
The problem we are interested in 1

Let ξ
1

, . . . , ξ
n

be a sequene of i.i.d. random variables with some

distribution µ on a measurable spae (X ,X ).
Let a lass of funtions F onsisting of ountably many funtions

be given on the spae (X ,X ) with the properties

∫

f (x)µ( dx) = 0,

sup

x∈X |f (x)| ≤ 1 and

∫

f (x)2µ( dx) ≤ σ2

with some 0 < σ ≤ 1

for all elements f ∈ F .

Let F be a lass of funtions with polynomially inreasing overing

numbers with exponent L ≥ 1 and parameter D ≥ 1. (I reall the

de�nition of this notion later.)

De�ne the normalized sums S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

) for all f ∈ F ,

and give a good estimate on the tail distribution

P

(

sup

f∈F
S

n

(f ) > v

)

for all numbers v > 0 (1)

of the supremum of these sums. This estimate may depend on σ,
L and D.



An important result, alled the onentration inequality, has the

onsequene that there is a number v

0

suh that for v < v

0

the

probability in formula (1) is almost 1, while for v > v

0

, it begins to

derease rapidly. An important part of our problem is to give a

good estimate on this numbern v

0

.

There is a solution for a natural version of our problem when we

estimate the supremum of Gaussian random variables. This is done

by means of a method alled the haining argument.

A similar estimate an be proved under some restritions in our

model with the help of the so-alled symmetrization argument. Our

goal is to prove a good estimate in in the general ase, whih holds

without these restritions.

To disuss this problem �rst I reall the de�nition of lasses of

funtions with polynomially inerasing overing numbers together

with their exponent L and parameter D. I do this in two steps on

the next page.



First step of the de�nition.

De�nition of uniform overing numbers with respet to

L

1

-norm. Let a measurable spae (X ,X ) be given together with a

lass of measurable, real valued funtions F on this spae. The

uniform overing number of this lass of funtions at level ε, ε > 0,

with respet to the L

1

-norm is supν N (ε,F , L
1

(ν)), where the

supremum is taken for all probability measures ν on the spae

(X ,X ), and N (ε,F , L
1

(ν)) is the smallest integer m for whih

there exist some funtions f

j

∈ F , 1 ≤ j ≤ m, suh that

min

1≤j≤m
∫

|f − f

j

| dν ≤ ε for all f ∈ F .

Seond step of the de�nition.

De�nition of a lass of funtions with polynomially inreasing

overing numbers. We say that a lass of funtions F has

polynomially inreasing overing numbers with parameter D and

exponent L if the inequality supν N (ε,F , L
1

(ν)) ≤ Dε−L holds for

all 0 < ε ≤ 1 with the number supν N (ε,F , L
1

(ν)) introdued in

the previous de�nition.



A useful example 4

First I present a simple example whih may help to understand how

to estimate the onentration point v

0

.

Example. Take a sequene of independent, uniformly distributed

random variables ξ
1

, . . . , ξ
n

on the unit interval [0, 1], �x a number

0 ≤ σ2 ≤ 1, and de�ne a lass of funtions Fσ and F̄σ as set of

funtions de�ned on the unit interval [0, 1] in the following way.

Fσ = {f
1

, . . . , f
k

}, and F̄ = {f̄
1

, . . . , f̄
k

} with k = k(σ) = [ 1

σ2
],

where [·] denotes integer part, and f̄

j

(x) = f̄

j

(x |σ) = 1 if

x ∈ [(j − 1)σ2, jσ2), f̄
j

(x) = f̄

j

(x |σ) = 0 if x /∈ [(j − 1)σ2, jσ2),
1 ≤ j ≤ k , and f

j

(x) = f

j

(x |σ) = f̄

j

(x)− σ2

, 1 ≤ j ≤ n.

Give a good estimate on P

n

(v) = P(sup
j

S

n

(f
j

) > v).

F satis�es the onditions in our problem. It is a lass of funtions

with polynomially inreasing overing numbers with some exponent

L and parameter D whih do not depend on σ2

, and the parameter

σ2

introdued in the model is an upper bound for all

∫

f

j

(x)2µ( dx).



Our �rst problem: Find a good lower bound for the numbers v

0

for

whih P

n

(v) ≪ 1 only for v > v

0

. The next result gives a solution.

An estimate on the funtion P

n

(v) in the models of the above

example. A number C̄ > 0 an be hosen in suh a way that for all

δ > 0 there is an index n

0

(δ) suh that for all sample sizes

n ≥ n

0

(δ) and numbers 0 ≤ σ ≤ 1 the inequality

P

n

(û(σ)) = P

(

sup

f ∈Fσ

|S
n

(f )| ≥ û(σ)

)

≥ 1− δ,

holds with

1.) û(σ) = C̄√
n

if σ2 ≤ n

−400

,

2.) û(σ) = C̄√
n

log n

log( log n
nσ

2

)
if n

−400 < σ2 ≤ log n

8n

, and

3.) û(σ) = C̄σ log

1/2
2

σ if

log n

8n

≤ σ2 ≤ 1.

