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Formulation of the problem, motivation, and

methods to solve it 2

The problem:

Let ξ
1

, . . . , ξ
n

be a sequene of i.i.d. random variables with some

distribution µ on a measurable spae (X ,X ).
Let a lass of funtions F be given on the spae (X ,X ) with some

nie properties, suh that

∫

f (x)µ( dx) = 0 and sup

x∈X |f (x)| ≤ 1

for all elements f ∈ F .

De�ne the normalized sums S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

) for all f ∈ F ,

and give a good estimate on the tail distribution

P

(

sup

f ∈F
S

n

(f ) > x

)

for all numbers x > 0

of the supremum of these sums.



An important remark: By an important result, alled the

onentration inequality, the distribution of this supremum is

onentrated in a small neighbourhood of a onentration point.

As a onsequene, the above probability is small only if x is larger

than this onentration point. An important and hard part of the

problem is to �nd a good level above whih this probability begins

to derease radially. This means a good estimate on value of the

onentration point. This is the hardest part of the problem.

(We want to give an estimate on the onentration point with the

auray of a universal multiplying onstant.)



Our motivations to study this problem 4

Motivation 1.: Dudley's theory of uniform entral limit theorem.

Given a nie lass of funtions F and a sequene of i.i.d. random

variables ξ
1

, . . . , ξ
n

prove that the lass of normalized sums

S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

), f ∈ F , satisfy some sort of funtional limit

theorem.

Cruial point of the proof: Show that sup

f ,f ′∈F ′ S
n

(f − f

′) is small

if F ′ ⊂ F , and F ′
has the property that E [f (ξ

1

)− f

′(ξ
1

)]2 < δ

with a small δ > 0 for all f , f ′ ∈ F ′
. We have formulated a natural

generalization of this problem, where we may onsider δ
n

→ 0 as

n → ∞ instead of a �xed δ > 0.



Motivation 2.: To get good limit theorems for so-alled

non-parametri maximum likelihood estimates it is useful to prove

sharp estimates on the tail distribution of the supremum of multiple

integrals with respet to normalized empirial distibution funtions,

i.e. of expressions of the form:

sup

f ∈F

∫

· · ·
∫

f (x
1

, . . . , x
k

)

√
n(dF

n

(x
1

)− dF (x
1

)) . . .
√
n(dF

n

(x
k

)− dF (x
k

)),

where F is a distribution funtion F

n

is the empirial distribution

funtion of an F distributed sample, and F is a nie lass of

funtions of k variables. (See my leture note On the estimation of

multiple random integrals and U-statistis.) Here we investigate

this problem for k = 1.



The Gaussian version of the problem 6

The sums S

n

(f ) = 1√
n

n

∑

j=1

f (ξ
j

) satisfy the entral limit theorem.

Hene it is natural to onsider a Gaussian version of our problem.

We want to understand what kind of results and methods suggests

the result of this Gaussian version.

The Gaussian problem: Let η
t

, Eη
t

= 0, t ∈ T , be a ountable set

of random variables with (jointly) Gaussian distribution. Put

d

2

(s, t) =
[

E (η
s

− η
t

)2
]

1/2
, s, t ∈ T . Then d

2

(s, t) is a metri on

the parameter set T . Give a good estimate on the probability

P (sup
t∈T η

t

> x) for all numbers x > 0 with the help of the

funtion d

2

(s, t).



The result about the Gaussian problem 7

There is a simple and natural method, alled the haining argument

to study this problem. It yields the following result.

Theorem. Let η
t

, t ∈ T, be a set of Gaussian random variables

indexed by a ountable set T . Assume that Eη
t

= 0, Eη2
t

≤ σ2

with some 0 ≤ σ ≤ 1 for all t ∈ T, and the metri

d

2

(s, t) =
[

E (η
s

− η
t

)2
]

1/2
, s, t ∈ T, has the following property.

