaviour at level T4/3. There is a universal constant̄A0

such that if T≥ Ā0, then the set of the above defined normalized sums, Sn( f ),
f ∈ F , have a good tail behaviour for all such classes of functionsF not only at
level T4/3 but also at level T .

Proposition 6.2 simply follows from Proposition 7.3. To show this let us first
observe that a class of normalized random sumsSn( f ), f ∈ F , has a good tail
behaviour at levelT0 =

1
4σ2 if this class of functionsF satisfies the conditions of

Proposition 7.3. Indeed, in this case

P

(

sup
f∈F

|Sn( f )| ≥ A
√

nσ2

)

≤ P

(

sup
f∈F

|Sn( f )|>
√

n
4

)

= 0

for all A> T0. Then the repetitive application of Proposition 7.3 yields that a class

of random sumsSn( f ), f ∈ F , has a good tail behaviour at all levelsT ≥ T(3/4) j

0

with an index j such thatT(3/4) j

0 ≥ Ā0 if the class of functionsF satisfies the con-

ditions of Proposition 7.3. Hence it has a good tail behaviour for T = Ā4/3
0 with the

numberĀ0 appearing in Proposition 7.3. If a class of functionsf ∈ F satisfies the

conditions of Proposition 6.2, then the class of functionsF̄ =
{

f̄ = f
4 : f ∈ F

}

satisfies the conditions of Proposition 7.3, with the same parametersσ , L andD.
(Actually some of the inequalities that must hold for the elements of a class of
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functionsF satisfying the conditions of Proposition 7.3 are valid withsmaller
parameters. But we did not change these parameters to satisfy also the condition
nσ2 ≥ L logn+ logD.) Hence the class of functionsSn( f̄ ), f̄ ∈ F̄ , has a good tail

behaviour at levelT = Ā4/3
0 . This implies that the original class of functionsF

satisfies formula (6.4) in Proposition 6.2, and this is what we had to show.

Proof of Proposition 7.3.Fix a class of functionsF which satisfies the conditions
of Proposition 7.3 together with two independent sequencesξ1, . . . ,ξn andε1, . . . ,εn

of independent random variables, whereξ j is µ-distributed,P(ε j = 1) = P(ε j =
−1) = 1

2, 1≤ j ≤ n, and investigate the conditional probability

P( f ,A|ξ1, . . . ,ξn) = P

(

1√
n

∣
∣
∣
∣
∣

n

∑
j=1

ε j f (ξ j)

∣
∣
∣
∣
∣
≥ A

6

√
nσ2

∣
∣
∣
∣
∣
ξ1, . . . ,ξn

)

for all functions f ∈ F , A > T and values(ξ1, . . . ,ξn) in the condition. By the
Hoeffding inequality formulated in Theorem 3.4

P( f ,A|ξ1, . . . ,ξn)≤ 2exp

{

−
1
36A2nσ4

2S̄2( f ,ξ1, . . . ,ξn)

}

(7.7)

with

S̄2( f ,x1, . . . ,xn) =
1
n

n

∑
j=1

f 2(x j), f ∈ F .

Let us introduce the set

H = H(A) =

{

(x1, . . . ,xn) : sup
f∈F

S̄2( f ,x1, . . . ,xn)≥
(

1+A4/3
)

σ2

}

. (7.8)

I claim that
P((ξ1, . . . ,ξn) ∈ H)≤ e−A2/3nσ2

if A> T. (7.9)

(The setH is the small exceptional set of those points(x1, . . . ,xn) for which we
cannot give a good estimate forP( f ,A|ξ1(ω), . . . ,ξn(ω)) with ξ1(ω) = x1,. . . ,
ξn(ω) = xn for somef ∈ F .)

To prove relation (7.9) let us consider the functionsf̄ = f̄ ( f ), f̄ (x) = f 2(x)−
∫

f 2(x)µ(dx), and introduce the class of functions̄F = { f̄ ( f ) : f ∈ F}. Let us
show that the class of functions̄F satisfies the conditions of Proposition 7.3, hence
the estimate (7.6) holds for the class of functions̄F if A> T4/3.

The relation
∫

f̄ (x)µ(dx) = 0 clearly holds. The condition sup| f̄ (x)| ≤ 1
8 < 1

4
also holds if sup| f (x)| ≤ 1

4, and
∫

f̄ 2(x)µ(dx)≤ ∫ f 4(x)µ(dx)≤ 1
16

∫
f 2(x)µ(dx)≤

σ2

16 < σ2 if f ∈F . It remained to show that̄F is anL2-dense class with exponentL
and parameterD. For this goal we need a good estimate on

∫
( f̄ (x)− ḡ(x))2ρ(dx),

where f̄ , ḡ∈ F̄ , andρ is an arbitrary probability measure.
Observe that
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∫

( f̄ (x)− ḡ(x))2ρ(dx)

≤ 2
∫

( f 2(x)−g2(x))2ρ(dx)+2
∫

( f 2(x)−g2(x))2µ(dx)

≤ 2(sup(| f (x)|+ |g(x)|)2
(∫

( f (x)−g(x))2(ρ(dx)+µ(dx)

)

≤
∫

( f (x)−g(x))2ρ̄(dx)

for all f ,g ∈ F , f̄ = f̄ ( f ), ḡ = ḡ(g) and probability measureρ , whereρ̄ = ρ+µ
2 .

This means that if{ f1, . . . , fm} is anε-dense subset ofF in the spaceL2(X,X , ρ̄),
then{ f̄1, . . . , f̄m} is anε-dense subset of̄F in the spaceL2(X,X ,ρ), and not only
F , but alsoF̄ is anL2-dense class with exponentL and parameterD.

Because of the conditions of Proposition 7.3 we can write forthe numberA4/3 >
T4/3 and the class of functions̄F that

P((ξ1, . . . ,ξn) ∈ H)

= P

(

sup
f∈F

(

1
n

n

∑
j=1

f̄ ( f )(ξ j)+
1
n

n

∑
j=1

E f2(ξ j)

)

≥
(

1+A4/3
)

σ2

)

≤ P

(

sup
f̄∈F̄

1√
n

n

∑
j=1

f̄ (ξ j)≥ A4/3n1/2σ2

)

≤ e−A2/3nσ2
,

i.e. relation (7.9) holds.
By formula (7.7) and the definition of the setH given in (7.8) the estimate

P( f ,A|ξ1, . . . ,ξn)≤ 2e−A2/3nσ2/144 if (ξ1, . . . ,ξn) /∈ H (7.10)

holds for all f ∈ F andA> T ≥ 1. (Here we used the estimate 1+A4/3 ≤ 2A4/3.)
Let us introduce the conditional probability

P(F ,A|ξ1, . . . ,ξn) = P

(

sup
f∈F

1√
n

∣
∣
∣
∣
∣

n

∑
j=1

ε j f (ξ j)

∣
∣
∣
∣
∣
≥ A

3

√
nσ2

∣
∣
∣
∣
∣
ξ1, . . . ,ξn

)

for all (ξ1, . . . ,ξn) andA > T. We shall estimate this conditional probability with
the help of relation (7.10) if(ξ1, . . . ,ξn) /∈ H.

Given a vectorx(n) = (x1, . . . ,xn) ∈ Xn, let us introduce the probability measure

ν = ν(x1, . . . ,xn) = ν(x(n)) on (X,X )

which is concentrated in the coordinates of the vectorx(n) = (x1, . . . ,xn), and
ν({x j}) = 1

n for all points x j , j = 1, . . . ,n. If
∫

f 2(u)ν(du) ≤ δ 2 for a function

f , then

∣
∣
∣
∣
∣

1√
n

n
∑
j=1

ε j f (x j)

∣
∣
∣
∣
∣
≤ n1/2∫ | f (u)|ν(du) ≤ n1/2δ . As a consequence, we can

write that
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∣
∣
∣
∣
∣

1√
n

n

∑
j=1

ε j f (x j)−
1√
n

n

∑
j=1

ε jg(x j)

∣
∣
∣
∣
∣
≤ A

6

√
nσ2

if
∫

( f (u)−g(u))2dν(u)≤
(

Aσ2

6

)2

. (7.11)

Remark.We may assume in our proof that the distribution of the randomvariables
ξ j , 1≤ j ≤ n, are non-atomic, and as a consequence we can restrict our attention
to such measuresν(x(n)) for which all coordinates of the vectorx(n) are different.
Otherwise we can define independent and uniformly distributed random variables
on the interval[0,1], η1, . . . ,ηn, which are also independent of the random variables
ξ j , 1 ≤ j ≤ n. With the help of these random variablesη j we can introduce the
random variables̃ξ j = (ξ j ,η j), 1≤ j ≤ n, and the class of functions̃F on the space
X× [0,1] consisting of functions̃f (x,y) = f (x), f ∈ F , with x∈ X and 0≤ y≤ 1.
It is not difficult to see that the random variablesξ̃ j and the class of functions̃F
satisfy the conditions of Proposition 7.3, and the distribution of the random variables
ξ̃ j is non-atomic. Hence we can apply Proposition 7.3 with such achoice, and this
provides the statement of Proposition 7.3 in the original case, too.

Let us list the elements of the (countable) setF as F = { f1, f2, . . .}, fix

the numberδ = Aσ2

6 , and choose for all vectorsx(n) = (x1, . . . ,xn) ∈ Xn a se-
quence of indicesp1(x(n)), . . . , pm(x(n)) taking positive integer values withm =
max(1,Dδ−L) = max(1,D( 6

Aσ2 )
L) elements in such a way that inf

1≤l≤m

∫
( f (u)−

fpl (x(n))
(u))2dν(x(n))(u) ≤ δ 2 for all f ∈ F andx(n) ∈ Xn with the above defined

measureν(x(n)) on the space(X,X ). This is possible because of theL2-dense prop-
erty of the class of functionsF . (This is the point where theL2-dense property of the
class of functionsF is exploited in its full strength.) In a complete proof of Proposi-
tion 7.3 we still have to show that we can choose the indicesp j(x(n)), 1≤ j ≤ m, as
measurable functions of their argumentx(n) on the space(Xn,X n). We shall show
this in Lemma 7.4 at the end of the proof.

Putξ (n)(ω) = (ξ1(ω), . . . ,ξn(ω)). Because of relation (7.11), the choice of the
numberδ and the property of the functionsfpl (x(n))

(·) we have

{

ω : sup
f∈F

1√
n

∣
∣
∣
∣
∣

n

∑
j=1

ε j(ω) f (ξ j(ω))

∣
∣
∣
∣
∣
≥ A

3

√
nσ2

}

(7.12)

⊂
m⋃

l=1

{

ω :
1√
n

∣
∣
∣
∣
∣

n

∑
j=1

ε j(ω) fpl (ξ (n)(ω))(ξ j(ω))

∣
∣
∣
∣
∣
≥ A

6

√
nσ2

}

.

We can estimate the conditional probability at the right-hand side of (7.12) under
the condition that the vector(ξ1(ω), . . . ,ξn(ω)) takes such a prescribed value for
which(ξ1(ω), . . . ,ξn(ω)) ∈ H. We get with the help of (7.12), inequality (7.10) and
the definition of the quantityP( f ,A|ξ1, . . . ,ξn) before formula (7.7) that
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P(F ,A|ξ1, . . . ,ξn) ≤
m

∑
l=1

P( fpl (ξ (n)),A|ξ1, . . . ,ξn)

≤ 2max

(

1,D

(
6

Aσ2

)L
)

e−A2/3nσ2/144

if (ξ1, . . . ,ξn) /∈ H andA> T. (7.13)

If A ≥ Ā0 with a sufficiently large constant̄A0, then this inequality together with
Lemma 7.2 and the estimate (7.9) imply that

P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

f (ξ j)

∣
∣
∣
∣
∣
≥ An1/2σ2

)

≤ 4P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

ε j f (ξ j)

∣
∣
∣
∣
∣
≥ A

3
n1/2σ2

)

(7.14)

≤ max

(

4,8D

(
6

Aσ2

)L
)

e−A2/3nσ2/144+4e−A2/3nσ2
if A> T.

(We may apply Lemma 7.2 ifA ≥ A0 with a sufficiently largeA0, sincenσ2 ≥
L logn+ logD ≥ log2, hence

√
nσ ≥√

log2, and the conditionA≥ 3
√

2√
nσ demanded

in relation (7.2) is satisfied.)
By the conditions of Proposition 7.3 the inequalitiesnσ2 ≥ L logn+ logD hold

with someL ≥ 1, D ≥ 1 andn≥ 2. This implies thatnσ2 ≥ L log2≥ 1
2, ( 6

Aσ2 )
L ≤

( n
2nσ2 )

L ≤ nL = eL logn ≤ enσ2
if A≥ Ā0 with some sufficiently large constant̄A0 > 0,

and 2D = elog2+logD ≤ e3nσ2
. Hence the first term at the right-hand side of (7.14)

can be bounded by

max

(

4,8D

(
6

Aσ2

)L
)

e−A2/3nσ2/144≤ e−A2/3nσ2/144·4e4nσ2 ≤ 1
2

e−A1/2nσ2

if A ≥ Ā0 with a sufficiently largeĀ0. The second term at the right-hand side
of (7.14) can also be bounded as 4e−A2/3nσ2 ≤ 1

2e−A1/2nσ2
with an appropriate choice

of the numberĀ0.
By the above calculation formula (7.14) yields the inequality

P

(

1√
n

sup
f∈F

∣
∣
∣
∣
∣

n

∑
j=1

f (ξ j)

∣
∣
∣
∣
∣
≥ An1/2σ2

)

≤ e−A1/2nσ2

if A> T, and the constant̄A0 is chosen sufficiently large.

To complete the proof of Proposition 7.3 we still show in the following Lemma
7.4 that the functionspl (x(n)), 1≤ l ≤ m, we have introduced in the above argu-
ment can be chosen as measurable functions in the space(Xn,X n). This implies
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that the expressionsfpl (ξ (n)(ω))(ξ j(ω)) in formula (7.12) areF (ξ1, . . . ,ξn) measur-
able random variables. Hence the formulation of (7.13) is legitime, no measurability
problem arises. We shall present Lemma 7.4 together with some generalizations in
Lemma 7.4A and Lemma 7.4B that we shall apply later in the proof of Proposi-
tions 15.3 and 15.4 which are multivariate versions of Proposition 7.3. We shall
need these results in the proof of the multivariate version of Proposition 6.2. We
have formulated them not in their most general possible form, but in the form as we
shall need them.

Lemma 7.4.Let F = { f1, f2, . . .} be a countable and L2-dense class of functions
with some exponent L> 0 and parameter D≥ 1 on a measurable space(X,X ). Fix
some positive integer n, and define for all x(n) = (x1, . . . ,xn) ∈ Xn the probability
measureν(x(n)) = ν(x1, . . . ,xn) on the space(X,X ) by the formulaν(x(n))(x j) =
1
n, 1 ≤ j ≤ n. For a number0 ≤ ε ≤ 1 put m= m(ε) = [Dε−L], where[·] denotes
integer part. For all0≤ ε ≤ 1 there exists m= m(ε) measurable functions pl (x(n)),
1≤ l ≤ m, on the measurable space(Xn,X n) with positive integer values in such a
way that inf

1≤l≤m

∫
( f (u)− fpl (x(n))

(u))2ν(x(n))(du)≤ ε2 for all x(n) ∈ Xn and f∈ F .

In the proof of Proposition 15.3 we need the following result.

Lemma 7.4A.LetF = { f1, f2, . . .} be a countable and L2-dense class of functions
with some exponent L> 0 and parameter D≥ 1 on the k-fold product(Xk,X k)
of a measurable space(X,X ) with some k≥ 1. Fix some positive integer n, and

define for all vectors x(n) = (x( j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) ∈ Xkn, where x( j)

l ∈ X for
all j and l the probability measureρ(x(n)) in the space(Xk,X k) by the formula

ρ(x(n))(x( j)
l j
, 1≤ j ≤ k, 1≤ l j ≤ n) = 1

nk for all sequences(x(1)l1
, . . . ,x(k)lk

) , 1≤ j ≤ k,

1≤ l j ≤ n, with coordinates of the vector x(n) = (x( j)
l ,1≤ l ≤ n, 1≤ j ≤ k). For all

0≤ ε ≤ 1 there exist m= m(ε) = [Dε−L] measurable functions pr(x(n)), 1≤ r ≤ m,
on the measurable space(Xkn,X kn) with positive integer values in such a way that

inf
1≤r≤m

∫
( f (u)− fpr (x(n))

(u))2ρ(x(n))(du)≤ ε2 for all x(n) ∈ Xkn and f ∈ F .

In the proof of Proposition 15.4 the following result will beneeded.

Lemma 7.4B. Let F = { f1, f2, . . .} be a countable and L2-dense class of func-
tions with some exponent L> 0 and parameter D≥ 1 on the product space
(Xk×Y,X k×Y )with some measurable spaces(X,X ) and(Y,Y ) and integer k≥
1. Fix some positive integer n, and define for all vectors x(n) = (x( j,1)

l ,x( j,−1)
l , 1 ≤

l ≤ n, 1 ≤ j ≤ k) ∈ X2kn, where x( j,±1)
l ∈ X for all j and l a probability measure

α(x(n)) in the space(Xk ×Y,X k ×Y ) in the following way. Fix some probabil-

ity measureρ in the space(Y,Y ) and two±1 sequencesε(k)1 = (ε1,1, . . . ,εk,1) and

ε(k)2 = (ε1,2, . . . ,εk,2) of length k. Define with their help first the following proba-

bility measuresα1(x(n)) = α1(x(n),ε
(k)
1 ,ε(k)2 ,ρ) andα2(x(n)) = α2(x(n),ε

(k)
1 ,ε(k)2 ,ρ)

in the space(Xk×Y,X k×Y ) for all x(n) ∈ X 2kn. Let α1(x(n))({x
(1,ε1,1)

l1
}× · · ·×

{x
(k,εk,1)

lk
} ×B) = ρ(B)

nk and α2(x(n))({x
(1,ε1,2)

l1
} × · · · × {x

(k,εk,2)

lk
} ×B) = ρ(B)

nk with
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1≤ l j ≤ n for all 1≤ j ≤ k and B∈Y if x
( j,ε j,1)

l j
and x

( j,ε j,2)

l j
are the appropriate co-

ordinates of the vector x(n) ∈ X2kn. Putα(x(n)) = α1(x
(n))+α2(x

(n))
2 . For all 0≤ ε ≤ 1

there exist m= m(ε) = [Dε−L] measurable functions pr(x(n)), 1 ≤ r ≤ m, on the
measurable space(X2kn,X 2kn) with positive integer values in such a way that

inf
1≤r≤m

∫
( f (u)− fpr (x(n))

(u))2α(x(n))(du)≤ ε2 for all x(n) ∈ X2kn and f ∈ F .

Proof of Lemma 7.4.Fix some 0< ε ≤ 1, put the numberm= m(ε) introduced in
the lemma, and let us list the set of all vectors( j1, . . . , jm) of lengthm with pos-
itive integer coordinates in some way. Define for all of thesevectors( j1, . . . , jm)
the setB( j1, . . . , jm) ⊂ Xn in the following way. The relationx(n) = (x1, . . . ,xn) ∈
B( j1, . . . , jm) holds if and only if inf

1≤r≤m

∫
( f (u)− f jr (u))

2dν(x(n))(u) ≤ ε2 for all

f ∈ F . Then all setsB( j1, . . . , jm) are measurable, and
⋃

( j1,..., jm)
B( j1, . . . , jm) =

Xn becauseF is an L2-dense class of functions with exponentL and parame-
ter D. Given a pointx(n) = (x1, . . . ,xn) let us choose the first vector( j1, . . . , jm) =
( j1(x(n)), . . . , jm(x(n))) in our list of vectors for whichx(n) ∈ B( j1, . . . , jm), and de-
fine pl (x(n)) = j l (x(n)) for all 1≤ l ≤ mwith this vector( j1, . . . , jm). Then the func-
tions pl (x(n)) are measurable, and the functionsfpl (x(n))

, 1 ≤ l ≤ m, defined with

their help together with the probability measuresν(x(n)) satisfy the inequality de-
manded in Lemma 7.4.

The proof of Lemmas 7.4A and 7.4B is almost the same. We only have to modify
the definition of the setsB( j1, . . . , jm) in a natural way. The space of argumentsx(n)

are the spacesXkn andX2kn in these lemmas, and we have to integrate with respect
to the measuresρ(x(n)) in the spaceXk and with respect to the measuresα(x(n)) in
the spaceXk ×Y respectively. The setsB( j1, . . . , jm) are measurable also in these
cases, and the rest of the proof can be applied without any change.





Chapter 8
Formulation of the main results of this work

Former chapters of this work contain estimates about the tail distribution of normal-
ized sums of independent, identically distributed random variables and of the supre-
mum of appropriate classes of such random sums. They were considered together
with some estimates about the tail distribution of the integral of a (deterministic)
function with respect to a normalized empirical distribution and of the supremum
of such integrals. This two kinds of problems are closely related, and to understand
them better it is useful to investigate them together with their natural Gaussian coun-
terpart.

In this chapter I formulate the natural multivariate versions of these results. They
will be proved in the subsequent chapters. To formulate themwe have to introduce
some new notions. I shall also discuss some new problems whose solutions help
in their proof. I finish this chapter with a short overview about the content of the
remaining part of this work.

I start this chapter with the formulation of two results, Theorems 8.1 and 8.2
together with some simple consequences. They yield a sharp estimate about the
tail distribution of a multiple random integral with respect to a normalized empir-
ical distribution and about the analogous problem when the tail distribution of the
supremum of such integrals is considered. These results arethe natural versions of
the corresponding one-variate results about the tail behaviour of an integral or of the
supremum of a class of integrals with respect to a normalizedempirical distribution.
They can be formulated with the help of the notions introduced before, in particular
with the help of the notion of multiple random integrals withrespect to a normalized
empirical distribution introduced in formula (4.8).

To formulate the following two results, Theorems 8.3 and 8.4and their conse-
quences, which are the natural multivariate versions of theresults about the tail
distribution of partial sums of independent random variables, and of the supremum
of such sums we have to make some preparations. First we introduce the so-called
U-statistics which can be considered the natural multivariate generalizations of the
sum of independent and identically distributed random variables. Beside this, ob-
serve that in the one-variate case we had a good estimation about the tail distribu-
tion of sums of independent random variables only if the summands had expectation

61
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zero. We have to find the natural multivariate version of thisproperty. Hence we
define the so-called degenerateU-statistics which can be considered as the natural
multivariate counterparts of sums of independent and identically distributed random
variables with zero expectation. Theorems 8.3 and 8.4 contain estimates about the
tail-distribution of degenerateU-statistics and of the supremum of such expressions.

In Theorems 8.5 and 8.6 I formulate the Gaussian counterparts of the above re-
sults. They deal with multiple Wiener-Itô integrals with respect to a so-called white
noise. The notion of white noise and multiple Wiener–Itô integrals with respect to
it and their properties needed to have a good understanding of these results will be
explained in Chapter 10. Still two results are discussed in this chapter. They are Ex-
amples 8.7 and 8.8, which state that the estimates of Theorems 8.5 and 8.3 are in a
certain sense sharp.

To formulate the first two results of this chapter let us consider a sequence of
independent and identically distributed random variablesξ1, . . . ,ξn with values in a
measurable space(X,X ). Let µ denote the distribution of the random variablesξ j ,
and introduce the empirical distribution of the sequenceξ1, . . . ,ξn defined in (4.5).
Given a measurable functionf (x1, . . . ,xk) on thek-fold product space(Xk,X k)
consider its integralJn,k( f ) with respect to thek-fold product of the normalized
empirical distribution

√
n(µn−µ) defined in formula (4.8). In the definition of this

integral the diagonalsx j = xl , 1 ≤ j < l ≤ k, were omitted from the domain of
integration. The following Theorem 8.1 can be considered asthe multiple integral
version of Bernstein’s inequality formulated in Theorem 3.1.

Theorem 8.1 (Estimate on the tail distribution of a multiple random integral
with respect to a normalized empirical distribution). Let us take a measurable
function f(x1, . . . ,xk) on the k-fold product(Xk,X k) of a measurable space(X,X )
with some k≥ 1 together with a non-atomic probability measureµ on (X,X ) and
a sequence of independent and identically distributed random variablesξ1, . . . ,ξn

with distributionµ on (X,X ). Let the function f satisfy the conditions

‖ f‖∞ = sup
x j∈X, 1≤ j≤k

| f (x1, . . . ,xk)| ≤ 1, (8.1)

and
‖ f‖2

2 =
∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)≤ σ2 (8.2)

with some constant0< σ ≤ 1. There exist some constants C=Ck > 0 andα = αk >
0 such that the random integral Jn,k( f ) defined in formulas (4.5) and (4.8) satisfies
the inequality

P(|k!Jn,k( f )|> u)≤Cmax
(

e−α(u/σ)2/k
,e−α(nu2)1/(k+1)

)

(8.3)

for all u > 0. The constants C= Ck > 0 and α = αk > 0 in formula (8.3) depend
only on the parameter k.

Theorem 8.1 can be reformulated in the following equivalentform.
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Theorem 8.1′. Under the conditions of Theorem 8.1

P(|k!Jn,k( f )|> u)≤Ce−α(u/σ)2/k
for all 0< u≤ nk/2σk+1 (8.4)

with a numberσ , 0 ≤ σ ≤ 1, satisfying relation in (8.2) and some universal con-
stants C=Ck > 0, α = αk > 0, depending only on the multiplicity k of the integral
Jn,k( f ).

Theorem 8.1 clearly implies Theorem 8.1′, since in the caseu ≤ nk/2σk+1

the first term is larger than the second one in the maximum at the right-hand
side of formula (8.3). On the other hand, Theorem 8.1′ implies Theorem 8.1 also
if u > nk/2σk+1. Indeed, in this case Theorem 8.1′ can be applied withσ̄ =
(
un−k/2

)1/(k+1) ≥ σ if u ≤ nk/2, since the condition 0< σ̄ ≤ 1 is satisfied. This

yields thatP
(
|k!Jn,k( f )|> u

)
≤Cexp

{

−α
(

u
σ̄
)2/k

}

=Cexp
{

−α(nu2)1/(k+1)
}

if

nk/2 ≥ u > nk/2σk+1, and relation (8.3) holds in this case. Ifu > 2knk/2, then
P(k!|Jn,k( f )|> u) = 0, and ifnk/2 ≤ u< 2knk/2, then

P(|k!Jn,k( f )|> u)≤ P(|k!Jn,k( f )|> nk/2)

≤Cexp
{

−α((n·nk/2)2)1/(k+1)
}

≤Cexp
{

−2−kα(nu2)1/(k+1)
}

.

Hence relation (8.3) holds (with a possibly different parameterα) in these cases,
too.

Theorem 8.1 or Theorem 8.1′ state that the tail distributionP(k!|Jn,k( f )| > u)
of thek-fold random integralk!Jn,k( f ) can be bounded similarly to the probability
P(|const.σηk| > u), whereη is a random variable with standard normal distribu-
tion, and the number 0≤ σ ≤ 1 satisfies relation (8.2), provided that the levelu
we consider is less thannk/2σk+1. As we shall see later (see Corollary 1 of The-
orem 9.4), the value of the numberσ2 in formula (8.2) is closely related to the
variance ofk!Jn,k( f ). At the end of this chapter an example is given which shows
that the conditionu≤ nk/2σk+1 is really needed in Theorem 8.1′.

The next result, Theorem 8.2, is the generalization of Theorem 4.1′ for multiple
random integrals with respect to a normalized empirical measure. In its formula-
tion the notions ofL2-dense classes and countably approximability introduced in
Chapter 4 are applied.

Theorem 8.2 (Estimate on the supremum of multiple random integrals with re-
spect to an empirical distribution). Let us have a non-atomic probability measure
µ on a measurable space(X,X ) together with a countable and L2-dense class
F of functions f= f (x1, . . . ,xk) of k variables with some parameter D≥ 2 and
exponent L≥ 1 on the product space(Xk,X k) which satisfies the conditions

‖ f‖∞ = sup
x j∈X, 1≤ j≤k

| f (x1, . . . ,xk)| ≤ 1, for all f ∈ F (8.5)

and
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‖ f‖2
2 = E f2(ξ1, . . . ,ξk) =

∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)≤ σ2

for all f ∈ F (8.6)

with some constant0<σ ≤ 1. There exist some constants C=C(k)> 0, α =α(k)>
0 and M= M(k) > 0 depending only on the parameter k such that the supremum
of the random integrals k!Jn,k( f ), f ∈ F , defined by formula (4.8) satisfies the in-
equality

P

(

sup
f∈F

|k!Jn,k( f )| ≥ u

)

≤Cexp

{

−α
( u

σ

)2/k
}

for those numbers u

for which nσ2 ≥
( u

σ

)2/k
≥ M(L3/2 log

2
σ
+(logD)3/2), (8.7)

where the numbers D and L agree with the parameter and exponent of the L2-dense
classF .

The condition about the countable cardinality of the classF can be replaced
by the weaker condition that the class of random variables k!Jn,k( f ), f ∈ F , is
countably approximable.

The condition given for the numberu in formula (8.7) appears in Theorem 8.2
for a similar reason as the analogous condition formulated in (4.4) in its one-variate
counterpart, Theorem 4.1. The lower bound is needed, since we have a good es-
timate in formula (8.7) only foru ≥ E sup

f∈F

|k!Jn,k( f )|. The upper bound appears,

since we have a good estimate in Theorem 8.1′ only for 0< u ≤ nk/2σk+1. If a
pair of numbers(u,σ) does not satisfy condition (8.7), then we may try to get an
estimate by increasing the numberσ or decreasing the numberu.

To formulate such a version of Theorems 8.1 and 8.2 which corresponds to the
results about sums of independent random variables in the casek= 1 the following
notions will be introduced.

Definition of U-statistics.Let us consider a function f= f (x1, . . . ,xk) on the k-th
power(Xk,X k) of a space(X,X ) together with a sequence of independent and
identically distributed random variablesξ1, . . . ,ξn, n≥ k, which take their values in
this space(X,X ). The expression

In,k( f ) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k,
l j 6=l j′ if j 6= j ′

f
(
ξl1, . . . ,ξlk

)
(8.8)

is called a U-statistic of order k with the sequenceξ1, . . . ,ξn, and kernel function f .

Remark.In later calculations sometimes we shall work withU-statistics with kernel
functions of the formf (xu1, . . . ,xuk) instead off (x1, . . . ,xk), where{u1, . . . ,uk} is
an arbitrary set with different elements. TheU-statistic with such a kernel function
will also be defined, and it equals theU-statistic with the original kernel functionf
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defined in (8.8), i.e.

In,k( f (xu1, . . . ,xuk)) = In,k( f (x1, . . . ,xk)). (8.9)

(Observe that if we define the functionfπ(x1, . . . ,xk) = f (xπ(1), . . . ,xπ(k)) for all
permutationsπ of the set{1, . . . ,k}, thenIn,k( fπ) = In,k( f ), hence the above defini-
tion is legitimate.) Such a definition is natural, and it simplifies the notation in some
calculations. A similar convention will be introduced about Wiener–It̂o integrals in
Chapter 10.

Some specialU-statistics, called degenerateU-statistics, will also be introduced.
They can be considered as the natural multivariate version of sums of identically dis-
tributed random variables with expectation zero. DegenerateU-statistics will be de-
fined together with canonical kernel functions, because these two notions are closely
related. For the sake of simpler notation in later discussions we shall allow general
indexation of the variables in the definition of canonical functions, and we shall
consider functions of the formf (xl1, . . . ,xlk) instead off (x1, . . . ,xk).

Definition of degenerateU-statistics. A U-statistic In,k( f ) of order k with a se-
quence of independent and identically distributed random variables ξ1, . . . ,ξn is
called degenerate if its kernel function f(x1, . . . ,xk) satisfies the relation

E( f (ξ1, . . . ,ξk)|ξ1 = x1, . . . ,ξ j−1 = x j−1,ξ j+1 = x j+1, . . . ,ξk = xk) = 0

for all 1≤ j ≤ k and xs ∈ X, s 6= j.

Definition of a canonical function. A function f(xl1, . . . ,xlk) taking values in the
k-fold product of a measurable space(X,X ) is called a canonical function with
respect to a probability measureµ on (X,X ) if

∫

f (xl1, . . . ,xl j−1,u,xl j+1, . . . ,xlk)µ(du) = 0

for all 1≤ j ≤ k and xls ∈ X, s 6= j. (8.10)

For the sake of more convenient notations in the subsequent part of this work we
shall also speak ofU-statistics of order zero. We shall writeIn,0(c) = c for any con-
stantc, andIn,0(c) will be called a degenerateU-statistic of order zero. A constant
will be considered as a canonical function with zero arguments.

It is clear that aU-statisticIn,k( f ) with kernel function f and independentµ-
distributed random variablesξ1, . . . ,ξn is degenerate if and only if its kernel function
is canonical with respect to the probability measureµ . Let us also observe that

In,k( f ) = In,k(Sym f ) (8.11)

for all functions ofk variables.
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The next two results, Theorems 8.3 and 8.4, deal with degenerateU-statistics.
Theorem 8.3 is theU-statistic version of Theorem 8.1, and Theorem 8.4 is theU-
statistic version of Theorem 8.2. Actually Theorem 8.3 yields a sharper estimate
than Theorems 8.1, because it contains more explicit and better universal constants.
I shall return to this point later.

Theorem 8.3 (Estimate on the tail distribution of a degenerate U-statistic).
Let us have a measurable function f(x1, . . . ,xk) on the k-fold product(Xk,X k),
k ≥ 1, of a measurable space(X,X ) together with a probability measureµ on
(X,X ) and a sequence of independent and identically distributed random variables
ξ1, . . . ,ξn, n ≥ k, with distributionµ on (X,X ). Let us consider the U-statistic
In,k( f ) of order k with this sequence of random variablesξ1, . . . ,ξn. Assume that
this U-statistic is degenerate, i.e. its kernel function f(x1, . . . ,xk) is canonical with
respect to the measureµ . Let us also assume that the function f satisfies condi-
tions (8.1) and (8.2) with some number0< σ ≤ 1. Then there exist some constants
A = A(k) > 0 and B= B(k) > 0 depending only on the order k of the U-statistic
In,k( f ) such that

P(n−k/2|k!In,k( f )|> u)≤ Aexp






− u2/k

2σ2/k
(

1+B
(
un−k/2σ−(k+1)

)1/k
)






(8.12)

for all 0≤ u≤ nk/2σk+1.

Let us also formulate the following simple corollary of Theorem 8.3.

Corollary of Theorem 8.3. Under the conditions of Theorem 8.3 there exist some
universal constants C=C(k)> 0 andα = α(k)> 0 that

P(n−k/2|k!In,k( f )|> u)≤Cexp

{

−α
( u

σ

)2/k
}

for all 0≤ u≤ nk/2σk+1.

(8.13)

The following estimate holds about the supremum of degenerateU-statistics.

Theorem 8.4 (Estimate on the supremum of degenerateU-statistics).Let us have
a probability measureµ on a measurable space(X,X ) together with a countable
and L2-dense classF of functions f= f (x1, . . . ,xk) of k variables with some pa-
rameter D≥ 2 and exponent L≥ 1 on the product space(Xk,X k) which satisfies
conditions (8.5) and (8.6) with some constant0 < σ ≤ 1. Let us take a sequence
of independentµ distributed random variablesξ1, . . . ,ξn, n≥ k, and consider the
U-statistics In,k( f ) with these random variables and kernel functions f∈ F . Let us
assume that all these U-statistics In,k( f ), f ∈F , are degenerate, or in an equivalent
form, all functions f∈ F are canonical with respect to the measureµ . Then there
exist some constants C= C(k) > 0, α = α(k) > 0 and M= M(k) > 0 depending
only on the parameter k such that the inequality



8 Formulation of the main results of this work 67

P

(

sup
f∈F

n−k/2|k!In,k( f )| ≥ u

)

≤Cexp

{

−α
( u

σ

)2/k
}

holds for those

numbers u for which nσ2 ≥
( u

σ

)2/k
≥ M(L3/2 log

2
σ
+(logD)3/2),

(8.14)

where the numbers D and L agree with the parameter and exponent of the L2-dense
classF .

The condition about the countable cardinality of the classF can be replaced
by the weaker condition that the class of random variables n−k/2In,k( f ), f ∈ F , is
countably approximable.

Next I formulate a Gaussian counterpart of the above results. To do this I need
some notions that will be introduced in Chapter 10. In that chapter the white noise
with a reference measureµ will be defined. It is an appropriate set of jointly Gaus-
sian random variables indexed by those measurable setsA∈ X of a measure space
(X,X ,µ) with a σ -finite measureµ for which µ(A) < ∞. Its distribution depends
on the measureµ which will be called the reference measure of the white noise.

In Chapter 10 it will also be shown that given a white noiseµW with a non-atomic
σ -additive reference measureµ on a measurable space(X,X ) and a measurable
function f (x1, . . . ,xk) of k variables on the product space(Xk,X k) such that

∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)≤ σ2 < ∞ (8.15)

ak-fold Wiener-It̂o integral of the functionf with respect to the white noiseµW

Zµ ,k( f ) =
1
k!

∫

f (x1, . . . ,xk)µW(dx1) . . .µW(dxk) (8.16)

can be defined, and the main properties of this integral will be proved there. It will
be seen that Wiener-Itô integrals have a similar relation to degenerateU-statistics
and multiple integrals with respect to normalized empirical measures as normally
distributed random variables have to partial sums of independent random variables.
Hence it is useful to find the analogues of the previous results to estimates about the
tail distribution of Wiener-It̂o integrals. This will be done in Theorems 8.5 and 8.6.

Theorem 8.5 (Estimate on the tail distribution of a multiple Wiener–It ô inte-
gral). Let us fix a measurable space(X,X ) together with aσ -finite non-atomic
measureµ on it, and letµW be a white noise with reference measureµ on (X,X ).
If f (x1, . . . ,xk) is a measurable function on(Xk,X k) which satisfies relation (8.15)
with some0< σ < ∞, then

P(|k!Zµ ,k( f )|> u)≤Cexp

{

−1
2

( u
σ

)2/k
}

(8.17)

for all u > 0 with some constants C=C(k) depending only on k.
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Theorem 8.6 Estimate on the supremum of Wiener–It̂o integrals). Let F be a
countable class of functions of k variables defined on the k-fold product(Xk,X k)
of a measurable space(X,X ) such that
∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)≤ σ2 with some 0< σ ≤ 1 for all f ∈ F

with some non-atomicσ -additive measureµ on (X,X ). Let us also assume that
F is an L2-dense class of functions in the space(Xk,X k) with respect to the mea-
sure µk with some exponent L≥ 1 and parameter D≥ 1, whereµk is the k-fold
product of the measureµ . (The classes of L2-dense classes with respect to a mea-
sure were defined in Chapter 4.)

Take a white noiseµW on (X,X ) with reference measureµ , and define the
Wiener–It̂o integrals Zµ ,k( f ) for all f ∈ F . Fix some0< ε ≤ 1. The inequality

P

(

sup
f∈F

|k!Zµ ,k( f )|> u

)

≤CDexp

{

−1
2

(
(1− ε)u

σ

)2/k
}

(8.18)

holds for those numbers u which satisfy the inequality u≥ MLk/2σ 1
ε (logk/2 2

ε +

logk/2 2
σ ). Here C=C(k)> 0, M = M(k)> 0 are some universal constants depend-

ing only on the multiplicity k of the integrals.

Remark:Theorem 8.6 is the multivariate version of Theorem 4.2 aboutthe tail distri-
bution of the supremum of Gaussian random variables. In Theorem 4.2 we could get
good estimates for such levelsu which satisfy the inequalityu ≥ const.σ log1/2 2

σ
with an appropriate constant, while in Theorem 8.6 we had a similar estimate under
the conditionu ≥ const.σ logk/2 2

σ with an appropriate constant. In Chapter 4 we
presented an example which shows that the above condition onthe levelu in The-
orem 4.2 cannot be dropped. A similar example can be given about the necessity
of the analogous condition in Theorem 8.6 with the help of thesubsequent Exam-
ple 8.7.

Put fs,t(u1, . . . ,uk) =
k
∏
j=1

f 0
s,t(u j), where f 0

s,t(u) denotes the indicator function of

the interval[s, t]. Take the class of functions

F = Fσ = { fs,t : 0≤ s< t ≤ 1, t −s≤ σ2/k, s andt are rational},

and define for all functionsfs,t ∈ F thek-fold Wiener–It̂o integral

Z( fs,t) =
1
k!

∫

fs,t(u1, . . . ,uk)W(du1) . . .W(duk).

ThenEZ( fs,t)2 ≤ σ2

k! for all fs,t ∈F , and it can be seen with the help of Example 8.7
similarly to the corresponding argument applied in Chapter4 that there is somec> 0

such thatP

(

sup
fs,t∈Fσ

Z( fs,t)> cσ logk/2 2
σ

)

→ 1 asσ → 0. Beside this, it can be seen
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thatF is anL2-dense class with respect to the Lebesgue measure. This implies that
the lower bound imposed onu in Theorem 8.6 cannot be dropped. I omit the details
of the proof.

Formula (8.18) yields an almost as good estimate for the supremum of Wiener–
Itô integrals with the choice of a smallε > 0 as formula (8.17) for a single Wiener–
Itô integral. But the lower bound imposed on the numberu in the estimate (8.18)
depends onε, and for a small numberε > 0 it is large.

The subsequent result presented in Example 8.7 may help to understand why
Theorems 8.3 and 8.5 are sharp. Its proof and the discussion of the question about
the sharpness of Theorems 8.3 and 8.5 will be postponed to Chapter 13.

Example 8.7 (A converse estimate to Theorem 8.5).Let us have aσ -finite mea-
sureµ on some measure space(X,X ) together with a white noiseµW on (X,X )
with counting measureµ . Let f0(x) be a real valued function on(X,X ) such that
∫

f0(x)2µ(dx) = 1, and take the function f(x1, . . . ,xk) = σ f0(x1) · · · f0(xk) with
some numberσ > 0 together with the Wiener–Itô integral Zµ ,k( f ) introduced in
formula (8.16).

Then the relation
∫

f (x1, . . . ,xk)
2 µ(dx1) . . . µ(dxk) = σ2 holds, and the Wiener–

Itô integral Zµ ,k( f ) satisfies the inequality

P(|k!Zµ ,k( f )|> u)≥ C̄
(

u
σ
)1/k

+1
exp

{

−1
2

( u
σ

)2/k
}

for all u > 0 (8.19)

with some constant̄C> 0.

The above results show that multiple integrals with respectto a normalized em-
pirical distribution or degenerateU-statistics satisfy some estimates similar to those
about multiple Wiener–It̂o integrals, but they hold under more restrictive conditions.
The difference between the estimates in these problems is similar to the difference
between the corresponding results in Chapter 4 whose reasonwas explained there.
Hence this will be only briefly discussed here.

The estimates of Theorem 8.1 and 8.3 are similar to that of Theorem 8.5. More-
over, for 0≤ u ≤ εnk/2σk+1 with a small numberε > 0 Theorem 8.3 yields an
almost as good estimate about degenerateU-statistics as Theorem 8.5 yields for
a Wiener–It̂o integral with the same kernel functionf and underlying measureµ .
Example 8.7 shows that the constant in the exponent of formula (8.17) cannot be im-
proved, at least there is no possibility of an improvement ifonly theL2-norm of the
kernel functionf is known. Some results discussed later indicate that neither the es-
timate of Theorem 8.3 can be improved. The main difference between Theorem 8.5
and the results of Theorem 8.1 or 8.3 is that in the latter casethe kernel functionf
must satisfy not only anL2 but also anL∞ norm type condition, and the estimates
of these results are formulated under the additional condition u≤ nk/2σk+1. It can
be shown that the condition about theL∞ norm of the kernel function cannot be
dropped from the conditions of these theorems, and a versionof Example 3.3 will
be presented in Example 8.8 which shows that in the caseu ≫ nk/2σk+1 the left-
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hand side of (8.12) may satisfy only a much weaker estimate. This estimate will be
given only fork= 2, but with some work it can be generalized for general indicesk.

Theorems 8.2, 8.4 and 8.6 show that for the tail distributionof the supremum of
a not too large class of degenerateU-statistics or multiple integrals a similar upper
bound can be given as for the tail distribution of a single degenerateU-statistic or
multiple integral, only the universal constants may be worse in the new estimates.
However, they hold only under the additional condition thatthe level at which the
tail distribution of the supremum is estimated is not too low. A similar phenomenon
appeared already in the results of Chapter 4. Moreover, sucha restriction had to be
imposed in the formulation of the results here and in Chapter4 for the same reason.

In Theorem 8.2 and 8.4 anL2-dense class of kernel functions was considered,
and this meant that the class of random integrals orU-statistics we consider in this
result is not too large. In Theorem 8.6 a similar, but weaker condition was imposed
on the class of kernel functions. They had to satisfy a similar condition, but only
for the reference measureµ of the white noise appearing in the Wiener–Itô inte-
gral. A similar difference appears in the comparison of Theorems 4.1 or 4.1′ with
Theorem 4.2, and this difference has the same reason in the two cases.

Next I present the proof of the following Example 8.8 which isa multivariate
version of Example 3.3. For the sake of simplicity I restrictmy attention to the case
k= 2.

Example 8.8 (A converse estimate to Theorem 8.3).Let us take a sequence of
independent and identically distributed random variablesξ1, . . . ,ξn with values in
the plane X= R2 such thatξ j = (η j,1,η j,2), η j,1 andη j,2 are independent random
variables with the following distributions. The distribution of η j,1 is defined with
the help of a parameterσ2, 0< σ2 ≤ 1

8, in the same way as the distribution of the
random variables Xj in Example 3.3, i.e.η j,1 = η̄ j,1−Eη̄ j,1 with P(η̄ j,1 = 1) = σ̄2,
P(η̄ j,1 = 0) = 1− σ̄2, whereσ̄2 is that solution of the equation x2 − x+σ2 = 0,
which is smaller than12. The distribution of the random variablesη j,2 is given by the
formula P(η j,2 = 1) = P(η j,2 = −1) = 1

2 for all 1≤ j ≤ n. Introduce the function
f (x,y) = f ((x1,x2),(y1,y2)) = x1y2 + x2y1, x= (x1,x2) ∈ R2, y= (y1,y2) ∈ R2 if
(x,y) is in the support of the distribution of the random vector(ξ1,ξ2), i.e. if x1 and
y1 take the values1− σ̄2 or −σ̄2 and x2 and y2 take the values±1. Put f(x,y) = 0
otherwise. Define the U-statistic

In,2( f ) =
1
2 ∑

1≤ j,k≤n, j 6=k

f (ξ j ,ξk) =
1
2 ∑

1≤ j,k≤n, j 6=k

(η j,1ηk,2+ηk,1η j,2)

of order 2 with the above kernel function f and sequence of independent random
variablesξ1, . . . ,ξn. Then In,2( f ) is a degenerate U-statistic such that|supf (x,y)| ≤
1 and E f2(ξ j ,ξ j) = σ2.

If u ≥ B1nσ3 with some appropriate constant B1 > 2, B̄−1
2 n≥ u≥ B̄2n−1/2 with

a sufficiently large fixed number̄B2 > 0 and 1
4 ≥ σ2 ≥ 1

n2 , and n is a sufficiently
large number, then the estimate
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P(n−1In,2( f )> u)≥ exp
{

−Bn1/3u2/3 log
( u

nσ3

)}

(8.20)

holds with some B> 0.

Remark:In Theorem 8.3 we got the estimateP(n−1In,2( f ) > u) ≤ e−αu/σ for the
above defined degenerateU-statisticIn,2( f ) if 0 ≤ u ≤ nσ3. In the particular case

u= nσ3 we have the estimateP(n−1In,2( f )> nσ3)≤ e−αnσ2
. On the other hand, the

above example shows that in the caseu≫ nσ3 we can get only a weaker estimate. It
is worth looking at the estimate (8.20) with fixed parametersn andu and to observe
the dependence of the upper bound on the varianceσ2 of In,2( f ). In the caseσ2 =

u2/3n−2/3 we have the upper bounde−αn1/3u2/3
. Example 8.8 shows that in the case

σ2 ≪ u2/3n−2/3 we can get only a relatively small improvement of this estimate. A
similar picture appears as in Example 3.3 in the casek= 1.

It is simple to check that theU-statistic introduced in the above example is de-
generate because of the independence of the random variables η j,1 andη j,2 and the
identity Eη j,1 = Eη j,2 = 0. Beside this,E f(ξ j ,ξ j)

2 = σ2. In the proof of the esti-
mate (8.20) the results of Chapter 3, in particular Example 3.3 can be applied for the
sequenceη j,1, j = 1,2, . . . ,n. Beside this, the following result, known from the the-
ory of large deviations will be applied. IfX1, . . . ,Xn are independent and identically
distributed random variables,P(X1 = 1) = P(X1 = −1) = 1

2, then for any number
0 ≤ α < 1 there exists some numbersC1 = C1(α) > 0 andC2 = C2(α) > 0 such

thatP

(
n
∑
j=1

Xj > u

)

≥C1e−C2u2/n for all 0≤ u≤ αn.

Proof of Example 8.8.The inequality

P(n−1In,2( f )> u) (8.21)

≥ P

((
n

∑
j=1

η j,1

)(
n

∑
j=1

η j,2

)

> 4nu

)

−P

(
n

∑
j=1

η j,1η j,2 > 2nu

)

holds. Because of the independence of the random variablesη j,1 andη j,2 the first
probability at the right-hand side of (8.21) can be bounded from below by bounding
the multiplicative terms in it withv1 = 4n1/3u2/3 andv2 = n2/3u1/3. The first term
will be estimated by means of Example 3.3. This estimate can be applied with the
choicey= v1, since the relationv1 ≥ 4nσ2 holds ifu≥ B1nσ3 with B1 > 1, and the
remaining conditions 0≤ σ2 ≤ 1

8 andn≥ 4v1 ≥ 6 also hold under the conditions of
Example 8.8. The second term can be bounded with the help of the large-deviation
result mentioned after the remark, sincev2 ≤ 1

2n if u≤ B̄−1
2 n with a sufficiently large

B̄2 > 0. In such a way we get the estimate
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P

((
n

∑
j=1

η j,1

)(
n

∑
j=1

η j,2

)

> 4nu

)

≥ P

(
n

∑
j=1

η j,1 > v1

)

P

(
n

∑
j=1

η j,2 > v2

)

≥Cexp

{

−B1v1 log
( v1

nσ2

)

−B2
v2

2

n

}

≥Cexp
{

−B3n1/3u2/3 log
( u

nσ3

)}

with appropriate constantsB1 > 1, B2 > 0 andB3 > 0. On the other hand, by apply-
ing Bennett’s inequality, more precisely its consequence given in formula (3.4) for
the sum of the random variablesXj = η j,1η j,2 at levelnu instead of levelu we get
the following upper bound for the second term at the right-hand side of (8.21).

P

(
n

∑
j=1

η j,1η j,2 > 2nu

)

≤ exp
{

−Knulog
u

σ2

}

≤ exp
{

−2B4n1/3u2/3 log
( u

nσ3

)}

,

sinceEη j,1η j,2 = 0,Eη2
j,1η2

j,2 =σ2, nu≥B1n2σ3 ≥ 2nσ2 because of the conditions
B1 > 2 andnσ ≥ 1. Hence the estimate (3.4) (with parameternu) can be applied in
this case. Beside this, the constantB4 can be chosen sufficiently large in the last
inequality if the numbern or the boundB̄2 in Example 8.8 us chosen sufficiently
large. This means that this term is negligible small. The above estimates imply the
statement of Example 8.8.

Let me remark that under some mild additional restrictions the estimate (8.20)
can be slightly sharpened, the term log can be replaced by log2/3 in the exponent of
the right-hand side of (8.20). To get such an estimate some additional calculation is

needed where the numbersv1 andv2 are replaced by ¯v1 = 4n1/3u2/3 log−1/3
(

u
nσ3

)

andv̄2 = n2/3u1/3 log1/3
(

u
nσ3

)

.

I finish this chapter with a short overview about the remaining part of this work.
In our proofs we needed some results aboutU-statistics, and this is the main

topic of Chapter 9. One of the results discussed there is the so-called Hoeffding
decomposition ofU-statistics to the linear combination of degenerateU-statistics
of different order. We also needed some additional results which explain how some
properties (e.g. a bound on theL2 andL∞ norm of a kernel function, theL2-density
property of a classF of kernel function) is inherited if we turn from the original
U-statistics to the degenerateU-statistics appearing in their Hoeffding decomposi-
tion. Chapter 9 contains some results in this direction. Another important result in
it is Theorem 9.4 which yields a decomposition of multiple integrals with respect
to a normalized empirical distribution to the linear combination of degenerateU-
statistics. This result is very similar to the Hoeffding decomposition ofU-statistics.
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The main difference between them is that in the decomposition of multiple integrals
much smaller coefficients appear. Theorem 9.4 makes possible to reduce the proof
of Theorems 8.1 and 8.2 to the corresponding results in Theorems 8.3 and 8.4 about
degenerateU-statistics.

The definition and the main properties of Wiener–Itô integrals needed in the proof
of Theorems 8.5 and 8.6 are presented in Chapter 10. It also contains a result, called
the diagram formula for Wiener–Itô integrals which plays an important role in our
considerations. Beside this, we proved a limit theorem, where we expressed the limit
of normalized degenerateU-statistics with the help of multiple Wiener–Itô integrals.
This result may explain why it is natural to consider Theorem8.5 as the natural
Gaussian counterpart of Theorem 8.5, and Theorem 8.6 as the natural Gaussian
counterpart of Theorem 8.6.

We could prove Bernstein’s and Bennett’s inequality by means of a good estima-
tion of the exponential moments of the partial sums we were investigating. In the
proof of their multivariate versions, in Theorems 8.3 and 8.5 this method does not
work, because the exponential moments we have to bound in these cases may be in-
finite. On the other hand, we could prove these results by means of a good estimate
on the high moments of the random variables whose tail distribution we wanted to
bound. In the proof of Theorem 8.5 the moments of multiple Wiener–It̂o integrals
have to be bounded, and this can be done with the help of the diagram formula for
Wiener–It̂o integrals. In Chapter 11 and 12 we proved that there is a version of the
diagram formula for degenerateU-statistics, and this enables us to estimate the mo-
ments needed in the proof of Theorem 8.3. In Chapter 13 we proved Theorems 8.3,
8.5 and a multivariate version of the Hoeffding inequality.At the end of this chapter
we still discussed some results which state that in certain cases when we have some
useful additional information about the behaviour of the kernel function f beside
the upper bound of theirL2 andL∞ norm the estimates of Theorems 8.3 or 8.5 can
be improved.

Chapter 14 contains the natural multivariate versions of the results in Chapter 6.
In Chapter 6 Theorem 4.2 is proved about the supremum of Gaussian random vari-
ables and in Chapter 14 its multivariate version, Theorem 8.6. Both results are
proved with the help of the chaining argument. On the other hand, the chaining
argument is not strong enough to prove Theorem 4.1. But as it is shown in Chap-
ter 6, it enables us to prove a result formulated in Proposition 6.1, and to reduce
the proof of Theorem 4.1 with its help to a simpler result formulated in Proposi-
tion 6.2. One of the results in Chapter 14, Proposition 14.1,is a multivariate version
of Proposition 6.1. We showed that the proof of Theorem 8.4 can be reduced with its
help to the proof of a result formulated in Proposition 14.2,which can be considered
a multivariate version of Proposition 6.2. Chapter 14 contains still another result. It
turned out that it is simpler to work with so-called decoupledU-statistics introduced
in this chapter than with usualU-statistics, because they have more independence
properties. In Proposition 14.2′ a version of Proposition 14.2 is formulated about
degenerateU-statistics, and it is shown with the help of a result of de la Peña and
Montgomery–Smith that the proof of Proposition 14.2, and thus of Theorem 8.4 can
be reduced to the proof of Proposition 14.2′.
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Proposition 14.2′ is proved similarly to its one-variate version, Proposition 6.2.
The strategy of the proof is explained in Chapter 15. The maindifference between
the proof of the two propositions is that since the independence properties exploited
in the proof of Proposition 6.2 hold only in a weaker form in this case, we have
to apply a more refined and more difficult argument. In particular, we have to ap-
ply instead of the symmetrization lemma, Lemma 7.1, a more general version of
it. We presented an appropriate version of this result in Lemma 15.2. It is hard
to check the conditions of Lemma 15.2 when we try to apply it inthe problems
arising in the proof of Proposition 14.2′. This is the reason why we had to prove
Proposition 14.2′ with the help of two inductive propositions, formulated in Propo-
sitions 15.3 and 15.4, while in the proof of Proposition 6.2 it was enough to prove
a single result, presented in Proposition 7.3. We discuss the details of the problems
and the strategy of the proof in Chapter 15. The proof of Propositions 15.3 and 15.4
is given in Chapters 16 and 17. Chapter 16 contains the symmetrization arguments
needed for us, and the proof is completed with its help in Chapter 17.

Finally in Chapter 18 we give an overview of this work, and explain its relation
to some similar researches. The proof of some results is given in the Appendix.



Chapter 9
Some results aboutU-statistics

This chapter contains the proof of the Hoeffding decomposition theorem, an impor-
tant result aboutU-statistics. It states that allU-statistics can be represented as a sum
of degenerateU-statistics of different order. This representation can beconsidered
as the natural multivariate version of the decomposition ofa sum of independent
random variable to the sum of independent random variables with expectation zero
plus a constant (which can be interpreted as a random variable of zero variable).
Some important properties of the Hoeffding decomposition will also be proved. In
particular, it will be investigated how some properties of the kernel function of a
U-statistic is inherited in the behaviour of the kernel functions of theU-statistics in
its Hoeffding decomposition.

If the Hoeffding decomposition of aU-statistic is taken, then theL2 and L∞-
norms of the kernel functions appearing in theU-statistics of the Hoeffding de-
composition will be bounded by means of the corresponding norm of the kernel
function of the originalU-statistic. It will also be shown that if we take a class of
U-statistics with anL2-dense class of kernel functions (and the same sequence of
independent and identically distributed random variablesin the definition of eachU-
statistic) and consider the Hoeffding decomposition of allU-statistics in this class,
then the kernel functions of the degenerateU-statistics appearing in these Hoeffding
decompositions also constitute anL2-dense class. Another important result of this
chapter is Theorem 9.4. It yields a decomposition of ak-fold random integral with
respect to a normalized empirical distribution to the linear combination of degener-
ateU-statistics. This result enables us to derive Theorem 8.1 from Theorem 8.3 and
Theorem 8.2 from Theorem 8.4, and it is also useful in the proof of Theorems 8.3
and 8.4.

Let us first consider the Hoeffding’s decomposition. In the special casek = 1 it

states that the sumSn =
n
∑
j=1

ξ j of independent and identically distributed random

variables can be rewritten asSn =
n
∑
j=1

(ξ j −Eξ j)+

(
n
∑
j=1

Eξ j

)

, i.e. as the sum of

independent random variables with zero expectation plus a constant. We introduced

75
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the convention that a constant is the kernel function of a degenerateU-statistic of
order zero, andIn,0(c) = c for a U-statistic of order zero. I wrote down the above
trivial formula, because Hoeffding’s decomposition is actually its adaptation to a
more general situation. To understand this let us first see how to adapt the above
construction to the casek= 2.

In this case a sum of the form 2In,2( f ) = ∑
1≤ j,k≤n, j 6=k

f (ξ j ,ξk) has to be consid-

ered. Writef (ξ j ,ξk) = [ f (ξ j ,ξk)−E( f (ξ j ,ξk)|ξk)]+E( f (ξ j ,ξk)|ξk) = f1(ξ j ,ξk)+
f̄1(ξk) with f1(ξ j ,ξk) = f (ξ j ,ξk)−E( f (ξ j ,ξk)|ξk), and f̄1(ξk) =E( f (ξ j ,ξk)|ξk) to
make the conditional expectation off1(ξ j ,ξk) with respect toξk equal zero. Re-
peating this procedure for the first coordinate we definef2(ξ j ,ξk) = f1(ξ j ,ξk)−
E( f1(ξ j ,ξk)|ξ j) and f̄2(ξ j) = E( f1(ξ j ,ξk)|ξ j). Let us also writef̄1(ξk) = [ f̄1(ξk)−
E f̄1(ξk)] + E f̄1(ξk) and f̄2(ξ j) = [ f̄2(ξ j)− E f̄2(ξ j)] + E f̄2(ξ j). Simple calcula-
tion shows that 2In,2( f2) is a degenerateU-statistics of order 2, and the identity
2In,2( f ) = 2In,2( f2) + In,1((n− 1)( f̄1 − E f̄1)) + In,1((n− 1)(( f̄2 − E f̄2)) + n(n−
1)E( f̄1 + f̄2) yields the decomposition ofIn,2( f ) into a sum of degenerateU-
statistics of different orders.

Hoeffding’s decomposition can be obtained by working out the details of the
above argument in the general case. But it is simpler to calculate the appropriate
conditional expectations by working with the kernel functions of theU-statistics.
To carry out such a program we introduce the following notations.

Let us consider thek-fold product(Xk,X k,µk) of a measure space(X,X ,µ)
with some probability measureµ , and define for all integrable functionsf (x1, . . . ,xk)
and indices 1≤ j ≤ k the projectionPj f of the functionf to its j-th coordinate, i.e.
integration of the functionf with respect to itsj-th coordinate.

For the sake of simpler notations in our later considerations we shall define
the operatorPj in a slightly more general setting. Let us consider a setA =
{p1, . . . , ps} ⊂ {1, . . . ,k}, putXA =Xp1 ×Xp2 ×·· ·×Xps, X

A =Xp1 ×Xp2 ×·· ·×
Xps, µA = µp1 ×µp2 ×·· ·×µps, take the product space(XA,X A,µA) and if j ∈ A,
then define the operatorPj as mapping a function on this product space to a function
on the product space(XA\{ j},X A\{ j})b by the formula

(Pj f )(xp1, . . . ,xpr−1,xpr+1, . . . ,xps) =
∫

f (xp1, . . . ,xps)µ(dxj), if j = pr . (9.1)

Let us also define the (orthogonal projection) operatorsQ j = I −Pj asQ j f = f −Pj f
for all integrable functionsf on the space(XA,X A,µA), and j ∈ A, i.e. put

(Q j f )(xp1, . . . ,xps) = (I −Pj) f (xp1, . . . ,xps)

= f (xp1, . . . ,xps)−
∫

f (xp1, . . . ,xps)µ(dxj). (9.2)

In the definition (9.1)Pj f is a function not depending on the coordinatex j , but in
the definition ofQ j we introduce the fictive coordinatex j to make the expression
Q j f = f −Pj f meaningful.
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Remark.I shall use the following notation.(Pj f )(xp1, . . . ,xpr−1,xpr+1, . . . ,xps) will
denote the value of the functionPj f in the point(xp1, . . . ,xpr−1,xpr+1, . . . ,xps). On
the other hand, I writePj f (xp1, . . . ,xps) (without parentheses) if I want to denote the
action ofPj to f , but it is more natural to denote also the arguments of the function f .
The same notation will be applied for the operatorQ j .

The following result holds.

Theorem 9.1 (The Hoeffding decomposition ofU-statistics).Let f(x1, . . . ,xk) be
an integrable function on the k-fold product(Xk,X k,µk) of a space(X,X ,µ) with
a probability measureµ . It has a decomposition of the form

f (x1, . . . ,xk) = ∑
V⊂{1,...,k}

fV(x j1, . . . ,x j|V|), (9.3)

with fV(x j1, . . . ,x j|V|) =

(

∏
j∈{1,...,k}\V

Pj ∏
j ′∈V

Q j ′

)

f (x1, . . . ,xk)

with V = { j1, . . . , j|V|}, j1 < j2 < · · · < j|V|, for all V ⊂ {1, . . . ,k}. Beside this,
all functions fV , V ⊂ {1, . . . ,k}, defined in (9.3) are canonical with respect to the
probability measureµ with |V| arguments.

Let ξ1, . . . ,ξn be a sequence of independentµ distributed random variables, and
consider the U-statistics In,k( f ) and In,|V|( fV) corresponding to the kernel functions
f , fV defined in (9.3) and random variablesξ1, . . . ,ξn. Then

k!In,k( f ) = ∑
V⊂{1,...,k}

(n−|V|)(n−|V|−1) · · ·(n−k+1)|V|!In,|V|( fV) (9.4)

is a representation of k!In,k( f ) as a sum of degenerate U-statistics, where|V| de-
notes the cardinality of the set V . (The product(n−|V|)(n−|V|−1) · · ·(n−k+1)
is defined as 1 for V= {1, . . . ,k}, i.e. if |V| = k.) This representation is called the
Hoeffding decomposition of k!In,k( f ).

Proof of Theorem 9.1.Write f =
k
∏
j=1

(Pj + Q j) f . By carrying out the multipli-

cations in this identity and applying the commutativity of the operatorsPj and
Q j for different indices j we get formula (9.3). To show that the functionsfV
in formula (9.3) are canonical let us observe that this property can be rewritten
in the form Pj fV ≡ 0 (in all points (xs, s ∈ V \ { j}) if j ∈ V). SincePj = P2

j ,
and the identityPjQ j = Pj −P2

j = 0 holds for all j ∈ {1, . . . ,k} this relation fol-
lows from the above mentioned commutativity of the operators Pj and Q j , as

Pj fV =

(

∏
s∈{1,...,k}\V

Ps ∏
s∈V\{ j}

Qs

)

PjQ j f = 0. By applying identity (9.3) for all

terms f (ξ j1, . . . ,ξ jk) in the sum defining theU-statistick!In,k( f ) (see formula (8.8))
and then summing them up we get relation (9.4).

In the Hoeffding decomposition we rewrote a generalU-statistic in the form of
a linear combination of degenerateU-statistics. In many applications of this result
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we still we have to know how the properties of the kernel function f of the original
U-statistic are reflected in the properties of the kernel functions fV of the degen-
erateU-statistics taking part in the Hoeffding composition. In particular, we need
a good estimate on theL2 andL∞ norm of the functionsfV by means of the corre-
sponding norm of the functionf . Moreover, if we want to prove estimates on the tail
distribution of the supremum ofU-statisticsIn,k( f ) defined with the help of anL2-
dense class of kernel functionsF with some exponentL and parameterD, then we
may need a similar estimate on the classes of kernel functionsFV = { fV : f ∈ F}
with functionsfV ,V ∈ {1, . . . ,k} appearing in the Hoeffding decomposition of these
functions. We have to show that this class of functions is also L2-dense, and we also
need a good bound on the exponent and parameter of thisL2-dense class. In the next
result such statements will be proved.

Theorem 9.2 (Some properties of the Hoeffding decomposition). Let us consider
a square integrable function f(x1, . . . ,xk) on the k-fold product space(Xk,X k,µk)
and take its decomposition defined in formula (9.3). The inequalities

∫

f 2
V(x j , j ∈V)∏

j∈V
µ(dxj)≤

∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk) (9.5)

and
sup

x j , j∈V
| fV(x j , j ∈V)| ≤ 2|V| sup

x j ,1≤ j≤k
| f (x1, . . . ,xk)| (9.6)

hold for all V ⊂ {1, . . . ,k}. In particular,

f 2
/0 ≤

∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk) for V = /0.

Let us consider an L2-dense classF of functions with some parameter D≥ 1
and exponent L≥ 0 on the space(Xk,X k), take the decomposition (9.3) of all
functions f∈F , and define the classes of functionsFV = {2−|V| fV : f ∈F} for all
V ⊂{1, . . . ,k} with the functions fV taking part in this decomposition. These classes
of functionsFV are also L2-dense with the same parameter D and exponent L for
all V ⊂ {1, . . . ,k}.

Theorem 9.2 will be proved as a consequence of Proposition 9.3 presented below.
To formulate it first some notations will be introduced.

Let us consider the product(Y×Z,Y ×Z ) of two measurable spaces(Y,Y )
and(Z,Z ) together with a probability measureµ on (Z,Z ) and the operator

(P f)(y) = (Pµ f )(y) =
∫

f (y,z)µ(dz), y∈Y, z∈ Z (9.7)

defined for thosey∈Y for which the above integral is finite. LetI denote the identity
operator on the space of functions onY×Z, i.e. let(I f )(y,z) = f (y,z), and introduce
the operatorQ= Qµ = I −P= I −Pµ
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(Qµ f )(y,z) = ((I −Pµ) f )(y,z) = f (y,z)− (Pµ f )(y,z) = f (y,z)−
∫

f (y,z)µ(dz),

(9.8)
defined for those points(y,z) ∈ Y×Z whose first coordinatey is such that the ex-
pression(Pµ f )(y) is meaningful. (Here, and in the sequel a functiong(y) defined
on the space(Y,Y ) will be sometimes identified with the function ¯g(y,z) = g(y) on
the space(Y×Z,Y ×Z ) which actually does not depend on the coordinatez.) The
following result holds:

Proposition 9.3.Let us consider the direct product(Y×Z,Y ×Z ) of two mea-
sure spaces(Y,Y ) and(Z,Z ) together with a probability measureµ on the space
(Z,Z ). Take the transformations Pµ and Qµ defined in formulas (9.7) and (9.8).
Given any probability measureρ on the space(Y,Y ) consider the product mea-
sureρ ×µ on (Y×Z,Y ×Z ). Then the transformations Pµ and Qµ , as maps from
the space L2(Y×Z,Y ×Z ,µ ×ρ) to L2(Y,Y ,ρ) and L2(Y×Z,Y ×Z ,ρ × µ)
respectively, have a norm less than or equal to 1, i.e.

∫

(Pµ f )(y)2ρ(dy)≤
∫

f (y,z)2ρ(dy)µ(dz), (9.9)

and ∫

(Qµ f )(y,z)2ρ(dy)µ(dz)≤
∫

f (y,z)2ρ(dy)µ(dz) (9.10)

for all functions f∈ L2(Y×Z,Y ×Z ,ρ ×µ).
If F is an L2-dense class of functions f(y,z) in the product space(Y×Z,Y ×

Z ), with some parameter D≥ 1 and exponent L≥ 0, then also the classesFµ =

{Pµ f , f ∈ F} andGµ = {1
2Qµ f = 1

2( f −Pµ f ), f ∈ F} are L2-dense classes with
the same exponent L and parameter D in the spaces(Y,Y ) and (Y×Z,Y ×Z )
respectively.

The following corollary of Proposition 9.3 is formally moregeneral, but it is a
simple consequence of this result. Actually we shall need this corollary.

Corollary of Proposition 9.3. Let us consider the product(Y1×Z×Y2,Y1×Z ×
Y2) of three measurable spaces(Y1,Y1), (Z,Z ) and (Y2,Y2) with a probability
measureµ on the space(Z,Z ) and a probability measureρ on Y1×Y2,Y1×Y2),
and define the transformations

(Pµ f )(y1,y2) =
∫

f (y1,z,y2)µ(dz), y1 ∈Y1, z∈ Z, y2 ∈Y2 (9.11)

and

(Qµ f )(y1,z,y2) = ((I −Pµ) f )(y1,z,y2) = f (y1,z,y2)− (Pµ f )(y1,z,y2) (9.12)

= f (y1,z,y2)−
∫

f (y1,z,y2)µ(dz), y1 ∈Y1, z∈ Z, y2 ∈Y2

for the measurable functions f on the space Y1×Z×Y2 integrable with respect the
measureµ ×ρ . Then
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∫

(Pµ f )(y1,y2)
2ρ(dy1, dy2)≤

∫

f (y,z)2(ρ ×µ)(dy1, dz, dy2) (9.13)

for all probability measuresρ on (Y1×Y2,Y1×Y2), whereρ ×µ is the product of
the probability measureρ on (Y1×Y2,Y1×Y2) andµ is a probability measure on
(Z,Z ). Also the inequality
∫

(Qµ f )(y1,z,y2)
2ρ(dy1, dy2)µ(dz)≤

∫

f (y1,z,y2)
2ρ(dy1, dy2)µ(dz) (9.14)

holds for all functions f∈ L2(Y×Z,Y ×Z ,ρ ×µ).
If F is an L2-dense class of functions f(y1,z,y2) on the product space(Y1 ×

Z×Y2,Y1×Z ×Y2), with some parameter D≥ 1 and exponent L≥ 0, then also
the classesFµ = {Pµ f , f ∈ F} andGµ = {1

2Qµ f = 1
2( f −Pµ f ), f ∈ F} are L2-

dense classes with exponent L and parameter D in the spaces(Y1×Y2,Y1×Y2) and
(Y1×Z×Y2,Y1×Z ×Y2) respectively.

This corollary is a simple consequence of Proposition 9.3 ifwe apply it with
(Y,Y )= (Y1×Y2,Y1×Y2) and take the natural mappingf ((y1,y2),z)→ f (y1,z,y2)
of a function from the space(Y×Z,Y ×Z ) to a function on(Y1×Z×Y2,Y1×Z ×
Y2). Beside this, we apply that measure on(Y1×Z×Y2,Y1×Z ×Y2) which is the
image of the product measureρ × µ with respect to the map induced by the above
transformation on the space of measures.