This result says that v

0

≥ û(σ) for the numbers v

0

with the above

demanded property. Our results will show that this estimate is

sharp. The above example helps us to understand what kind of

result we an expet in the general ase.



Next I explain the piture behind this result.

In ase 3.) of this example σ2

is relatively large, and we get suh

an estimate for the best hoie of û(σ) as in the Gaussian ase.

In ase 2.) we get a right hoie for û(σ) not by a Gaussian but by

a Poissonian approximation of our model.

In ase 1.) σ2

is very small. We an make a trivial estimate by

exploiting that given an arbitrary partition of our spae, some

element of this partitition ontains a given sample point. In this

ase this fat yields the right estimate for û(σ).

Next I formulate the Theorem, and its Extension, the main results

of my paper. They say that in the general ase we have the

estimate that the above Example and some lassial estimates on

the tail distribution of sums of independent random variables

suggest.



Theorem. Let a sequene of i.i.d. random variables ξ
1

, . . . , ξ
n

,

n ≥ 2, with values in (X ,X ) with some distribution µ and a

ountable lass of funtions F on the same spae (X ,X ) with

polynomially inreasing overing numbers with exponent L ≥ 1 and

parameter D ≥ 1 be given. Let the funtions f ∈ F satisfy the

relations sup

x∈X |f (x)| ≤ 1,

∫

f (x)µ( dx) = 0, and

∫

f

2(x)µ( dx) ≤ σ2

with some number 0 ≤ σ2 ≤ 1 for all f ∈ F .

The normalized sums S

n

(f ), f ∈ F , satisfy the inequality

P

(

sup

f∈F
|S
n

(f )| ≥ v

)

≤ C

1

e

−C
2

√
nv log(v/

√
nσ2

for all v ≥ u(σ)

with some universal onstants C

j

> 0, 1 ≤ j ≤ 5, if one of the

following onditions is satis�ed.

1.) σ2 ≤ 1

n

400

, and u(σ) = C

3√
n

(L+ logD

log n

),

2.)

1

n

400

< σ2 ≤ log n

8n

, and u(σ) = C

4√
n

(

L

log n

log( log n
nσ

2

)
+ logD

)

,

3.)

log n

8n

< σ2 ≤ 1, and u(σ) = C

5√
n

(nσ2 + L log n + logD).



Extension of the Theorem. Let us onsider, similarly to the

Theorem, a sequene of i.i.d. random variables ξ
1

, . . . , ξ
n

, n ≥ 2,

with values in a spae (X ,X ) with some distribution µ whih

satis�es the onditions of the Theorem. In the ase

log n

8n

< σ2 ≤ 1

the supremum of the normalized sums S

n

(f ), f ∈ F , satis�es the

inequality

P

(

sup

f ∈F
|S
n

(f )| ≥ v

)

≤ Ce

−αv2/σ2

with appropriate (universal) onstants α > 0, C > 0 and C

6

> 0 if√
nσ2 ≥ v ≥ ū(σ), where ū(σ) is de�ned as

ū(σ) = C

6

σ(L3/4 log1/2 2

σ + (logD)1/2).

In ases 1.) and 2.) Theorem gives a good estimate for v ≥ u(σ)
with an u(σ) suggested by the Example. It is a (non-Gaussian)

estimate suggested by Bennett's inequality. In ase 3.) the

Theorem and its Extension together give a good estimate. It holds

for v ≥ ū(σ), as it is suggested by the Example. The Extension

gives a good Gaussian estimate if ū(σ) ≤ v ≤ √
nσ2

. Over this

level we have a weaker estimate formulated in the Theorem.



The main ideas of the proof: I an simplify our problem with the

help of my paper Sharp estimate on the supremum of a lass of

sums of small i.i.d. random variables by exploiting that we are

working with a lass of funtions with polynomially inreasing

overing numbers. This enables us to redue our problem to the

ase when we have �nally many random sums S

n

(f ) with some nie

properties. The redued problem an be solved by means of

lassial methods, like the Chaining argument and good estimates

for sums of i.i.d. random variables.

The main point of the proof is that we an separate the regular and

irregular ontributions to the supremum we are investigating. The

regular part an be well investigated by lassial tools like the

haining argument. The real novelty in my researh was to �nd a

new method for the estimation of the irregular e�ets. This

demanded the appliation of new arguments.

I put a more detailed version of this talk to the address

http://www.renyi.hu/�major/talks/supremum.html