There exist some onstants L ≥ 1 and D ≥ 1 suh that for all

0 ≤ ε ≤ 1 a subset {t
1

, . . . , t
P

} ⊂ T an be found with ardinality

P ≤ Dε−L for whih min

1≤j≤P d2(t, tj) ≤ ε for all t ∈ T. Then the

inequality

P

(

sup

T∈T
|η
t

| ≥ u

)

≤ C (D + 1) exp

{

− 1

256

(

u

σ

)

2

}

if u ≥ ML

1/2σ log

1/2 2

σ

holds with some universal onstants C > 0 and M > 0.



A omparison of our problem with the

above result 8

In our problem F plays the role of the parameter set T , and

d

2

(f , g)2 = E (S
n

(f − g)2) =
∫

[f (x)− g(x)]2µ( dx), f , g ∈ F .

The previous theorem also holds if the random variables η
t

, t ∈ T ,

are non-Gaussian, but they satisfy the Gaussian type inequality

P(|η
t

− η
s

| > u) ≤ C

1

e

−C
2

u

2/d
2

(s,t)2
for all s, t ∈ T and u > 0

with some onstants C

1

> 0 and C

2

> 0.

What is the ase in our problem?

Some lassial results (e.g. Bernstein's inequality) provide the

above inequality under some restrition, (e.g. if

u ≤ onst.

√
nd

2

2

(s, t)), but it may not hold without suh a

restrition. (See my leture note On the estimation of multiple

random integrals and U-statistis, Chapter 3.)



To get results similar to the Gaussian ase for sums of bounded i.i.d.

random variables some additional restrition has to be imposed,

and the proof requires new ideas. I know of two approahes.

Approah 1. Due to Talagrand. De�ne the metri

d∞(f , g) = sup

x∈X |f (x) − g)x)|, f , g ∈ F , and introdue the

additional ondition that there exist some onstants D ≥ 1 and

L ≥ 1 suh that for all 0 ≤ ε ≤ 1 P ≤ D(n−1/2ε)−L funtions

f

j

∈ F , 1 ≤ j ≤ P , an be found for whih min

1≤j≤P d∞(f , f
j

) ≤ ε

for all f ∈ F . This ondition together with the ondition on the

metri d

2

(·, ·) in the theorem about the Gaussian version imply a

similar estimate. Talagrand proved a stronger result formulated

with a di�erent terminology in his book The generi haining.

The proof is based on an appropriate version of the haining

argument. In the proof we exploit that if the terms of a sum of

independent random variables have a very small bound in the

supremum norm, then the tail distribution of the sum has a good

Gaussian upper bound even at high levels.



Talagrand found interesting appliations of his result, but there are

important models where it does not work.

Example where Talagrand's result annot be applied. Let (X ,X ) be
the unit interval [0, 1] with the Borel σ-algebra, let ξ

1

, . . . , ξ
n

be

i.i.d. random variables on [0, 1] with uniform distribution. Put

F = {f
a,b(x)}, where 0 ≤ a < b ≤ a + σ2 with a small number

σ2 > 0, a, b are rational numbers, and f

a,b(x) = I

a,b(x) − (b − a),
where I

a,b(·) is the indiator funtion of the interval (a, b).

This example satis�es the onditions we imposed for our models,

and the ondition imposed on the metri d

2

(·, ·) with parameters L

and D whih have an upper bound not depending on σ2, but the

d∞(·, ·) metri behaves badly. But all funtions f

a,b are far from

eah other in the supremum norm.

To handle suh models we introdue a di�erent method.



Approah 2. (Based on a Vapnik��ervonenkis type argument.) We

formulate an additional ondition on F with the help of a notion

alled the lass of funtions with polynomially inreasing overing

numbers instead of the ondition about the behaviour of the d∞
metri. We prove results with its help.

We give the de�nition of a lass of funtions with polynomially

inreasing overing numbers in two steps.

First step of the de�nition.