Proposition 9.3, more precisely its corollary implies Theorem 9.2, since it implies
that the operatorsPs, Qs, 1 ≤ s≤ k, applied in Theorem 9.2 do not increase the
L2(µ) norm of a functionf , and it is also clear that the norm ofPs is bounded
by 1, the norm ofQs = I −Ps is bounded by 2 as an operator fromL∞ spaces to
L∞ spaces. The corollary of Proposition 9.3 also implies that if F is anL2-dense
class of functions with parameterD and exponentL, then the same property holds
for the classes of functionsFPs = {Ps f : f ∈ F} and FQs = {1

2Qs f : f ∈ F},

1≤ s≤ k. These relations together with the identityfV =

(

∏
s∈{1,...,k}\V

Ps ∏
s∈V

Qs

)

f

imply Theorem 9.2.

Proof of Proposition 9.3.The Schwarz inequality yields that

(Pµ f )(y)2 ≤
∫

f (y,z)2µ(dz) for all y∈Y,

and integrating this inequality with respect to the probability measureρ(dy) we get
inequality (9.9). Also the inequality

∫

(Qµ f )(y,z)2ρ(dy)µ(dz) =
∫

[ f (y,z)−Pµ f (y,z)]2ρ(dy)µ(dz)

≤
∫

f (y,z)2ρ(dy)µ(dz)
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holds, and this is relation (9.10). This follows for instance from the observation
that the functionsf (y,z)− (Pµ f )(y,z) and(Pµ f )(y,z) are orthogonal in the space
L2(Y×Z,Y ×Z ,ρ ×µ).

Let us consider an arbitrary probability measureρ on the space(Y,Y ). To prove
thatFµ is anL2-dense class with parameterD and exponentL if the same relation
holds forF we have to find for all 0< ε ≤ 1 a set{ f1, . . . , fm} ⊂ Fµ , 1≤ j ≤ m
with m≤ Dε−L elements, such that inf

1≤ j≤m

∫
( f j − f )2dρ ≤ ε2 for all f ∈ Fµ . But a

similar property holds forF in the spaceY×Z with the probability measureρ ×µ .
This property together with the property ofPµ formulated in (9.9) imply thatFµ is
anL2-dense class.

To prove thatGµ is alsoL2-dense with parameterD and exponentL under the
same condition we have to find for all numbers 0< ε ≤ 1 and probability measuresρ
onY×Z a subset{g1, . . . ,gm}⊂Gµ with m≤Dε−L elements such that inf

1≤ j≤m

∫
(g j −

g)2dρ ≤ ε2 for all g∈ Gµ .
To show this let us consider the probability measureρ̃ = 1

2(ρ + ρ̄ × µ) on
(Y×Z,Y ×Z ), whereρ̄ is the projection of the measureρ to (Y,Y ), i.e. ρ̄(A) =
ρ(A× Z) for all A ∈ Y , take a class of functionF0(ε , ρ̃) = { f1, . . . , fm} ⊂ F

with m ≤ Dε−L elements such that inf
1≤ j≤m

∫
( f j − f )2dρ̃ ≤ ε2 for all f ∈ F ,

and put{g1, . . . ,gm} = {1
2Qµ f1, . . . , 1

2Qµ fm}. All functions g ∈ Gµ can be writ-
ten in the formg = 1

2Qµ f with some f ∈ F , and there exists some function
f j ∈F0(ε , ρ̃) such that

∫
( f − f j)

2dρ̃ ≤ ε2. Hence to complete the proof of Proposi-
tion 9.3 it is enough to show that

∫ 1
4(Qµ f −Qµ f̄ )2dρ ≤ ∫ ( f − f̄ )2dρ̃ for all pairs

f , f̄ ∈ F . This inequality holds, since
∫ 1

4(Qµ f −Qµ f̄ )2dρ ≤ ∫ 1
2( f − f̄ )2dρ +

∫ 1
2(Pµ f −Pµ f̄ )2dρ , and

∫
(Pµ f −Pµ f̄ )2dρ =

∫
Pµ( f − f̄ )2dρ̄ ≤ ∫ ( f − f̄ )2d(ρ̄ ×

µ) by formula (9.9). The above relations imply that
∫ 1

4(Qµ f −Qµ f̄ )2dρ ≤ ∫ ( f −
f̄ )2 1

2d(ρ + ρ̄ ×µ) =
∫
( f − f̄ )2d ρ̃ as we have claimed.

Now we shall discuss the relation between Theorem 8.1′ and Theorem 8.3 and
between Theorem 8.2 and Theorem 8.4. First we show that Theorem 8.1 (or Theo-
rem 8.1′) is equivalent to the estimate (8.13) in the corollary of Theorem 8.3 which
is slightly weaker than the estimate (8.12) of Theorem 8.3. We also claim that The-
orems 8.2 and 8.4 are equivalent. Both in Theorem 8.2 and in Theorem 8.4 we can
restrict our attention to the case when the class of functionsF is countable, since the
case of countably approximable classes can be simply reduced to this situation. Let
us remark that integration with respect to the measureµn−µ in the definition (4.8)
of the integralJn,k( f ) yields some kind of normalization which is missing in the
definition of theU-statisticsIn,k( f ). This is the cause why degenerateU-statistics
had to be considered in Theorems 8.3 and 8.4. The deduction ofthe corollary of
Theorem 8.3 from Theorems 8.1′ or of Theorem 8.4 from Theorem 8.2 is fairly
simple if the underlying probability measureµ is non-atomic, since in this case the
identity In,k( f ) = Jn,k( f ) holds for a canonical function with respect to the measure
µ . Let us remark that the non-atomic property of the measureµ is needed in this
argument not only because of the conditions of Theorems 8.1′ and 8.2, but since
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in the proof of the above identity we need the identity
∫

f (x1, . . . ,xk)µ(dxj) ≡ 0
in the case when the domain of integration is not the whole space X but the set
X \{x1, . . . ,x j−1,x j+1, . . . ,xk}.

The case of possibly atomic measuresµ can be simply reduced to the case of non-
atomic measures by means of the following enlargement of thespace(X,X ,µ).
Let us introduce the product space(X̄,X̄ , µ̄) = (X,X ,µ)× ([0,1],B,λ ), where
B is theσ -algebra andλ is the Lebesgue measure on[0,1]. Define the function
f̄ ((x1,u1), . . . ,(xk,uk)) = f (x1, . . . ,xk) in this enlarged space. ThenIn,k( f ) = In,k( f̄ ),
the measurēµ = µ ×λ is non-atomic, and̄f is canonical with respect tōµ if f is
canonical with respect toµ . Hence the corollary of Theorem 8.3 and Theorem 8.4
can be derived from Theorems 8.1′ and 8.2 respectively by proving them first for
their counterpart in the above constructed enlarged space with the above defined
functions.

Also Theorems 8.1′ and 8.2 can be derived from Theorems 8.3 and 8.4 respec-
tively, but this is a much harder problem. To do this let us observe that a random
integralJn,k( f ) can be written as a sum ofU-statistics of different order, and it can
also be expressed as a sum of degenerateU-statistics if Hoeffding’s decomposition
is applied for eachU-statistic in this sum. Moreover, we shall show that the mul-
tiple integral of a functionf of k variables with respect to a normalized empirical
distribution can be decomposed to the linear combination ofdegenerateU-statistics
with the same kernel functionsfV which appeared in Theorem 9.1 with relatively
small coefficients. This is the content of the following Theorem 9.4. For the sake of
a better understanding I shall reformulate it in a more explicit form in the special
casek= 2 in Corollary 2 of Theorem 9.4 at the end of this chapter.

Theorem 9.4 (Decomposition of a multiple random integral with respect to
a normalized empirical measure to a linear combination of degenerateU-
statistics). Let a non-atomic measureµ be given on a measurable space(X,X )
together with a sequence of independent,µ-distributed random variablesξ1, . . . ,ξn.
Take a function f(x1, . . . ,xk) of k variables integrable with respect to the product
measureµk on the product space(Xk,X k), and consider the empirical distribution
µn of the sequenceξ1, . . . ,ξn introduced in (4.5) together with the k-fold random
integral Jn,k( f ) of the function f defined in (4.8). The identity

k!Jn,k( f ) = ∑
V⊂{1,...,k}

C(n,k, |V|)n−|V|/2|V|!In,|V|( fV) (9.15)

holds with the set of (canonical) functions fV(x j , j ∈V) (with respect to the measure
µ) defined in formula (9.3) together with some appropriate real numbers C(n,k, p),
0 ≤ p ≤ k, where In,|V|( fV) denotes the (degenerate) U-statistic of order|V| with
the random variablesξ1, . . . ,ξn and kernel function fV . The constants C(n,k, p) in
formula (9.15) satisfy the inequality|C(n,k, p)| ≤C(k) for all n ≥ k and0≤ p≤ k
with some constant C(k)< ∞ depending only on the order k of the integral Jn,k( f ).
The relationslim

n→∞
C(n,k, p) =C(k, p) hold with some appropriate constant C(k, p)

for all 1≤ p≤ k, and C(n,k,k) = 1.
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Remark.As the proof of Theorem 9.4 will show, the constantC(n,k, p) in for-
mula (9.15) is a polynomial of orderk− 1 of the argumentn−1/2 with some co-
efficients depending on the parametersk and p. As a consequence,C(k, p) equals
the constant term of this polynomial.

Theorems 8.1′ and 8.2 can be simply derived from Theorems 8.3 and 8.4 re-
spectively with the help of Theorem 9.4. Indeed, to get Theorem 8.1′ observe that
formula (9.15) implies the inequality

P(|k!Jn,k( f )|> u)≤ ∑
V⊂{1,...,k}

P

(

n−|V|/2||V|!In,|V|( fV)|>
u

2kC(k)

)

(9.16)

with a constantC(k) satisfying the inequalityp!C(n,k, p) ≤ k!C(k) for all coef-
ficientsC(n,k, p), 1 ≤ p ≤ k, in (9.15). Hence Theorem 8.1′ follows from The-
orem 8.3 and relations (9.5) and (9.6) in Theorem 9.2 by whichthe L2-norm of
the functionsfV is bounded by theL2-norm of the functionf and theL∞-norm of
fV is bounded by 2|V|-times theL∞-norm or f . It is enough to estimate each term
at the right-hand side of (9.16) by means of Theorem 8.3. It can be assumed that
2kC(k) > 1. Let us first assume that also the inequalityu

2kC(k)σ ≥ 1 holds. In this

case formula (8.4) in Theorem 8.1′ can be obtained by means of the estimation of

each term at the right-hand side of (9.16). Observe that exp

{

−α
(

u
2kC(k)σ

)2/s
}

≤

exp

{

−α
(

u
2kC(k)σ

)2/k
}

for all s ≤ k if u
2kC(k)σ ≥ 1. In the other case, when

u
2kC(k)σ ≤ 1, formula (8.4) holds again with a sufficiently largeC > 0, because in

this case its right-hand side of (8.4) is greater than 1.
Theorem 8.2 can be similarly derived from Theorem 8.4 by observing that re-

lation (9.16) remains valid if|Jn,k( f )| is replaced by sup
f∈F

|Jn,k( f )| and |In,|V|( fV)|

by sup
fV∈FV

|In,|V|( fV)| in it, and we have the right to choose the constantM in for-

mula (8.7) of Theorem 8.2 sufficiently large. The only difference in the argument is
that beside formulas (9.5) and (9.6) the last statement of Theorem 9.2 also has to be
applied in this case. It tells that ifF is anL2-dense class of functions on a space
(Xk,X k), then the classes of functionsFV = {2−|V| fV : f ∈ F} are alsoL2-dense
classes of functions for allV ⊂ {1, . . . ,k} with the same exponent and parameter.

Before its proof I make some comments about the content of Theorem 9.4.
The expressionJn,k( f ) was defined as ak-fold random integral with respect to the
signed measureµn− µ , where the diagonals were omitted from the domain of in-
tegration. Formula (9.15) expresses the random integralJn,k( f ) as a linear com-
bination of degenerateU-statistics of different order. This is similar to the Ho-
effding decomposition of theU-statistic In,k( f ) to the linear combination of de-
generateU-statistics defined with the same kernel functionsfV . The main differ-
ence between these two formulas is that in the expansion (9.15) of Jn,k( f ) the
termsIn,|V|( fV) appear with small coefficientsC(n,k, |V|)|V|! 1

n|V|/2 . As we shall see,
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E(C(n,k, |V|)|V|! 1
n|V|/2 In,V( fV))2 < K with a constantK < ∞ not depending onn

for each setV ⊂ {1, . . . ,k}. This can be so interpreted that the sum at the right-
hand side of (9.15) consists of such random variablesC(n,k, |V|)|V|!n−|V|/2In,V( fV)
which are of constant magnitude. The smallness of these coefficients is related to
fact that in the definition ofJn,k( f ) integration is taken with respect to the signed
measureµn−µ instead of the empirical measureµn, which means some kind of nor-
malization. On the other hand, these coefficientsC(n,k, |V|) may have a non-zero
limit as n → ∞ also for |V| < k. In particular, the expansion (9.15) may contain a
constant termC(n,k,0) 6= 0 such that even lim

n→∞
C(n,k,0) 6= 0. In such a case also the

expected valueEJn,k( f ) does not equal zero. But even in such a case this expected
value can be bounded by a finite number not depending on the sample sizen. Next I
show an example for a two-fold random integralJn,2( f ) such that 2EJn,2( f ) =−1.

Let us choose a sequence of independent random variablesξ1, . . . ,ξn with uni-
form distribution on the unit interval, letµn denote its empirical distribution, let
f = f (x,y) denote the indicator function of the unit square, i.e. letf (x,y) = 1
if 0 ≤ x,y ≤ 1, and f (x,y) = 0 otherwise. Let us consider the random integral
2Jn,2( f ) = n

∫

x6=y f (x,y)(µn(dx)− dx)(µn(dy)− dy), and calculate its expected
value 2EJn,2( f ). By adjusting the diagonalx = y to the domain of integration
and taking out the contribution obtained in this way we get that 2EJn,2( f ) =
nE(

∫ 1
0 (µn(dx)−µ(dx))2−n2 · 1

n2 =−1. (The last term is the integral of the func-
tion f (x,y) on the diagonalx= y with respect to the product measureµn×µn which
equals(µn−µ)× (µn−µ) on the diagonal.)

Now I turn to the proof of Theorem 9.4.

Proof of Theorem 9.4.Let us remark that for a canonical functiong (with respect to
the measureµ) of p variables the identityn−p/2p!In,p(g) = p!Jn,p(g) holds. (At this
point we also exploit thatµ is a non-atomic measure, which implies that the identity
∫

g(x1, . . . ,xp)µ(dxj) = 0 for all 1≤ j ≤ p remains valid for arbitrary arguments
xu, 1≤ u ≤ p, u 6= j, also if we omit finitely many points from the domain of in-
tegration.) This relation implies that if we calculate the (random) integralp!Jn,p(g)
for a canonical functiong we do not change the value of this integral by replacing
the measuresµn(dxj)− µ(dxj) by µn(dxj) for all 1≤ j ≤ p. The integral we get
after such a replacement equalsp!n−1/2In,p(g). Since all functionsfV appearing in
formula (9.15) are canonical, the above relation betweenU-statistics and random
integrals has the consequence that formula (9.15) can be rewritten in an equivalent
form as

k!Jn,k( f ) = ∑
V⊂{1,...,k}

C(n,k, |V|)|V|!Jn,|V|( fV). (9.17)

Here we use the convention that a constantc is a canonical function of order zero,
andJn,0(c) = c. We shall prove identity (9.17) by means of induction with respect
to the orderk of the integralk!Jn,k( f ).

In the casek= 1 f{1}(x) = f (x)− ∫ f (x)µ(dx), f /0 =
∫

f (x)µ(dx), and

Jn,1( f{1}) =
√

n
∫

( f (x)− f /0)(µn(dx)−µ(dx)) = Jn,1( f ),
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since
∫
(µn(dx)−µ(dx))= 0. Hence formula (9.17) holds fork= 1 withC(n,1,1)=

1 andC(n,1,0) = 0. Fork = 0 relation (9.17) holds withC(n,0,0) = 1 if the con-
vention fV = f is applied for a functionf of zero variables, i.e. iff is a constant
function, andV = /0. In the casek ≥ 2 we can write by taking the identity (9.3)
formulated in the Hoeffding decomposition Theorem 9.1, integrating it with respect

to the product measure
k
∏
j=1

(µn(dxj)−µ(dxj)) and omitting the diagonals from the

domain of integration that

k!Jn,k( f ) = k!Jn,k( f{1,...,k})+ ∑
Ṽ⊂{1,...,k},Ṽ 6={1,...,k}

k!Jn,k( fṼ). (9.18)

Observe that in the casẽV ⊂ {1, . . . ,k}, Ṽ 6= {1, . . . ,k} the function fṼ has strictly
less thank arguments, while the termsJn,k( fṼ) at the right-hand side of (9.18) are
random integrals of orderk. We can rewrite thesek-fold integrals as the linear com-
binations of random integrals of smaller multiplicity withthe help of the following

Lemma 9.5.Let us take a measure space(X,X ,µ) with a non-atomic probabil-
ity measureµ and an integrable function f(x1, . . . ,xk−1) on its k−1-fold product,
(Xk−1,X k−1,µk−1), k≥ 2. Let us also take the operator(Pl f )(x j , j ∈ {1, . . . ,k−
1} \ {l}) = ∫

f (x1, . . . ,xk−1)µ(dxl ) for all 1≤ l ≤ k−1. Let us consider the func-
tion f also as a function f(x1, . . . ,xk) of k variables which does not depend on its
last coordinate xk. The identity

k!Jn,k( f ) =−n−1/2(k−1) · (k−1)!Jn,k−1( f )−
k−1

∑
l=1

(k−2)!Jn,k−2(Pl f ) (9.19)

holds. The function Pl f has arguments with indices j∈ {1, . . . ,k−1} \ {l}, and in
the term Jn,k−2(Pl f ) in (9.19) we take integration with respect to

n(k−2)/2 ∏
j∈{1,...,k−1}\{l}

(dµn(x j)−µ(dxj)).

Proof of Lemma 9.5.Formula (9.19) is equivalent to the identity

∫ ′
f (x1, . . . ,xk−1)(µn(dx1)−µ(dx1)) . . .(µn(dxk)−µ(dxk))

=−k−1
n

∫ ′
f (x1, . . . ,xk−1)

k−1

∏
s=1

(µn(dxs)−µ(dxs))

−1
n

k−1

∑
l=1

∫ ′ [∫
f (x1, . . . ,xk−1)µ(dxl )

]

∏
1≤s≤k−1,s6=l

(µn(dxs)−µ(dxs)).
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The expressions at the two sides of this identity are linear combinations of terms of
the form ∫ ′

f (x1, . . . ,xk−1)∏
l∈V

µn(dxl ) ∏
l∈{1,...,k−1}\V

µ(dxl )

with V ⊂{1, . . . ,k−1}. A term of this form with|V|= p at the left-hand side of this
identity has coefficient(−1)k−p(1− n−p

n ) = (−1)k−p p
n . To see this let us calculate

the integral

∫ ′
f (x1, . . . ,xk−1)∏

l∈V

µn(dxl ) ∏
l∈{1,...,k−1}\V

µ(dxl )(µn(dxk)−µ(dxk))

by successive integration, and integrating with respect tothe variablexk in the last
step. Then we integrate a constant function in the last step.Beside this, since the
(random) measureµn is concentrated inn points with weights1

n, and in the in-
tegration

∫ ′ we omit the diagonals from the domain of integration, we integrate
with respect to a measure with total massn−p

n when we are integrating with respect
to µn(dxk). On the other hand, the first term at the right-hand side of theidentity
we want to prove has coefficient(−1)(k−p) k−1

n and the second term has coefficient

(−1)(k−p−1) k−1−p
n . Lemma 9.5 follows from these calculations.

Lemma 9.5 was proved by means of elementary calculations. One may ask how
its form can be found. It may be worth observing that there aresome diagram for-
mulas that play an important role in some subsequent proofs,and they also supply
the identity formulated in Lemma 9.5 together with its proof.

In these diagram formulas the product of some random integrals orU-statistics
are expressed by means of the sum of appropriately defined random integrals orU-
statistics. In the subsequent part of this lecture note I discuss the diagram formula
for Wiener–It̂o integrals andU-statistics. I shall also mention that there is a diagram
formula for the product of multiple integrals with respect to a normalized empirical
distribution, and I shall indicate what its form looks like.An explicit formulation and
proof of this result can be found in [35]. Lemma 9.5 can be obtained as a special
case of this formula.

To get Lemma 9.5 with the help of the diagram formula take the functione(x)≡ 1
on the space(X,X ). Then we haveJn,1(e) = 0 with probability one. Given a func-
tion f (x1, . . . ,xk−1) write up the identityJn,k−1( f )Jn,1(e) = 0 with probability one,
and rewrite its left-hand side by means of the diagram formula. The identity we get
in such a way agrees with Lemma 9.5. One of the terms in this identity is k!Jn,k( f )
which appears as the integral of the function̄f (x1, . . . ,xk) = f (x1, . . . ,xk−1)e(xk),
and writing up all terms we get the desired formula.

Now I return to the proof of Theorem 9.4.

Completion of the proof of Theorem 9.4 with the help of Lemma 9.5.We shall prove
the following slightly more general version of (9.17). Iff (x j , j ∈V) is an integrable
function with arguments indexed by a setV ⊂ {1, . . . ,k}, then
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k!Jn,k( f ) = ∑̄
V⊂V

C(n,k, |V̄|, |V|)|V̄|!Jn,|V̄|( fV̄) (9.20)

with some coefficientsC(n,k, p,q), 0≤ p≤ q≤ k such that|C(n,k, p,q)| ≤Ck < ∞
for all argumentsn and 0≤ p≤ q≤ k, the limit lim

n→∞
C(n,k, p,q) =C(k, p,q) exists,

andC(n,k,k,k) = 1.
At the left-hand side of formulas (9.20) and (9.17) the same integralJn,k( f ) of

orderk of a functionf with less than or equal tok arguments is taken. (We define this
integral by redefining its kernel functionf as a function ofk arguments by means
of the introduction of some additional fictive coordinates.) At the right-hand side
of these formulas the same canonical functionsfV̄ , V̄ ⊂ {1, . . . ,k}, appear. They
were introduced in the Hoeffding decomposition (9.3). But in (9.20) we take the
integrals of the functionsfV̄ only with respect to their ‘real’ coordinates with indices
l ∈ V̄ ⊂V. For the sake of simpler notations first we restrict our attention to the case
V = {1, . . . ,q} with some 0≤ q ≤ k. (Actually, it can be seen with the help of
the subsequent proof that we can chooseC(n,k, p,q) =C(n,k, p) with the constant
C(n,k, p) appearing in (9.15) or (9.17).)

We shall prove (9.20) by means of induction with respect tok. This relation holds
for k= 0, and to prove it fork= 1 we still we have to check that it also holds in the
special case whenf is a function of zero variable, i.e. if it is a constant, andV = /0.
But relation (9.20) holds in this case withC(n,1,0,0) = 0, sinceJn,1( f ) = 0 if f is
a variable of zero arguments, i.e. if it is a constant.

We shall prove relation (9.20) for general parameterk with the help of for-
mula (9.18), Lemma 9.5 and formula (9.3) in the Hoeffding decomposition which
gives the definition of the functionsfṼ appearing in (9.18). I formulate a formally
more general result than relation (9.19) which follows fromLemma 9.5 if we rein-
dex the variables of the functionf considered in it. I formulate this result, because
this will be applied in our calculations.

Let us take a numberp∈ {1, . . . ,k}, k ≥ 2, and a functionf (x j , j ∈ {1, . . . ,k}\
{p}), integrable with respect to the appropriate direct productof the measureµ
together with the functionsPl ( f ) = Pl ( f )(x j , j ∈ {1, . . . ,k} \ {l , p}) for all l ∈
{1, . . . ,k} \ {p} that we get by integrating the functionf with respect to the mea-
sureµ(dxl ). The following modified version of (9.19) holds in this case.

k!Jn,k( f ) =−n−1/2(k−1)!(k−1)Jn,k−1( f )− ∑
l∈{1,...,k}\{p}

(k−2)!Jn,k−2(Pl f )

(9.21)
whereJn,k−1( f ) is the integral of the functionf with respect to the measure

n(k−1)/2 ∏
j∈{1,...,k}\{p}

((µn(dxj)−µ(dxj))

andJn,k−2(Pl f ) is the integral of the functionPl f with respect to the measure

n(k−2)/2 ∏
j∈{1,...,k}\{p,l}

((µn(dxj)−µ(dxj)).
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(Naturally the diagonals are omitted from the domain of integration.)
First we prove (9.20) in the caseV = {1, . . . ,k}. We rewritek!Jn,k( f ) by means

of (9.18) as a sum of random integrals of orderk with kernel functionsfṼ , Ṽ ⊂
{1, . . . ,k}. We rewrite each termk!Jn,k( fṼ) with Ṽ ⊂ {1, . . . ,k}, Ṽ 6= {1, . . . ,k} in
this sum (i.e. we do not consider the integralk!Jn,k( f{1,...,k})) as a linear combi-
nation of multiple random integrals of the formJn,k−1( fṼ) andJn,k−2(Pl fṼ) of or-
derk−1 andk−2 respectively with the help of identity (9.21). Then we can apply
formula (9.20) for them because of our inductive hypothesis. Let us understand what
kind of kernel functions appear in the integrals we get in such a way. IfV̄ ⊂ Ṽ, then
( fṼ)V̄ = fV̄ by formula (9.3). On the other hand,Pl fṼ = fṼ\{l}, and in the expan-
sion ofJn,k(Pl fṼ)) by means of (9.20) we get a linear combination of random inte-
gralsJn,|V̄|( fV̄) with V̄ ⊂ Ṽ \{l}. By applying all these identities, summing them up,
adding to them the termJn,k( f{1,...,k}) and applying formula (9.21) we get because of
our inductive assumptions a representationk!Jn,k( f ) = ∑

V̄⊂V
C(n,k,V̄)|V̄|!Jn,|V̄|( fV̄)

(where V = {1, . . . ,k}) of the random integralk!Jn,k( f ) with such coefficients
C(n,k,V̄) for which |C(n,k,V̄)| ≤ C(k) and the limitC(,V̄) = lim

n→∞
C(n,k,V̄) ex-

ists. We still have to show that these coefficients can be chosen in such a way that
C(n,k,V̄) =C(n,k, |V̄|), i.e.C(n,k,V̄1) =C(n,k,V̄2) if |V̄1|= |V̄2|.

Given a setṼ ⊂ {1, . . . ,k}, Ṽ 6= {1, . . . ,k}, let us express the random integrals
Jn,k−1( fṼ) andJn,k−2(Pl fṼ) for all p ∈ {1, . . . ,k} \ Ṽ in the above way, and write
Jn,k( fṼ) andJn,k(Pl fṼ) as the average of these sums. Working with these expressions
for Jn,k( fṼ) andJn,k(Pl fṼ) it can be seen that our inductive assumption also holds
with such coefficientsC(n,k,V̄) for whichC(n,k,V̄1) =C(n,k,V̄2) if |V̄1|= |V̄2|.

In the next step let us consider the case whenf = f (x j , j ∈ V) with a setV =
{1, . . . ,q} such that 0≤ q< k. I claim that in this case the identityfṼ ≡ 0 holds for
those sets̃V ⊂ {1, . . . ,k} for which Ṽ ∩{q+ 1, . . . ,k} 6= /0, and as a consequence
Jn,k( fṼ) = 0 with probability 1 for such sets̃V. First I show that relation (9.20) can
be proved in the present case with the help of this relation similarly to the previous
case.

In the present case formula (9.18) has the formk!Jn,k( f ) = ∑
Ṽ⊂V

k!Jn,k( fṼ), and

we can express each termk!Jn,k( fṼ), Ṽ ⊂V, in this sum by means of formula (9.21)
by choosingfṼ as the functionf and an integerp such thatq+ 1 ≤ p ≤ k (i.e.
p∈ {1, . . . ,k}\V) in it. In such a way we can writek!Jn,k( f ) as the linear combina-
tion of random integrals of the form(k−1)!Jn,k−1( fṼ) and(k−2)!Jn,k−2(Pl fṼ) =
(k−2)!Jn,k−2( fṼ\{l}) with some sets̃V ⊂V and numbersl ∈ {1, . . . ,k}\{p}, where
we took some numberp such thatq+1≤ p≤ k. Then we can apply relation (9.20)
for parametersk−1 andk−2 by our inductive hypothesis, and this enables us to
write Jn,k( f ) as the linear combination of random integrals|V̄|!Jn,|V̄|( fV̄) with sets
V̄ ⊂V. Moreover, it can be seen similarly to the previous case (by writing the above
identities for allp∈ {1, . . . ,k}\Ṽ and taking their average) that the coefficients in
this linear combination can be chosen in such a way as it was demanded in for-
mula (9.20).
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To prove thatfṼ ≡ 0 if Ṽ ∩{q+ 1, . . . ,k} 6= /0 and f = f (x1, . . . ,xk) is the ex-
tension of a functionf = f (x j , j ∈ {1, . . . ,q}) to Xk with the help of some ‘fictive’
coordinates take a numberr ∈ Ṽ ∩{q+1, . . . ,k}, observe thatPr f = f andQr f ≡ 0
for the operatorsPr andQr defined in (9.1) and (9.2), sincer /∈V = {1, . . . ,q}. The
definition of the functionfṼ is given in formula (9.3). Observe that in the present
case the operatorQr and not the operatorPr appears in the formula definingfṼ .
Hence formula (9.3) and the exchangeability of the operators Pj andQ j ′ imply that
fṼ ≡ 0.

Formula (9.20) in the general case simply follows from the already proved results
by a reindexation of the variables of the functionf . Since (9.17) is a special case
of (9.20) Theorem 9.4 is proved.

Two corollaries of Theorem 9.4 will be formulated. The first one explains the
content of conditions (8.2) and (8.6) in Theorems 8.1—8.4.

Corollary 1 of Theorem 9.4. If In,k( f ) is a degenerate U-statistic of order k with
some kernel function f , then

E
(

n−k/2In,k( f )
)2

=
n(n−1) · · ·(n−k+1)

k!nk

∫

Sym f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)

≤ 1
k!

∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk), (9.22)

whereµ is the distribution of the random variables taking part in the definition
of the U-statistic In,k( f ), and Sym f is the symmetrization of the function f . The
k-fold multiple random integral Jn,k( f ) with an arbitrary square integrable kernel
function f satisfies the inequality

EJn,k( f )2 ≤ C̄(k)
∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)

with some constant̄C(k) depending only on the order k of the integral Jn,k( f ).

Proof of Corollary 1 of Theorem 9.4.The identity

E(n−k/2In,k( f ))2 =
1

(k!)2nk ∑ ′
E f(ξl1, . . . ,ξlk) f (ξl ′1

, . . . ,ξl ′k
) (9.23)

holds, where the prime in∑′ means that summation is taken for such pairs ofk-
tuples(l1, . . . , lk), (l ′1, . . . , l

′
k), 1≤ l j , l ′j ≤ n, for which l j 6= l j ′ andl ′j 6= l ′j ′ if j 6= j ′.

On the other hand, the degeneracy of theU-statisticIn,k( f ) implies that

E f(ξl1, . . . ,ξlk) f (ξl ′1
, . . . ,ξl ′k

) = 0

if the two sets{l1, . . . , lk} and{l ′1, . . . , l
′
k} differ. This can be seen by taking such

an indexl j from the firstk-tuple which does not appear in the second one, and by
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observing that the conditional expectation of the product we consider equals zero
by the degeneracy condition of theU-statistic under the condition that the value of
all random variables except that ofξl j is fixed in this product. On the other hand,

E f(ξl1, . . . ,ξlk) f (ξl ′1
, . . . ,ξl ′k

)

=
∫

f (x1, . . . ,xk) f (xπ(1), . . . ,xπ(k))µ(dx1) . . .µ(dxk)

if (l ′1, . . . , l
′
k) = (π(l1), . . . ,π(lk)) with some(π(1), . . . ,π(k)) ∈ Πk, whereΠk de-

notes the set of all permutations of the set{1, . . . ,k}. By summing up the above
identities for all pairs(l1, . . . , lk) and(l ′1, . . . , l

′
k) and by applying formula (9.23) we

get the identity at the left-hand side of formula (9.22). Thesecond relation in (9.22)
is obvious.

The bound forJn,k( f ) follows from Theorem 9.4, formula (9.5) in Theorem 9.2
by which theL2-norm of the functionsfV is not greater than theL2-norm of the
function f and the bound that formula (9.22) yields for the second moment of the
degenerateU-statisticsn−|V|/2In,|V|( fV) appearing in the expansion (9.15).

In Corollary 2 the decomposition (9.15) of a random integralJn,2( f ) of order 2
is described in an explicit form. This result follows from the proof of Theorem 9.4.

Corollary 2 of Theorem 9.4.Let the random integral Jn,2( f ) satisfy the conditions
of Theorem 9.4. In this case formula (9.15) can be written in the following explicit
form:

2Jn,2( f ) =
2
n

In,2( f{1,2})−
1
n

In,1( f{1})−
1
n

In,1( f{2})− f /0

with the functions

f{1,2}(x,y) = f (x,y)−
∫

f (x,y)µ(dx)−
∫

f (x,y)µ(dy)

+
∫

f (x,y)µ(dx)µ(dy),

f{1}(x) =
∫

f (x,y)µ(dy)−
∫

f (x,y)µ(dx)µ(dy),

f{2}(y) =
∫

f (x,y)µ(dx)−
∫

f (x,y)µ(dx)µ(dy), and

f /0 =
∫

f (x,y)µ(dx)µ(dy).

Corollary 2 of Theorem 9.4 states that in the casek= 2 formula (9.15) holds with
C(n,2,2) = 1,C(n,2,1) =− 1√

n andC(n,2,0) =−1.



Chapter 10
Multiple Wiener–It ô integrals and their
properties

In this chapter I present the definition of multiple Wiener–Itô integrals and some
of their most important properties needed in the proof of theresults formulated in
Chapter 8. Wiener–Itô integrals provide a useful tool to handle non-linear function-
als of Gaussian processes. To define them first I introduce thenotion of the white
noise with some reference measure. Then I define the multipleWiener–It̂o integrals
with respect to a white noise with some non-atomic referencemeasure. A most
important result in the theory of multiple Wiener–Itô integrals is the so-called dia-
gram formula presented in Theorem 10.2A. This enables us to rewrite the product
of two Wiener–It̂o integrals in the form of a sum of Wiener–Itô integrals. The proof
of the diagram formula is given in Appendix B. This result will be generalized in
Theorem 10.2 to a formula about the representation of the product of finitely many
Wiener–It̂o integrals as a sum of Wiener–Itô integrals. As a consequence of this re-
sult we get a formula about the expectation of products Wiener–Itô integrals. This
formula will play an important role in some of our later considerations.

Another interesting result about Wiener-Itô integrals, formulated at the end of
this chapter in Theorem 10.5 states that the class of random variables which can be
written in the form of a sum of Wiener–Itô integrals of different order is sufficiently
rich. All random variables with finite second moment which are measurable with
respect to theσ -algebra generated by the (Gaussian) random variables appearing in
the underlying white noise in the construction of multiple Wiener–It̂o integrals can
be written in such a form.

I shall also give a heuristic explanation of the diagram formula which may in-
dicate why it has the form appearing in Theorem 10.2A. It alsohelps to find its
analogue for (random) integrals with respect to the productof normalized empirical
measures. Such a result will be useful later. A simple and useful consequence of
Theorem 10.2A about the representation of the product of finitely many Wiener–It̂o
integrals in the form of a sum of Wiener–Itô integrals will be formulated in Theo-
rem 10.2. This result will be also called the diagram formula. It has an important
corollary about the calculation of the moments of Wiener–Itô integrals. Theorem 8.5
will be proved with the help of this corollary.

91
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I shall give the proof of two other results about Wiener–Itô integrals in Ap-
pendix C. The first one, Theorem 10.3, is called Itô’s formula for Wiener–It̂o inte-
grals, and it explains the relation between multiple Wiener-Itô integrals and Hermite
polynomials of Gaussian random variables. This result is a relatively simple conse-
quence of the diagram formula and some basic recursive relations about Hermite
polynomials.

The other result proved in Appendix C, Theorem 10.4, is a limit theorem about
a sequence of appropriately normalized degenerateU-statistics. Here the limit is
presented in the form of a multiple Wiener–Itô integral. This result is interesting
for us, because it helps to compare Theorems 8.3 and 8.1 with their one-variate
counterpart, Bernstein’s inequality. In the one-variate case Bernstein’s inequality
provides a comparison between the tail distribution of sumsof independent random
variables and the tail of the standard normal distribution.The normal distribution
appears here in a natural way as the limit in the central limittheorem.

Theorem 8.3 yields a similar result about degenerateU-statistics. The upper
bound for the tail-distribution of a degenerateU-statistic given in Theorem 8.3 or
in its Corollary is similar to the bound of Theorem 8.5 about the tail-distribution of
a Wiener–It̂o integral with the same kernel function. On the other hand, by Theo-
rem 10.4 this Wiener–Itô integral also appears as the limit of degenerateU-statistics
with the same kernel function. This shows some similarity between Theorem 8.3,
and its one-variate version, the Bernstein inequality. Theorem 8.1 which is an esti-
mate of multiple integrals with respect to a normalized empirical distribution also
has a similar interpretation.

My Lecture Note [32] contains a rather detailed descriptionof Wiener–It̂o in-
tegrals. But in that work the emphasis was put on the study of aslightly different
version of it. The original version of this integral introduced in [26] was only briefly
discussed there, and not all details were worked out. In particular, the diagram for-
mula needed in this work was formulated and proved only for modified Wiener–It̂o
integrals. I shall discuss the difference between these random integrals together with
the question why a modified version of Wiener–Itô integrals was studied in [32] at
the end of this chapter.

To define multiple Wiener–Itô integrals first I introduce the notion of white noise.

Definition of a white noise with some reference measure.Let us have aσ -finite
measureµ on a measurable space(X,X ). A white noise with reference measureµ
is a Gaussian random fieldµW = {µW(A) : A∈ X , µ(A)< ∞}, i.e. a set of jointly
Gaussian random variables indexed by the above sets A, whichsatisfies the relations
EµW(A) = 0 and EµW(A)µW(B) = µ(A∩B) for all A,B∈ X such thatµ(A)< ∞
andµ(B)< ∞.

I make some comments about this definition.

Remark:In the definition of a white noise sometimes also the propertyµW(A∪
B) = µW(A)+ µW(B) with probability 1 if A∩B= /0, andµ(A) < ∞, µ(B) < ∞ is
mentioned. But this condition can be omitted, because it follows from the remaining
properties of the white noise. Indeed, simple calculation shows thatE(µW(A∪B)−
µW(A)− µW(B))2 = 0 if A∩B = /0, henceµW(A∪B)− µW(A)− µW(B) = 0 with
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probability 1 in this case. It can also be observed that if some setsA1, . . . ,Ak ∈ X ,
µ(A j) < ∞, 1≤ j ≤ k, are disjoint, then the random variablesµW(A j), 1≤ j ≤ k,
are independent because of the uncorrelatedness of these jointly Gaussian random
variables.

It is not difficult to see that for an arbitrary reference measure µ on a space
(X,X ) a white noiseµW with this reference measure really exists. This follows
simply from Kolmogorov’s fundamental theorem, by which if the finite dimensional
distributions of a random field are defined in a consistent way, then there exists a
random field with these finite dimensional distributions.

Now I turn to the definition of multiple Wiener–Itô integrals with respect to a
white noise with some reference measureµ . First I introduce the class of functions
whose Wiener–It̂o integrals with respect to a white noiseµW with a non-atomic
reference measureµ will be defined.

Let us consider a measurable space(X,X ), a σ -finite, non-atomic measureµ
on it and a white noiseµW on (X,X ) with reference measureµ . Let us define the
classes of functionsHµ ,k, k = 1,2, . . . , consisting of functions ofk variables on
(X,X ) by the formula

Hµ ,k =

{

f (x1, . . . ,xk) : f (x1, . . . ,xk) is anX
k measurable, real valued

function onXk, and
∫

f 2(x1, . . . ,xk)µ(dx1) . . . ,µ(dxk)< ∞
}

. (10.1)

We shall call aσ -finite measureµ on a measurable space(X,X ) non-atomic if
for all setsA ∈ X such thatµ(A) < ∞ and all numbersε > 0 there is a finite

partition A =
N⋃

s=1
Bs of the setA with the propertyµ(Bs) < ε for all 1 ≤ s≤ N.

There is a formally weaker definition of a non-atomic measures by which aσ -finite
measureµ is non-atomic if for all measurable setsA such that 0< µ(A)< ∞ there is
a measurable setB⊂Awith the property 0< µ(B)< µ(A). But these two definitions
of non-atomic measures are actually equivalent, although this equivalence is not
trivial. I do not discuss this problem here, since it is a little bit outside from the
direction of the present work. In our further considerations we shall work with the
first definition of non-atomic measures.

I would also remark that non-atomic measures behave not completely so, as our
first heuristic feeling would suggest. It is true that ifµ is a non-atomic measure,
thenµ({a}) = 0 for all one-point sets{a}. But the reverse statement does not hold.
There are (in some sense degenerate) measuresµ for which each one-point set has
zeroµ measure, and which are nevertheless not non-atomic. I omit the discussion
of this question.

The k-fold Wiener-It̂o integrals of the functionsf ∈ Hµ ,k with respect to the
white noiseµW will be defined in a rather standard way. First they will be defined
for some simple functions, called elementary functions, then it will be shown that
the integral for these elementary functions has anL2 contraction property which
makes possible to extend it to the class of all functions inHµ ,k.
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Let us first introduce the following class of elementary functionsH̄µ ,k of k vari-
ables. A functionf (x1, . . . ,xk) on (Xk,X k) belongs toH̄µ ,k if there exist finitely
many disjoint measurable subsetsA1, . . . ,AM, 1≤ M < ∞, of the setX with finite
µ-measure (i.e.A j ∩A j ′ = /0 if j 6= j ′, andµ(A j) < ∞ for all 1≤ j ≤ M) such that
the functionf has the form

f (x1, . . . ,xk) =







c( j1, . . . , jk) if (x1, . . . ,xk) ∈ A j1 ×·· ·×A jk with
some indices( j1, . . . , jk), 1≤ js ≤ M, 1≤ s≤ k,
such that all numbersj1, . . . , jk are different

0 if (x1, . . . ,xk) /∈
⋃

( j1,..., jk) : 1≤ js≤M, 1≤s≤k,
and all j1,..., jk are different.

A j1 ×·· ·×A jk

(10.2)
with some real numbersc( j1, . . . , jk), 1≤ js ≤ M, 1≤ s≤ k, defined for such ar-
guments for whichj1, . . . , jk are different numbers. This means that the function
f is constant on allk-dimensional rectanglesA j1 × ·· · ×A jk with different, non-
intersecting edges, and it equals zero on the complementaryset of the union of these
rectangles. The property that the support of the functionf is on the union of rectan-
gles with non-intersecting edges is sometimes interpretedso that the diagonals are
omitted from the domain of integration of Wiener–Itô integrals.

The Wiener-It̂o integral of an elementary functionf (x1, . . . ,xk) of the form (10.2)
with respect to a white noiseµW with the (non-atomic) reference measureµ is
defined by the formula

∫

f (x1, . . . ,xk)µW(dx1) . . .µW(dxk)

= ∑
1≤ js≤M, 1≤s≤k

all j1,..., jk are different

c( j1, . . . , jk)µW(A j1) · · ·µW(A jk). (10.3)

(The representation of the functionf in (10.2) is not unique, the setsA j can be
divided into smaller disjoint sets, but the Wiener–Itô integral defined in (10.3) does
not depend on the representation of the functionf . This can be seen with the help
of the additivity propertyµW(A∪B) = µW(A)+ µW(B) if A∩B = /0 of the white
noiseµW.) The notation

Zµ ,k( f ) =
1
k!

∫

f (x1, . . . ,xk)µW(dx1) . . .µW(dxk), (10.4)

will be used in the sequel, and the expressionZµ ,k( f ) will be called the normalized
Wiener–It̂o integral of the functionf . Such a terminology will be applied also for
the Wiener–It̂o integrals of all functionsf ∈ Hµ ,k to be defined later.

If f is an elementary function inH̄µ ,k defined in (10.2), then its normalized
Wiener–It̂o integral defined in (10.3) and (10.4) satisfies the relations
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Ek!Zµ ,k( f ) = 0,

E(k!Zµ ,k( f ))2 = ∑
( j1,..., jk) : 1≤ js≤M, 1≤s≤k,
and all j1,..., jk are different.

∑
π∈Πk

c( j1, . . . , jk)c( jπ(1), . . . , jπ(k))

EµW(A j1) · · ·µW(A jk)µW(A jπ(1)) · · ·µW(A jπ(k))

= k!
∫

Sym f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)

≤ k!
∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk), (10.5)

with Sym f (x1, . . . ,xk) =
1
k! ∑

π∈Πk

f (xπ(1), . . . ,xπ(k)), whereΠk denotes the set of all

permutationsπ = {π(1), . . . ,π(k)} of the set{1, . . . ,k}.
The identities written down in (10.5) can be simply checked.The first relation

follows from the identityEµW(A j1) · · ·µW(A jk) = 0 for disjoint setsA j1, . . . ,A jk,
which holds, since the expectation of the product of independent random variables
with zero expectation is taken. The second identity followssimilarly from the iden-
tity

EµW(A j1) · · ·µW(A jk)µW(A j ′1
) · · ·µW(A j ′k

) = 0

if the sets of indices{ j1, . . . , jk} and{ j ′1, . . . , j ′k} are different,

EµW(A j1) · · ·µW(A jk)µW(A j ′1
) · · ·µW(A j ′k

) = µ(A j1) · · ·µ(A jk)

if { j1, . . . , jk}= { j ′1, . . . , j ′k} i.e. if j ′1 = jπ(1), . . . , j ′k = jπ(k)
with some permutationπ ∈ Πk,

which holds because of the facts that theµW measure of disjoint sets are independent
with expectation zero, andEµW(A)2 = µ(A). The remaining relations in (10.5) can
be simply checked.

It is not difficult to check that

EZµ ,k( f )Zµ ,k′(g) = 0 (10.6)

for all functions f ∈ H̄µ ,k andg∈ H̄µ ,k′ if k 6= k′, and

Zµ ,k( f ) = Zµ ,k(Sym f ) (10.7)

for all functions f ∈ H̄µ ,k.
The definition of Wiener–It̂o integrals can be extended to general functionsf ∈

Hµ ,k with the help of formula (10.5). To carry out this extension we still have to
know that the class of functionsH̄µ ,k is a dense subset of the classHµ ,k in the
Hilbert spaceL2(Xk,X k,µk), whereµk is thek-th power of the reference measure
µ of the white noiseµW. I briefly explain how this property ofH̄µ ,k can be proved.
The non-atomic property of the measureµ is exploited at this point.

To prove this statement it is enough to show that the indicator function of any
product setA1×·· ·×Ak such thatµ(A j)< ∞, 1≤ j ≤ k, but the setsA1, . . . ,Ak may
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be non-disjoint is in theL2(µk) closure ofH̄µ ,k. In the proof of this statement it will
be exploited that sinceµ is a non-atomic measure, the setsA j can be represented
for all ε > 0 and 1≤ j ≤ k as a finite unionA j =

⋃

s
B j,s of disjoint setsB j,s with the

propertyµ(B j,s) < ε. By means of these relations the productA1×·· ·×Ak can be
written in the form

A1×·· ·×Ak =
⋃

s1,...,sk

B1,s1 ×·· ·×Bk,sk (10.8)

with some setsB j,sj such thatµ(B j,sj ) < ε for all sets in this union. Moreover, we
may assume, by refining the partitions of the setsA j if this is necessary that any two
setsB j,sj andB j ′,s′

j′
in this representation are either disjoint, or they agree. Take such

a representation ofA1×·· ·×Ak, and consider the set we obtain by omitting those
productsB1,s1 ×·· ·×Bk,sk from the union at the right-hand side of (10.8) for which
Bi,si = B j,sj for some 1≤ i < j ≤ k. The indicator function of the remaining set is in
the classH̄µ ,k. Hence it is enough to show that the distance between this indicator
function and the indicator function of the setA1 × ·· ·×Ak is less than const.ε in
theL2(µk) norm with some const. which may depend on the setsA1, . . . ,Ak, but not
on ε. Indeed, by lettingε tend to zero we get from this relation that the indicator
function of the setA1×A2×·· ·×Ak is in the closure ofH̄µ ,k in theL2(µk) norm.

Hence to prove the desired property of̄Hµ ,k it is enough to prove the following
statement. Take the representation (10.8) ofA1×·· ·×Ak (which depends onε) and
fix an arbitrary pair of integersi and j such that 1≤ i < j ≤ k. Then the sum of the
measuresµk(B1,s1 ×·· ·×Bk,sk) of those setsB1,s1 ×·· ·×Bk,sk at the right-hand side
of (10.8) for whichBi,si = B j,sj is less than const.ε. To prove this estimate observe
that theµk measure of such a set can be bounded by theµk−1 measure of the set we
obtain by omitting thei-th term from the product defining it in the following way:

µk(B1,s1 ×·· ·×Bk,sk)≤ εµk−1(B1,s1 ×·· ·×Bi−1,si−1 ×Bi+1,si+1 ×·· ·×Bk,sk).

Let us sum up this inequality for all such setsB1,s1 ×·· ·×Bk,sk at the right-hand side
of (10.8) for whichBi,si = B j,sj . The left-hand side of the inequality we get in such
a way equals the quantity we want to estimate. The expressionat its right-hand side
is less thanε ∏

1≤s≤k,s6=i
µ(As), sinceε-times theµk−1 measure of such disjoint sets

are summed up in it which are contained in the setA1×·· ·×Ai−1×Ai+1×·· ·×Ak.
In such a way we get the estimate we wanted to prove.

Knowing thatH̄µ ,k is a dense subset ofHµ ,k in L2(µk) norm we can finish the
definition of k-fold Wiener–it̂o integrals in the standard way. Given any function
f ∈ Hµ ,k a sequence of functionsfn ∈ H̄µ ,k, n= 1,2, . . . , can be defined in such a
way that

∫

| f (x1, . . . ,xk)− fn(x1, . . . ,xk)|2µ(dx1) . . .µ(dxk)→ 0 asn→ ∞.
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By relation (10.5) the already defined Wiener–Itô integralsZµ ,k( fn) of the functions
fn, n= 1,2, . . . , constitute a Cauchy sequence in the space of the square integrable
random variables living on the probability space, where thewhite noise is given.
(Observe that the difference of two functions from the classH̄µ ,k also belongs to this
class.) Hence the limit lim

n→∞
Zµ ,k( fn) exists inL2 norm, and this limit can be defined

as the normalized Wiener–Itô integralZµ ,k( f ) of the function f . The definition of
this limit does not depend on the choice of the approximatingfunctions fn, hence
it is meaningful. It can be seen that relations (10.5) and (10.6) remain valid for
all functions f ∈ Hµ ,k. The following Theorem 10.1 describes the properties of
multiple Wiener–It̂o integrals. It contains already proved results. The only still non-
discussed part of this Theorem is Property f) of Wiener–Itô integrals. But it is easy
to check this property by observing that one-fold Wiener–Itô integrals are (jointly)
Gaussian, they are measurable with respect to theσ -algebra generated by the white
noiseµW. Beside this, the random variableµW(A) for a setA ∈ X , µ(A) < ∞,
equals the (one-fold) Wiener–Itô integral of the indicator function of the setA.

Theorem 10.1 (Some properties of multiple Wiener–It̂o integrals). Let a white
noiseµW be given with some non-atomic,σ -additive reference measure on a mea-
surable space(X,X ). Then the k-fold Wiener–Itô integrals of all functions in
the classHµ ,k introduced in formula (10.1) can be defined, and their normalized
versions Zµ ,k( f ) = 1

k!

∫
f (x1, . . . ,xk)µW(dx1) . . .µW(dxk) satisfy the following rela-

tions:

a) Zµ ,k(α f +βg) = αZµ ,k( f )+βZµ ,k(g) for all f ,g ∈ Hµ ,k and real numbersα
andβ .

b) If A1, . . . ,Ak are disjoint sets,µ(A j)<∞, then the function fA1,...,Ak defined by the
relation fA1,...,Ak(x1, . . . ,xk) = 1 if x1 ∈ A1, . . . , xk ∈ Ak, fA1,...,Ak(x1, . . . ,xk) = 0
otherwise, satisfies the identity

Zµ ,k( fA1,...,Ak(x1, . . . ,xk)) =
1
k!

µW(A1) · · ·µW(Ak).

c)

EZµ ,k( f ) = 0, and EZ2
µ ,k( f ) =

1
k!
‖Sym f‖2

2 ≤
1
k!
‖ f‖2

2

for all f ∈ Hµ ,k, where‖ f‖2
2 =

∫
f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk) is the square

of the L2 norm of a function f∈ Hµ ,k.
d) Relation (10.6) holds for all functions f∈ Hµ ,k and g∈ Hµ ,k′ if k 6= k′.
e) Relation (10.7) holds for all functions f∈ Hµ ,k.
f) The Wiener–It̂o integrals Zµ ,1( f ) of order k= 1 are jointly Gaussian. The small-

estσ -algebra with respect to which they are all measurable agrees with theσ -
algebra generated by the random variablesµW(A), A∈ X , µ(A) < ∞, of the
white noise.

We have defined Wiener–Itô integrals of orderk for all k= 1,2, . . . . For the sake
of completeness let us introduce the classHµ ,0 for k = 0 which consists of the
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real constants (functions of zero variables), and putZµ ,0(c) = c. Because of rela-
tion (10.7) we could have restricted our attention to Wiener–Itô integrals with sym-
metric kernel functions. But at some points it was more convenient to work also
with Wiener–It̂o integrals of not necessarily symmetric functions.

Now I formulate the diagram formula for the product of two Wiener–It̂o integrals.
For this goal first I introduce some notations. Then I formulate the diagram formula
with their help in Theorem 10.2A. To make this result more understandable I shall
present after its formulation an example together with somepictures which may help
to understand how to calculate the terms appearing in the diagram formula. A similar
approach will be applied when the generalization of this result for the product of
several Wiener–It̂o integrals will be discussed, and also in the next chapter when
a version of the diagram formula will be presented for the product of degenerate
U-statistics.

To present the product of the multiple Wiener–Itô integrals of two functions
f (x1, . . . ,xk) ∈ Hµ ,k and g(x1, . . . ,xl ) ∈ Hµ ,l in the form of sums of Wiener–Itô
integrals a class of diagramsΓ = Γ (k, l) will be defined. The diagramsγ ∈ Γ (k, l)
have vertices(1,1), . . . ,(1,k) and (2,1), . . . ,(2, l), and edges((1, j1),(2, j ′1)),. . . ,
((1, js),(2, j ′s)) with some 1≤ s≤ min(k, l). The indicesj1, . . . , js in the definition
of the edges are all different, and the same relation holds for the indicesj ′1, . . . , j ′s.
All diagramsγ with such properties belong toΓ (k, l). The set of vertices of the form
(1, j), 1≤ j ≤ k, will be called the first row, and the set of vertices of the form (2, j ′),
1≤ j ′ ≤ l , the second row of a diagram. We demanded that edges of a diagram can
connect only vertices of different rows, and at most one edgemay start from each
vertex of a diagram.

Given a diagramγ ∈ Γ (k, l) with the set of edges

E(γ) = {(1, j1),(2, j ′1)), . . . ,((1, js),(2, j ′s)}

let
V1(γ) = {(1,1), . . . ,(1,k)}\{(1, j1), . . . ,(1, js)}

and
V2(γ) = {(2,1), . . . ,(2, l)}\{(2, j ′1), . . . ,(2, j ′s)}

denote the set of those vertices in the first and in the second row of the diagramγ
respectively from which no edge starts. Putαγ((1, j)) = (2, j ′) if ((1, j),(2, j ′)) ∈
E(γ) andαγ((1, j)) = (1, j) if the diagramγ contains no edge which is of the form
((1, j),(2, j ′)) ∈ E(γ). In words, the functionαγ(·) is defined on the vertices of
the first row of the diagramγ. It replaces a vertex to the vertex it is connected to
by an edge of the diagram if there is such a vertex, and it does not change those
vertices from which no edge starts. Put|γ |= k+ l −2s, i.e. let|γ | equal the number
of vertices inγ from which no edge starts. Given two functionsf (x1, . . . ,xk) ∈Hµ ,k
andg(x1, . . . ,xl ) ∈ Hµ ,l let us introduce their product

( f ◦g)(x(1,1), . . . ,x(1,k),x(2,1), . . . ,x(2,l))

= f (x(1,1), . . . ,x(1,k))g(x(2,1), . . . ,x(2,l)) (10.9)
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together with its transform

( f ◦g)γ(x(1, j) : (1, j) ∈V1(γ), x(2, j ′) : 1≤ j ′ ≤ l)

= f (xαγ ((1,1)), . . . ,xαγ ((1,k)))g(x(2,1), . . . ,x(2,l)). (10.10)

(Here the functionf (x1, . . . ,xk) is replaced byf (x(1,1), . . . ,x(1,k)) and the function
g(x1, . . . ,xl ) by g(x(2,1), . . . ,x(2,l)).) With the help of the above introduced setsV1(γ),
V2(γ) and functionαγ(·) let us introduce the functionsFγ( f ,g) as

Fγ( f ,g)(x(1, j),x(2, j ′) : (1, j) ∈V1(γ), (2, j ′) ∈V2(γ))

=
∫

( f ◦g)γ(xαγ ((1, j)) : (1, j) ∈V1(γ), x(2,1), . . . ,x(2,l))

∏
(2, j ′)∈{(2,1),...,(2,l)}\V2(γ)

µ(dx(2, j ′)) (10.11)

for all diagramsγ ∈ Γ (k, l). In words: We take the product defined in (10.9), then
if the index (1, j) of a variablex(1, j) is connected with the index(2, j ′) of some
variablex(2, j ′) by an edge of the diagramγ, then we replace the variablex(1, j) by
x(2, j ′) in this product. Finally we integrate the function obtainedin such a way with
respect to the arguments with indices(2, j ′1), . . . ,(2, j ′s), i.e. with those vertices of
the second row of the diagramγ from which an edge starts. It is clear thatFγ is a
function of |γ | variables. It depends on those coordinates whose indices are such
vertices ofγ from which no edge starts.

For the sake of simpler notations we shall also consider Wiener–Itô integrals
with such kernel functions whose variables are more generally indexed. If thek-
fold Wiener–It̂o integral with a kernel functionf (x1, . . . ,xk) is well-defined, then
we shall say that the Wiener–Itô integral with kernel functionf (xu1, . . . ,xuk), where
{u1, . . . ,uk} is an arbitrary set withk different elements, is also well defined, and it
equals the Wiener–Itô integral with the original kernel functionf (x1, . . . ,xk), i.e. we
write
∫

f (xu1, . . . ,xuk)µW(dxu1) . . .µW(dxuk) =
∫

f (x1, . . . ,xk)µW(dx1) . . .µW(dxk).

(10.12)
(We have right to make such a convention since the value of a Wiener–It̂o integral
does not change if we permute the indices of the variables of the kernel function
in an arbitrary way. This follows e.g. from (10.7).) In particular, we shall speak
about the Wiener–Itô integral of the functionFγ( f1, f2) defined in (10.11) without
reindexing its variablesx(1, j) andx(2, j ′) ‘in the right way’. Now we can formulate
the diagram formula for the product of two Wiener–Itô integrals.

Theorem 10.2A (The diagram formula for the product of two Wiener–It ô in-
tegrals). Let a non-atomic,σ -finite measureµ be given on a measurable space
(X,X ) together with a white noiseµW with reference measureµ , and take two
functions f(x1, . . . ,xk) ∈ Hµ ,k and g(x1, . . . ,xl ) ∈ Hµ ,l . (The classes of functions
Hµ ,k and Hµ ,l were introduced in (10.1).) Let us consider the class of diagrams
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Γ (k, l) introduced above together with the functions Fγ( f ,g), γ ∈Γ (k, l), defined by
formulas (10.9), (10.10) and (10.11) with its help. They satisfy the inequality

‖Fγ( f ,g)‖2 ≤ ‖ f‖2‖g‖2 for all γ ∈ Γ (k, l), (10.13)

where the L2 norm of a (generally indexed) function h(xu1, . . . ,xus) is defined as

‖h‖2
2 =

∫

h2(xu1, . . . ,xus)µ(dxu1) . . .µ dxus).

Beside this, the product k!Zµ ,k( f )l !Zµ ,l (g) of the Wiener–It̂o integrals of the func-
tions f and g (the notation Zµ ,k was introduced in (10.4)) satisfies the identity

(k!Zµ ,k( f ))(l !Zµ ,l (g)) = ∑
γ∈Γ (k,l)

|γ |!Zµ ,|γ |(Fγ( f ,g))

= ∑
γ∈Γ (k,l)

|γ |!Zµ ,|γ |(SymFγ( f ,g)). (10.14)

The next example may help to understand how to apply the diagram formula.

Take two Wiener–It̂o integrals 2!Z2( f ) =
∫

f (x1,x2)µW(dx1)µW(dx2) and

3!Z3(g) =
∫

g(x1,x2,x3)µW(dx1)µW(dx2)µW(dx3)

with kernel functionsf (x1,x2) andg(x1,x2,x3). Let us understand how to calculate
a term in the sum at the right-hand side of (10.14) which expresses the product
2!Z2( f )3!Z3(g) as a sum of Wiener–Itô integrals.

When we apply the diagram formula first we reindex the arguments of the functions
f andg by the indices(1,1),(1,2) and(2,1),(2,2),(2,3) respectively, and take the
product of these reindexed functions. We get the function

( f ◦g)(x(1,1),x(1,2),x(2,1),x(2,2),x(2,3)) = f (x(1,1),x(1,2))g(x(2,1),x(2,2),x(2,3)).

We define the two rows of the diagrams we will be working with. The labels of
their vertices agree with the indices of the arguments of thefunctions f andg. (See
picture.)

(1,1) (1,2)

(2,1) (2,2) (2,3)

The vertices of the diagrams
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We consider all diagramsγ in which vertices from the first and second row are
connected by edges, and from each vertex there starts zero orone edge. We define
with the help of these diagramsγ some functionFγ( f ,g) which will be the kernel
functions of the Wiener–Itô integrals appearing in the diagram formula (10.14). Let
us consider that diagramγ which contains one edge connecting the vertices(1,2)
and(2,1).

(1,1) (1,2)

(2,1) (2,2) (2,3)

The diagram we consider

We make a relabelling of the vertices by replacing the label of the vertices from
the first row from which an edge starts with the label of the vertex with which this
vertex is connected. Then we make the same reindexation withthe indices of the
function( f ◦g). In the present case the diagram we take is

(1,1)

(2,1) (2,2) (2,3)

(2,1)

The reindexed version of our diagram

and we define the function

( f ◦g)γ(x(1,1),x(2,1),x(2,2),x(2,3)) = f (x(1,1),x(2,1))g(x(2,1),x(2,2),x(2,3)).

Finally we define the functionFγ( f ,g) by integrating the function( f ◦g)γ with re-
spect to those variables whose indices agree with the label of a vertex from the
second row of the diagramγ from which an edge starts. (In the present case this is
x(2,1).)

Fγ( f ,g)(x(1,1),x(2,2),x(2,3)) =
∫

( f ◦g)γ(x(1,1),x(2,1),x(2,2),x(2,3))µ(dx(2,1)).
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We got a function of 3 variables, and the contribution of the above diagramγ to the
diagram formula (10.14) is

3!Zµ ,3(Fγ( f ,g))

=
∫

Fγ( f ,g)(x(1,1),x(2,2),x(2,3))µW(dx(1,1))µW(dx(2,2))µW(dx(2,3)).

In the last step some technical inconvenience appears. Originally we defined the
Wiener–It̂o integral of functions of the formf (x1, . . . ,xk), i.e. of functions whose
variables have a different indexation. Generally this inconvenience is overcome in
the literature by a reindexation of the variables of the kernel function Fγ( f ,g). I
chose a slightly different approach by introducing a formally more general Wiener–
Itô integral in (10.12) which makes the above integral meaningful.

Theorem 10.2A will be proved in Appendix B. The following consideration
yields a heuristic explanation for it. Actually it can also be considered as a sketch of
proof.

In the theory of general Itô integrals when stochastic processes are integrated
with respect to a Wiener processes, one of the most basic results is Itô’s formula
about differentiation of functions of Itô integrals. It has a heuristic interpretation by
means of the informal ‘identity’(dW)2 = dt. In the case of general white noises this
‘identity’ can be generalized as(µW(dx))2 = µ(dx). We present a rather informal
‘proof’ of the diagram formula on the basis of this ‘identity’ and the fact that the
diagonals are omitted from the domain of integration in the definition of Wiener–It̂o
integrals.

In this ‘proof’ we fix two numbersk ≥ 1 andl ≥ 1, and consider the product of
two Wiener–It̂o integrals of the functionsf andg of orderk andl . This product is a
bilinear form of the functionsf andg. Hence it is enough to check formula (10.14)
for a sufficiently rich class of functions. It is enough to consider functions of the
form f (x1, . . . ,xk) = IA1(x1) · · · IAk(xk) andg(x1, . . . ,xl ) = IB1(x1) · · · IBl (xl ) with dis-
joint setsA1, . . . ,Ak and disjoint setsB1, . . . ,Bl , whereIA(x) is the indicator function
of a setA. (Here we have exploited that the functionsf andg disappear in the diag-

onals.) Let us divide the setsA j into the union of small disjoint setsD(m)
j , 1≤ j ≤ k

with some fixed number 1≤m≤M in such a way thatµ(D(m)
j )≤ ε with some fixed

ε > 0, and the setsB j into the union of small disjoint setsF(m)
j , 1≤ j ≤ l , with some

fixed number 1≤ m≤ M, in such a way thatµ(F(m)
j ) ≤ ε with some fixedε > 0.

Beside this, we also require that two setsD(m)
j andF(m′)

j ′ should be either disjoint

or they should agree. (The setsD(m)
j are disjoint for different indices, and the same

relation holds for the setsF(m′)
j ′ .)

Then the identities

k!Zµ ,k( f ) =
k

∏
j=1

(
M

∑
m=1

µW(D(m)
j )

)
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and

l !Zµ ,l (g) =
l

∏
j ′=1

(
M

∑
m′=1

µW(F(m′)
j ′ )

)

,

hold, and the product of these two Wiener–Itô integrals can be written in the
form of a sum by means of a term by term multiplication. Let us divide the
terms of the sum we get in such a way into classes indexed by thediagrams
γ ∈ Γ (k, l) in the following way: Each term in this sum is a product of the form

k
∏
j=1

µW(D
(mj )
j )

l
∏

j ′=1
µW(F

(m′
j )

j ′ ). Let it belong to the class indexed by the diagram

γ with edges((1, j1),(2, j ′1)),. . . , and((1, js),(2, j ′s)) if the elements in the pairs

(D
(mj1)

j1
,F

(mj′1
)

j ′1
),. . . , (D

(mjs)
js

,F
(mj′s)

j ′s
) agree, and otherwise all terms are different.

Then lettingε → 0 (and taking partitions of the setsD j andFj ′ corresponding to
the parameterε) the sums of the terms in each class turn to integrals, and ourcalcu-
lation suggests the identity

(k!Zµ ,k( f ))(l !Zµ ,l (g)) = ∑
γ∈Γ (k,l)

Z̄γ( f ,g) (10.15)

with

Z̄γ( f ,g) =
∫

f (xαγ ((1,1)), . . . ,xαγ ((1,k)))g(x(2,1), . . . ,x(2,l)) (10.16)

µW(dxαγ ((1,1))) . . .µW(dxαγ ((1,k)))µW(dx(2,1)) . . .µW(dx(2,l))

with the functionαγ(·) introduced before formula (10.9). The indicesα(1, j) of the
arguments in (10.16) mean that in the caseαγ((1, j)) = (2, j ′) the argumentx(1, j)
has to be replaced byx(2, j ′). In particular,

µW(dxαγ ((1, j)))µW(dx(2, j ′)) = (µW(dx(2, j ′)))
2 = µ(dx(2, j ′))

in this case because of the ‘identity’(µW(dx))2 = µ(dx). Hence the above informal
calculation yields the identitȳZγ( f ,g) = |γ |!Zµ ,|γ |(Fγ( f ,g)), and relations (10.15)
and (10.16) imply formula (10.14).

A similar heuristic argument can be applied to get formulas for the product of
integrals of normalized empirical distributions or (normalized) Poisson fields, only
the starting ‘identity’(µW(dx))2 = µ(dx) changes in these cases, some additional
terms appear in it, which modify the final result. I return to this question in the next
chapter.

It is not difficult to generalize Theorem 10.2A with the help of some additional
notations to a diagram formula about the product of finitely many Wiener–It̂o in-
tegrals. We shall do this in Theorem 10.2. Then to understandthis result better I
present an example which shows how to calculate the terms in the sum expressing
the product of three Wiener–Itô integrals as a sum of Wiener–Itô integrals.
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We consider the product of the Wiener–Itô integralskp!Zµ ,kp( fp), 1≤ p≤ m, of
m≥ 2 functions fp(x1, . . . ,xkp) ∈ Hµ ,kp, of orderkp ≥ 1, 1≤ p≤ m, and define a
class of diagramsΓ = Γ (k1, . . . ,km) in the following way.

The diagramsγ ∈ Γ = Γ (k1, . . . ,km) have vertices of the form(p, r), 1≤ p ≤
m, 1 ≤ r ≤ kp. The set of vertices{(p, r) : 1 ≤ r ≤ kp} with a fixed numberp
will be called thep-th row of the diagramγ. A diagramγ ∈ Γ = Γ (k1, . . . ,km)
may have some edges. All edges of a diagram connect vertices from different rows,
and from each vertex there starts at most one edge. All diagrams satisfying these
properties belong toΓ (k1, . . . ,km). If a diagramγ contains an edge of the form
((p1, r1),(p2, r2))with p1 < p2, then(p1, r1) will be called the upper and(p2, r2) the

lower end point of this edge. LetE(γ) = {((p(u)1 , r(u)1 ),(p(u)2 , r(u)2 )), p(u)1 < p(u)2 , 1≤
u ≤ s} denote the set of all edges of a diagramγ (the number of edges inγ was

denoted bys= |E(γ)|), and let us also introduce the setsVu(γ) = {((p(u)1 , r(u)1 ), 1≤
u≤ s}, the set of all upper end points andVb(γ) = {((p(u)2 , r(u)2 ), 1≤ u≤ s}, the set
of all lower end points of edges in a diagramγ. Let V = V(γ) = {(p, r) : 1≤ p≤
m,1≤ r ≤ kp} denote the set of all vertices ofγ, and let|γ |= k1+ · · ·+km−2|E(γ)|
denote the number of vertices inγ from which no edge starts. Vertices from which no
edge starts will be called free vertices in the sequel. Let usalso define the function
αγ((p, r)) for a vertex(p, r) of the diagramγ in the following way:αγ((p, r)) =
(p̄, r̄), if there is some pair of integers(p̄, r̄) such that((p, r),(p̄, r̄)) ∈ E(γ) and
p< p̄, i.e. (p, r) ∈Vu(γ) and((p, r),(p̄, r̄)) ∈ E(γ), and putαγ((p, r)) = (p, r) for
(p, r) ∈V(γ)\Vu(γ). In words, the functionαγ(·) was defined on the set of vertices
V(γ) in such a way that it replaces the label of an upper end point ofan edge with
the label of the lower end point of this edge, and it does not change the labels of the
remaining vertices of the diagram.

With the help of the above quantities the appropriate multivariate version of the
functions given in (10.9), (10.10) and (10.11) can be defined. Put

( f1◦ f2◦ · · · ◦ fm)(x(p,r), 1≤ p≤ m,1≤ r ≤ kp)

=
m

∏
p=1

fp(x(p,1), . . . ,x(p,kp)), (10.17)

( f1◦ f2◦ · · · ◦ fm)γ(x(p,r), (p, r) ∈V(γ)\Vu(γ))

=
m

∏
p=1

fp(xαγ ((p,1)), . . . ,xαγ ((p,kp))), (10.18)

and
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Fγ( f1, . . . , fm)(x(p,r), (p, r) ∈V(γ)\ (Vb(γ)∪Vu(γ)) (10.19)

=
∫

( f1◦ f2◦ · · · ◦ fm)γ(x(p,r), (p, r) ∈V(γ)\Vu(γ))

∏
(p,r)∈Vb(γ)

µ(dx(p,r)).

In words, first we replace the indices 1, . . . ,kp of the function fp(x1, . . . ,xkp) by
(p,1), . . . ,(p,kp), and take the product of the functionsfp with these reindexed
variables in (10.17). Then we replace those indices of the variables in this product
which agree with the index of the upper end-point of an edge inγ with the index
of the lower end-points of this edge in (10.18). Finally we integrate the function
obtained in such a way with respect to those variables whose indices agree with the
index of a lower end-point of an edge ofγ in (10.19).

With the help of the above notations the diagram formula for the product of
finitely many Wiener–It̂o integrals can be formulated.

