
The problem we are interested in 1

Let ξ
1

, . . . , ξ
n

be a sequen
e of i.i.d. random variables with some

distribution µ on a measurable spa
e (X ,X ).
Let a 
lass of fun
tions F 
onsisting of 
ountably many fun
tions

be given on the spa
e (X ,X ) with the properties

∫

f (x)µ( dx) = 0,

sup

x∈X |f (x)| ≤ 1 and

∫

f (x)2µ( dx) ≤ σ2

with some 0 < σ ≤ 1

for all elements f ∈ F .

Let F be a 
lass of fun
tions with polynomially in
reasing 
overing

numbers with exponent L ≥ 1 and parameter D ≥ 1. (I re
all the

de�nition of this notion later.)

De�ne the normalized sums S

n

(f ) = 1√
n

∑

n

j=1

f (ξ
j

) for all f ∈ F ,

and give a good estimate on the tail distribution

P

(

sup

f∈F
S

n

(f ) > v

)

for all numbers v > 0 (1)

of the supremum of these sums. This estimate may depend on σ,
L and D.



An important result, 
alled the 
on
entration inequality, has the


onsequen
e that there is a number v

0

su
h that for v < v

0

the

probability in formula (1) is almost 1, while for v > v

0

, it begins to

de
rease rapidly. An important part of our problem is to give a

good estimate on this numbern v

0

.

There is a solution for a natural version of our problem when we

estimate the supremum of Gaussian random variables. This is done

by means of a method 
alled the 
haining argument.

A similar estimate 
an be proved under some restri
tions in our

model with the help of the so-
alled symmetrization argument. Our

goal is to prove a good estimate in in the general 
ase, whi
h holds

without these restri
tions.

To dis
uss this problem �rst I re
all the de�nition of 
lasses of

fun
tions with polynomially in
erasing 
overing numbers together

with their exponent L and parameter D. I do this in two steps on

the next page.



First step of the de�nition.

De�nition of uniform 
overing numbers with respe
t to

L

1

-norm. Let a measurable spa
e (X ,X ) be given together with a


lass of measurable, real valued fun
tions F on this spa
e. The

uniform 
overing number of this 
lass of fun
tions at level ε, ε > 0,

with respe
t to the L

1

-norm is supν N (ε,F , L
1

(ν)), where the

supremum is taken for all probability measures ν on the spa
e

(X ,X ), and N (ε,F , L
1

(ν)) is the smallest integer m for whi
h

there exist some fun
tions f

j

∈ F , 1 ≤ j ≤ m, su
h that

min

1≤j≤m
∫

|f − f

j

| dν ≤ ε for all f ∈ F .

Se
ond step of the de�nition.

De�nition of a 
lass of fun
tions with polynomially in
reasing


overing numbers. We say that a 
lass of fun
tions F has

polynomially in
reasing 
overing numbers with parameter D and

exponent L if the inequality supν N (ε,F , L
1

(ν)) ≤ Dε−L holds for

all 0 < ε ≤ 1 with the number supν N (ε,F , L
1

(ν)) introdu
ed in

the previous de�nition.



A useful example 4

First I present a simple example whi
h may help to understand how

to estimate the 
on
entration point v

0

.

Example. Take a sequen
e of independent, uniformly distributed

random variables ξ
1

, . . . , ξ
n

on the unit interval [0, 1], �x a number

0 ≤ σ2 ≤ 1, and de�ne a 
lass of fun
tions Fσ and F̄σ as set of

fun
tions de�ned on the unit interval [0, 1] in the following way.

Fσ = {f
1

, . . . , f
k

}, and F̄ = {f̄
1

, . . . , f̄
k

} with k = k(σ) = [ 1

σ2
],

where [·] denotes integer part, and f̄

j

(x) = f̄

j

(x |σ) = 1 if

x ∈ [(j − 1)σ2, jσ2), f̄
j

(x) = f̄

j

(x |σ) = 0 if x /∈ [(j − 1)σ2, jσ2),
1 ≤ j ≤ k , and f

j

(x) = f

j

(x |σ) = f̄

j

(x)− σ2

, 1 ≤ j ≤ n.

Give a good estimate on P

n

(v) = P(sup
j

S

n

(f
j

) > v).

F satis�es the 
onditions in our problem. It is a 
lass of fun
tions

with polynomially in
reasing 
overing numbers with some exponent

L and parameter D whi
h do not depend on σ2

, and the parameter

σ2

introdu
ed in the model is an upper bound for all

∫

f

j

(x)2µ( dx).



Our �rst problem: Find a good lower bound for the numbers v

0

for

whi
h P

n

(v) ≪ 1 only for v > v

0

. The next result gives a solution.

An estimate on the fun
tion P

n

(v) in the models of the above

example. A number C̄ > 0 
an be 
hosen in su
h a way that for all

δ > 0 there is an index n

0

(δ) su
h that for all sample sizes

n ≥ n

0

(δ) and numbers 0 ≤ σ ≤ 1 the inequality

P

n

(û(σ)) = P

(

sup

f ∈Fσ

|S
n

(f )| ≥ û(σ)

)

≥ 1− δ,

holds with

1.) û(σ) = C̄√
n

if σ2 ≤ n

−400

,

2.) û(σ) = C̄√
n

log n

log( log n
nσ

2

)
if n

−400 < σ2 ≤ log n

8n

, and

3.) û(σ) = C̄σ log

1/2
2

σ if

log n

8n

≤ σ2 ≤ 1.