De�nition of uniform overing numbers with respet to

L

1

-norm. Let a measurable spae (X ,X ) be given together with a

lass of measurable, real valued funtions F on this spae. The

uniform overing number of this lass of funtions at level ε, ε > 0,

with respet to the L

1

-norm is supν N (ε,F , L
1

(ν)), where the

supremum is taken for all probability measures ν on the spae

(X ,X ), and N (ε,F , L
1

(ν)) is the smallest integer m for whih

there exist some funtions f

j

∈ F , 1 ≤ j ≤ m, suh that

min

1≤j≤m
∫

|f − f

j

| dν ≤ ε for all f ∈ F .



Seond step of the de�nition.

De�nition of a lass of funtions with polynomially inreasing

overing numbers. We say that a lass of funtions F has

polynomially inreasing overing numbers with parameter D and

exponent L if the inequality

sup

ν
N (ε,F , L

1

(ν)) ≤ Dε−L

holds for all 0 < ε ≤ 1 with the number supν N (ε,F , L
1

(ν))
introdued in the previous de�nition.

There is a good estimate for the probability of

P(sup
f ∈F |S

n

(f ) > x) if the lass of funtions F has polynomially

inreasing overing numbers with some parameter D ≥ 1 and

L ≥ 1. See On the estimation of multiple random integrals and

U-statistis, Theorem 4.1. This result desribes fairly well when we

an get suh a good estimate in our problem as in its Gaussian

ounterpart.



The proof is based on some ideas of K. S. Alexander, and applies

the so-alled symmetrization argument. It says that under some not

too restritive onditions sup

f∈F
∑

n

j=1

f (ξ
j

) has a similar tail

distibution as its randomized version sup

f∈F
∑

n

j=1

ε
j

f (ξ
j

), where
ε
1

, . . . , ε
n

are i.i.d. random variables, independent also of the

random variables ξ
j

, and P(ε
1

= 1) = P(ε
1

= −1) = 1

2

.

The symmetrized version sup

f∈F
∑

n

j=1

ε
j

f (ξ
j

) an be better

handled than the original expression, and this is exploited in the

symmetrization argument..

Nevertheless, this tehnique gives a weak estimate if Ef (ξ
1

)2 ≤ σ2

for all f ∈ F with a very small σ2. In this ase the above

mentioned Theorem 4.1 in my leture note does not give a sharp

estimate. Our goal is to give a sharp estimate in all ases. It turned

out that the next result, the main result of the paper under

disussion, plays a ruial role in ahieving this goal.

Here is this result.



Main theorem. Let F be a �nite or ountable lass of funtions

on a measurable spae (X ,X ) whih has polynomially inreasing

overing numbers with some parameter D ≥ 1 and exponent L ≥ 1,

and sup

x∈X |f (x)| ≤ 1 for all f ∈ F . Let ξ
1

, . . . , ξ
n

, n ≥ 2, be a

sequene of i.i.d. random variables with values in the spae (X ,X )
with a distribution µ, and assume that the inequality

∫

|f (x)|µ( dx) ≤ ρ holds for all f ∈ F with a number

0 < ρ ≤ n

−200

. Put S̄

n

(f ) = S̄

n

(f )(ξ
1

, . . . , ξ
n

) =
∑

n

j=1

f (ξ
j

) for all
f ∈ F . The inequality

P

(

sup

f ∈F
|S̄
n

(f )| ≥ u

)

≤ DρCu for all u > 41L

holds with some universal onstant 1 > C > 0. We an hoose

e.g. C = 1

50

.

(The ondition

∫

f (x)µ( dx) = 0 for all f ∈ F is not needed in this

result.)



An example that may help to understand

the ontent of the Main theorem 15

Let (X ,X ) be a �nite set with N elements, µ the uniform

distribution on it, (µ(A) = 1

N

· the number of elements in A.) Fix

a number d ≥ 1 and let F be the set of indiator funtions of the

subsets of X ontaining at most d elements. Let ξ
1

, . . . , ξ
n

be i.i.d.

random variables, and de�ne S̄

n

(f ) =
∑

1≤j≤n f (ξj) with their help.

Question: What an we say about P(sup
f∈F S̄

n

(f ) > u)?

