
Formulation of the problem 1

Let ξ
1

, . . . , ξ
n

be a sequen
e of i.i.d. random variables with some

distribution µ on a measurable spa
e (X ,X ).
Let a 
lass of fun
tions F be given on the spa
e (X ,X ) with some

ni
e properties, su
h that all elements f ∈ F have the properties

∫

f (x)µ( dx) = 0, sup

x∈X |f (x)| ≤ 1, and

∫

f

2(x)µ( dx) ≤ σ2 with some 0 < σ2 ≤ 1.

We also assume that F is a 
lass of fun
tions with polynomially

in
reasing 
overing numbers with exponent L and parameter D. (I

re
all its de�nition later.)

De�ne the normalized sums S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

) for all f ∈ F .

Our goal is to give a good estimate on the tail distribution

P

(

sup

f ∈F
S

n

(f ) > x

)

for all numbers x > 0

of the supremum of these sums. This may depend on σ2, L and D.



A Gaussian version of the problem 2

The sums S

n

(f ) = 1√
n

n

∑

j=1

f (ξ
j

) are asymptoti
ally Gaussian. Hen
e

it is natural to look at a Gaussian version of this problem, where we

estimate the supremum of Gaussian random variables η
t

, t ∈ T .

We want to understand what kind of methods and results this

Gaussian version suggests.

This Gaussian problem 
an be solved with the help of the so-
alled


haining argument. The estimate depends on the metri
 d

2

(·, ·),

de�ned as d

2

(s, t) =
[

E (η
s

− η
t

)2
]

1/2
, s, t ∈ T .

A similar result holds if the random variables η
t

, t ∈ T , may be

non-Gaussian, but they satisfy the Gaussian type inequality

P(|η
t

− η
s

| > u) ≤ C

1

e

−C

2

u

2/d
2

(s,t)2
for all s, t ∈ T and u > 0

(1)

with some 
onstants C

1

> 0 and C

2

> 0.

The question arises whether su
h a result holds in our problem.



We 
an formulate our problem in that form as its Gaussian


ounterpart. By some 
lassi
al estimates the inequality (1) holds

under some restri
tions (if u > 0 is not too large, σ2 is not too

small). These 
onditions 
annot be omitted.

As a 
onsequen
e, we 
an give a good estimate in our problem only

under some additional 
onditions. We 
an handle the 
ase when σ2

is small only if we impose new 
onditions and �nd new methods.

The new 
ondition: F is a 
lass of fun
tions with polynomially

in
reasing 
overing numbers.

The method of proof applied in earlier papers: Symmetrization

argument.

The notion of 
lass of fun
tions with polynomially in
reasing


overing numbers is a natural version of the Vapnik��ervonenkis


lasses if we are working with 
lasses of fun
tions instead of 
lasses

of sets.

I give its de�nition in two steps.



First step of the de�nition.

De�nition of uniform 
overing numbers with respe
t to

L

1

-norm. Let a measurable spa
e (X ,X ) be given together with a


lass of measurable, real valued fun
tions F on this spa
e. The

uniform 
overing number of this 
lass of fun
tions at level ε, ε > 0,

with respe
t to the L

1

-norm is supν N (ε,F , L
1

(ν)), where the

supremum is taken for all probability measures ν on the spa
e

(X ,X ), and N (ε,F , L
1

(ν)) is the smallest integer m for whi
h

there exist some fun
tions f

j

∈ F , 1 ≤ j ≤ m, su
h that

min

1≤j≤m

∫

|f − f

j

| dν ≤ ε for all f ∈ F .

Se
ond step of the de�nition.

De�nition of a 
lass of fun
tions with polynomially in
reasing


overing numbers. We say that a 
lass of fun
tions F has

polynomially in
reasing 
overing numbers with parameter D and

exponent L if the inequality supν N (ε,F , L
1

(ν)) ≤ Dε−L

holds for

all 0 < ε ≤ 1 with the number supν N (ε,F , L
1

(ν)) introdu
ed in

the previous de�nition.



In the symmetrization argument we exploit that under some not

too restri
tive 
onditions sup

f∈F
∑

n

j=1

f (ξ
j

) has a similar tail

distibution as its randomized version sup

f∈F
∑

n

j=1

ε
j

f (ξ
j

), where
ε
1

, . . . , ε
n

are i.i.d. random variables, independent also of the

random variables ξ
j

, and P(ε
1

= 1) = P(ε
1

= −1) = 1

2

.

The symmetrized version 
an be better handled than the original

expression, and this is exploited in the symmetrization argument.

Nevertheless, this te
hnique gives a weak estimate if Ef (ξ
1

)2 ≤ σ2

for all f ∈ F with a very small σ2, sin
e in this 
ase the

'
an
ellation e�e
t' of the symmetrization does not work.

Our goal is to give a sharp estimate for all 0 ≤ σ2 < 1. It turned

out that the main result of this paper the Main theorem formulated

below plays a 
ru
ial role in a
hieving this goal.



Main theorem. Let F be a �nite or 
ountable 
lass of fun
tions

on a measurable spa
e (X ,X ) whi
h has polynomially in
reasing


overing numbers with some parameter D ≥ 1 and exponent L ≥ 1,

and sup

x∈X |f (x)| ≤ 1 for all f ∈ F . Let ξ
1

, . . . , ξ
n

, n ≥ 2, be a

sequen
e of i.i.d. random variables with values in the spa
e (X ,X )
with a distribution µ, and assume that the inequality

∫

|f (x)|µ( dx) ≤ ρ holds for all f ∈ F with a number

0 < ρ ≤ n

−200

. Put S̄

n

(f ) = S̄

n

(f )(ξ
1

, . . . , ξ
n

) =
∑

n

j=1

f (ξ
j

) for all
f ∈ F . The inequality

P

(

sup

f ∈F
|S̄

n

(f )| ≥ u

)

≤ DρCu for all u > 41L (2)

holds with some universal 
onstant 1 > C > 0. We 
an 
hoose

e.g. C = 1

50

.



The following details may be interesting in this result:

1.) We assumed that

∫

|f (x)|µ( dx) ≤ ρ for f ∈ F with

0 < ρ ≤ n

−200

, i.e. ρ is very small.

2.) We did not need the 
ondition

∫

f (x)µ( dx) = 0 for f ∈ F .

3.) Formula (2) holds for u > 41L, i.e. even at relatively low levels.

There are simple examples that show that the Main theorem is a

sharp estimate.

Why is the above result interesting for us?

It is important for us not as a new estimate, but as a new tool to

investigate our problem.

Sin
e the 
ondition 0 < ρ ≤ n

−200

means that ρ is a polynomially

de
reasing fun
tion of the sample size n we 
an work out a better

estimate in our problem with the help of a Vapnik��ervonenkis

type method than the symmetrization argument.



In my subsequent paper Sharp tail distribution estimates for the

supremum of a 
lass of sums of i.i.d. random variables I give a

fairly 
omplete solution of the problem mentioned at the start of

this talk with the help of Main Theorem.

Here I 
ould give a very 
on
ise explanation of this paper. A more

detailed version of a (possible) talk about the motivations and


ontent of this paper 
an be found on my homepage at the address

http://www.renyi.hu/�major/talks/positive.html

On the subsequent paper Sharp tail distribution estimates for the

supremum of a 
lass of sums of i.i.d. random variables at the

address

http://www.renyi.hu/�major/talks/supremum.html