Theorem 10.2 (The diagram formula for the product of finitely many Wiener–
It ô integrals).Let a non-atomic,σ -finite measureµ be given on a measurable space
(X,X ) together with a white noiseµW with reference measureµ . Take m≥ 2 func-
tions fp(x1, . . . ,xkp) ∈ Hµ ,kp with some order kp ≥ 1, 1 ≤ p ≤ m. Let us consider
the class of diagramsΓ (k1, . . . ,km) introduced above together with the functions
Fγ( f1, . . . , fm), γ ∈ Γ (k1, . . . ,km), defined by formulas (10.17), (10.18) and (10.19)
with its help. The L2-norm of these functions satisfies the inequality

‖Fγ( f1, . . . , fm)‖2 ≤
m

∏
p=1

‖ fp‖2 for all γ ∈ Γ (k1, . . . ,km). (10.20)

Beside this, the product
m
∏

p=1
kp!Zµ ,kp( fp) of the Wiener–It̂o integrals of the functions

fp, 1≤ p≤ m, satisfies the identity

m

∏
p=1

kp!Zµ ,kp( fp) = ∑
γ∈Γ (k1,...,km)

|γ |!Zµ ,|γ |(Fγ( f1, . . . , fm)) (10.21)

= ∑
γ∈Γ (k1,...,km)

|γ |!Zµ ,|γ |(SymFγ( f1, . . . , fm)).

To understand the notations of the above result better let ustake the product of
three Wiener–It̂o integrals 2!Zµ ,2( f2)4!Zµ ,4( f2)3!Zµ ,3( f3) with kernel functions
f1(x1,x2), f2(x1,x2,x3,x4) and f3(x1,x2,x3) and see how to calculate a term in the
sum of diagram formula (10.21) which expresses this productas a sum of Wiener–
Itô integrals.

Let us first define the rows of the diagrams we shall working with together with their
labelling. There will be three rows with labels(1,1), (1,2), then with(2,1), (2,2),
(2,3), (2,4) and finally with(3,1), (3,2), (3,3). We consider all possible diagrams
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which are graphs containing these vertices and edges connecting vertices from dif-
ferent rows with the restriction that from each vertex therecan start at most one edge.
We define with the help of all diagrams a function which will bethe kernel-function
of a Wiener–It̂o integral appearing in the diagram formula (10.21). Let us consider
for instance the diagramγ containing the edges((1,1),(3,2)), ((1,2),(2,2)) and
((2,4),(3,3)), (see picture).

(1,1) (1,2)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3)

The diagram we consider

Let us relabel the vertices of the diagramγ by relabelling the upper vertices of
each edge by the lower vertex of this edge.

(2,1) (2,2) (2,3)

(3,1) (3,2)

(3,2) (2,2)

(3,3)

(3,3)

The relabelled version of our diagram

We take the product of our functions with the indexation of the variables corre-
sponding the labels of the diagrams. Then we reindex these variables corresponding
to the relabelling of our diagramγ, i.e. define first the function

( f1◦ f2◦ f3)(x(1,1),x(1,2),x(2,1),x(2,2),x(2,3),x(2,4),x(3,1),x(3,2),x(3,3))

= f1(x(1,1),x(1,2)) f2(x(2,1),x(2,2),x(2,3),x(2,4)) f3(x(3,1),x(3,2),x(3,3))

and then
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( f1◦ f2◦ f3)γ(x(2,1),x(2,2),x(2,3),x(3,1),x(3,2),x(3,3))

= f1(x(3,2),x(2,2)) f2(x(2,1),x(2,2),x(2,3),x(3,3)) f3(x(3,1),x(3,2),x(3,3)).

Then we integrate the function( f1◦ f2◦ f3)γ with respect to the variables whose
indices correspond to the labels of those vertices which arethe lower labels of some
edge. In our cases these are the indices(2,2), (3,2) and(3.3). This means that we
define the function

Fγ( f1◦ f2◦ f3)(x(2,1),x(2,3),x(3,1))

=
∫

( f1◦ f2◦ f3)γ(x(2,1),x(2,2),x(2,3),x(3,1),x(3,2),x(3,3))

µ(dx(2,2))µ(dx(3,2))µ(dx3,3).

The functionFγ( f1, f2, f3) is a function of three variables, and the contribution of the
diagramγ to the sum at the right-hand side of (10.17) equals 3!Zµ ,3(Fγ( f1, f2, f3))
with the above defined kernel functionFγ( f1, f2, f3). In the definition of this integral
we apply again the convention described in (10.12).

Theorem 10.2 can be relatively simply derived from Theorem 10.2A by means of
induction with respect to the number of terms whose product we consider. We still
have to check that with the introduction of an appropriate notation Theorem 10.2A
remains valid also in the case when the functionf is a constant.

Let us also consider the case whenf = c is a constant, andg ∈ Hµ ,l . In this
case we apply the conventionZµ ,0(c) = c, introduce the class of diagramsΓ (0, l)
that consists only of one diagramγ whose first row is empty, its second row
contains the vertices(2,1), . . . ,(2, l), and it has no edge. Beside this, we define
Fγ(c,g)(x(2,1), . . . ,x(2,l)) = cg(x(2,1), . . . ,x(2,l)) for this diagramγ. With such a con-
vention Theorem 10.2A can be extended to the case of the product of two Wiener–
Itô integrals of orderk≥ 0 andl ≥ 1. Theorem 10.2 can be derived from this slightly
generalized result by induction with respect to the number of termsm in the product.

I explain only briefly the proof of Theorem 10.2 which is similar to the proof
of Theorem 11.2 about the product of degenerateU-statistics given in Chapters 11
and 12, only some technical difficulties disappear in this case.

We can define, similarly to the corresponding definition in Chapter 11 where the
diagram formula for the products ofU-statistics will be formulated such a diagram
γpr ∈ Γ (k1, . . . ,km−1) for all γ ∈ Γ (k1, . . . ,km) which is actually the restriction of
the diagramγ to its first m− 1 rows. Beside this, we can define a diagramγcl ∈
Γ (|γpr|,km), where|γpr| denotes the number of free vertices ofγpr in the following
way. This diagram consists of two rows with|γpr| andkm vertices respectively. It
contains those edges ofγ (after a reenumeration of the free vertices ofγpr with the
numbers 1,2, . . . , |γpr|) whose lower end points are in them-th row of γ. It can be
seen thatFγ( f1, . . . , fm) = Fγcl (Fγpr( f1, . . . , fm−1), fm), and there is such a one to one
correspondence(γ̄, γ̂)↔ γ between the pairs of diagrams(γ̄, γ̂), γ̄ ∈Γ (k1, . . . ,km−1),
γ̂ ∈ Γ (|γ̄|,km) and diagramsγ ∈ Γ (k1, . . . ,km) for which γ̄ = γpr andγ̂ = γcl .
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To prove the diagram formula for a product of the form
m
∏

p=1
kp!Zµ ,kp( fp) first we

express the product
m−1
∏

p=1
kp!Zµ ,kp( fp) with the help of the diagram formula by ex-

ploiting that by our inductive hypothesis it can be applied for the parameterm−1.
In such a way we can rewrite the above product as a sum of Wiener–Itô integrals
with such kernel functions which can be calculated with the help of the restrictions
γpr to the firstm−1 rows of the diagramsγ ∈ Γ (k1, . . . ,km). Then by multiplying
each term of this sum bykm!Zµ ,km( fm), calculating these products with the help
of Theorem 10.2A and summing up the expressions we get in sucha way we can
rewrite the product at the left-hand side of (10.21) as a sum of Wiener–It̂o integrals.
It can be seen with the help of the properties of the diagramsγ ∈Γ (k1, . . . ,km) men-
tioned in the previous paragraph that the identity we get in such a way is equivalent
to formula (10.21) in Theorem 10.2.

By statement c) of Theorem 10.1 all Wiener–Itô integrals of orderk ≥ 1 have
expectation zero. This fact together with Theorem 10.2 enable us to compute the
expectation of a product of Wiener–Itô integrals. Theorem 10.2 makes possible to
rewrite the product of Wiener–Itô integrals as a sum of Wiener–Itô integrals. Then
its expectation can be calculated by taking the expected value of each term and
summing them up. Only Wiener–Itô integrals of order zero yield a non-zero contri-
bution to this expectation. These terms agree with the integrals of kernel functions
Fγ( f1, . . . , fm) corresponding to diagrams with no free vertices. In the nextcorollary
I write down the result we got in this way.

Corollary of Theorem 10.2 about the expectation of a productof Wiener–It ô
integrals. Let a non-atomicσ -finite measureµ be given on a measurable space
(X,X ) together with a white noiseµW with reference measureµ . Take m≥ 2
functions fp(x1, . . . ,xkp)∈Hµ ,kp, and consider their Wiener–Itô integrals Zµ ,kp( fp),
1 ≤ p ≤ m. The expectation of the product of these random variables satisfies the
identity

E

(
m

∏
p=1

kp!Zµ ,kp( fp)

)

= ∑
γ∈Γ̄ (k1,...,km)

Fγ( f1, . . . , fm), (10.22)

whereΓ̄ (k1, . . . ,km) denotes the set of those diagramsγ ∈Γ (k1, . . . ,km) which have
no free vertices, i.e.|γ | = 0. Such diagrams will be called closed diagrams in the
sequel. (IfΓ̄ (k1, . . . ,km) is empty, then the sum at the right-hand side of (10.22)
equals zero.) The functions Fγ( f1, . . . , fm) for γ ∈ Γ̄ (k1, . . . ,km) are constants, and
they satisfy the inequality

|Fγ( f1, . . . , fm)| ≤
m

∏
p=1

‖ fp‖2 for all γ ∈ Γ̄ (k1, . . . ,km). (10.23)

Proof of the Corollary.Relation (10.22) is a straight consequence of formula (10.21),

part c) of Theorem 10.1 and the identityZµ ,0(Fγ( f1, . . . , fm)) = Fγ( f1, . . . , fm), if
|γ |= 0. Relation (10.23) follows from (10.20).
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The next result I formulate is Itô’s formula for multiple Wiener–It̂o integrals. It
can also be considered as a consequence of the diagram formula. It will be proved
in Appendix C.

Theorem 10.3 (It̂o’s formula for multiple Wiener–It ô integrals). Let a non-
atomic,σ -finite measureµ be given on a measurable space(X,X ) together with a
white noiseµW with reference measureµ . Let us take some real valued, orthonor-
mal functionsϕ1(x),. . . , ϕm(x) on the measure space(X,X ,µ). Let Hk(u) denote
the k-th Hermite polynomial with leading coefficient 1. Takethe one-fold Wiener–Itô
integralsηp = Zµ ,1(ϕp), 1≤ p≤ m, and introduce the random variables Hkp(ηp),

1 ≤ p ≤ m, with some integers kp ≥ 1, 1 ≤ p ≤ m. Put Kp =
p
∑
j=1

kr , 1 ≤ p ≤ m,

K0 = 0. Thenη1, . . . ,ηm are independent, standard normal random variables, and
the identity

m

∏
p=1

Hkp(ηp) = Km!Zµ ,Km

(
m

∏
p=1

(
Kp

∏
j=Kp−1+1

ϕp(x j)

))

(10.24)

= Km!Zµ ,Km

(

Sym

(
m

∏
p=1

(
Kp

∏
j=Kp−1+1

ϕp(x j)

)))

holds. In particular, ifϕ(x) is a real valued function such that
∫

ϕ2(x)µ(dx) = 1,
then

Hk

(∫

ϕ(x)µW(dx)

)

=
∫

ϕ(x1) · · ·ϕ(xk)µW(dx1) . . .µW(dxk). (10.25)

I also formulate a limit theorem about the distribution of normalized degenerate
U-statistics that will be proved in Appendix C. The limit distribution in this result
is given by means of multiple Wiener–Itô integrals.

Theorem 10.4 (Limit theorem about normalized degenerateU-statistics).Let us
consider a sequence of degenerate U-statistics In,k( f ) of order k, n= k,k+1, . . . ,
defined in (8.8) with the help of a sequence of independent andidentically dis-
tributed random variablesξ1,ξ2, . . . taking values in a measurable space(X,X )
with a non-atomic distributionµ and a kernel function f(x1, . . . ,xk), canonical
with respect to the measureµ , defined on the k-fold product(Xk,X k) of the space
(X,X ) for which

∫
f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)< ∞. Then the sequence of nor-

malized U-statistics n−k/2In,k( f ) converges in distribution, as n→ ∞, to the k-fold
Wiener–It̂o integral

Zµ ,k( f ) =
1
k!

∫

f (x1, . . . ,xk)µW(dx1) . . .µW(dxk)

with kernel function f(x1, . . . ,xk) and a white noiseµW with reference measureµ .
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Remark.The limit behaviour of degenerateU-statisticsIn,k( f ) with an atomic mea-
sureµ which satisfy the remaining conditions of Theorem 10.4 can be described
in the following way. Take the probability space(U,U ,λ ), whereU = [0,1], U

is the Borelσ -algebra andλ is the Lebesgue measure on it. Introduce a sequence
of independent random variablesη1,η2, . . . with uniform distribution on the interval
[0,1], which is independent also of the sequenceξ1,ξ2, . . . . Define the product space
(X̃,X̃ , µ̃) = (X ×U,X ×U ,µ × λ ) together with the functionf̃ (x̃1, . . . , x̃k) =
f̃ ((x1,u1), . . . ,(xk,uk)) = f (x1, . . . ,xk) with the notation ˜x = (x,u) ∈ X ×U , and
ξ̃ j = (ξ j ,η j), j = 1,2, . . . . ThenIn,k( f ) = In,k( f̃ ) (with the above defined function
f̃ andµ̃ distributed random variables̃ξ j ). Beside this, Theorem 10.4 can be applied
for the degenerateU-statisticsIn,k( f̃ ), n= 1,2, . . . .

In the next result I give an interesting representation of the Hilbert space consist-
ing of the square integrable functions measurable with respect to a white noiseµW.
An isomorphism will be given with the help of Wiener–Itô integrals between this
Hilbert space and the so-called Fock space to be defined below. To formulate this
result first some notations will be introduced.

Let H 0
µ ,k ⊂ Hµ ,k denote the class of symmetric functions in the spaceHµ ,k,

k = 0,1,2, . . . , i.e. f ∈ Hµ ,k is in its subspaceH 0
µ ,k if and only if f (x1, . . . ,xk) =

Sym f (x1, . . . ,xk). Let us introduce for allk = 0,1,2, . . . the Hilbert spaceGk con-
sisting of those random variablesη (on the probability space where the white noise
µW is defined) which can be written in the form

η = Zµ ,k( f ) =
1
k!

∫

f (x1, . . . ,xk)µW(dx1) . . .µW(dxk)

with somef ∈ H 0
k,µ .

It follows from part a) and c) of Theorem 10.1 that the mapf → Zµ ,k( f ) is a
linear transformation ofH 0

µ ,k to Gk, and 1
k! ‖ f‖2

2 = EZ2
µ ,k( f ) for all f ∈H 0

µ ,k, where
‖ f‖2 denotes the usualL2-norm of the functionf with respect to thek-fold power
of the measureµ . By the definition of Wiener–It̂o integrals the setG1 consists of
jointly Gaussian random variables with expectation zero. The spacesHµ ,0 andG0

consist of the real constants. Let us define the space Exp(Hµ) of infinite sequences

f = ( f0, f1, . . .), fk ∈ H 0
µ ,k, k = 0,1,2, . . . , such that‖ f‖2

2 =
∞
∑

k=0

1
k! ‖ fk‖2

2 < ∞. The

space Exp(Hµ) with the natural addition and multiplication by a constant and the
above introduced norm‖ f‖2 for f ∈ Exp(Hµ) is a Hilbert space which is called the
Fock space in the literature.

Let G denote the class of random variables of the form

Z( f ) =
∞

∑
k=0

Zµ ,k( fk), f = ( f0, f1, f2, . . .) ∈ Exp(Hµ).

The next result describes the structure of the space of random variablesG . It is
useful for a better understanding of Wiener–Itô integrals, but it will be not used in
the sequel. In its proof I shall refer to some basic measure theoretical results.
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Theorem 10.5 (Isomorphism of the space of square integrablerandom vari-
ables measurable with respect to a white noise with a Fock space).Let a non-
atomic,σ -finite measureµ be given on a measurable space(X,X ) together with
a white noiseµW with reference measureµ . Let us consider the class of functions
H 0

µ ,k, k= 0,1,2, . . . , andExp(Hµ) together with the spaces of random variables

Gk, k= 0,1,2, . . . , andG defined above. The transformation Z: Z( f ) =
∞
∑

k=0
Zµ ,k( fk),

f = ( f0, f1, f2, . . .) ∈ Exp(Hµ), is a unitary transformation from the Hilbert space
Exp(Hµ) to G . The Hilbert spaceG consists of all random variables with finite
second moment, measurable with respect to theσ -algebra generated by the random
variablesµW(A), A ∈ X , µ(A) < ∞. This σ -algebra agrees with theσ -algebra
generated by the random variables Zµ ,1( f1), f1 ∈ H 0

µ ,1.

Remark.For the sake of simpler notations we restrict our attention to the case when
the measure space(X,X ,µ) is such that the Hilbert space of square integrable
functions on this space is separable. This condition is satisfied in all interesting
cases.

Proof of Theorem 10.5.Properties a) and c) in Theorem 10.1 imply that the trans-
formation fk → Zµ ,k( fk) is a linear transformation ofH 0

µ ,k to Gk, and 1
k! ‖ fk‖2

2 =

EZµ ,k( f )2. Beside this,EZµ ,k( f )Zµ ,k′( f ′k′) = 0 if fk ∈ H 0
µ ,k, and f ′k′ ∈ H 0

µ ,k′ with
k 6= k′ by properties d) and c). (The latter property is needed to guarantee this re-
lation also holds ifk = 0 or k′ = 0.) It follows from these relations that the map

Z : Z( f ) =
∞
∑

k=0
Zµ ,k( fk), f = ( f0, f1, f2, . . .)∈Exp(Hµ) is an isomorphism between

the Hilbert spaces Exp(Hµ) andG .
It remained to show thatG contains all random variables with finite second

moment, measurable with respect to the correspondingσ -algebra. Letg j(u), j =
1,2, . . . , be an orthonormal basis inH 0

µ ,1 = Hµ ,1, and introduce the random vari-
ablesη j = Zµ ,1(g j), j = 1,2, . . . . These random variables are independent with
standard normal distribution, and by Itô’s formula for Wiener–It̂o integrals (Theo-
rem 10.3) all productsHr1(η j1) . . .Hrp(η jp) with r1+ · · ·+rp = k are in the spaceGk,
whereHr(·) denotes the Hermite polynomial of orderr with leading coefficient 1.
We also recall the following results from the classical analysis:

a) Hermite polynomials constitute a complete orthonormal system in theL2-space
on the real line with respect to the standard normal distribution. (This result will
be proved in Appendix C in Proposition C2.)

b) If a random variableζ is measurable with respect to theσ -algebra generated by
some random variablesη1,η2, . . . , then there exists a Borel measurable function
f (x1,x2, . . .) on the infinite product of the real line(R∞,B∞) in such a way that
ζ = f (η1,η2, . . .).

This means in our case that any random variableζ measurable with respect to
the σ -algebra generated by the random variablesη j = Zµ ,1(g j), j = 1,2, . . . , can
be written in the formζ = f (η1,η2, . . .) with the above introduced independent,
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standard normal random variablesη1,η2, . . . . If ζ has finite second moment, then
the function f appearing in its representation is a function of finiteL2-norm in the
infinite product of the real line with the infinite product of the standard normal
distribution on it. Hence some classical results in analysis enable us to expand the
function f with respect to products of Hermite polynomials, and this also yields the
identity

ζ = ∑c( j1, r1, . . . , js, rs)Hr1(η j1) · · ·Hrs(η js)

with some coefficientsc( j1, r1, . . . , js, rs) such that

∑c2( j1, r1, . . . , js, rs)‖Hr1(u)‖2 · · ·‖Hrs(u)‖2 < ∞.

(Actually it is known that‖Hk(u)‖2 = k!, but here we do not apply this fact.)
The above relations yield the desired representation of a random variableζ with

finite second moment, if it is measurable with respect to theσ -algebra generated by

the random variables inG1. Indeed, the identityζ =
∞
∑

k=0
ζk holds with

ζk = ∑
r1+···+rs=k

c( j1, r1, . . . , js, rs)Hr1(η j1) · · ·Hrs(η js),

andζk ∈ Gk by Itô’s formula.
To complete the proof it is enough to remark that theσ -algebra generated by the

random variablesη1,η2, . . . andµW(A), A∈ X , µ(A) < ∞ agree, as it was stated
in part f) of Theorem 10.1.

The results about Wiener–Itô integrals discussed in this Chapter are useful in the
study of non-linear functionals of a white noise. In my Lecture Note [32] similar
problems were discussed, but in that work a slightly different version of Wiener–It̂o
integrals was introduced. The reason for this modification was that the solution of
the problems studied in [32] demanded different methods.

In work [32] stationary Gaussian random fields were considered, and I was
mainly interested in it in limit theorems for sequences of non-linear functionals
on a stationary Gaussian random field. In a stationary Gaussian random field a shift
operator can be introduced. This shift operator can be extended in a natural way to
all random variables measurable with respect to the underlying stationary Gaussian
random field. In [32] we needed a technique which helps in working with this shift
operator. In an analogous case, when functions on the real line are considered, the
Fourier analysis is a useful tool in the study of the shift operator. In the work [32] we
tried to unify the tools of multiple Wiener–Itô integrals and Fourier analysis. This
led to the definition of a slightly different version of Wiener–Itô integrals.

In the work [32] we have shown that not only the correlation function of a sta-
tionary Gaussian field can be given by means of the Fourier transform of its spec-
tral measure, but also a random spectral measure can be constructed whose Fourier
transform expresses the stationary Gaussian process itself. After the introduction of
this random spectral measure a version of the multiple Wiener–Itô integral can be
defined with respect to it, and all square integrable random variables, measurable
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with respect to theσ -algebra generated by the underlying Gaussian stationary ran-
dom field can be expressed as the sum of such integrals. Moreover, such an approach
enables us to apply the methods of multiple Wiener–Itô integrals and Fourier anal-
ysis simultaneously. The modified Wiener–Itô integral introduced in [32] behaves
similarly to the original Wiener–It̂o integral, only it has to be taken into account
that the random spectral measure behaves not like a white noise, but as its ‘Fourier
transform’. I omit the details. They can be found in [32].

The spacesGk consisting of allk-fold Wiener–It̂o integrals were introduced also
in [32], and this was done for a special reason. In that work the Hilbert space of
square integrable functions, measurable with respect to anunderlying stationary
Gaussian field was studied together with the shift operator acting on this Gaussian
field. The shift operator could be extended to a unitary operator on this Hilbert space.
The introduction of the subspacesGk turned out to be useful, because they supplied
such a decomposition of this Hilbert space which consists oforthogonal subspaces
invariant with respect to the shift operator.

In the present work no shift operator was defined, and limit theorems for non-
linear functionals of a Gaussian field were not studied here.The introduction of the
spacesGk was useful because of a different reason. In the study of our problems
we need good estimates on the 2p-th moment of random variables, measurable with
respect to the underlying white noise for large integersp. As it will be shown, the
high moments of the random variables in the spacesGk with different indicesk
show an essentially different behaviour. The high moments of a random variable in
Gk behave similarly to those of thek-th powerξ k of a Gaussian random variable
ξ with zero expectation. This statement will be formulated ina more explicit form
in Proposition 13.1 or in its consequence, formula (13.2). Apartial converse of this
result will be presented in Theorem 13.6.





Chapter 11
The diagram formula for products of degenerate
U-statistics

There is a natural analogue of the diagram formula for the products of Wiener–It̂o
integrals both for the products of multiple integrals with respect to normalized em-
pirical measures and for the products of degenerateU-statistics. These two results
are closely related. They express the product of multiple random integrals or degen-
erateU-statistics as a sum of multiple random integrals or degenerateU-statistics
respectively. The kernel functions of the random integralsor U-statistics appear-
ing in this sum are defined, — similarly to the case of Wiener–Itô integrals, — by
means of diagrams. This is the reason why these results are also called the diagram
formula. The main difference between these diagram formulas and their version for
Wiener–It̂o integrals is that in the present case we have to work with a more gen-
eral class of diagrams. The diagram formula for multiple integrals with respect to a
normalized empirical measure will be discussed only at an informal level, while a
complete proof of the analogous result about degenerateU-statistics will be given.
The reason for such an approach is that the diagram formula for the product of
degenerateU-statistics can be better applied in this work.

We want to prove the estimates about the tail distribution ofdegenerateU-
statistics and multiple integrals with respect to a normalized empirical distribution
formulated in Theorems 8.3 and 8.1 with the help of good bounds on the high mo-
ments of degenerateU-statistics and multiple random integrals. In the case of degen-
erateU-statistics the diagram formula yields an explicit formulafor these moments.
We exploit that this formula expresses the product of degenerateU-statistics as a
sum of degenerateU-statistics of different order. Beside this, the expected value of
all degenerateU-statistics of orderk≥ 1 equals zero. Hence the expected value we
are interested in equals the sum of the zero order terms appearing in the diagram
formula.

The analogous problem about the moments of multiple integrals with respect to a
normalized empirical measure is more difficult. The diagramformula enables us to
express the moments of multiple random integrals as the sum of the expectation of
such integrals of different order also in this case. But the expected value of random
integrals of orderk ≥ 1 with respect to a normalized empirical distribution may be
non-zero. Before the proof of Theorem 9.4 we showed this in anexample.
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First I give an informal description of the diagram formula for the product of two
random integrals with respect to a normalized empirical measure. Its analogue, the
diagram formula for the product of two Wiener–Itô integrals can be described in an
informal way by means of formulas (10.15) and (10.16) together with the ‘identity’
(µW(dx))2 = µ(dx) in their interpretation. The diagram formula for the product of
two multiple integrals with respect to a normalized empirical measure has a similar
representation. (Observe that in the definition of the random integralJn,k(·) given
in formula (4.8) the diagonals are omitted from the domain ofintegration, similarly
to the case of Wiener–Itô integrals.) In this case such a version of formulas (10.15)
and (10.16) can be applied, where the random integralsZµ ,k are replaced byJn,k,
and the white noise measureµW is replaced by the normalized empirical measure
νn =

√
n(µn−µ). But the analogue of the ‘identity’(µW(dx))2 = µ(dx) needed in

the interpretation of these formulas has a different form. It states that(νn(dx))2 =
µ(dx)+ 1√

nνn(dx). Let us ‘prove’ this new ‘identity’.

Take a small set∆ , i.e. a set∆ such thatµ(∆) is very small, write down the
identity (νn(∆))2 = n(µn(∆))2+n(µ(∆))2−2nµn(∆)µ(∆) and observe that only
a second order error is committed if the termsn(µ(∆))2 and 2nµn(∆)µ(∆) are
omitted at the right-hand side of this identity. Moreover, also a second order er-
ror is committed ifn(µn(∆))2 is replaced byµn(∆), because it has second order
small probability that there are at least two sample points in the small set∆ . On the
other hand,n(µn(∆))2 = µn(∆) if ∆ contains only zero or one sample point. The
above considerations suggest that(νn(dx))2 = µn(dx) = µ(dx)+ 1√

n[
√

n(µn(dx)−
µ(dx))] = µ(dx) + 1√

nνn(dx). (This means that in the ‘identity’ expressing the

square(νn(dx))2 of a normalized empirical measure a correcting term1√nνn(dx)
appears. If the sample sizen→ ∞, then the normalized empirical measure tends to
a white noise with counting measureµ , and this correcting term disappears.)

The diagram formula for the product of two multiple integrals with respect to a
normalized empirical measure was proved in paper [35] with adifferent notation.
Informally speaking, the result in this work states that theidentity suggested by the
above heuristic argument really holds. We remark that if theform of this identity
is found, then it can be proved with the help of some algebraiccalculations sim-
ilarly to the proof of Lemma 9.5. We omit the proof of this result, since we shall
not work with it. We shall prove instead a version of it about the product of de-
generateU-statistics that we can better apply. This result is similarto the diagram
formula for the products of multiple integrals with respectto a normalized empirical
distribution. This similarity will be discussed inRemark 4after Theorem 11.1.

In this chapter first I formulate the diagram formula about the product of two
degenerateU-statistics in Theorem 11.1, then its generalization aboutthe product
of finitely many degenerateU-statistics in Theorem 11.2. Their proofs is postponed
to the next chapter. I also present a Corollary of Theorem 11.2 about the expected
value of the product of degenerateU-statistics which follows from this result and
the observation that the expected value of aU-statistic of orderk ≥ 1 equals zero.
This result together with Lemma 11.3 which yields a bound on theL2-norm of the
kernel functions of the degenerateU-statistics appearing in the diagram formula will
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enable us to prove good estimates on the high moments of degenerateU-statistics.
We can prove Theorem 8.3 about the tail distribution of degenerateU-statistics with
the help of such estimates. One might try to prove the analogous result, Theorem 8.1
about the tail distribution of multiple integrals with respect to a normalized empir-
ical distribution in a similar way with the help of the diagram formula for multiple
random integrals. But that would be much harder, since the diagram formula for
multiple integrals with respect to a normalized empirical distribution does not sup-
ply such a good formula for the moments of random integrals asthe analogous result
about degenerateU-statistics.

To describe the results of this chapter we introduce some newnotions. In the
formulation of the diagram formula for the product of degenerateU-statistics a more
general class of diagrams has to be considered than in the case of multiple Wiener–
Itô integrals. I shall define them under the name coloured diagrams. The kernel
functions of theU-statistics appearing in the diagram formula will be definedwith
their help. First I introduce the notations needed in the formulation of the diagram
formula for the product of two degenerateU-statistics, then I present this result in
Theorem 11.1. After this, to understand the notations better I explain with the help
of an example how to calculate a general term in this diagram formula.

A class of coloured diagramsΓ (k1, . . . ,km) will be defined whose vertices will be
the pairs(p, r), 1≤ p≤m, 1≤ r ≤ kp, and the set of vertices(p, r), 1≤ r ≤ kp, with
a fixed numberp will be called thep-th row of the diagram. To define the coloured
diagrams of the classΓ (k1, . . . ,km) first the notions of chains and coloured chains
will be introduced. A sequenceβ = {(p1, r1), . . . ,(ps, rs)} with 1≤ p1 < p2 < · · ·<
ps ≤ m and 1≤ ru ≤ kpu for all 1≤ u≤ s will be called a chain. The numbers of
vertices(pu, ru) in this sequence, denoted byℓ(β ), will be called the length of the
chainβ . Chains of lengthℓ(β ) = 1, i.e. chains consisting only of one vertex(p1, r1)
are also allowed. We shall define a functionc(β ) = ±1 which will be called the
colour of the chainβ , and the pair(β ,c(β )) will be called a coloured chain. We
shall allow arbitrary colouringc(β ) =±1 of a chain with the only restriction that a
chain of length 1 can only get the colour−1, i.e.c(β ) =−1 if ℓ(β ) = 1.

A coloured diagramγ ∈ Γ (k1, . . . ,km), is a partition of the set of vertices
A(k1, . . . ,km) = {(p, r) : 1 ≤ p ≤ m, 1 ≤ r ≤ kp} to the union of some coloured
chainsβ ∈ γ, i.e.

⋃

β∈γ
β = A(k1, . . . ,km), and each vertex(p, r) ∈ A(k1, . . . ,km) is

the element of exactly one chainβ ∈ γ. Beside this, each chainβ ∈ γ has a colour
cγ(β ) = ±1. The setΓ (k1, . . . ,km) consists of all coloured diagramsγ with the
above properties with the only restriction that for a chainβ = {(p, r)} ∈ γ of length
ℓ(β ) = 1 of a diagramγ ∈ Γ (k1, . . . ,km) we havecγ(β ) =−1.

Let us define for all coloured diagramsγ ∈ Γ (k1, . . . ,km) the set of open chains
O(γ) = {β : β ∈ γ , cγ(β ) = −1} and the set of closed chainsC(γ) = {β : β ∈
γ , cγ(β ) = 1} of this diagramγ. We shall define for all sets of bounded func-
tions fp = fp(x1, . . . ,xkp) ∈ L2(Xkp,X kp,µkp), 1 ≤ p ≤ m, and diagramsγ ∈
Γ (k1, . . . ,km) a bounded functionFγ( f1, . . . , fm)=Fγ( f1, . . . , fm)(x1, . . . ,x|O(γ)|)with

|O(γ)| variables on the product space(X|O(γ)|,X |O(γ)|,µ |O(γ)|), where|O(γ)| de-
notes the number of open chains in the diagramγ. The arguments of the function
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Fγ( f1, . . . , fm) will correspond to the open chains of the diagramγ. We will see that
the functionFγ( f1, . . . , fm) is canonical (with respect to the measureµ) if the same
relation holds for the functionsf1, . . . , fm. In the diagram formula we shall express

the product of normalized degenerateU-statistics
m
∏

p=1
n−kp/2kp!In,kp( fp) as a linear

combination of the normalized degenerateU-statistics

n−|O(γ)|/2|O(γ)|!In,|O(γ)|(Fγ( f1, . . . , fm)).

To define the above mentioned functionsFγ( f1, . . . , fm) first we fix for all pairs
of positive integersk1,k2 = 1,2, . . . and diagramsγ ∈ Γ (k1,k2) an enumeration of
the chains ofγ, and beside this we also fix an enumeration of the open chains of
all diagramsγ ∈ Γ (k1, . . . ,km), m= 2,3, . . . . (For m≥ 3 we shall need an enu-
meration only for the open chains.) For the sake of simpler notation we choose
such an enumeration of the chains of a diagramγ for m = 2 where the chains
get the labels 1,2, . . . , |O(γ)|+ |C(γ)|, and the open chains get the first|O(γ)|
labels, i.e.β (l) is an open chain if 1≤ l ≤ |O(γ)|, and it is a closed chain if
|O(γ)|+ 1 ≤ l ≤ |O(γ)|+ |C(γ)|. In the casem≥ 3 we give an enumeration only
of the open chains of a diagramγ, and they will be indexed by the numbers
1 ≤ l ≤ |O(γ)|. This means thatβ (l) will be defined for 1≤ l ≤ |O(γ)|, and it is
an open chain ofγ.

We shall fix an enumeration of the chains of the diagrams with two rows and of
the open chains of the diagrams with at least three rows at thestart, and during the
application of the diagram formula we shall always apply this enumeration of the
chains. The subsequent definition of the functionsFγ( f1, . . . , fm) will depend on this
enumeration, but the results formulated with the help of these functions are valid for
an arbitrary (previously fixed) enumeration of the chains. Hence the non-uniqueness
in the definition of the functionsFγ( f1, . . . , fm) will cause no problem.

First we formulate the diagram formula for the product of twodegenerate
U-statistics, i.e. we consider the casem = 2. Let us have a measurable space
(X,X ) with a probability measureµ on it together with two measurable func-
tions f1(x1, . . . ,xk1) and f2(x1, . . . ,xk2) of k1 andk2 variables on this space which are
canonical with respect to the measureµ . Letξ1,ξ2, . . . be a sequence of(X,X ) val-
ued, independent and identically distributed random variables with distributionµ .
We want to express the productn−k1/2k1!In,k1( f1)n−k2/2k2!In,k2( f2) of normalized
degenerateU-statistics defined with the help of the above random variables and ker-
nel functionsf1 and f2 as a sum of normalized degenerateU-statistics. For this goal
we define some functionsFγ( f1, f2) for all γ ∈ Γ (k1,k2).

We shall define the functionFγ( f1, f2) with the help of the previously fixed enu-
meration of the chains of the diagramγ. We shall introduce with the help of this enu-
meration also an enumeration of the vertices(1, p), (2,q), 1≤ p≤ k1, 1≤ q≤ k2,
of the diagramγ. We put

αγ((p, r)) = l if (p, r) ∈ β (l), p= 1,2, 1≤ r ≤ kp. (11.1)
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Let us have two functionsf1(x1, . . . ,xk1) and f2(x1, . . . ,xk2) together with a
coloured diagramγ ∈ Γ (k1,k2). We define the functionFγ( f1, f2) in two steps. First
we define the function

( f1◦ f2)γ(x1, . . . ,xs(γ))

= f1(xαγ ((1,1)), . . . ,xαγ ((1,k1))) f2(xαγ ((2,1)), . . . ,xαγ ((2,k2))), (11.2)

wheres(γ) = |O(γ)|+ |C(γ)| is the number of chains inγ, and the indicesαγ(1, j)
andαγ(2, j ′) were defined in (11.1). (In formula (11.2) the arguments of both func-
tions f1 and f2 have different indices. But two indicesαγ((1, j)) andαγ((2, j ′)) may
agree in some cases. This happens if the vertices(1, j) and(2, j ′) belong to the same
chainβ ∈ γ of length 2.) In the second step we define the function

Fγ( f1, f2)(x1, . . . ,x|O(γ)|) (11.3)

=

(

∏
j : β ( j)∈C(γ)

Pj ∏
j ′ : β ( j ′)∈O2(γ)

Q j ′

)

( f1◦ f2)γ(x1, . . . ,x|O(γ)|+|C(γ)|)

with the operatorsPj andQ j ′ defined in formulas (9.1) and (9.2), whereC(γ) is the
set of closed chains of the diagramγ, andO2(γ)⊂O(γ) is the set of open chains ofγ
with length 2, i.e.O2(γ) = {β : cγ(β ) =−1, andℓ(β ) = 2}. Let us also remark that
the operatorsPj andQ j ′ in formula (11.3) are exchangeable, hence it is not important
in what order we apply them.

Let me remark that if we applied a different enumeration of the diagrams
γ ∈ Γ (k1,k2) then we would get a different functionFγ( f1, f2). This would be a
reindexed version of the original functionFγ( f1, f2). But the value of theU-statistic
In,|O(n)|(Fγ( f1, f2)) does not depend on the indexation of the variables in its ker-
nel function. Hence the identity which will be formulated informula (11.4) of the
subsequent Theorem 11.1 does not depend on the enumeration of the chains of the
diagramsγ ∈ Γ (k1,k2). Now we can formulate the following result.

Theorem 11.1 (The diagram formula for the product of two degenerate U-
statistics).Let a sequence of independent and identically distributed random vari-
ablesξ1,ξ2, . . . be given with some distributionµ on a measurable space(X,X )
together with two bounded, canonical functions f1(x1, . . . ,xk1) and f2(x1, . . . ,xk2)
with respect to the probability measureµ on the product spaces(Xk1,X k1) and
(Xk2,X k2) respectively. Let us take the class of coloured diagramsΓ (k1,k2) in-
troduced above together with the functions Fγ( f1, f2) defined in formulas (11.1)—
(11.3).

The functions Fγ( f1, f2) are bounded and canonical with respect to the measureµ
with |O(γ)| arguments for all coloured diagramsγ ∈Γ , where O(γ) and C(γ) denote
the set of open and closed chains of the diagramγ. The product of the normalized
degenerate U-statistics n−k1/2k1!In,k1( f1) and n−k2/2k2!In,k2( f2), n ≥ max(k1,k2),
defined in (8.8) can be expressed as
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n−k1/2k1!In,k1( f1) ·n−k2/2k2!In,k2( f2) = ∑
γ∈Γ (k1,k2)

′(n)
|C(γ)|
∏
j=1

(
n−s(γ)+ j

n

)

n−W(γ)/2 ·n−|O(γ)|/2|O(γ)|!In,|O(γ)|(Fγ( f1, f2)) (11.4)

with W(γ) = k1+k2−|O(γ)|−2|C(γ)| (we explain in Remark 1 after Theorem 11.1
that W(γ) = |O2(γ)|, i.e. it equals the number of open chains with length 2) and
s(γ) = |O(γ)|+ |C(γ)| (which equals the number of coloured chains inγ). Here∑′(n)

means that summation is taken only for such coloured diagramsγ ∈Γ (k1,k2) which

satisfy the inequality s(γ) ≤ n, and
|C(γ)|
∏
j=1

equals 1 in the case|C(γ)| = 0. The term

In,|O(γ)|(Fγ( f1, f2)) can be replaced by In,|O(γ)|(SymFγ( f1, f2)) in formula (11.4).
Consider the L2-norm of the functions Fγ( f1, f2)

‖Fγ( f1, f2)‖2
2 =

∫

Fγ( f1, f2)
2(x1 . . . ,x|O(γ)|)

|O(γ)|
∏
p=1

µ(dxp).

The inequality
‖Fγ( f1, f2)‖2 ≤ ‖ f1‖2‖ f2‖2 if W(γ) = 0 (11.5)

holds for this norm. The condition W(γ) = 0 in formula (11.4) means that the di-
agramγ ∈ Γ (k1,k2) has no chainsβ of lengthℓ(β ) = 2 with colour cγ(β ) = −1.
For a general diagramγ ∈Γ (k1,k2) under the conditionsup| f2(x1, . . . ,xk2)| ≤ 1 the
inequality

‖Fγ( f1, f2)‖2 ≤ 2W(γ)‖ f1‖2 (11.6)

holds. Inequalities (11.5) and (11.6) remain valid also in the case when f1 and f2
may be non-canonical functions.

Inequality (11.5) is actually a repetition of estimate (10.13) about the diagrams
appearing in the case of Wiener–Itô integrals. Inequality (11.6) yields a weaker
bound about theL2-norm‖Fγ( f1, f2)‖2 for a general diagramγ. We formulated it in
a form where the functionsf1 and f2 do not play a symmetrical role. This estimate
depends on theL2-norm of the functionf1, and it is assumed in it that the supremum
of the function| f2| is less than 1. We chose such a formulation of this inequalitybe-
cause it can be well generalized to the case when the product of severalU-statistics
is considered. The appearance of the condition about the supremum of the func-
tion | f2| in the estimate (11.6) is closely related to the fact that in the estimates on
the tail distribution ofU-statistics, — unlike the case of Wiener–Itô integrals, — a
condition is imposed not only on theL2-norm of the kernel functionf , but also on
its L∞-norm. I return to this question later.

Next I show an example which may help to understand how to apply the diagram
formula for the product of two degenerateU-statistics.

Take two normalized degenerateU-statisticsn−3/23!In,3( f1) andn−24!In,4( f2) with
kernel functionsf1(x1,x2,x3) and f2(x1,x2,x3,x4), and let us see how to calculate
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with the help of formula (11.4) a term of the sum which expresses the product
3!In,3( f1)4!In,4( f2) as a sum of degenerateU-statistics.

Let us first understand which are the coloured diagrams we have to consider in
the diagram formula (11.4), and then let us calculate the term corresponding to a
coloured diagram at the right-hand side of this formula.

The coloured diagrams we have to consider have two rows with vertices labelled
by (1,1), (1,2), (1,3) and (2.1), (2,2), (2,3), (2,4) respectively. The coloured dia-
grams are such partitions of the vertices whose elements contain from each row at
most one element. The elements of these partitions which we call chains contain
1 or 2 elements. (We speak here about chains and not about graphs, because we
want to apply such a terminology which also works in the more general case when
we consider the diagram formula for the product of several degenerateU-statistics.)
We give each chain either the colour +1 or−1. Chains consisting of only 1 vertex
(chains of length 1) get the colour−1 while chains containing 2 vertices (chains of
length 2) can get both colours+1 and−1. We take all coloured diagrams satisfy-
ing the above properties, and each of them yields a contribution to the sum at the
right-hand side of (11.4). Let us look what kind of contribution yields the coloured
diagramγ which contains a closed chain((1,1),(2,2)) (with colour +1) and an
open chain((1,3),(2,4)) (with colour−1) of length two, and beside this it contains
chains of length 1 and colour−1. They are(1,2) from the first row, and(2,1), (2,3)
from the second row. (See the picture.)

(1,1) (1,2) (1,3)

(2,3) (2,4)(2,2)(2,1)

5 3

42

1

The diagram with the labelling of its chains

(o–o denotes open and•–• denotes closed chains)

We fix a labelling of the chains of the digramγ, and define with its help a rela-
belling of the vertices. We label the chains subsequently from 1 to 5 in such a way
that the open chains get the smaller labels, 1,2,3 and 4. Otherwise, we choose arbi-
trary labelling. We have the right for it, since although thekernel function of theU-
statistic we shall define with the help of the diagramγ will depend on this labelling,
but theU-statistic determined by it will not depend on it. Let us givethe following
labels for the chains:(1,2)–label 1,(2,1)–label 2,((1,3),(2,4))–label 3,(2,3)–
label 4,((1,1),(2,2))–label 5. (This was an arbitrary choice.) Then we relabel the
vertices contained in a chain with the label of this chain. (See the picture). (We used
such a notation where the labels of the chains are put in a box,like this 1 .)
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2

5

5

5

3

342

1

4

1

3

The relabelled version of our diagram

Then we reindex the variables of the functionsf1 and f2 corresponding to the
new labels of the vertices in the first and second row respectively. In the present
case we take the reindexed functionsf1(x5,x1,x3) and f2(x2,x5,x4,x3). Then we
define the product of these reindexed functions

( f1◦ f2)γ(x1,x2,x3,x4,x5) = f1(x5,x1,x3) f2(x2,x5,x4,x3).

Next we define the functionFγ( f1, f2) introduced in (11.3) as

Fγ( f1, f2)(x1,x2,x3,x4) = Q3P5( f1◦ f2)γ(x1,x2,x3,x4,x5),

whereP5 andQ3 corresponding to the closed chain with label 5 and open chainof
length 2 with label 3 are the operators defined in (9.1) and (9.2) with j = 5 and j = 3
respectively. Thus

P5( f1◦ f2)γ(x1,x2,x3,x4,x5) =
∫

f1(x5,x1,x3) f2(x2,x5,x4,x3)µ(dx5),

and

Fγ( f1, f2)(x1,x2,x3,x4) = Q3P5( f1◦ f2)γ(x1,x2,x3,x4,x5) (11.7)

=
∫

f1(x5,x1,x3) f2(x2,x5,x4,x3)µ(dx5)

−
∫

f1(x5,x1,x3) f2(x2,x5,x4,x3)µ(dx3)µ(dx5).

The normalized degenerateU-statistic corresponding to the diagramγ is

n−24!In,4(Fγ( f1, f2)),

and the contribution of the diagramγ to the sum in the diagram formula, i.e. to the
sum at the right-hand side of (11.4) isn−4

n · n−1/2 · n−24!In,4(Fγ( f1, f2)). Here the
factorn−1/2 is the termn−W(γ)/2 in (11.4) which is a contraction term which roughly
speaking depends on the difference of the diagramγ from the ‘regular diagrams’
appearing also in the diagram formula for Wiener–Itô integrals. The factorn−4

n is a
technical term which has no great importance. Its appearance is related to the form
of the Hoeffding decomposition. In formula (9.4), expressing this relation a factor



11 The diagram formula for products of degenerateU-statistics 123

of the form(n−|V|)(n−|V|−1) · · ·(n−k+1) appears instead of the ‘regular term’
nk−|V|, and this is the reason for the appearance of this factor.

Finally the notation∑′(n) in formula (11.4) means that the above calculated term
corresponding to the diagramγ takes part in the summation only if the sample sizen
of theU-statistic satisfies the inequalityn≥ 5. This restriction is related to the fact
that ak-fold U-statistic can be defined only ifn ≥ k for the sample size. TheU-
statistic with kernel functionFγ( f1, f2) has order 4. Nevertheless, a slightly stronger
restriction is imposed. The reason for it is that, as the proof of Theorem 11.3 will
show, theU-statistic we considered here appears as a term in the Hoeffding decom-
position of theU-statistic with kernel function( f1 ◦ f2)γ . This is aU-statistic of
order 5, and the conditionn≥ 5 comes from here.

Next we make some comments to Theorem 11.1.

Remark 1.The expressionW(γ) = k1+ k2− |O(γ)| −2|C(γ)| appearing in formu-
las (11.4) and (11.5) equals|O2(γ)|, i.e. it is the number of the chainsβ ∈ γ for
whichℓ(β ) = 2, andcγ(β ) =−1. Indeed, ifW̄(γ) equals the number of chainsβ ∈ γ
for which ℓ(β ) = 1 (and as a consequencecγ(β ) = −1), then|O2(γ)|+W̄(γ) =
|O(γ)|, and 2C|(γ)|+2|O(γ)|−W̄(γ) = k1+ k2. (In the last identity we calculated
the number of vertices inγ in two different ways.) Because of the definition ofW(γ)
the last identity can be rewritten asW(γ)+W̄(γ) = |O(γ)|. These relations imply
the statement of this remark.

Remark 2.The termIn,|O(γ)|(Fγ( f1, f2)) with some coloured diagramγ ∈ Γ (k1,k2)
appeared in the sum at the right-hand side of (11.4) only if the conditions(γ) ≤ n
was satisfied, which means that the sample sizen of theU-statistic is sufficiently
large. This restriction in the summation had a technical character, which has no great
importance in our investigations. It is related to the fact that aU-statisticIn,k( f ) was
defined only ifn ≥ k. As a consequence, someU-statistics disappear at the right-
hand side of (11.4) if the sample sizen of theU-statistics is relatively small. The
termIn,|O(γ)|(Fγ( f1, f2)) appeared in (11.4) through the Hoeffding decomposition of
aU-statistic with kernel function( f1◦ f2)γ defined in (11.2). This function hass(γ)
arguments, and theU-statistic corresponding to it appears in our calculationsonly
if the sample sizen is not smaller than the numbers(γ).

Remark 3.As I earlier mentioned the functionsFγ( f1, f2) depended on the la-
belling of the chainsβ ∈ Γ (k1,k2). This non-uniqueness in the formulation of iden-
tity (11.4) has no importance in its applications. Moreover, we can get rid of this
non-uniqueness by working with symmetrical functionsf1 and f2 (with functions
which do not change by a permutation of their variables) and by replacing the func-
tions Fγ( f1, f2) by their symmetrizations. A similar remark holds for the general
version of the diagram formula to be discussed later, where we may consider the
product of several degenerateU-statistics.

Remark 4.The diagram formula formulated in Theorem 11.1 is similar toits version
about the product of two multiple integrals with respect to anormalized empirical
distribution. The latter result was not written up here explicitly, but its form was
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explained in an informal way at the beginning of this chapter. The kernel functions
of theU-statistics and random integrals appearing in these formulas are indexed by
the same diagrams. Their definitions are different, becausein theU-statistic case we
have to work with canonical functions while in the multiple integral case we have no
such restriction. As a consequence we define the functionsFγ( f1, f ) in this case by
means of a modified version of formula (11.3), where the operatorsQlp are omitted
from the definition. The coefficients of the normalized degenerateU-statistics and
random integrals in the two results are slightly different.In the multiple integral
case we have to multiple withn−W(γ)/2 while in theU-statistic case this term is
multiplied with a factor between 0 and 1. This is related to the form of the Hoeffding
decomposition ofU-statistics given in (9.3). The restriction in the summation ∑′(n)

is also related to the properties ofU-statistics.

Let us turn to the formulation of the general form of the diagram formula for
the product of finitely many degenerateU-statistics. After introduction of some
notations we present this result in Theorem 11.2. Then we discuss an example to
understand its notation better.

This result has a more complicated form than its analogue about Wiener-It̂o in-
tegrals, because in the present case we cannot define the kernel functions of the
U-statistics appearing in the diagram formula in a simple, direct way. We shall de-
fine them with the help of an inductive procedure. To do this first we introduce some
conventions which will be useful later.

Let us recall the convention introduced after the definitionof canonical degen-
erateU-statistics by whichIn,0(c) is a degenerateU-statistic of order zero, and
In,0(c) = c for a constantc. If γ ∈ Γ (k1,k2) is such a diagram for which|O(γ)|= 0,
i.e. cγ(β ) = 1 for all chainsβ ∈ γ, then the expressionFγ( f1, f2) defined in (11.3)
is a constant, and for such a diagramγ we define the termIn,|O(γ)|(Fγ( f1, f2)) in
relation (11.4) by means of the previous convention.

We introduce another convention (similarly to the discussion of Wiener–It̂o inte-
grals in Chapter 10) which enables us to extend the validity of Theorem 11.1 to the
case whenk1 = 0, and the functionfk1 = c with a constantc. In this caseΓ (k1,k2)
consists of only one diagramγ containing the chainsβp = {(2, p)} of length
one and with colourcγ({(2, p)}) = −1, 1≤ p ≤ k2, and we defineFγ( f1, f2) =
c f2(x1, . . . ,xk2). Beside this, we haveC(γ) = /0, O(γ) = {(2,1), . . . ,(2,k2)}, hence
W(γ) = k1 + k2 − |O(γ)| − 2|C(γ)| = 0, |C(γ)| = 0. We also haves(γ) = k2, thus
the inequality(γ) ≤ n holds under the conditions of Theorem 11.1. Hence for-
mula (11.4) remains valid also in the casek1 = 0. For the sake of completeness
we introduce a listing of the (open) chainsβ ∈ O(γ) of the diagram(s) of the set
Γ (0,k2). We defineβ (l) = {(2, l)}, 1≤ l ≤ k2 in this case. We have introduced the
above conventions because they are useful in the inductive argument we shall apply
in the proof of the diagram formula for the product of degenerateU-statistics in the
general case.

To formulate the diagram formula for the product of degenerateU-statistics in the
general case first we define a functionFγ( f1, . . . , fm) = Fγ( f1, . . . , fm)(x1, . . . ,x|O(γ)|)
for each coloured diagramγ ∈ Γ (k1, . . . ,km) and collection of canonical functions
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(canonical with respect to a probability measureµ on a measurable space(X,X ))
f1, . . . , fm with k1,. . . ,km variables. The functionFγ( f1, . . . , fm) we shall define has
|O(γ)| arguments. It will appear as the kernel function of the degenerateU-statistic
corresponding to the diagramγ at the right-hand side of the diagram formula.

The functionsFγ( f1, . . . , fm) will be defined by induction with respect to the
numberm of the components in the product of degenerateU-statistics. Form=
2 we have already defined them. Let the functionsFγ( f1, . . . , fm−1) be defined
for each coloured diagramγ ∈ Γ (k1, . . . ,km−1). To defineFγ( f1, . . . , fm) for a
coloured diagramγ ∈ Γ (k1, . . . ,km) first we define the predecessorγpr = γpr(γ) ∈
Γ (k1, . . . ,km−1) of γ. It consist of the restrictions of the chains of the diagramγ
to the firstm− 1 rows of this diagram together with an appropriate colouring of
these restricted chains. Then we define the functionFγpr( f1, . . . , fm−1) with |O(γpr)|
arguments in our inductive procedure. We shall also define a coloured diagram
γcl ∈Γ (|O(γpr)|,km) of two rows, which has the heuristic content that it containsthe
additional information we need to reconstruct the diagramγ ∈ Γ (k1, . . . ,km) from
its predecessorγpr. We shall defineFγ( f1, . . . , fm) which will be a canonical func-
tion with |O(γ)| variables with the help of the diagramγcl and the pair of functions
Fγpr( f1, . . . , fm−1) and fm.

The diagramγpr ∈ Γ (k1, . . . ,km−1) will consist of the chains

βpr = β \{(m,1), . . . ,(m,km)}, β ∈ γ ,

i.e. we get the chainβpr by dropping fromβ its vertex contained in the last row
{(m,1), . . . ,(m,km)} of the diagram if it contains such a vertex. If we get an empty
set in such a way (this happens ifβ consists of a single vertex of the form(m, p)) then
we disregard it, i.e the empty set will be not taken as a chain of γpr. We define the
colour ofβpr ascγpr(βpr) = cγ(β ) if β = βpr, i.e. if β ∩{(m,1), . . . ,(m,km)} = /0,
andcγpr(βpr) = −1 if β contains a vertex of the form(m, p), 1 ≤ p ≤ km. After
the definition of the diagramsγpr ∈ Γ (k1, . . . ,km−1) we can define the canonical
functionFγpr( f1, . . . , fm−1) with argumentsx1, . . . ,x|O(γpr)| by means of our inductive
procedure.

We also define the diagramγcl ∈Γ (|O(γpr)|,km) for a diagramγ ∈Γ (k1, . . . ,km).
We must tell which are the chains{(1, p),(2, r)}, 1 ≤ p ≤ |O(γpr)|, 1 ≤ r ≤ km,
of length two of the diagramγcl , and we have to define their colour. The set
{(1, p),(2, r)} is a chain of length two of the diagramγcl if and only if the open
chainβ (p) ∈ γpr (the chainβ (p) is that open chain ofγpr ∈ Γ (k1, . . . ,km−1) which
got the labelp in the enumeration of the open chains ofγpr) is the restrictionβpr of
that chainβ ∈ γ for which (m, r) ∈ β . If {(1, p),(2, r)} ∈ γcl , then its colour inγcl

is defined ascγcl ({(1, p),(2, r)}) = cγ(β ) with the chainβ = β (p) ∈ γ, which is
the chain for which(m, r) ∈ β . Those vertices(1, p) and(2, r), 1≤ p ≤ |O(γpr)|,
1 ≤ r ≤ km, which are not contained in such a chain of length 2 will be chains of
length 1 ofγcl with colour−1.

Given some bounded functionsf1, . . . , fm of kp variables, 1≤ p ≤ m, and a
diagram γ ∈ Γ (k1, . . . ,km) we shall define the functionFγ( f1, . . . , fm) with the
help of the pair of functionsFγpr( f1, . . . , fm−1) and fm and the diagramγcl ∈
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Γ (|O(γpr)|),km) by the formula

Fγ( f1, . . . , fm)(x1,x2, . . . ,x|O(γ)|)

= Fγcl (Fγpr( f1, . . . , fm−1), fm)(x1, . . . ,x|O(γcl)|)). (11.8)

Here we applied formula (11.3) with the choiceγ = γcl and pair of functionsf1 =
Fγpr( f1, . . . , fm−1) and f2 = fm. To justify the correctness of formula (11.8) we still
have to show that|O(γ)|= |O(γcl)|.

To prove this identity observe that the number of those open chains ofγcl which
contain a vertex from the first row ofγcl equals the number of those open chains of
β ∈ γ which have a vertex outside of them-th row of the diagramγ. The remaining
open chains ofγcl contain one vertex from the second row ofγcl , and they correspond
to those open diagrams ofγ which consist of one vertex from them-th row of the
diagram. The above observations imply the desired identity.

To formulate the general form of the diagram formula for the product of degener-
ateU-statistics we introduce some quantities which are the versions of the quantities
W(γ), s(γ) appearing in the identity (11.4) in Theorem 11.1 in the casem> 2. Put

W(γ) = ∑
β∈O(γ)

(ℓ(β )−1)+ ∑
β∈C(γ)

(ℓ(β )−2), γ ∈ Γ (k1, . . . ,km), (11.9)

whereℓ(β ) denotes the length of the chainβ .
To define the next quantity let us introduce some notations. We consider the

chains of the formβ = {(p1, r1), . . . ,(pl , r l )}, 1≤ p1 < p2 < · · ·< pl ≤m, with ele-
ments in the setA(k1, . . . ,km)= {(p, r) : 1≤ p≤m, 1≤ r ≤ kp}, and define their up-
per levelu(β ) = p1, and deepest leveld(β ) = pl . With the help of these notions we
introduce for all diagramsγ ∈ Γ (k1, . . . ,km) and integersp, 1≤ p≤ m, the follow-
ing subsets of the diagramγ. PutB1(γ , p) = {β : β ∈ γ , cγ(β ) = 1, d(β ) = p}, and
B2(γ , p) = {β : β ∈ γ , cγ(β ) =−1, d(β )≤ p}∪{β : β ∈ γ , u(β )≤ p, d(β )> p}.
In words,B1(γ , p) consists of those chainsβ ∈ γ which have colour 1, all their
vertices are in the firstp rows of the diagram, and contain a vertex in thep-th row.
The setB2(γ , p) consists of those chainsβ ∈ γ which have either colour−1, and all
their vertices are in the firstp rows of the diagram, or they have (with an arbitrary
colour) a vertex both in the firstp rows and in the remaining rows of the diagram.
PutB1(γ , p) = |B1(γ , p)| andB2(γ , p) = |B2(γ , p)|. With the help of these numbers
we define

Jn(γ , p) =







B1(γ ,p)
∏
j=1

(
n−B1(γ ,p)−B2(γ ,p)+ j

n

)

if B1(γ , p)≥ 1

1 if B1(γ , p) = 0
(11.10)

for all 2≤ p≤ m and diagramsγ ∈ Γ (k1, . . . ,km).
Theorem 11.2 will be formulated with the help of the above notations.

Theorem 11.2 (The diagram formula for the product of severaldegenerateU-
statistics).Let a sequence of independent and identically distributed random vari-
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ablesξ1,ξ2, . . . be given with some distributionµ on a measurable space(X,X )
together with m≥ 2 bounded functions fp(x1, . . . ,xkp) on the spaces(Xkp,X kp),
1 ≤ p ≤ m, canonical with respect to the probability measureµ . Let us con-
sider the class of coloured diagramsΓ (k1, . . . ,km) together with the functions
Fγ = Fγ( f1, . . . , fm), γ ∈ Γ (k1, . . . ,km), defined in formulas (11.8) and the constants
W(γ) and Jn(γ , p), 1≤ p≤ m, given in formulas (11.9) and (11.10).

The functions Fγ( f1, . . . , fm) are bounded and canonical with respect to the mea-
sureµ with |O(γ)| variables, and the product of the degenerate U-statistics In,kp( fp),
1≤ p≤ m, n≥ max

1≤p≤m
kp, defined in (8.8) can be written in the form

m

∏
p=1

n−kp/2kp!In,kp( fp) = ∑
γ∈Γ (k1,...,km)

′(n,m)

(
m

∏
p=2

Jn(γ , p)

)

n−W(γ)/2 ·n−|O(γ)|/2|O(γ)|!In,|O(γ)|(Fγ( f1, . . . , fm)), (11.11)

where∑′(n,m) means that summation is taken for thoseγ ∈ Γ (k1, . . . ,km) which sat-
isfy the relation B1(γ , p)+B2(γ , p)≤ n for all 2≤ p≤m with the quantities B1(γ , p)
and B2(γ , p) introduced before the definition of Jn(γ , p) in (11.10), and the expres-
sion W(γ) was defined in (11.9). The terms In,|O(γ)|(Fγ( f1, . . . , fm)) at the right-hand
side of formula (11.11) can be replaced by In,|O(γ)|(SymFγ( f1, . . . , fm)).

To understand better the formulation of Theorem 11.2 let us consider the follow-
ing example.

Take three normalized degenerateU-statisticsn−3/23!In,3( f1), n−24!In,4( f2) and
n−3/23!In,3( f3) with canonical kernel functionsf1(x1,x2,x3), f2(x1,x2,x3,x4) and
f3(x1,x2,x3), and let us see how to calculate a term from the sum at the right-hand
side of formula (11.11) which expresses the product

n−3/23!In,3( f1)n
−24!In,4( f2)n

−3/23!In,3( f3)

in the form of a linear combination of degenerateU-statistics.
In this case we have to consider coloured diagrams with rows of vertices (1,1),

(1,2), (1,3), then (2,1), (2,2), (2,3), (2,4), and finally (3,1), (3,2), (3,3). We have to
consider all coloured diagrams with these rows, and to calculate their contribution
to the sum at the right-hand side of (11.11). Let us consider for instance the dia-
gram containing two closed chains (with colour 1)((1,3),(2,4),(3,3)) of length 3,
((1,1),(2,2)) of length 2, an open chain (with colour−1) ((2,1),(3,1)) of length 2,
and the remaining vertices (1,2), (2,3), (3,2) are chains oflength 1 which are conse-
quently open (with colour−1). (See picture.)
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(1,3)(1,2)(1,1)

(2,2) (2,3)(2,1) (2,4)

(3,1) (3,2) (3,3)

Our diagramγ

We want to calculateFγ( f1, f2, f3). For this goal first we have to determine the
coloured diagramsγpr ∈ Γ (3,4) and γcl ∈ Γ (4,3) (here the first parameter 4 in
the definition of the class of diagrams whereγcl belongs to is the number of open
chains inγpr, which is, as we will see, equals 4), and the kernel functionFγpr( f1, f2).
(See the picture of the diagramγpr together with a labelling of its chains and the
diagramγcl to which we also attached a labelling.)

(1,1) (1,2) (1,3)

(2,3) (2,4)(2,2)(2,1)

3

42

1

(1,1) (1,2) (1,3)

(2,3)(2,2)(2,1)

(1,4)

1

2
4

5

3

The diagramγpr correspond-
ing toγ together with the enu-
meration of its open chains

The diagramγcl constructed
with the help of γpr and of
the enumeration of its open
chains

In our exampleγpr is a diagram with two rows (1,1), (1,2), (1,3) and (2,1), (2,2),
(2,3), (2,4). It contains a closed chain((1,1),(2,2)) and an open chain((1,3),(2,4))
of length 2, (the latter is the restriction of a chain of length 3), and open chains of
length 1, which are the vertices (1,2), (2,1), (2,3). This isthe same diagram which
we considered in the example after Theorem 1.1. In that example we have fixed
an enumeration of the chains of this diagram. We also made theconvention that
the enumeration of the chains of a diagram fixed at the start cannot be modified
later. Hence we have the following enumeration of the open chains of this diagram:
(1,2)–label 1, (2,1)–label 2,((1,3),(2,4))–label 3, and (2,3)–label 4.

We define the coloured diagramγcl with the help of the diagramγpr and the enu-
meration of its open chains. It has two rows. The vertices of the first row(1,1),
(1,2), (1,3) and (1,4) correspond to the open chains of the diagramγpr with la-
bels 1, 2, 3 and 4 respectively. The vertices of the second row, (2,1), (2,2) and(2,3)
correspond to the vertices(3,1), (3,2) and(3,3) of the last row of the original di-
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agramγ. The diagramγcl has an open chain((1,2),(2,1)) of length two, (here the
open chain (2,1) ofγpr labelled by 2, is connected to the vertex (3,1) with second
index 1), a closed chain of length 2((1,3),(2,3)) (here the open chain ofγpr la-
belled by 3 is connected with the vertex (3,3)), and the remaining open chains of
γcl of length 1 are (1,1), (1,4) (the open chains (1,2) and (2,3) of γpr with labels 1,
and 4), and (2,2).

Actually we have already calculated the functionFγpr( f1, f2) in formula (11.7).
We can calculate similarly the functionFγ( f1, f2, f3) = Fγcl (Fγpr( f1, f2), f3). First
we fix a labelling of the chains of the diagramγcl , say (1,1)–label 1,((1,2),(2,1))–
label 2, (1,4)–label 3, (2,2)–label 4, and((1,3),(2,3))–label 5. (I have denoted this
labelling in the corresponding picture.) With such a labelling

Fγ( f1, f2, f3)(x1,x2,x3,x4) = Q2P5(Fγpr(x1,x2,x5,x3) f3(x2,x4,x5))

=
∫

Fγpr(x1,x2,x5,x3) f3(x2,x4,x5)µ(dx5)

−
∫

Fγpr(x1,x2,x5,x3) f3(x2,x4,x5)µ(dx2)µ(dx5).

The normalized degenerateU-statistic corresponding toγ is

n−24!In,4(Fγ( f1, f2, f3)),

and the term corresponding toFγ in formula (11.11) is

(
n−4

n

)2

·n−1 ·n−24!In,4(Fγ( f1, f2, f3))

if n≥ 5. In the casen≤ 4 this term disappears.

In Theorem 11.2 the product of such degenerateU-statistics were considered
whose kernel functions were bounded. This also implies thatall functionsFγ appear-
ing at the right-hand side of (11.11) are well-defined (i.e. the integrals appearing in
their definition are convergent) and bounded. In the applications of Theorem 11.2 it
is useful to have a good bound on theL2-norm of the functionsFγ( f1, . . . , fm). Such
a result is formulated in the following

Lemma 11.3 (Estimate about theL2-norm of the kernel functions of the U-
statistics appearing in the diagram formula).Let m functions fp(x1, . . . ,xkp), 1≤
p≤ m, be given on the products(Xkp,X kp,µkp) of some measure space(X,X ,µ),
1≤ p≤ m, with a probability measureµ , which satisfy inequality (8.1) (if the index
k is replaced by the index kp in formula (8.1)). Let us take a coloured diagram
γ ∈ Γ (k1, . . . ,km), and consider the function Fγ( f1, . . . , fm) defined inductively by
means of formula (11.8). The L2-norm of the function Fγ( f1, . . . , fm) (with respect
to the product measureµ × ·· · × µ on the space where Fγ( f1, . . . , fm) is defined)
satisfies the inequality
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‖Fγ( f1, . . . , fm)‖2 ≤ 2W(γ) ∏
p∈U(γ)

‖ fp‖2,

where W(γ) is given in (11.9), and the set U(γ)⊂ {1, . . . ,m} is defined as

U(γ) = {p: 1≤ p≤ m, for all vertices(p, r), 1≤ r ≤ kp the chainβ ∈ γ
for which(p, r) ∈ β has the property that either u(β ) = p

or d(β ) = p and cγ(β ) = 1}. (11.12)

(If the point(p, r) is contained in a chainβ = {(p, r)} ∈ γ of length 1, then u(β ) =
d(β ) = p, and cγ(β ) = −1. In this case the vertex(p, r) satisfies that condition
which all vertices(p, r), 1 ≤ r ≤ kp, must satisfy to guarantee the property p∈
U(γ).)

Remark.Let us give a less formal definition of the setU(γ) in formula (11.12). It
contains the indices of those rows of the diagramγ whose vertices behave in a sense
nicely. This nice behaviour means the following. Each vertex is contained in a chain
β of the diagramγ. We sat that a vertex has nice behaviour if it is either at the
highest or the lowest level of the chainβ ∈ γ containing it. Moreover, if it is at its
lower level, then we also demand thatβ must be closed, i.e.c(β ) = 1. If a vertex
is contained in a chain containing no other vertex, then it isboth at the higher and
lower level of this chain. In this case we say that the vertex behave nicely.

The last result of this chapter is a corollary of Theorem 11.2. In this corollary we
give an estimate on the expected value of a product of degenerateU-statistics. To
formulate this result we introduce the following terminology. We call a (coloured)
diagramγ ∈Γ (k1, . . . ,km) closed ifcγ(β ) = 1 for all chainsβ ∈ γ, and denote the set
of all closed diagrams bȳΓ (k1, . . . ,km). Observe thatFγ( f1, . . . , fm) is constant (a
function of zero variable) if and only ifγ is a closed diagram, i.e.γ ∈ Γ̄ (k1, . . . ,km),
and

In,|O(γ)|(Fγ( f1, . . . , fm)) = In,0(Fγ( f1, . . . , fm)) = Fγ( f1, . . . , fm)

in this case. Now we formulate the following result.

Corollary of Theorem 11.2 about the expectation of a productof degenerate
U-statistics.Let a finite sequence of functions fp(x1, . . . ,xkp), 1≤ p≤ m, be given
on the products(Xkp,X kp) of some measurable space(X,X ) together with a se-
quence of independent and identically distributed random variables with value in
the space(X,X ) and some distributionµ which satisfy the conditions of Theorem
11.2.

Let us apply the notation of Theorem 11.2 together with the notion of the above
introduced class of closed diagrams̄Γ (k1, . . . ,km). The identity
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E

(
m

∏
p=1

n−kp/2kp!In,kp( fkp)

)

(11.13)

= ∑
γ∈Γ̄ (k1,...,km)

′(n,m)

(
m

∏
p=1

Jn(γ , p)

)

n−W(γ)/2 ·Fγ( f1, . . . , fm)

holds. This identity has the consequence
∣
∣
∣
∣
∣
E

(
m

∏
p=1

n−kp/2kp!In,kp( fkp)

)∣
∣
∣
∣
∣
≤ ∑

γ∈Γ̄ (k1,...,km)

n−W(γ)/2|Fγ( f1, . . . , fm)|. (11.14)

Beside this, if the functions fp, 1≤ p≤ m, satisfy conditions (8.1) and (8.2) (with
indices kp instead of k in them), then the numbers|Fγ( f1, . . . , fm)| at the right-hand
side of (11.14) satisfy the inequality

|Fγ( f1, . . . , fm)| ≤ 2W(γ)σ |U(γ)| for all γ ∈ Γ̄ (k1, . . . ,km). (11.15)

In formula (11.15) the same number W(γ) and set U(γ) appear as in Lemma 11.3.
The only difference is that in the present case the definitionof U(γ) becomes a bit
simpler, since cγ(β ) = 1 for all chainsβ ∈ γ.

Remark:We have applied a different terminology for diagrams in thischapter and
in Chapter 10, where the theory of Wiener–Itô integrals was discussed. But there is
a simple relation between their terminology. If we take onlythose diagrams consid-
ered in this chapter which contain only chains of length 1 or 2, and beside this the
chains of length 1 have colour−1, and the chains of length 2 have colour 1, then
we get the diagrams considered in the previous chapter. Moreover, the functions
Fγ = Fγ( f1, . . . , fm) are the same in the two cases. Hence formula (10.22) in the
Corollary of Theorem 10.2 and formula (11.14) in the Corollary of Theorem 11.2
make possible to compare the moments of Wiener–Itô integrals and degenerateU-
statistics.

