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We shall consider graphs (hypergraphs) without loops and multiple edges. Let ~P be a family 
of so called prohibited graphs and ex (n, ~,_ca) denote the maximum number of edges (hyperedges) 
a graph (hypergraph) on n vertices can have without containing subgraphs from ~ A graph (hyper- 
graph) will be called supersaturated if it has more edges than ex (n, ,.~). If G has n vertices and 
ex (n, .~)+  k edges (hyperedges), then it always contains prohibited subgraphs. The basic question 
investigated here is: At least how many copies of L (~ ~o must occur in a graph G" on n verlices with 
ex (n, ~ )~-k  edges (hyperedges)? 

Notation. In this paper  we shall consider only graphs and hypergraphs without  loops 
and multiple edges, and all hypergraphs will be uniform. If  G is a graph or hyper- 
graph, e(G), v(G) and ;((G) will denote the number  o f  edges, vertices and the chromatic  
number  o f  G, respectively. The first upper index (without brackets) will denote the 
number  o f  vertices: G", S", T"'~' are graphs o f  order  n. K~ h) (m~, ..., m F) denotes the 
h-uniform hypergraph with mz+ . . .  +rap vertices partitioned into classes C~ . . . . .  Cp, 
where ICi[=m/ ( i=  1, ..., p) and the hyperedges of  this graph are those h-tuples, 
which have at most  one vertex in each C~. For h = 2  Kp(m~ . . . . .  rap) is the ordinary 
complete p-part i te  graph. 

In some of  our  assertions we shall say e.g. that "'changing o(n'-') edges in 
G'.. .".  (Of  course, o ( . )  cannot  be applied to one graph.)  As a matter o f  fact, in 
such cases we always consider a sequence o f  graphs G" and n . . . .  

Introduction 

Let T"-P denote Kp(nl . . . . .  np) with the maximum number o f  edges with 
n l + . . . + n p = n .  In 1941, P. Tur~in [21] proved, that:  

A m o ~  the graphs G" with n vertices and containing no K~ +~, there exists e.vactly one 
having max imum number o f  edges, nameO', T '''p. 

AMS subject classification (1980): 05 C 35,05 C 65 



182 P. ERDOS and M. SIMONOV[-I 'S 

lnpar t icular ,  if e ( G " ) > [ 4 ] ,  then G"contains a K:~. Radenmcher. (1941, 

[ n~ ] G" unpublished) improved this result by showing that if e(G")> ~-  , then contains 

at least [ 2 ]  Ka's. Perhaps this was the lirst result in the area we call "the theory of 

supersaturated graphs". P. Erd6s [5], [10], generalizing this result, showed that: 
For evet3'.fixed p there exists a constant % > 0  such that (f 0 < k < c p n  and e(G")= 
=e(T" 'P)+k,  then G" contains at least as many Kp+l"s as the graph obtahzed from 
T"'P by putting k edges in one o/  its maximal classes (so that the new edges form no 
triangh,). (For flmher results see [1--3], [4], [18--19]). 

In general, we shall always fix whether the considered objects are ordinary or 
(l\~r some given h_----3) h-uniform hypergraphs. We shall also fix some Family ~ 
of prohibited graphs (hypergraphs). For a given c~,, ex (n, L,q) denotes the maximum 
number of edges a graph G" can have withot, t containing subgraphs from 5q. Given 
E, we shall try to determine the mhtimum number of copies L~.L,¢' a graph G with n 
vertices and E edges must contain. This minimt, m will be denoted by f(n,  5+', E), 
and problems of this type will be called extremal problems for supersaturated graphs'. 

Theorems on supersaturated graphs are sometimes interesting for their own 
sake, in other cases for applications. Many of these applications have the following 
form: we would like to prove that ex (n, LF)<-./'(n) and 

(a) for some L* we know--by some theorem on supersaturated graphs--  
that if e(G")>f(n), then G" contains "many" cpoies of L*. 