We are interested in the ase when

n

N

is small. It is lear that

P(sup
f ∈F S̄

n

(f ) ≥ u) = 1 if u ≤ d . If u > d , then this probability

is a fast dereasing funtion of u. (See Setion 1 of the paper for

details.) On the other hand the indiator funtions {x : f (x) = 1},
f ∈ F , onstitute a (lassial) example of Vapnik��ervonenkis

lasses.



The notion of lass of funtions with polynomially inreasing

overing numbers an be onsidered as a version of

Vapnik��ervonenkis lasses for lasses of funtions, and these two

notions behave similarly. In partiular, by some results the lass of

funtions in the above example has polynomially inreasing overing

numbers with exponenent L = (1+ ε)d for all ε > 0 and

appropriate D = D(ε).
Some onsiderations show that the main theorem an be

interpreted in the following way:

For a lass of funtions F with polynomially inreasing overing

numbers and the property that sup

f ∈F
∫

|f (x)|µ( dx) is very small

the tail distribution of | sup
f ∈F S̄

n

(f )| satis�es suh an inequality

that the above (simple) example suggests.



The real role of the Main theorem 17

We are interested in the Main theorem not for itself. It is

interesting for us, beause it yields a better appliation of the

Vapnik��ervonenkis argument than the symmetrization method.

The ondition

∫

|f (x)|µ( dx) ≤ ρ for all f ∈ F with 0 < ρ ≤ n

−200

is not very restritive. This (together with the existene of

polynomially inreasing overing numbers in our models) enables us

to split up the lass of funtions F into the union of relatively few

subsets F
j

, 1 ≤ j ≤ M, (M ≤ n

K

with some K > 0) in suh a way

that �xing some f

j

∈ F
j

the tail distribution of sup

f∈F
j

|S̄
n

(f − f

j

)|
an be well bounded by means of the Main theorem.

Sine we have to work only with polynomially many subsets F
j

⊂ F
we an give a better, more omplete solution of our problem. This

is the topi of my paper Sharp tail distribution estimates for the

supremum of a lass of sums of i.i.d. random variables.



The main ideas of the proof 18

Let X be a �nite set with 2

k

elements with a large integer k , µ be

the uniform distribution on X . Consider a model satisfying the

onditions of the Main theorem with suh an X and µ, and prove

the estimate of the Main theorem for P(sup
f ∈F S̄

n

(f )| ≥ n). We

may assume that f (x) ≥ 0 for all x ∈ X and f ∈ F .

We prove �rst this speial result in Theorem 1A and then the Main

theorem with its help. We prove Theorem 1A with the help of an

indution proedure for k with a large starting number k

0

. The

starting step of the indution is done in Lemma 3.1.

To arry out our indution proedure we need a result formulated in

Lemma 3.2. This states that if a lass of funtions F with

polynomially inreasing overing numbers on a set X of ardinality

2

k

with a large number k has the property

∫

f (x)µ( dx) ≤ ρ for all

f ∈ F with the uniform distribution µ on X , then this property is

preserved for most subsets of X with ardinality 2

k−1

if ρ is

replaed by a slightly larger ρ̄.



To prove Theorem 1A observe that sup

f∈F S̄

n

(f ) ≥ n if and only if

there is some f ∈ F for whih f (ξ
j

) = 1 for all 1 ≤ j ≤ n. Hene

to prove Theorem 1A we have to give a good estimate on the

number of sequenes (x
l

1

, . . . , x
l

n

) ∈ X

n

suh that

x

l

j

∈ B

f

= {x : f (x) = 1} for all 1 ≤ j ≤ n, and some f ∈ F . We

prove suh an estimate by means of indution with respet to k

with the help of Lemma 3.2.

We assume that an appropriate estimate holds on the number of

suh sequenes for lasses of funtions F with polynomially

inreasing overing numbers with exponent L ≥ 1 and parameter

D ≥ 1 on a set X of ardinality 2

k−1

if also the ondition

∫

|f (x)|µ( dx) ≤ ρ
k−1

holds for all f ∈ F with an appropriately

hosen ρ
k−1

. Then we prove the analogous result for parameter k

with an appropriately hosen ρ
k

by means of Lemma 3.2.