The main difference between the estimates of this chapter and those given in the
Gaussian case is that formula (11.14) contains some additional terms. They are the
contributions of those diagramsγ ∈ Γ̄ (k1, . . . ,km) which contain chainsβ ∈ γ with
length ℓ(β ) > 2. These are those diagramsγ ∈ Γ̄ (k1, . . . ,km) for which W(γ) ≥
1. The estimate (11.15) given for the termsFγ corresponding to such diagrams is
weaker, than the estimate given for the termsFγ with W(γ) = 0, since|U(γ)| < m
if W(γ) ≥ 1, and|U(γ)| = m if W(γ) = 0. On the other hand, such terms have a
coefficientn−W(γ)/2 at the right-hand side of formula (11.14). A closer study of
these formulas may explain the relation between the estimates given for the tail
distribution of Wiener–It̂o integrals and degenerateU-statistics.





Chapter 12
The proof of the diagram formula for U-statistics

In this chapter the results of the previous chapter will be proved. First I prove its
main result, the diagram formula for the product of two degenerateU-statistics.

Proof of Theorem 11.1.In the first step of the proof the product

k1!In,k1( f1)k2!In,k2( f2)

of two degenerateU-statistics will be rewritten as a sum of not necessarily degen-
erateU-statistics. In this step a term by term multiplication is carried out for the
productk1!In,k1( f1)k2!In,k2( f2), and the terms of the sum obtained in such a way are
put into different classes indexed by the (non-coloured) diagrams with two rows of
lengthk1 andk2. This step is very similar to the heuristic argument leadingto formu-
las (10.15) and (10.16) in our explanation about the diagramformula for Wiener-It̂o
integrals.

In this step we consider all sets of pairs

{(l1, l ′1), . . . ,(lr , l ′r)}, 1≤ r ≤ min(k1,k2),

with the following properties: 1≤ l1 < l2 < · · ·< lr ≤ k1, the numbersl ′1, . . . , l
′
r are

all different, and 1≤ l ′s ≤ k2, for all 1≤ s≤ r.
To a set of pairs{(l1, l ′1), . . . ,(lr , l ′r)} with the above properties let us correspond

the following diagram̄γ((l1, l ′1), . . . ,(lr , l ′r))∈ Γ̄ (k1,k2), whereΓ̄ (k1,k2) denotes the
set of (non-coloured) diagrams with two rows of lengthk1 and k2. The diagram
γ̄((l1, l ′1), . . . ,(lr , l ′r)) has two rows,{(1,1) . . . ,(1,k1)}, and{(2,1), . . . ,(2,k2)}, its
chains of length 2 are the sets{(1, ls),(2, l ′s)}, 1 ≤ s≤ r, and beside this it con-
tains the chains{(1, p)}, p∈ {1, . . . ,k1}\{l1, . . . , lr}, and{(2, p)}, p∈ {1, . . . ,k2}\
{l ′1, . . . , l

′
r} of length 1. All (non-coloured) diagrams̄γ ∈ Γ̄ (k1,k2) can be rep-

resented in the form̄γ = γ̄((l1, l ′1), . . . ,(lr , l ′r)) with the help of a set of pairs
{(l1, l ′1), . . . ,(lr , l ′r)}, 1≤ r ≤ min(k1,k2), with the above properties in a unique way.

To make the notation in the subsequent discussion simpler weintroduce, sim-
ilarly to the notation of Chapter 11, a labelling of the chains of the diagrams

133
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γ̄ ∈ Γ̄ (k1,k2), and then we define the labelling of the vertices of this diagram γ̄
with its help.

Let us choose the following natural labelling of the chains of a diagram. Con-
sider the diagram̄γ = γ̄((l1, l ′1), . . . ,(lr , l ′r)) ∈ Γ̄ (k1,k2) which hass(γ̄) = k1+k2− r
chains. The chainβ ∈ γ̄ containing the vertex(1, p) gets the labelp, i.e.{(1, p)}=
β (p) if 1 ≤ p ≤ k1, and p /∈ {l1, . . . , lr}, and {(1, ls),(2, l ′s)} = β (p) if p = ls
with some 1≤ s≤ r. The remaining chains of̄γ have the form{(2, p)} with p ∈
{1, . . . ,k2}\{l ′1, . . . , l

′
r}. Let us list the numbersp with this property in an increasing

order, i.e. write{1, . . . ,k2} \ {l ′1, . . . , l
′
r} = {l̄1, . . . , l̄k2−r} with 1≤ l̄1 < · · · < l̄k2−r ,

and define{(2, l̄p)}= β (k1+ p) for 1≤ p≤ k2− r. In such a way we have labelled
the chains of a diagram̄γ ∈ Γ̄ (k1,k2). After this, we label its vertices(p, r) by the
formula αγ̄((p, r)) = l with that labell for which (p, r) ∈ β (l). Let us also define
the setsV1 =V1(γ̄) = {1, . . . ,k1+k2− r}\{l1, . . . , lr} andV2 =V2(γ̄) = {l1, . . . , lr}.
These sets yield the labels of the chains of length 1 and length 2 respectively, i.e.
β (p) is a chain of length 1 ifp∈V1, and it is a chain of length 2 ifp∈V2.

We have defined a special labelling of the chains of the diagrams γ̄ ∈ Γ̄ (k1,k2),
and we shall work with it during the proof. First we prove a slightly modified ver-
sion of relation (11.4) with functionsFγ( f1, f2) defined with the help of the above
labelling of the chains, which may not satisfy all conditions we imposed for a la-
belling of the chains before the formulation of Theorem 11.1. Then we show that
identity (11.4) remains valid with the formulation of Theorem 11.1 (i.e. with that
labelling of the chains which we considered there).

Let us consider the productk1!In,k1( f1)k2!In,k2( f2), and let us rewrite it in the
form of the sum we get by carrying out a term by term multiplication in this expres-
sion. We put the terms obtained in such a way into disjoint classes indexed by the
diagramsγ̄ ∈ Γ̄ (k1,k2) in the following way: A product

f1(ξ j1, . . . ,ξ jk1
) f2(ξ j ′1

, . . . ,ξ j ′k2
)

belongs to the class indexed by the diagramγ̄((l1, l ′1), . . . ,(lr , l ′r)) with the parame-
ters(l1, l ′1), . . . ,(lr , l

′
r), 1≤ r ≤ min(k1,k2), where 1≤ l1 < l2 < · · · < lr ≤ k1, the

numbersl ′1, . . . , l
′
r are different, and 1≤ l ′s ≤ k2, for all 1 ≤ s≤ r if the indices

j1, . . . , jk1, j ′1, . . . , j ′k2
in the arguments of the variables inf1(·) and f2(·) satisfy the

relation j ls = j ′l ′s, 1≤ s≤ r, and there is no more coincidence between the indices

j1, . . . , jk1, j ′1, . . . , j ′k2
.

It is not difficult to see by applying the above partition of the terms in the prod-
uct k1!In,k1( f1)k2!In,k2( f2), and exploiting that each diagram̄γ ∈ Γ̄ (k1,k2) can be
represented in the form̄γ((l1, l ′1), . . . ,(lr , l ′r)) in a unique way that the identity

n−k1/2k1!In,k1( f1)k2!n−k2/2In,k2( f2)

= ∑
γ̄∈Γ̄ (k1,k2)

′(n)
n−(k1+k2)/2s(γ̄)! In,s(γ̄)(( f1◦ f2)γ̄) (12.1)
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holds, where the functions( f1 ◦ f2)γ̄ = ( f1 ◦ f2)γ̄(x1, . . . ,xs(γ̄)) are defined in for-
mula (11.2) with the help of the above introduced labelling of the chains of the
diagramγ̄, ands(γ̄) = k1+k2−|V2(γ̄)| denotes the number of chains in̄γ. (Observe
that with our labelling of the chains the indices of the function ( f1 ◦ f2)γ̄ are the
numbers 1, . . . ,s(γ̄).) The notation∑′(n) in (12.1) means that summation is taken
only for such diagrams̄γ ∈ Γ̄ (k1,k2) for which n ≥ s(γ̄). (Let me remark that al-
though formula (11.2) was defined for coloured diagrams, thecolours of the chains
played no role in it.)

Relation (12.1) is not appropriate for our purposes, since the functions( f1◦ f2)γ̄
in it may be non-canonical. To get the desired formula, Hoeffding’s decomposition
will be applied for theU-statisticsIn,s(γ̄)(( f1◦ f2)γ̄) appearing at the right-hand side
of formula (12.1). This decomposition becomes slightly simpler because of some
special properties of the function( f1◦ f2)γ̄ which follow from the canonical property
of the initial functionsf1 and f2.

To carry out this procedure let us observe that a functionf (x1, . . . ,xk) is canonical
if and only if (Pj f )(xs, s∈ {1, . . . ,k}\{ j}) = 0 with the operatorPj defined in (9.1)
for all indices j and{xs: 1≤ j]lek, s 6= j}. Beside this, the condition that the func-
tions f1 and f2 are canonical implies the relationPv( f1◦ f2)γ̄ ≡ 0 if v∈V1(γ̄) for all
diagramsγ̄ ∈ Γ̄ (k1,k2). (The setV1(γ̄) denoted the labels of the chains of length 1
in the diagramγ̄.) This relation remains valid if the function( f1 ◦ f2)γ̄ is replaced
by such functions which we get by applying the product of sometransformations
Pv′ andQv′ , v′ ∈ V2(γ̄), for the function( f1 ◦ f2)γ̄ with the transformationsPv′ and
Qv′ defined in formulas (9.1) and (9.2).

Beside this, the transformationsPv or Qv are exchangeable with the operatorsPv′

or Qv′ for any pairs of indicesv,v′, andPv+Qv = I , whereI denotes the identity op-
erator. Beside this,PvQv = 0, sincePvQv = Pv−P2

v = 0. The above relations make
possible the following decomposition of the function( f1◦ f2)γ̄ to the sum of canon-
ical functions for allγ̄ ∈ Γ̄ (k1,k2). (In the proof of the Hoeffding decomposition a
similar argument was applied.)

( f1◦ f2)γ̄ = ∏
v∈V2(γ̄)

(Pv+Qv)( f1◦ f2)γ̄ (12.2)

= ∑
A⊂V2(γ̄)

(

∏
v∈A

Pv ∏
v∈V2\A

Qv

)

( f1◦ f2)γ̄ = ∑
γ∈Γ (γ̄)

F̄γ( f1, f2),

whereΓ (γ̄) denotes the set of those coloured diagramsγ ∈ Γ (k1,k2) which contain
the same chains (with colour 1 or−1) as the non-coloured diagram̄γ. HereΓγ̄ de-
notes the set of all such coloured coloured diagrams which have the same chains as
the diagramγ̄, their chains of length 2 may have colour 1 or−1, while the colour
of their chains with length 1 is−1. The functionF̄γ( f1, f2) is defined for a diagram
γ ∈ Γ (γ̄) in the following way.

If the colouring of the chains of a coloured diagramγ ∈ Γ (γ̄) is defined with the
help of a setA ⊂ V2(γ̄) by the relationscγ(β (v)) = 1 if v ∈ A, cγ(β (v)) = −1 if
v∈V2(γ̄)\A, (and for the remaining chainsβ ∈ γ with length 1cγ(β ) =−1), then
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F̄γ( f1, f2) = F̄γ( f1, f2)(xl1, . . . ,xl|O(γ)|)

= ∏
v∈A

Pv ∏
v∈V2\A

Qv( f1◦ f2)γ̄(x1, . . . ,xs(γ̄)). (12.3)

Here the indicesl1, . . . , l|O(γ)|, l1 < · · · < l|O(γ)|, of the variables of the function
F̄γ( f1, f2) are the labels of the open chains (chains with colour−1) of the diagramγ,
i.e, they are the elements of the set(V2(γ̄)\A)∪V1(γ̄). (Clearly,s(γ) = s(γ̄) for the
number of chains ofγ andγ̄ if γ ∈ Γ (γ̄).) In such a way we have defined̄Fγ( f1, f2)
for eachγ ∈ Γ (γ̄). The definition of this function is very similar to that ofFγ( f1, f2)
in formula (11.3). They differ only in the indexation of their variables. (The vari-
ables of the function̄Fγ( f1, f2) have indicesl1, . . . , l|O(γ)|, and the set of these indices
may be different of the set{1, . . . , |O(γ)|}. But we have defined theU-statistics with
a kernel function also in this case.)

It is not difficult to check relation (12.2). We claim that it implies that aU-statistic
with kernel function( f1◦ f2)γ̄ satisfies the identity

n−(k1+k2)/2s(γ̄)!In,s̄(γ̄)
(
( f1◦ f2)γ̄

)
(12.4)

= ∑
γ∈Γ (γ̄)

n−(k1+k2)/2n|C(γ)|Jn(γ)|O(γ)|!In,|O(γ)|
(
F̄γ( f1, f2)

)

with the functionF̄γ( f1, f2), whereC(γ) is the set of closed chains ofγ, andJn(γ) is
defined asJn(γ) = 1 if |C(γ)|= 0, and

Jn(γ) =
|C(γ)|
∏
j=1

(
n−s(γ)+ j

n

)

if |C(γ)|> 0 (12.5)

for all γ̄ ∈ Γ̄ (k1,k2).
Relation (12.4) follows from relation (12.2) in the same wayas formula (9.4)

follows from formula (9.3) in the proof of the Hoeffding decomposition. Let us
understand why the coefficientn|C(γ)|Jn(γ) appears at the right-hand side of (12.4).

This coefficient can be calculated in the following way. Let us write up the iden-
tity

n−(k1+k2)/2( f1◦ f2)γ̄(ξ j1, . . . ,ξ js(γ̄))

= ∑
γ∈Γ (γ̄)

n−(k1+k2)/2F̄γ( f1, f2)(ξ j l1
, . . . ,ξ j l|O(γ)|

)

with the help of (12.2) for all sequencesξ j1, . . . ,ξ js(γ̄) , and let us sum it up for all such
sets of arguments( j1, . . . , js(γ̄)) for which all indicesjp, 1≤ p≤ s(γ̄), are different,
and 1≤ jp ≤ n. Then we get at the left-hand side of the identity theU-statistic

n−(k1+k2)/2s(γ̄)!In,s̄(γ̄)
(
( f1◦ f2)γ̄

)
.
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We still have to check that at the right-hand side of this identity we get a sum, where
a term of the formn−(k1+k2)/2F̄γ( f1, f2)(ξ j l1

, . . . ,ξ j l|O(γ)|
) appears with multiplicity

n|C(γ)Jn(γ). Indeed, such a term appears for such vectors( j1, . . . , js(γ̄)) for which
the value of|O(γ)| arguments are fixed, the remaining arguments can take arbitrary
value between 1 andn with the only restriction that all coordinates must be different.
(The operatorsPv are applied for these remaining coordinates.) There aren|C(γ)|Jn(γ)
such vectors. The above observations imply identity (12.4).

Let us observe thatk1 + k2 − 2|C(γ)| = |O(γ)|+W(γ) with the numberW(γ)
introduced in the formulation of Theorem 11.1. Hence

n−(k1+k2)/2n|C(γ)| = n−W(γ)/2n−|O(γ)|/2.

Let us replace the left-hand side of the last identity by its right-hand side in (12.4),
and let us sum up the identity we get in such a way for allγ̄ ∈ Γ̄ (k1,k2) such that
s(γ̄)≤ n. The identity we get in such a way together with formulas (12.1) and (12.5)
imply such a version of identity (11.4) where the kernel functionsFγ( f1, f2) of the
U-statistics at the right-hand side of the equation are replaced by the kernel functions
F̄γ( f1, f2) defined in (12.3). But we can get the functionFγ( f1, f2) by reindexing
the arguments of the function̄Fγ( f1, f2). This can be seen by taking the original
indexation of the chains ofγ and looking at the indexation of the vertices it implies.
On the other hand, we know that the reindexation of the variables of the kernel
function does not change the value of theU-statistic. HenceIn,|O(γ)|(Fγ( f1, f2)) =
In,|O(γ)|(F̄γ( f1, f2)), and identity (11.4) holds in its original form.

Clearly, In,|O(γ)|(Fγ( f1, f2)) = In,|O(γ)|(SymFγ( f1, f2)), henceIn,|O(γ)|(Fγ( f1, f2))
can be replaced byIn,|O(γ)|(SymFγ( f1, f2)) in formula (11.4). Beside this, we have
shown that the functionsFγ( f1, f2) are canonical, and it can be simply shown that
they are bounded, if the functionsf1 and f2 have this property. We still have to prove
inequalities (11.5) and (11.6).

Inequality (11.5), the estimate of theL2-norm of the functionFγ( f1, f2) follows
from the Schwarz inequality, and actually it agrees with inequality (10.13), proved
at the start of Appendix B. Hence its proof is omitted here.

To prove inequality (11.6) let us introduce, similarly to formula (9.2), the opera-
tors

(Q̃ jh)(x1, . . . ,xr) = h(x1, . . . ,xr)+

∫

h(x1, . . . ,xr)µ(dxj), 1≤ j ≤ r,

in the space of functionsh(x1, . . . ,xr) with coordinates in the space(X,X ). Observe
that both the operators̃Q j and the operatorsPj defined in (9.1) are positive, i.e. they
map a non-negative function to a non-negative function. Beside this,Q j ≤ Q̃ j , and

the norms of the operators
Q̃ j
2 andPj are bounded by 1 both in theL1(µ), theL2(µ)

and the supremum norm.
Let us define the function
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F̃γ( f1, f2)(x1, . . . ,x|O(γ)|)

=

(

∏
j : β ( j)∈C(γ)

Pj ∏
j ′ : β ( j ′)∈O2(γ)

Q̃ j ′

)

( f1◦ f2)γ(xq, . . . ,x|O(γ)|+|C(γ)|)

with the notation of Chapter 11. The functioñFγ( f1, f2) was defined similarly to
Fγ( f1, f2) defined in (11.3) with the help of( f1 ◦ f2)γ only the operatorsQ j were
replaced byQ̃ j in its definition.

The properties of the operatorsPj andQ̃ j listed above together with the condition
sup| f2(x1, . . . ,xk)| ≤ 1 imply that

|Fγ( f1, f2)| ≤ F̃γ(| f1|, | f2|)≤ F̃γ(| f1|,1), (12.6)

where ‘≤’ means that the function at the right-hand side is greater than or equal
to the function at the left-hand side in all points, and the term 1 in (12.6) denotes
the function which equals identically 1. Because of the relation (12.6) to prove rela-
tion (11.6) it is enough to show that

‖(F̃γ(| f1|,1)γ‖2

=

∥
∥
∥
∥
∥

(

∏
j : β ( j)∈C(γ)

Pj ∏
j ′ : β ( j ′),∈O2(γ)

Q̃ j ′

)

| f1(xαγ ((1,1)), . . . ,xαγ ((1,k1)))|
∥
∥
∥
∥
∥

2

≤ 2|O2(γ)|‖ f1‖2 = 2W(γ)‖ f1‖2. (12.7)

But this inequality trivially holds, since the norm of all operatorsPj in formula
(12.7) is bounded by 1, the norm of all operatorsQ̃ j is bounded by 2 in theL2(µ)
norm, and|O2(γ)|=W(γ).

Proof of Theorem 11.2.Theorem 11.2 will be proved with the help of Theorem 11.1
by induction with respect to the numberm of the terms in the product of the degen-
erateU-statisticskp!In,kp( fp), 1≤ p ≤ m. It is not difficult to check with the help
of Theorem 11.1 and the recursive definition of the functionsFγ by applying induc-
tion with respect tom that the functionsFγ( f1, . . . , fm) are bounded and canonical if
the functionsf1, . . . , fm satisfy the same properties. We still have to prove the iden-
tity (11.11). This will be proved also by induction with respect tomwith the help of
Theorem 11.1.

Form= 2 formula (11.11) follows from Theorem 11.1, since in this case it agrees
with relation (11.4). To prove this formula form≥ 3 first we express with the help
of our inductive hypothesis the product of the firstm− 1 terms in the product of
degenerateU-statistics as a sum of degenerateU-statistics. Then we express the
product of each term in this sum with the lastU-statistic of the product as a sum
of U-statistics with the help of Theorem 11.1, and sum up these identities. In such
a way we express the product ofm degenerateU-statistics in the form of a sum of
degenerateU-statistics. We have to show that in such a way we get formula (11.11).
In the proof of this statement we shall exploit that in the calculation of the product of
the firstm−1U-statistics we have to work with the diagramsγpr and if we calculate
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the product of these terms with them-th theU-statistic, then we calculate with the
diagramsγcl .

To carry out the above program first we observe that a diagramγ ∈ Γ (k1, . . . ,km)
is uniquely determined by the pairs of(γpr,γcl) defined with the help ofγ, i.e.
if γ ,γ ′ ∈ Γ (k1, . . . ,km), and γ 6= γ ′, then eitherγpr 6= γ ′pr or γcl 6= γ ′cl . Hence we
can identify each diagramγ ∈ Γ (k1, . . . ,km) with the pair (γpr,γcl) we defined
with its help. Beside this, the pairs of diagrams(γpr,γcl) satisfy the relations
γpr ∈ Γ (k1, . . . ,km−1) andγcl ∈ Γ (|O(γpr)|,km). Moreover, the class of pairs of di-
agrams(γpr,γcl), γ ∈ Γ (k1, . . . ,km), have the following characterization. Take all
such pairs of diagrams(γ̄, γ̂) for which γ̄ ∈ Γ (k1, . . . ,km−1) andγ̃ ∈ Γ (|O(γ̄)|,km).
There is a one to one correspondence between the pairs of diagrams(γ̄ , γ̂) with this
property and the diagramsγ ∈ Γ (k1, . . . ,km) in such a way that̄γ = γpr andγ̂ = γcl .
(This correspondence depends on the labelling of the open chains of the diagrams
γ̄ ∈ Γ (k1, . . . ,km−1) that we have previously fixed.) It is not difficult to check the
above statements, and I leave it to the reader.

Because of our inductive hypothesis we can write by applyingrelation (11.11) of
Theorem 11.2 with parameterm−1 the identity

m−1

∏
p=1

n−kp/2kp!In,kp( fp) = ∑
γ̄∈Γ (k1,...,km−1)

′(n,m−1)

(
m−1

∏
p=2

Jn(γ̄ , p)

)

n−W(γ̄)/2 ·n−|O(γ̄)|/2|O(γ̄)|!In,|O(γ̄)|(Fγ̄( f1, . . . , fm−1)). (12.8)

(Here we use the notations of Chapter 11.)
We get by applying the identity (11.4) of Theorem 11.1 for theproduct

n−|O(γ̄)|/2|O(γ̄)|!In,|O(γ̄)|(Fγ̄( f1, . . . , fm−1)) ·n−km/2km!In,km( fm),

and by multiplying it with

(
m−1
∏

p=2
Jn(γ̄, p)

)

n−W(γ̄)/2 that the identity

(
m−1

∏
p=2

Jn(γ̄ , p)

)

n−W(γ̄)/2n−|O(γ̄)|/2O(γ̄)!In,|O(|γ̄|(Fγ̄( f1, . . . , fm−1)

·n−km/2km!In,km( fm)

=

(
m−1

∏
p=2

Jn(γ̄ , p)

)

n−W(γ̄)/2 ∑
γ̂∈Γ (|O(γ̄|,km)

′(n)
|C(γ̂)|
∏
j=1

(
n−s(γ̂)+ j

n

)

(12.9)

n−W(γ̂)/2 ·n−|O(γ̂)|/2|O(γ̂)|!In,|O(γ̂)|(Fγ̂(Fγ̄( f1, . . . , fm−1), fm)).

holds for all γ̄ ∈ Γ (k1, . . . ,km−1), where ∑
γ̂∈Γ (|O(γ̄|),km)

′(n) means that summation is taken

for such diagramŝγ ∈ Γ (|O(γ̄)|,km) for which s(γ̂) = |O(γ̂)|+ |C(γ̂)| ≤ n, and
|C(γ̂|
∏
j=1

equals 1, if|C(γ̂)|= 0.
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We shall prove relation (11.11) for the parameterm with the help of rela-
tions (12.8) and (12.9).

Let us sum up formula (12.9) for all such diagramsγ̄ ∈Γ (k1, . . . ,km−1) for which
B1(γ̄, p)+B2(γ̄, p)≤ n for all 2≤ p≤ m−1. The numbersB1(·) andB2(·) in these
inequalities are the numbers introduced before formula (11.10), only in this case
the diagramγ is replaced byγ̄. We imposed those conditions on the termsγ̄ in
this summation which appear in the conditions of the summation in ∑′(n,m−1) at the
right-hand side of formula (12.8) when it is applied with parameterm−1. Hence
formula (12.8) implies that the sum of the terms at the left-hand side of these identi-

ties equals
m
∏

p=1
n−kp/2kp!In,kp( fp), i.e. the left-hand side of (11.11) for parameterm.

To prove formula (11.11) for the parameterm it is enough to show that the sum of the
right-hand side terms of the above identities equals the right-hand side of (11.11).

In the proof of this relation we shall apply the properties ofthe pairs of diagrams
(γpr,γcl) coming from a diagramγ ∈ Γ (k1, . . . ,km) mentioned before. Namely, we
shall exploit that there is a one to one correspondence between the diagramsγ ∈
Γ (k1, . . . ,km) and pairs of diagrams(γ̄, γ̂), γ̄ ∈ Γ (k1, . . . ,km−1), γ̂ ∈ Γ (|O(γ̄)|,km)
in such a way thatγ and the pair (̄γ, γ̂) correspond to each other if and only ifγ̄ = γpr

and γ̂ = γcl . This correspondence enables us to reformulate the statement we have
to prove in the following way. Let us rewrite formula (12.9) by replacingγ̄ with γpr

andγ̂ by γcl , with that diagramγ ∈ Γ (k1, . . . ,km) for which γ̄ = γpr andγ̂ = γcl . It is
enough to show that if we take those modified versions of (12.9) which we get by
replacing the pairs(γ̄, γ̂) by the pairs(γpr,γcl) with someγ ∈Γ (k1, . . . ,km) and sum
up them for thoseγ for whichB1(γpr, p)+B2(γpr, p)≤ n for all 2≤ p≤ m−1, then
the sum of the right-hand side expressions in these identities equals the right-hand
side of (11.11).

We shall prove the above identity with the help of the following statements to be
verified later.

For all γ ∈ Γ (k1, . . . ,km) the identitiesW(γpr)+W(γcl) =W(γ) and

m−1

∏
p=2

Jn(γpr, p)
|C(γcl)|
∏
j=1

(
n−s(γcl)+ j

n

)

=
m

∏
p=2

Jn(γ , p),

hold, where
|C(γcl)|

∏
j=1

= 1 if |C(γcl)|= 0. The inequalitiesB1(γ , p)+B2(γ , p)≤ n hold

simultaneously for all 2≤ p ≤ m for a diagramγ if and only if the inequalities
B1(γpr, p)+B2(γpr, p)≤ n for all 2≤ p≤ m−1 ands(γcl)≤ n hold simultaneously
for this γ.

To prove the identity we claimed to hold with the help of the above relations let
us first check that we sum up for the same set ofγ ∈ Γ (k1, . . . ,km) if we take the
sum of modified versions of (12.9) for allγ such thatB1(γpr, p)+B2(γpr, p)≤ n for
all 2≤ p≤ m−1 and if we take the∑′(n,m) at the right-hand side of (11.11). Indeed,
in the second case we have to take those diagramsγ for whichB1(γ , p)+B2(γ , p)≤
n for all 2 ≤ p ≤ m, while in the first case we take those diagramsγ for which
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B1(γpr, p)+B2(γpr, p)≤ n for all 2≤ p≤m−1, ands(γcl)≤ n. The last condition is
contained in a slightly hidden form in the summation∑′(n) of formula (12.9). Hence
the above mentioned relations imply that have to sum up for the same diagramsγ in
the two cases.

Beside this, it follows from (11.8) that the sameU-statistics appear for a dia-
gram γ ∈ Γ (k1, . . . ,km) in (11.11) and in the modified version of (12.9). We still
have to check that they have the same coefficients in the two cases. But this holds,
because the previously formulated identities imply that

n−(W(γpr)/2n−W(γcl)/2 = n−W(γ)/2,

m−1

∏
p=2

Jn(γpr, p)
|C(γcl)|
∏
j=1

(
n−s(γcl)+ j

n

)

=
m

∏
p=2

Jn(γ , p)

andn−|O(γcl)|/2|O(γcl)|! = n−|O(γ)|/2|O(γ)|!, since|O(γ)|= |O(γcl)|, as we have seen
before.

To complete the proof of the identity it remained to check therelations we applied
in the previous argument. We start with the proof of the identity W(γpr)+W(γcl) =
W(γ) for the functionW(·) defined in (11.9).

Let us first remark thatW(γcl) = |O2(γcl)|, whereO2(γcl) is the set of open chains
in γcl with length 2. Beside this ifβ ∈ γ is such thatβ ∩{(m,1), . . . ,(m,k)} = /0,
i.e. if the chainβ contains no vertex from the last row of the diagramγ, then
ℓ(β ) = ℓ(βpr), and cγ(β ) = cγpr(βpr). If β ∩ {(m,1), . . . ,(m,k)} 6= /0, then ei-
ther cγ(β ) = 1, ℓ(βpr) = ℓ(β )− 1, and cγpr(β ) = −1 or cγ(β ) = −1 and one
of the following cases appears. Eitherℓ(β ) = 1, and the chainβpr does not ex-
ists, or ℓ(β ) > 1, andℓ(βpr) = ℓ(β )− 1, cγpr(βpr) = −1. We get by calculating
W(γ) with the help of the above relations thatW(γ) = W(γpr) + |V (γ)|, where
V (γ) = {β : β ∈ γ , β ∩ {(m,1), . . . ,(m,k)} 6= /0, ℓ(β ) > 1, cγ(β ) = −1}. Since
|V (γ)|= |O2(γcl)|, the above relations imply the desired identity.

To prove the remaining relations first we observe that for each diagramγ ∈
Γ (k1, . . . ,km) and number 2≤ p ≤ m− 1 the identitiesB1(γpr, p) = B1(γ , p) and
B2(γpr, p) = B2(γ , p) hold. Beside this,|C(γcl)|= B1(γ ,m) and|O(γcl)|= B2(γ ,m).
The identity about|C(γcl)| simply follows from the definition ofγcl andB1(γ ,m).
To prove the identity about|O(γcl)| observe that|O(γcl)| = |O(γ)|, and |O(γ)| =
B2(γ ,m). (Observe that in the casep= m the definition of the setB2(γ ,m) becomes
simpler, because there is no chainβ ∈ γ for whichd(β )> m.)

The remaining relations can be deduced from these facts. Indeed, they imply that

Jn(γpr, p) = Jn(γ , p) for all 2≤ p≤m−1. Beside this,
|C(γcl)|

∏
j=1

(
n−s(γcl)+ j

n

)

= Jn(γ ,m)

because of the relations|C(γcl)|= B1(γ ,m) |O(γcl)|= B2(γ ,m), s(γcl) = |C(γcl)|+
|O(|γcl)| and the definition ofJn(γ ,m). Hence the identity about the product of the
termsJn(γ , p) holds. It can be seen similarly that the relationsB1(γ , p)+B2(γ , p)≤
n holds for all 2≤ p≤ m−1 if and only if B1(γpr, p)+B2(γpr, p) ≤ n for all 2≤
p≤ m−1, andB1(γ ,m)+B2(γ ,m)≤ n if and only if s(γcl)≤ n.
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Thus we have proved identity (11.11). To complete the proof of Theorem 11.2
we still have to show that under its conditionsFγ( f1, . . . , fm) is a bounded, canon-
ical function. But this follows from Theorem 11.1 and relation (11.8) by a simple
induction argument.

Proof of Lemma 11.3.Lemma 11.3 will be proved by induction with respect to
the numberm of the terms in the product ofU-statistics with the help of inequali-
ties (11.5) and (11.6). These relations imply the desired inequality form= 2. In the
casem> 2 we apply the identity (11.8)Fγ( f1, . . . , fm) = Fγcl (Fγpr( f1, . . . , fm−1), fm).
We have seen thatW(γ) = W(γpr) +W(γcl), and it is not difficult to show that
U(γ) =U(γpr)+U(γcl). Hence ifU(γcl) = 0, i.e. if γcl contains a chain of length 2
with colour−1, thenU(γ) =U(γpr), and an application of (11.8) and (11.6) for the
diagramγcl implies Lemma 11.3 in this case.

If U(γcl) = 1, thenW(γcl) = 0, U(γ) = U(γpr) + 1, W(γ) = W(γpr), and the
application of (11.8) and (11.5) for the diagramγcl implies Lemma 11.3 in this case.

The corollary of Theorem 11.2 is a simple consequence of Theorem 11.2 and
Lemma 11.3.

Proof of the corollary of Theorem 11.2.Observe thatFγ is a function of|O(γ)|
arguments. Hence a coloured diagramγ ∈ Γ (k1, . . . ,km) is in the class of closed
diagrams, i.e.γ ∈ Γ̄ (k1, . . . ,km) if and only if Fγ( f1, . . . , fm) is a constant. Thus
formula (11.13) is a simple consequence of relation (11.11)and the observation that
EIn,|O(γ)|(Fγ( f1, . . . , fm)) = 0 if |O(γ)| ≥ 1, i.e. if γ /∈ Γ̄ (k1, . . . ,km), and

In,|O(γ)|(Fγ( f1, . . . , fm)) = In,0(Fγ( f1, . . . , fm)) = Fγ( f1, . . . , fm)

if γ ∈ Γ̄ (k1, . . . ,km).

Relations (11.14) and (11.15) follow from relation (11.13)and Lemma 11.3.



Chapter 13
The proof of Theorems 8.3, 8.5 and Example 8.7

In this chapter we prove the estimates on the distribution ofa multiple Wiener–
Itô integral or degenerateU-statistic formulated in Theorems 8.5 and 8.3, and also
present the proof of Example 8.7. Beside this, we prove a multivariate version of
Hoeffding’s inequality (Theorem 3.4). The latter result isuseful in the estimation of
the supremum of a class of degenerateU-statistics. The estimate on the distribution
of a multiple random integral with respect to a normalized empirical distribution
given in Theorem 8.1 is omitted, because, as it was shown in Chapter 9, this result
follows from the estimate of Theorem 8.3 on degenerateU-statistics. We finish this
chapter with a separate part Chapter 13 B, where the results proved in this chapter
are discussed together with the method of their proofs and some recent results. These
new results state that in certain cases the estimates on the tail distribution of Wiener–
Itô integrals andU-statistics considered in this chapter can be improved if wehave
some additional information on the kernel function of theseWiener–It̂o integrals or
U-statistics.

The proof of Theorems 8.5 and 8.3 is based on a good estimate onhigh moments
of Wiener–It̂o integrals and degenerateU-statistics. Such estimates can be proved
with the help of the corollaries of Theorems 10.2 and 11.2. This approach slightly
differs from the classical proof in the one-variate case. The one-variate version of
the above problems is an estimate about the tail distribution of a sum of independent
random variables. Such an estimate can be obtained with the help of a good bound
on the moment generating function of the sum. This method does not work in the
multivariate case, because, as later calculations will show, there is no good estimate
on the moment-generating function ofU-statistics or multiple Wiener–Itô integrals
of orderk ≥ 3. Actually, the moment-generating function of a Wiener–Itô integral
of orderk≥ 3 is always divergent, because the tail distribution behaviour of such a
random integral is similar to that of thek-th power of a Gaussian random variable.
On the other hand, good bounds on the momentsEZ2M of a random variableZ
for all positive integersM (or at least for a sufficiently rich class of parametersM)
together with the application of the Markov inequality forZ2M and an appropriate
choice of the parameterM yield a good estimate on the tail distribution ofZ.

143
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Propositions 13.1 and 13.2 contain some estimates on the moments of Wiener–It̂o
integrals and degenerateU-statistics.

Proposition 13.1 (Estimate on the moments of Wiener–It̂o integrals). Let us
consider a function f(x1, . . . ,xk) of k variables on some measurable space(X,X )
which satisfies formula (8.15) with someσ -finite non-atomic measureµ . Take the
k-fold Wiener–It̂o integral Zµ ,k( f ) of this function with respect to a white noiseµW

with reference measureµ . The inequality

E
(
|k!Zµ ,k( f )|

)2M ≤ 1·3·5· · ·(2kM−1)σ2M for all M = 1,2, . . . (13.1)

holds.

By Stirling’s formula Proposition 13.1 implies that

E(|k!Zµ ,k( f )|)2M ≤ (2kM)!
2kM(kM)!

σ2M ≤ A

(
2
e

)kM

(kM)kMσ2M (13.2)

for anyA>
√

2 if M ≥ M0 = M0(A). Formula (13.2) can be considered as a simpler,
better applicable version of Proposition 13.1. It can be better compared with the
moment estimate on degenerateU-statistics given in formula (13.3).

Proposition 13.2 provides a similar, but weaker inequalityfor the moments of
normalized degenerateU-statistics.

Proposition 13.2 (Estimate on the moments of degenerateU-statistics).Let us
consider a degenerate U-statistic In,k( f ) of order k with sample size n and with a
kernel function f satisfying relations (8.1) and (8.2) withsome0 < σ2 ≤ 1. Fix a
positive numberη > 0. There exist some universal constants A< ∞ and C< ∞ such
that

E
(

n−k/2k!In,k( f )
)2M

≤ A(1+C
√

η)2kM
(

2
e

)kM

(kM)kM σ2M

for all integers M such that0≤ kM ≤ ηnσ2. (13.3)

In formula (13.3) the constant C can be chosen as C=
√

2.

Theorem 13.2 yields a good estimate onE
(
n−k/2k!In,k( f )

)2M
with a fixed ex-

ponent 2M with the choiceη = kM
nσ2 . With such a choice of the numberη for-

mula (13.3) yields an estimate on the momentsE
(
n−k/2k!In,k( f )

)2M
comparable

with the estimate on the corresponding Wiener–Itô integral if M ≤ nσ2, while it
yields a much weaker estimate ifM ≫ nσ2.

Now I turn to the proof of these propositions.

Proof of Proposition 13.1.Proposition 13.1 can be simply proved by means of the
Corollary of Theorem 10.2 with the choicem= 2M, and fp = f for all 1≤ p≤ 2M.
Formulas (10.22) and (10.23) yield that
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E
(
k!Zµ ,k( f )2M) ≤

(∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)

)M

|Γ2M(k)|

≤ |Γ2M(k)|σ2M,

where|Γ2M(k)| denotes the number of closed diagramsγ in the classΓ̄ (k, . . . ,k
︸ ︷︷ ︸

2M times

)

introduced in the corollary of Theorem 10.2. Thus to complete the proof of Propo-
sition 13.1 it is enough to show that|Γ2M(k)| ≤ 1 ·3 ·5· · ·(2kM−1). But this can
easily be seen with the help of the following observation. Let Γ̄2M(k) denote the class
of all graphs with vertices(l , j), 1≤ l ≤ 2M, 1≤ j ≤ k, such that from all vertices
(l , j) exactly one edge starts, all edges connect different vertices, but edges connect-
ing vertices(l , j) and(l , j ′) with the same first coordinatel are also allowed. Let
|Γ̄2M(k)| denote the number of graphs in̄Γ2M(k). Then clearly|Γ2M(k)| ≤ |Γ̄2M(k)|.
On the other hand,|Γ̄2M(k)| = 1 ·3 ·5· · ·(2kM−1). Indeed, let us list the vertices
of the graphs fromΓ̄2M(k) in an arbitrary way. Then the first vertex can be paired
with another vertex in 2kM−1 way, after this the first vertex from which no edge
starts can be paired with 2kM−3 vertices from which no edge starts. By following
this procedure the next edge can be chosen 2kM−5 ways, and by continuing this
calculation we get the desired formula.

Proof of Proposition 13.2.Relation (13.3) will be proved by means of relations
(11.14) and (11.15) in the Corollary of Theorem 11.2 with thechoicem = 2M
and fp = f for all 1 ≤ p ≤ 2M. Let us take the class of closed coloured dia-
gramsΓ (k,M) = Γ̄ (k, . . . ,k

︸ ︷︷ ︸

2Mtimes

). This will be partitioned into subclassesΓ (k,M, r),

1≤ r ≤ kM, whereΓ (k,M, r) contains those closed diagramsγ ∈Γ (k,M) for which
W(γ) = 2r. Let us recall thatW(γ) was defined in (11.9), and in the case of closed
diagramsW(γ) = ∑

β∈γ
(ℓ(β )−2). For a diagramγ ∈ Γ (k,M), W(γ) is an even num-

ber, sinceW(γ) + 2s(γ) = 2kM, i.e. W(γ) = 2r with r = kM− s, wheres= s(γ)
denotes the number of chains inγ.

First we prove an estimate about the cardinality ofΓ (k,M, r). We claim that there
exists a universal constantA< ∞ such that

|Γ (k,M, r)| ≤
(

2kM
2r

)

1·3·5· · ·(2kM−2r −1)(kM− r)2r (13.4)

≤ A

(
2
e

)kM(2kM
2r

)

2−r(kM)kM+r for all 0≤ r ≤ kM

with some universal constantA< ∞.
To prove formula (13.4) let us first observe that|Γ (k,M, r)| can be bounded from

above with the number of such partitions of a set with 2kM points which consists of
s= kM− r sets containing at least two points. Indeed, for eachγ ∈ Γ (k,M, r) the
chains of the diagramγ yield a partition of the set{(p, r) : 1≤ p≤ 2M, 1≤ k≤ r}
consisting of 2r sets such that each of them contains at least two points. Moreover,
the partition given in such a way determines the chains ofγ, because the vertices of a
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chain are listed in a prescribed order. Namely, the indices of the rows which contain
them follow each other in increasing order. This implies that we can correspond to
each diagramγ ∈ Γ (k,M, r) a different partition of a set of 2Mk elements with the
prescribed properties.

The number of the partitions with the above properties can bebounded from
above in the following way. Let us calculate the number of possibilities for choos-
ing s= kM− r disjoint subsets of cardinality two from a set of cardinality 2kM,
and multiply this number with the possibility of attaching each of the remaining 2r
points of the original set to one of these sets of cardinality2.

We can choose these sets of cardinality 2 in
(2kM

2r

)
1 · 3 · 5· · ·(2kM− 1) ways,

since we can choose the union of these sets, which consists of2kM− 2r points
in
( 2kM

2kM−2r

)
=
(2kM

2r

)
ways, and then we can choose the pair of the first element

in 2kM−2r −1 ways, then the pair of the first still not chosen element in 2kM−
2r−3 ways, and continuing this procedure we get the above formula for the number
of choices for these sets of cardinality 2. Then the remaining 2r points of the original
set can be put in(kM− r)2r ways in one of thesekM− r sets of cardinality 2. The
above relations imply the first inequality of formula (13.4).

To get the second inequality observe that by the Stirling formula 1·3·5· · ·(2kM−
2r −1) = (2kM−2r)!

2kM−r (kM−r)!
≤ A

(
2
e

)kM−r
(kM− r)kM−r with some universal constantA<

∞. Beside this, we can write(kM− r)kM+r ≤ (kM)r(kM− r)kM = (kM)kM+r(1−
r

kM)kM ≤ e−r(kM)kM+r . These estimates imply the second inequality in (13.4).
We prove the estimate (13.3) with the help of the relations (11.14), (11.15)

and (13.4). First we estimate the termn−W(γ)/2|Fγ | for a diagramγ ∈ Γ (k,M, r)
under the conditionskM ≤ ηnσ2 andσ2 ≤ 1 with the help of relation (11.15).

In this case we can write|U(γ)| ≥ 2M−W(γ) = 2M−2r for the functionU(γ)
defined in (11.12). Hence by relation (11.15)

n−W(γ)/2|Fγ | ≤ 22rn−rσ |U(γ)| ≤ 22r (nσ2)−r σ2M ≤ η r22r(kM)−rσ2M

for γ ∈ Γ (k,M, r) because of the conditionskM ≤ ηnσ2 andσ2 ≤ 1.
This estimate together with relation (11.14) imply that forkM ≤ ηnσ2

E
(

n−k/2k!In,k( fk)
)2M

≤ ∑
γ∈Γ (k,M)

n−W(γ)/2 · |Fγ |

≤
kM

∑
r=0

|Γ (k,M, r)|η r22r(kM)−rσ2M.

Hence by formula (13.4)

E
(

n−k/2k!In,k( fk)
)2M

≤ A

(
2
e

)kM

(kM)kMσ2M
kM

∑
r=0

(
2kM
2r

)(√

2η
)2r

≤ A

(
2
e

)kM

(kM)kMσ2M
(

1+
√

2
√

η
)2kM
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if 0 ≤ kM ≤ ηnσ2. Thus we have proved Proposition 13.2 withC=
√

2.

It is not difficult to prove Theorem 8.5 with the help of Proposition 13.1.

Proof of Theorem 8.5.By formula (13.2) which is a consequence of Proposition 13.1
and the Markov inequality

P
(
|k!Zµ ,k( f )|> u

)
≤ E

(
k!Zµ ,k( f )

)2M

u2M ≤ A

(

2kMσ2/k

eu2/k

)kM

(13.5)

with some constantA>
√

2 if M ≥ M0 with some constantM0 = M0(A), andM is
an integer.

PutM̄ = M̄(u) = 1
2k

(
u
σ
)2/k

, andM = M(u) = [M̄], where[x] denotes the integer

part of a real numberx. Choose some numberu0 such that 1
2k

(u0
σ
)2/k ≥ M0 + 1.

Then relation (13.5) can be applied withM = M(u) for u≥ u0, and this yields that

P
(
|k!Zµ ,k( f )|> u

)
≤ A

(

2kMσ2/k

eu2/k

)kM

≤ e−kM ≤ Aeke−kM̄

= Aek exp

{

−1
2

( u
σ

)2/k
}

if u≥ u0. (13.6)

Relation (13.6) means that relation (8.17) holds foru≥ u0 with the pre-exponential
coefficientAek. Beside thisu0 ≤ const. By enlarging this coefficient if it is needed
it can be guaranteed that relation (8.17) holds for allu> 0. Theorem 8.5 is proved.

Theorem 8.3 can be proved similarly by means of Proposition 13.2. Nevertheless,
the proof is technically more complicated, since in this case the optimal choice of
the parameter in the Markov inequality cannot be given in such a direct form as
in the proof of Theorem 8.5. In this case the Markov inequality is applied with an
almost optimal choice of the parameterM.

Proof of Theorem 8.3.The Markov inequality and relation (13.3) withη = kM
nσ2

imply that

P(n−k/2|k!In,k( f )|> u) ≤ E
(
n−k/2k!In,k( f )

)2M

u2M (13.7)

≤ A




1
e
·2kM

(

1+C

√
kM√
nσ

)2
(σ

u

)2/k





kM

for all integersM ≥ 0.
Relation (8.12) will be proved with the help of estimate (13.7) under the condi-

tion 0≤ u
σ ≤ nk/2σk. To this end let us introduce the number̄M by means of the

formula
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kM̄ =
1
2

( u
σ

)2/k 1

1+ B√
nσ
(

u
σ
)1/k

=
1
2

( u
σ

)2/k 1

1+B
(
un−k/2σ−(k+1)

)1/k

with a sufficiently large numberB = B(C) > 0 andM = [M̄], where[x] means the
integer part of the numberx.

Observe that
√

kM̄ ≤
(

u
σ
)1/k

,
√

kM̄√
nσ ≤

(

un−k/2σ−(k+1)
)1/k

≤ 1, and

(

1+C

√
kM̄√
nσ

)2

≤ 1+B

√
kM̄√
nσ

≤ 1+B
(

un−k/2σ−(k+1)
)1/k

with a sufficiently largeB= B(C)> 0 if u
σ ≤ nk/2σk. Hence

1
e
·2kM

(

1+C

√
kM√
nσ

)2
(σ

u

)2/k
≤ 1

e
·2kM̄

(

1+C

√
kM̄√
nσ

)2
(σ

u

)2/k

=
1
e
·

(

1+C
√

kM̄√
nσ

)2

1+B
(
un−k/2σ−(k+1)

)1/k
≤ 1

e
(13.8)

if u
σ ≤ nk/2σk. Inequalities (13.7) and (13.8) together yield that

P(n−k/2k!|In,k( f )|> u)≤ Ae−kM ≤ Aeke−kM̄

if 0 ≤ u
σ ≤ nk/2σk. Hence the choice of the number̄M implies that inequality (8.12)

holds with the pre-exponential constantAek and the sufficiently large but fixed num-
berB> 0. Theorem 8.3 is proved.

Remark.One would like to understand why the introduction of the quantities M̄
andM in the proof of Theorem 8.3 was a good choice. The natural choice for M
would have been that number where the right-hand side expression in (13.7) takes
its minimum. But we cannot calculate this number in a simple way. Hence we chose
instead a sufficiently good and simple approximation for it.We get a first order
approximation of this quantity if we consider the minimum ofthe simplified expres-

sion we get by dropping the factor
(

1+C
√

kM√
nσ

)2
from the formula at the right-hand

side of (13.7). We get in such a way the approximationM0 = 1
2k(

u
σ )

2/k, but this
is a not good enough choice of the numberM for our purposes. We get a better
approximation by determing the place of minimum of the expression we get by re-
placing the numberM with the numberM0 in the factor we omitted in the previous
approximation, i.e. we look for the place of minimum of
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A

(

1
e
·2kM

(

1+C

√
kM0√
nσ

)2(σ
u

)2/k
)kM

= A

(

1
e
·2kM

(

1+
C√
2nσ

( u
σ

)1/k
)2(σ

u

)2/k
)kM

.

This suggests the approximationM1 = 1
2k

(
u
σ
)2/k 1

(

1+ C√
2nσ

( u
σ )1/k

)2 for the place of

minimum we are looking for. We can choose a similar expression for the parame-
ter M which is almost as good as this number, but it is simpler to work with it. To
find it observe that under the conditions of Theorem 8.3 we commit a small error
by replacing the term(1+ C√

2nσ (
u
σ )

1/k)2 in the denominator of the formula defin-

ing M1 by 1+ 2C√
2nσ (

u
σ )

1/k. To see this observe that the conditionu
σ ≤ nk/2σk of

Theorem 8.3 implies that1√
nσ (

u
σ )

1/k ≤ 1. Moreover, in the really interesting cases
this expression is very close to zero. This suggests to expand the above square, and
make an approximation by omitting the quadratic term. We cantry to choose the
numberM obtained in such a way in the proof of Theorem 8.3. Moreover, it is use-
ful to replace the parameterC with another number with which we can work better.
It turned out that we can work better if the numberC is replaced with another large

coefficient. This led to the introduction of the quantitykM̄ = 1
2

(
u
σ
)2/k 1

1+ B√
nσ (

u
σ )

1/k

with a sufficiently large (but fixed) numberB in the proof of Theorem 8.3.

Example 8.7 is a relatively simple consequence of Itô’s formula for multiple
Wiener–It̂o integrals.

Proof of Example 8.7.We may restrict our attention to the casek≥ 2. Itô’s formula
for multiple Wiener-It̂o integrals, more explicitly relation (10.25), implies that the
random variablek!Zµ ,k( f ) can be expressed ask!Zµ ,k( f ) = σHk (

∫
f0(x)µW(dx)) =

σHk(η), whereHk(x) is thek-th Hermite polynomial with leading coefficient 1, and
η =

∫
f0(x)µW(dx) is a standard normal random variable. Hence we get by exploit-

ing that the coefficient ofxk−1 in the polynomialHk(x) is zero thatP(k!|Zµ ,k( f )|>
u) = P(|Hk(η)| ≥ u

σ ) ≥ P
(
|ηk|−D|ηk−2|> u

σ
)

with a sufficiently large constant
D > 0 if u

σ > 1. There exist such positive constantsA andB for which

P
(

|ηk|−D|ηk−2|> u
σ

)

≥ P

(

|ηk|> u
σ
+A

( u
σ

)(k−2)/k
)

if
u
σ

> B.

Hence

P(k!|Zµ ,k( f )|> u) ≥ P

(

|η |>
( u

σ

)1/k
(

1+A
( u

σ

)−2/k
))

≥
C̄exp

{

−1
2

(
u
σ
)2/k

}

(
u
σ
)1/k

+1
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with an appropriateC̄ > 0 if u
σ > B. SinceP(k!|Zµ ,k( f )| > 0) > 0, the above in-

equality also holds for 0≤ u
σ ≤ B if the constantC̄> 0 is chosen sufficiently small.

This means that relation (8.19) holds.

Next we prove a multivariate version of Hoeffding’s inequality. Before its formu-
lation some notations will be introduced.

Let us fix two positive integersk andn and some real numbersa( j1, . . . , jk) for
all sequences of arguments{ j1, . . . , jk} such that 1≤ j l ≤ n, 1≤ l ≤ k, and j l 6= j l ′
if l 6= l ′.

With the help of the above real numbersa(·) and a sequence of independent
random variablesε1, . . . ,εn, P(ε j = 1) = P(ε j = −1) = 1

2, 1≤ j ≤ n, the random
variable

V = ∑
( j1,..., jk) : 1≤ j l≤n for all 1≤l≤k,

j l 6= j l ′ if l 6=l ′

a( j1, . . . , jk)ε j1 · · ·ε jk (13.9)

and number
S2 = ∑

( j1,..., jk) : 1≤ j l≤n for all 1≤l≤k,
j l 6= j l ′ if l 6=l ′

a2( j1, . . . , jk). (13.10)

will be introduced.
With the help of the above notations the following result canbe formulated.

Theorem 13.3 (The multivariate version of Hoeffding’s inequality). The random
variable V defined in formula (13.9) satisfies the inequality

P(|V|> u)≤Cexp

{

−1
2

(u
S

)2/k
}

for all u ≥ 0 (13.11)

with the constant S defined in (13.10) and some constants C> 0 depending only on
the parameter k in the expression V.

Theorem 13.3 will be proved by means of two simple lemmas. Before their for-
mulation the random variable

Z = ∑
( j1,..., jk) : 1≤ j l≤n for all 1≤l≤k,

j l 6= j l ′ if l 6=l ′

|a( j1, . . . , jk)|η j1 · · ·η jk (13.12)

will be introduced, whereη1, . . . ,ηn are independent random variables with stan-
dard normal distribution, and the numbersa( j1, . . . , jk) agree with those in for-
mula (13.9). The following lemmas will be proved.

Lemma 13.4.The random variables V and Z introduced in (13.9) and (13.12)sat-
isfy the inequality

EV2M ≤ EZ2M for all M = 1,2, . . . .

Lemma 13.5.The random variable Z defined in formula (13.12) satisfies thein-
equality
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EZ2M ≤ 1·3·5· · ·(2kM−1)S2M for all M = 1,2, . . . (13.13)

with the constant S defined in formula (13.10).

Proof of Lemma 13.4.We can write, by carrying out the multiplications in the ex-
pressionsEV2M andEZ2M, by exploiting the additive and multiplicative properties
of the expectation for sums and products of independent random variables together
with the identitiesEε2k+1

j = 0 andEη2k+1
j = 0 for all k= 0,1, . . . that

EV2M = ∑
( j1,..., j l ,m1,...,ml ) :

1≤ js≤n, ms≥1, 1≤s≤l , m1+···+ml=kM

A( j1, . . . , j l ,m1, . . . ,ml )Eε2m1
j1

· · ·Eε2ml
j l

(13.14)

and

EZ2M = ∑
( j1,..., j l ,m1,...,ml ) :

1≤ js≤n, ms≥1, 1≤s≤l , m1+···+ml=kM

B( j1, . . . , j l ,m1, . . . ,ml )Eη2m1
j1

· · ·Eη2ml
j l

(13.15)

with some coefficientsA( j1, . . . , j l ,m1, . . . ,ml ) and B( j1, . . . , j l ,m1, . . . ,ml ) such
that

|A( j1, . . . , j l ,m1, . . . ,ml )| ≤ B( j1, . . . , j l ,m1, . . . ,ml ). (13.16)

The coefficientsA(·, ·, ·) andB(·, ·, ·) could be expressed explicitly, but we do not
need such a formula. What is important for us is thatA(·, ·, ·) can be expressed as
the sum of certain terms, andB(·, ·, ·) as the sum of the absolute value of the same
terms. Hence relation (13.16) holds. SinceEε2m

j ≤ Eη2m
j for all parametersj andm

formulas (13.14), (13.15) and (13.16) imply Lemma 13.4.

Proof of Lemma 13.5.Let us consider a white noiseW(·) on the unit interval[0,1]
with the Lebesgue measureλ on [0,1] as its reference measure, i.e. let us take a
set of Gaussian random variablesW(A) indexed by the measurable setsA ⊂ [0,1]
such thatEW(A) = 0,EW(A)W(B) = λ (A∩B) with the Lebesgue measureλ for all
measurable subsets of the interval[0,1]. Let us introducen orthonormal functions
ϕ1(x), . . . ,ϕn(x) with respect to the Lebesgue measure on the interval[0,1], and de-
fine the random variablesη j =

∫
ϕ j(x)W(dx), 0≤ j ≤ n. Thenη1, . . . ,ηn are inde-

pendent random variables with standard normal distribution, hence we may assume
that they appear in the definition of the random variableZ in formula (13.12). Be-
side this, the identityη j1 · · ·η jk =

∫
ϕ j1(x1) · · ·ϕ jk(xk)W(dx1) . . .W(dxk) holds for

all k-tuples( j1, . . . , jk) such that 1≤ js ≤ n for all 1≤ s≤ k, and the indicesj1,. . . ,
js are different. This identity follows from Itô’s formula for multiple Wiener–It̂o
integrals formulated in formula (10.24) of Theorem 10.3.

Hence the random variableZ defined in (13.12) can be written in the form

Z =
∫

f (x1, . . . ,xk)W(dx1) . . .W(dxk)

with the function
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f (x1, . . . ,xk) = ∑
( j1,..., jk) : 1≤ j l≤n for all 1≤l≤k,

j l 6= j l ′ if l 6=l ′

|a( j1, . . . , jk)|ϕ j1(x1) · · ·ϕ jk(xk).

Because of the orthogonality of the functionsϕ j(x)

S2 =
∫

[0,1]k
f 2(x1, . . . ,xk)dx1 . . . dxk.

Lemma 13.5 is a straightforward consequence of the above relations and for-
mula (13.1) in Proposition 13.1.

Proof of Theorem 13.3.The proof of Theorem 13.3 with the help of Lemmas 13.4
and 13.5 is an almost word for word repetition of the proof of Theorem 8.5. By
Lemma 13.4 inequality (13.13) remains valid if the random variableZ is replaced
by the random variableV at its left-hand side. Hence the Stirling formula yields that

EV2M ≤ EZ2M ≤ (2kM)!
2kM(kM)!

S2M ≤C

(
2
e

)kM

(kM)kMS2M

for anyC ≥
√

2 if M ≥ M0(A). As a consequence, by the Markov inequality the
estimate

P(|V|> u)≤ EV2M

u2M ≤C

(

2kM
e

(
S
u

)2/k
)kM

(13.17)

holds for allC>
√

2 if M ≥ M0(C). PutkM̄ = kM̄(u) = 1
2

(
u
S

)2/k
andM = M(u) =

[M̄], where[x] denotes the integer part of the numberx. Let us choose a threshold

numberu0 by the identity 1
2k

(u0
S

)2/k
= M0(C)+1. Formula (13.17) can be applied

with M = M(u) for u≥ u0, and it yields that

P(|V|> u)≤Ce−kM ≤Ceke−kM̄ =Cek exp

{

−1
2

(u
S

)2/k
}

if u≥ u0.

The last inequality means that relation (13.11) holds foru≥ u0 if the constantC is re-
placed byCek in it. With the choice of a sufficiently large constantC relation (13.11)
holds for allu≥ 0. Theorem 13.3 is proved.
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13. B) A short discussion about the methods and results.

A comparison of Theorem 8.5 and Example 8.7 shows that the estimate (8.17) is
sharp. At least no essential improvement of this estimate ispossible which holds for
all Wiener–It̂o integrals with a kernel functionf satisfying the conditions of Theo-
rem 8.5. This fact also indicates that the bounds (13.1) and (13.2) on high moments
of Wiener–It̂o integrals are sharp. It is worth while comparing formula (13.2) with
the estimate of Proposition 13.2 on moments of degenerateU-statistics.

Let us consider a normalizedk-fold degenerateU-statisticn−k/2k!In,k( f ) with
some kernel functionf and aµ-distributed sample of sizen. Let us compare its
moments with those of ak-fold Wiener–It̂o integral k!Zµ ,k( f ) with the same kernel
function f with respect to a white noiseµW with reference measureµ . Let σ denote
theL2-norm of the kernel functionf . If M ≤ εnσ2 with a small numberε > 0, then
Proposition 13.2 (with an appropriate choice of the parameter η which is small in
this case) provides an almost as good bound on the 2M-th moment of the normal-
izedU-statistic as Proposition 13.1 does on the 2M-th moment of the corresponding
Wiener–It̂o integral. In the caseM ≤Cnσ2 with some fixed (not necessarily small)
numberC > 0 the 2M-th moment of the normalizedU-statistic can be bounded by
C(k)M times the natural estimate on the 2M-th moment of the Wiener–Itô integral
with some constantC(k) > 0 depending only on the numberC. This can be so in-
terpreted that in this case the estimate on the moments of thenormalizedU-statistic
is weaker than the estimate on the moments of the Wiener–Itô integral, but they are
still comparable. Finally, in the caseM ≫ nσ2 the estimate on the 2M-th moment
of the normalizedU-statistic is much worse than the estimate on the 2M-th moment
of the Wiener–It̂o integral.

A similar picture arises if the distribution of the normalized degenerateU-
statistic

Fn(u) = P(n−k/2|k!In,k( f )|> u)

is compared to the distribution of the Wiener–Itô integral

G(u) = P(|k!Zµ ,k( f )|> u).

In the case 0≤ u ≤ εnk/2σk+1 with a smallε > 0 Theorem 8.3 yields an almost
as good estimate for the probabilityFn(u) as Theorem 8.5 yields forG(u). In the
case 0≤ u≤ nk/2σk+1 these results yield similar bound forFn(u) andG(u), only in
the exponent of the estimate onFn(u) in formula (8.12) a worse constant appears.
Finally, if u≫ nk/2σk+1, then — as Example 8.8 shows, at least in the casek = 2,
— the (tail) distribution functionFn(u) satisfies a much worse estimate than the
functionG(u).

A similar picture arose in the one-variate version of this problem discussed in
Chapter 3, where the normalized sums of independent random variables were inves-
tigated, and their tail-distributions were compared to that of a normally distributed
random variable. To understand this similarity better it isuseful to recall Theo-
rem 10.4, i.e. the limit theorem about normalized degenerate U-statistics. Theo-
rems 8.3 and 8.5 enable us to compare the tail behaviour of normalized degenerate
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U-statistics with their limit presented in the form of multiple Wiener–It̂o integrals,
while the one-variate versions of these results compare thedistribution of sums of
independent random variables with their Gaussian limit.

The proofs of the above results show that good bounds on the moments of de-
generateU-statistics and multiple Wiener–Itô provide a good estimate on their dis-
tribution. To understand the behaviour of high moments of degenerateU-statistics
better it is useful to have a closer look at the simplest casek= 1, when the moments
of sums of independent random variables with expectation zero are considered.

Let us consider a sequence of independent and identically distributed random

variablesξ1, . . . ,ξn with expectation zero, take their sumSn =
n
∑
j=1

ξ j , and let us try

to give a good estimate on the momentsES2M
n for all M = 1,2, . . . . Because of the

independence of the random variablesξ j and the conditionEξ j = 0 the identity

ES2M
n = ∑

( j1,..., js,l1,...,ls)
j1+···+ js=2M, ju≥2, for all 1≤u≤s

1≤l1<l2<···<ls≤n

(2M)!
j1! · · · js!

Eξ j1
l1
· · ·Eξ js

ls
(13.18)

holds. Simple combinatorial considerations suggest that the main contribution to the
right-hand side of (13.18) is given by such vectors( j1, . . . , jM; l1, . . . , lM) for which

ju = 2 for all 1≤ u≤ M. Their contribution is
( n

M

) (2M)!
2M (Eξ 2

1 )
M ∼ nM (2M)!

2MM!
(Eξ 2

1 )
M.

The last asymptotic relation holds if the numbern of terms in the random sumSn

is sufficiently large. The above considerations suggest that under not too restrictive
conditionsES2M

n ∼
(
nσ2

)M (2M)!
2MM! = Eη2M

nσ2, whereσ2 = Eξ 2 is the variance of the
terms in the sumSn, andηu denotes a random variable with normal distribution
with expectation zero and varianceu. The question arises when the above heuristic
argument gives a valid estimate.

For the sake of simplicity let us restrict our attention to the case when the ab-
solute value of the random variablesξ j is bounded by 1. Let us observe that even
in this case the above heuristic argument holds only under the condition that the
varianceσ2 of the random variablesξ j is not too small. Indeed, let us consider such

random variablesξ j , for whichP(ξ j = 1) = P(ξ j =−1) = σ2

2 , P(ξ j = 0) = 1−σ2.
Then these random variablesξ j have varianceσ2, and the contribution of the terms
Eξ 2M

j , 1≤ j ≤ n, to the sum in (13.18) equalsnσ2. If σ2 is very small, then it may

happen thatnσ2 ≫
(
nσ2

)M (2M)!
2MM! , and the approximation given forES2M

n in the pre-
vious paragraph does not hold any longer. Hence the asymptotic relation for a very
high momentES2M

n suggested by the above heuristic argument may only hold if the
varianceσ2 of the summands satisfies an appropriate lower bound.

In the proof of Proposition 13.2 a similar picture appears ina hidden way. In
the calculation of the moments of a degenerateU-statistic the contribution of cer-
tain (closed) diagrams, more precisely of some integrals defined with their help, has
to be estimated. Some of these diagrams (those in which all chains have length 2)
appear also in the calculation of the moments of multiple Wiener–It̂o integrals. In
the calculation of the moments of sums of independent randomvariables the terms
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consisting of products of second moments play a similar rolein the sum in for-
mula (13.18) as the ‘nice’ diagrams consisting of chains of length 2 play in the cal-
culation of the moments of degenerateU-statistics in formula (11.14). In nice cases
the remaining diagrams (multiplied with their small coefficients in formula (11.14)
do not give a greater contribution to the moments of degenerate U-statistics than
these ‘nice’ diagrams, and we get an almost as good bound for the moments of a
normalized degenerateU-statistic as for the moments of the corresponding multi-
ple Wiener–It̂o integral. The proof of Proposition 13.2 shows that such a situation
appears under very general conditions.

Let me also remark that there is an essential difference between the tail behaviour
of Wiener–It̂o integrals and normalized degenerateU-statistics. A good estimate
can be given on the tail distribution of Wiener–Itô integrals which depends only on
theL2-norm of the kernel function, while in the case of normalizeddegenerateU-
statistics the corresponding estimate depends not only on the L2-norm but also on
theL∞ norm of the kernel function. In Theorem 8.3 such an estimate is proved.

Fork≥ 2 the distribution ofk-fold Wiener-It̂o integrals are not determined by the
L2-norm of their kernel functions. This is an essential difference between Wiener–
Itô integrals of orderk ≥ 2 andk = 1. In the casek = 1 a Wiener–It̂o integral is a
Gaussian random variable with expectation zero, and its variance equals the square
of the L2-norm of its kernel function. Hence its distribution is completely deter-
mined by theL2-norm of its kernel function. On the other hand, the distribution of
a Wiener–It̂o integral of orderk≥ 2 is not determined by its variance. Theorem 8.5
yields a ‘worst case’ estimate on the distribution of Wiener–Itô integrals if we have
a bound on their variance. In the statistical problems whichwere the main motiva-
tion for this work we need such estimates, but it may be interesting to know what
kind of estimates are known about the distribution of a multiple Wiener–It̂o integral
or degenerateU-statistic if we have some additional information about itskernel
function. Some results will be mentioned in this direction,but most technical details
will be omitted from our discussion.

H. P. Mc. Kean proved the following lower bound on the distribution of multiple
Wiener–It̂o integrals. (See [32] or [44].)

Theorem 13.6 (Lower bound on the tail distribution of Wiener–It ô integrals).
All k-fold Wiener–It̂o integrals Zµ ,k( f ) satisfy the inequality

P(|Zµ ,k( f )|> u)> Ke−Au2/k
(13.19)

with some numbers K= K( f ,µ)> 0 and A= A( f ,µ)> 0.

The constantA in the exponentAu2/k of formula (13.19) is always finite, but
Mc. Kean’s proof yields no explicit upper bound on it. The following example shows
that in certain cases if we fix the constantK in relation (13.19), then this inequality
holds only with a very large constantA> 0 even if the variance of the Wiener–Itô
integral equals 1.

Take a probability measureµ and a white noiseµW with reference measureµ
on a measurable space(X,X ), and letϕ1,ϕ2, . . . be a sequence of orthonormal
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functions on(X,X ) with respect to this measureµ . Define for allL = 1,2, . . . , the
function

f (x1, . . . ,xk) = fL(x1, . . . ,xk) = (k!)1/2L−1/2
L

∑
j=1

ϕ j(x1) · · ·ϕ j(xk) (13.20)

and the Wiener–It̂o integral

Zµ ,k( f ) = Zµ ,k( fL) =
1
k!

∫

fL(x1, . . . ,xk)µW(dx1) . . .µW(dxk).

ThenEZ2
µ ,k( f ) = 1, and the high moments ofZµ ,k( f ) can be well estimated. For a

large parameterL these moments are much smaller, than the bound given in Proposi-
tion 13.1. (The calculation leading to the estimation of themoments ofZµ ,k( f ) will
be omitted.) These moment estimates also imply that if the parameterL is large,
then for not too large numbersu the probabilityP(|Zµ ,k( f )|> u) has a much better
estimate than that given in Theorem 8.5. As a consequence, for a large numberL
and fixed numberK relation (13.19) may hold only with a very big numberA> 0.

We can expect that if we take a Gaussian random polynomialP(ξ1, . . . ,ξn) whose
arguments are Gaussian random variablesξ1, . . . ,ξn, and which is the sum of many
small almost independent terms with expectation zero, thena similar picture arises
as in the case of a Wiener–Itô integral with kernel function (13.20) with a large
parameterL. Such a random polynomial has an almost Gaussian distribution by the
central limit theorem, and we can also expect that its not toohigh moments behave
so as the corresponding moments of a Gaussian random variable with expectation
zero and the same variance as the Gaussian random polynomialwe consider. Such
a bound on the moments has the consequence that the estimate on the probability
of the event{ω : P(ξ1(ω), . . . ,ξn(ω))> u} given in Theorem 8.5 can be improved
if the numberu is not too large. A similar picture arises if we consider Wiener–
Itô integrals whose kernel function satisfies some ‘almost independence’ properties.
The problem is to find the right properties under which we can get a good estimate
that exploits the almost independence property of a Gaussian random polynomial or
of a Wiener–It̂o integral. The main result of R. Latała’s paper [29] can be considered
as a response to this question. I describe this result below.

To formulate Latała’s result some new notions have to be introduced. Given
a finite setA let P(A) denote the set of all its partitions. If a partitionP =
{B1, . . . ,Bs} ∈ P(A) consists ofs elements then we say that this partition has or-
ders, and write|P|= s. In the special caseA= {1, . . . ,k} the notationP(A) = Pk

will be used. Given a measurable space(X,X ) with a probability measureµ on it
together with a finite setB = {b1, . . . ,b j} let us introduce the following notations.
Take j different copies(Xbr ,Xbr ) and µbr , 1 ≤ r ≤ j, of this measurable space
and probability measure indexed by the elements of the setB, and define their prod-

uct(X(B),X (B),µ(B)) =

(
j

∏
r=1

Xbr ,
j

∏
r=1

Xbr ,
j

∏
r=1

µbr

)

. The points(xb1, . . . ,xb j )∈X(B)
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will be denoted byx(B) ∈ X(B) in the sequel. With the help of the above notations I
introduce the quantities needed in the formulation of the following Theorem 13.7.

Let f = f (x1, . . . ,xk) be a function on thek-fold product (Xk,X k,µk) of a
measure space(X,X ,µ) with a probability measureµ . For all partitionsP =

{B1, . . . ,Bs}∈Pk of the set{1, . . . ,k} consider the functionsgr

(

x(Br )
)

on the space

X(Br ), 1≤ r ≤ s, and define with their help the quantities

α(P) = α(P, f ,µ)

= sup
g1,...,gs

∫

f (x1, . . . ,xk)g1

(

x(B1)
)

· · ·gs

(

x(Bs)
)

µ(dx1) . . .µ(dxk);

where supremum is taken for such functions

g1, . . . ,gs, gr : XBr → R1 for which
∫

g2
r

(

x(Br )
)

µ(Br )
(

dx(Br )
)

≤ 1 for all 1≤ r ≤ s, (13.21)

and put
αs = max

P∈Pk, |P|=s
α(P), 1≤ s≤ k. (13.22)

In Latała’s estimation of Wiener–Itô integrals of orderk the quantitiesαs, 1≤ s≤ k,
play a similar role as the numberσ2 in Theorem 8.5. Observe that in the case|P|= 1,
i.e. if P = {1, . . . ,k} the identityα2(P) =

∫
f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk) holds,

which means thatα1 = σ . The following estimate is valid for Wiener–Itô integrals
of general order.

Theorem 13.7 (Latała’s estimate about the tail-distribution of Wiener–Itô inte-
grals). Let a k-fold Wiener–It̂o integral Zµ ,k( f ), k≥ 1, be defined with the help of a
white noiseµW with a non-atomic reference measureµ and a kernel function f of
k variables such that

∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)< ∞.