(b) Further, we know, that if G" contains "many" copies of L*, then it con-. 
tains an LqSV. 

Thus we obtain that ex (n, L/')--f(n). Arguments of this type were used. e.g., 
in the proof of [17]: 

1 v 
ex(n, K.,(p, q)) ~ T ( q -  l ne-c~/m+O(n)' 

where L*=K.)(I,  p) 
[14] that 

was used. Similarly, let QS be the cube graph. We proved in 

ex (n, Q~) = O(nS/a). 

In order to do this we counted the number of  C~C-G " under the condition that 
e(G") > en ~,'~. Finally we mention that [23] implies a "supersaturated graph theorem" 
for the number of walks W k+l (ofk edges) and using this result wehave proved several 
sharp results in [12], among others, that 

ex ( . ,  {C ~, C~}) = +o07a"2). 

In the last paragraph we shall give another application of  this kind: combining 
Theorem 2 and the Lovfisz--Simonovits theorem we deduce the Erd6s-Simonovits 
sharpening of the Erd6s--Stone theorem, (see below). 

One of our most general results will be 
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T h e o r e m  1. Given a family £~ of  h-uniform hypergraphs, let 

..~, = { L ~ Y :  v(L) ~ t}. 

For eveo, c > 0  there exists a c ' > 0  such that i f  

(1) e (G") z~ ex (n, c~,) + cnh, 

then G" contains at least c'n e prohibited LE~,c=Z,P. 

Remark. One could say, that in the formulation of Theorem 1 L* ° is not needed at 
all, we could restrict ourselves to ~,.  This is true. However, this form of Theorem 1 
enables us to formulate a sharp result for the general case. 

Corollary 1. Restrict ourseh, es to h-unifoJvn hypergraphs and assume also that a finite 
famih' ~£~ of  prohibited graphs is given. Find the largest t for which 

(2) ex (n, 5 ' : ) - e x  (m ~ )  = o (n"). 

Then, .for every c>0 ,  there exist c ' ,c">O such that 

c'n e ~ f ( n ,  L#, ex(n, 5F)+cn ~') N C"n'. 

(Or, in simpler words, if an h-uniform hypergraph has by cn n more hyperedges than 
what is allowed in the extremal graph problem, then it contains at least cn' prohibited 
L C ~ ,  but nothing more can be guaranteed.) 

Here the lower bound follows immediately from Theorem 1, while the upper 
bound can be obtained as follows. By the maxi,nality of t, (2) does not hold for t +  t. 
In [16] it is proved that 

l imex(n,  LP)/[ n)  

exists, (moreover, the ratio is monotone decreasing). Let 

cl = lira ex (n,  £-wt+ 1) - e x  (n, 2f~) > 0. 

By definition, if i<c~ and n is sufficiently large, then we may choose G ~ so that 
[~ nhl 

e(a~)=ex (n, ~ ) + [ c ~ ] ,  but G" contains no graphs from ~o~et+ ~. In other words, 

the prohibited graphs in G" have at most t vertices. This proves the upper bound for 
small values of i, and if we know it for small values, that implies the statement for 
large values as well. 

Theorem 1 has many equivalent forms. 

Theorem 1". We consider h-zmiform hypergraphs. For e~'ery L with t=~'(L) for 
every e > 0  there exists a c ' > 0  such that i f  

e(G") > ex (n, L)~-cl7 h, 

then G" eontabTs at least ctn t copies of L. 
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(Below. if £,a= {L}, we shall often write ex (n, L) instead o f  ex (n, {L}).) Clearly, 
Theorem 1" is a special case of  Theorem 1. The following assertion is a very important  
subcase of  Theorem 1". Let, for p ~ h ,  ,n Ko (ma . . . . .  rap) denote the following gener- 
alization of  the complete p-partite graphs. Fix p disjoint sets o f  vertices, C~ . . . . .  C o, 
where C~ has m~ elements, and take all those h-tuples which contain at most one vertex 
from each C~. The corresponding generalization of  the complete bipartite graph is 
Ki}h)(ma, ..., mh). A theorem of  Erd6s [7] asserts, that  

(3) ex (r~, I<~"~ (m . . . . .  m)) = O( n  ' - ' / ' ' ' ' -~' )  = o(.~'). 