We de�ne for all funtions f ∈ F and sets B ⊂ X of ardinality

2

k−1

the funtion f

B

as the restrition of f to B , and put

F
B

= {f
B

: f ∈ F}.



Then by applying the indutional hypothesis for k − 1 for the sets

B ⊂ X of ardinality 2

k−1

with the lasses of funtions F
B

and

taking an average for all sets B of ardinality 2

k−1

we get an

estimate on the number of sequenes (x
l

1

, . . . , x
l

n

) ∈ X

n

with the

requested properties. In this alulation we apply Lemma 3.2 and

hoose the onstants ρ
k

in an appropriate way. If we do this

arefully, then we an arry out the indution proedure, and by

letting k → ∞ we get the proof of Theorem 1A.

The ruial part of the problem is the proof of Lemma 3.2. Its main

step is to show that

∫

(f
B

− f

X\B) dµ is small with probability

almost 1 for any f ∈ F , if we hoose the set B randomly among

the sets B ⊂ X of ardinality 2

k−1

, and f

B

denotes the restrition

of f to the set B . This implies that

∫

f

B

dµ
B

≤ ρ̄ with a number

slightly larger than ρ with probability almost 1, where µ
B

is the

uniform distribution on B . With an appropriate hoie of ρ̄ we an

ahieve that even sup

f∈F
∫

f

B

dµ
B

≤ ρ̄ with probability almost 1.

Here we exploit that F has polynomially inreasing overing

numbers. The last inequality implies Lemma 3.2.



We an estimate the tail distribution of

∫

(f
B

− f

X\B) dµ = 2

−k(
∑

x∈B f (x) −∑

x /∈B f (x)), where B is a

randomly hosen subset of X with ardinality 2

k−1

by means of a

method that appeared also in the proof of Lemma 3 of the paper

Komlós�Major�Tusnády: An approximation of partial sums of

independent rv's and the sample DF.

The method: Take a pairing (x
l

1

, x
l

2

),. . . (x
l

2

k

−1

, x
l

2

k

) of the set X ,

and de�ne a random set B with 2

k−1

elements by putting in eah

pair one randomly hosen element into the set B and the other one

into the omplementary set. We an well estimate the tail

distribution of 2

−k(
∑

x∈B f (x) −∑

x /∈B f (x)) if we hoose only

sets B obtained in suh a way e.g. with the help of Hoe�ding's

inequality. Then averaging for all possible pairings of X we an get

the estimate we need to omplete the proof of Lemma 2.2.

Finally I brie�y explain how to prove the Main theorem with the

help of Theorem 1A.



First I give a good estimate on P(sup
f∈F S̄

n

(f ) > u) for all u > 0

under the onditions of Theorem 1A in Lemma 4.1. To prove this

estimate I show that the event sup

f ∈F S̄

n

(f ) > u may hold only if

for some index j there is a relatively long sequene

{l
1

, . . . , l
s

} ⊂ {1, . . . , n} suh that f (ξ
l

1

) ≥ 2

−j
,. . . , f (ξ

l

s

) ≥ 2

−j

for some f ∈ F . The probability of suh an event an be well

estimated with the help of Theorem 1A. Then a areful alulation

provides the proof of Lemma 4.1.

The Main theorem is proved by means of Lemma 4.1. We an

redue the proof to the ase when F is a �nite set. If its ardinality

is R , then we an approximate F = {f
1

, . . . , f
R

} with a lass of

funtions G = {g
1

, . . . , g
R

} whose elements take only �nitely many

values, the µ-distribution of all events

{g
1

(x) = u

1

, . . . , g
R

(x) = u

R

} is an integer multiplied by 2

−k
with

some number k , and the funtions g

j

are so lose to the funtions

f

j

that it is enough to prove the Main Theorem for G instead of F .

On the other hand, this an be done with the help of Lemma 4.1.