There is some universal constant C(k) < ∞ depending only on the order k of the
random integral such that the inequalities

E(Zµ ,k( f ))2M ≤
(

C(k) max
1≤s≤k

(Ms/2αs)

)2M

, (13.23)

and

P(|Zµ ,k( f )|> u)≤C(k)exp

{

− 1
C(k)

min
1≤s≤k

(
u
αs

)2/s
}

(13.24)

hold for all M= 1,2, . . . and u> 0with the quantitiesαs, defined in formulas (13.21)
and (13.22).

Inequality (13.24) is a simple consequence of (13.23). In the special case when
αs ≤ M−(s−1)/2 for all 1≤ s≤ k, t inequality (13.23) yields such an estimate on the
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momentEZµ ,k( f )2M which has the same magnitude as the 2M-th moment of a stan-
dard Gaussian random variable multiplied by a constant, and(13.24) yields a good
estimate on the probabilityP(|Zµ ,k( f )| > u). Actually the result of Theorem 13.7
can be reduced to the special case whenαs ≤ M−(s−1)/2 for all 1≤ s≤ k. Thus it
can be interpreted so that if the quantitiesαs of ak-fold Wiener–It̂o integral are suf-
ficiently small, then these ‘almost independence’ conditions imply that the 2M-th
moment of this integral behaves similarly to a one-fold Wiener–Itô integral with the
same variance.

Actually Latała formulated his result in a different form, and he proved a slightly
weaker result. He considered Gaussian polynomials of the following form:

P(ξ (s)
j , 1≤ j ≤ n, 1≤ s≤ k)

=
1
k! ∑

( j1,..., jk) : 1≤ js≤n,1≤s≤k

a( j1, . . . , jk)ξ
(1)
j1

· · ·ξ (k)
jk
, (13.25)

whereξ (s)
j , 1≤ j ≤ n and 1≤ s≤ k, are independent standard normal random vari-

ables. Latała gave an estimate about the moments and tail-distribution of such ran-
dom polynomials.

The problem about the behaviour of such random polynomials can be reformu-
lated as a problem about the behaviour of Wiener–Itô integrals in the following way:
Take a measurable space(X,X ) with a non-atomic measureµ on it. Let Zµ be a
white noise with reference measureµ , let us choose a set of orthogonal functions

h(s)j (x), 1≤ j ≤ n, 1≤ s≤ k, on the space(X,X ) with respect to the measureµ ,
and define the function

f (x1, . . . ,xk) =
1
k! ∑

( j1,..., jk) : 1≤ js≤n,1≤s≤k

a( j1, . . . , jk)h
(1)
j1
(x1) · · ·h(k)jk

(xk) (13.26)

together with the Wiener–Itô integralZµ ,k( f ). Since the random integrals̄ξ (s)
j =

∫
h(s)j (x)Zµ(dx), 1≤ j ≤ n, 1≤ s≤ k, are independent, standard Gaussian random

variables, it is not difficult to see with the help of Itô’s formula (Theorem 10.3 in

this work) that the distributions of the random polynomialP(ξ (s)
j , 1 ≤ j ≤ n, 1 ≤

s≤ k) andZµ ,k( f ) agree. Here we reformulated Latała’s estimates about random
polynomials of the form (13.25) to estimates about Wiener–Itô integrals with kernel
function of the form (13.26).

These estimates are equivalent to Latała’s result if we restrict our attention to
the special class of Wiener–Itô integrals with kernel functions of the form (13.26).
But we have formulated our result for Wiener–Itô integrals with a general kernel
function. Latała’s proof heavily exploits the special structure of the random polyno-

mials given in (13.25), the independence of the random variablesξ (s)
j for different

parameterss in it. (It would be interesting to find a proof which does not exploit this
property.) On the other hand, this result can be generalizedto the case discussed in
Theorem 13.7. This generalization can be proved by exploiting the theorem of de
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la Pẽna and Montgomery–Smith about the comparison ofU-statistics and decou-
pledU-statistics (formulated in Theorem 14.3 of this work) and the properties of
the Wiener–It̂o integrals. I omit the details of the proof.

Latała also proved a converse estimate in [29] about random polynomials of
Gaussian random polynomials which shows that the estimatesof Theorem 13.7 are
sharp. We formulate it in its original form, i.e. we restrictour attention to the case
of Wiener–It̂o integrals with kernel functions of the form (13.26).

Theorem 13.8 (A lower bound about the tail distribution of Wiener–Itô inte-
grals).A random integral Zµ ,k( f ) with a kernel function of the form (13.26) satisfies
the inequalities

E(Zµ ,k( f ))2M ≥
(

C(k) max
1≤s≤k

(Ms/2αs)

)2M

,

and

P(|Zµ ,k( f )|> u)≥ 1
C(k)

exp

{

−C(k) min
1≤s≤k

(
u
αs

)2/s
}

for all M = 1,2, . . . and u> 0 with some universal constant C(k) > 0 depending
only on the order k of the integral and the quantitiesαs, defined in formula (13.21)
and (13.22).

Let me finally remark that there is a counterpart of Theorem 13.7 about degen-
erateU-statistics. Adamczak’s paper [1] contains such a result. Here we do not dis-
cuss it, because this result is far from the main topic of thiswork. We only remark
that some new quantities have to be introduced to formulate it. The appearance of
these conditions is related to the fact that in an estimate about the tail-behaviour
of a degenerateU-statistic we need a bound not only on theL2-norm but also on
the supremum norm of the kernel function. In a sharp estimatethe bound about the
supremum of the kernel function has to be replaced by a more complex system of
conditions, just as the condition about theL2-norm of the kernel function was re-
placed by a condition about the quantitiesαs, 1≤ s≤ k, defined in formulas (13.21)
and (13.22) in Theorem 13.7.





Chapter 14
Reduction of the main result in this work

The main result of this work is Theorem 8.4 or its multiple integral version Theo-
rem 8.2. It was shown in Chapter 9 that Theorem 8.2 follows from Theorems 8.4.
Hence it is enough to prove Theorem 8.4. It may be useful to study this problem
together with its multiple Wiener–Itô integral version, Theorem 8.6.

Theorems 8.6 and 8.4 will be proved similarly to their one-variate versions, The-
orems 4.2 and 4.1. Theorem 8.6 will be proved with the help of Theorem 8.5 about
the estimation of the tail distribution of multiple Wiener–Itô integrals. A natural
modification of the chaining argument applied in the proof ofTheorem 4.2 works
also in this case. No new difficulties arise. On the other hand, in the proof of The-
orem 8.4 several new difficulties have to be overcome. I startwith the proof of
Theorem 8.6.

Proof of Theorem 8.6.Fix a number 0< ε < 1, and let us list the elements of the
countable setF as f1, f2, . . . . For all p= 0,1,2, . . . let us choose by exploiting the
conditions of Theorem 8.6 a set of functionsFp = { fa(1,p), . . . , fa(mp,p)} ⊂ F with

mp ≤ 2D2(2p+4)Lε−Lσ−L elements in such a way that inf
1≤ j≤mp

∫
( f − fa( j,p))

2dµ ≤

2−4p−8ε2σ2 for all f ∈ F , and beside this letfp ∈ Fp. For all indicesa( j, p), p=
1,2, . . . , 1≤ j ≤ mp, choose a predecessora( j ′, p−1), j ′ = j ′( j, p), 1≤ j ′ ≤ mp−1,
in such a way that the functionsfa( j,p) and fa( j ′,p−1) satisfy the relation

∫ | fa( j,p)−
fa( j ′,p−1)|2dµ ≤ ε2σ22−4(p+1). Theorem 8.5 with the choice ¯u= ū(p) = 2−(p+1)εu
andσ̄ = σ̄(p) = 2−2p−2εσ yields the estimates

P(A( j, p)) = P
(

|k!Zµ ,k( fa( j,p)− fa( j ′,p−1))| ≥ 2−(1+p)εu
)

≤ Cexp

{

−1
2

(
2p+1u

σ

)2/k
}

, 1≤ j ≤ mp, (14.1)

for all p= 1,2, . . . , and
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P(B(s)) = P
(

|k!Zµ ,k( fa(0,s))| ≥
(

1− ε
2

)

u
)

≤ Cexp






−1

2

((
1− ε

2

)
u

σ

)2/k





, 1≤ s≤ m0. (14.2)

Since eachf ∈ F is the element of at least one setFp, p= 0,1,2, . . . , (We made a
construction, wherefp ∈ Fp), the definition of the predecessor of an indexa( j, p)
and of the eventsA( j, p) andB(s) in formulas (14.1) and (14.2) together with the
previous estimates imply that

P

(

sup
f∈F

|k!Zµ ,k( f )| ≥ u

)

≤ P

(
∞⋃

p=1

mp
⋃

j=1

A( j, p)∪
m0⋃

s=1

B(s)

)

≤
∞

∑
p=1

mp

∑
j=1

P(A( j, p))+
m0

∑
s=1

P(B(s))

≤
∞

∑
p=1

2CD2(2p+4)Lε−Lσ−L exp

{

−1
2

(
2p+1u

σ

)2/k
}

+21+4LCDε−Lσ−L exp






−1

2

((
1− ε

2

)
u

σ

)2/k





. (14.3)

Some calculations show that ifu≥MLk/2σ 1
ε (logk/2 2

ε + logk/2 2
σ ) with a sufficiently

large constantM = M(k), then the inequalities

2(2p+4)Lε−Lσ−L exp

{

−1
2

(
2p+1u

σ

)2/k
}

≤ 2−p

{

−1
2

(
(1− ε)u

σ

)2/k
}

hold for all p= 1,2. . . , and

24Lε−Lσ−L exp






−1

2

((
1− ε

2

)
u

σ

)2/k





≤ exp

{

−1
2

(
(1− ε)u

σ

)2/k
}

.

These inequalities together with relation (14.3) imply relation (8.18). Theo-
rem 8.6 is proved.

The proof of Theorem 8.4 is harder. In this case the chaining argument in itself
does not supply the proof, since Theorem 8.3 gives a good estimate about the distri-
bution of a degenerateU-statistic only if it has a not too small variance. The same
difficulty appeared in the proof of Theorem 4.1, and the method applied in that case
will be adapted to the present situation.

A multivariate version of Proposition 6.1 will be proved in Proposition 14.1, and
another result which can be considered as a multidimensional version of Proposi-
tion 6.2 will be formulated in Proposition 14.2. It will be shown that Theorem 8.4
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follows from Propositions 14.1 and 14.2. Most steps of theseproofs can be consid-
ered as a simple repetition of the corresponding arguments in the proof of the results
in Chapter 6. Nevertheless, I wrote down them for the sake of completeness.

The result formulated in Proposition 14.1 can be proved in almost the same way
as its one-variate version, Proposition 6.1. The only essential difference is that now
we apply a multivariate version of Bernstein’s inequality given in the Corollary of
Theorem 8.3. In the calculations of the proof of Proposition14.1 the term( u

σ )
2/k

shows a behaviour similar to the term( u
σ )

2 in Proposition 6.1. Theorem 14.1 con-
tains the information we can get by applying Theorem 8.3 together with the chaining
argument. Its main content, inequality (14.4), yields a good estimate on the supre-
mum of degenerateU-statistics if it is taken for an appropriate finite subclassFσ̄
of the original class of kernel functionsF . The class of kernel functionsFσ̄ is a
relatively dense subclass ofF in theL2 norm. Proposition 14.1 also provides some
useful estimates on the value of the parameterσ̄ which describes how dense the
class of functionsFσ̄ is in F .

Proposition 14.1.Let the k-fold power(Xk,X k) of a measurable space(X,X ) be
given together with some probability measureµ on (X,X ) and a countable, L2-
dense classF of functions f(x1, . . . ,xk) of k variables with some exponent L≥ 1
and parameter D≥ 1 with respect to the measureµ on the product space(Xk,X k)
which also has the following properties. All functions f∈ F are canonical with
respect to the measureµ , and they satisfy conditions (8.5) and (8.6) with some real
number0< σ ≤ 1. Take a sequence of independent,µ-distributed random variables
ξ1, . . . ,ξn, n≥ max(k,2), and consider the (degenerate) U-statistics In,k( f ), f ∈F ,
defined in formula (8.8), and fix some numberĀ= Āk ≥ 2k.

There is a number M= M(Ā,k) such that for all numbers u> 0 for which the

inequality nσ2 ≥
(

u
σ
)2/k ≥ M(L log 2

σ + logD) holds, a number̄σ = σ̄(u), 0≤ σ̄ ≤
σ ≤ 1, and a collection of functionsFσ̄ = Fσ̄(u) = { f1, . . . , fm} ⊂ F with m≤
Dσ̄−L elements can be chosen in such a way that the union of the setsD j = { f : f ∈
F ,

∫ | f − f j |2dµ ≤ σ̄2}, 1 ≤ j ≤ m cover the setF . i.e. F =
m⋃

j=1
D j , and the

(degenerate) U-statistics In,k( f ), f ∈ Fσ̄(u), satisfy the inequality

P

(

sup
f∈Fσ̄(u)

n−k/2|k!In,k( f )| ≥ u

Ā

)

≤ 2Cexp

{

−α
( u

10Āσ

)2/k
}

if nσ2 ≥
( u

σ

)2/k
≥ M

(

L log
2
σ
+ logD

)

(14.4)

with the constantsα = α(k), C=C(k) appearing in formula (8.13) of the Corollary
of Theorem 8.3 and the exponent L and parameter D of the L2-dense classF . Beside

this, also the inequality4
(

u
Āσ̄

)2/k
≥ nσ̄2 ≥ 1

64

(
u

Āσ

)2/k
holds for this number̄σ =

σ̄(u). If the number u satisfies also the inequality
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nσ2 ≥
( u

σ

)2/k
≥ M(L3/2 log

2
σ
+(logD)3/2) (14.5)

with a sufficiently large number M=M(Ā,k), then the relation n̄σ2 ≥ L logn+ logD
holds, too.

Proof of Proposition 14.1.Let us list the elements of the countable setF as
f1, f2, . . . . For all p = 0,1,2, . . . let us choose, by exploiting theL2-density prop-
erty of the classF , a setFp = { fa(1,p), . . . , fa(mp,p)} ⊂ F with mp ≤ D22pLσ−L

elements in such a way that inf
1≤ j≤mp

∫
( f − fa( j,p))

2dµ ≤ 2−4pσ2 for all f ∈ F .

For all indicesa( j, p), p= 1,2, . . . , 1≤ j ≤ mp, choose a predecessora( j ′, p−1),
j ′ = j ′( j, p), 1≤ j ′ ≤ mp−1, in such a way that the functionsfa( j,p) and fa( j ′,p−1)

satisfy the relation
∫ | fa( j,p) − fa( j ′,p−1)|2dµ ≤ σ22−4(p−1). Then the inequalities

∫
( fa( j,p)− fa( j′,p−1)

2

)2
dµ ≤ 4σ22−4p and sup

x j∈X,1≤ j≤k

∣
∣
∣
∣

fa( j,p)(x1,...,xk)− fa( j′,p−1)(x1,...,xk)

2

∣
∣
∣
∣
≤

1 hold. The Corollary of Theorem 8.3 yields that

P(A( j, p)) = P

(

n−k/2|k!In,k( fa( j,p)− fa( j ′,p−1))| ≥
2−(1+p)u

Ā

)

≤Cexp

{

−α
(

2pu

8Āσ

)2/k
}

if 4nσ22−4p ≥
(

2pu

8Āσ

)2/k

,

1≤ j ≤ mp, p= 1,2, . . . , (14.6)

and

P(B(s)) = P
(

n−k/2|k!In,k( f0,s)| ≥
u

2Ā

)

≤Cexp

{

−α
( u

2Āσ

)2/k
}

,

1≤ s≤ m0, if nσ2 ≥
( u

2Āσ

)2/k
. (14.7)

Introduce an integerR= R(u), R> 0, which satisfies the relations

2(4+2/k)(R+1)
( u

Āσ

)2/k
≥ 22+6/knσ2 ≥ 2(4+2/k)R

( u

Āσ

)2/k
,

and defineσ̄2 = 2−4Rσ2 andFσ̄ =FR (this is the class of functionsFp introduced
at the start of the proof withp= R). We defined the numberR, analogously to the
proof of Proposition 6.1, as the largest numberp for which the condition formulated

in (14.6) holds. Asnσ2 ≥
(

u
σ
)2/k

, andĀ≥ 2k by our conditions, there exists such
a positive integerR.) The cardinalitym of the setFσ̄ is clearly not greater than

Dσ̄−L, and
m⋃

j=1
D j = F . Beside this, the numberR was chosen in such a way that

the inequalities (14.6) and (14.7) hold for 1≤ p ≤ R. Hence the definition of the
predecessor of an indexa( j, p) implies that
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P

(

sup
f∈Fσ̄

n−k/2k|k!In,k( f )| ≥ u

Ā

)

≤ P

(
R⋃

p=1

mp
⋃

j=1

A( j, p)∪
m0⋃

s=1

B(s)

)

≤
R

∑
p=1

mp

∑
j=1

P(A( j, p))+
m0

∑
s=1

P(B(s))

≤
∞

∑
p=1

CD22pLσ−L exp

{

−α
(

2pu

8Āσ

)2/k
}

+CDσ−L exp

{

−α
( u

2Āσ

)2/k
}

.

If the condition
(

u
σ
)2/k ≥M(L log 2

σ + logD) holds with a sufficiently large constant
M (depending on̄A), then the inequalities

D22pLσ−L exp

{

−α
(

2pu

8Āσ

)2/k
}

≤ 2−pexp

{

−α
(

2pu

10Āσ

)2/k
}

hold for all p= 1,2, . . . , and

Dσ−L exp

{

−α
( u

2Āσ

)2/k
}

≤ exp

{

−α
( u

10Āσ

)2/k
}

.

Hence the previous estimate implies that

P

(

sup
f∈Fσ̄

n−k/2|k!In,k( f )| ≥ u

Ā

)

≤
∞

∑
p=1

C2−pexp

{

−α
(

2pu

10Āσ

)2/k
}

+Cexp

{

−α
( u

10Āσ

)2/k
}

≤ 2Cexp

{

−α
( u

10Āσ

)2/k
}

,

and relation (14.4) holds.
The estimates

1
64

( u

Āσ

)2/k
≤ 2−2−6/k22R/k

( u

Āσ

)2/k
= 2−4R ·2(4+2/k)R−2−6/k

( u

Āσ

)2/k

≤ nσ̄2 = 2−4Rnσ2 ≤ 2−4R ·2(4+2/k)(R+1)−2−6/k
( u

Āσ

)2/k

= 22−4/k ·22R/k
( u

Āσ

)2/k
= 22−4/k ·2−2R/k

( u

Āσ̄

)2/k
≤ 4

( u

Āσ̄

)2/k

hold because of the relationR≥ 1. This means thatnσ̄2 has the upper and lower
bound formulated in Proposition 14.1. It remained to show thatnσ̄2 ≥ L logn+D if
relation (14.5) holds.

This inequality clearly holds under the conditions of Proposition 14.1 if σ ≤
n−1/3, since in this case log2σ ≥ logn

3 , and
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nσ̄2 ≥ 1
64

( u

Āσ

)2/k
≥ 1

64
Ā−2/kM

(

L log
2
σ
+ logD)

)

≥ 1
192

Ā−2/kM(L logn+ logD)≥ L logn+ logD

if M = M(Ā,k) is sufficiently large.

If σ ≥ n−1/3, then the inequality 2(4+2/k)R
(

u
Āσ

)2/k
≤ 22+6/knσ2 can be applied.

This implies that 2−4R ≥ 2−4(2+6/k))/(4+2/k)






(
u

Āσ

)2/k

nσ2






4/(4+2/k)

, and

nσ̄2 = 2−4Rnσ2 ≥ 2−16/3

Ā4/3
(nσ2)1−γ

[( u
σ

)2/k
]γ

with γ =
4

4+ 2
k

≥ 2
3
.

The inequalitiesnσ2 ≥ n1/3 and nσ2 ≥ ( u
σ )

2/k ≥ M(L3/2 log 2
σ + (logD)3/2) ≥

M
2 (L

3/2+(logD)3/2) hold, (since log2
σ ≥ 1

2). They yield that for sufficiently large
M = M(Ā,k)

(nσ2)1−γ
[( u

σ

)2/k
]γ

≥ (nσ2)1−γ
[( u

σ

)2/k
]2/3

= (nσ2)1/(2k+1)
[( u

σ

)2/k
]2/3

,

and

nσ̄2 ≥ Ā−4/3

50
(nσ2)1/(2k+1)

[( u
σ

)2/k
]2/3

≥ Ā−4/3

50
n1/3(2k+1)

(
M
2

)2/3

(L3/2+(logD)3/2)2/3 ≥ L logn+ logD.

A multivariate analogue of Proposition 6.2 is formulated inProposition 14.2, and
it will be shown that Propositions 14.1 and 14.2 imply Theorem 8.4.

Proposition 14.2.Let a probability measureµ be given on a measurable space
(X,X ) together with a sequence of independent andµ distributed random vari-
ablesξ1, . . . ,ξn and a countable L2-dense classF of canonical (with respect to
the measureµ) kernel functions f= f (x1, . . . ,xk) with some parameter D≥ 1
and exponent L≥ 1 on the product space(Xk,X k). Let all functions f∈ F sat-
isfy conditions (8.1) and (8.2) with some0 < σ ≤ 1 such that nσ2 > L logn+D.
Let us consider the (degenerate) U-statistics In,k( f ) with the random sequence
ξ1, . . . ,ξn, n≥max(2,k), and kernel functions f∈F . There exists a threshold index
A0 = A0(k)> 0 and two numbers̄C= C̄(k)> 0 andγ = γ(k)> 0 depending only on
the order k of the U-statistics such that the degenerate U-statistics In,k( f ), f ∈ F ,
satisfy the inequality
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P

(

sup
f∈F

n−k/2|k!In,k( f )| ≥ Ank/2σk+1

)

≤ C̄e−γA1/2knσ2
if A ≥ A0. (14.8)

Proposition 14.2 yields an estimate for the tail distribution of the supremum of
degenerateU-statistics at levelu≥ A0nk/2σk+1, i.e. in the case when Theorem 8.3
does not give a good estimate on the tail-distribution of thesingle degenerateU-
statistics taking part in the supremum at the left-hand sideof (14.8).

Formula (8.14) will be proved by means of Proposition 14.1 with an appropriate
choice of the parameter̄A in it and Proposition 14.2 with the choiceσ = σ̄ = σ̄(u)

and the classes of functionsF j =
{

g− f j
2 : g∈ D j

}

with the number̄σ , functionsf j

and sets of functionsD j , 1≤ j ≤ m, introduced in Proposition 14.1. Clearly,

P

(

sup
f∈F

n−k/2|k!In,k( f )| ≥ u

)

≤ P

(

sup
f∈Fσ̄

n−k/2|k!In,k( f )| ≥ u

Ā

)

+
m

∑
j=1

P

(

sup
g∈D j

n−k/2

∣
∣
∣
∣
k!In,k

(
f j −g

2

)∣
∣
∣
∣
≥
(

1
2
− 1

2Ā

)

u

)

, (14.9)

wherem is the cardinality of the set of functionsFσ̄ appearing in Proposition 14.1.
We shall estimate the two terms of the sum at the right-hand side of (14.9) by means
of Propositions 14.1 and 14.2 with a good choice of the parametersĀ and the cor-
respondingM = M(Ā) in Proposition 14.1 together with a parameterA ≥ A0 in
Proposition 14.2.

We shall choose the parameterA ≥ A0 in the application of Proposition 14.2
so that it satisfies also the relationγ A1/2k ≥ 2 with the numberγ appearing in
relation (14.8), hence we putA = max(A0,(

2
γ )

2k). After this choice we want to

define the parameter̄A in Proposition 14.1 in such a way that the numbersu sat-
isfying the conditions of Proposition 14.1 also satisfy therelation (1

2 − 1
2Ā
)u ≥

Ank/2σ̄k+1 with the already fixed numberA and the number̄σ = σ̄(u) defined
in the proof of Proposition 14.1. This inequality can be rewritten in the form
A−2/k(1

2 − 1
2Ā
)2/k( u

σ̄ )
2/k ≥ nσ̄2. On the other hand, under the conditions of Propo-

sition 14.1 the inequality 4( u
Āσ̄ )

2/k ≥ nσ̄2 holds. Hence the desired inequality holds

if A−2/k(1
2 − 1

2Ā
)2/k ≥ 4Ā−2/k. Thus the number̄A = 2k+1A+ 1 is an appropriate

choice.
With such a choice of̄A (together with the correspondingM = M(Ā,k)) andA

we can write

P

(

sup
g∈D j

n−k/2

∣
∣
∣
∣
k!In,k

(
f j −g

2

)∣
∣
∣
∣
≥
(

1
2
− 1

2Ā

)

u

)

≤ P

(

sup
g∈D j

n−k/2

∣
∣
∣
∣
k!In,k

(
f j −g

2

)∣
∣
∣
∣
≥ Ank/2σ̄k+1

)

≤ C̄e−γA1/2knσ̄2
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for all 1 ≤ j ≤ m. (Observe that the set of functions
f j−g

2 , g ∈ D j , is anL2-dense
class with parameterD and exponentL.) Hence Proposition 14.1 (relation (14.4)
together with the inequalitym≤ Dσ̄−L) and formula (14.8) with ourA ≥ A0 and
relation (14.9) imply that

P

(

sup
f∈F

n−k/2|k!In,k( f )| ≥ u

)

≤ 2Cexp

{

−α
( u

10Āσ

)2/k
}

+C̄Dσ̄−Le−γA1/2knσ̄2
. (14.10)

We show by repeating an argument given in Chapter 6 thatDσ̄−L ≤ enσ̄2
. In-

deed, we have to show that logD+L log 1
σ̄ ≤ nσ̄2. But, as we have seen, the rela-

tion nσ̄2 ≥ L logn+ logD with L ≥ 1 andD ≥ 1 implies thatnσ̄2 ≥ logn, hence
log 1

σ ≤ logn, and logD + L log 1
σ̄ ≤ logD + L logn ≤ nσ̄2. On the other hand,

γA1/2k ≥ 2 by the definition of the numberA, and by the estimates of Proposi-

tion 14.1nσ̄2 ≥ 1
64

(
u

Āσ

)2/k
. The above relations imply thatDσ̄−Le−γA1/2knσ̄2 ≤

e−γA1/2knσ̄2/2 ≤ exp
{

− γ
128A1/2kĀ−2/k

(
u
σ
)2/k

}

. Hence relation (14.10) yields that

P

(

sup
f∈F

n−k/2|k!In,k( f )| ≥ u

)

≤ 2Cexp

{

− α
(10Ā)2

( u
σ

)2/k
}

+C̄exp

{

− γ
128

A1/2kĀ−2/k
( u

σ

)2/k
}

,

and this estimate implies Theorem 8.4.

To complete the proof of Theorem 8.4 we have to prove Proposition 14.2. It
will be proved, similarly to its one-variate version Proposition 6.2, by means of a
symmetrization argument. We want to find its right formulation. It would be natural
to formulate it as a result about the supremum of degenerateU-statistics. However,
we shall choose a slightly different approach. There is a notion, called decoupled
U-statistic. DecoupledU-statistics behave similarly toU-statistics, but it is simpler
to work with them, because they have more independence properties. It turned out
to be useful to introduce them and to apply a result of de la Peña and Montgomery–
Smith which enables us to reduce the estimation ofU-statistics to the estimation of
decoupledU-statistics, and to work out the symmetrization argument for decoupled
U-statistics.

Next we introduce the notion of decoupledU-statistics together with their ran-
domized version. We also formulate a result of de la Peña and Montgomery–Smith
in Theorem 14.3 which enables us to reduce Proposition 14.2 to a version of it, pre-
sented in Proposition 14.2′. It states a result similar to Proposition 14.2 about decou-
pledU-statistics. The proof of Proposition 14.2′ is the hardest part of the problem.
In Chapter 15, 16 and 17 we deal essentially with this problem. The result of de la
Pẽna and Montgomery–Smith will be proved in Appendix D.
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Definition of decoupled and randomized decoupledU-statistics.Let us have k

independent copiesξ ( j)
1 , . . . ,ξ ( j)

n , 1 ≤ j ≤ k, of a sequenceξ1, . . . ,ξn of indepen-
dent and identically distributed random variables taking their values in a measur-
able space(X,X ) together with a measurable function f(x1, . . . ,xk) on the product
space(Xk,X k) with values in a separable Banach space. The decoupled U-statistic

Īn,k( f ) determined by the random sequencesξ ( j)
1 , . . . ,ξ ( j)

n , 1 ≤ j ≤ k, and kernel
function f is defined by the formula

Īn,k( f ) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k,
l j 6=l j′ if j 6= j ′

f
(

ξ (1)
l1

, . . . ,ξ (k)
lk

)

. (14.11)

Let us have beside the sequences of random variablesξ ( j)
1 , . . . ,ξ ( j)

n , 1≤ j ≤ k, and
function f(x1, . . . ,xk) a sequence of independent random variablesε = (ε1, . . . ,εn),
P(εl = 1) = P(εl =−1) = 1

2, 1≤ l ≤ n, which is independent also of the sequences

of random variablesξ ( j)
1 , . . . ,ξ ( j)

n , 1≤ j ≤ k. The randomized decoupled U-statistic

Īn,k( f ,ε) (depending on the random sequencesξ ( j)
1 , . . . ,ξ ( j)

n , 1≤ j ≤ k, the kernel
function f and the randomizing sequenceε1, . . . ,εn) is defined by the formula

Ī ε
n,k( f ) =

1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k,
l j 6=l j′ if j 6= j ′

εl1 · · ·εlk f
(

ξ (1)
l1

, . . . ,ξ (k)
lk

)

. (14.12)

A decoupled or randomized decoupledU-statistics (with a real valued kernel
function) will be called degenerate if its kernel function is canonical. This terminol-
ogy is in full accordance with the definition of (usual) degenerateU-statistics.

A result of de la Pẽna and Montgomery–Smith will be formulated below. It gives
an upper bound for the tail distribution of aU-statistic by means of the tail distribu-
tion of an appropriate decoupledU-statistic. It also has a generalization, where the
supremum ofU-statistics is bounded by the supremum of decoupledU-statistics. It
enables us to reduce Proposition 14.2 to a version of it formulated Proposition 14.2′,
which gives a bound on the tail distribution of the supremum of decoupledU-
statistics. It is simpler to prove this result than the original one.

Before the formulation of the theorem of de la Peña and Montgomery–Smith I
make some remark about it. In this result we consider more generalU-statistics with
kernel functions taking values in a separable Banach space,and we compare the
norm of Banach space valuedU-statistics and decoupledU-statistics. (Decoupled
U-statistics were defined with general Banach space valued kernel functions, and the
definition ofU-statistics can also be generalized to separable Banach space valued
kernel functions in a natural way.) This result was formulated in such a general form
for a special reason. This helped us to derive formula (14.14) of the subsequent
theorem from formula (14.13). It can be exploited in the proof of formula (14.14)
that the constants in the estimate (14.13) do not depend on the Banach space where
the kernel functionf takes its values.
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Theorem 14.3 (Theorem of de la Pẽna and Montgomery–Smith about the com-
parison of U-statistics and decoupledU-statistics). Let us consider a sequence
of independent and identically distributed random variablesξ1, . . . ,ξn with values

in a measurable space(X,X ) together with k independent copiesξ ( j)
1 , . . . ,ξ ( j)

n ,
1≤ j ≤ k, of this sequence. Let us also have a function f(x1, . . . ,xk) on the k-fold
product space(Xk,X k) which takes its values in a separable Banach space B. Let
us take the U-statistic and decoupled U-statistic In,k( f ) andĪn,k( f ) with the help of

the above random sequencesξ1, . . . ,ξn, ξ ( j)
1 , . . . ,ξ ( j)

n , 1 ≤ j ≤ k, and kernel func-
tion f . There exist some constants̄C = C̄(k) > 0 andγ = γ(k) > 0 depending only
on the order k of the U-statistic such that

P
(
‖k!In,k( f )‖> u

)
≤ C̄P

(
‖k! Īn,k( f )‖> γu

)
(14.13)

for all u> 0. Here‖·‖ denotes the norm in the Banach space B where the function f
takes its values.

More generally, if we have a countable sequence of functionsfs, s= 1,2, . . . ,
taking their values in the same separable Banach-space, then

P

(

sup
1≤s<∞

∥
∥k!In,k( fs)

∥
∥> u

)

≤ C̄P

(

sup
1≤s<∞

∥
∥k! Īn,k( fs)

∥
∥> γu

)

. (14.14)

Now I formulate the following version of Proposition 4.2.

Proposition 14.2′. Let a probability measureµ be given on a measurable space
(X,X ) together with a sequence of independent andµ distributed random vari-
ablesξ1, . . . ,ξn, n ≥ max(k,2), and a countable L2-dense classF of canonical
(with respect to the measureµ) kernel functions f= f (x1, . . . ,xk) with some pa-
rameter D≥ 1 and exponent L≥ 1 on the product space(Xk,X k). Let all func-
tions f ∈ F satisfy conditions (8.1) and (8.2) with some0 < σ ≤ 1 such that

nσ2 > L logn+ logD. Let us take k independent copiesξ ( j)
1 , . . . ,ξ ( j)

n , 1 ≤ j ≤ k,
of the random sequenceξ1, . . . ,ξn, and consider the decoupled U-statisticsĪn,k( f ),
f ∈ F , defined with their help in formula (14.11).

There exists a threshold index A0 = A0(k) > 0 depending only on the order k
of the decoupled U-statistics In,k( f ), f ∈ F , such that the (degenerate) decoupled
U-statisticsĪn,k( f ), f ∈ F , satisfy the following version of inequality (14.8):

P

(

sup
f∈F

n−k/2|k! Īn,k( f )| ≥ Ank/2σk+1

)

≤ e−2−(1/2+1/2k)A1/2knσ2
if A ≥ A0.

(14.15)

It is clear that Proposition 14.2′ and Theorem 14.3, more explicitly formula
(14.14) in it, imply Proposition 14.2. Hence the proof of Theorem 8.4 was reduced
to Proposition 14.2′ in this chapter. The proof of Proposition 14.2′ is based on a
symmetrization argument. Its main ideas will be explained in the next chapter.



Chapter 15
The strategy of the proof for the main result of
this work

In the previous chapter the proof of Theorem 8.4 was reduced to that of Propo-
sition 14.2′. Proposition 14.2′ is a multivariate version of Proposition 6.2, and its
proof is based on similar ideas. An important step in the proof of Proposition 6.2
was a symmetrization argument in which we reduced the estimation of the proba-

bility P

(

sup
f∈F

n
∑
j=1

f (ξ j)> u

)

to that of the probabilityP

(

sup
f∈F

n
∑
j=1

ε j f (ξ j)>
u
3

)

,

whereξ1, . . . ,ξn is a sequence of independent and identically distributed random
variables, andε j , 1≤ j ≤ n, is a sequence of independent random variables with
distributionP(ε j = 1) = P(ε j =−1) = 1

2, independent of the sequenceξ j . We want
to prove a similar symmetrization argument which helps to prove Proposition 14.2′.

The symmetrization argument applied in the proof of Proposition 6.2 was carried
out in two steps. We took a copyξ ′

1, . . . ,ξ ′
n of the sequenceξ1, . . . ,ξn, i.e. a sequence

of independent random variables which is independent also of the original sequence
ξ1, . . . ,ξn, and has the same distribution. In the first step we compared the tail dis-

tribution of the expression sup
f∈F

n
∑
j=1

[ f (ξ j)− f (ξ ′
j)] with that of sup

f∈F

n
∑
j=1

f (ξ j) with

the help of Lemma 7.1. In the second step, in the proof of Lemma7.2, we applied
a ‘randomization argument’ which stated that the distribution of the random fields

n
∑
j=1

[ f (ξ j)− f (ξ ′
j)] and

n
∑
j=1

ε j [ f (ξ j)− f (ξ ′
j)], f ∈ F , agree. The symmetrization ar-

gument was proved with the help of these two observations.
In the proof of Proposition 14.2′ we would like to reduce the estimation of the

tail distribution of the supremum of decoupledU-statistics sup
f∈F

Īn,k( f ) defined in

formula (14.11) to the estimation of the tail distribution of the supremum of the ran-
domized decoupledU-statistics sup

f∈F

Ī ε
n,k( f ) defined in formula (14.12) in a similar

way. To do this we have to find the multivariate version of the ‘randomization argu-
ment’ in the proof of Lemma 7.2. This will be done in the subsequent Lemma 15.1.
In Lemma 7.2 this randomization argument was formulated with the help of some
random variables introduced in formulas (7.4) and (7.5). Weshall define their mul-

171
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tivariate versions in formulas (15.1) and (15.2), and they will play a similar role in
the formulation of Lemma 15.1.

The adaptation of the first step of the symmetrization argument of the proof
of Proposition 6.2 is much harder. The proof of Proposition 6.2 was based on a
symmetrization lemma formulated in Lemma 7.1. This result does not work in the
present case. Hence we shall generalize it in Lemma 15.2. Theproof of the sym-
metrization argument needed in the proof of Proposition 14.2′ is difficult even with
the help of this result. The hardest part of our problem appears at this point. I return
to it after the formulation of Lemma 15.2.

To formulate Lemma 15.1 we introduce the following notations.
Let Vk = {(v(1), . . . ,v(k)) : v( j) = ±1, for all 1 ≤ j ≤ k} denote the set of all

±1 sequences of lengthk. Let m(v) denote the number of−1 digits in a sequence
v= (v(1), . . . ,v(k)) ∈ Vk. Let a (real valued) functionf (x1, . . . ,xk) of k variables be
given on a measurable space(X,X ) together with a sequence of independent and
identically distributed random variablesξ1, . . . ,ξn with values in the space(X,X ).

Take 2k independent copiesξ ( j,1)
1 , . . . ,ξ ( j,1)

n andξ ( j,−1)
1 , . . . ,ξ ( j,−1)

n , 1≤ j ≤ k, of
the sequenceξ1, . . . ,ξn. Let us have beside them another sequenceε = (ε1, . . . ,εn),
P(ε j = 1) = P(ε j = −1) = 1

2, of independent random variables, also independent
of all previously introduced random variables. With the help of the above quantities
we introduce the random variables

Ĩn,k( f ) =
1
k! ∑

v∈Vk

(−1)m(v) ∑
(l1,...,lk) : 1≤lr≤n, r=1,...,k,

lr 6=lr′ if r 6=r ′

f
(

ξ (1,v(1))
l1

, . . . ,ξ (k,v(k))
lk

)

(15.1)

and

Ĩ ε
n,k( f ) =

1
k! ∑

v∈Vk

(−1)m(v) (15.2)

∑
(l1,...,lk) : 1≤lr≤n, r=1,...,k,

lr 6=lr′ if r 6=r ′

εl1 · · ·εlk f
(

ξ (1,v(1))
l1

, . . . ,ξ (k,v(k))
lk

)

The numberm(v) in the above formulas denotes the number of the digits−1 in

the±1 sequencev of lengthk, hence it counts how many random variablesξ ( j,1)
l j

,

1≤ j ≤ k, were replaced by the ‘secondary copy’ξ ( j,−1)
l j

for a v∈ Vk in the inner
sum in formulas (15.1) or (15.2).

The following result holds.

Lemma 15.1.Let us consider a (non-empty) class of functionsF of k variables
f (x1, . . . ,xk) on the space(Xk,X k) together with the random variables̃In,k( f ) and
Ĩ ε
n,k( f ) defined in formulas (15.1) and (15.2) for all f∈ F . The distributions of the

random fields̃In,k( f ), f ∈ F , andĨ ε
n,k( f ), f ∈ F , agree.
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Let me recall that we say that the distribution of two random fieldsX( f ), f ∈F ,
andY( f ), f ∈F , agree if for any finite sets{ f1, . . . , fp} ∈F the distribution of the
random vectors(X( f1), . . . ,X( fp)) and(Y( f1), . . . ,Y( fp)) agree.

Proof of Lemma 15.1.I even claim that for any fixed sequence

u= (u(1), . . . ,u(n)), u(l) =±1, 1≤ l ≤ n,

of lengthn the conditional distribution of the field̃I ε
n,k( f ), f ∈ F , under the con-

dition (ε1, . . . ,εn) = u= (u(1), . . . ,u(n)) agrees with the distribution of the field of
Ĩn,k( f ), f ∈ F .

Indeed, the random variablesĨn,k( f ), f ∈ F , defined in (15.1) are functions of

a random vector with coordinates(ξ ( j)
l , ξ̄ ( j)

l ) = (ξ ( j,1)
l ,ξ ( j,−1)

l ), 1≤ l ≤ n, 1≤ j ≤
k, and the distribution of this random vector remains the sameif the coordinates
(ξ ( j)

l , ξ̄ ( j)
l ) = (ξ ( j,1)

l ,ξ ( j,−1)
l ) are replaced by(ξ̄ ( j)

l ,ξ ( j)
l ) = (ξ ( j,−1)

l ,ξ ( j,1)
l ) for such

pairs of indices(l , j) for which u(l) = −1 (and the indexj is arbitrary), and the

coordinates(ξ ( j)
l , ξ̄ ( j)

l ) with such pairs of indices(l , j) for which u(l) = 1 are not
modified. As a consequence, the distribution of the random field Ĩn,k( f |u), f ∈ F ,

we get by replacing the original vector(ξ ( j)
l , ξ̄ ( j)

l ), 1 ≤ l ≤ n, 1 ≤ j ≤ k, in the
definition of the expressioñIn,k( f ) in (15.1) for all f ∈ F by this modified vector
depending onu has the same distribution as the random fieldĨn,k( f ), f ∈ F . On
the other hand, I claim that the distribution of the random field Ĩn,k( f |u), f ∈ F ,
agrees with the conditional distribution of the random fieldĨ ε

n,k( f ), f ∈ F , defined
in (15.2) under the condition that(ε1, . . . ,εn) = u with u= (u(1), . . . ,u(n)).

To prove the last statement let us observe that the conditional distribution of the
random fieldĨ ε

n,k( f ), f ∈ F , under the condition(ε1, . . . ,εn) = u is the same as
the distribution of the random field we obtain by puttingu(l) = εl , 1≤ l ≤ n, in
all coordinatesεl of the random variables̃I ε

n,k( f ). On the other hand, the random
variables we get in such a way agree with the random variablesappearing in the
sum definingĨn,k( f |u), only the terms in this sum are listed in a different order.
Lemma 15.1 is proved.

Next I prove the following generalized version of Lemma 7.1.

Lemma 15.2 (Generalized version of the Symmetrization Lemma). Let Zp and
Z̄p, p = 1,2, . . . , be two sequences of random variables on a probability space
(Ω ,A ,P). Let a σ -algebraB ⊂ A be given on the probability space(Ω ,A ,P)
together with aB-measurable set B and two numbersα > 0 and β > 0 such that
the random variables Zp, p= 1,2, . . . , areB measurable, and the inequality

P(|Z̄p| ≤ α|B)(ω)≥ β for all p = 1,2, . . . if ω ∈ B (15.3)

holds. Then

P

(

sup
1≤p<∞

|Zp|> α +u

)

≤ 1
β

P

(

sup
1≤p<∞

|Zp− Z̄p|> u

)

+(1−P(B)) (15.4)
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for all u > 0.

Proof of Lemma 15.2.Put τ = min{p: |Zp| > α +u) if there exists such an index
p≥ 1, and putτ = 0 otherwise. Then we have, as{τ = p}∩B∈ B

P({τ = p}∩B) =
∫

{τ=p}∩B
1· dP≤

∫

{τ=p}∩B

1
β

P(|Z̄p| ≤ α|B)dP

=
1
β

P({τ = p}∩{|Z̄p| ≤ α}∩B)

≤ 1
β

P({τ = p}∩{|Zp− Z̄p|> u}) for all p= 1,2, . . . .

Hence

P

(

sup
1≤p<∞

|Zp|> α +u

)

− (1−P(B))≤ P

({

sup
1≤p<∞

|Zp|> α +u

}

∩B

)

=
∞

∑
p=1

P({τ = p}∩B)≤ 1
β

∞

∑
p=1

P({τ = p}∩{|Zp− Z̄p|> u})

≤ 1
β

P

(

sup
1≤p<∞

|Zp− Z̄p|> u

)

.

Lemma 15.2 is proved.

To find a symmetrization argument useful in the proof of Proposition 14.2′ we

want to bound the probabilityP

(

n−k/2 sup
f∈F

|k! Īn,k( f )|> u

)

by

C ·P
(

n−k/2 sup
f∈F

|k! Ĩn,k( f )|> cu

)

+ a negligible error term

with some appropriate numbersC< ∞ and 0< c< 1. The random variables̄In,k( f )
and Ĩn,k( f ) appearing in these formulas were defined in (14.11) and (15.1). (Actu-
ally we work with a slightly modified version of formula (14.11) where the ran-

dom variablesξ ( j)
l are replaced by the random variablesξ ( j,1)

l .) We shall prove
such an estimate with the help of Lemma 15.2. To find the randomvariablesZp

and Z̄p we want to work with in Lemma 15.2 let us list the elements of the class
of functionsF asF = { f1, f2, . . .}. We shall apply Lemma 15.2 with the choice
Zp = n−k/2k! Īn,k( fp) and Z̄p = n−k/2k![Īn,k( fp)− Ĩn,k( fp)], p = 1,2, . . . , together

with theσ -algebraB = B(ξ ( j,1)
l , 1≤ l ≤ n, 1≤ j ≤ k).

Let us observe thatZp is a decoupledU-statistic depending on the random vari-

ablesξ ( j,1)
l , 1≤ j ≤ k, 1≤ l ≤ n, while Z̄p is a linear combination of decoupled

U-statistics whose arguments may contain not only the randomvariables of the

form ξ ( j,−1)
l , but also the random variables of the formξ ( j,1)

l . As a consequence,
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the random variablesZp and Z̄p are not independent. This is the reason why we
cannot apply Lemma 7.2 in the proof of Proposition 14.2′.

We shall show that Lemma 15.2 with the choice of the above defined random
variablesZp andZ̄p and theσ -algebraB may help us to prove the estimates we need
in our considerations. To apply this lemma we have to show that condition (15.3)
holds with an appropriate pair of numbers(α,β ) and aB measurable setB of
probability almost 1. To check this condition is a hard but solvable problem.

In Lemma 7.2 condition (7.1) played a role similar to condition (15.3) in
Lemma 15.2. In that case we could check this condition by estimating the second
momentsEZ̄2

n for all indicesn. In the present case we shall estimate the supremum
sup
fp∈F

E(Z̄2
p|B) of conditional second moments. In this formulaZ̄p is a (complicated)

random variable depending on the functionfp ∈F . The estimation of the supremum
of the conditional second moments we want to work with is a hard problem, and the
main difficulties of our proof appear at this point.

The conditional second moments whose supremum we want to estimate can be
expressed as the integral of a random function that can be written down explicitly.
In such a way we get a problem similar to the original one aboutthe estimation of
sup
f∈F

n−k/2k! Īn,k( f ). It turned out that these two problems can be handled similarly.

We can work out a symmetrization argument with the help of Lemma 15.2 in both
cases, and an inductive argument similar to Proposition 7.3can be formulated and
proved which supplies the results we want to prove.

We shall prove Proposition 14.2′ as a consequence of two inductive propositions
formulated in Propositions 15.3 and 15.4. Here we apply an approach similar to the
proof of Proposition 6.2 which was done with the help of an inductive proposition
formulated in Proposition 7.3. But now we have to prove two inductive proposi-
tions simultaneously, because we also have to bound the supremum of some condi-
tional variances, and this demands special attention. To formulate the new inductive
propositions first we introduce the notions ofgood tail behaviour for a class of de-
coupled U-statisticsandgood tail behaviour for a class of integrals of decoupled
U-statistics.

Definition of good tail behaviour for a class of decoupledU-statistics.Let some
measurable space(X,X ) be given together with a probability measureµ on it. Let
us consider some countable classF of functions f(x1, . . . ,xk) on the k-fold product
(Xk,X k) of the space(X,X ). Fix some positive integer n≥ k and a positive num-

ber0< σ ≤ 1, and take k independent copiesξ ( j)
1 , . . . ,ξ ( j)

n , 1≤ j ≤ k, of a sequence
of independent,µ-distributed random variablesξ1, . . . ,ξn. Let us introduce with the
help of these random variables the decoupled U-statisticsĪn,k( f ), f ∈ F , defined
in formula (14.11). Given some real number T> 0 we say that the set of decoupled
U-statistics determined by the class of functionsF has a good tail behaviour at
level T (with parameters n andσ2 which are fixed in the sequel) if
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P

(

sup
f∈F

|n−k/2k! Īn,k( f )| ≥ Ank/2σk+1

)

≤ exp
{

−A1/2knσ2
}

for all A > T.

(15.5)

Definition of good tail behaviour for a class of integrals of decoupled U-
statistics.Let us have a product space(Xk×Y,X k×Y ) with some product mea-
sure µk × ρ , where(Xk,X k,µk) is the k-fold product of some measurable space
(X,X ,µ) with a probability measureµ , and (Y,Y ,ρ) is some other measur-
able space with a probability measureρ . Fix some positive integer n≥ k and a
positive number0 < σ ≤ 1, and consider some countable classF of functions
f (x1, . . . ,xk,y) on the product space(Xk×Y,X k×Y ,µk×ρ). Take k independent

copiesξ ( j)
1 , . . . ,ξ ( j)

n , 1≤ j ≤ k, of a sequence of independent,µ-distributed random
variablesξ1, . . . ,ξn. For all f ∈F and y∈Y let us define the decoupled U-statistics

Īn,k( f ,y) = Īn,k( fy) by means of these random variablesξ ( j)
1 , . . . ,ξ ( j)

n , 1≤ j ≤ k, the
kernel function fy(x1, . . . ,xk) = f (x1, . . . ,xk,y) and formula (14.11). Define with the
help of these U-statistics̄In,k( f ,y) the random integrals

Hn,k( f ) =
∫

[k! Īn,k( f ,y)]2ρ(dy), f ∈ F . (15.6)

Choose some real number T> 0. We say that the set of random integrals Hn,k( f ),
f ∈ F , has a good tail behaviour at level T (with parameters n andσ2 which we
fix in the sequel) if

P

(

sup
f∈F

n−kHn,k( f )≥ A2nkσ2k+2

)

≤ exp
{

−A1/(2k+1)nσ2
}

for all A > T. (15.7)

Propositions 15.3 and 15.4 will be formulated with the help of the above notions.

Proposition 15.3.Let us fix a positive integer n≥ max(k,2), a real number0 <
σ ≤ 2−(k+1), a probability measureµ on a measurable space(X,X ) together with
two real numbers L≥ 1 and D≥ 1 such that nσ2 ≥ L logn+ logD. Let us consider
those countable L2-dense classesF of canonical kernel functions f= f (x1, . . . ,xk)
(with respect to the measureµ) on the k-fold product space(Xk,X k) with ex-
ponent L and parameter D for which all functions f∈ F satisfy the inequalities

sup
x j∈X,1≤ j≤k

| f (x1, . . . ,xk)| ≤ 2−(k+1) and
∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)≤ σ2.

There is a real number A0 = A0(k)> 1 such that if for all classes of functionsF
which satisfy the above conditions the sets of decoupled U-statisticsĪn,k( f ), f ∈F ,
have a good tail behaviour at level T4/3 for some T≥ A0, then they also have a
good tail behaviour at level T .
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Proposition 15.4.Fix some positive integer n≥ max(k,2), a real number0< σ ≤
2−(k+1), a product space(Xk ×Y,X k ×Y ) with some product measureµk × ρ ,
where(Xk,X k,µk) is the k-fold product of some probability space(X,X ,µ), and
(Y,Y ,ρ) is some other probability space together with two real numbers L≥ 1 and
D ≥ 1 such that the inequality nσ2 > L logn+ logD holds.

Let us consider those countable L2-dense classesF consisting of canonical func-
tions f(x1, . . . ,xk,y) on the product space(Xk ×Y,X k ×Y ) with exponent L≥ 1
and parameter D≥ 1 whose elements f∈ F satisfy the inequalities

sup
x j∈X,1≤ j≤k,y∈Y

| f (x1, . . . ,xk,y)| ≤ 2−(k+1) (15.8)

and
∫

f 2(x1, . . . ,xk,y)µ(dx1) . . .µ(dxk)ρ(dy)≤ σ2 for all f ∈ F . (15.9)

There exists some number A0 = A0(k)> 1 such that if for all classes of functions
F which satisfy the above conditions the random integrals Hn,k( f ), f ∈ F , defined
in (15.6) have a good tail behaviour at level T(2k+1)/2k with some T≥ A0, then they
also have a good tail behaviour at level T .

Remark:To complete the formulation of Proposition 15.4 we still have to clarify
when we call a functionf (x1, . . . ,xk,y) defined on the product space(Xk×Y,X k×
Y ,µk × ρ) canonical. Here we apply a definition which slightly differsfrom that
given in formula (8.10).

We say that a functionf (x1, . . . ,xk,y) on the product space(Xk ×Y,X k ×
Y ,µk×ρ) is canonical if

∫

f (x1, . . . ,x j−1,u,x j+1, . . . ,xk,y)µ(du) = 0

for all 1≤ j ≤ k, xs ∈ X, s 6= j andy∈Y.

In this definition we do not require the analogous identity ifwe integrate with respect
to the variableY with fixed argumentsx j ∈ X, 1≤ j ≤ k.

Let me also remark that the estimate (15.7) we have formulated in the definition
of the property ‘good tail behaviour for a class of integralsof U-statistics’ is fairly
natural. We have applied the natural normalization, and with such a normalization
it is natural to expect that the tail behaviour of the distribution of sup

f∈F

n−kHn,k( f )

is similar to that of const.
(
σηk

)2
, whereη is a standard normal random variable.

Formula (15.7) expresses such a behaviour, only the power ofthe numberA in the
exponent at the right-hand side was chosen in a non-optimal way. Formula (15.5)
in the formulation of the property ‘good tail behaviour for aclass of decoupled
U-statistics’ has a similar interpretation. It says that sup

f∈F

|n−k/2k!In,k( f )| behaves

similarly to const.σ |ηk| with a standard normal random variableη .
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We wanted to prove the property of good tail behaviour for a class of integrals
of decoupledU-statistics under appropriate, not too restrictive conditions. Let me
remark that in Proposition 15.4 we have imposed beside formula (15.8) a fairly weak
condition (15.9) about theL2-norm of the functionf . Most difficulties appear in the
proof, because we did not want to impose more restrictive conditions.

It is not difficult to derive Proposition 14.2′ from Proposition 15.3. Indeed, let us
observe that the set of decoupledU-statistics determined by a class of functionsF

satisfying the conditions of Proposition 15.3 has a good tail-behaviour at levelT0 =
σ−(k+1), since under the conditions of this Proposition the probability at the left-
hand side of (15.5) equals zero forA> σ−(k+1). Then we get from Proposition 15.3
by induction with respect to the numberj, that this set of decoupledU-statistics has

a good tail-behaviour also for allT = Tj = T(3/4) j

0 = σ−(k+1)(3/4) j
, j = 0,1,2, . . . ,

with such indicesj for whichTj = σ−(k+1)(3/4) j ≥ A0. This implies that if a class of
functionsF satisfies the conditions of Proposition 15.3, then the set ofdecoupled
U-statistics determined by this class of functions has a goodtail-behaviour at level

T = A4/3
0 , i.e. at a level which depends only on the orderk of the decoupledU-

statistics. This result implies Proposition 14.2′, only it has to be applied for the class
of functionF ′ = {2−(k+1) f , f ∈ F} instead of the original class of functionsF
which appears in Proposition 14.2′ with the same parametersσ , L andD.

Similarly to the above argument an inductive procedure yields a corollary of
Proposition 15.4 formulated below. Actually, we shall needthis corollary of Propo-
sition 15.4.

Corollary of Proposition 15.4. If the class of functionsF satisfies the conditions
of Proposition 15.4, then there exists a constantĀ0 = Ā0(k)> 0 depending only on
k such that the class of integrals Hn,k( f ), f ∈ F , defined in formula (15.6) have a
good tail behaviour at level̄A0.

Proposition 15.3 will be proved by means of a symmetrizationargument which
applies Lemma 15.2. The main difficulty arises when we want tocheck condi-
tion (15.3) with the quantities we are working with in Proposition 15.3. This dif-
ficulty can be overcome by means of Proposition 15.4, more precisely by means
of its corollary. It helps us to estimate the conditional variances of the decoupled
U-statistics we have to handle in the proof of Proposition 15.3. The proof of Propo-
sitions 15.3 and 15.4 apply similar arguments, and they willbe proved simultane-
ously. The following inductive procedure will be applied intheir proof. First Propo-
sition 15.3 and then Proposition 15.4 will be proved fork= 1. If Propositions 15.3
and 15.4 are already proved for allk′ < k for some numberk, then first we prove
Proposition 15.3 and then Proposition 15.4 for this numberk.

The symmetrization arguments needed in the proof of Propositions 15.3 and 15.4
will be proved in Chapter 16. Then Propositions 15.3 and 15.4will be proved in
Chapter 17 with their help. These results imply Proposition14.2′, hence also Theo-
rem 8.4.



Chapter 16
A symmetrization argument

The proof of Propositions 15.3 and 15.4 applies some ideas similar to the argument
in the proof of Proposition 7.3. But here some additional technical difficulties have
to be overcome. As a first step, two results formulated in Lemma 16.1A and 16.1B
will be proved. They can be considered as a randomization argument with the help
of Rademacher functions. They are analogous to Lemma 7.2 which was applied in
the proof of Propositions 7.3. Lemma 16.1A will be applied inthe proof of Propo-
sition 15.3 and Lemma 16.1B in the proof of Proposition 15.4.In this chapter these
lemmas will be proved. Their proofs will be based on some additional lemmas for-
mulated in Lemmas 16.2A, 16.2B, 16.3A and 16.3B. By exploiting the structure of
Propositions 15.3 and 15.4 we may assume when proving them for parameterk that
they hold (together with their consequences) for all parametersk′ < k.

Lemma 16.1A is a natural multivariate version of Lemma 7.2. Lemma 7.2 en-
abled us to replace the estimation of the supremum of a class of sums of independent
random variables with the estimation of the supremum of the randomized version of
these sums. Lemma 16.1A will enable us to reduce the proof of Proposition 15.3 to
the estimation of the tail-distribution of the supremum of an appropriately defined
class of randomized decoupled, degenerateU-statistics. This supremum will be esti-
mated by means of the multi-dimensional version of Hoeffding’s inequality given in
Theorem 13.3. Lemma 16.B plays a similar role in the proof of Proposition 15.4. But
its application is more difficult. In this result the probability investigated in Propo-
sition 15.4 is bounded by means of an expression depending onthe supremum of
some random variables̄W( f ), f ∈ F , which will be defined in formula (16.7). The
expressions̄W( f ), f ∈F , are rather complicated, and they are worth studying more
closely. This will be done in the proof of Corollary of Lemma 16.1B which yields a
more appropriate bound for the probability we want to estimate in Proposition 15.4.
In the proof of Proposition 15.4 the Corollary of Lemma 16.1Bwill be applied in-
stead of the original Lemma 16.1B.

The proof of Lemmas 16.1A and 16.1B is similar to that of Lemma7.2. First

we introducek additional independent copies̄ξ ( j)
1 , . . . , ξ̄ ( j)

n beside thek (indepen-

dent and identically distributed) copiesξ ( j)
1 , . . . ,ξ ( j)

n , 1 ≤ j ≤ k, of the sequence

179
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ξ1, . . . ,ξn and construct with their help some appropriate random sums.We shall
prove in Lemmas 16.2A and 16.2B that these random sums have the same distribu-
tion as their randomized versions we shall work with in the proof of Lemmas 16.1A
and 16.1B. These Lemmas formulate a natural multivariate version of an impor-
tant argument in the proof of Lemma 7.2. In the proof of Lemma 7.2 we have ex-
ploited that the random sums defined in (7.4) have the same joint distribution as
their randomized versions defined in (7.5). Lemmas 16.2A and16.2B are natural
multivariate versions of this statement. They enable us (similarly to the correspond-
ing argument in the proof of Lemma 7.2) to reduce the proof of Propositions 16.1A
and 16.1B to the study of some simpler questions. This will bedone with the help
of Lemmas 16.3A and 16.3B. In Lemma 16.3A the supremum of someconditional
variances is estimated under appropriate conditions. Thislemma plays a similar role
in the proof of Lemma 16.1A as condition (7.1) plays in the proof of Lemma 7.1. Its
result together with Lemma 15.2, which is a generalized formof the symmetriza-
tion Lemma, Lemma 7.1, enable us to prove Lemma 16.1A. Lemma 16.1B will be
proved similarly, but here the conditional distribution ofa more complicated ex-
pression has to be estimated. This can be done with the help ofLemma 16.3B. In
Lemma 16.3B the supremum of the conditional expectation of some expressions is
bounded.

The main results of this chapter are the following two lemmas.

Lemma 16.1A (Randomization argument in the proof of Proposition 15.3).Let
F be a class of functions on the space(Xk,X k) which satisfies the conditions of
Proposition 15.3 with some probability measureµ . Let us have k independent copies

ξ ( j)
1 , . . . ,ξ ( j)

n , 1 ≤ j ≤ k, of a sequence of independentµ distributed random vari-
ablesξ1, . . . ,ξn and a sequence of independent random variablesε = (ε1, . . . ,εn),
P(εl = 1) = P(εl = −1) = 1

2, 1 ≤ l ≤ n, which is independent also of the ran-

dom sequencesξ ( j)
1 , . . . ,ξ ( j)

n , 1≤ j ≤ k. Consider the decoupled U-statisticsĪn,k( f ),
f ∈F , defined with the help of these random variables by formula (14.11) together
with their randomized version̄I ε

n,k( f ) defined in formula (14.12).
There exist some constants A0 =A0(k)> 0 andγ = γk > 0 such that the inequality

P

(

sup
f∈F

n−k/2
∣
∣k! Īn,k( f )

∣
∣> Ank/2σk+1

)

< 2k+1P

(

sup
f∈F

∣
∣k! Ī ε

n,k( f )
∣
∣> 2−(k+1)Ankσk+1

)

+2knk−1e−γkA1/(2k−1)nσ2/k (16.1)

holds for all A≥ A0.

It may be worth remarking that the second term at the right-hand side of for-
mula (16.1) yields a small contribution to the upper bound inthis relation because
of the conditionnσ2 ≥ L logn+ logD.
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To formulate Lemma 16.1B first some new quantities have to be introduced.
Some of them will be used somewhat later. The quantitiesĪV

n,k( f ,y) introduced in
the subsequent formula (16.2) depend on the setsV ⊂ {1, . . . ,k}, and they are the
natural modifications of the inner sum terms in formula (15.1). Such expressions are
needed in the formulation of the symmetrization result applied in the proof of Propo-

sition 15.4. Their randomized versionsĪ (V,ε)n,k ( f ,y), introduced in formula (16.5), cor-
respond to the inner sum terms in formula (15.2). The integrals of these expressions
will be also introduced in formulas (16.3) and (16.6).

Let us consider a classF of functions f (x1, . . . ,xk,y) ∈ F on a space(Xk ×
Y,X k×Y ,µk×ρ) which satisfies the conditions of Proposition 15.4. Let us take

2k independent copiesξ ( j)
1 , . . . ,ξ ( j)

n , ξ̄ ( j)
1 , . . . , ξ̄ ( j)

n , 1≤ j ≤ k, of a sequence of inde-
pendentµ distributed random variablesξ1, . . . ,ξn together with a sequence of inde-
pendent random variables(ε1, . . . ,εn), P(εl = 1)=P(εl =−1)= 1

2, 1≤ l ≤ n, which
is also independent of the previous random sequences. Let usintroduce the notation

ξ ( j,1)
l = ξ ( j)

l andξ ( j,−1)
l = ξ̄ ( j)

l , 1≤ l ≤ n, 1≤ j ≤ k. For all subsetsV ⊂{1, . . . ,k} of
the set{1, . . . ,k} let |V| denote the cardinality of this set, and define for all functions
f (x1, . . . ,xk,y) ∈ F and setsV ⊂ {1, . . . ,k} the decoupledU-statistics

ĪV
n,k( f ,y) =

1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k
l j 6=l j′ if j 6= j ′

f
(

ξ (1,δ1(V))
l1

, . . . ,ξ (k,δk(V))
lk

,y
)

, (16.2)

whereδ j(V) = ±1, 1≤ j ≤ k, is defined asδ j(V) = 1 if j ∈V, andδ j(V) = −1 if
j /∈V, together with the random variables

HV
n,k( f ) =

∫

[k! ĪV
n,k( f ,y)]2ρ(dy), f ∈ F . (16.3)

We shall consider̄IV
n,k( f ,y) defined in (16.2) as a random variable with values in the

spaceL2(Y,Y ,ρ).
Put

Īn,k( f ,y) = Ī{1,...,k}
n,k ( f ,y), Hn,k( f ) = H{1,...,k}

n,k ( f ), (16.4)

i.e. Īn,k( f ,y) and Hn,k( f ) are the random variables̄IV
n,k( f ,y) and HV

n,k( f ) with
V = {1, . . . ,k}, which means that these expressions are defined with the helpof

the random variablesξ ( j)
l = ξ ( j,1)

l , 1≤ j ≤ k, 1≤ l ≤ n.
Let us also define the ‘randomized version’ of the random variablesĪV

n,k( f ,y) and

HV
n,k( f ) as

Ī (V,ε)n,k ( f ,y) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k
l j 6=l j′ if j 6= j ′

εl1 · · ·εlk f
(

ξ (1,δ1(V))
l1

, . . . ,ξ (k,δk(V))
lk

,y
)

,

if f ∈ F , (16.5)

and
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H(V,ε)
n,k ( f ) =

∫

[k! Ī (V,ε)n,k ( f ,y)]2ρ(dy), f ∈ F , (16.6)

whereδ j(V) = 1 if j ∈ V, andδ j(V) = −1 if j ∈ {1, . . . ,k} \V. Similarly to for-
mula (16.2), we shall consider̄IV,ε

n,k ( f ,y) defined in (16.5) as a random variable with
values in the spaceL2(Y,Y ,ρ).

Let us also introduce the random variables

W̄( f ) =
∫
[

∑
V⊂{1,...,k}

(−1)(k−|V|)k! Ī (V,ε)n,k ( f ,y)

]2

ρ(dy), f ∈ F . (16.7)

With the help of the above notations Lemma 16.1B can be formulated in the follow-
ing way.

Lemma 16.1B (Randomization argument in the proof of Proposition 15.4).Let
F be a set of functions on(Xk ×Y,X k ×Y ) which satisfies the conditions of
Proposition 15.4 with some probability measureµk×ρ . Let us have2k independent

copiesξ ( j,±1)
1 , . . . ,ξ ( j,±1)

n , 1 ≤ j ≤ k, of a sequence of independentµ distributed
random variablesξ1, . . . ,ξn together with a sequence of independent random vari-
ablesε1, . . . ,εn, P(ε j = 1) = P(ε j =−1) = 1

2, 1≤ j ≤ n, which is independent also
of the previously considered random sequences.

Then there exist some constants A0 = A0(k) > 0 and γ = γk such that if the in-
tegrals Hn,k( f ), f ∈ F , determined by this class of functionsF have a good tail
behaviour at level T(2k+1)/2k for some T≥ A0, (this property was defined in Chap-
ter 15 in the definition of good tail behaviour for a class of integrals of decoupled
U-statistics before the formulation of Propositions 15.3 and 15.4), then the inequal-
ity

P

(

sup
f∈F

∣
∣Hn,k( f )

∣
∣> A2n2kσ2(k+1)

)

< 2P

(

sup
f∈F

|W̄( f )|> A2k!
2

n2kσ2(k+1)

)

+22k+1nk−1e−γkA1/2knσ2/k (16.8)

holds for all A≥ T with the random variables Hn,k( f ) introduced in the second
identity of relation (16.4) and with̄W( f ) defined in formula (16.7).

A corollary of Lemma 16.1B will be formulated which can be better applied than
the original lemma. Lemma 16.B is a little bit inconvenient,because the expres-
sion at the right-hand side of formula (16.8) contains a probability depending on
sup
f∈F

|W̄( f )|, andW̄( f ) is a too complicated expression. Some new formulas (16.9)

and (16.10) will be introduced which enable us to rewriteW̄( f ) in a slightly sim-
pler form. These formulas yield such a corollary of Lemma 16.B which is more
appropriate for our purposes. To work out the details first some diagrams will be
introduced.

LetG =G (k) denote the set of all diagrams consisting of two rows, such that both
rows of these diagrams are the set{1, . . . ,k}, and these diagrams contain some edges
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{( j1, j ′1) . . . ,( js, j ′s)}, 0≤ s≤ k, connecting a point (vertex) of the first row with a
point (vertex) of the second row. The verticesj1, . . . , js which are end points of some
edge in the first row are all different, and the same relation holds also for the vertices
j ′1, . . . , j ′s in the second row. Given a diagramG∈ G let e(G) = {( j1, j ′1) . . . ,( js, j ′s)}
denote the set of its edges, and letv1(G) = { j1, . . . , js} be the set of those vertices
in the first row andv2(G) = { j ′1, . . . , j ′s} the set of those vertices in the second row
of the diagramG from which an edge ofG starts.

Given a diagramG ∈ G , two setsV1,V2 ⊂ {1, . . . ,k}, a function f defined on
the space(Xk×,Y,X k×Y ) and a probability measureρ on (Y,Y ) we define the
following random variablesHn,k( f |G,V1,V2) with the help of the random variables

ξ ( j,1)
1 , . . . ,ξ ( j,1)

n , ξ ( j,−1)
1 , . . . ,ξ ( j,−1)

n , 1≤ j ≤ k, andε = (ε1, . . . ,εn) taking part in
the definition of the random variables̄W( f ):

Hn,k( f |G,V1,V2)

= ∑
(l1,...,lk, l

′
1,...,l

′
k) :

1≤l j≤n, l j 6=l j′ if j 6= j ′,1≤ j, j ′≤k,

1≤l ′j≤n, l ′j 6=l ′
j′ if j 6= j ′,1≤ j, j ′≤k,

l j=l ′
j′ if ( j, j ′)∈e(G), l j 6=l ′

j′ if ( j, j ′)/∈e(G)

∏
j∈{1,...,k}\v1(G)

εl j ∏
j∈{1,...,k}\v2(G)

εl ′j

∫

f (ξ (1,δ1(V1))
l1

, . . . ,ξ (k,δk(V1))
lk

,y)

f (ξ (1,δ1(V2))

l ′1
, . . . ,ξ (k,δk(V2))

l ′k
,y)ρ(dy), (16.9)

whereδ j(V1) = 1 if j ∈V1, δ j(V1) =−1 if j /∈V1, andδ j(V2) = 1 if j ∈V2, δ j(V2) =
−1 if j /∈V2. (Let us observe that if the graphG containssedges, then the product of
theε-s in (16.9) contains 2(k−s) terms, and the number of terms in the sum (16.9)
is less thann2k−s.) As the Corollary of Lemma 16.1B will indicate, in the proofof
Proposition 15.4 we shall need a good estimate on the tail distribution of the random
variablesHn,k( f |G,V1,V2) for all f ∈ F andG ∈ G , V1,V2 ⊂ {1, . . . ,k}. Such an
estimate can be obtained by means of Theorem 13.3, the multivariate version of
Hoeffding’s inequality. But the estimate we get in such a waywill be rewritten in
a form more appropriate for our inductive procedure. This will be done in the next
chapter.

The identity

W̄( f ) = ∑
G∈G ,V1,V2⊂{1,...,k}

(−1)|V1|+|V2|Hn,k( f |G,V1,V2) (16.10)

will be proved.
To prove this identity let us write first

W̄( f ) = ∑
V1,V2⊂{1,...,k}

(−1)|V1|+|V2|
∫

k! Ī (V1,ε)
n,k ( f ,y)k! Ī (V2,ε)

n,k ( f ,y)ρ(dy).
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Let us express the productsk! Ī (V1,ε)
n,k ( f ,y)k! Ī (V2,ε)

n,k ( f ,y) by means of formula (16.5).
Let us rewrite this product as a sum of products of the form

k

∏
j=1

εl j f (· · ·)
k

∏
j=1

εl ′j
f (· · ·),

and let us define the following partition of the terms in this sum. The elements of this
partition are indexed by the diagramsG∈ G , and if we take a diagramG∈ G with
the set of edgese(G) = {( j1, j ′1), . . . ,( js, j ′s)}, then the term of this sum determined
by the indicesl1, . . . , lk, l ′1, . . . , l

′
k belongs to the element of the partition indexed by

this diagramG if and only if l ju = l ′j ′u for all 1≤ u≤ s, and no more numbers between

the indicesl1, . . . , lk, l ′1 . . . , l
′
k may agree. Sinceεl ju

εl ′
j′u
= 1 for all 1≤ u≤ sand the set

of indices of the remaining random variablesεl j is {l j : j ∈ {1, . . . ,k}\v1(G)}, the
set of indices of the remaining random variablesεl ′j

is {l ′j : j ∈ {1, . . . ,k}\v2(G)},

we get by integrating the productk! Ī (V1,ε)
n,k ( f ,y)k! Ī (V2,ε)

n,k ( f ,y)with respect to the mea-
sureρ that

∫

Ī (V1,ε)
n,k ( f ,y)Ī (V2,ε)

n,k ( f ,y)ρ(dy) = ∑
G∈G

Hn,k( f |G,V1,V2)

for all V1,V2 ∈ {1, . . . ,k}. The last two identities imply formula (16.10).
Since the number of terms in the sum of formula (16.10) is lessthan 24kk!, this

relation implies that Lemma 16.1B has the following corollary:

Corollary of Lemma 16.1B (A simplified version of the randomization argu-
ment of Lemma 16.1B).Let a set of functionsF satisfy the conditions of Proposi-
tion 15.4. Then there exist some constants A0 = A0(k)> 0 andγ = γk > 0 such that
if the integrals Hn,k( f ), f ∈F , determined by this class of functionsF have a good
tail behaviour at level T(2k+1)/2k for some T≥ A0, then the inequality

P

(

sup
f∈F

|Hn,k( f )|> A2n2kσ2(k+1)

)

≤ 2 ∑
G∈G ,V1,V2⊂{1,...,k}

P

(

sup
f∈F

∣
∣Hn,k( f |G,V1,V2)

∣
∣>

A2n2kσ2(k+1)

24k+1

)

+22k+1nk−1e−γkA1/2knσ2/k (16.11)

holds for all A≥ T with the random variables Hn,k( f ) and Hn,k( f |G,V1,V2) defined
in formulas (16.4) and (16.9).