(In case h = 2  we get the K6v~iri--T. S6s--Turfin theorem [17]). Now,  applying 
Theorem 1" to this K~}~')(m, . . . ,m)  we obtain 

Corollary 2. Given c>O. there exists a c ' > 0  such that i f  an h-uniform hypergraph 
G" has at least en ~' h)'peredges, then it contains at least c'n j'' copies o f  L = Kj} h~ (m .. . . .  m). 

One can easily see that Corollary 2 is not only a special case o f  Theorem 1, 
but is also equivalent to it. We shall prove the more general 

Theorem 1'*. There exist c=e,,,,p,>0 and c*=~, , , ,h~0 such that ever9, h-un(form 
G" with 

(4) 

edges contains at least 

E = e (G") > c,,,. h nh-~/ ....... 

. n,#,. [ El" '"  c,,,, h ~ / , )  

copies of  K~ h) (m . . . . .  m). This is sharp: ahnost all hypergraphs with E hylwredges 
contaht 

o [,,,,,,, , ,v ,  f EI''''I 
copies of  Kl} n) (m . . . . .  m).* 

The behaviour  of  ex (17, coo) is fairly complicated and our  knowledge on it is 
rather poor.  Some of  the "most  elementary" problems defy all our  efforts to solve 
them. The situation is much nicer for ordinary graphs. The authors  have described 
the function ex (n, .L/') and the structure of  extremal graphs for L# sufficiently well 
in [13], [8], [9]. [20]: 

Erd6s--Stone--Simonovi ts  theorem [13]. Let p=p(L~' )=min  z ( L ) - I .  Then 

= (1 l I(" 
- p )  t2  )+°(n~)  • 

Erd6s--Simonovits  theorem [8], [9], [20]. Let p=p(~a~)=min  z ( L ) - 1 .  Then every 
extremal graph S" for .L# can be obtained fi'om the Tur~n graph T "'p by delethTg and 

( '  I addling o(n 2) edges. Further, the mhfmum degree ~/(S")= t - - - + o ( 1 )  n. ~ p 

* The proof of the sharpness will be left to the reader. 
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These results are interesting for us in two different ways. On the one hand we 
shall deduce them from our general result, (for the simpler Erd6s--Stone--Simono-  
vits theorem this have already been done in [1 1]), on the other hand, we can fornmlate 
Theorem 1 for ordinary graphs in a more explicit form. 

Theorem 2. Let us consider ordinary graphs and let p = m i n  z ( L ) - I  Jbr a given 
family 50 of  prohibited graphs. I f  there exists a (p + l)-chromatic L~ 50 ~ ith t vertices, 
then for every e > 0  there is a c ' > 0  such that i f  

P 

then G" contahTs at least c'n t prohibited subgraphs. 

The above theorems gave lower bounds on the number of  prohibited subgraphs 
in a supersaturated graph. The next theorem is a stability theorem in the lbllowing 
sense: it asserts that either a supersaturated (ordinary) graph G" contains many pro- 
hibited subgraphs or it has almost the same structure as the extremal graphs tbr 50. 

Theorem 3. Let us consider ordinary graphs. Let ~" be a finite family o f  prohibited 
subgraphs and p(50)=p=n~in  z ( L ) - 1 .  Let t be the maximum number of  rertices in 

the (p+ 1)-chromatic graphs of 50. I f  e(G")>ex (n, ,LP) and G" contabls only 
o(n t) prohibited subgraphs, then it can be obtahwd fi'om T ''p by changing o(n ~) edges. 

