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First I describe the problem of this talk.

We define a set of random sums Sn(f) with the help of a sequence of i.i.d. random
variables and a class of functions with some good properties in the way as it is written
down on this page. These random sums are indexed by the elements of our class of
functions.

For all positive numbers v we want to give a good bound on the probability that the
supremum of our random sums Sn(f) is larger than this number. We take the supremum
for all functions f in our class of functions.
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By some classical results there is a concentration point v0 with the following property.
The above probability is almost one if v is smaller than v0, while it begins to decrease
fast for v greater than v0. We want to find a good estimate on this concentration point.

Our problem has a natural Gaussian version about the estimation of the supremum of
Gaussian random variables. This Gaussian problem is solved. Under some restrictions
a similar estimate holds in our problem too. Our goal is to find a general solution which
also holds without these restrictions.

To formulate these results I recall the notion of classes of functions with polynomially
increasing covering numbers.
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Here is this definition. I do not read it out. I only remark that this notion is a natural
version of Vapnik–Červonenkis classes if we are working with a class of functions and
not with a class of sets.
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First I show a simple example that may help to understand the behaviour of the con-
centration point v0.

In this example we take i.i.d. random variables with uniform distribution on the unit
interval [0, 1]. To define our class of functions we fix a number σ, and first we consider
the indicator functions of disjoint subintervals of the interval [0, 1] with length σ. We
take as many of them as it is possible. Then we define our class of functions by taking
the normalized versions of these indicator functions. In such a way we get a model that
satisfies our conditions. We want to give a good lower bound on the concentration point
v0 in this model.
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The result on this page gives a good estimate on v0. The number hat u(σ) is a good
lower bound for it. I explain the content of this result on the next page.
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In this result we considered three different cases. In case three we have a large parameter
σ, and we get such an estimate for hat u(σ) as in the Gaussian case. In case two σ

is smaller. In this case a Poissonian and not a Gaussian approximation gives the right
choice for hat u(σ). Finally, in case one σ is very small, and a trivial consideration gives
the right bound on hat u(σ).

Next I formulate the main result of this paper in a Theorem and in its Extension. Their
right formulation could be found by means of the above example.
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The theorem is formulated here. Three different cases appear in it, similarly to the
result about our Example. The result in cases one and two is satisfactory, but to get a
complete picture in case three we need an additional result. This is formulated in the
Extension of the Theorem on the next page.
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I discuss the content of these results. In cases one and two the theorem itself gives a
good estimate. It holds for numbers v suggested by our example. It is a non-Gaussian
bound suggested by Bennett’s inequality. In case three the theorem and its extension
together give a good estimate in the right domain. In the extension we get a good
Gaussian estimate if the number v is not too large, while in the remaining cases the
original theorem gives the right bound.
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Here I gave a short overview of this paper. A more detailed version can be found on
my homepage at the given address. It also explains the main ideas of the proof.

This longer version explains the ideas behind the proof. The most important of them
is the application of a new Vapnik–Červonenkis type argument to control the irregular
contributions to the supremum we investigate. Actually, the main subject of this reseach
was to find this new method.

Thank you for your attention.