In the proof of Lemmas 16.1A and 16.1B the result of the following Lemmas 16.2A
and 16.2B will be applied.

Lemma 16.2A.Let us take2k independent copies
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ξ ( j,1)
1 , . . . ,ξ ( j,1)

n and ξ ( j,−1)
1 , . . . ,ξ ( j,−1)

n , 1≤ j ≤ k,

of a sequence of independentµ distributed random variablesξ1, . . . ,ξn together
with a sequence of independent random variables(ε1, . . . ,εn), P(εl = 1) = P(εl =
−1) = 1

2, 1≤ l ≤ n, which is also independent of the previous sequences.
Let F be a class of functions which satisfies the conditions of Proposition 15.3.

Introduce with the help of the above random variables for allsets V⊂ {1, . . . ,k}
and functions f∈ F the decoupled U-statistic

ĪV
n,k( f ) =

1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k,
l j 6=l j′ if j 6= j ′

f
(

ξ (1,δ1(V))
l1

, . . . ,ξ (k,δk(V))
lk

)

(16.12)

and its ‘randomized version’

Ī (V,ε)n,k ( f ) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k,
l j 6=l j′ if j 6= j ′

εl1 · · ·εlk f
(

ξ (1,δ1(V))
l1

, . . . ,ξ (k,δk(V))
lk

)

,

f ∈ F , (16.13)

where δ j(V) = ±1, and we haveδ j(V) = 1 if j ∈ V, and δ j(V) = −1 if j ∈
{1, . . . ,k}\V.

Then the sets of random variables

S( f ) = ∑
V⊂{1,...,k}

(−1)(k−|V|)k! ĪV
n,k( f ), f ∈ F , (16.14)

and
S̄( f ) = ∑

V⊂{1,...,k}
(−1)(k−|V|)k! Ī (V,ε)n,k ( f ), f ∈ F , (16.15)

have the same joint distribution.

Lemma 16.2B.Let us take2k independent copies

ξ ( j,1)
1 , . . . ,ξ ( j,1)

n and ξ ( j,−1)
1 , . . . ,ξ ( j,−1)

n , 1≤ j ≤ k,

of a sequence of independent,µ distributed random variablesξ1, . . . ,ξn together
with a sequence of independent random variables(ε1, . . . ,εn), P(εl = 1) = P(εl =
−1) = 1

2, 1≤ l ≤ n, which is independent also of the previous sequences.
Let us consider a classF of functions f(x1, . . . ,xk,y) ∈ F on a space(Xk ×

Y,X k×Y ,µk×ρ) which satisfies the conditions of Proposition 15.4. For all func-
tions f ∈ F and V∈ {1, . . . ,k} consider the decoupled U-statistics̄IV

n,k( f ,y) de-

fined by formula (16.2) with the help of the random variablesξ ( j,1)
1 , . . . ,ξ ( j,1)

n and

ξ ( j,−1)
1 , . . . ,ξ ( j,−1)

n , and define with their help the random variables
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W( f ) =
∫
[

∑
V⊂{1,...,k}

(−1)(k−|V|)k! ĪV
n,k( f ,y)

]2

ρ(dy), f ∈ F . (16.16)

Then the random vectors{W( f ) : f ∈ F} defined in (16.16) and{W̄( f ) : f ∈ F}
defined in (16.7) have the same distribution.

Proof of Lemmas 16.2A and 16.2B.Lemma 16.2A actually agrees with the already
proved Lemma 15.1, only the notation is different. The proofof Lemma 16.2B is
also very similar to that of Lemma 15.1. It can be shown that even the follow-
ing stronger statement holds. For any±1 sequenceu = (u1, . . . ,un) of length n
the conditional distribution of the random field̄W( f ), f ∈ F , under the condition
(ε1, . . . ,εn) = u= (u1, . . . ,un) agrees with the distribution of the random fieldW( f ),
f ∈ F .

To see this relation let us first observe that the conditionaldistribution of the
field W̄( f ) under this condition agrees with the distribution of the random field we
get by replacing the random variablesεl by ul for all 1≤ l ≤ n in formulas (16.5),

(16.6) and (16.7). Beside this, define the vector(ξ (u)( j,1)
l ,ξ (u)( j,−1)

l ), 1≤ j ≤ k,

1≤ l ≤ n, by the formula(ξ (u)( j,1)
l ,ξ (u)( j,−1)

l ) = (ξ ( j,−1)
l ,ξ ( j,1)

l ) for those indices

( j, l) for whichul =−1, and(ξ (u)( j,1)
l ,ξ (u)( j,−1)

l ) = (ξ ( j,1)
l ,ξ ( j,−1)

l ) for whichul =
1 (independently of the value of the parameterj). Then the joint distribution of the

vectors(ξ (u)( j,1)
l ,ξ (u)( j,−1)

l ), 1≤ j ≤ k, 1≤ l ≤ n, and(ξ ( j,1)
l ,ξ ( j,−1)

l ), 1≤ j ≤ k,
1≤ l ≤ n, agree. Hence the joint distribution of the random vectorsĪV

n,k( f ,y), f ∈F ,
V ⊂ {1, . . . ,k} defined in (16.2) and of the random vectorsW( f ), f ∈ F , defined

in (16.16) do not change if we replace in their definition the random variablesξ ( j,1)
l

andξ ( j,−1)
l by ξ (u)( j,1)

l andξ (u)( j,−1)
l . But the set of random variablesW( f ), f ∈

F , obtained in this way agrees with the set of random variableswe introduced to get
a set of random variables with the same distribution as the conditional distribution
of W̄( f ), f ∈ F under the condition(ε1, . . . ,εn) = u. (These random variables are
defined as the square integral of the same sum, only the terms of this sum are listed
in a different order in the two cases.) These facts imply Lemma 16.2B.

In the next step we prove the following Lemma 16.3A.

Lemma 16.3A.Let us consider a class of functionsF satisfying the conditions of

Proposition 15.3 with parameter k together with2k independent copiesξ ( j,1)
1 ,. . . ,

ξ ( j,1)
n andξ ( j,−1)

1 , . . . ,ξ ( j,−1)
n , 1≤ j ≤ k, of a sequence of independent,µ-distributed

random variablesξ1, . . . ,ξn. Take the random variables̄IV
n,k( f ), defined for f∈ F

and V⊂ {1, . . . ,k} in formula (16.12). Let

B = B(ξ ( j,1)
1 , . . . ,ξ ( j,1)

n , 1≤ j ≤ k)

denote theσ -algebra generated by the random variablesξ ( j,1)
1 , . . . ,ξ ( j,1)

n , 1≤ j ≤ k,
i.e. by the random variables with upper indices of the form( j,1), 1≤ j ≤ k. There
exists a number A0 = A0(k)> 0 such that for all V⊂ {1, . . . ,k}, V 6= {1, . . . ,k}, the
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inequality

P

(

sup
f∈F

E
(
[k! ĪV

n,k( f )]2
∣
∣B
)
> 2−(3k+3)A2n2kσ2k+2

)

< nk−1e−γkA1/(2k−1)nσ2/k

(16.17)
holds with a sufficiently smallγk > 0 if A ≥ A0.

Proof of Lemma 16.3A.Let us first consider the caseV = /0. In this case the estimate

E
(

(k! Ī /0
n,k( f ))2

∣
∣
∣B

)

= E
(

(k! Ī /0
n,k( f ))2

)

≤ k!nkσ2 ≤ 2kk!n2kσ2k+2 holds for all f ∈
F . In the above calculation it was exploited that the functions f ∈F are canonical,
which implies certain orthogonalities, and beside this theinequalitynσ2 ≥ 1

2 holds,
because of the relationnσ2 ≥ L logn+ logD. The above relations imply that for
V = /0 the probability at the left-hand side of (16.17) equals zero if the numberA0 is
chosen sufficiently large. Hence inequality (16.17) holds in this case.

To avoid some complications in the notation let us first restrict our attention to
sets of the formV = {1, . . . ,u} with some 1≤ u< k, and prove relation (16.17) for
such sets. For this goal let us introduce the random variables

ĪV
n,k( f , lu+1, . . . , lk)

=
1
k! ∑

(l1,...,lu) :
1≤l j≤n, j=1,...,u,

l j 6=l j′ if j 6= j ′ for all 1≤ j, j ′≤k

f
(

ξ (1,1)
l1

, . . . ,ξ (u,1)
lu

,ξ (u+1,−1)
lu+1

, . . . ,ξ (k,−1)
lk

)

for all f ∈ F and sequencesl(u) = (lu+1, . . . , lk) with the properties 1≤ l j ≤ n
for all u+1 ≤ j ≤ k and l j 6= l j ′ if j 6= j ′, i.e. let us fix the lastk−u coordinates

ξ (u+1,−1)
lu+1

,. . . ,ξ (k,−1)
lk

of the random variablēIV
n,k( f ) and sum up with respect the first

u coordinates. Then we can write

E
(
ĪV
n,k( f )2

∣
∣B
)

(16.18)

= E















∑
(lu+1,...,lk) : 1≤l j≤n j=u+1,...,k,

l j 6=l j′ if j 6= j ′

ĪV
n,k( f , lu+1, . . . , lk)








2∣∣
∣
∣
∣
∣
∣
∣
∣

B








= ∑
(lu+1,...,lk) : 1≤l j≤n, j=u+1,...,k,

l j 6=l j′ if j 6= j ′

E
(
ĪV
n,k( f , lu+1, . . . , lk)

2
∣
∣B
)
.

The last relation follows from the identity

E
(
ĪV
n,k( f , lu+1, . . . , lk)Ī

V
n,k( f , l ′u+1, . . . , l

′
k)
∣
∣B
)
= 0

if (lu+1, . . . , lk) 6= (l ′u+1, . . . , l
′
k), which holds, sincef is a canonical function. We

still exploit that the random variablesξ ( j,1)
l , 1≤ j ≤ u areB measurable, while the
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random variablesξ ( j,−1)
l j

, u+1≤ j ≤ k, are independent of theσ -algebraB. These
facts enable us to calculate the above conditional expectation in a simple way.

It follows from relation (16.18) that
{

ω : sup
f∈F

E
(
[k! ĪV

n,k( f )]2
∣
∣B
)
(ω)> 2−(3k+3)A2n2kσ2k+2

}

(16.19)

⊂
⋃

(lu+1,...,lk) :
1≤l j≤n, j=u+1,...,k.

l j 6=l j′ if j 6= j ′

{

ω : sup
f∈F

E
(
[k! ĪV

n,k( f , lu+1, . . . , lk)]
2
∣
∣B
)
(ω)>

A2n2kσ2k+2

2(3k+3)nk−u

}

.

The probability of the events in the union at the right-hand side of (16.19) can be
estimated with the help of the Corollary of Proposition 15.4with parameteru < k
instead ofk. (We may assume that Proposition 15.4 holds foru < k.) I claim that
this corollary yields that

P

(

sup
f∈F

E
(
[k! ĪV

n,k( f , lu+1, . . . , lk)]
2
∣
∣B
)
>

A2nk+uσ2k+2

2(3k+3)

)

≤ e−γkA1/(2u+1)(n+u−k)σ2
(16.20)

with an appropriateγk > 0 for all sequences(lu+1, . . . , lk), 1≤ l j ≤ n, u+1≤ j ≤ k,
such thatl j 6= l j ′ if j 6= j ′.

Let us show that if a class of functionsf ∈ F satisfies the conditions of
Proposition 15.3, then it also satisfies relation (16.20). For this goal introduce
the space(Y,Y ,ρ) = (Xk−u,X k−u,µk−u), the k− u-fold power of the measure
space(X,X ,µ), and for the sake of simpler notations writey= (xu+1, . . . ,xk) for
a point y ∈ Y. Let us also introduce the class of those function̄F in the space
(Xu×Y,X u×Y ,µu×ρ) consisting of functions̄f of the form f̄ (x1, . . . ,xu,y) =
f (x1, . . . ,xk) with y = (xu+1, . . . ,xk) and some functionf (x1, . . . ,xk) ∈ F . If the
class of functionF satisfies the conditions of Proposition 15.3 (with parameter k),
then the class of functions̄F satisfies the conditions of Proposition 15.4 with pa-
rameteru< k. Hence the Corollary of Proposition 15.4 can be applied for the class
of functionsF̄ by our inductive hypothesis. We shall apply it for decoupledU-
statistics with the class of kernel functions̄F and parametersn+ u− k and u

(instead ofn and k), with the help of the independent random sequencesξ ( j,1)
l ,

1≤ j ≤ u, l ∈ {1, . . . ,n}\{lu+1, . . . , lk} of independent,µ-distributed random vari-
ables of lengthn+u−k, where the set of numbers{lu+1, . . . , lk} is the set of indices

appearing in formula (16.20). This means that we work with random variablesξ ( j,1)
l

with index l from the set{1, . . . ,n}\{lu+1, . . . , lk} instead of 1≤ u≤ n+u−k. As
a consequence, we shall work in the application of Proposition 5.4 with the ran-

dom variables̄I l(u)
n+u−k,u( f̄ ,y) andH l(u)

n+u−k,u( f̄ ) to be defined below which we get by
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slightly modifying the definition ofĪn+u−k,u( f̄ ,y) andHn+u−k,u( f̄ ) by taking into

account the indexation of the random variablesξ ( j,1
l .

It can be seen by means of some calculation that the conditional expecation

E
(

[k! ĪV
n,k( f , lu+1, . . . , lk)]2|B

)

we are working with can be calculated as

E
(
[k! ĪV

n,k( f , lu+1, . . . , lk)]
2|B

)

=
∫

[u! Ī l(u)
n+u−k,u( f̄ ,y)]2ρ(dy) = H l(u)

n+u−k,u( f̄ ), (16.21)

where the functionf̄ ∈ F̄ is defined asf̄ (x1, . . . ,xu,y) = f (x1, . . . ,xk) with y =

(xu+1, . . . ,xk), and the random variables̄I l(u)
n+u−k,u( f̄ ,y) andH l(u)

n+u−k,u( f̄ ) are defined,
similarly to (16.2)–(16.4), by the formulas

Ī l(u)
n+u−k,u( f̄ ,y)

=
1
u! ∑

(l1,...,lu) : l j∈{1,...,n}\{lu+1,...,lk}, j=1,...,u
l j 6=l j′ if j 6= j ′

f̄
(

ξ (1,1)
l1

, . . . ,ξ (u,1)
lu

,y
)

and
H l(u)

n+u−k,u( f̄ ) =
∫

[u! Ī l(u)
n+u−k,u( f̄ ,y)]2ρ(dy), f̄ ∈ F̄ .

The value ofH l(u)
n+u−k,u( f̄ ) depends on the choice of the sequencel(u), but its distri-

bution does not depend on it. Hence we can make the following estimate with the
help of the corollary of Proposition (15.4) foru< k and relation (16.21). Choose a
sufficiently smallγ = γk > 0. Then we have

P

(

sup
f̄∈F̄

E([k! ĪV
n,k( f , lu+1, . . . , lk)]

2|B)≥ γ(4u+2)
k A2(n+u−k)2uσ2u+2

)

= P

(

sup
f̄∈F̄

(n+u−k)−uH l(u)
n+u−k,u( f̄ )≥ γ(4u+2)

k A2(n+u−k)uσ2u+2

)

≤ e−γkA1/(2u+1)(n+u−k)σ2
for A> A0(u)γ

−(4u+2)
k . (16.22)

It is not difficult to derive formula (16.20) from relation (16.22). It is enough to
check that the levelA

2nk+uσ2k+2

2(3k+3) in the probability at the left-hand side of (16.20) can

be replaced byγ(4u+2)
k A2(n+u− k)2uσ2u+2 if γk > 0 is chosen sufficiently small.

This statement holds, sinceγ(4u+2)
k A2(n+ u− k)2uσ2u+2 < γ(4u+2)

k A2n2uσ2u+2 ≤
A2nk+uσ2k+2

2(3k+3) if the constantγk > 0 is chosen sufficiently small, sincenσ2 > L logn≤
1
2 by the conditions of Proposition 15.3.

Relations (16.19) and (16.20) imply that
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P

(

sup
f∈F

E
(
[k! ĪV

n,k( f )]2
∣
∣B
)
(ω)> 2−(3k+3)A2n2kσ2k+2

)

≤ nk−ue−γkA1/(2u+1)(n+u−k)σ2
.

Sincee−γkA1/(2u+1)(n+u−k)σ2 ≤ e−γkA1/(2k−1)nσ2/k if u≤ k−1, n≥ k andA> A0 with
a sufficiently large numberA0, inequality (16.17) holds for all setsV of the form
V = {1, . . . ,u}, 1≤ u< k.

The case of a general setV ⊂ {1, . . . ,k}, 1≤ |V| < k, can be handled similarly,
only the notation becomes more complicated. Moreover, the case of general sets
V can be reduced to the case of sets of form we have already considered. Indeed,
given some setV ⊂ {1, . . . ,k}, 1≤ |V| < k, let us define a new class of function
FV we get by applying a rearrangement of the indices of the argumentsx1, . . . ,xk

of the functionsf ∈ F in such a way that the arguments indexed by the setV are
the first |V| arguments of the functionsfV ∈ FV , and putV̄ = {1, . . . , |V|}. Then
the class of functionsFV also satisfies the condition of Proposition 15.3, and we
can get relation (16.17) with the setV by applying it for the set of functionFV and
setV̄.

Now we prove Lemma 16.1A with the help of Lemma 16.2A, the generalized
symmetrization lemma 15.2 and Lemma 16.3A.

Proof of Lemma 16.1A.First we show with the help of the generalized symmetriza-
tion lemma, i.e. of Lemma 15.2 and Lemma 16.3A that

P

(

sup
f∈F

n−k/2
∣
∣k! Īn,k( f )

∣
∣> Ank/2σk+1

)

(16.23)

< 2P

(

sup
f∈F

|S( f )|> A
2

nkσk+1

)

+2knk−1e−γkA1/(2k−1)nσ2/k

with the functionS( f ) defined in (16.14). To prove relation (16.23) introduce the

random variablesZ( f ) = k! Ī{1,...,k}
n,k ( f ) and

Z̄( f ) =− ∑
V⊂{1,...,k},V 6={1,...,k}

(−1)k−|V|k! ĪV
n,k( f )

for all f ∈ F , theσ -algebraB considered in Lemma 16.3A and the set

B=
⋂

V⊂{1,...,k}
V 6={1,...,k}

{

ω : sup
f∈F

E
(
[k! ĪV

n,k( f )]2
∣
∣B
)
(ω)≤ 2−(3k+3)A2n2kσ2k+2

}

.

Observe thatS( f ) = Z( f )− Z̄( f ), f ∈ F , B∈ B, and by Lemma 16.3A the in-

equality 1−P(B) ≤ 2knk−1e−γkA1/(2k−1)nσ2/k holds. To prove relation (16.23) apply
Lemma 15.2 with the above introduced random variablesZ( f ) and Z̄( f ), f ∈ F ,
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(both here and in the subsequent proof of Lemma 16.1B we work with random
variablesZ(·) andZ̄(·) indexed by the countable set of functionsf ∈ F , hence the
functionsf ∈F play the role of the parametersp when Lemma 15.2 is applied) ran-
dom setB andα = A

2nkσk+1, u= A
2nkσk+1. (At the left-hand side of (16.23) we can

replacek! Īn,k( f ) with Z( f ), f ∈ F , because they have the same joint distribution.)
It is enough to show that

P

(

|Z̄( f )|> A
2

nkσk+1|B
)

(ω)≤ 1
2

for all f ∈ F if ω ∈ B. (16.24)

But

P
(

k!|Ī |V|
n,k( f )|> 2−(k+1)Ankσk+1|B

)

(ω)

≤
22(k+1)E(Ī |V|

n,k( f )2|B)(ω)

A2n2kσ2(k+1)
≤ 2−(k+1)

for all functions f ∈ F and setsV ⊂ {1, . . . ,k}, V 6= {1, . . . ,k}, if ω ∈ B by the
‘conditional Chebishev inequality’, hence relations (16.24) and (16.23) hold.

Lemma 16.1A follows from relation (16.23), Lemma 16.2A and the observa-
tion that the random variables̄I (V,ε)n,k ( f ), f ∈ F , defined in (16.13) have the same
distribution for allV ⊂ {1, . . . ,k} as the random variables̄I ε

n,k( f ), defined in for-
mula (14.12). Hence Lemma 16.2A and the definition (16.15) ofthe random vari-
ablesS̄( f ), f ∈ F , imply the inequality

P

(

sup
f∈F

|S( f )|> A
2

nkσk+1

)

= P

(

sup
f∈F

|S̄( f )|> A
2

nkσk+1

)

≤ 2kP

(

sup
f∈F

∣
∣k! Ī ε

n,k( f )
∣
∣> 2−(k+1)Ankσk+1

)

.

Lemma 16.1A is proved.

Lemma 16.1B will be proved with the help of the following Lemma 16.3B, which
is a version of Lemma 16.3A.

Lemma 16.3B.Let us consider a class of functionsF satisfying the conditions of
Proposition 15.4 together with2k independent copies

ξ ( j,1)
1 , . . . ,ξ ( j,1)

n , and ξ ( j,−1)
1 , . . . ,ξ ( j,−1)

n , 1≤ j ≤ k,

of a sequence of independent,µ-distributed random variablesξ1, . . . ,ξn. Take the
random variables̄IV

n,k( f ,y) and HV
n,k( f ), f ∈ F , V ⊂ {1, . . . ,k}, defined in formu-

las (16.2) and (16.3) with the help of these quantities. Let

B = B(ξ ( j,1)
1 , . . . ,ξ ( j,1)

n , 1≤ j ≤ k)



192 16 A symmetrization argument

denote theσ -algebra generated by the random variablesξ ( j,1)
1 , . . . ,ξ ( j,1)

n , 1≤ j ≤ k,
i.e. by those random variables which appear in the definitionof the random vari-
ablesĪV

n,k( f ,y) and HV
n,k( f ) introduced in formulas (16.2) and (16.3), and have sec-

ond argument 1 in their upper index.

a) There exist some numbers A0 = A0(k) > 0 andγ = γk > 0 such that for all V⊂
{1, . . . ,k}, V 6= {1, . . . ,k}, the inequality

P

(

sup
f∈F

E(HV
n,k( f )|B)>

2−(4k+4)

(k!)2 A(2k−1)/kn2kσ2k+2

)

< nk−1e−γkA1/2knσ2/k

(16.25)
holds if A≥ A0.

b) Given two subsets V1,V2 ⊂ {1, . . . ,k} of the set{1, . . . ,k} define the integrals (of
random kernel functions)

H(V1,V2)
n,k ( f ) =

∫

|k! ĪV1
n,k( f ,y)k! ĪV2

n,k( f ,y)|ρ(dy), f ∈ F , (16.26)

with the help of the functions̄IV
n,k( f ,y) defined in (16.2). There exist some num-

bers A0 = A0(k) > 0 and γ = γk > 0 such that if the integrals Hn,k( f ), f ∈ F ,
determined by this class of functionsF have a good tail behaviour at level
T(2k+1)/2k for some T≥ A0, then the inequality

P

(

sup
f∈F

E(H(V1,V2)
n,k ( f )|B)>

2−(2k+2)

k!
A2n2kσ2k+2

)

< 2nk−1e−γkA1/2knσ2/k

(16.27)
holds for any pairs of subsets V1,V2 ⊂ {1, . . . ,k} with the property that at least
one of them does not equal the set{1, . . . ,k} if the number A satisfies the condi-
tion A> T.

Proof of Lemma 16.3B.Part a) of Lemma 16.3B can be proved in almost the same
way as Lemma 16.3A. Hence I only briefly explain the main step of the proof. In
the caseV = /0 the identityE(HV

n,k( f )|B) = E(HV
n,k( f )) holds, hence it is enough to

show thatE(HV
n,k( f ))≤ k!nkσ2 ≤ 2kk!n2kσ2k+2 for all f ∈ F under the conditions

of Proposition 15.4. (This relation holds, because the functions of the classF are
canonical.) The case of a general setV, V 6= /0 andV 6= {1, . . . ,k}, can be reduced
to the caseV = {1, . . . ,u} with some 1≤ u< k.

Given a setV = {1, . . . ,u}, 1≤ u< k, let us define for allf ∈ F and sequences
l(u) = (lu+1, . . . , lk) with the properties 1≤ l j ≤ n for all u+1≤ j ≤ k andl j 6= l j ′

if j 6= j ′ the random variable
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ĪV
n,k( f , lu+1, . . . , lk,y)

=
1
k! ∑

(l1,...,lu) :
1≤l j≤n, j=1,...,u,

l j 6=l j′ if j 6= j ′ for all 1≤ j, j ′≤k

f
(

ξ (1,1)
l1

, . . . ,ξ (u,1)
lu

,ξ (u+1,−1)
lu+1

, . . . ,ξ (k,−1)
lk

,y
)

.

It can be shown, similarly to the proof of relation (16.18) inthe proof of Proposi-
tion 16.3A that since the functionsf ∈ F have the canonical property the identity

E
(
H̄V

n,k( f )
∣
∣B
)
= ∑

(lu+1,...,lk) :
1≤l j≤n, j=u+1,...,k,

l j 6=l j′ if j 6= j ′

∫

E
(
[k! ĪV

n,k( f , lu+1, . . . , lk,y)]
2
∣
∣B
)

ρ(dy)

holds, and the proof of part a) of Lemma 16.3B can be reduced tothe inequality

P

(

sup
f∈F

E

(∫

[k! ĪV
n,k( f , lu+1, . . . , lk,y)]

2ρ(dy)

∣
∣
∣
∣
B

)

>
A(2k−1)/knk+uσ2k+2

2(4k+4)(k!)2

)

≤ e−γkA(2k−1)/2k(2u+1)(n+u−k)σ2

with a sufficiently smallγk > 0. This inequality can be proved, similarly to rela-
tion (16.20) in the proof of Lemma 16.3A with the help of the Corollary of Proposi-
tion 15.4. Only here we have to work in the space(Xu×Ȳ,X u× Ȳ ,µu× ρ̄) where
Ȳ = Xk−u×Y, Ȳ = X k−u×Y , ρ̄ = µk−u× ρ with the class of function̄f ∈ F̄

consisting of the functions̄f defined by the formulāf (x1, . . . ,xu, ȳ)= f (x1, . . . ,xk,y)
with some f (x1, . . . ,xk,y) ∈ F , where ¯y= (xu+1, . . . ,xk,y). Here we apply the fol-
lowing version of formula (16.21).

E
(
[k! ĪV

n,k( f , lu+1, . . . , lk,y)]
2|B

)
=

∫

[u! Ī l(u)
n+u−k,u( f̄ , ȳ)]2ρ̄(dȳ) = H l(u)

n+u−k,u( f̄ )

with the function f̄ ∈ F̄ for which the identity

f̄ (x1, . . . ,xu, ȳ) = f (x1, . . . ,xk,y)

holds with ȳ = (xu+1, . . . ,xk,y), and we define the random variablesĪ l(u)
n+u−k,u( f̄ , ȳ)

andH l(u)
n+u−k,u( f̄ ) similarly to the corresponding terms after formula (16.21), only y

is replaced by ¯y, the measureρ by ρ̄, and the presently defined functions̄f ∈ F̄ are
considered. I omit the details.

Part b) of Lemma 16.3B will be proved with the help of Part a) and the inequality

sup
f∈F

E(H(V1,V2)
n,k ( f )|B)≤

(

sup
f∈F

E(HV1
n,k( f )|B)

)1/2(

sup
f∈F

E(HV2
n,k( f )|B)

)1/2

.

(16.28)
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To prove inequality (16.28) observe that the random variablesH(V1,V2)
n,k ( f ), HV1

n,k( f )

andHV2
n,k( f ) can be expressed as functions of the random variablesξ ( j,1)

l , ξ ( j,−1)
l ,

1≤ j ≤ k, 1≤ l ≤ n which are independent of each other, and the random variables

ξ ( j,1)
l areB measurable, while the random variablesξ ( j,−1)

l are independent of this

σ -algebra. Hence we can calculate the conditional expectationsE(H(V1,V2)
n,k ( f )|B),

E(HV1
n,k( f )|B) and E(HV2

n,k( f )|B) by putting the value of the random variables

ξ ( j,1)(ω) in the appropriate coordinate of the functions expressing these random
variables and integrating by the remaining coordinates with respect the distribution

of the random variablesξ ( j,−1)
l . By writing up the above conditional expectations in

such a way and applying the Schwarz inequality for them we getthe inequality

E(H(V1,V2)
n,k ( f )|B)≤

(

E(HV1
n,k( f )|B)

)1/2(

E(HV2
n,k( f )|B)

)1/2
for all f ∈ F .

It is not difficult to deduce relation (16.28) from this inequality by showing that it
remains valid if we put the sup

f∈F

expressions in it in that way as it is done in (16.28).

In the proof of Part b) of Lemma 16.3B we may assume thatV1 6= {1, . . . ,k}.
Inequality (16.28) implies that

P

(

sup
f∈F

E(H(V1,V2)
n,k ( f )|B)>

2−(2k+2)

k!
A2n2kσ2k+2

)

≤ P

(

sup
f∈F

E(HV1
n,k( f )|B)>

2−(4k+4)

(k!)2 A(2k−1)/kn2kσ2k+2

)

+P

(

sup
f∈F

E(HV2
n,k( f )|B)> A(2k+1)/kn2kσ2k+2

)

Hence if we know that also the inequality

P

(

sup
f∈F

E(HV2
n,k( f )|B)> A(2k+1)/kn2kσ2k+2

)

≤ nk−1e−γkA1/2knσ2/k (16.29)

holds, then we can deduce relation (16.27) from the estimate(16.25) and (16.29).
Relation (16.29) follows from Part a) of Lemma 16.3B ifV2 6= {1, . . . ,k} andA≥ 1,
since in this case the levelA(2k+1)/kn2kσ2k+2 can be replaced by the smaller number
2−(4k+2)A(2k−1)/kn2kσ2k+2 in the probability of formula (16.29). In the caseV2 =
{1, . . . ,k} it follows from the conditions of Part b) of Lemma 16.3B if thenumberγk

is chosen so thatγk ≤ 1. Indeed, sinceA(2k+1)/2k > T(2k+1)/2k, and by the conditions
of Proposition 15.4 (and as a consequence of Lemma 16.3B) inequality (15.7) holds
for all Ā ≥ T(2k+1)/2k, we can apply this relation for the parameterA(2k+1)/2k. In
such a way we get inequality (16.29) also forV2 = {1, . . . ,k}.

Now we turn to the proof of Lemma 16.1B.
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Proof of Lemma 16.1B.By Lemma 16.2B it is enough to prove that relation (16.8)
holds if the random variables̄W( f ) are replaced in it by the random variablesW( f )
defined in formula (16.16). We shall prove this by applying the generalized form

of the symmetrization lemma, Lemma 15.2, with the choice ofZ( f ) = H(V̄,V̄)
n,k ( f ),

V̄ = {1, . . . ,k}, Z̄( f ) = Z( f )−W( f ), f ∈ F , B = B(ξ ( j,1)
1 , . . . ,ξ ( j,1)

n ; 1≤ j ≤ k),

α = A2

2 n2kσ2k+2, u= A2

2 n2kσ2k+2 and the set

B =
⋂

(V1,V2) : Vj∈{1,...,k}, j=1,2,
V1 6={1,...,k} or V2 6={1,...,k}

{

ω : sup
f∈F

E(H(V1,V2)
n,k ( f )|B)(ω)≤ 2−(2k+2)

k!
A2n2kσ2k+2

}

.

By part b) of Lemma 16.3B the inequality

1−P(B)≤ 22k+1nk−1e−γkA1/2knσ2/k

holds. Observe thatZ( f ) = H(V̄,V̄)
n,k ( f ) = Hn,k( f ) for all f ∈ F . Hence to prove

Lemma 16.1B with the help of Lemma 15.2 it is enough to show that

P

(

|Z̄( f )|> A2

2k!
n2kσ2k+2

∣
∣
∣
∣
B

)

(ω)≤ 1
2

for all f ∈ F if ω ∈ B. (16.30)

To prove this relation observe that because of the definitionof the setB

E(|Z̄( f )||B)(ω)

≤ ∑
(V1,V2) : Vj∈{1,...,k}, j=1,2,
V1 6={1,...,k} or V2 6={1,...,k}

E(H(V1,V2)
n,k ( f )|B)(ω)≤ A2

4k!
n2kσ2k+2

if ω ∈ B for all f ∈ F . Hence the ‘conditional Markov inequality’ implies that

P
(

|Z̄( f )|> A2

2k! n
2kσ2(k+1)

∣
∣
∣B

)

(ω) ≤ 2k!E(|Z̄( f )||B)(ω)

A2n2kσ2k+2 ≤ 1
2 if ω ∈ B, and inequal-

ity (16.30) holds. Lemma 16.1B is proved.





Chapter 17
The proof of the main result

In this chapter Propositions 15.3 and 15.4 are proved with the help of Lemmas 16A1
and 16B1. They complete the proof of Theorem 8.4, of the main result in this work.

A.) The proof of Proposition 15.3.

The proof of Proposition 15.3 is similar to that of Proposition 7.3. It applies an
induction procedure with respect to the orderk of theU-statistics. In the proof of
Proposition 15.3 for parameterk we may assume that Propositions 15.3 and 15.4
hold foru< k. We want to give a good estimate on the expression

P

(

sup
f∈F

∣
∣k! Ī ε

n,k( f )
∣
∣> 2−(k+1)Ankσk+1

)

appearing at the right-hand side of the estimate (16.1) in Lemma 16.1A. To estimate
this probability we introduce (using the notation of Proposition 15.3) the functions

S2
n,k( f )(x( j)

l , 1≤ l ≤ n, 1≤ j ≤ k)

= ∑
(l1,...,lk) :

1≤l j≤n, j=1,...,k,
l j 6=l j′ if j 6= j ′

f 2
(

x(1)l1
, . . . ,x(k)lk

)

, f ∈ F , (17.1)

with x( j)
l ∈ X, 1≤ l ≤ n, 1≤ j ≤ k. We define with the help of this function the

following setH = H(A)⊂ Xkn for all A> T similarly to formula (7.8) in the proof
of Proposition 7.3:

H = H(A) =

{(

x( j)
l , 1≤ l ≤ n, 1≤ j ≤ k

)

:

sup
f∈F

S2
n,k( f )(x( j)

l , 1≤ l ≤ n, 1≤ j ≤ k)> 2kA4/3nkσ2
}

. (17.2)

First we want to show that

197
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P({ω : (ξ ( j)
l (ω), 1≤ j ≤ n, 1≤ j ≤ k) ∈ H})≤ 2ke−A2/3knσ2

if A≥ T. (17.3)

To prove relation (17.3) we take the Hoeffding decomposition of theU-statistics
with kernel functionsf 2(x1, . . . ,xk), f ∈ F , given in Theorem 9.1, i.e. we write

f 2(x1, . . . ,xk) = ∑
V⊂{1,...,k}

fV(x j , j ∈V), f ∈ F , (17.4)

with fV(x j , j ∈V) = ∏
j /∈V

Pj ∏
j∈V

Q j f 2(x1, . . . ,xk), wherePj andQ j are the operators

defined in formulas (9.1) and (9.2).
The functionsfV appearing in formula (17.4) are canonical (with respect to the

measureµ), and the identityS2
n,k( f )(ξ ( j)

l 1≤ l ≤ n,1≤ j ≤ k) = k! Īn,k( f 2) holds for
all f ∈ F with the expression̄In,k(·) defined in (14.11). By applying the Hoeffding

decomposition (17.4) for each termf 2(ξ (1)
l1

. . . ,ξ (k)
lk

) in the expressionS2
n,k( f ) we

get that

P

(

sup
f∈F

S2
n,k( f )(ξ ( j)

l , 1≤ l ≤ n, 1≤ j ≤ k)> 2kA4/3nkσ2

)

≤ ∑
V⊂{1,...,k}

P

(

sup
f∈F

nk−|V|||V|! Īn,|V|( fV)|> A4/3nkσ2

)

(17.5)

with the functionsfV appearing in formula (17.4). We want to give a good estimate
for each term in the sum at the right-hand side in (17.5). For this goal first we
show that the classes of functions{ fV : f ∈ F} in the expansion (17.4) satisfy the
conditions of Proposition 15.3 for allV ⊂ {1, . . . ,k}.

The functionsfV are canonical for allV ⊂ {1, . . . ,k}. It follows from the condi-
tions of Proposition 15.3 that| f 2(x1, . . . ,xk)| ≤ 2−2(k+1) and

∫

f 4(x1, . . . ,xk)µ(dx1) . . .µ(dxk)≤ 2−(k+1)σ2.

Hence relations (9.5) and (9.6) of Theorem 9.2 imply that
∣
∣
∣
∣
∣

sup
x j∈X, j∈V

fV(x j , j ∈V)

∣
∣
∣
∣
∣
≤ 2−(k+2) ≤ 2−(k+1)

and
∫

f 2
V(x j , j ∈V) ∏

j∈V
µ(dxj)≤ 2−(k+1)σ2 ≤ σ2 for all V ⊂ {1, . . . ,k}. Finally, to

check that the class of functionsFV = { fV : f ∈ F} is L2-dense with exponent
L and parameterD observe that for all probability measuresρ on (Xk,X k) and
pairs of functionsf ,g∈F the inequality

∫
( f 2−g2)2dρ ≤ 2−2k ∫ ( f −g)2dρ holds.

This implies that if{ f1, . . . , fm}, m≤ Dε−L, is anε-dense subset ofF in the space
L2(Xk,X k,ρ), then the set of functions{2k f 2

1 , . . . ,2
k f 2

m} is anε-dense subset of
the class of functionsF ′ = {2k f 2 : f ∈ F}, henceF ′ is also anL2-dense class



17 The proof of the main result 199

of functions with exponentL and parameterD. Then by Theorem 9.2 the class of
functionsFV is alsoL2-dense with exponentL and parameterD for all setsV ⊂
{1, . . . ,k}.

ForV = /0, the functionfV is constant, the relation

fV =
∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)≤ σ2

holds, andĪ|V|( f|V|)| = fV ≤ σ2. Therefore the term corresponding toV = /0 in the
sum of probabilities at the right-hand side of (17.5) equalszero under the conditions
of Proposition 15.3 with the choice of someA0 ≥ 1. I claim that the remaining terms
in the sum at the right-hand side of (17.5) satisfy the inequality

P

(

nk−|V| sup
f∈F

||V|! Īn,|V|( fV)|> A4/3nkσ2

)

≤ P

(

sup
f∈F

||V|! Īn,|V|( fV)|> A4/3n|V|σ |V|+1

)

≤ e−A2/3knσ2

if 1 ≤ |V| ≤ k. (17.6)

The first inequality in (17.6) holds, sinceσ |V|+1 ≤ σ2 for |V| ≥ 1, andn≥ k≥ |V|.
The second inequality follows from the inductive hypothesis if |V| < k, since in
this case the middle expression in (17.6) can be bounded withthe help of Proposi-
tion 15.3 bye−(A4/3)1/2|V|nσ2 ≤ e−A2/3knσ2

if A0 =A0(k) in Proposition 15.3 is chosen
sufficiently large. In the caseV = {1, . . . ,k} it follows from the inequalityA≥ T and
the inductive assumption of Proposition 15.3 by which the supremum of decoupled
U-statistics determined by such a class of kernel-functionswhich satisfies the con-
ditions of Proposition 15.3 has a good tail behaviour at level T4/3. Relations (17.5)
and (17.6) together with the estimate in the caseV = /0 imply formula (17.3).

By conditioning the probabilityP
(∣
∣
∣k! Ī ε

n,k( f )
∣
∣
∣> 2−(k+2)Ank/2σk+1

)

with respect

to the random variablesξ ( j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k we get with the help of the

multivariate version of Hoeffding’s inequality (Theorem 13.3) that

P
(∣
∣k! Ī ε

n,k( f )
∣
∣> 2−(k+2)Ankσk+1

∣
∣
∣ξ ( j)

l (ω) = x( j)
l ,1≤ l ≤ n,1≤ j ≤ k

)

≤Cexp







−1
2




A2n2kσ2(k+1)

22k+4S2
n,k( f )(x( j)

l ,1≤ l ≤ n, 1≤ j ≤ k)





1/k






≤Ce−2−4−4/kA2/3knσ2
for all f ∈ F

if (x( j)
l , 1≤ l ≤ n, 1≤ j ≤ k) /∈ H (17.7)

with some appropriate constantC=C(k)> 0.
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Define for all 1≤ j ≤ k and sets of pointsx( j)
l ∈ X, 1≤ l ≤ n, the probability

measuresρ j = ρ
j,(x( j)

l ,1≤l≤n)
, 1≤ j ≤ k on X, uniformly distributed on the set of

points{x( j)
l , 1≤ l ≤ n}, i.e. letρ j(x

( j)
l ) = 1

n for all 1≤ l ≤ n. Let us also define the

productρ = ρ(x( j)
l , 1≤ l ≤ n, 1≤ j ≤ k) = ρ1×·· ·×ρk of these measures on the

space(Xk,X k). If f is a function on(Xk,X k) such that
∫

f 2dρ ≤ δ 2 with some
δ > 0, then

sup
ε1,...,εn

|k! Ī ε
n,k( f )(x( j)

l , 1≤ l ≤ n, 1≤ j ≤ k)|

≤ nk
∫

| f (u1, . . . ,uk)|ρ(du1, . . . , duk)≤ nk
(∫

f 2dρ
)1/2

≤ nkδ ,

u j ∈ Rk, 1≤ j ≤ k, and as a consequence

sup
ε1,...,εn

|k! Ī ε
n,k( f )(x( j)

l , 1≤ l ≤ n, 1≤ j ≤ k) (17.8)

−k! Ī ε
n,k(g)(x

( j)
l , 1≤ l ≤ n, 1≤ j ≤ k)|

≤ 2−(k+2)Ankσk+1 if
∫

( f −g)2dρ ≤ (2−(k+2)Aσk+1)2,

where Ī ε
n,k( f )(x( j)

l , 1 ≤ l ≤ n, 1 ≤ j ≤ k) equals the expression̄I ε
n,k( f ) defined

in (14.12) if we replaceξ ( j)
l j

by x( j)
l j

for all 1 ≤ j ≤ k, and 1≤ l j ≤ n in it, and

ρ is the measureρ = ρ(x( j)
l , 1≤ l ≤ n, 1≤ j ≤ k) defined above.

Remark.Similarly to the remark made in the proof of Proposition 7.3 we may restrict

our attention to the case when the random variablesξ ( j)
l are non-atomic. A similar

statement holds also in the proof of Proposition 15.4,

Let us fix the numberδ = 2−(k+2)Aσk+1, and let us list the elements of the set
F asF = { f1, f2, . . .}. Put

m= m(δ ) = max(1,Dδ−L) = max(1,D(2(k+2)A−(1)σ−(k+1))L),

and choose for all vectorsx(n) = (x( j)
l , 1≤ l ≤ n, 1≤ j ≤ k) ∈ Xkn such a sequence

of positive integersp1(x(n)), . . . , pm(x(n))) for which

inf
1≤l≤m

∫

( f (u)− fpl (x(n))
(u))2ρ(x(n))(du)≤ δ 2 for all f ∈ F andx(n) ∈ Xkn.

(Here we apply the notationρ(x(n)) = ρ(x( j)
l , 1 ≤ l ≤ n, 1 ≤ j ≤ k), which is a

probability measure onXk depending onx(n).) This is possible, sinceF is anL2-
dense class with exponentL and parameterD, and we can choosem= Dδ−L, if
δ < 1, Beside this, we can choosem= 1 if δ ≥ 1, since

∫ | f −g|2dρ ≤ sup| f (x)−
g(x)|2 ≤ 2−2k ≤ 1 for all f ,g∈ F . Moreover, we have shown in Lemma 7.4A that
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the functionspl (x(n)), 1 ≤ l ≤ m, can be chosen as measurable functions of the
argumentx(n) ∈ Xkn.

Let us consider the random vectorξ (n)(ω) = (ξ ( j)
l (ω), 1≤ l ≤ n, 1≤ j ≤ k). By

arguing similarly as we did in the proof of Proposition 7.3 weget with the help of
relation (17.8) and the property of the functionsfpl (x(n))

(·) constructed above that

{

ω : sup
f∈F

|k! Ī ε
n,k( f )(ω)| ≥ 2−(k+1)Ankσk+1

}

⊂
m⋃

l=1

{

ω : |k! Ī ε
n,k( fpl (ξ (n)(ω)))(ω)| ≥ 2−(k+2)Ankσ (k+1)

}

.

The above relation and formula (17.7) imply that

P

(

sup
f∈F

∣
∣k! Ī ε

n,k( f )(ω)
∣
∣>

Ankσk+1

2(k+1)

∣
∣
∣
∣
∣
ξ ( j)

l (ω) = x( j)
l ,1≤ l ≤ n,1≤ j ≤ k

)

≤
m

∑
l=1

P

(

|k! Ī ε
n,k( fpl (ξ (n)(ω))(ω)|> Ankσk+1

2k+2

∣
∣
∣
∣

ξ ( j)
l (ω) = x( j)

l ,1≤ l ≤ n,1≤ j ≤ k

)

≤Cm(δ )e−2−4−4/kA2/3knσ2 ≤C(1+D(2k+2A−1σ−(k+1))L)e−2−4−4/kA2/3knσ2

if {x( j)
l , 1≤ l ≤ n, 1≤ j ≤ k} /∈ H. (17.9)

Relations (17.3) and (17.9) imply that

P

(

sup
f∈F

∣
∣k! Ī ε

n,k( f )
∣
∣> 2−(k+1)Ankσk+1

)

(17.10)

≤C(1+D(2k+2A−1σ−(k+1))L)e−2−4−4/kA2/3knσ2
+2ke−A2/3knσ2

if A> T.

Proposition 15.3 follows from the estimates (16.1), (17.10) and the condition
nσ2 ≥ L logn+ logD, L,D ≥ 1, if A ≥ A0 with a sufficiently large numberA0.

Indeed, in this casenσ2 ≥ 1
2, (2k+2A−1σ−(k+1))L ≤ ( n(k+1)/2

(2nσ2)(k+1)/2 )
L ≤ nL(k+1)/2 =

eL logn·(k+1)/2 ≤ e(k+1)nσ2/2, D = elogD ≤ enσ2
, and

C(1+D(2k+2A−1σ−(k+1))L)e−2−4−4/kA2/3knσ2 ≤ 1
3

e−A1/2knσ2
.

The estimation of the remaining terms in the upper bound of the estimates (16.1)
and (17.10) leading to the proof of relation (15.5) is simpler. We can exploit that
e−A2/3knσ2 ≪ e−A1/2knσ2

and asnk−1 ≤ e(k−1)nσ2
, hence 2ke−A2/3knσ2 ≤ 1

3e−A1/2knσ2
,

and 2knk−1e−γkA1/(2k−1)nσ2/k ≤ 2ke(k−1)nσ2
e−γkA1/(2k−1)nσ2/k ≪ e−A1/2knσ2

for a large
numberA.
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Now we turn to the proof of Proposition 15.4.

B.) The proof of Proposition 15.4.

Because of formula (16.11) in the Corollary of Lemma 16.1B toprove Proposition
15.4 i.e. inequality (15.7) it is enough to choose a sufficiently large parameterA0

and to show that with such a choice the random variablesHn,k( f |G,V1,V2) defined
in formula (16.9) satisfy the inequality

P

(

sup
f∈F

∣
∣Hn,k( f |G,V1,V2)

∣
∣>

A2n2kσ2(k+1)

24k+1

)

≤ 2k+1e−A1/2knσ2

for all G∈ G and V1,V2 ∈ {1, . . . ,k} if A> T ≥ A0 (17.11)

under the conditions of Proposition 15.4.
Let us first prove formula (17.11) in the case|e(G)| = k, i.e. when all vertices

of the diagramG are end-points of some edge, and the expressionHn,k( f |G,V1,V2)
contains no ‘symmetrizing term’ε j . In this case we apply a special argument to
prove relation (17.11).

We will show with the help of the Schwarz inequality that for adiagramG such
that|e(G)|= k

|Hn,k( f |G,V1,V2)| (17.12)

≤










∑
(l1,...,lk) :

1≤l j≤n, 1≤ j≤k,
l j 6=l j′ if j 6= j ′

∫

f 2(ξ (1),δ1(V1))
l1

, . . . ,ξ (k,δk(V1))
lk

,y)ρ(dy)










1/2










∑
(l1,...,lk) :

1≤l j≤n, 1≤ j≤k,
l j 6=l j′ if j 6= j ′

∫

f 2(ξ (1,δ1(V2))
l1

, . . . ,ξ (k,δk(V2))
lk

,y)ρ(dy)










1/2

with δ j(V1) = 1 if j ∈V1, δ j(V1) =−1 if j /∈V1, andδ j(V2) = 1 if j ∈V2, δ j(V2) =
−1 if j /∈V2.

Relation (17.12) can be proved for instance by bounding firstthe absolute value
of each integral in formula (16.9) by means of the Schwarz inequality, and then by
bounding the sum appearing in such a way by means of the inequality ∑ |a jb j | ≤
(

∑a2
j

)1/2(

∑b2
j

)1/2
. Observe that in the case|(e(G)| = k the summation in (16.9)

is taken for such vectors(l1, . . . , lk, l ′1, . . . , l
′
k) for which (l ′1, . . . , l

′
k) is a permutation

of the sequence(l1, . . . , lk) determined by the diagramG. Hence the sum we get
after applying the Schwarz inequality for each integral in (16.9) has the form∑a jb j
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where the set of indicesj in this sum agrees with the set of vectors(l1, . . . , lk) such
that 1≤ lp ≤ n for all 1≤ p≤ k, andlp 6= lp′ if p 6= p′.

By formula (17.12)
{

ω : sup
f∈F

∣
∣Hn,k( f |G,V1,V2)(ω)

∣
∣>

A2n2kσ (2(k+1)

24k+1

}

⊂
{

ω : sup
f∈F

∑
(l1,...,lk) :

1≤l j≤n, 1≤ j≤k,
l j 6=l j′ if j 6= j ′

∫

f 2(ξ (1,δ1(V1))
l1

(ω), . . . ,ξ (k,δk(V1))
lk

(ω),y)ρ(dy)

>
A2n2kσ2(k+1)k!

24k+1

}

∪
{

ω : sup
f∈F

∑
(l1,...,lk) :

1≤l j≤n, 1≤ j≤k,
l j 6=l j′ if j 6= j ′

∫

f 2(ξ (1,δ1(V2))
l1

(ω), . . . ,ξ (k,δk(V2))
lk

(ω),y)ρ(dy)

>
A2n2kσ2(k+1)k!

24k+1

}

,

hence

P

(

sup
f∈F

∣
∣Hn,k( f |G,V1,V2)

∣
∣>

A2n2kσ2(k+1)

24k+1

)

≤ 2P










sup
f∈F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑
(l1,...,lk) :

1≤l j≤n, 1≤ j≤k,
l j 6=l j′ if j 6= j ′

hf (ξ
(1,1)
l1

, . . . ,ξ (k,1)
lk

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

>
A2n2kσ2(k+1)

24k+1










= 2P

(

sup
f∈F

|k! Īn,k(hf )|>
A2n2kσ2(k+1)

24k+1

)

, (17.13)

where Īn,k(hf ), f ∈ F , are the decoupledU-statistics defined in (14.11) with the
kernel functionshf (x1, . . . ,xk) =

∫
f 2(x1, . . . ,xk,y)ρ(dy) and the random variables

ξ ( j,1)
l , 1≤ j ≤ k, 1≤ l ≤ n. (In this upper bound we could get rid of the termsδ j(V1)

andδ j(V2), i.e. of the dependence of the expressionHn,k( f |G,V1,V2) on the setsV1

andV2, since the probability of the events in the previous formulado not depend on
them.)

I claim that

P

(

sup
f∈F

|k! Īn,k(hf )| ≥ 2kAnkσ2

)

≤ 2ke−A1/2knσ2
for A≥ A0 (17.14)
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if the constantA0 = A0(k) is chosen sufficiently large in Proposition 15.4. Relation

(17.14) together with the relationA2 n2kσ2(k+1)

24k+1 ≥ 2kAnkσ2 (if A > A0 with a suffi-
ciently largeA0) imply that the probability at the right-hand side of (17.13) can be
bounded by 2k+1e−A1/2knσ2

, and the estimate (17.11) holds in the case|e(G)|= k.
Relation (17.14) is similar to relation (17.3) (together with the definition of the

random setH in formula (17.2)), and a modification of the proof of the latter esti-
mate yields the proof also in this case. Indeed, it follows from the conditions of
Proposition 15.4 that 0≤ ∫

hf (x1, . . . ,xk)µ(dx1) . . .µ(dxk) ≤ σ2 for all f ∈ F ,
and it is not difficult to check that sup|hf (x1, . . . ,xk)| ≤ 2−2(k+1), and the class of
functionsH = {2khf , f ∈ F} is anL2-dense class with exponentL and parame-
ter D. Hence by applying the Hoeffding decomposition of the functionshf , f ∈ F ,
similarly to formula (17.4) we get for allV ⊂ {1, . . . ,k} such a set of functions
{hf )V , f ∈ F}, which satisfies the conditions of Proposition 15.3. Hence anatural
adaptation of the estimate given for the expression at the right-hand side of (17.5)
(with the help of (17.6) and the investigation of|V|! Ī|V|( fV) for V = /0) yields
the proof of formula (17.14). We only have to replaceSn,k( f ) by k! Īn,k(hf ), then
|V|! Īn,|V|( fV) by |V|! Īn,|V|((hf )V) and the levels 2kA4/3nkσ2 in (17.3) andA4/3nkσ2

in (17.5) by 2kAnkσ2 andAnkσ2 respectively. Let us observe that each term of the
upper bound we get in such a way can be directly bounded, sinceduring the proof of
Proposition 15.4 for parameterk we may assume that the result of Proposition 15.3
holds also for this parameterk.

In the case of a diagramG∈ G such thate(G)< k formula (17.11) will be proved
with the help of the multivariate version of Hoeffding’s inequality, Theorem 13.3. In
the proof of this case an expression, analogous toS2

n,k( f ) defined in formula (17.1)
will be introduced and estimated for all setsV1,V2 ⊂ {1, . . . ,k} and diagramsG∈ G

such that|e(G)|< k. To define it first some notations will be introduced.
Let us consider the setJ0(G) = J0(G,k,n),

J0(G) = {(l1, . . . , lk, l ′1, . . . , l ′k) : 1≤ l j , l
′
j ≤ n, 1≤ j ≤ k, l j 6= l j ′ if j 6= j ′,

l ′j 6= l ′j ′ if j 6= j ′, l j = l ′j ′ if ( j, j ′) ∈ e(G), l j 6= l ′j ′ if ( j, j ′) /∈ e(G)}.

The setJ0(G) contains those sequences(l1, . . . , lk, l ′1, . . . , l
′
k) which appear as indices

in the summation in formula (16.9) for a fixed diagramG. We also introduce an
appropriate partition of it.

For this aim let us first define the sets

M1(G) = { j(1), . . . , j(k−|e(G)|)}= {1, . . . ,k}\v1(G),

j(1)< · · ·< j(k−|e(G)|),

and

M2(G) = { j̄(1), . . . , j̄(k−|e(G|)}= {1, . . . ,k}\v2(G),

j̄(1)< · · ·< j̄(k−|e(G|),
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the sets of those vertices of the first and second row of the diagramG, indexed in in-
creasing order, from which no edge starts. Let us also introduce the setV(G) =
V(G,n,k), which consists of the restriction of the vectors(l1, . . . , lk, l ′1, . . . , l

′
k) ∈

J0(G) to the coordinates indexed by the elements of the setM1(G)∪M2(G). For-
mally,

V(G) = {(l j(1), . . . , l j(k−|e(G)|), l
′
j̄(1), . . . , l

′
j̄(k−|e(G)|)) : 1≤ l j(p), l

′
j̄(p) ≤ n,

1≤ p≤ k−|e(G)|, l j(p) 6= l j(p′), l ′j̄(p) 6= l ′j̄(p′)

if p 6= p′, 1≤ p, p′ ≤ k−|e(G)|,
l j(p) 6= l ′j̄(p′), 1≤ p, p′ ≤ k−|e(G)|}.

The elements ofV(G) are vectors with elements indexed by the setM1(G)∪M2(G),
which take different integer values between 1 andn.

We write all vectorsv= (l j(1), . . . , l j(k−|e(G)|), l
′
j̄(1), . . . , l

′
j̄(k−|e(G)|)) ∈V(G) in the

formv=(v(1),v(2))with (1) =(l j(1), . . . , l j(k−|e(G)|)) andv(2) =(l ′j̄(1), . . . , l
′
j̄(k−|e(G)|)),

i.e. v(1) contains the firstk−|e(G)| coordinates ofv with indices of the setM1(G),
andv(1) contains the lastk−|e(G)| coordinates ofv with indices of the setM2(G).
We define with their help the setEG(v) which consists of those vectorsℓ =
(l1, . . . , lk, l ′1, . . . , l

′
k) ∈ J0(G) whose restrictions to the coordinates with indices in

M1(G) andM2(G) equalv(1) andv(2) respectively. More explicitly, we put

EG(v) = {(l1, . . . , lk, l ′1, . . . , l ′k) : 1≤ l j ≤ n, 1≤ l ′j̄ ≤ n, for 1≤ j, j̄ ≤ k,

l j 6= l j ′ if j 6= j ′, l ′j̄ 6= l ′j̄ ′ if j̄ 6= j̄ ′,

l j = l ′j̄ if ( j, j̄) ∈ e(G) andl j 6= l ′j̄ if ( j, j̄) /∈ e(G), and

l j(r) = v(r), l ′j̄(r) = v̄(r), 1≤ r ≤ k−|e(G)|}, for all v∈V(G),

where{ j(1), . . . , j(k− |e(G)|)} = M1(G), { j̄(1), . . . , j̄(k− |e(G)|)} = M2(G), v =
(v(1),v(2)) with v(1) = (v(1), . . . ,v(k−|e(G)|)) andv(2) = (v̄(1), . . . , v̄(k−|e(G)|))
in the last line of this definition. Beside this, let us define

E1
G(v) = {(l1, . . . , lk) : (l1, . . . , lk, l

′
1, . . . , l

′
k) ∈ EG(v)}

and
E2

G(v) = {(l ′1, . . . , l ′k) : (l1 . . . , lk, l
′
1, . . . , l

′
k) ∈ EG(v)}.

The vectorsℓ = (l1, . . . , lk, l ′1, . . . , l
′
k) ∈ EG(v) can be characterized in the following

way. For j ∈ M1(G) their coordinatesl j agree with the corresponding elements of
v(1), for j̄ ∈ M2(G) their coordinatesl ′j̄ agree with the corresponding elements of

v(2). The indices of the remaining coordinates ofℓ can be partitioned into pairs
( js, j̄s′), 1≤ s,s′ ≤ |e(G)| in such a way that( js, j̄s′) ∈ e(G). The identityl js = l ′j̄s′
holds if ( js, j̄s′) ∈ e(G), and if ( js, j̄s′) /∈ e(G), then the coordinatesl js and l ′j̄s′

are

different. Otherwise, the coordinatesl js and l ′j̄s′
can be freely chosen from the set



206 17 The proof of the main result

{1, . . . ,n}\{v(1),v(2)}. The setsE1
G(v) andE2

G(v) consist of the vectors containing
the firstk and the secondk coordinates of the vectorsℓ ∈ EG(v).

The setsEG(v), v∈V(G), constitute a partition of the setJ0(G), and the random
variablesHn,k( f |G,V1,V2) defined in (16.9) can be rewritten with their help as

Hn,k( f |G,V1,V2)(ω) = ∑
v=(v(1),v(2))∈V(G)

k−|e(G)|
∏
s=1

εl j(s)
(ω)

k−|e(G)|
∏
s=1

εl ′
j̄(s)
(ω)

∑
(l1,...,lk,l

′
1...,l

′
k)∈EG(v)

∫

f (ξ (1,δ1(V1))
l1

(ω), . . . ,ξ (k,δk(V1))
lk

(ω),y)

f (ξ (1,δ1(V2))

l ′1
(ω), . . . ,ξ (k,δk(V2))

l ′k
(ω),y)ρ(dy), (17.15)

whereδ j(V1) = 1 if j ∈V1, δ j(V1) =−1 if j /∈V1, andδ j(V2) = 1 if j ∈V2, δ j(V2) =
−1 if j /∈V2.

Let us fix some diagramG ∈ G and setsV1,V2 ⊂ {1, . . . ,k}. We will prove the
inequality

P
(

S2(F |G,V1,V2)> 22kA8/3n2kσ4
)

≤ 2k+1e−A2/3knσ2
if A≥ A0 ande(G)< k

(17.16)
for the random variable

S2(F |G,V1,V2) = sup
f∈F

∑
v∈V(G)

(

∑
(l1,...,lk,l

′
1,...,l

′
k)∈EG(v)

∫

f (ξ (1,δ1(V1))
l1

, . . . ,ξ (k,δk(V1))
lk

,y)

f (ξ (1,δ1(V2))

l ′1
, . . . ,ξ (k,δk(V2))

l ′k
,y)ρ(dy)

)2

, (17.17)

whereδ j(V1) = 1 if j ∈V1, δ j(V1) =−1 if j /∈V1, andδ j(V2) = 1 if j ∈V2, δ j(V2) =
−1 if j /∈V2. The random variableS2(F |G,V1,V2) defined in (17.17) plays a similar
role in the proof of Proposition 15.4 as the random variable sup

f∈F

S2
n,k( f ) with S2

n,k( f )

defined in formula (17.1) played in the proof of Proposition 15.3.
To prove formula (17.16) let us first fix somev∈V(G), and let us show that the

following inequality, similar to relation (17.12) holds.
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(

∑
(l1,...,lk,l

′
1,...,l

′
k)∈EG(v)

∫

f (ξ (1,δ1(V1))
l1

, . . . ,ξ (k,δk(V1))
lk

,y)

f (ξ (1,δ1(V2))

l ′1
, . . . ,ξ (k,δk(V2))

l ′k
,y)ρ(dy)

)2

≤



 ∑
(l1,...,lk)∈E1

G(v)

∫

f 2(ξ (1,δ1(V1))
l1

, . . . ,ξ (k,δk(V1))
lk

,y)ρ(dy)







 ∑
(l ′1,...,l

′
k)∈E2

G(v)

∫

f 2(ξ (1,δ1(V2))

l ′1
, . . . ,ξ (k,δk(V2))

l ′k
,y)ρ(dy)



 (17.18)

for all f ∈ F andv∈V(G). Indeed, observe that for a vector ¯v= (v̄1, v̄2) ∈ EG(v)
with v̄1 ∈ E1

G(v) andv̄2 ∈ E2
G(v), the coordinates of the vector ¯v1 in the setM1(G)

and the coordinates of the vector ¯v2 in the setM2(G) are prescribed, while the coor-
dinates of ¯v1 in the setv1(G) are given by a permutation of the coordinates ¯v2 in the
setv2(G). (The setsv1(G) andv2(G) were defined before the introduction of for-
mula (16.9) as the sets of those vertices in the first and second row of the diagramG
respectively from which an edge ofG starts.) This permutation is determined by the
diagramG. Inequality (17.18) can be proved on the basis of the above observation
similarly to formula (17.12).

We shall prove with the help of formula (17.18) the followinginequality.

S2(F |G,V1,V2) (17.19)

≤ sup
f∈F

∑
v∈V(G)



 ∑
(l1,...,lk)∈E1

G(v)

∫

f 2(ξ (1,δ1(V1))
l1

, . . . ,ξ (k,δk(V1))
lk

,y)ρ(dy)







 ∑
(l ′1,...,l

′
k)∈E2

G(v)

∫

f 2(ξ (1,δ1(V2))

l ′1
, . . . ,ξ (k,δk(V2))

l ′k
,y)ρ(dy)





≤ sup
f∈F










∑
(l1,...,lk) :

1≤l j≤n,1≤ j≤k,
l j 6=l j′ if j 6= j ′

∫

f 2(ξ (1,δ1(V1))
l1

, . . . ,ξ (k,δk(V1))
lk

,y)ρ(dy)










sup
f∈F












∑
(l ′1,...,l

′
k) :

1≤l ′j≤n,1≤ j≤k,

l ′j 6=l ′
j′ if j 6= j ′

∫

f 2(ξ (1,δ1(V2))

l ′1
, . . . ,ξ (k,δk(V2))

l ′k
,y)ρ(dy)












.
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The first inequality of (17.19) is a simple consequence of formula (17.18) and the
definition of the random variableS2(F |G,V1,V2). To check its second inequality let
us observe that it can be reduced to the simpler relation where the expression sup

f∈F

is omitted at each place. The simplified inequality obtainedafter the omission of
the expressions sup can be checked by carrying out a term by term multiplication
between the products of sums appearing in (17.19). At both sides of the inequality
a sum consisting of terms of the form

∫

f 2(ξ (1,δ1(V1))
l1

, . . . ,ξ (k,δk(V1))
lk

,y)ρ(dy)
∫

f 2(ξ (1,δ1(V2))

l ′1
, . . . ,ξ (k,δk(V2))

l ′k
,y)ρ(dy), (17.20)

appears. It is enough to check that if a term of this form appears in the middle term
of the simplified version formula of (17.19), then it appearswith multiplicity 1,
and it also appears at the right-hand side of this formula. Tosee this, observe that
each term of the form (17.20) which appears in the sum we get bycarrying out
the multiplications in middle term of (17.19) determines uniquely the indexv =
(v(1),v(2)) ∈ V(G) in the outer sum of the middle term in the inequality (17.19).
Indeed, if the random variables defining this expression of the form (17.20) have
indicesℓ = (l1, . . . , lk, l ′1, . . . , l

′
k), then this vectorℓ uniquely determines the vector

v = (v(1),v(2)) ∈ V(G), sincev(1) must agree with the restriction of the vectorl =
(l1, . . . , lk) to the coordinates with indices inM1(G) andv(2) must agree with the
restriction of the vectorl ′ = (l ′1, . . . , l

′
k) to the coordinates with indices inM2(G).

Beside this, by carrying out the multiplication at the right-hand side of (17.19) we
get such a sum which contains all such terms of the form (17.20) which appeared
in the sum expressing the middle term in inequality (17.19).The above arguments
imply inequality (17.19).

Relation (17.19) implies that

P(S2(F |G,V1,V2))> 22kA8/3n2kσ4)≤ 2P

(

sup
f∈F

k! Īn,k(hf )> 2kA4/3nkσ2

)

,

where Īn,k(hf ), f ∈ F , are the decoupledU-statistics defined in (14.11) with
the kernel functionshf (x1, . . . ,xk) =

∫
f 2(x1, . . . ,xk,y)ρ(dy) and the random vari-

ablesξ ( j,1)
l , 1 ≤ j ≤ k, 1 ≤ l ≤ n. (Here we exploited that in the last formula

S2(F |G,V1,V2) is bounded by the product of two random variables whose distri-
butions do not depend on the setsV1 andV2.) Thus to prove inequality (17.16) it is
enough to show that

2P

(

sup
f∈F

k! Īn,k(hf )> 2kA4/3nkσ2

)

≤ 2k+1e−A2/3knσ2
if A≥ A0. (17.21)



17 The proof of the main result 209

Actually formula (17.21) follows from the already proven formula (17.14), only the
parameterA has to be replaced byA4/3 in it.

With the help of relation (17.16) the proof of Proposition 15.4 can be completed
similarly to Proposition 15.3. The following version of inequality (17.7) can be
proved with the help of the multivariate version of Hoeffding’s inequality (The-
orem 13.3) and the representation of the random variableHn,k( f |G,V1,V2) in the
form (17.15).

P

(

|Hn,k( f |G,V1,V2)|>
A2

24k+2 n2kσ2(k+1)

∣
∣
∣
∣
ξ j,±1

l , 1≤ l ≤ n, 1≤ j ≤ k

)

(ω)

≤Ce−2−(6+2/k)A2/3knσ2
(17.22)

if S2(F |G,V1,V2)(ω)≤ 22kA8/3n2kσ4 andA≥ A0

with an appropriate constantC = C(k) > 0 for all f ∈ F and G ∈ G such that
|e(G)| < k andV1,V2 ⊂ {1, . . . ,k}. (Observe that the conditional probability esti-
mated in (17.22) can be represented in the following way. In apoint ω ∈ Ω fix the

values ofξ ( j,±1)
l (ω) for all indices 1≤ l ≤ n and 1≤ j ≤ k in the random variable

Hn,k( f |G,V1,Vk), and the conditional probability in this pointω equals the proba-
bility that the random variable, (depending on the random variablesεl , 1≤ l ≤ n),
obtained in such a way is greater thanA

2

24k+2k!
n2kσ2(k+1).)

Indeed, in this case the conditional probability considered in (17.22) can be
bounded because of the multivariate version of Hoeffding’sinequality by

Cexp

{

−1
2

(
A4n4kσ4(k+1)

28k+4S2(F |G,V1,V2)

)1/2 j
}

≤Cexp

{

−1
2

(
A4/3n2kσ4k

210k+4

)1/2 j
}

with an appropriateC=C(k)> 0, where 2j = 2k−2|e(G)|, and 0≤ |e(G)| ≤ k−1.

Since j ≤ k, nσ2 ≥ 1
2, and also A4/3

210k+4 ≥ 2 if A0 is chosen sufficiently large we can
write in the above upper bound for the left-hand side of (17.22) j = k, and in such a
way we get inequality (17.22).

The next inequality, in which we estimate sup
f∈F

Hn,k( f |G,V1,V2), is a natural ver-

sion of formula (17.9) in the proof of Proposition 15.3. We shall show that

P

(

sup
f∈F

|Hn,k( f |G,V1,V2)|>
A2

24k+1 n2kσ2(k+1)

∣
∣
∣
∣
∣
ξ ( j,±1)

l , 1≤ l ≤ n, 1≤ j ≤ k

)

(ω)

≤C

(

1+D

(
24k+3

A2σ2(k+1)

)L
)

e−2−(6+2/k)A2/3knσ2

if S2(F |G,V1,V2))(ω)≤ 22kA8/3n2kσ4 andA≥ A0 (17.23)

for all G∈ G such that|e(G)|< k andV1,V2 ⊂ {1, . . . ,k}.
To prove formula (17.23) let us fix two setsV1,V2 ⊂ {1, . . . ,k} and a diagramG

such that|e(G)| < k. We shall define for all vectorsx(n) = (x( j,1)
l ,x( j,−1)

l , 1 ≤ l ≤
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n, 1 ≤ j ≤ k) ∈ X2kn some probability measureα(x(n)) on the spaceXk ×Y (with
the spaceY which appears in the formulation of Proposition 15.4) with which we
can work so as we did with the probability measuresν(x(n)) andρ(x(n)) in the proof
of Propositions 7.3 and 15.3.

To do this we define first for a vectorx(n) = (x( j,1)
l ,x( j,−1)

l , 1 ≤ l ≤ n, 1 ≤ j ≤
k) ∈ X2kn and for all 1≤ j ≤ k two probability measuresν(1)

j = ν(1)
j (x(n),V1)

and ν(2)
j = ν(2)

j (x(n),V2) in the space(X,X ) in the following way. The mea-

suresν(1)
j (x(n),V1) andν(2)

j (x(n),V2) are uniformly distributed in the set of points

x
( j,δ j (V1))

l , 1≤ l ≤ n andx
( j,δ j (V2))

l , 1≤ l ≤ n, respectively. More explicitly, we define

for all 1≤ j ≤ k (and setsV1 andV2) the probability measuresν(1)
j

(

{x
( j,δ j (V1))

l }
)

=

1
n and ν(2)

j

(

{x
( j,δ j (V2))

l }
)

= 1
n for all 1 ≤ l ≤ n, where δ j(V1) = 1 if j ∈ V1,

δ j(V1) =−1 if j /∈V1, and similarlyδ j(V2) = 1 if j ∈V2 andδ j(V2) =−1 if j /∈V2.