This will easily imply the Erd6s--Simonovits  theorem and also 

Theorem 4. Let us consMer ordinary graphs. Let 50 be a fami(y of  prohibited sub- 
graphs, p = m i n  )c (L)-  1, and ass'ume that, for some k = k , , =  o(n-'), we have e(S")= 

L~ ~, 

= ex (n, 50)+ k = E. Suppose further that S" is extremal for the supersaturated pro- 
blem, that is, it contains the minimum of L~ 50 among the graphs G" with E edges. 
Then S" can be obtained from T ",p by changing o(n"-) edges. 

Some recursions on ex (n, J;) andf(n,  50, E)  

The ibllowing graph theoretical operation will be used in our proofs. 

Definition. If L is an ( h - l ) - u n i f o r m  hypergraph, L ~r~ will denote the h-uniform 
hypergraph obtained by fixing r new vertices x~ . . . .  , x~ and taking the hypergraph 
whose vertices are the vertices of  L and the new vertices; the hyperedges are those 
h-tuples which consist of  an edge of  L and a new vertex. 

Example. If L=K~h)(m, ..., m), then ~r(r)---- "',+~''+1) ¢ , .1  ~,, m, ..., m). 

The next theorems are recursions on the number of prohibited subgraphs and 
on ex (n, 50). They may seem rather technical at the first sight, however, they are 
often very useful. 

Theorem 5. Let L be an ( h -  l)-uniform hypergraph, v(L)=v.  Assume that a sequence 
E,,>ex (n, L) is f x e d  and f(n, E) is a function/'or which 



186 v. ERDOS and M. SIMONOVITS 

(i) f (n ,  E ) = 0  for E<E,,; 

f(n, E) is monotone increasing and convex for every f ixedn while E,<-E~[~] .  
% . "  

(ii) f(n, E + E,,) ~f(n,  E) + f(n, E,,). 
(iii) I f  H" is an (h-1)-uniforn~ h.vpergraph with E edges, then it contains at least 

f(n, E) copies of L. 

Then ever l, h-un(form hypergraph S" with F hyperedges contains at least 

j[1,, hF]" 
4n ) 

(5) c 
17 vr -- v - r 

copies of  L ('), .ft," some constant c > 0 .  

Remarks .  Condit ions (i) and (ii) are merely technical assumptions.  We are interested 
pr imari ly  in functions of  form 

(6) J ( , , ,  E) = {'0 (n)E~ 
if E E,,, 

" it" E < E . ,  
for some a >  I. For  these functions (i) and (ii) automat ica l ly  hold and (5) reduces to 

c* t (n)  ~F"' if  F ~  F ~ - -  " 
(7) f ( n . L  (,), F)  => g(n, F) = 0" n . . . . . . . . . . .  h ' 

if F < F,,. 

One further c o m m e n t  on (i) and (ii) is that  if f (n, L, E)  denotes  the min imum number  
of  L ' s  an ( h - 1 ) - u n i f o r m  hypergraph  G" with E edges must  contain,  then f satisfies 
OiL but  of ten is not  convex. This is, why we must  choose a smaller  f u n c t i o n f w h i c h  is 
already convex and still satisfies (ii). 

The following theorem is very similar to the previous one. 

Theorem 6. Under the comtitions of Theorem 5 eve O, h-uniform h)Tergraph S" with 
F hyperedges contains at least 

n~.f[n,  cUr ] (8) t 

copies of L (') .['or some constant e > 0 .  

These recursive theorems on oversaturated graphs  contain regular extremal  
graph theorems as a part icular  case. Thus,  e.g., we shall use Theorem 6 to prove  

Theorem 7. There exist a constant c > 0  and an integer n0(L, c, h) such that 

~h_!)+~ ! 
ex(n,  L(')) ~ c.  n t , ,  r - e x ( n ,  L )  r / f  n > n 0 ( L ,  c, h). 

