Intersection theorems on structures
- Schelp, R. H.; Simonovits, M.; Sós, V. T. Intersection theorems
for $t$-valued functions. European J. Combin. 9 (1988), no. 6,
531--536.
- Simonovits, Miklós; Sós, Vera T.: Intersection properties of
subsets of integers. European J. Combin. 2 (1981), no. 4,
363--372.
- Graham, R. L.; Simonovits, M.; Sós, V. T. A note on the
intersection properties of subsets of integers. J. Combin. Theory
Ser. A 28 (1980), no. 1, 106--110.
- Simonovits, Miklós; Sós, Vera T.: Intersection theorems on
structures. Combinatorial mathematics, optimal designs and their
applications (Proc. Sympos. Combin. Math. and Optimal Design,
Colorado State Univ., Fort Collins, Colo., 1978). Ann. Discrete
Math. 6 (1980), 301--313.
- Simonovits, M.; Sós, V. T. Intersection theorems for
graphs. II. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely,
1976), Vol. II, pp. 1017--1030, Colloq. Math. Soc. János Bolyai, 18,
North-Holland, Amsterdam-New York, 1978.
- Simonovits, Miklós; Sós, Vera T.: Intersection theorems for
graphs. Problèmes combinatoires et théorie des graphes
(Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 389--391,
Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.
Some related papers
- Faudree, R. J.; Schelp, R. H.; Sos, Vera T.: Some intersection theorems on two-valued functions. Combinatorica 6 (1986), no.
4, 327--333.
- Erdos, P.; Sos, V. T. Problems and results on intersections of set systems of structural type. Utilitas Math. 29 (1986),
61--70.
-
Chung, F. R. K.; Graham, R. L.; Frankl, P.; Shearer, J. B.:
Some intersection theorems for ordered sets and graphs.
- Szabó, Tibor: Intersection properties of subsets of integers.
European J. Combin. 20 (1999), no. 5, 429--444.
Some open problems
The intersection of two graphs on a given vertex set in the graph spanned by
the common edges. (Sometimes it is irrelevant, but mostly we delete the
isolated vertices.)
- How many graphs can be given on n vertices if the intersection of any
two contains a triangle?
- How many graphs can be given on n vertices if the intersection of any
two is connected?