Let us consider the product measuresα1 = α1(x(n),V1) = ν(1)
1 ×·· ·×ν(1)

k ×ρ and

α2 = α2(x(n),V2) = ν(2)
1 × ·· ·× ν(2)

k ×ρ on the product space(Xk ×Y,X k ×Y ),
whereρ is that probability measure on(Y,Y ) which appears in Proposition 15.4.
With the help of the measuresα1 and α2 we define the measureα = α(x(n)) =
α(x(n),V1,V2) =

α1+α2
2 in the space(Xk×Y,X k×Y ). Let us also define the mea-

sureα̃ = α̃(x(n)) = α̃(x(n),V1,V2) = ν(1)
1 ×·· ·ν(1)

k ×ν(2)
1 ×·· ·ν(2)

k ×ρ in the space
(X2k×Y,X 2k×Y ).

DefineHn,k( f |G,V1,V2) as a function in the product space(X2kn,X 2kn) (with

argumentsx( j,1)
l andx( j,−1)

l , 1≤ j ≤ k, 1≤ l ≤ n) by means of formula (17.15) by

replacing the random variablesξ ( j,δ j (V1))

l j
(ω) by x

( j,δ j (V1))

l j
and the random variables

ξ ( j,δ j (V2))

l ′j
(ω) by x

( j,δ j (V2))

l ′j
in it for all 1 ≤ j ≤ k and 1≤ l j , l ′j ≤ n. (We consider the

value of the coefficientsεl j(s)
andεl ′

j̄(s)
in (17.5) fixed.) With such a notation we can

write for any pairsf ,g∈ F andx(n) = (x j,1)
l ,x( j,−1)

l , 1≤ j ≤ k, 1≤ l ≤ n) ∈ X2kn,
by exploiting the properties of the above defined measureα̃ the inequality

sup
ε1,...,εn

|Hn,k( f |G,V1,V2)(x
(n))−Hn,k(g|G,V1,V2)(x

(n))|

≤ ∑
v=(v(1),v(2))∈V(G)

∑
(l1,...,lk,l

′
1...,l

′
k)∈EG(v)

∫

| f (x(1,δ1(V1))
l1

, . . . ,x(k,δk(V1))
lk

,y) f (x(1,δ1(V2))

l ′1
, . . . ,x(k,δk(V2))

l ′k
,y)

−g(x(1,δ1(V1))
l1

, . . . ,x(k,δk(V1))
lk

,y)g(x(1,δ1(V2))

l ′1
, . . . ,x(k,δk(V2))

l ′k
,y)|ρ(dy)

≤ n2k
∫

| f (x1, . . . ,xk,y) f (xk+1, . . . ,x2k,y)

−g(x1, . . . ,xk,y)g(xk+1, . . . ,x2k,y)|α̃(dx1, . . . , dx2k, dy). (17.24)
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Beside this, since both sup| f (x1, . . . ,xk,y)| ≤ 1 and sup|g(x1, . . . ,xk,y)| ≤ 1, we
have

| f (x1, . . . ,xk,y) f (xk+1, . . . ,x2k,y)−g(x1, . . . ,xk,y)g(xk+1, . . . ,x2k,y)|
≤ | f (x1, . . . ,xk,y)|| f (xk+1, . . . ,x2k,y)−g(xk+1, . . . ,x2k,y)|

+|g(xk+1, . . . ,x2k)|| f (x1, . . . ,xk,y)−g(x1, . . . ,xk,y)|
≤ | f (xk+1, . . . ,x2k,y)−g(xk+1, . . . ,x2k,y)|

+| f (x1, . . . ,xk,y)−g(x1, . . . ,xk,y)|.

It follows from this inequality, formula (17.24) and the definition of the measures
α̃, α1, α2 andα that

sup
ε1,...,εn

|Hn,k( f |G,V1,V2)(x
(n))−Hn,k(g|G,V1,V2)(x

(n))|

≤ n2k
∫

(| f (xk+1, . . . ,x2k,y)−g(xk+1, . . . ,x2k,y)|

+| f (x1, . . . ,xk,y)−g(x1, . . . ,xk,y)|)α̃(dx1, . . . , dx2k, dy)

= n2k
∫

| f (x1, . . . ,xk,y)−g(x1, . . . ,xk,y)|

(α1(dx1, . . . , dxk, dy)+α2(dx1, . . . , dxk, dy)) (17.25)

= 2n2k
∫

| f (x1, . . . ,xk,y)−g(x1, . . . ,xk,y)|α(dx1, . . . , dxk, dy)

≤ 2n2k
(∫

| f (x1, . . . ,xk,y)−g(x1, . . . ,xk,y)|2α(dx1, . . . , dxk, dy)

)1/2

with the previously defined probability measureα = α(x(n)). Put δ = A2σ2(k+1)

24k+3 ,
list the elements ofF as F = { f1, f2, . . .}, and choose such a set of indices
p1(x(n)), . . . , pm(x(n)) taking positive integer values withm= max(1,Dδ−L) ele-
ments for which

min
1≤l≤m

∫

( f (u)− fpl (x(n))
(u))2α(x(n))(du)≤ δ 2 for all f ∈ F andx(n) ∈ X2kn.

(Here integration is taken with respect tou∈ Xk×Y.)
Such a choice of the indicespl (x(n)), 1≤ l ≤ m, is possible, sinceF is L2-dense

with exponentL and parameterD. Moreover, by Lemma 7.4B we may chose the
functionspl (x(n)), 1≤ l ≤ m, as measurable functions of their argumentx(n) ∈ X2kn.

Putξ (n)(ω) = (ξ ( j,±1)
l (ω), 1≤ l ≤ n, 1≤ j ≤ k). By arguing similarly as we did

in the proof of Propositions 7.3 and (15.3) we get with the help of relation (17.25)
and the property of the functionsfpl (x(n))

(·) constructed above that
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{

ω : sup
f∈F

|Hn,k( f |G,V1,V2)(ω)| ≥ A2n2kσ2(k+1)

2(4k+1)

}

⊂
m⋃

l=1

{

ω : |Hn,k( fpl (ξ (n)(ω)|G,V1,V2)(ω)(ω)| ≥ A2n2kσ2(k+1)

2(4k+2)

}

.

Hence

P

(

sup
f∈F

|Hn,k( f |G,V1,V2)|>
A2n2kσ2(k+1)

24k+1

∣
∣
∣
∣
∣
ξ ( j,±1)

l , 1≤ l ≤ n, 1≤ j ≤ k

)

(ω)

≤
m

∑
l=1

P

(

|Hn,k( fpl (ξ (n)(ω))|G,V1,V2)|>
A2n2kσ2(k+1)

24k+1

∣
∣
∣
∣
∣

ξ ( j,±1)
l , 1≤ l ≤ n, 1≤ j ≤ k

)

(ω)

for almost allω. The last inequality together with (17.22) and the inequality m=

max(1,Dδ−L)≤ 1+D
(

24k+3

A2σ2(k+1)

)L
imply relation (17.23).

It follows from relations (17.16) and (17.23) that

P

(

sup
f∈F

|Hn,k( f |G,V1,V2)|>
A2n2kσ2(k+1)

24k+1

)

≤ 2k+1e−A2/3knσ2

+C

(

1+D

(
24k+3

A2σ2(k+1)

)L
)

e−2−(6+2/k)A2/3knσ2
if A≥ A0

for all V1,V2 ⊂ {1, . . . ,k} and diagramG∈ G such that|e(G)| ≤ k−1. This inequal-
ity implies that relation (17.11) holds also in the case|e(G)| ≤ k−1 if the constants
A0 is chosen sufficiently large in Proposition 15.4, and this completes the proof of
Proposition 15.4. To prove relation (17.11) in the case|e(G)| ≤ k−1 with the help

of the last inequality it is enough to show thatD( 24k+3

A2σ2(k+1) )
L ≤ econst.nσ2

if A> A0

with a sufficiently largeA0, since this implies that the second term at the right-hand
of our last estimation is not too large.

This relation follows from the inequalitynσ2 ≥ L logn+ logD which implies
that

(
24k+3

A2σ2(k+1)

)L

≤
(

n(k+1)

(2nσ2)(k+1)

)L

≤ n(k+1)L = e(k+1)L logn ≤ e(k+1)nσ2

if A0 is sufficiently large, andD = elogD ≤ enσ2
.



Chapter 18
An overview of the results and a discussion of
the literature

I discuss briefly the problems investigated in this work, recall some basic results
related to them, and also give some references. I also write about the background of
these problems which may explain the motivation for their study. I list the remarks
following the subsequent chapters in this work. Chapter 1 isan introductory text,
the real work starts at Chapter 2.

Chapter 2

I met the main problem considered in this work when I tried to adapt the method
of proof of the central limit theorem for maximum-likelihood estimates to some
more difficult questions about so-called non-parametric maximum likelihood esti-
mate problems. The Kaplan–Meyer estimate for the empiricaldistribution function
with the help of censored data investigated in the second chapter is an example for
such problems. It is not a maximum-likelihood estimate in the classical sense, but it
can be considered as a non-parametric version of it. In the estimation of the distribu-
tion function with the help of censored data we cannot apply the classical maximum
likelihood method, since in this problem we have to choose our estimate from a too
large class of distribution functions. The main problem is that there is no dominat-
ing measure with respect to which all candidates which may appear as our estimate
have a density function. A natural way to overcome this difficulty is to choose an
appropriate smaller class of distribution functions, to compare the probability of
the appearance of the sample we observed with respect to all distribution functions
of this class and to choose that distribution function as ourestimate for which this
probability takes its maximum.

The Kaplan–Meyer estimate can be found on the basis of the above principle in
the following way: Let us estimate the distribution function F(x) of the censored
data simultaneously together with the distribution function G(x) of the censoring
data. (We have a sample of sizen and know which sample elements are censored
and which are censoring data.) Let us consider the class of such pairs of estimates
(Fn(x),Gn(x)) of the pair(F(x),G(x)) for which the distribution functionFn(x) is
concentrated in the censored sample points and the distribution functionGn(x) is
concentrated in the censoring sample points; more precisely, let us also assume that

213
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if the largest sample point is a censored point, then the distribution functionGn(x)
of the censoring data takes still another value which is larger than any sample point,
and if it is a censoring point then the distribution functionFn(x) of the censored
data takes still another value larger than any sample point.(This modification at the
end of the definition is needed, since if the largest sample point is from the class of
censored data, then the distributionG(x) of the censoring data in this point must be
strictly less than 1, and if it is from the class of censoring data, then the value of the
distribution functionF(x) of the censored data must be strictly less than 1 in this
point.) Let us take this class of pairs of distribution functions (Fn(x),Gn(x)), and
let us choose that pair of distribution functions of this class as the (non-parametric
maximum likelihood) estimate with respect to which our observation has the great-
est probability.

The above extremum problem about a pair of distribution functions(Fn(x),Gn(x))
can be solved explicitly, (see [28]), and it yields the estimate ofFn(x) written down
in formula (2.3). (The functionGn(x) satisfies a similar relation, only the random
variablesXj andYj and the eventsδ j = 1 andδ j = 0 have to be replaced in it.) If
we want to prove that the estimate of the distribution function we found in such a
way satisfies the central limit theorem, then we can do this with the help of a good
adaptation of the method applied in the study of maximum likelihood estimates. We
apply an appropriate linearization procedure, and there isonly one really hard part of
the proof. We have to show that this linearization proceduregives a small error. This
problem led to the study of a good estimate on the tail distribution of the integral of
an appropriate function of two variables with respect to theproduct of a normalized
empirical measure with itself. Moreover, as a more detailedinvestigation showed,
we actually need the solution of a more general problem wherewe have to bound
the tail distribution of the supremum of a class of such integrals. The main subject
of this work is to solve the above problems in a more general setting, to estimate not
only two-fold, but alsok-fold random integrals and the supremum of such integrals
for an appropriate class of kernel functions with respect toa normalized empirical
distribution for allk≥ 1.

The proof of the limit theorem for the Kaplan–Meyer estimateexplained in this
work applied the explicit form of this estimate. It would be interesting to find such
a modification of this proof which only exploits that the Kaplan–Meyer estimate is
the solution of an appropriate extremum problem. We may expect that such a proof
can be generalized to a general result about the limit behaviour for a wide class
of non-parametric maximum likelihood estimates. Such a consideration was behind
the remark of Richard Gill I quoted at the end of Chapter 2.

A detailed proof together with a sharp estimate on the speed of convergence for
the limit behaviour of the Kaplan–Meyer estimate based on the ideas presented in
Chapter 2 is given in paper [40]. Paper [41] explains more about its background,
and it also discusses the solution of some other non-parametric maximum likeli-
hood problems. The results about multiple integrals with respect to a normalized
empirical distribution function needed in these works wereproved in [33]. These
results were satisfactory for the study in [40], but they also have some drawbacks.
They do not show that if the random integrals we are considering have small vari-
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ances, then they satisfy better estimates. Beside this, if we consider the supremum
of random integrals of an appropriate class of functions, then these results can be
applied only in very special cases. Moreover, the method of proof of [33] did not
allow a real generalization of these results. Hence I had to find a different approach
when I tried to generalize them.

I do not know of other works where the distribution of multiple random integrals
with respect to a normalized empirical distribution is studied. On the other hand,
there are some works where a similar problem is investigatedabout the distribu-
tion of (degenerate)U-statistics. The most important results obtained in this field
are contained in the book of de la Peña and Gińe Decoupling, From Dependence
to Independence[9]. The problems about the behaviour of degenerateU-statistics
and multiple integrals with respect to a normalized empirical distribution function
are closely related, but the explanation of their relation is far from trivial. The main
difference between them is that integration with respect toµn−µ instead of the em-
pirical distributionµn means of some sort of normalization, while this normalization
is missing in the definition ofU-statistics. I return to this question later.

Let me finish my discussion about Chapter 2 with some personalremarks. Here
I investigated a special problem. But in my opinion the method applied in this chap-
ter works well in several similar problems about the limit behaviour of a non-linear
functional of independent identically distributed randomvariables. In the study of
such problems we express the non-linear functional we are investigating as an inte-
gral with respect to the normalized empirical distributiondetermined by the random
variables we are working with plus some negligibly small error terms. Then we have
to describe the limit behaviour of the random integral we got, and this can be done
with the help of some classical results of probability theory. Beside this we have to
show that the remaining error terms are really small. This can be done, but at this
point the results discussed in this work play a crucial role.I believe that a similar
picture arises in many cases. In certain problems it may happen that the main term is
not a one-fold, but a multiple integral with respect to the normalized empirical dis-
tribution. But the limit distribution of such functionals can also be described. This
is the content of Theorem 10.4′ proved in Appendix C.

Chapter 3

The main part of this work starts at Chapter 3. A general overview of the results
without the hard technical details can be found in [36].

First the estimation of sums of independent random variables or of one-fold ran-
dom integrals with respect to a normalized empirical distribution and the supremum
of such expressions is investigated in Chapters 3 and 4. Thisquestion has a fairly
big literature. I would mention first of all the booksA course on empirical pro-
cesses[13], Real Analysis and Probability[14] andUniform Central Limit Theo-
rems[15] of R. M. Dudley. These books contain a much more detaileddescription
of the empirical processes than the present work together with a lot of interesting
results.

In Chapter 3 I presented the proof of some classical results about the tail be-
haviour of sums of independent and bounded random variableswith expectation
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zero. They are Bernstein’s and Bennett’s inequalities. Their proofs can be found
at many places, e.g. in Theorem 1.3.2 of [15] and [6].) We are also interested in
the question when these results give such an estimate that the central limit theo-
rem suggests. Actually, as it is explained in Chapter 3, Bennett’s inequality gives
such a bound that the Poissonian approximation of partial sums of independent ran-
dom variables suggests. Bernstein’s inequality provides an estimate suggested by
the central limit theorem if the variance of the sum we consider is not too small.
The results in Chapter 3 explain these statements more explicitly. If the variance
of the sum is too small, then Bennett’s inequality provides aslight improvement
of Bernstein’s inequality. Moreover, as Example 3.3 shows,Bennett’s inequality is
essentially sharp in this case. But these results are much weaker than the estimates
suggested by a normal comparison.

The relative weakness of Bernstein’s and Bennett’s inequality for random sums
with small variance had a deep consequence in our investigation about the supre-
mum (of appropriate classes) of sums of independent random variables. Because of
the weakness of these estimates in certain cases we had to finda new method. We
could overcome the difficulty we met with the help of a symmetrization argument
which is explained in Chapter 7. But to apply this method we needed another result,
known under the name Hoeffding’s inequality. It yields an estimate about the tail
behaviour of linear combinations of independent Rademacher functions. This result
always provides such a good bound as the central limit theorem suggests. This is
the reason why I discuss this inequality at the end of Chapter3, in Theorem 3.4. It
is also a classical result whose proof can be found for instance in [25].

The content of Chapter 3 can be found in the literature, e.g. in [13]. The main dif-
ference between my discussion and that of earlier works is that I put more emphasis
on the investigation of the question when the estimates on the tail distribution of
partial sums of independent random variables are similar totheir Gaussian counter-
part. I had a good reason to discuss this question in more detail. I was also interested
in the estimation of the tail distribution of the supremum ofpartial sums of indepen-
dent random variables, and in the study of this problem we have to understand when
the classical methods related to Gaussian random variablescan be applied and when
we have to look for a new approach.

Chapter 4

Chapter 4 contains the one-variate version of our main result about the supremum of
the integrals of a classF of functions with respect to a normalized empirical mea-
sure together with an equivalent statement about the tail distribution of the supre-
mum of a class of random sums defined with the help of a sequenceof independent
and identically distributed random variables and a class offunctionsF with some
nice properties. These results are formulated in Theorems 4.1 and 4.1′. They ap-
peared in [33]. Also a Gaussian version of them is presented in Theorem 4.2 about
the distribution of the supremum of a Gaussian random field with some appropriate
properties. A deeper version of Theorem 4.2 is studied in paper [12]. The content of
these results can be so interpreted that if we take the supremum of random integrals
or of random sums determined by a nice class of functionsF in the way described
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in Chapter 4, then the tail distribution of this supremum satisfies an almost as good
estimate as the ‘worst element’ of the random variables taking part in this supre-
mum. But such a result holds only if we consider the value of this tail distribution at
a sufficiently large level, since — as some concentration inequalities imply — the
supremum of these random sums are larger than the expected value of this supre-
mum with probability almost one. I also discussed a result inExample 4.3 which
shows that some rather technical conditions of Theorem 4.1 cannot be omitted.

The most important condition in Theorem 4.1 was that the class of functionsF
we considered in it isL2-dense. This property was introduced before the formulation
of Theorem 4.1. One may ask whether one can prove a better version of this result,
which states a similar bound for a different, possibly larger class of functionsF . It is
worth mentioning that Talagrand proved results similar to Theorem 4.1 for different
classes of functionsF in his book [58]. These classes of functions are very different
of ours, and Talagrand’s results seem to be incomparable with ours. I return to this
question later in the discussion of Chapters 6 and 7, which deal with the proof of
the results of Chapter 4. In the remaining part of the discussion of Chapter 4 I write
about the notion of countably approximable classes of random variables and its role
in the present work.

In the first formulation of our results we have imposed the condition that the
class of functionsF is countable, i.e. we take the supremum of countably many
random variables. In the proofs this condition was heavily exploited. On the other
hand, in some important applications we also need results about the supremum of a
possibly non-countable set of random variables. To handle such cases I introduced
the notion of countably approximable classes of random variables and proved that
in the results of this work the condition about countabilitycan be replaced by the
weaker condition that the supremum of countably approximable classes is taken.
R. M. Dudley worked out a different method to handle the supremum of possibly
non-countably many random variables, and generally his method is applied in the
literature. The relation between these two methods deserves some discussion.

To understand the problem we are discussing let us first recall that if we take a
class of random variablesSt , t ∈ T, indexed by some index setT, then for all setsA
measurable with respect to theσ -algebra generated by the random variablesSt , t ∈
T, there exists a countable subsetT ′ = T ′(A)⊂ T such that the setA is measurable
also with respect to the smallerσ -algebra generated by the random variableSt ,
t ∈ T ′. Beside this, if the finite dimensional distributions of therandom variables
St , t ∈ T, are given, then by the results of classical measure theory the probability
of all events measurable with respect to theσ -algebra generated by these random
variablesSt , t ∈ T, is also determined. But it may happen that we want to deal with
such events whose probability cannot be defined in such a way.In particular, ifT is

a non-countable set, then the events

{

ω : sup
t∈T

St(ω)> u

}

are non-measurable with

respect to the aboveσ -algebra, and generally we cannot speak of their probabilities.
To overcome this difficulty Dudley worked out a theory which enabled him to work
also with outer measures. His theory is based on some rather deep results of the
analysis. It can be found for instance in his book [15].
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I restricted my attention to such cases when after the completion of the prob-
ability measureP we can also speak of the real (and not only outer) probabilities

P

(

sup
t∈T

St > u

)

. I tried to find appropriate conditions under which these probabili-

ties really exist. More explicitly, I was interested in the case when for allu> 0 there
exists some setA = Au measurable with respect to theσ -algebra generated by the
random variablesSt , t ∈ T, such that the symmetric difference of the setsAu and
{

ω : sup
t∈T

St(ω)> u

}

is contained in a set which is measurable with respect to the

σ -algebra generated by the random variablesSt , t ∈T, and it has probability zero. In

such a case the probabilityP

(

sup
t∈T

St > u

)

can be defined asP(Au). This approach

led me to the definition of countable approximable classes ofrandom variables. If
this property holds, then we can speak about the probabilityof the event that the
supremum of the random variables we are interested in is larger than some fixed
value. I proved a simple but useful result in Lemma 4.4 which provides a condition
for the validity of this property. In Lemma 4.5 I proved with its help that an impor-
tant class of functions is countably approximable. It seemsthat this property can be
proved for many other interesting classes of functions withthe help of Lemma 4.4,
but I did not investigate this question in more detail.

The problem we met here is not an abstract, technical difficulty. Indeed, the dis-
tribution of the supremum of uncountably many random variables can become dif-
ferent if we modify each random variable on a set of probability zero, although their
finite dimensional distributions remain the same after suchan operation. Hence, if
we are interested in the probability of the supremum of a non-countable set of ran-
dom variables with prescribed finite dimensional distributions we have to tell more
explicitly which version of this set of random variables we consider. It is natural to
look for such an appropriate version of the random fieldSt , t ∈ T, whose ‘trajecto-
ries’ St(ω), t ∈ T, have nice properties for all elementary eventsω ∈ Ω . Lemma 4.4
can be interpreted as a result in this spirit. The condition given for the countable
approximability of a class of random variables at the end of this lemma can be con-
sidered as a smoothness type condition about the ‘trajectories’ of the random field
we consider. This approach shows some analogy to some important problems in the
theory of stochastic processes when a regular version of a stochastic process is con-
sidered, and the smoothness properties are investigated for the trajectories of this
version.

In our problems the version of the set of random variablesSt , t ∈ T, we work
with appears in a simple and natural way. In these problems wehave finitely many
random variablesξ1, . . . ,ξn at the start, and all random variablesSt(ω), t ∈ T, we
are considering can be defined individually for eachω as a function of these random
variablesξ1(ω), . . . ,ξn(ω). We take the version of the random fieldSt(ω), t ∈ T, we
get in such a way and want to show that it is countably approximable. In Chapter 4
this property is proved in an important model, probably in the most important model
in possible applications we are interested in. In more complicated situations when
our random variables are defined not as a function of finitely many sample points,
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for instance in the case when we define our set of random variables by means of
integrals with respect to a Gaussian random field it is harderto find the right regular
version of our sets of random variables. In this case the integrals we consider are
defined only with probability 1, and it demands some extra work to find their right
version. But in the problems studied in this work the above sketched approach is
satisfactory for our purposes, and it is simpler than that ofDudley; we do not have
to follow his rather difficult technique. On the other hand, Imust admit that I do not
know the precise relation between the approach of this work and that of Dudley.

Chapter 5

In Chapter 4 the notion ofLp-dense classes, 1≤ p< ∞, also has been introduced.
The notion ofL2-dense classes appeared in the formulation Theorems 4.1 and4.1′.
It can be considered as a version of theε-entropy, discussed at many places in the
literature. (See e.g. [13] or [14].) On the other hand, thereseems to be no standard
definition of theε-entropy. The term ofL2-dense classes seemed to be the appropri-
ate object to work with in this lecture note. To apply the results related toL2-dense
classes we also need some knowledge about how to check this property in concrete
models. For this goal I discussed here Vapnik–Červonenkis classes, a popular and
important notion of modern probability theory. Several books and papers, (see e.g.
the books [15], [49], [59] and the references in them) deal with this subject. An
important result in this field is Sauer’s lemma, (Lemma 5.1) which together with
some other results, like Lemma 5.3 imply that several interesting classes of sets or
functions are Vapnik–̌Cervonenkis classes.

I put the proof of these results to the Appendix, partly because they can be found
in the literature, partly because in this work Vapnik–Červonenkis classes play a dif-
ferent and less important role than at other places. Here Vapnik–Červonenkis classes
are applied to show that certain classes of functions areL2-dense. At this point a re-
sult of Dudley formulated in Lemma 5.2 plays an important role. It implies that
a Vapnik–̌Cervonenkis class of functions with absolute value boundedby a fixed
constant is anL1, and as a consequence also anL2-dense class of functions. The
proof of this important result which seems to be less known even among experts of
this subject than it would deserve is contained in the main text. Dudley’s original
result was formulated in the special case when the functionswe consider are indi-
cator functions of some sets. But its proof contains all important ideas needed in
the proof of Lemma 5.2. A proof of the result in the form formulated in this work
can be found in [49]. This book also contains the other results of this chapter about
Vapnik–Červonenkis classes.

Chapters 6 and 7

Theorem 4.2, which is the Gaussian counterpart of Theorems 4.1 and 4.1′ is proved
in Chapter 6 by means of a natural and important technique, called the chaining
argument. This means the application of an inductive procedure, in which an appro-
priate sequence of finite subsets of the original set of random variables is introduced,
and a good estimate is given on the supremum of the random variables in these sub-
sets by means of an inductive procedure. The subsets became denser subsets of the
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original set of the random variables at each step of this procedure. This chaining
argument is a popular method in certain investigations. It is hard to say with whom
to attach it. Its introduction may be connected to some worksof R. M. Dudley. It is
worth mentioning that Talagrand [58] worked out a sharpenedversion of it which
yields in the study of certain problems a sharper and more useful estimate. But it
seems to me that in the study of the problems of this work this improvement has a
limited importance, it turns out to be useful in the study of different problems.

Theorem 4.2 can be proved by means of the chaining argument, but this method
is not strong enough to supply a proof of Theorem 4.1. It provides only a weak es-
timate in this case, because there is no good estimate on the probability that a sum
of independent random variables is greater than a prescribed value if these random
variables have too small variances. As a consequence, the chaining argument sup-
plies a much weaker estimate than the result we want to prove under the conditions
of Theorem 4.1. Lemma 6.1 contains the result the chaining argument yields under
these conditions. In Chapter 6 still another result, Lemma 6.2 is formulated. It can
be considered as a special case of Theorem 4.1 where only the supremum of partial
sums with small variances is estimated. We also show in this chapter that Lem-
mas 6.1 and 6.2 together imply Theorem 4.1. The proof is not difficult, despite of
some non-attractive details. It has to be checked that the parameters in Lemmas 6.1
and 6.2 can be fitted to each other.

Lemma 6.2 is proved in Chapter 7. It is based on a symmetrization argument.
This proof applies the ideas of a paper of Kenneth Alexander [3], and although
its presentation is different from Alexander’s approach, it can be considered as a
version of his proof. It may be worth mentioning that the symmetrization arguments
were first applied in the theory of Vapnik–Červonenkis classes to get some useful
estimates (see e.g. [49]). But it turned out that an appropriate refinement of this
method supplies sharper results if we are working withL2-dense classes instead of
Vapnik–Červonenkis classes of functions.

A similar problem should also be mentioned at this place. M. Talagrand wrote
a series of papers about concentration inequalities, (see e.g. [55] or [56]), and his
research was also continued by some other authors. I would mention the works of
M. Ledoux [30] and P. Massart [43]. Concentration inequalities give a bound about
the difference between the supremum of a set of appropriately defined random vari-
ables and the expected value of this supremum. They express how strongly this
supremum is concentrated around its expected value. Such results are closely re-
lated to Theorem 4.1, and the discussion of their relation deserves some attention.
A typical concentration inequality is the following resultof Talagrand [56].

Theorem 18.1 (Theorem of Talagrand).Consider n independent and identically
distributed random variablesξ1, . . . ,ξn with values in some measurable space
(X,X ). Let F be some countable family of real-valued measurable functions

of (X,X ) such that‖ f‖∞ ≤ b < ∞ for every f∈ F . Let Z= sup
f∈F

n
∑

i=1
f (ξi) and

v= E

(

sup
f∈F

n
∑

i=1
f 2(ξi)

)

. Then for every positive number x
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P(Z ≥ EZ+x)≤ K exp

{

− 1
K′

x
b

log

(

1+
xb
v

)}

and

P(Z ≥ EZ+x)≤ K exp

{

− x2

2(c1v+c2bx)

}

,

where K, K′, c1 and c2 are universal positive constants. Moreover, the same inequal-
ities hold when replacing Z by−Z.

Theorem 18.1 yields, similarly to Theorem 4.1, an estimate about the distribution
of the supremum for a class of sums of independent random variables. (The paper
of P. Massart [43] contains a similar estimate which is better for our purposes. The
main difference between these two estimates is that the bound given by Massart de-

pends onσ2 = sup
f∈F

n
∑

i=1
Var f (ξi) instead ofv= E

(

sup
f∈F

n
∑

i=1
f 2(ξi)

)

.) Theorem 18.1

can be considered as a generalization of Bernstein’s and Bennett’s inequalities when
the distribution of the supremum of partial sums (and not only the distribution of one
partial sum) is estimated. A remarkable feature of this result is that it assumes no
condition about the structure of the class of functionsF (like the condition ofL2-
dense property of the classF imposed in Theorem 4.1). On the other hand, the

estimates in Theorem 18.1 contain the quantityEZ= E

(

sup
f∈F

n
∑

i=1
f (ξi)

)

. Such an

expectation of some supremum appears in all concentration inequalities. As a con-
sequence, they are useful only if we can bound the expected value of the supremum
we want to estimate. It is difficult to find a good bound on this expected value in
the general case. Paper [18] provides a useful estimate on itif the expected value of
the supremum of random sums is considered under the conditions of Theorem 4.1.
But I preferred a direct proof of this result. Let me remark that because of the above
mentioned concentration inequality the conditionu ≥ const.σ log1/2 2

σ with some
appropriate constant which cannot be dropped from Theorem 4.1 can be interpreted
so that under the conditions of Theorem 4.1 const.σ log1/2 2

σ is an upper bound for
the expected value of the supremum we investigated in this result. Example 4.3 im-
plies that if the conditions of Theorem 4.1 are violated, then the expected value of
the above supremum may be larger.

It is also worth mentioning Talagrand’s work [58] which contains several inter-
esting results similar to Theorem 4.1. But despite their formal similarity, they are
essentially different from the results of this work. This difference deserves a special
discussion.

Talagrand proved in [58] by working out a more refined, betterversion of the
chaining argument a sharp upper bound for the expected valueEsup

t∈T
ξt of the supre-

mum of countably many (jointly) Gaussian random variable with zero expecta-
tion. This result is sharp. Indeed, Talagrand proved also a lower bound for this
expected value, and the quotient of his upper and lower boundis bounded by a
universal constant. By applying similar arguments he also gave an upper bound for
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E sup
f∈F

N
∑

k=1
f (ξk) in Proposition 2.7.2 of his book ifξ1, . . . ,ξN is a sequence of inde-

pendent, identically distributed random variables with some known distributionµ ,
andF is a class of functions with some nice properties. Then he proved in Chap-
ter 3 of this book some estimates with the help of this result for certain models
which solved some problems that could not be solved with the help of the original
version of the chaining argument.

Let me make a short comparison between our Theorem 4.1 and Talagrand’s re-
sult. Talagrand investigated in his book [58] the expected value of the supremum
of partial sums, while we gave an estimate on its tail distribution. But this is not an
essential difference. Talagrand’s results also give an estimate on the tail distribution
of the supremum by means of concentration inequalities, andactually his proofs
also provide a direct estimate for the tail distribution we are interested in without
the application of these results. The main difference between the two works is that
Talagrand’s method gives a sharp estimate for different classes of functionsF .

Talagrand could prove sharp results in such cases when the class of functions
F for which the supremum is taken consists of smooth functions. An example for
such classes of functions which he thoroughly investigatedis the class of Lipschitz 1
functions. In particular, in Chapter 3 of his book [58] he proved that ifξ1, . . . ,ξn is a
sequence of independent random variables, uniformly distributed in the unit square
D = [0,1]× [0,1], andF is the class of Lipschitz 1 functions on the unit squareD
such that

∫

D f dλ = 0 for all f ∈ F , whereλ denotes the Lebesgue measure onD,

thenE sup
f∈F

n
∑

l=1
f (ξl ) ≤ L

√
nlogn with a universal constantL. He was interested in

this result, because it is equivalent to a theorem of Ajtai–Komlós–Tusńady [2]. (See
Chapter 3 of [58] for details.) On the other hand, we can give sharp results in such
cases whenF consists of non-smooth functions, (see Example 5.5), and Talagrand’s
method does not work in the study of such problems.

This difference in the conditions of the results in these twobooks is not a small
technical detail. Talagrand heavily exploited in his proofthat he worked with such
classes of functionsF from which he could select a subclass of functions ofF of
relatively small cardinality which is dense inF not only in theL2(µ)-norm with
the probability measureµ he was working with, but also in the supremum norm.
He needed this property, because this enabled him to get sharp estimates on the tail
distribution of the differences of functions he had to work with by means of Bern-
stein’s inequality. The smallness of the supremum norm of these random variables
was useful, since it implied that Bernstein’s inequality provides a sharp estimate in a
large domain. Talagrand needed such sharp estimates to apply (a refined version of)
the chaining argument. On the other hand, we considered suchclasses of functions
F which may have no small subclasses which are dense inF in the supremum
norm.

I would characterize the difference between the results of the two works in the
following way. Talagrand proved the sharpest possible estimates which can be ob-
tained by a refinement of the chaining argument, while our main problem was to
get sharp estimates also in such cases when the chaining argument does not work.
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Let me remark that we could prove our results only for such classes of functionsF
which areL2-dense. (See Theorem 4.1.) In the Gaussian counterpart of this result, in
Theorem 4.2, it was enough to impose thatF is anL2-dense class with respect to a
fixed probability measureµ . We needed the extra condition aboutL2-dense property
to prove sharp results about the tail distribution of supremum of partial sums when
the chaining argument does not work.

Chapter 8

The main results of this work are presented in Chapter 8. One of them is Theo-
rem 8.3 which is a multivariate version of Bernstein’s inequality (Theorem 3.1)
about degenerateU-statistics. A weaker version of this result was first provedin
a paper of Arcones and Giné in [4]. In the present form it was proved in my pa-
per [39]. Its version about multiple integrals with respectto a normalized empirical
measure formulated in Theorem 8.1 is proved in [35]. This paper contains a direct
proof. On the other hand, Theorem 8.1 can be derived from Theorem 8.3 by means
of Theorem 9.4 of this paper. Theorem 8.5 is the natural Gaussian counterpart of
Theorem 8.3. The limit theorem about degenerateU-statistics, Theorem 10.4 (and
its version about limit theorems for multiple integrals with respect to normalized
empirical measures, presented in Theorem 10.4′ of Appendix C was discussed in
this work to explain better the relation between degenerateU-statistics (or multiple
integrals with respect to normalized empirical measures) and multiple Wiener–It̂o
integrals. A proof of this result based on similar ideas as that discussed here can be
found in [16]. Theorem 6.6 of my lecture note [32] contains such a weaker version
of Theorem 8.5 which does not take into account the variance of the random integral
we are considering.

Example 8.7 is a natural supplement of Theorem 8.5. It shows that the estimate
of Theorem 8.5 is sharp if only the variance of a Wiener–Itô integral is known. At
the end of Chapter 13 I also mentioned the results of papers [1] and [29] without
proof which also have some relation to this problem. I discussed mainly the con-
tent of [29], and explained its relation to some results discussed in this work. The
proof of these papers apply a method different of those in this work. I make some
comments about them in the discussion of Chapter 13.

Theorems 8.2 and 8.4 which are the natural multivariate counterparts of Theo-
rem 4.1 and 4.1′ yield an estimate about the supremum of (degenerate)U-statistics
or of multiple random integrals with respect to a normalizedempirical measure
when the class of kernel functions in theseU-statistics or random integrals satisfy
some conditions. They were proved in my paper [37]. ActuallyI consider these the-
orems the hardest and most important results of this lecturenote. Earlier Arcones
and Gińe proved a weaker version of this result in paper [5], but their work did not
help in the proof of the results of this note. The proofs of thepresent note were based
on an adaptation of Alexander’s method [3] to the multivariate case. Theorem 8.6 is
the natural Gaussian counterpart of Theorems 8.2 and 8.4.

Example 8.8 in Chapter 8 shows that the conditionu ≤ const.nσ3 imposed in
Theorem 8.3 in the casek= 2 cannot be dropped. The paper of Arcones and Giné [4]
contains another example explained by Talagrand to the authors of that paper which
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also has a similar consequence. But that example does not provide such an explicit
comparison of the upper and lower bound on the probability investigated in Theo-
rem 8.3 as Example 8.8. Similar examples could be constructed for all k≥ 1.

Example 8.8 shows that at high levels only a very weak (and from practical point
of view not really important) improvement of the estimationon the tail distribution
of degenerateU-statistics is possible. But probably there exists a multivariate ver-
sion of Bennett’s inequality, i.e. of Theorem 3.2 which provides such an estimate.
Moreover, there is some hope to get a similar strengthened form of Theorems 8.2
and 8.4 (or of Theorem 4.2 in the one-dimensional case). Thisquestion is not inves-
tigated in the present work.

Chapter 9

Chapter 9 deals with the properties ofU-statistics. Its first result, Theorem 9.1, is
a classical result. It is the so-called Hoeffding decomposition of U-statistics to the
sum of degenerate statistics. Its proof first appeared in thepaper [24], but it can
be found at many places. The explanation of this work contains some ideas similar
to [54]. I tried to explain that Hoeffding’s decomposition is the natural multivariate
version of the (trivial) decomposition of sums of independent random variables to
sums of independent random variableswith expectation zeroplus the sum of the ex-
pectations of the original random variables. Moreover, even the proof of Hoeffding’s
decomposition shows some similarity to this simple decomposition.

Theorem 9.2 and Proposition 9.3 can be considered as a continuation of the in-
vestigation about the Hoeffding decomposition. They tell us how some properties
of the kernel function of the originalU-statistic are inherited in the properties of
the kernel functions of the degenerateU-statistics taking part in its Hoeffding de-
composition. In several applications of Hoeffding’s decomposition we need such
results.

The last result of Chapter 9, Theorem 9.4, enables us to reduce the estimation of
multiple random integrals with respect to normalized empirical measures to the es-
timation of degenerateU-statistics. This result is a version of Hoeffding’s decompo-
sition, where instead ofU-statistics multiple integrals with respect to a normalized
empirical distribution are decomposed to the sum ofdegenerate U-statistics. In these
two decompositions the same degenerateU-statistics appear. The main difference
between them is that in the decomposition of the random integrals in Theorem 9.4
the coefficients of the degenerateU-statistics are relatively small. The appearance
of small coefficients in this decomposition is due to the cancellation effect caused
by integration with respect to anormalizedempirical measure

√
n(µn − µ). The-

orem 9.4 was proved in [37]. The proof in this note is essentially different of the
original proof in [37], and it is simpler.

Some remarks related to Chapters 10, 11 and 12

Theorem 8.1 can be derived from Theorem 8.3 and Theorem 8.2 from Theorem 8.4
by means of Theorem 9.4. The proof of the latter results is simpler. Chapters 10–12
contain the results needed in the proof of Theorem 8.3 and of its Gaussian counter-
part Theorems 8.5 and 8.7. They are proved by means of good estimates on the high
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moments of degenerateU-statistics and multiple Wiener–Itô integrals. The classical
proof of the one-variate counterparts of these results is based on a good estimate of
the moment generating function. This method had to be replaced by the estimation
of high moments, because the moment generating function of ak-fold Wiener–It̂o
integral is divergent for all non-zero parameters ifk ≥ 3, (this is a consequence of
Theorem 13.6), and this property of Wiener–Itô integrals is also reflected in the be-
haviour of degenerateU-statistics. On the other hand, we can give good estimates
on the tail distribution of a random variable if we have good estimates on its high
moments. The results of Chapters 10, 11 and 12 enable us to prove good moment
estimates.

I know of two deep and interesting methods to study high moments of multi-
ple Wiener–It̂o integrals. The first of them is called Nelson’s inequality named after
Edward Nelson who published it in his paper [45]. This inequality simply implies
Theorem 8.5 about multiple Wiener–Itô integrals, although with worse constants.
Later Leonhard Gross discovered a deep and useful generalization of this result
which he published in the workLogarithmic Sobolev inequalities[21]. Gross con-
sidered in his paper astationaryMarkov processX(t), t ≥ 0, and gave a good bound
on theLp-norm of functions of the formUt( f )(x) = E( f (X(t)|X(0) = x), where the
Lp-norm is taken with respect to the distribution of the randomvariableX(0). The
proof of thisLp-norm estimate is based on the study of the infinitesimal operator of
the Markov process. Gross’ results provide Nelson’s inequality, if they are applied
for the Ornstein–Uhlenbeck process.

Gross’ investigation in [21] revealed very much about the behaviour of Markov
processes. The book [46] is partly based on this method. Gross’ approach turned
out to be very fruitful in the study of several hard problems of the probability theory
and statistical physics. (See e.g [22] or [30]). It also provides a good estimate for
the high moments of Wiener–Itô integrals.

There is another useful method to study Wiener–Itô integrals due to Kyoshi Itô
and Roland L’vovich Dobrushin. This seemed to me more usefulif we want es-
timate the high moments not only of Wiener–Itô integrals but also of degenerate
U-statistics. I applied this method in Chapters 10, 11 and 12.I showed how we can
get with its help results that enable us to prove good moment estimates both for
Wiener–It̂o integrals and degenerateU-statistics. The main step in this approach is
the proof of a so-called diagram formula which makes possible to rewrite a product
of Wiener–It̂o integrals as a sum of Wiener–Itô integrals. Moreover, this result also
has a natural counterpart for the products of degenerateU-statistics.

Chapter 10

In Chapter 10 I discuss a method related to Kyoshi Itô and Roland L’vovich Do-
brushin. This is the theory of multiple Wiener–Itô integrals with respect to a white
noise. This integral was introduced in paper [26]. It is useful, because every ran-
dom variable which is measurable with respect to theσ -algebra generated by the
Gaussian random variables of the underlying white noise andhas finite second mo-
ment can be written as the sum of Wiener–Itô integrals of different order. More-
over, if only Wiener–It̂o integrals of symmetric kernel functions are taken, then
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this representation is unique. Actually this result was originally proved by Nor-
bert Wiener [60]. This representation also appeared in physics under the name Fock
space. It plays an important role in quantum physics. Let me briefly explain the rea-
son for the name white noise for the appropriate notion introduced in Chapter 10.

The notion of white noise was originally introduced at a heuristic level as the
derivative of the trajectories of a Wiener process. But as these trajectories are non-
differentiable the introduction of this notion demands a better explanation. A natu-
ral way to overcome the difficulties is to consider the derivative of a trajectory of a
Wiener process as a generalized random function, and to takeits integral on all mea-
surable sets. In such a way we get a collection of Gaussian random variablesξ (A)
with expectation zero, indexed by the measurable setsA. These random variables
have correlation functionEξ (A)ξ (B) = λ (A∩B), whereλ (·) denotes the Lebesgue
measure. In such a way we get a correct definition of the white noise which pre-
serves the heuristic content of the original approach. In the definition of general
white noise we allow to work with an arbitrary measureµ and not only with the
Lebesgue measureλ . If we have a white noise we would like to have a tool that en-
ables us to study not only the Gaussian random variables measurable with respect to
theσ -algebra generated by the random variables of the white noise but all random
variables measurable with respect to thisσ -algebra. The Wiener–Itô integrals were
defined with such a goal.

An important result of the theory of Wiener–Itô integrals, the so-called diagram
formula, formulated in Theorem 10.2, expresses products ofWiener–It̂o integrals as
a sum of such integrals. This result which shows some similarity to the Feynman
diagrams applied in the statistical physics was proved in [11]. Actually this paper
discussed a modified version of Wiener–Itô integrals which is more appropriate to
study the action of shift operators for non-linear functionals of a stationary Gaussian
field. But these modified Wiener–Itô integrals can be investigated in almost the same
way as the original ones. The diagram formula has a simple consequence formulated
in Corollary of Theorem 10.2 of this note. It enables us to calculate the expectation
of products of Wiener–It̂o integrals. It yields an explicit formula for them. This
result was applied in the proof of Theorem 8.5, i.e. in the estimation of the tail-
distribution of Wiener–It̂o integrals. It̂o’s formula for multiple Wiener–It̂o integrals
(Theorem 10.3) was proved in [26].

Actually the above results about Wiener–Itô integrals would have been sufficient
for our purposes. But I also presented some other results forthe sake of complete-
ness. In particular, I discussed some results about Hermitepolynomials. Wiener–It̂o
integrals are closely related to Hermite polynomials or to their multivariate version,
to the so-called Wick polynomials. (See e.g. [32] or [42] forthe definition of Wick
polynomials.) Appendix C contains the most important properties of Hermite poly-
nomials needed in the study of Wiener–Itô integrals. In particular, it contains the
proof of Proposition C2 about the completeness of the Hermite polynomials in the
Hilbert space of the functions square integrable with respect to the standard Gaus-
sian distribution. This result can be found for instance in Theorem 5.2.7 of [53]. In
the present proof I wanted to show that this result is closelyrelated to the so-called
moment problem, i.e. to the question when a distribution is determined by its mo-
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ments uniquely. The method of proof described in this note can be applied with some
refinement to prove some generalizations of Proposition C2 about the completeness
of orthogonal polynomials with respect to more general weight functions.

On the other hand, I did not try to give a complete picture about Wiener–It̂o
integrals. The reader interested in it may consult with the book of S. Janson [27].
There are also other interesting and important topics related to Wiener–It̂o integrals
not discussed in this work. In some investigations of probability theory and statis-
tical physics it is useful to study not only moments but also cumulants (called also
semiinvariants in the literature) of Wiener–Itô integrals. It is also useful to study the
moments and cumulants of polynomials and Wick polynomials of Gaussian random
vectors. The book of Malyshev V. A. and Minlos R.A. [42] contains many interest-
ing results about this subject.

Another interesting and popular subject not discussed in this work is the problem
of limit theorems for Wiener–It̂o integrals. In particular, one is interested in the ques-
tion when a sequence of such random integrals satisfies the central limit theorem.
The study of such problems heavily exploits the diagram formula, or more precisely
its consequence about the calculation of moments and cumulants. In some works,
see e.g. [46] or [48] this subject is worked out in detail. Moreover, a popular subject
of recent research is the study of the speed of convergence inthe central limit theo-
rem. In such investigations the so-called Stein method turned out to be very useful.
In its application the integral of sufficiently smooth test functions with respect to
the distribution we are investigating are estimated together with the integral of their
derivative (with respect to the same distribution). In a somewhat surprising way it
turned out that if we are studying the central limit theorem for Wiener–It̂o integrals
with the help of the Stein method, then the role of the derivative of a function is
taken by the so-called Malliavin derivative. (See [46].) Sothe theory of Malliavin
calculus, see [47], became very important in such research.But this problem is a bit
far from the main subject of this work, hence I do not go into the details.

Chapters 11 and 12

The diagram formula has a natural and useful analogue both for degenerateU-
statistics and multiple integrals with respect to a normalized empirical measure.
They enable us to rewrite the product of degenerateU-statistics and multiple inte-
grals as the sum of such expressions. Actually the proof of these results is simpler
than the proof of the original diagram formula for Wiener–Itô integrals. They make
possible to adapt several useful methods of the study of non-linear functionals of
Gaussian random fields to the study of non-linear functionals of normalized empiri-
cal measures. But to apply them we also need some good estimate on theL2-norm of
the kernel functions of the random integrals orU-statistics appearing in the diagram
formula. Hence we also proved such results.

A version of the diagram formula was proved for degenerateU-statistics in [39]
and for multiple random integrals with respect to a normalized empirical measures
in [35]. Let me remark that in the formulation of the result inthe work [39] a differ-
ent notation was applied than in the present note. In that paper I wanted to formulate
such a version of the diagram formula forU-statistics where we work with diagrams
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similar to those introduced in the study of Wiener–Itô integrals. I could do this only
in a somewhat artificial way. In this work I formulated the diagram formula forU-
statistics with the help of diagrams of a more general form. Iintroduced the notion
of chains and coloured chains, and defined (coloured) diagrams with their help. The
formulation of the results with the help of such more generaldiagrams seems to
be more natural. I met some works where similar diagrams wereintroduced, see
e.g. [48], but I did not meet works where also the coloured diagrams introduced in
this work were applied. It is possible that this happened so,because I do not know
the literature well enough, but this also may have a different cause.

In the work [48] the diagram formula was applied for the calculation of mo-
ments and cumulants, and if we are working only with them, then the results of
this work can also be formulated with the help of so-called closed diagrams, and no
coloured diagrams are needed. They are needed if we want to express the product
of U-statistics as a sum ofU-statistics. It may also be interesting that the results
considered in [48] are based on some combinatorial arguments worked out in [50].

There are some works like [48], where diagram formulas are considered for other
models too, e.g. in models where we integrate with respect toa normalized Poisson
process. Nevertheless, in my opinion the results about the diagram formula for the
products of Wiener–It̂o integrals and in particular their modified versions for the
products of integrals with respect to normalized Poisson processes, normalized em-
pirical distribution or for the product ofU-statistics did not get such an attention
in the literature as they would deserve. An interesting paper in this direction is that
of Surgailis [51], where a version of the diagram formula is proved for Poissonian
integrals. It may be worth mentioning that the diagram formula for Poisson integrals
shows a very strong similarity to the diagram formula for theproduct of integrals
with respect to normalized empirical distributions. (Integrals with respect to normal-
ized empirical distribution were discussed only at an informal level in this work.)

The Hermite polynomials and their multivariate versions, the Wick polynomials
have their counterparts when instead of Wiener–Itô integrals we consider more gen-
eral classes of random integrals. Itô’s formula creates a relation between Wiener–Itô
integrals and Hermite polynomials or their multivariate versions, the Wick polyno-
mials. The relation between Wiener–Itô integrals and Hermite polynomials has a
natural counterpart in the study of other multiple random integrals. In such a way a
new notion, the Appell polynomials appeared in the literature. (See e.g. [52].)

Chapter 13

Theorems 8.3, 8.5 and 8.7 were proved on the basis of the results of Chapters 10–
12 in Chapter 13. These proofs are slight modifications of those given in [39]. An
earlier proof of a result similar to Theorem 8.3 based on a different method was
given by Arcones and Gińe in [4]. Theorem 8.3 is a slightly stronger estimate than
that of Arcones and Gińe. It provides at not too high levels an estimate with almost
as good constants in the exponent as the corresponding estimate about Wiener–Itô
integrals in Theorem 8.5. Chapter 13 also contains the proofof a multivariate version
of Hoeffding’s inequality formulated in Theorem 13.3. Thisresult is needed in the
symmetrization argument applied in the proof of Theorem 8.4. A weaker version of
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it (an estimate with a worse constant in the exponent) which would be satisfactory
for our purposes simply follows from a classical result, called Borell’s inequality,
which was proved in [8]. But since the methods needed to provethis result are not
discussed in this note, and I was interested in a proof which yields an estimate with
the best possible constant in the exponent I chose another proof, given in [38]. It
is based on the results of Chapter 10–12. Later I have learnedthat this estimate is
contained in an implicit form also in the paper [7] of Aline Bonami.

In Part B of Chapter 13 I discussed some results related to theproblems consid-
ered in this work. I would like to make some comments about theresult of R. Latała
presented in Theorem 13.7. The estimates of this result depend on such quantities
which are hard to calculate. Hence they have a limited importance in the problems
I had in mind when working on this lecture note. On the other hand, such results
and the methods behind them may be interesting in the study ofsome problems of
statistical physics, e.g. in the problems discussed in [57]. I would like to remark that
Latała’s proof works only for decoupled and not for usualU-statistics. Formally,
this is not a restriction, because the results of de la Peña and Montgomery–Smith
(see [10]) enable us to extend their validity also for usualU-statistics. Nevertheless,
the lack of a direct proof of this estimate forU-statistics disturbs me a bit, because
this means for me that we do not really understand this result. I have some ideas
how to get the desired proof, but it demands some time and energy to work out the
details.

Chapter 14

Chapters 14–17 are devoted to the proof of Theorems 8.4 and 8.6. They are based
on a similar argument as their one-variate counterparts, Theorems 4.1 and 4.2. The
proof of Theorem 8.6 about the supremum of Wiener–Itô integrals is based, simi-
larly to the proof of Theorem 4.2, on the chaining argument. In the proof of The-
orem 8.4 the chaining argument yields only a weaker result formulated in Propo-
sition 14.1 which helps to reduce Theorem 8.4 to the proof of Proposition 14.2. In
the one-variate case a similar approach was applied. In thatcase the proof of The-
orem 4.1 was reduced to that of Proposition 6.2 by means of Proposition 6.1. The
next step in the proof of Theorem 8.4 has no one-variate counterpart. The notion of
so-called decoupledU-statistics was introduced, and Proposition 14.2 was reduced
to a similar result about decoupledU-statistics formulated in Proposition 14.2′.

The adjective ‘decoupled’ in the expression decoupledU-statistic refers to the
fact that it is such a version of aU-statistic where independent copies of a sequence
of independent and identically distributed random variables are put into different
coordinates of the kernel function. Their study is a popularsubject of some math-
ematical schools. In particular, the main topic of the book [9] is a comparison of
the properties ofU-statistics and decoupledU-statistics. A result of de la Peña and
Montgomery–Smith [10] formulated in Theorem 14.3 helps in reducing some prob-
lems aboutU-statistics to a similar problem about decoupledU-statistics. In this
lecture note the proof of Theorem 14.3 is given in Appendix D.It follows the ar-
gument of the original proof, but several steps are worked out in detail where the
authors gave only a very short explanation. Paper [10] also contains some kind of
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converse results to Theorem 14.3, but as they are not needed in the present work, I
omitted their discussion.

DecoupledU-statistics behave similarly to the originalU-statistics. Beside this,
some symmetrization arguments become considerably simpler if we are working
with decoupledU-statistics instead of the original ones, because decoupled U-
statistics have more independence property. This can be exploited in some inves-
tigations. For example the proof of Proposition 14.2′ is simpler than a direct proof
of Proposition 14.2. On the other hand, Theorem 14.3 enablesus to reduce the proof
of Proposition 14.2 to that of Proposition 14.2′, and we have exploited this possi-
bility. Let me finally remark that although our proofs could be simplified with the
help of decoupledU-statistics, they could have been done also without it. But this
would demand a much more complicated notation that would have made the proof
much less transparent. Hence I have decided to introduce decoupledU-statistics and
to work with them.

Chapters 15, 16 and 17

The proof of Theorem 8.4 was reduced to that of Proposition 14.2′ in Chapter 14.
Chapters 15–17 deal with the proof of this result. The original proof was given in
my paper [37]. It is similar to that of its one-variate version, Proposition 6.2, but
some additional difficulties have to be overcome. The main difficulty appears when
we want to find the multivariate analogue of the symmetrization argument which
could be carried out in the one-variate case by means of Lemmas 7.1 and 7.2.

In the multivariate case Lemma 7.1 is not sufficient for our purposes. So we
work instead with a generalized version of this result, formulated in Lemma 15.2.
The proof of Lemma 15.2 is not hard. It is a simple and natural modification of the
proof of Lemma 7.1. The real difficulty arises when we want to apply it in the proof
of Proposition 14.2′. When we applied the symmetrization argument Proposition 6.2
in the proof of Lemma 7.1 we have worked with two independent sequences of ran-
dom variablesZn andZ̄n. In the analogous symmetrization argument Lemma 15.2,
applied in the proof of Proposition 14.2′, we had to work with two not necessarily in-
dependent sequences of random variablesZp andZ̄p. This has the consequence that
it is much harder to check condition (15.3) needed in the application of Lemma 15.2
than the analogous condition (7.1) in Lemma 7.1. The hardestproblems in the proof
of Proposition 14.2′ appear at this point.

Proposition 14.2′ was proved by means of an inductive procedure formulated in
Proposition 15.3, which is the multivariate analogue of Proposition 7.3. A basic in-
gredient of both proofs was a symmetrization argument. But while this symmetriza-
tion argument could be simply carried out in the one-variatecase, its adaptation
to the multivariate case was a most serious problem. To overcome this difficulty
another inductive statement was formulated in Proposition15.4. Propositions 15.3
and 15.4 could be proved simultaneously by means of an appropriate inductive pro-
cedure. Their proofs were based on a refinement of the arguments in the proof of
Proposition 7.3. But some new difficulties arose. In the proof of Proposition 7.3
we could simply apply Lemma 7.2, and it provided the necessary symmetrization
argument. On the other hand, the verification of the corresponding symmetrization
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argument in the proof of Propositions 15.3 and 15.4 was much harder. Actually this
was the subject of Chapter 16. After this we could prove Propositions 15.3 and 15.4
in Chapter 17 similarly to Proposition 7.3, although some additional technical dif-
ficulties arose also at this point. Here we needed the multivariate version of Hoeff-
ding’s inequality, formulated in Theorem 13.3 and some properties of the Hoeffding
decomposition ofU-statistics proved in Chapter 9.





Appendix A
The proof of some results about
Vapnik–Červonenkis classes

Proof of Theorem 5.1. (Sauer’s lemma).This result has several different proofs.
Here I write down a relatively simple proof of P. Frankl and J.Pach which appeared
in [17]. It is based on some linear algebraic arguments.

The following equivalent reformulation of Sauer’s lemma will be proved. Let us
take a setS= S(n) consisting ofn elements and a classE of subsets ofS consist-
ing of m subsetsE1, . . . ,Em ⊂ S. Assume thatm≥ m0 + 1 with m0 = m0(n,k) =(n

0

)
+
(n

1

)
+ · · ·+

( n
k−1

)
. Then there exists a setF ⊂ Sof cardinalityk which is shat-

tered by the class of setsE . Actually, it is enough to show that there exists a setF
of cardinality greater than or equal tok which is shattered by the class of setsE ,
because if a set has this property, then all of its subsets have it. This latter statement
will be proved.

To prove this statement let us first list the subsetsX0, . . . ,Xm0 of the setS of
cardinality less than or equal tok−1, and correspond to all setsEi ∈ E the vector
ei = (ei,1, . . . ,ei,m0), 1≤ i ≤ m, with elements

ei, j =

{
1 if Xj ⊆ Ei

0 if Xj 6⊆ Ei
1≤ i ≤ m, and 1≤ j ≤ m0.

Sincem> m0, the vectorse1, . . . ,em are linearly dependent. Because of the defi-
nition of the vectorsei , 1≤ i ≤ m, this can be expressed in the following way: There
is a non-zero vector( f (E1), . . . , f (Em)) such that

∑
Ei : Ei⊇Xj

f (Ei) = 0 for all 1≤ j ≤ m0. (A.1)

Let F , F ⊂ S, be aminimalset with the property

∑
Ei : Ei⊇F

f (Ei) = α 6= 0. (A.2)

Such a setF really exists, since every maximal element of the family{Ei : 1≤ i ≤
m, f (Ei) 6= 0} satisfies relation (A.2). The requirement thatF should be a minimal

233
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set means that ifF is replaced by someH ⊂ F , H 6= F , at the left-hand side of (A.2),
then this expression equals zero. The inequality|F | ≥ k holds because of relation
(A.1) and the definition of the setsXj .

Introduce the quantities

ZF(H) = ∑
Ei : Ei∩F=H

f (Ei)

for all H ⊆ F .
ThenZF(F) = α, and for any set of the formH = F \{x}, x∈ F ,

ZF(H) = ∑
Ei : Ei∩F=H

f (Ei) = ∑
Ei : Ei⊇H

f (Ei)− ∑
Ei : Ei⊇F

f (Ei) = 0−α =−α

because of the minimality property of the setF .
Moreover, the identity

ZF(H) = (−1)pα for all H ⊆ F such that|H|= |F |− p, 0≤ p≤ |F |. (A.3)

holds. To show relation (A.3) observe that

ZF(H) = ∑
Ei : Ei∩F=H

f (Ei) =
p

∑
j=0

(−1) j ∑
G: H⊂G⊂F, |G|=|H|+ j

∑
Ei : Ei⊇G

f (Ei) (A.4)

for all setsH ⊂ F with cardinality|H|= |F |− p. Identity (A.4) holds, since the term

f (Ei) is counted at the right-hand side of (A.4)
l
∑
j=0

(−1) j
(l

j

)
= (1−1)l = 0 times if

Ei ∩F = G with someH ⊂ G⊆ F with |G|= |H|+ l elements, 1≤ l ≤ p, while in
the caseEi ∩F = H it is counted once. Relation (A.4) together with (A.2) and the
minimality property of the setF imply relation (A.3).

It follows from relation (A.3) and the definition of the function ZF(H) that for all
setsH ⊆ F there exists some setEi such thatH = Ei ∩F , i.e. F is shattered byE .
Since|F | ≥ k, this implies Theorem 5.1.

Proof of Theorem 5.3.Let us fix an arbitrary setF = {x1, . . . ,xk+1} of the set
X, and consider the set of vectorsGk(F) = {(g(x1), . . . ,g(xk+1)) : g ∈ Gk} of the
k+ 1-dimensional spaceRk+1. By the conditions of Theorem 5.3Gk(F) is an
at mostk-dimensional subspace ofRk+1. Hence there exists a non-zero vector

a = (a1, . . . ,ak+1) such that
k+1
∑
j=1

a jg(x j) = 0 for all g ∈ Gk. We may assume that

the setA = A(a) = { j : a j < 0, 1 ≤ j ≤ k+ 1} is non-empty, by multiplying the
vectora by −1 if it is necessary.

Thus the identity

∑
j∈A

a jg(x j) = ∑
j∈{1,...,k+1}\A

(−a j)g(x j), for all g∈ Gk (A.5)
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holds. PutB = {x j : j ∈ A}. ThenB ⊂ F , andF \B 6= {x: g(x) ≥ 0}∩F for all
g ∈ Gk. Indeed, if there were someg ∈ Gk such thatF \B = {x: g(x) ≥ 0} ∩F ,
then the left-hand side of the equation (A.5) would be strictly positive (asa j < 0,
g(x j) < 0 if j ∈ A, andA 6= /0) its right-hand side would be non-positive for this
g∈ Gk, and this is a contradiction.

The above proved property means thatD shatters no setF ⊂ X of cardinalityk+
1. Hence Theorem 5.1 implies thatD is a Vapnik–̌Cervonenkis class.





Appendix B
The proof of the diagram formula for
Wiener–It ô integrals

We start the proof of Theorem 10.2A (the diagram formula for the product of two
Wiener–It̂o integrals) with the proof of inequality (10.13). To show that this relation
holds let us observe that the Cauchy inequality yields the following bound on the
functionFγ( f ,g) defined in (10.11) (with the notation introduced there):

F2
γ ( f ,g)(x(1, j),x(2, j ′), (1, j) ∈V1(γ), (2, j ′) ∈V2(γ))

≤
∫

f 2(xαγ (1,1), . . . ,xαγ (1,k)) ∏
(2, j)∈{(2,1),...,(2,l)}\V2(γ)

µ(dx(2, j))

∫

g2(x(2,1), . . . ,x(2,l)) ∏
(2, j)∈{(2,1),...,(2,l)}\V2(γ)

µ(dx(2, j)). (B.1)

The expression at the right-hand side of inequality (B.1) isthe product of two
functions with different arguments. The first function has argumentsx(1, j) with
(1, j) ∈ V1(γ) and the second onex(2, j ′) with (2, j ′) ∈ V2(γ). By integrating both
sides of inequality (B.1) with respect to these arguments weget inequality (10.13).

Relation (10.14) will be proved first for the product of the Wiener–It̂o integrals of
two elementary functions. Let us consider two (elementary)functions f (x1, . . . ,xk)
and g(x1, . . . ,xl ) given in the following form: Let some disjoint setsA1, . . . ,AM,
µ(As) < ∞, 1 ≤ s ≤ M, be given together with some real numbersc(s1, . . . ,sk)
indexed with suchk-tuples (s1, . . . ,sk), 1 ≤ sj ≤ M, 1 ≤ j ≤ k, for which the
numberss1, . . . ,sk in a k-tuple are all different. Putf (x1, . . . ,xk) = c(s1, . . . ,sk) if
(x1, . . . ,xk)∈As1 ×·· ·×Ask with some vector(s1, . . . ,sk) with different coordinates,
and and letf (x1, . . . ,xk) = 0 if (x1, . . . ,xk) is outside of these rectangles. Take simi-
larly some disjoint setsB1, . . . ,BM′ , µ(Bt)< ∞, 1≤ t ≤ M′, and some real numbers
d(t1, . . . , tl ), indexed with suchl -tuples(t1, . . . , tl ), 1≤ t j ′ ≤M′, 1≤ j ′ ≤ l , for which
the numberst1, . . . , tl in an l -tuple are different. Putg(x1, . . . ,xl ) = d(t1, . . . , tl ) if
(x1, . . . ,xl ) ∈ Bt1 ×·· ·×Btl with edges indexed with some of the above introduced
l -tuples, and letg(x1, . . . ,xl ) = 0 otherwise.

Let us take some small numberε > 0 and rewrite the above introduced functions
f (x1, . . . ,xk) andg(x1, . . . ,xl ) with the help of this numberε > 0 in the following

237
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way. Divide the setsA1, . . . ,AM to smaller setsAε
1, . . . ,A

ε
M(ε),

M(ε)⋃

s=1
Aε

s =
M⋃

s=1
As, in

such a way that all setsAε
1, . . . ,A

ε
M(ε) are disjoint, andµ(Aε

s) ≤ ε, 1≤ s≤ M(ε).

Similarly, take setsBε
1, . . . ,B

ε
M′(ε),

M′(ε)⋃

t=1
Bε

t =
M′
⋃

t=1
Bt , in such a way that all sets

Bε
1, . . . ,B

ε
M′(ε) are disjoint, andµ(Bε

t ) ≤ ε, 1≤ t ≤ M′(ε). Beside this, let us also

demand that two setsAε
s andBε

t , 1≤ s≤ M(ε), 1≤ t ≤ M′(ε), are either disjoint
or they agree. Such a partition exists because of the non-atomic property of mea-
sureµ . The above defined functionsf (x1, . . . ,xk) andg(x1, . . . ,xl ) can be rewritten
by means of these new setsAε

s and Bε
t . Namely, let f (x1, . . . ,xk) = cε(s1, . . . ,sk)

on the rectanglesAε
s1
×·· ·×Aε

sk
with 1≤ sj ≤ M(ε), 1≤ j ≤ k, with different in-

dicess1, . . . ,sk, wherecε(s1, . . . ,sk) = c(p1, . . . , pk) with those indices(p1, . . . , pk)
for which Aε

s1
× ·· · ×Aε

sk
⊂ Ap1 × ·· · ×Apk. The function f disappears outside of

these rectangles. The functiong(x1, . . . ,xl ) can be written similarly in the form
g(x1, . . . ,xl ) = dε(t1, . . . , tl ) on the rectanglesBε

t1 × ·· ·×Bε
tl with 1 ≤ t j ′ ≤ M′(ε),

1 ≤ j ′ ≤ l , and different indices,t1, . . . , tl . Beside this, the functiong disappears
outside of these rectangles.

The above representation of the functionsf and g through a parameterε is
useful, since it enables us to give a good asymptotic formulafor the product
k!Zµ ,k( f )l !Zµ ,l (g) which yields the diagram formula for the product of Wiener–Itô
integrals of elementary functions with the help of a limiting procedureε → 0.

Fix a small numberε > 0, take the representation of the functionsf andg with
its help, and write

k!Zµ ,k( f )l !Zµ ,l (g) = ∑
γ∈Γ (k,l)

Zγ( f ,g,ε) (B.2)

with

Zγ( f ,g,ε) = ∑γ
cε(s1, . . . ,sk)d

ε(t1, . . . , tl )

µW(Aε
s1
) . . .µW(Aε

sk
)µW(Bε

t1) . . .µW(Bε
tl ), (B.3)

whereΓ (k, l) denotes the class of diagrams introduced before the formulation of
Theorem 10.2A, and∑γ denotes summation fork+ l -tuples (s1, . . . ,sk, t1, . . . , tl )
such that 1≤ sj ≤ M(ε), 1≤ j ≤ k, 1≤ t j ′ ≤ M′(ε), 1≤ j ′ ≤ l , andAε

sj
= Bε

t j′
if

((1, j),(2, j ′)) ∈ E(γ), i.e. if it is an edge ofγ, and otherwise all setsAε
sj

andBε
t j′

are disjoint. (This sum also depends onε.) In the case of an empty sumZγ( f ,g,ε)
equals zero.

We write the expressionZγ( f ,g,ε) for all γ ∈ Γ (k, l) in the form

Zγ( f ,g,ε) = Z(1)
γ ( f ,g,ε)+Z(2)

γ ( f ,g,ε), γ ∈ Γ (k, l), (B.4)

with
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Z(1)
γ ( f ,g,ε) = ∑γ

cε(s1, . . . ,sk)d
ε(t1, . . . , tl )

∏
j : (1, j)∈V1(γ)

µW(Aε
sj
) ∏

j ′ : (2, j ′)∈V2(γ)
µW(Bε

t j′
)

∏
j ′ : (2, j ′)∈{(2,1),...,(2,l)}\V2(γ)

µ(Bε
t j′
) (B.5)

and

Z(2)
γ ( f ,g,ε) = ∑γ

cε(s1, . . . ,sk)d
ε(t1, . . . , tl )

∏
j : (1, j)∈V1(γ)

µW(Aε
sj
) ∏

j ′ : (2, j ′)∈V2(γ)
µW(Bε

t j′
)

[

∏
j : (1, j)∈{(1,1),...,(1,k)}\V1(γ)

µW(Aε
sj
)

∏
j ′ : (2, j ′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW(Bε
t j′
)

− ∏
j ′ : (2, j ′)∈{(2,1),...,(2,l)}\V2(γ)

µ(Bε
t j′
)

]

, (B.6)

whereV1(γ) andV2(γ) (introduced before formula (10.9) during the preparation to
the formulation of Theorem 10.2A) are the sets of vertices inthe first and second
row of the diagramγ from which no edge starts.

I claim that there is some constantC> 0 not depending onε such that

E
(

|γ |!Zµ ,|γ |(Fγ( f ,g))−Z(1)
γ ( f ,g,ε)

)2
≤Cε for all γ ∈ Γ (k, l) (B.7)

with the Wiener–It̂o integral with the kernel functionFγ( f ,g) defined in (10.9),
(10.10) and (10.11), and

E
(

Z(2)
γ ( f ,g,ε)

)2
≤Cε for all γ ∈ Γ (k, l). (B.8)

Relations (B.2), (B.4), (B.7) and (B.8) imply relation (10.14) if f andg are ele-
mentary functions. Indeed, (B.4), (B.7) and (B.8) imply that

lim
ε→0

∥
∥ |γ |!Zµ ,|γ |(Fγ( f ,g))−Zγ( f ,g,ε)

∥
∥

2
→ 0 for all γ ∈ Γ (k, l),

and this relation together with (B.2) yield relation (10.14) with the help of a limiting
procedureε → 0.

To prove relation (B.7) let us introduce the function
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Fε
γ ( f ,g)(x(1, j),x(2, j ′), (1, j) ∈V1(γ), (2, j ′) ∈V2(γ))

= Fγ( f ,g)(x(1, j),x(2, j ′), (1, j) ∈V1(γ), (2, j ′) ∈V2(γ))
if x(1, j) ∈ Aε

sj
, for all (1, j) ∈V1(γ),

x(2, j ′) ∈ Bε
t j′
, for all (2, j ′) ∈V2(γ)), and

all setsAε
sj
, (1, j) ∈V1(γ), andBε

t j′
, (2, j ′) ∈V2(γ) are different.

with the functionFγ( f ,g) defined in (10.10) and (10.11), and put

Fε
γ ( f ,g)(x(1, j),x(2, j ′), (1, j) ∈V1(γ), (2, j ′) ∈V2(γ)) = 0 otherwise.