This result says that v

0

≥ û(σ) for the numbers v

0

with the above

demanded property. Our results will show that this estimate is

sharp. The above example helps us to understand what kind of

result we 
an expe
t in the general 
ase.



Next I explain the pi
ture behind this result.

In 
ase 3.) of this example σ2

is relatively large, and we get su
h

an estimate for the best 
hoi
e of û(σ) as in the Gaussian 
ase.

In 
ase 2.) we get a right 
hoi
e for û(σ) not by a Gaussian but by

a Poissonian approximation of our model.

In 
ase 1.) σ2

is very small. We 
an make a trivial estimate by

exploiting that given an arbitrary partition of our spa
e, some

element of this partitition 
ontains a given sample point. In this


ase this fa
t yields the right estimate for û(σ).

Next I formulate the Theorem, and its Extension, the main results

of my paper. They say that in the general 
ase we have the

estimate that the above Example and some 
lassi
al estimates on

the tail distribution of sums of independent random variables

suggest.



Theorem. Let a sequen
e of i.i.d. random variables ξ
1

, . . . , ξ
n

,

n ≥ 2, with values in (X ,X ) with some distribution µ and a


ountable 
lass of fun
tions F on the same spa
e (X ,X ) with

polynomially in
reasing 
overing numbers with exponent L ≥ 1 and

parameter D ≥ 1 be given. Let the fun
tions f ∈ F satisfy the

relations sup

x∈X |f (x)| ≤ 1,

∫

f (x)µ( dx) = 0, and

∫

f

2(x)µ( dx) ≤ σ2

with some number 0 ≤ σ2 ≤ 1 for all f ∈ F .

The normalized sums S

n

(f ), f ∈ F , satisfy the inequality

P

(

sup

f∈F
|S
n

(f )| ≥ v

)

≤ C

1

e

−C
2

√
nv log(v/

√
nσ2

for all v ≥ u(σ)

with some universal 
onstants C

j

> 0, 1 ≤ j ≤ 5, if one of the

following 
onditions is satis�ed.

1.) σ2 ≤ 1

n

400

, and u(σ) = C

3√
n

(L+ logD

log n

),

2.)

1

n

400

< σ2 ≤ log n

8n

, and u(σ) = C

4√
n

(

L

log n

log( log n
nσ

2

)
+ logD

)

,

3.)

log n

8n

< σ2 ≤ 1, and u(σ) = C

5√
n

(nσ2 + L log n + logD).



Extension of the Theorem. Let us 
onsider, similarly to the

Theorem, a sequen
e of i.i.d. random variables ξ
1

, . . . , ξ
n

, n ≥ 2,

with values in a spa
e (X ,X ) with some distribution µ whi
h

satis�es the 
onditions of the Theorem. In the 
ase

log n

8n

< σ2 ≤ 1

the supremum of the normalized sums S

n

(f ), f ∈ F , satis�es the

inequality

P

(

sup

f ∈F
|S
n

(f )| ≥ v

)

≤ Ce

−αv2/σ2

with appropriate (universal) 
onstants α > 0, C > 0 and C

6

> 0 if√
nσ2 ≥ v ≥ ū(σ), where ū(σ) is de�ned as

ū(σ) = C

6

σ(L3/4 log1/2 2

σ + (logD)1/2).

In 
ases 1.) and 2.) Theorem gives a good estimate for v ≥ u(σ)
with an u(σ) suggested by the Example. It is a (non-Gaussian)

estimate suggested by Bennett's inequality. In 
ase 3.) the

Theorem and its Extension together give a good estimate. It holds

for v ≥ ū(σ), as it is suggested by the Example. The Extension

gives a good Gaussian estimate if ū(σ) ≤ v ≤ √
nσ2

. Over this

level we have a weaker estimate formulated in the Theorem.



The main ideas of the proof: I 
an simplify our problem with the

help of my paper Sharp estimate on the supremum of a 
lass of

sums of small i.i.d. random variables by exploiting that we are

working with a 
lass of fun
tions with polynomially in
reasing


overing numbers. This enables us to redu
e our problem to the


ase when we have �nally many random sums S

n

(f ) with some ni
e

properties. The redu
ed problem 
an be solved by means of


lassi
al methods, like the Chaining argument and good estimates

for sums of i.i.d. random variables.

The main point of the proof is that we 
an separate the regular and

irregular 
ontributions to the supremum we are investigating. The

regular part 
an be well investigated by 
lassi
al tools like the


haining argument. The real novelty in my resear
h was to �nd a

new method for the estimation of the irregular e�e
ts. This

demanded the appli
ation of new arguments.

I put a more detailed version of this talk to the address

http://www.renyi.hu/�major/talks/supremum.html