This recursion theorem will yield the old result o f  Erd6s, [7]: 

Erd6s- theorem.  ex (n, K~ h~ (m . . . . .  m ) )  ~- O (nh-O/""-')). 
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Indeed, for h=  1 the theorem is trivial. (For h = 2  it follows from the K6vfiri-- 
T. Sds--Tur~n theorem, but we do not need this.) We may use induction on h: 
if we know Erd6s theorem for K~h_-z~)(m . . . . .  m)=L,  then, applying Theorem 7 to 
this L with r=m, we obtain the theorem for L("J=K~[h~(m . . . . .  m). 

Proofs 

As we have mentioned, most of  our results will be derived from Theorem 5. 

Proof of Theorem 5. Given a vertex x, Sx will denote the ( h -  l)-tmiform hypergraph 
whose vertices are the same as the vertices of S" and whose edges are those ( h -  l)- 
tuples, which together with x form a hyperedge of S". We shall count the pairs {(L, x) : 
L ~ S~}, first fixing x. then fixing L. These pairs will be called "incidences". 

(A) I fx  is fixed, we have at leastf(n,  e(S.,.)) copies of L in S.~ (by the definition 
o f f ) .  Thus the mm?ber of incidences is at least 2 f(n,  e( Sx) ). Let 

): 

U(",E) if E>E,, 
(9) g(E) = g(n, E ) : =  lf(n,  E,,) if E ~- E,,. 

Clearly, g(E) is convex, further, ~ e(S.O=hF. Thus 
x 

(10) ~ f (n ,  e(S,)) ~ ~, (g(e(S.~))-f(n. E,,)) ~ n g -7{-7 
5r , 

(B) Let qL denote the number of x's such that L c_ Sx. Then the number of 

L~,)c=_ S" is exactly --f Y~ ~ , where Tdenotes the number of LC_L(') generating 

L( ' ) ( in  the way described in the definition of L(')). Extending (x) t o t h e  reals by 

i ( x - l ) ( x - 2 )  ... ( x - r +  1) 
r! if x > r - I  

( x l  
[, .):= if x:~ ,.-1, 

we get a convex function. We know that ~ qL is also the number of  incidences. Thus 
L 

by (10) 

qL >-- n g \  tt / (l I) 

By the convexity of {:) we get that the number of L ~') ~ S" is at least 

(12) - f Z  => 
1 v c n V - 1  

- ~  Cfl" • r 
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(since the number  of  summands  is the number  of  L 's  on n vertices, which is a sympto-  
tically cn~). 

(C) As a mat ter  o f  fact, (12) is just the sort  of  formula  we needed, and it does 
not use (ii). However ,  it is not a nice looking fornmla.  This is, why we assume (ii) 
and derive a simpler form of  (12). (Only relatively simple formulas  can effectively be 
used.) We try to prove  

[ hF] h F l  
(13) / / ' , - f ( " ,  £,,) 7 ,  \ 

I f  we can prove  this, then (12) immediately will give Theorem 5. However ,  for 
h F  
-~-~n<E,,, f = 0 ,  therefore the theorem guarantees no L ~ at all. Thus  it holds. For  

hF  
-Ud :~ F~,,, 

hF  h F  
- -  - -  E t  I 2 = > - - ~  
n 4n 

therefore  (ii) yields (13), complet ing the proof.  1 

Proof of Theorem 1"*. We use induction on h, applying Theorem 5 to L =  
__ ( h - l )  - -Kh-1  (177 . . . . .  m) and 

1 
h - -  1 - -  - -  

l 0 if E < c n  . , , , -2=E.  