The functionFε
γ ( f ,g) is elementary, and a comparison of its definition with re-

lation (B.5) and the definition of the functionFγ( f ,g) yields that

Z(1)
γ ( f ,g,ε) = |γ |!Zµ ,|γ |(F

ε
γ ( f ,g)). (B.9)

The functionFε
γ ( f ,g) slightly differs fromFγ( f ,g), since the functionFγ( f ,g) may

not disappear in such points(x(1, j),x(2, j ′), (1, j) ∈V1(γ), (2, j ′) ∈V2(γ)) for which
there is some pair( j, j ′) with the propertyx(1, j) ∈ Aε

sj
andx(2, j ′) ∈ Bε

t j′
with some

setsAε
sj

andBε
t j′

such thatAε
sj
= Bε

t j′
, while Fε

γ ( f ,g) must be zero in such points.

On the other hand, in the case|γ | = max(k, l)−min(k, l), i.e. if one of the sets

V1(γ) orV2(γ) is empty,Fγ( f ,g) = Fε
γ ( f ,g), Z(1)

γ ( f ,g,ε) = |γ |!Zµ ,|γ |(Fγ( f ,g)), and
relation (B.7) clearly holds for such diagramsγ.

In the case|γ |= max(k, l)−min(k, l)> 0 we prove a good estimate on the mea-
sure of the set whereFγ 6= Fε

γ with respect to an appropriate power of the measureµ .
Relation (B.7) will be proved with the help of this estimate and formula (B.9).

Let us define the setsA =
M(ε)⋃

s=1
Aε

s andB =
M′(ε)⋃

t=1
Bε

t . These setsA andB do not

depend on the parameterε. Beside thisµ(A) < ∞, andµ(B) < ∞. Define for all
pairs( j0, j ′0) such that(1, j0) ∈V1(γ), (2, j ′0) ∈V2(γ) the set

D( j0, j ′0) = {(x(1, j),x(2, j ′), (1, j) ∈V1(γ), (2, j ′) ∈V2(γ)) :

x(1, j0) ∈ Aε
s, x(2, j ′0) ∈ Bε

t with some 1≤ s≤ M(ε) and 1≤ t ≤ M′(ε)

such thatAε
s = Bε

t , and x(1, j) ∈ A for all (1, j) ∈V1(γ),
andx(2, j ′) ∈ B for all (2, j ′) ∈V2(γ)}.

Introduce the notationxγ = (x(1, j),x(2, j ′)), (1, j) ∈V1(γ), (2, j ′) ∈V2(γ)), and con-
sider only such vectorsxγ whose coordinates satisfy the conditionsx(1, j) ∈ A for all
(1, j) ∈V1(γ) andx(2, j ′) ∈ B for all (2, j ′) ∈V2(γ). Put

Dγ = {xγ : Fε
γ ( f ,g)(xγ) 6= Fγ( f ,g)(xγ)}.



B The proof of the diagram formula for Wiener–Itô integrals 241

The relationDγ ⊂
k⋃

j=1

l⋃

j ′=1
D( j0, j ′0) holds, since ifFε

γ ( f ,g)(xγ) 6= Fγ( f ,g)(xγ)

for some vectorxγ , then it has some coordinates(1, j0) ∈V1(γ) and(2, j ′0) ∈V2(γ)
such thatx(1, j0) ∈ Aε

s andx(1, j ′0) ∈ Bε
t with some setsAε

s = Bε
t , and the relation in

the last line of the definition ofD( j0, j ′0) must also hold for such a vectorxγ , since
otherwiseFγ( f ,g)(xγ) = 0= Fε

γ ( f ,g)(xγ).
I claim that there is some constantC1 such that

µ |V1(γ)|+|V2(γ)|(D( j0, j ′0))≤C1ε for all setsD( j0, j ′0),

whereµ |V1(γ)|+|V2(γ)| denotes the direct product of the measureµ on some copies of
the original space(X,X ) indexed by(1, j) ∈V1(γ) and(2, j ′) ∈V2(γ). To see this
relation one has to observe that∑

Aε
s=Bε

t

µ(Aε
s)µ(Bε

t ) ≤ ∑εµ(Aε
s) = εµ(A). Thus the

setD( j0, j ′0) can be covered by the direct product of a set whoseµ measure is not
greater thanεµ(A) and of a rectangle whose edges are either the setA or the setB.

The above relations imply that

µ |V1(γ)|+|V2(γ)|(Dγ)≤C2ε (B.10)

with some constantC2 > 0.
Relation (B.9), estimate (B.10), the property c) formulated in Theorem 10.1 for

Wiener–It̂o integrals and the observation that the functionFγ( f ,g) is bounded in
supremum norm iff andg are elementary functions imply the inequality

E
(

|γ |!Zµ ,|γ |(Fγ( f ,g))−Z(1)
γ ( f ,g,ε)

)2

= |γ!|2E
(
Zµ ,|γ |(Fγ( f ,g)−Fε

γ ( f ,g))
)2 ≤ |γ |!‖Fγ( f ,g)−Fε

γ ( f ,g)‖2
2

≤ Kµ |V1(γ)|+|V2(γ)|(Dγ)≤Cε .

Hence relation (B.7) holds.

To prove relation (B.8) we rewriteE
(

Z(2)
γ ( f ,g,ε)

)2
in the following form:

E
(

Z(2)
γ ( f ,g,ε)

)2
= ∑γ∑γ

cε(s1, . . . ,sk)d
ε(t1, . . . , tl )c

ε(s̄1, . . . , s̄k)

dε(t̄1, . . . , t̄l )EU(s1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l )

(B.11)

with
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U(s1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l )

= ∏
j : (1, j)∈V1(γ)

µW(Aε
sj
) ∏

j ′ : (2, j ′)∈V2(γ)
µW(Bε

t j′
)

∏
j̄ : (1, j̄)∈V1(γ)

µW(Aε
s̄j̄
) ∏

j̄ ′ : (2, j̄ ′)∈V2(γ)
µW(Bε

t̄ j̄′
)

[

∏
j : (1, j)∈{(1,1),...,(1,k)}\V1(γ)

µW(Aε
sj
) ∏

j ′ : (2, j ′)∈{(2,1),...,(2,l)}\∈V2(γ)
µW(Bε

t j′
)

− ∏
j ′ : (2, j ′)∈{(2,1),...,(2,l)}\V2(γ)

µ(Bε
t j′
)

]

[

∏
j̄ : (1, j̄)∈{(1,1),...,(1,k)}\V1(γ)

µW(Aε
s̄j̄
) ∏
j̄ ′ : (2, j̄ ′)∈{(2,1),...,(2,l)}\∈V2(γ)

µW(Bε
t̄ j̄′
)

− ∏
j̄ ′ : (2, j̄ ′)∈{(2,1),...,(2,l)}\V2(γ)

µ(Bε
t̄ j̄′
)

]

. (B.12)

The double sum∑γ ∑γ in (B.11) has to be understood in the following way. The
first summation is taken for vectors(s1, . . . ,sk, t1, . . . , tl ), and ∑γ is defined in
the same way as in formula (B.3). The second summation is taken for vectors
(s̄1, . . . , s̄k, t̄1, . . . , t̄l ), and again the summation∑γ is taken as in (B.3), only here
s̄j plays the role ofsj andt̄ j ′ plays the role oft j ′ .

Relation (B.8) will be proved by means of some estimates about the expectation
of the above defined random variableU(·) which will be presented in the following
Lemma B. To formulate this result I introduce the following Properties A and B.

Property A. A sequence s1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l , with elements1 ≤
sj , s̄j̄ ≤ M(ε), for 1 ≤ j, j̄ ≤ k, and1 ≤ t j , t̄ j̄ ′ ≤ M′(ε) for 1 ≤ j ′, j̄ ′ ≤ l, satisfies
Property A (depending on a fixed diagramγ and numberε > 0) if the sequence of
sets Aεsj

, (1, j) ∈ V1(γ), Bε
t j′

, (2, j ′) ∈ V2(γ), and the sequence of sets Aε
s̄j̄

, (1, j̄) ∈
V1(γ), Bε

t̄ j̄′
, (2, j̄ ′) ∈ V2(γ), agree. (Here we say that two sequences agree if they

contain the same elements in a possibly different order.)

Property B. A sequence s1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l , with elements1 ≤
sj , s̄j̄ ≤ M(ε), for 1 ≤ j, j̄ ≤ k, and1 ≤ t j , t̄ j̄ ′ ≤ M′(ε) for 1 ≤ j ′, j̄ ′ ≤ l, satisfies
Property B (depending on a fixed diagramγ and numberε > 0) if the sequences of
sets

Aε
sj
, (1, j) ∈ {(1,1), . . . ,(1,k)}\V1(γ), Bε

t j′
, (2, j ′) ∈ {(2,1), . . . ,(2, l)}\V2(γ),

and

Aε
s̄j̄
,(1, j̄) ∈ {(1,1), . . . ,(1,k)}\V1(γ), Bε

t̄ j̄′
, (2, j̄ ′) ∈ {(2,1), . . . ,(2, l)}\V2(γ),

have at least one common element.

(In the above definitions two setsAε
s andBε

t are identified ifAε
s = Bε

t .)
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Now I formulate the following

Lemma B. Let us consider the function U(·) introduced in formula (B.12). Assume
that its arguments s1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l are chosen in such a way
that the function U(·) with these arguments appears in the double sum∑γ ∑γ in
formula (B.11), i.e. Aεsj

=Bε
t j′

if ((1, j),(2, j ′))∈E(γ), otherwise all sets Aεsj
and Bε

t j′
are disjoint, and an analogous statement holds if the coordinates s1, . . . ,sk, t1, . . . , tl
are replaced bȳs1, . . . , s̄k andt̄1, . . . , t̄l .

If the sequence of the arguments in U(·) does not satisfies either Property A or
Property B, then

EU(s1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l ) = 0. (B.13)

If the sequence of the arguments in U(·) satisfies both Property A and Property B,
then

|EU(s1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l )| ≤Cε ∏ ′µ(Aε
s̄j̄
)µ(Bε

t̄ j̄′
) (B.14)

with some appropriate constant C= C(k, l) > 0 depending only on the number of
variables k and l of the functions f and g. The prime in the product ∏′ at the right-
hand side of (B.14) means that in this product the measureµ of those sets Aεs̄j̄

and

Bε
t̄ j̄′

are considered, whose indices are listed among the arguments s̄j̄ or t̄ j̄ ′ of U(·),
and the measureµ of each such set appears exactly once. (This means that if Aε

s̄j̄
=

Bε
t̄ j̄′

then one of the terms betweenµ(Aε
s̄j̄
) and µ(Bε

t̄ j̄′
) is omitted from the product.

For the sake of definitiveness let us preserve the setµ(Aε
s̄j̄
) in such a case.)

Remark.The content of Lemma B is that most terms in the double sum in for-
mula (B.11) equal zero, and even the non-zero terms are small.

The proof of Lemma B.Let us prove first relation (B.13) in the case when Prop-
erty A does not hold. It will be exploited that for disjoint sets the random variables
µW(As) andµW(Bt) are independent, and this provides a good factorization of the
expectation of certain products.

Let us carry out the multiplications in the expressionU(·) defined (B.12). We get
a sum consisting of 4 terms. We show that each of them has zero expectation. Indeed,
if a sequences1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l does not satisfy Property A, but it
satisfies the remaining conditions of Lemma B, then each termin the sum expressing
U(· · ·) with these arguments is a product which contains a factorµW(Aε

sj0
), (1, j0)∈

V1(γ) with the following property. It is independent of all those terms in this product
which are in the following list:µW(Aε

sj
) with some j 6= j0, 1≤ j ≤ k, or µW(Bε

t j′
),

1≤ j ≤ l , or µW(Aε
s̄j̄
) with (1, j̄) ∈V1(γ), or µW(Bε

t̄ j̄′
) with (2, j̄ ′) ∈V2(γ). We will

show with the help of this property that the expectation of the terms we consider can
be written in the form of a product either with a factor of the form EµW(Aε

sj0
) = 0

or with a factor of the formEµW(Aε
sj0
)3 = 0. Hence this expectation equals zero.
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Indeed, although the above properties do not exclude the existence of a setAε
t j̄′

,

(1, j̄ ′)∈ {(1,1), . . . ,(1,k)\V1(γ) or Bε
t j̄′

, (2, j̄ ′)∈ {(2,1), . . . ,(2, l)}\V2(γ) such that

µW(Aε
t j̄′
) or µW(Bε

t j̄′
), is not independent ofµW(Aε

sj0
), but this can only happen if

Aε
t j̄
= Bε

t j̄′
= Aε

sj0
. This implies that in such a case when our term does not contain a

factor of the formEµW(Aε
sj0
), then it contains a factor of the formEµW(Aε

sj0
)3 = 0.

HenceEU(·) = 0 if the arguments ofU(·) do not satisfy Property A.
To finish the proof of relation (B.13) it is enough consider the case when

the arguments ofU(·) satisfy Property A, but they do not satisfy Property B.
The validity of Property A implies that the sets{Aε

sj
, j ∈ V1(γ)} ∪ {Bε

t j′
, j ′ ∈

V2(γ)} and{Aε
s̄j
, j ∈V1(γ)}∪{Bε

t̄ j′
, j ′ ∈V2(γ)} agree. The conditions of Lemma B

also imply that the elements of these sets are disjoint of thesetsAε
sj

, Bε
t j′

, Aε
s̄j̄

and Bε
t̄ j̄′

with indices(1, j),(1, j̄) ∈ {(1,1), . . . ,(1,k)} \V1(γ) and (2, j ′),(2, j̄ ′) ∈
{(2,1), . . . ,(2, l)} \V2(γ). If Property B does not hold, then we can divide the lat-
ter class of sets into two disjoint subclasses in an appropriate way. The first sub-
class consists of the setsAε

sj
andBε

t j′
, and the second one of the setsAε

s̄j̄
andBε

t̄ j̄′

with indices such that(1, j),(1, j̄) ∈ {(1,1), . . . ,(1,k)} \V1(γ) and(2, j ′),(2, j̄ ′) ∈
{(2,1), . . . ,(2, l)} \V2(γ). These facts imply thatEU(·) has a factorization, which
contains the term

E

[

∏
j : (1, j)∈{(1,1),...,(1,k)}\V1(γ)

µW(Aε
sj
) ∏

j ′ : (2, j ′)∈{(2,1),...,(2,l)}\∈V2(γ)
µW(Bε

t j′
)

− ∏
j ′ : (2, j ′)∈{(2,1),...,(2,l)}\V2(γ)

µ(Bε
sj′
)

]

= 0,

hence relation (B.13) holds also in this case. The last expression has zero expec-
tation, since if we take such pairsAε

sj
,Bε

t ′j
for the sets appearing in it for which

that((1, j),(2, j ′)) ∈ E(γ), i.e. these vertices are connected with an edge ofγ, then
Aε

sj
= Bε

t ′j
in a pair, and elements in different pairs are disjoint. Thisobservation al-

lows a factorization in the product whose expectation is taken, and then the identity
EµW(Aε

sj
)µW(Bε

t j′
) = µ(Aε

sj
) implies the desired identity.

To prove relation (B.14) if the arguments of the functionU(·) satisfy both Prop-
erties A and B consider the expression (B.12) which definesU(·), carry out the term
by term multiplication between the two differences at the end of this formula, take
expectation for each term of the sum obtained in such a way andfactorize them.
SinceEµW(A)2 = µ(A), EµW(A)4 = 3µ(A)2 for all setsA∈ X , µ(A) < ∞, some
calculation shows that each term can be expressed as constant times a product whose
elements are those probabilitiesµ(Aε

s̄j̄
) andµ(Bε

t̄ j̄′
) or their square which appear at

the right-hand side of (B.14). Moreover, since the arguments ofU(·) satisfy Prop-
erty B, there will be at least one term of the formµ(Aε

s)
2 in this product. Since

µ(Aε
s)

2 ≤ εµ(Aε
s), these calculations provide formula (B.14). Lemma B is proved.
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Relation (B.11) implies that

E
(

Z(2)
γ ( f ,g,ε)

)2
≤ K ∑ γ ∑ γ |EU(s1, . . . ,sk, t1, . . . , tl , s̄1, . . . , s̄k, t̄1, . . . , t̄l )| (B.15)

with some appropriateK > 0. By Lemma B it is enough to sum up only for such
termsU(·) in (B.15) whose arguments satisfy both Properties A and B. Moreover,
each such term can be bounded by means of inequality (B.14). Let us write up the

upper bound we get onE
(

Z(2)
γ ( f ,g,ε)

)2
in such a way. We get a sum consisting of

terms of the formµ(Aε
s1
) · · ·µ(Aε

sp
)µ(Bε

t1) · · ·µ(B
ε
t̄q
) multiplied by constant timesε.

The setsAε
s andBε

t whose measureµ appears in such a term are disjoint. Beside this
1≤ p≤ k, and 1≤ q≤ l .

In the above indicated estimation ofE
(

Z(2)
γ ( f ,g,ε)

)2
with the help of for-

mula (B.15) and Lemma B we have exploited the following fact.A term

µ(Aε
s1
) · · ·µ(Aε

sp
)µ(Bε

t1) · · ·µ(B
ε
t̄q)

with prescribed indicess1, . . . ,sp andt1, . . . , tq came up in the sum at the right-hand
of our bound as a contribution of only finitely many expressions |EU(· · ·)|. Hence
we get this term in the upper bound with a multiplying coefficient bounded by con-
stant timesε.

We also have
M(ε)
∑

s=1
µ(Aε

s)+
M′(ε)

∑
t=1

µ(Bε
t ) = µ(A)+µ(B)< ∞. The above relations

imply that

E
(

Z(2)
γ ( f ,g,ε)

)2
≤ C1ε ∑

1≤p≤k
1≤q≤l

∑
1≤sl≤M
1≤l≤p

∑
1≤tl≤M′
1≤l≤q

µ(Aε
s1
) · · ·µ(Aε

sp
)µ(Bε

t1) · · ·µ(B
ε
t̄q)

≤ C2ε
(k+l)

∑
j=1

(µ(A)+µ(B)) j ≤Cε .

Hence relation (B.8) holds.

To prove Theorem 10.2A in the general case take for all pairs of functions f ∈
Hµ ,k andg∈Hµ ,l two sequences of elementary functionsfn ∈ H̄µ ,k andgn ∈ H̄µ ,l ,
n= 1,2, . . . , such that‖ fn− f‖2 → 0 and‖gn−g‖2 → 0 asn→ ∞. It is enough to
show that

E|k!Zµ ,k( f )l !Zµ ,l (g)−k!Zµ ,k( fn)l !Zµ ,l (gn)| → 0 asn→ ∞, (B.16)

and

|γ |!E
∣
∣Zµ ,|γ |(Fγ( f ,g))−Zµ ,|γ |(Fγ( fn,gn))

∣
∣→ 0 asn→ ∞

for all γ ∈ Γ (k, l), (B.17)
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since then a simple limiting proceduren → ∞, and the already proved part of the
theorem for Wiener–It̂o integrals of elementary functions imply Theorem 10.2A.

To prove relation (B.16) write with the help of Property c) inTheorem (10.1)

E|k!Z,µ ,k( f )l !Zµ ,l (g)−k!Zµ ,k( fn)l !Zµ ,l (gn)|
≤ k!l !

(
E|Zµ ,k( f )Zµ ,l (g−gn)|+E|Zµ ,k( f − fn)Zµ ,l (gn)

)
|

≤ k!l !

((

EZ2
µ ,k( f )

)1/2(

EZ2
µ ,l (g−gn)

)1/2

+
(

EZ2
µ ,k( f − fn)

)1/2(

EZ2
µ ,l (gn)

)1/2
)

≤ (k!l !)1/2 (‖ f‖2‖g−gn‖2+‖ f − fn‖2‖gn‖2) .

Relation (B.16) follows from this inequality with a limiting proceduren→ ∞.
To prove relation (B.17) write

|γ |!E
∣
∣Zµ ,|γ |(Fγ( f ,g))−Zµ ,|γ |(Fγ( fn,gn))

∣
∣

≤ |γ |!E
∣
∣Zµ ,|γ |(Fγ( f ,g−gn))

∣
∣+ |γ |!E

∣
∣Zµ ,|γ |(Fγ( f − fn,gn))

∣
∣

≤ |γ |!
(

EZ2
µ ,|γ |(Fγ( f ,g−gn))

)1/2
+ |γ |!

(

EZ2
µ ,|γ |(Fγ( f − fn,gn))

)1/2

≤ (|γ |!)1/2(‖Fγ( f ,g−gn)‖2+‖Fγ( f − fn,gn)‖2
)
,

and observe that by relation (10.13)‖Fγ( f ,g−gn)‖2 ≤ ‖ f‖2‖g−gn‖2, and
‖Fγ( f − fn,gn)‖2 ≤ ‖ f − fn‖2‖gn‖2. Hence

|γ |!E
∣
∣Zµ ,|γ |(Fγ( f ,g))−Zµ ,|γ |(Fγ( fn,gn))

∣
∣

≤ (|γ |!)1/2(‖ f‖2‖g−gn‖2+‖ f − fn‖2‖gn‖2) .

The last inequality implies relation (B.17) with a limitingproceduren→ ∞. Theo-
rem 10.2A is proved.



Appendix C
The proof of some results about Wiener–It̂o
integrals

First I prove It̂o’s formula about multiple Wiener–Itô integrals (Theorem 10.3). The
proof is based on the diagram formula for Wiener–Itô integrals and a recursive
formula about Hermite polynomials proved in Proposition C.In Proposition C2 I
present the proof of another important property of Hermite polynomials. This result
states that the class of all Hermite polynomials is acompleteorthogonal system in an
appropriate Hilbert space. It is needed in the proof of Theorem 10.5 which provides
an isomorphism between a Fock space and the Hilbert space generated by Wiener–
Itô integrals with respect to a white noise with an appropriatereference measure. At
the end of Appendix C the proof of Theorem 10.4, a limit theorem about degenerate
U-statistics is given together with a version of this result about the limit behaviour
of multiple integrals with respect to a normalized empirical distribution.

Proposition C about some properties of Hermite polynomials. The functions

Hk(x) = (−1)kex2/2 dk

dxk e−x2/2, k= 0,1,2, . . . (C.1)

are the Hermite polynomials with leading coefficient 1, i.e.Hk(x) is a polynomial of
order k with leading coefficient 1 such that

∫ ∞

−∞
Hk(x)Hl (x)

1√
2π

e−x2/2dx= 0 if k 6= l . (C.2)

Beside this,
∫ ∞

−∞
H2

k (x)
1√
2π

e−x2/2dx= k! for all k = 0,1,2. . . . (C.3)

The recursive relation

Hk(x) = xHk−1(x)− (k−1)Hk−2(x) (C.4)

holds for all k= 1,2, . . . .

247
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Remark.It is more convenient to consider relation (C.4) valid also in the casek= 1.
In this caseH1(x) = x, H0(x) = 1, and relation holds with an arbitrary function
H−1(x).

Proof of Proposition C.It is clear from formula (C.1) thatHk(x) is a polynomial of
orderk with leading coefficient 1. Takel ≥ k, and write by means of integration by
parts

∫ ∞

−∞
Hk(x)Hl (x)

1√
2π

e−x2/2dx=
∫ ∞

−∞

1√
2π

Hk(x)(−1)l dl

dxl e−x2/2dx

=
∫ ∞

−∞

1√
2π

d
dx

Hk(x)(−1)l−1 dl−1

dxl−1 e−x2/2dx.

Successive partial integration together with the identitydk

dxk Hk(x) = k! yield that

∫ ∞

−∞
Hk(x)Hl (x)

1√
2π

e−x2/2dx= k!
∫ ∞

−∞

1√
2π

(−1)l−k dl−k

dxl−k e−x2/2dx.

The last relation supplies formulas (C.2) and (C.3).
To prove relation (C.4) observe thatHk(x)− xHk−1(x) is a polynomial of order

k−2. (The termxk−1 is missing from this expression. Indeed, ifk is an even number,
then the polynomialHk(x)− xHk−1(x) is an even function, and it does not contain
the termxk−1 with an odd exponentk−1. Similar argument holds if the numberk is
odd.) Beside this, it is orthogonal (with respect to the standard normal distribution)
to all Hermite polynomialsHl (x) with 0 ≤ l ≤ k− 3. HenceHk(x)− xHk−1(x) =
CHk−2(x) with some constantC to be determined.

Multiply both sides of the last identity withHk−2(x) and integrate them with
respect to the standard normal distribution. Apply the orthogonality of the polyno-
mialsHk(x) andHk−2(x), and observe that the identity

∫

Hk−1(x)xHk−2(x)
1√
2π

e−x2/2dx=
∫

H2
k−1(x)

1√
2π

e−x2/2dx= (k−1)!

holds. (In this calculation we have exploited thatHk−1(x) is orthogonal toHk−1(x)−
xHk−2(x), because the order of the latter polynomial is less thank− 1.) In such a
way we get the identity−(k−1)! =C(k−2)! for the constantC in the last identity,
i.e.C=−(k−1), and this implies relation (C.4).

Proof of Itô’s formula for multiple Wiener–Itô integrals.Let K =
m
∑

p=1
kp, the sum of

the order of the Hermite polynomials, denote the order of theexpression in relation
(10.24). Formula (10.24) clearly holds for expressions of order K = 1. It will be
proved in the general case by means of induction with respectto the orderK.

In the proof the functionsf (x1) = ϕ1(x1) and



C The proof of some results about Wiener–Itô integrals 249

g(x1, . . . ,xKm−1) =
K1−1

∏
j=1

ϕ1(x j) ·
m

∏
p=2

Kp−1

∏
j=Kp−1

ϕp(x j),

will be introduced and the productZµ ,1( f )(Km−1)!Zµ ,Km−1(g) will be calculated
by means of the diagram formula. (The same notation is applied as in Theorem

10.3. In particular,K = Km, and in the caseK1 = 1 the convention
K1−1
∏
j=1

ϕ1(x j) =

1 is applied.) In the application of the diagram formula diagrams with two rows
appear. The first row of these diagrams contains the vertex(1,1) and the second
row contains the vertices(2,1), . . . ,(2,Km−1). It is useful to divide the diagrams
to three disjoint classes. The first class,Γ0 contains only the diagramγ0 without any
edges. The second classΓ1 consists of those diagrams which have an edge of the
form ((1,1),(2, j)) with some 1≤ j ≤ k1−1, and the third classΓ2 is the set of those
diagrams which have an edge of the form((1,1),(2, j)) with somek1 ≤ j ≤ Km−1.
Because of the orthogonality of the functionsϕs for different indicess Fγ ≡ 0 and
Zµ ,Km−2(Fγ) = 0 for γ ∈ Γ2. The classΓ1 containsk1−1 diagrams. Let us consider
a diagramγ from this class with an edge((1,1),(2, j0)), 1≤ j ≤ k1−1. We have

for such a diagramFγ = ∏
j∈{1,...,K1−1}\{ j0}

ϕ1(x(2, j))
m
∏

p=2

Kp−1

∏
j=Kp−1

ϕp(x(2, j)), and by our

inductive hypothesis(Km−2)!Zµ ,Km−2(Fγ) = Hk1−2(η1)
m
∏

p=2
Hkp(ηp). Finally

Km!Zµ ,Km(Fγ0) = Km!Zµ ,Km

(
m

∏
p=1

(
Kp

∏
j=Kp−1+1

ϕp(x j)

))

for the diagramγ0 ∈ Γ0 without any edge.
Our inductive hypothesis also implies the following identity for the expression

we wanted to calculate with the help of the diagram formula.

Zµ ,1( f )(Km−1)!Zµ ,Km−1(g) = η1Hk1−1(η1)
m

∏
p=2

Hkp(ηp).

The above calculations together with the observation|Γ1|= k1−1 yield the iden-
tity
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Km!Zµ ,Km

(
m

∏
p=1

(
Kp

∏
j=Kp−1+1

ϕp(x j)

))

= Km!Zµ ,Km(Fγ0)

= Zµ ,1( f )(Km−1)!Zµ ,Km−1(g)− ∑
γ∈Γ1

(Km−2)!Zµ ,Km−2(Fγ)

= η1Hk1−1(η1)
m

∏
p=2

Hkp(ηp)− (k1−1)Hk1−2(η1)
m

∏
p=2

Hkp(ηp)

=
[
η1Hk1−1(η1)− (k1−1)Hk1−2(η1)

] m

∏
p=2

Hkp(ηp). (C.5)

On the other hand,η1Hk1−1(η1)− (k1−1)Hk1−2(η1) = Hk1(η1) by formula (C.4).
These relations imply formula (10.24), i.e. Itô’s formula.

I present the proof of another important property of the Hermite polynomials in
the following Proposition C2.

Proposition C2 on the completeness of the orthogonal systemof Hermite poly-
nomials. The Hermite polynomials Hk(x), k= 0,1,2, . . . , defined in formula (C.5)
constitute a complete orthonormal system in the L2-space of the functions square
integrable with respect to the Gaussian measure1√

2π e−x2/2dx on the real line.

Proof of Proposition C2.Let us consider the orthogonal complement of the sub-
space generated by the Hermite polynomials in the space of the square integrable
functions with respect to the measure1√

2π e−x2/2dx. It is enough to prove that this
orthogonal completion contains only the identically zero function. Since the orthog-
onality of a function to all polynomials of the formxk, k= 0,1,2, . . . is equivalent to
the orthogonality of this function to all Hermite polynomials Hk(x), k = 0,1,2, . . . ,
Proposition C2 can be reformulated in the following form:

If a functiong(x) on the real line is such that

∫ ∞

−∞
xkg(x)

1√
2π

e−x2/2dx= 0 for all k= 0,1,2, . . . (C.6)

and ∫ ∞

−∞
g2(x)

1√
2π

e−x2/2dx< ∞, (C.7)

theng(x) = 0 for almost allx.
Given a functiong(x) on the real line whose absolute value is integrable with

respect to the Gaussian measure1√
2π e−x2/2dx define the (finite) measureνg,

νg(A) =
∫

A
g(x)

1√
2π

e−x2/2dx

on the measurable sets of the real line together with its Fourier transformν̃g(t) =
∫ ∞
−∞ eitxνg(dx). (This measureνg and its Fourier transform can be defined for all

functionsg satisfying relation (C.7), because their absolute value isintegrable with
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respect to the Gaussian measure.) First I show that Proposition C2 can be reduced to
the following statement: If a functiong satisfies both (C.6) and (C.7) thenν̃g(t) = 0
for all −∞ < t < ∞.

Indeed, if there were a functiong satisfying (C.6) and (C.7) which is not iden-
tically zero, then the non-negative functionsg+(x) = max(0,g(x)) and g−(x) =
−min(0,g(x)) would be different. Then also their Fourier transformν̃g+(t) and
ν̃g−(t) would be different, since a finite measure is uniquely determined by its
Fourier transform. (This statement is equivalent to an important result in proba-
bility theory, by which a probability measure on the real line is determined by its
characteristic function.) But this would mean thatν̃g(t) = ν̃g+(t)− ν̃g−(t) 6= 0 for
somet. Hence Proposition C2 can be reduced to the above statement.

Since
∣
∣
∣eitx −1− (itx)−·· ·− (itx)k

k!

∣
∣
∣≤ |tx|(k+1)

(k+1)! for all real numberst, x and integer

k= 1,2, . . . we may write because of relation (C.6)

|ν̃g(t)| =

∣
∣
∣
∣

∫ ∞

−∞

(

eitx −1− (itx)−·· ·− (itx)k

k!

)

g(x)
1√
2π

e−x2/2dx

∣
∣
∣
∣

≤
∫ ∞

−∞

|t|(k+1)

(k+1)!
|x|k+1|g(x)| 1√

2π
e−x2/2dx

for all k = 1,2, . . . and real numbert if the functiong satisfies relation (C.6). If it
satisfies both relation (C.6) and (C.7), then from the last relation and the Schwarz
inequality

|ν̃g(t)|2 ≤ const.
|t|2(k+1)

(k+1)!)2

∫ ∞

−∞
|x|2(k+1) 1√

2π
e−x2/2dx

= const.
|t|2(k+1)

(k+1)!)2 1·3·5· · ·(2k+1)

for all real numbert and integerk= 1,2, . . . . Simple calculation shows that the right-
hand side of the last estimate tends to zero ask→ ∞. This implies that̃νg(t) = 0 for
all t, and Proposition C2 holds.

I finish Appendix C with the proof of Theorem 10.4, a limit theorem about a
sequence of normalized degenerateU-statistics. It is based on an appropriate rep-
resentation of theU-statistics by means of multiple random integrals which makes
possible to carry out an appropriate limiting procedure.

Proof of Theorem 10.4.For all n= 1,2, . . . , the normalized degenerateU-statistics
n−k/2k!In,k( f ) can be written in the form

n−k/2k!In,k( f ) = nk/2
∫ ′

f (x1, . . . ,xk)µn(dx1) . . .µn(dxk) (C.8)

= nk/2
∫ ′

f (x1, . . . ,xk)(µn(dx1)−µ(dxk)) . . .(µn(dxk)−µ(dx1)),
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whereµn is the empirical distribution of the sequenceξ1, . . . ,ξn defined in (4.5), and
the prime in

∫ ′ denotes that the diagonals, i.e. the pointsx = (x1, . . . ,xk) such that
x j = x j ′ for some pairs of indices 1≤ j, j ′ ≤ k, j 6= j ′, are omitted from the domain
of integration. The second identity in relation (C.8) can bejustified by means of the
identity

∫ ′
f (x1, . . . ,xk)(µn(dx1)−µ(dx1)) . . .(µn(dxk)−µ(dxk))− In,k( f )

= ∑
V : V∈{1,...,k}, |V|≥1

(−1)|V|
∫ ′

f (x1, . . . ,xk)

∏
j∈V

µ(dxj) ∏
j∈{1,...,k}\V

µn(dxj)) = 0. (C.9)

This identity holds for a functionf canonical with respect to a non-atomic mea-
sureµ , because each term in the sum at the right-hand side of (C.9) equals zero.
Indeed, the integral of a canonical functionf with respect toµ(dxj) with some in-
dex j ∈V equals zero for all fixed valuesx1, . . . ,x j−1,x j+1, . . . ,xk. The non-atomic
property of the measureµ was needed to guarantee that this integral equals zero
also in the case when the diagonals are omitted from the domain of integration.

We would like to derive Theorem 10.4 from relation (C.8) by means of an ap-
propriate limiting procedure which exploits the convergence of the random fields
n1/2(µn(A)− µ(A)), A ∈ X , to a Gaussian fieldν(A), A ∈ X , as n → ∞. But
some problems arise if we want to carry out such a program, because the fields
n1/2(µn−µ) converge to a non white noise type Gaussian field. The limit weget is
similar to a Wiener bridge on the real line. Hence a relation between Wiener pro-
cesses and Wiener bridges suggests to write the following version of formula (C.8).

Let us take a standard Gaussian random variableη , independent of the random
sequenceξ1,ξ2, . . . . For a canonical functionf the following version of (C.8) holds.

n−k/2k!In,k( f ) = J′n,k( f ) (C.10)

with

J′n,k( f ) =
∫ ′

f (x1, . . . ,xk)
[√

n(µn(dx1)−µ(dx1))+ηµ(dx1)
]

. . .
[√

n(µn(dxk)−µ(dxk))+ηµ(dxk)
]
. (C.11)

This relation can be seen similarly to (C.8).
The random measuresn1/2(µn− µ)+ηµ converge to a white noise with refer-

ence measureµ . Hence Theorem 10.4 can be proved by means of formulas (C.10)
and (C.11) with the help of an appropriate limiting procedure. More explicitly, I
claim that the following slightly more general result holds. The expressionsJ′n,k( f )
introduced in (C.11) converge in distribution to the Wiener–Itô integralk!Zµ ,k( f )
asn→ ∞ for all functions f square integrable with respect to the product measure
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µk. This result also holds for non-canonical functionsf . This limit theorem together
with relation (C.10) imply Theorem 10.4.

The convergence of the random variablesJ′n,k( f ) defined in (C.11) to the Wiener–

Itô integralk!Zµ ,k( f ) can be easily checked for elementary functionsf ∈ H̄µ ,k. In-
deed, ifA1, . . . ,AM are disjoint sets withµ(As) < ∞, then the multi-dimensional
central limit theorem implies that the random vectors{√n((µn(As)− µ(As)) +
ηµ(As), 1 ≤ s≤ M} converge in distribution to the random vector{(µW(As), 1 ≤
s≤M}, i.e. to a set of independent normal random variablesζs, Eζs= 0, 1≤ s≤M,
with varianceEζ 2

s = µ(As) asn → ∞. The definition of the elementary functions
given in (10.2) shows that this central limit theorem implies the demanded conver-
gence of the sequenceJ′n,k( f ) to k!Zµ ,k( f ) for elementary functions.

To show the convergence of the sequenceJ′n,k( f ) to k!Zµ ,k( f ) in the general

case take for any functionf ∈ Hµ ,k a sequence of elementary functionsfN ∈ H̄µ ,k
such that‖ f − fN‖2 → 0 asN → ∞. ThenE(Zµ ,k( f )−Zµ ,k( fN))2 = E(Zµ ,k( f −
fN))2 → 0 asN → ∞ by Property c) in Theorem 10.1. Hence the already proved part
of the theorem implies that there exists some sequence of positive integers,N(n),
n= 1,2, . . . , in such a way thatN(n)→ ∞, and the sequenceJ′n,k( fN(n)) converges to
k!Zµ ,k( f ) in distribution asn→ ∞. Thus to complete the proof of Theorem 10.4 it is
enough to show thatE(J′n,k( fN(n))−J′n,k( f ))2 = E(J′n,k( fN(n)− f ))2 → 0 asn→ ∞.

It is enough to show that

E(J′n,k( f ))2 ≤C‖ f‖2
2 for all f ∈ Hµ ,k (C.12)

with a constantC=Ck depending only on the orderk of the functionf and to apply
inequality (C.12) for the functionsfN(n)− f . Relation (C.12) is a relatively simple
consequence of Corollary 1 of Theorem 9.4.

Indeed,
J′n,k( f ) = ∑

V⊂{1,...,k}
ηk−|V||V|!Jn,|V|( fV)

with
fV(x j , j ∈V) =

∫

f (x1, . . . ,xk) ∏
j ′∈{1,...,k}\V

µ(dxj ′)

and the random integralJn,k(·) defined in (4.8), hence

E(J′n,k( f ))2 ≤ 2k ∑
V⊂{1,...,k}

(|V|!)2Eη2(k−|V|) ·EJ2
n,|V|( fV). (C.13)

Inequality‖ fV‖2 ≤ ‖ f‖2 holds for all setsV ⊂ {1, . . . ,k}, hence an application of
Corollary 1 of Theorem 9.4 to all random integralsJn,|V|( f ) supplies (C.12).

The above proof also yields the following slight generalization of Theorem 10.4.
Let us consider a finite sequence of functionsf j ∈ Hµ , j , 1≤ j ≤ k, canonical with
respect to a non-atomic probability measureµ . The vectors{n− j/2In, j( f j),1≤ j ≤
k}, consisting of normalized degenerateU-statistics defined with the help of a se-
quence of independentµ-distributed random variables converge to the random vec-
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tor {Zµ , j( f j),1≤ j ≤ k} in distribution asn→ ∞. This result together with Theo-
rem 9.4 imply the following limit theorem about multiple random integralsJn,k( f ).

Theorem 10.4′ (Limit theorem about multiple random integrals with respect to
a normalized empirical measure).Let a sequence of independent and identically
distributed random variablesξ1,ξ2, . . . be given with some non-atomic distribution
µ on a measurable space(X,X ) together with a function f(x1, . . . ,xk) on the k-fold
product(Xk,X k) of the space(X,X ) such that

∫

f 2(x1, . . . ,xk)µ(dx1) . . .µ(dxk)< ∞.

Let us consider for all n= 1,2, . . . the random integrals Jn,k( f ) of order k defined
in formulas (4.5) and (4.8) with the help of the empirical distribution µn of the
sequenceξ1, . . . ,ξn and the function f . These random integrals Jn,k( f ) converge in
distribution, as n→ ∞, to the following sum U( f ) of multiple Wiener–It̂o integrals:

U( f ) = ∑
V⊂{1,...,k}

C(k,V)Zµ ,|V|( fV)

= ∑
V⊂{1,...,k}

C(k,V)

|V|!

∫

fV(x j , j ∈V)∏
j∈V

µW(dxj),

where the functions fV(x j , j ∈ V), V ⊂ {1, . . . ,k}, are those functions defined
in formula (9.3) which appear in the Hoeffding decomposition of the function
f (x1, . . . ,xk), the constants C(k,V) are the limits appearing in the limit relation
lim
n→∞

C(n,k,V) = C(k,V) satisfied by the coefficients C(n,k,V) in formula (9.15),

andµW is a white noise with reference measureµ .

An essential step of the proof of Theorem 10.4 was the reduction of the case of
general kernel functions to the case of elementary kernel functions. Let me make
some comments about it.

It would be simple to make such a reduction if we had a good approximation of a
canonical function with such elementary functions which are also canonical. But it
is very hard to find such an approximation. To overcome this difficulty we reduced
the proof of Theorem 10.4 to a modified version of this result where instead of a
limit theorem for degenerateU-statistics a limit theorem for the random variables
J′n,k( f ) introduced in formula (C.11) has to be proved. In the proof ofsuch a version
we could apply the approximation of a general kernel function with not necessar-
ily canonical elementary functions. Theorem 9.4 helped us to work with such an
approximation. Another natural way to overcome the above difficulty is to apply a
Poissonian approximation of the normalized empirical measure. Such an approach
was applied in [16] and in [34], where some generalizations of Theorem 10.4 were
proved.



Appendix D
The proof of Theorem 14.3 aboutU-statistics
and decoupledU-statistics

The proof of Theorem 14.3.It will be simpler to formulate and prove a general-
ized version of Theorem 14.3 where such generalizedU-statistics are considered in
which different kernel functions may appear in each term of the sum. More explic-
itly, let ℓ= ℓ(n,k) denote the set of all such sequencesl = (l1, . . . , lk) of integers of
lengthk for which 1≤ l j ≤ n, 1≤ j ≤ k. To define generalizedU-statistics let us fix a
set of functions{ fl1,...,lk(x1, . . . ,xk), (l1, . . . , lk) ∈ ℓ} which map the space(Xk,X k)
to a separable Banach spaceB, and have the propertyfl1,...,lk(x1, . . . ,xk)≡ 0 if l j = l j ′

for some indicesj 6= j ′. (The last condition corresponds to that property ofU-
statistics that the diagonals are omitted from the summation in their definition.)
Let us denote this set of functions byf (ℓ), and define, similarly to theU-statistics
and decoupledU-statistics the generalizedU-statistics and generalized decoupled
U-statistics by the formulas

In,k( f (ℓ)) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k

fl1,...,lk
(
ξl1, . . . ,ξlk

)
(D.1)

and

Īn,k( f (ℓ)) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k

fl1,...,lk

(

ξ (1)
l1

, . . . ,ξ (k)
lk

)

(D.2)

(with the same independent and identically distributed random variablesξl andξ ( j)
l ,

1≤ l ≤ n, 1≤ j ≤ k, as in the definition of the originalU-statistics and decoupled
U-statistics.)

The following generalization of relation (14.13) will be proved.

P
(
‖In,k( f (ℓ))‖> u

)
≤ A(k)P

(
‖Īn,k( f (ℓ))‖> γ(k)u

)
(D.3)

with some constantsA(k) > 0 andγ(k) > 0 depending only on the orderk of these
generalizedU-statistics. The sign‖·‖ in (D.3) denotes the norm in the Banach space
we are working in.

255
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We concentrate mainly on the proof of the generalization (D.3) of relation
(14.13). Formula (14.14) is a relatively simple consequence of it. Formula (D.3)
will be proved by means of an inductive procedure which worksonly in this more
general setting. It will be derived from the following statement.

Let us take two independent copiesξ (1)
1 , . . . ,ξ (1)

n andξ (2)
1 , . . . ,ξ (2)

n of our original
sequence of random variablesξ1, . . . ,ξn, and introduce for all setsV ⊂{1, . . . ,k} the
function αV( j), 1≤ j ≤ k, defined asαV( j) = 1 if j ∈ V andαV( j) = 2 if j /∈ V.
Let us define with their help the following version of decoupledU-statistics:

In,k,V( f (ℓ)) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k

fl1,...,lk

(

ξ (αV (1))
l1

, . . . ,ξ (αV (k))
lk

)

for all V ⊂ {1, . . . ,k}. (D.4)

The following inequality will be proved: There are some constantsCk > 0 and
Dk > 0 depending only on the orderk of the generalizedU-statisticIn,k( f (ℓ)) such
that for all numbersu> 0

P
(
‖In,k( f (ℓ))‖> u

)
≤ ∑

V⊂{1,...,k},1≤|V|≤k−1

CkP
(
Dk‖In,k,V( f (ℓ))‖> u

)
. (D.5)

Here|V| denotes the cardinality of the setV, and the condition 1≤ |V| ≤ k−1 in
the summation of formula (D.5) means that the setsV = /0 andV = {1, . . . ,k} are
omitted from the summation, i.e. the terms where eitherαV( j) = 1 orαV( j) = 2 for
all 1≤ j ≤ k are not considered. Formula (D.3) can be derived from formula (D.5)
by means of an inductive argument. The hard part of the problem is to prove for-
mula (D.5). To do this first we prove the following simple lemma.

Lemma D1. Let ξ and η be two independent and identically distributed random
variables taking values in a separable Banach space B. Then

3P

(

|ξ +η |> 2
3

u

)

≥ P(|ξ |> u) for all u > 0.

Proof of Lemma D1. Letξ , η and ζ be three independent, identically distributed
random variables taking values in B. Then

3P

(

|ξ +η |> 2
3

u

)

= P

(

|ξ +η |> 2
3

u

)

+P

(

|ξ +ζ |> 2
3

u

)

+P

(

|− (η +ζ )|> 2
3

u

)

≥ P(|ξ +η +ξ +ζ −η −ζ |> 2u) = P(|ξ |> u).

To prove formula (D.5) we introduce the random variable
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Tn,k( f (ℓ)) =
1
k! ∑

(l1,...,lk), (s1,...,sk) :
1≤l j≤n,sj=1 orsj=2, j=1,...,k,

fl1,...,lk

(

ξ (s1)
l1

, . . . ,ξ (sk)
lk

)

= ∑
V⊂{1,...,k}

In,k,V( f (ℓ)). (D.6)

The random variablesIn,k( f (ℓ)), In,k, /0( f (ℓ)) andIn,k,{1,...,k}( f (ℓ)) are identically dis-
tributed, and the last two random variables are independentof each other. Hence
Lemma D1 yields that

P(‖In,k( f (ℓ))‖> u)≤ 3P

(

‖In,k, /0( f (ℓ))+ In,k,{1,...,k}( f (ℓ))‖> 2
3

u

)

= 3P

(∥
∥
∥
∥
∥
Tn,k( f (ℓ))− ∑

V : V⊂{1,...,k},1≤|V|≤k−1

In,k,|V|( f (ℓ))

∥
∥
∥
∥
∥
>

2
3

u

)

≤ 3P(3·2k−1‖Tn,k( f (ℓ))‖> u)

+ ∑
V : V⊂{1,...,k},1≤|V|≤k−1

3P(3·2k−1‖In,k,|V|( f (ℓ))‖> u). (D.7)

To derive relation (D.5) from relation (D.7) we need a good upper bound on the
probabilityP(3 ·2k−1‖Tn,k( f (ℓ))‖ > u). To get such an estimate we shall compare
the tail distribution of‖Tn,k( f (ℓ))‖ with that of ‖In,k,V( f (ℓ))‖ for an arbitrary set
V ⊂ {1, . . . ,k}. This will be done with the help of Lemmas D2 and D4 formulated
below.

In Lemma D2 such a random variable‖În,k,V( f (ℓ))‖ will be constructed whose
distribution agrees with that of‖In,k,V( f (ℓ))‖. The expression̂In,k,V( f (ℓ)), whose
norm will be investigated will be defined in formulas (D.8) and (D.9). It is a random
polynomial of some Rademacher functionsε1, . . . ,εn. The coefficients of this poly-
nomial are random variables, independent of the Rademacherfunctionsε1, . . . ,εn.
Beside this, the constant term of this polynomial equalsTn,k( f (ℓ)). These properties
of the polynomialÎn,k,V( f (ℓ)) together with Lemma D4 formulated below enable
us prove such an estimate on the distribution of‖Tn,k( f (ℓ))‖ that together with for-
mula (D.7) imply relation (D.5). Let us formulate these lemmas.

Lemma D2.Let us consider a sequence of independent random variablesε1, . . . ,εn,
P(εl = 1) = P(εl = −1) = 1

2, 1 ≤ l ≤ n, which is also independent of the random

variablesξ (1)
1 , . . . ,ξ (1)

n andξ (2)
1 , . . . ,ξ (2)

n appearing in the definition of the modified
decoupled U-statistics In,k,V( f (ℓ)) given in formula (D.4). Let us define with their

help the sequences of random variablesη(1)
1 , . . . ,η(1)

n andη(2)
1 , . . . ,η(2)

n whose ele-

ments(η(1)
l ,η(2)

l ) = (η(1)
l (εl ),η

(2)
l (εl )), 1≤ l ≤ n, are defined by the formula

(η(1)
l (εl ),η

(2)
l (εl )) =

(
1+ εl

2
ξ (1)

l +
1− εl

2
ξ (2)

l ,
1− εl

2
ξ (1)

l +
1+ εl

2
ξ (2)

l

)

,

i.e. let
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(η(1)
l (εl ),η

(2)
l (εl )) = (ξ (1)

l ,ξ (2)
l ) if εl = 1,

and
(η(1)

l (εl ),η
(2)
l (εl )) = (ξ (2)

l ,ξ (1)
l ) if εl =−1, 1≤ l ≤ n.

Then the joint distribution of the pair of sequences of random variablesξ (1)
1 , . . . ,ξ (1)

n

and ξ (2)
1 , . . . ,ξ (2)

n agrees with that of the pair of sequencesη(1)
1 , . . . ,η(1)

n and

η(2)
1 , . . . ,η(2)

n , which is also independent of the sequenceε1, . . . ,εn.
Let us fix some V⊂ {1, . . . ,k}, and introduce the random variable

În,k,V( f (ℓ)) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k

fl1,...,lk

(

η(αV (1))
l1

, . . . ,η(αV (k))
lk

)

, (D.8)

where similarly to formula (D.4)αV( j) = 1 if j ∈V, andαV( j) = 2 if j /∈V. Then
the identity

2kÎn,k,V( f (ℓ)) (D.9)

=
1
k! ∑

(l1,...,lk), (s1,...,sk) :
1≤l j≤n, sj=1 or sj=2,

j=1,...,k,

(1+κ(1)
s1,V

εl1) · · ·(1+κ(k)
sk,V

εlk) fl1,...,lk

(

ξ (s1)
l1

, . . . ,ξ (sk)
lk

)

holds, whereκ( j)
1,V = 1 andκ( j)

2,V =−1 if j ∈V, andκ( j)
1,V =−1 andκ( j)

2,V = 1 if j /∈V,

i.e. κ( j)
1,V = 3−2αV( j) andκ( j)

2,V =−κ( j)
1,V .

Before the formulation of Lemma D4 another Lemma D3 will be presented
which will be applied in its proof.

Lemma D3.Let Z be a random variable taking values in a separable Banachspace
B with expectation zero, i.e. let Eκ(Z) = 0 for all κ ∈ B′, where B′ denotes the
(Banach) space of all (bounded) linear transformations of Bto the real line. Then

P(‖v+Z‖ ≥ ‖v‖)≥ inf
κ∈B′

(E|κ(Z)|)2
4Eκ(Z)2 for all v ∈ B.

Lemma D4. Let us consider a positive integer n and a sequence of independent
random variablesε1, . . . ,εn, P(εl = 1) = P(εl =−1) = 1

2, 1≤ l ≤ n. Beside this, fix
some positive integer k, take a separable Banach space B and choose some elements
as(l1, . . . , ls) of this Banach space B,1≤ s≤ k,1≤ l j ≤ n, l j 6= l j ′ if j 6= j ′, 1≤ j, j ′ ≤
s. With the above notations the inequality

P








∥
∥
∥
∥
∥
∥
∥
∥
∥

v+
k

∑
s=1

∑
(l1,...,ls) : 1≤l j≤n, j=1,...,s,

l j 6=l j′ if j 6= j ′

as(l1, . . . , ls)εl1 · · ·εls

∥
∥
∥
∥
∥
∥
∥
∥
∥

≥ ‖v‖








≥ ck (D.10)

holds for all v∈ B with some constant ck > 0 which depends only on the parameter
k. In particular, it does not depend on the norm in the separable Banach space B.
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Proof of Lemma D2.Let us consider the conditional joint distribution of the se-

quences of random variablesη(1)
1 , . . . ,η(1)

n and η(2)
1 , . . . ,η(2)

n under the condition
that the random vectorε1, . . . ,εn takes the value of some prescribed±1 series of
lengthn. Observe that this conditional distribution agrees with the joint distribution

of the sequencesξ (1)
1 , . . . ,ξ (1)

n and ξ (2)
1 , . . . ,ξ (2)

n for all possible conditions. This

fact implies the statement about the joint distribution of the sequences(η(1)
l ,η(2)

l ),
1≤ l ≤ n and their independence of the sequenceε1, . . . ,εn.

To prove identity (D.9) let us fix a setM ⊂ {1, . . . ,n}, and consider the case
whenεl = 1 if l ∈ M andεl =−1 if l /∈ M. PutβV,M( j, l) = 1 if j ∈V andl ∈ M or
j /∈V andl /∈ M, and letβV,M( j, l) = 2 otherwise. Then we have for all(l1, . . . , lk),
1≤ l j ≤ n, 1≤ j ≤ k, and our fixed setV

∑
(s1,...,sk) :

sj=1 orsj=2, j=1,...,k

(1+κ(1)
s1,V

εl1) · · ·(1+κ(k)
sk,V

εlk) fl1,...,lk

(

ξ (s1)
l1

, . . . ,ξ (sk)
lk

)

= 2k fl1,...,lk

(

ξ (βV,M(1,l1))
l1

, . . . ,ξ (βV,M(k,lk))
lk

)

, (D.11)

since the product(1+κ(1)
s1,V

εl1) · · ·(1+κ(k)
sk,V

εlk) equals either zero or 2k, and it equals

2k for that sequence(s1, . . . ,sk) for whichκ( j)
sj ,V

εl j = 1 for all 1≤ j ≤ k, and the rela-

tion κ( j)
sj ,V

εl j = 1 is equivalent toβV,M( j, l j) = sj for all 1≤ j ≤ k. (In relation (D.11)

it is sufficient to consider only such products for whichl j 6= l j ′ if j 6= j ′ because of
the properties of the functionsfl1,...,lk.)

Beside this,ξ βV,M(l , j)
l = ηαV ( j)

l for all 1≤ l ≤ n and 1≤ j ≤ k, and as a conse-
quence

fl1,...,lk

(

ξ (βV,M(1,l1))
l1

, . . . ,ξ (βV,M(k,lk))
lk

)

= fl1,...,lk

(

η(αV (1))
l1

, . . . ,η(αV (k))
lk

)

.

Summing up the identities (D.11) for all 1≤ l1, . . . , lk ≤ n and applying the last
identity we get relation (D.9), since the identity obtainedin such a way holds for all
M ⊂ {1, . . . ,n}.

Proof of Lemma D3.Let us first observe that ifξ is a real valued random vari-

able with zero expectation, thenP(ξ ≥ 0) ≥ (E|ξ |)2
4Eξ 2 since(E|ξ |)2 = 4(E(ξ I({ξ ≥

0}))2 ≤ 4P(ξ ≥ 0)Eξ 2 by the Schwarz inequality, whereI(A) denotes the indicator
function of the setA. (In the above calculation and in the subsequent proofs I apply
the convention0

0 = 1. We need this convention ifEξ 2 = 0. In this case we have the
identitiesP(ξ = 0) = 1 andE|ξ | = 0, hence the above proved inequality holds in
this case, too.)

Given somev∈B, let us choose a linear operatorκ such that‖κ‖= 1, andκ(v) =
‖v‖. Such an operator exists by the Banach–Hahn theorem. Observe that{ω : ‖v+
Z(ω)‖ ≥ ‖v‖} ⊃ {ω : κ(v+Z(ω)) ≥ κ(v)} = {ω : κ(Z(ω)) ≥ 0}. Beside this,
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Eκ(Z) = 0. Hence we can apply the above proved inequality forξ = κ(Z), and it

yields thatP(‖v+Z‖ ≥ ‖v‖)≥ P(κ(Z)≥ 0)≥ (E|κ(Z)|)2
4Eκ(Z)2 . Lemma D3 is proved.

Proof of Lemma D4.Take the class of random polynomials

Y =
k

∑
s=1

∑
(l1,...,ls) : 1≤l j≤n, j=1,...,s,

l j 6=l j′ if j 6= j ′

bs(l1, . . . , ls)εl1 · · ·εls,

whereεl , 1 ≤ l ≤ n, are independent random variables withP(εl = 1) = P(εl =
−1) = 1

2, and the coefficientsbs(l1, . . . , ls), 1≤ s≤ k, are arbitrary real numbers.
The proof of Lemma D4 can be reduced to the statement that there exists a constant
ck > 0 depending only on the orderk of these polynomials such that the inequality

(E|Y|)2 ≥ 4ckEY2. (D.12)

holds for all such polynomialsY. Indeed, consider the polynomial

Z =
k

∑
s=1

∑
(l1,...,ls) : 1≤l j≤n, j=1,...,s,

l j 6=l j′ if j 6= j ′

as(l1, . . . , ls)εl1 · · ·εls,

and observe thatEκ(Z) = 0 for all linear functionalsκ on the spaceB. Hence
Lemma D3 implies that the left-hand side expression in (D.10) is bounded from be-

low by inf
κ∈B′

(E|κ(Z)|)2
4Eκ(Z)2 . On the other hand, relation (D.12) implies that inf

κ∈B′
(E|κ(Z)|)2
4Eκ(Z)2 ≥

ck.
To prove relation (D.12) first we compare the momentsEY2 andEY4. Let us

introduce the random variables

Ys = ∑
(l1,...,ls) : 1≤l j≤n, j=1,...,s,

l j 6=l j′ if j 6= j ′

bs(l1, . . . , ls)εl1 · · ·εls 1≤ s≤ k.

We shall show that the estimates of Chapter 13 imply that

EY4
s ≤ 24s(EY2

s

)2
(D.13)

for these random variablesYs.
Relation (D.13) together with the uncorrelatedness of the random variablesYs,

1≤ s≤ k, imply that
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EY4 = E

(
k

∑
s=1

Ys

)4

≤ k3
k

∑
s=1

EY4
s ≤ k324k

k

∑
s=1

(EY2
s )

2

≤ k324k

(
k

∑
s=1

EY2
s

)2

= k324k(EY2)2.

This estimate together with the Hölder inequality withp= 3 andq= 3
2 yield that

EY2 = E|Y|4/3 · |Y|2/3 ≤ (EY4)1/3(E|Y|)2/3 ≤ k24k/3(EY2)2/3(E|Y|)2/3,

i.e. EY2 ≤ k324k(E|Y|)2, and relation (D.12) holds with 4ck = k−32−4k. Hence to
complete the proof of Lemma D4 it is enough to check relation (D.13).

In the proof of relation (D.13) we may assume that the coefficientsbs(l1, . . . , ls)
of the random variableYs are symmetric functions of the argumentsl1, . . . , ls, since
a symmetrization of these coefficients does not change the value ofY. Put

B2
s = ∑

(l1,...,ls) : 1≤l j≤n, j=1,...,s,
l j 6=l j′ if j 6= j ′

b2
s(l1, . . . , ls), 1≤ s≤ k.

Then
EY2

s = s!B2
s,

and

EY4
s ≤ 1·3·5· · ·(4s−1)B4

s =
(4s)!

22s(2s)!
B4

s

by Lemmas 13.4 and 13.5 with the choiceM = 2 andk = s. Inequality (D.13) fol-
lows from the last two relations. Indeed, to prove formula (D.13) by means of these
relations it is enough to check that (4s)!

22s(2s)!(s!)2
≤ 24s. But it is easy to check this in-

equality with induction with respect tos. (Actually there is a well-known inequality
in the literature, known under the name Borell’s inequality, which implies inequal-
ity (D.13) with a better coefficient at the right hand side of this estimate.) We have
proved Lemma D4.

Let us turn back to the estimation of the probabilityP(3·2k−1‖Tn,k( f )‖> u). Let

us introduce theσ -algebraF = B(ξ (1)
l ,ξ (2)

l , 1≤ l ≤ n) generated by the random

variablesξ (1)
l ,ξ (2)

l , 1≤ l ≤ n, and fix some setV ⊂ {1, . . . ,k}. I show with the help
of Lemma D4 and formula (D.9) that there exists some constantck > 0 such that
the random variablesTn,k f (ℓ)) defined in formula (D.6) and̂In,k,V( f (ℓ)) defined in
formula (D.8) satisfy the inequality

P
(

‖2kÎn,k,V( f (ℓ))‖> ‖Tn,k( f (ℓ))‖|F
)

≥ ck with probability 1. (D.14)

In the proof of (D.14) we shall exploit that in formula (D.9) 2kÎn,k,V( f (ℓ)) is
represented by a polynomial of the Rademacher functionsε1, . . . ,εn whose constant
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term isTn,k( f (ℓ)). The coefficients of this polynomial are functions of the random

variablesξ (1)
l andξ (2)

l , 1≤ l ≤ n. The independence of these random variables from
εl , 1≤ l ≤ n, and the definition of theσ -algebraF yield that

P
(

‖2kÎn,k,V( f (ℓ))‖> ‖Tn,k( f (ℓ))‖|F
)

(D.15)

= PεV

(∥
∥
∥
∥

1
k! ∑

(l1,...,lk), (s1,...,sk) :
1≤l j≤n,sj=1 orsj=2,

j=1,...,k,

(1+κ(1)
s1,V

εl1) · · ·(1+κ(k)
sk,V

εlk)

fl1,...,lk

(

ξ (s1)
l1

, . . . ,ξ (sk)
lk

)
∥
∥
∥
∥

> ‖Tn,k( f (ℓ))(ξ ( j)
l , 1≤ l ≤ n, j = 1,2)‖

)

,

wherePεV means that the values of the random variablesξ (1)
l , ξ (2)

l , 1≤ l ≤ n, are
fixed, (their value depend on the atom of theσ -algebraF we are considering) and
the probability is taken with respect to the remaining random variablesεl , 1≤ l ≤ n.
At the right-hand side of (D.15) the probability of such an event is considered that
the norm of a polynomial of orderk of the random variablesε1, . . . ,εn is larger

than‖Tn,k( f (ℓ))(ξ ( j)
l , 1 ≤ l ≤ n, j = 1,2)‖. Beside this, the constant term of this

polynomial equalsTn,k( f (ℓ))(ξ ( j)
l , 1 ≤ l ≤ n, j = 1,2). Hence this probability can

be bounded by means of Lemma D4, and this result yields relation (D.14).
The distributions ofIn,k,V( f (ℓ)) and În,k,V( f (ℓ)) agree by the first statement of

Lemma D2 and a comparison of formulas (D.4) and (D.8). Hence relation (D.14)
implies that

P

(

‖2kIn,k,V( f (ℓ))‖ ≥ 1
3
·21−ku

)

= P

(

‖2kÎn,k,V( f (ℓ))‖ ≥ 1
3
·21−ku

)

≥ P

(

‖2kÎn,k,V( f (ℓ))‖ ≥ ‖Tn,k( f (ℓ))‖, ‖Tn,k( f (ℓ))‖ ≥ 1
3
·21−ku

)

=
∫

{ω : ‖Tn,k( f (ℓ))(ω)‖≥ 1
3 ·21−ku}

P
(

‖2kÎn,k,V( f (ℓ))‖> ‖Tn,k( f (ℓ))‖|F
)

dP

≥ ckP(3·2k−1‖Tn,k( f (ℓ))‖ ≥ u).

The last inequality with the choice of any setV ⊂ {1, . . . ,k}, 1≤ |V| ≤ k−1, to-
gether with relation (D.7) imply formula (D.5).

We shall formulate an inductive hypothesis, and relation (D.3) will be proved
together with it by means of an induction procedure with respect to the orderk of
theU-statistic. In the proof of this inductive procedure we shall apply the already
proved relation (D.5). To formulate it some new quantities will be introduced.

Let W = W (k) denote the set of all partitions of the set{1, . . . ,k}. Let us fixk

independent copiesξ ( j)
1 , . . . ,ξ ( j)

n , 1≤ j ≤ k, of the sequence of random variables
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ξ1, . . . ,ξn. Given a partitionW = (U1, . . . ,Us) ∈ W (k) let us introduce the function
sW( j), 1≤ j ≤ k, which tells for all argumentsj the index of that element of the
partitionW which contains the pointj, i.e. the value of the functionsW( j), 1≤ j ≤ k,
in a point j is defined by the relationj ∈VsW( j). Let us introduce the expression

In,k,W( f (ℓ)) =
1
k! ∑

(l1,...,lk) : 1≤l j≤n, j=1,...,k

fl1,...,lk

(

ξ (sW(1))
l1

, . . . ,ξ (sW(k))
lk

)

for all W ∈ W (k).

An expression of the formIn,k,W( f (ℓ)), W ∈ Wk, will be called a decoupledU-
statistic with generalized decoupling. Given a partitionW = (U1, . . . ,Us) ∈ Wk let
us call the numbers, i.e. the number of the elements of this partition the rank both
of the partitionW and of the decoupledU-statistic In,k,W( f (ℓ)) with generalized
decoupling.

Now I formulate the following hypothesis. For allk≥ 2 and 2≤ j ≤ k there exist
some constantsC(k, j) > 0 andδ (k, j) > 0 such that for allW ∈ Wk a decoupled
U-statisticIn,k,W( f (ℓ)) with generalized decoupling satisfies the inequality

P(‖In,k,W( f (ℓ))‖> u)≤C(k, j)P
(
‖Īn,k( f (ℓ))‖> δ (k, j)u

)

for all 2≤ j ≤ k if the rank ofW equalsj. (D.16)

It will be proved by induction with respect tok that both relations (D.3) and (D.16)
hold forU-statistics of orderk. Let us observe that fork = 2 relation (D.3) follows
from (D.5). Relation (D.16) also holds fork= 2, since in this case we have to con-
sider only the casej = k= 2. Relation (D.16) also holds in this case withC(2,2) = 1
andδ (2,2) = 1. Hence we can start our inductive proof withk= 3. First I prove re-
lation (D.16).

In relation (D.16) the tail-distribution of decoupledU-statistics with generalized
decoupling is compared with that of the decoupledU-statisticĪn,k( f (ℓ)) introduced
in (D.2). Given the orderk of theseU-statistics it will be proved by means of a back-
ward induction with respect to the rankj of the decoupledU-statisticsIn,k,W( f (ℓ))
with generalized decoupling.

Relation (D.16) clearly holds forj = k with C(k,k) = 1 andδ (k,k) = 1. If we
already know that these relations hold up tok−1, then we prove first relation (D.16)
for generalized decouplingU-statistics of orderk with respect to backward induc-
tion for the rank 2≤ j < k.

For this goal the following observation will be made. If the rank j of a parti-
tion W = (U1, . . . ,U j) satisfies the relation 2≤ j ≤ k− 1, then it contains an ele-
ment with cardinality strictly less thank and strictly greater than 1. For the sake
of simpler notation let us assume that the elementU j of this partition is such an
element, andU j = {t, . . . ,k} with some 2≤ t ≤ k−1. The investigation of general
U-statistics of rankj, 2 ≤ j ≤ k− 1, can be reduced to this case by a reindexa-
tion of the arguments in theU-statistics if it is necessary. Let us consider the parti-
tionW̄= (U1, . . . ,U j−1,{t}, . . . ,{k}) and the decoupledU-statisticIn,k,W̄( f (ℓ)) with
generalized decoupling corresponding to this partitionW̄. It will be shown that our
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inductive hypothesis implies the inequality

P(‖In,k,W( f (ℓ))‖> u)≤ Ā(k)P
(
‖In,k,W̄( f (ℓ))‖> γ̄(k)u

)
(D.17)

with Ā(k) = sup
2≤p≤k−1

A(p), γ̄(k) = inf
2≤p≤k−1

γ(p) if the rank j of W is such that

2 ≤ j ≤ k− 1, where the constantsA(p) and γ(p) agree with the corresponding
coefficients in formula (D.3).

To prove relation (D.17) (whereU j = {t, . . . ,k} is the last element of the parti-
tion W) let us define theσ -algebraF generated by the random variables appear-
ing in the firstt −1 coordinates of theseU-statistics, i.e. by the random variables

ξ sW( j)
l j

,1≤ j ≤ t −1, and 1≤ l j ≤ n for all 1≤ j ≤ t −1. We have 2≤ t ≤ k−1. By
our inductive hypothesis relation (D.3) holds forU-statistics of orderp= k− t +1,
since 2≤ p≤ k−1. I claim that this implies that

P(‖In,k,W( f (ℓ))‖> u|F )≤ A(k− t +1)P
(
‖In,k,W̄( f (ℓ))‖> γ(k− t +1)u|F

)

(D.18)
with probability 1. Indeed, by the independence propertiesof the random variables

ξ sW( j)
l (andξ sW̄( j)

l ), 1≤ j ≤ k, 1≤ l ≤ n,

P(‖In,k,W( f (ℓ))‖> u|F ) = P
ξ sW( j)

l ,1≤ j≤t−1
(‖In,k,W( f (ℓ)‖> u)

and

P
(
‖In,k,W̄( f (ℓ))‖> γ(k− t +1)u|F

)

= P
ξ sW( j)

l ,1≤ j≤t−1
(‖In,k,W̄ f (ℓ)‖> γ(k− t +1)u),

whereP
ξ sW( j)

l ,1≤ j≤t−1
denotes that the values of the random variablesξ sW( j)

l (ω),

1≤ j ≤ t−1, 1≤ l ≤ n, are fixed, and we consider the probability that the appropri-
ate functions of these fixed values and of the remaining random variablesξ sW( j) and
ξ sW̄( j), t ≤ j ≤ k, satisfy the desired relation. These identities and the relation be-
tween the setsW andW̄ imply that relation (D.18) is equivalent to the identity (D.3)
for the generalizedU-statistics of order 2≤ k− t +1≤ k−1 with kernel functions

flt ,...,lk(xt , . . . ,xk)

= ∑
(l1,...,lt−1) : 1≤l j≤n, 1≤ j≤t−1

fl1,...,lk(ξ
sW(1)
l1

(ω), . . . ,ξ sW(t−1)
lt−1

(ω),xt , . . . ,xk).

Relation (D.17) follows from inequality (D.18) if expectation is taken at both sides.
As the rank ofW̄ is strictly greater than the rank ofW, relation (D.17) together with
our backward inductive assumption imply relation (D.16) for all 2≤ j ≤ k.

Relation (D.16) implies in particular (with the applications of partitions of orderk
and rank 2) that the terms in the sum at the right-hand side of (D.5) satisfy the
inequality
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P
(
Dk‖In,k,V( f (ℓ))‖> u

)
≤ C̄(k, j)P

(
‖Īn,k( f (ℓ))‖> D̄ku

)

with some appropriatēCk > 0 andD̄k > 0 for all V ⊂ {1, . . . ,k}, 1≤ |V| ≤ k−1.
This inequality together with relation (D.5) imply that inequality (D.3) also holds
for the parameterk.

In such a way we get the proof of relation (D.3) and its specialcase, rela-
tion (14.13). Let us prove formula (14.14) with its help firstin the simpler case when
the supremum of finitely many functions is taken. IfM < ∞ functions f1, . . . , fM are
considered, then relation (14.14) for the supremum of theU-statistics and decou-
pledU-statistics with these kernel functions can be derived fromformula (14.13)
if it is applied for the functionf = ( f1, . . . , fM) with values in the separable Ba-
nach spaceBM which consists of the vectors(v1, . . . ,vM), v j ∈ B, 1≤ j ≤ M, and
the norm‖(v1, . . . ,vM)‖= sup

1≤ j≤m
‖v j‖ is introduced in it. The application of formula

(14.13) with this choice yields formula (14.14) for this supremum. Let us emphasize
that the constants appearing in this estimate do not depend on the numberM. (We
took only M < ∞ kernel functions, because with such a choice the Banach space
BM defined above is also separable.) Since the distribution of the random variables
sup

1≤s≤M

∥
∥In,k( fs)

∥
∥ converge to that of sup

1≤s<∞

∥
∥In,k( fs)

∥
∥, and the distribution of the ran-

dom variables sup
1≤s≤M

∥
∥Īn,k( fs)

∥
∥ converge to that of sup

1≤s<∞

∥
∥Īn,k( fs)

∥
∥ asM → ∞, re-

lation (14.14) in the general case follows from its already proved special case and a
limiting procedureM → ∞.

Remark.The above proved formula (D.3) can be slightly generalized.It also holds
if the expressionsIn,k( f (ℓ)) and Īn,k( f (ℓ)) appearing in this inequality are defined
in a more general way. Namely, they are the random functions introduced in for-
mulas (D.1) and (D.2), but the sequencesξ1, . . . ,ξn and their independent copies

ξ ( j)
1 , . . . ,ξ ( j)

n in these formulas are independent random variables which may also
be non-identically distributed. Such a generalization canbe proved without any es-
sential change in the original proof.
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