The problem we are interested in )

Let &1,...,&, be a sequence of i.i.d. random variables with some
distribution 1. on a measurable space (X, X).

Let a class of functions F consisting of countably many functions
be given on the space (X, X) with the properties [ f(x)u(dx) =0,
supyex |F(x)] < 1and [ f(x)?u(dx) < o2 with some 0 < o <1
for all elements f € F.

Let F be a class of functions with polynomially increasing covering
numbers with exponent L > 1 and parameter D > 1. (I recall the
definition of this notion later.)

Define the normalized sums S,(f) = % Sl () forall f € F,

and give a good estimate on the tail distribution
P <sup Sn(f) > v> for all numbers v > 0 (1)
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of the supremum of these sums. This estimate may depend on o,
L and D.



An important result, called the concentration inequality, has the
consequence that there is a number vy such that for v < vy the
probability in formula (1) is almost 1, while for v > v, it begins to
decrease rapidly. An important part of our problem is to give a
good estimate on this numbern v.

There is a solution for a natural version of our problem when we
estimate the supremum of Gaussian random variables. This is done
by means of a method called the chaining argument.

A similar estimate can be proved under some restrictions in our
model with the help of the so-called symmetrization argument. Our
goal is to prove a good estimate in in the general case, which holds
without these restrictions.

To discuss this problem first | recall the definition of classes of
functions with polynomially incerasing covering numbers together
with their exponent L and parameter D. | do this in two steps on
the next page.



First step of the definition.

Definition of uniform covering numbers with respect to
Li;-norm. Let a measurable space (X, X’) be given together with a
class of measurable, real valued functions F on this space. The
uniform covering number of this class of functions at level ¢, € > 0,
with respect to the Ly-norm is sup, N(s, F, L1(v)), where the
supremum is taken for all probability measures v on the space
(X,X), and N(e, F, L1(v)) is the smallest integer m for which
there exist some functions f; € 7, 1 < j < m, such that
mini<j<m [ |f — fi| dv < e for all f € F.

Second step of the definition.

Definition of a class of functions with polynomially increasing
covering numbers. We say that a class of functions F has
polynomially increasing covering numbers with parameter D and
exponent L if the inequality sup, NV (e, 7, L1(v)) < De~* holds for
all 0 < e < 1 with the number sup, NV'(e, F, L1(v)) introduced in
the previous definition.



A useful example 4

First | present a simple example which may help to understand how
to estimate the concentration point vp.

Example. Take a sequence of independent, uniformly distributed
random variables &1, ..., &, on the unit interval [0, 1], fix a number
0 < 02 < 1, and define a class of functions F, and F,, as set of
functions defined on the unit interval [0, 1] in the following way.
Fo={f,....fi},and F = {f,... fi} with k = k(o) = [ %],
where [] denotes integer part, and f(x) = fi(x|o) = 1 if

X € [0~ 1)02. o), x) = F(xlo) = 0 if x ¢ [} — 1)o2jo?),
1<j<k, and fi(x) = fi(x|o) = fi(x) — 02, 1L <j < n,

Give a good estimate on P,(v) = P(sup; S,(f;) > v).

F satisfies the conditions in our problem. It is a class of functions

with polynomially increasing covering numbers with some exponent
L and parameter D which do not depend on o2, and the parameter
o? introduced in the model is an upper bound for all [ f;(x)?u( dx).



Our first problem: Find a good lower bound for the numbers v, for
which P,(v) < 1 only for v > vy. The next result gives a solution.

An estimate on the function P,(v) in the models of the above
example. A number C > 0 can be chosen in such a way that for all
d > 0 there is an index ng(d) such that for all sample sizes

n > ng(0) and numbers 0 < o <1 the inequality

Po(i(0)) = P(sup 15,(F)| > (o ))>1—5,
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holds with
1) (o) = % if 02 < n—400,
2.) b(c) = }I ';’ﬁ,gn) if 7400 < &

3.) i(o ):cmogl/?g if'%ga <1

This result says that vy > 0(o) for the numbers vy with the above
demanded property. Our results will show that this estimate is
sharp. The above example helps us to understand what kind of
result we can expect in the general case.



Next | explain the picture behind this result.

In case 3.) of this example o2 is relatively large, and we get such
an estimate for the best choice of (o) as in the Gaussian case.

In case 2.) we get a right choice for &i(o) not by a Gaussian but by
a Poissonian approximation of our model.

In case 1.) o2 is very small. We can make a trivial estimate by
exploiting that given an arbitrary partition of our space, some
element of this partitition contains a given sample point. In this
case this fact yields the right estimate for (o).

Next | formulate the Theorem, and its Extension, the main results
of my paper. They say that in the general case we have the
estimate that the above Example and some classical estimates on
the tail distribution of sums of independent random variables
suggest.



Theorem. Let a sequence of i.i.d. random variables &1, ..., &,,

n > 2, with values in (X, X) with some distribution 1 and a
countable class of functions F on the same space (X, X) with
polynomially increasing covering numbers with exponent L > 1 and
parameter D > 1 be given. Let the functions f € F satisfy the
relations supxex If(x)] <1, [f(x)u(dx) =0, and

[ 2(x)p(dx) < o2 with some number 0 < o> < 1 for all f € F.
The norma/lzed sums Sp(f), f € F, satisfy the inequality

P <sup 1S ()] > v) < Cre~CVnviog(v/Vno? for all v > u(o)
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with some universal constants C; > 0, 1 < j <5, if one of the
following conditions is satisfied.

1.) o2 < ﬁ, and U(U) = %(L—i_ Iogn)

2) < <02 < 1 and u(o) = T‘; (L En _ + log D>

log (227
3) 5 < 0® <1, and u(0) = (no® + Llog n + log D).




Extension of the Theorem. Let us consider, similarly to the
Theorem, a sequence of i.i.d. random variables &1, ...,&,, n > 2,
with values in a space (X, X) with some distribution 1 which
satisfies the conditions of the Theorem. In the case '%% <0o’<1
the supremum of the normalized sums S,(f), f € F, satisfies the
inequality

P (suIsi()| = v) < el
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with appropriate (universal) constants o >0, C > 0 and Cg > 0 if
V/no? > v > u(c), where (o) is defined as
(o) = Coa(L3*log'? 2 + (log D)'/?).

In cases 1.) and 2.) Theorem gives a good estimate for v > u(o)
with an u(o) suggested by the Example. It is a (non-Gaussian)
estimate suggested by Bennett's inequality. In case 3.) the
Theorem and its Extension together give a good estimate. It holds
for v > @(0), as it is suggested by the Example. The Extension
gives a good Gaussian estimate if () < v < \/no?. Over this
level we have a weaker estimate formulated in the Theorem.



The main ideas of the proof: | can simplify our problem with the
help of my paper Sharp estimate on the supremum of a class of
sums of small i.i.d. random variables by exploiting that we are
working with a class of functions with polynomially increasing
covering numbers. This enables us to reduce our problem to the
case when we have finally many random sums S,(f) with some nice
properties. The reduced problem can be solved by means of
classical methods, like the Chaining argument and good estimates
for sums of i.i.d. random variables.

The main point of the proof is that we can separate the regular and
irregular contributions to the supremum we are investigating. The
regular part can be well investigated by classical tools like the
chaining argument. The real novelty in my research was to find a
new method for the estimation of the irregular effects. This
demanded the application of new arguments.

| put a more detailed version of this talk to the address

http://www.renyi.hu/~major/talks/supremum.html