= ( E / "" - '  (14) f (n ,  E) / n , , , 0 , _ ~ ) / _ _  / if E ~ E.. 
[ t ,,"-, J 

(Tlleorem 1'* is trivial for /7= 1 ; the function f (n ,  E)  trivially satisfies (i) and (ii), 
a n d - - b y  the induction hypothesis--( i i i )  as well, with some constant  c=ch_~ . )  
By Theorem 5 any h-uniform S" with F edges contains at least 

(15) c'. 
/ 7 ( h -  1 )m~--th 1 ) m - m  

copies o f  L l" )=K~h)(m . . . . .  m). Indeed,  here r e = r ,  z ' = ( h -  Din, and we may  use 
the second case o f  definition (14), since 

t 
h - - -  

F ~ AIz '""- 
implies 

hF  I,-* - t~ 
tll}l- ] 

- -  - "  ( ' 1 l  

4 n  - 

(15) yields that  S" contains at  least 

, ( q ° , '  
(16) c . t n ~--7) . 1 1  h m  

copies of  L ~"°, complet ing the proof.  1 
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Proof of Corollary 2. If F = a n  ~' for some constant a > 0 ,  then (16) yields c'n h'' 
for some e ' > 0 .  I 

Proof of Theorem 1. In [i 1] Erd6s proved the following simple but very useful lemma : 

Lemma. For a f i xed  hlteger m and f i xed  constants q ~0 ,  c > 0  there exists a constants 
q>O such that i f  

(,,) (17) e(G") ~ (q+c)  h ' 

I n )  i ,  duced subhypergraphs G m G" then Jbr at least q m c_= 

(18) e(Gm) ~ q '  7 t h ) "  I 

Let now 

q - -  l i m -  (,;) 
(<1(") We may fix an m such that ex (m, 2 ' , ) <  q + ~ -  h " Apply the above lemma to this 

,,7, c, and the G" in Theorem 1. We obtain that G" must contain at least q [ ~ /  sub- 
~ x 

hypergraphs G" satisfying 

(19) e ( 6 " )  > ex (m, ~ ) .  

(,,) Thus each o1' these G" ' s  contains a prohibited L~_Y,. Thus we obtain at least ~ m 

prohibited subgraphs LE2' ,  in G"; however, many of these are counted mm~y 
f n - t ]  

times. This does not really matter, since each L is contained in at most t m _ t  J 

induced G"C_G ''. Thus we obtain at least 

( , l l l i n - : ]  
'Ttm)/t,,,_ J <,',,, 

different copies of  prohibited subgraphs from ~ , .  I 

Observe, that Theorem 2 immediately follows from the Erd6s--Stone--Simo-  
novits theorem and Theorem 1. Next we shall prove Theorem 3. For this we shall 
use the following result of kov~sz and Simonovits [19] (which is a particular case of  
a more general theorem). 

Lovrisz--Simonovits theorem. Let C be cut arbitrarily large constant, p be a .fixed 
hTteger. There exist a 6 > 0  and a C ' > 0  ./or which, i f  

e(G") = e ( T ' " e ) + k ,  (0 < k < fin'-'), 

and G" contains only Ckn "-~ copies o f  Kp+a, then G" can be obtained f rom a T"," 
by changhlg at most C 'k  edges. 

4* 
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Remark. This is a "stability theorem": T ''p contains no K~,+~, and adding k edges 

to it we get a graph U" with ,~- Kp+(s on each of  the new edges. The above 

theorem asserts that either G ~ has "'much more" Kp+~'s, or it has almost the same 
structure as U". 

Proof of Theorem 3. Let us fix an arbitrary c>0 .  Define a ( p +  I)-uniform hyper- 
graph H" on the vertices of G" as follows. The hyperedges of  H" are the ( p +  l)- 
tuples forming a Kp+~G" .  Select an L 6 ~  with z ( L ) = p + I  and v(L)=t .  Now, 

(a) either e(H"):~cn p+j. or 
(b) take a minimal _p+~'~P+l~t",~ ,,,,~, ..., mp+~) for which ~,p+~2~l(m J, ..., m~+~) =DL. 

The minimality means that first we embed L into Kp+~(t . . . . .  t), and then delete all 
vertices of Kp+t(t . . . . .  t) not belonging to L. Thus nh+. . .+mp+~=v(L)=t .  By 
Theorem 1" H" contains at least c 'n'  copies of K~P+~)(n'h, m,+0.  Thus G" ' p + l  " ' ' '  

contains at least c'n ~ copies of ,,pK~e~+ ~ (m~ , ..., mp+l)D_L,_ which .lyields, that "G" 
contains at least on' prohibited subgraphs". In Theorem 3 we assumed that G ° has 
only o(n t) prohibited L's. Thns, for any c > 0  and n>n0(c), G" contains at most 
cn ~ ~~ copies of K~+I. In other words, G ° contains at most o(n ~+~) K~+a's. By the 
Lovfisz--Simonovits theorem, G" can be obtained by changing o(n ~) edges in T ".p. | 

Proof of Theorem 4. Again, add k edges to T °'p and regard the resulting graph 
U". If the new edges form a bipartite graph (what can be assumed), then U" contains 

no (l '+2)-chromatic LCLt °. Thus it contains at most c/,- | n / ' -  " prohibited L: in- 

deed, if LC= U", then v(L)~=t and L contains one of the new edges. This shows that 
if S" is extremal for the supersaturated problem in the sense that it has minimum 

number of  prohibited L ~ ,  then it contains at most ck " "[nl '-2prohibited sub~raphs. 
~ p j  

Applying Theorem 3 to S" we complete the proof. II 

Proof of Theorem 6. Let us consider an h-uniform S" with F hyperedges. If U is 
an (h - l)-tuple of  vertices and R is an r-tuple such that each xi•R forms a hyperedge 
of  S with U, then (U, R) will be called "flower". The proof below will be very similar 
to that of  Theorem 5, with the difference that we shall cotmt these "'flowers" instead 
of the "incidences". 

Let s U and a~ be the number of"flowers" (U, R) for fixed U and R, respec- 
tively. The number of flowers is 

(20) s = Z s u =  ~ a  ~. 
U R 

Clearly, if T denotes the number of ways an L ~') is obtained from an L ~ L ~r), then 
the number of  L ~r)_c S" is at least 

=> g (21) 7 f (n ,  aR) --f (g(aR)--g(E.))  >= R R 
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(22) 

since ~ , d u = h F .  
U 

by the convexity ofg .  Let d v denote the number of  hyperedges containing the ( h -  l)- 
tuple U. By (20), 

S :-  at1 :-  . su : --: h - I  n h(r-1)+l 

A short calculation, using (ii), yields the desired result. I 

Proof of Theorem 7. Using the notations of the above proof, observe that if S" 
contains no L ~ ,  then, for every R, ag ~ ex (n, L), otherwise, there were ex (n, L )+  I 
(h l)-tuples U such that each xC<R tbrms an edge of S wi theachU.  S o m e o f t h e m  
would form an L which generates with R an L ~) in S". 

Thus (22) yields that 

(23) 
/ h _ _ / F ]  ("// 

• 

I,h- 1 ) 
Rearranging (23) we get the desired assertion. 1 

Remark. Formally we may deduce Theorem 7 from Theorem 6: Set 

[~x E if E - ~ - E , , : e x ( n , L ) + l  
f (n ,  E) = (n, L)+  1 

otherwise. 

It is easy to see that Theorem 6 can be applied with thisf(n, E) and yields Theorem 7, 

Appendix 

We will deduce tile Erd6s--Simonovits  tlleorem mentioned in the introduction 
from Theorem 3. Let S" be an extremal graph for 5a. Fix an LoE5 ° with z ( L o ) = p +  1, 
and with the maximum number of  vertices, t. Since S" contains no L0 at all, we may 
apply Theorem 3: S can be obtained from T",P by changing o0f  ~) edges. 

(The proof  above is that easy, because we used the fairly deep Lovfisz--Simo- 
novits theorem.) 
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